ARTIFACT
EVALUATED

rusenix

ARTIFACT
EVALUATED

rusenix

- ' ASSOCIATION

» ’ ASSOCIATION

FUNCTIONAL

CBMM: Financial Advice for Kernel Memory Managers

Mark Mansi, Bijan Tabatabai, Michael M. Swift

(0
(WI WISCONSIN

\ UNIVERSITY OF WISCONSIN-MADISON

Kernel Memory Management

Kernel Memory Management

Kernel Memory Management

Kernel Memory Management

ms)

(
=
N
-

un
o

>
()
-
Q
=
O
(V)]
=
-
O
Y
a
()
(W]
(nlR

40 60
Workload Progress (%)

Kernel Memory Management

ms)

(
I—'I
(W)
o

un
o

=
.
-
QL
4
4"
wu
ot
-
LY
Y
@
(@)
18]
('

40 60 80
Workload Progress (%)

Modern 15t-party Datacenter Workloads

Photos:

https://sre.google/sre-book/production-environment/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

Modern 15t-party Datacenter Workloads

Diverse, concurrent workloads

Tail Latency Requirements

Photos:

https://sre.google/sre-book/production-environment/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

Modern 15t-party Datacenter Workloads

4|

Highly controlled, replicated

Diverse, concurrent workloads

Tail Latency Requirements

https://sre.google/sre-book/production-environment/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

Modern 15t-party Datacenter Workloads

]
]
]
]
]
]
]

Persistent : Tools files

Store (Paxos, | .
i =
]
]
]

) P I_ : / ‘

Current MM + 15t-party DC workloads = ???

S

Highly controlled, replicated

Tail Latency Requirements

Photos:

https://sre.google/sre-book/production-environment/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

1. Low-Quality Information

1. Low-Quality Information

v
-
)
-
S
o
o)
)
N
©
=
-
o
=z

-
O
N

-
O

SPEC 2017 xz
Scaled up to 192GB
Data compression

Benefit compared to No huge pages

40 60
Address Range

1. Low-Quality Information

v
-
)
-
S
o
o)
)
N
©
=
-
o
=z

-
O
N

-
O

SPEC 2017 xz
Scaled up to 192GB
Data compression

Benefit compared to No huge pages

40 60
Address Range

1. Low-Quality Information

1. Low-Quality Information

4 ls /proc/sys/vm/

admin_reserve_kbytes dirty_bytes huge
block_dump dirty_expire_centisecs lapt
compact_memory dirty_ratio leg:
compact_unevictable_allowed dirty_writeback_centisecs Town
compaction_proactiveness dirtytime_expire_seconds max_
dirty_background_bytes drop_caches min.
dirty background_ratio extfrag threshold mma

System-wide tunables & stats

1. Low-Quality Information

1s /proc/sys/vm/
admin_reserve_kbytes dirty_bytes hug

block_dump
compact_memory

dirty_expire_centisecs lar
dirty_ratio leg

compact_unevictable_allowed dirty_writeback_centisecs Tlow

compaction_proactiveness dirtytime_expire_seconds ma X
dirty_background_bytes drop_caches mir
dirty_background_ratio extfrag threshold mma

Session: VM/Memory

System-wide tunables & stats

ASPLQS'19, April 13-17, 2019, Providence, RI, USA

HawkEye: Efficient Fine-grained
OS Support for Huge Pages

Ashish Pan S ans K. Gopinath
Indian Institute o TC Indian Institute of Technology Delhi Indian Institute of Science
ashishpanwar@iisc.ac.in sbhansal@iitd.ac.in gopi@iisc.ac.in

Abstr'ict

into focus [32, 49, 59, 61, 63]. Modern architectures IITJ]Jlt"
menting large

supporting multiple pe

sign to determine sui

Hardware Performance Counters

1. Low-Quality Information

1s /proc/sys/vm/

admin_reserve_kbytes dirty_bytes hug
block_dump dirty_expire_centisecs lap
compact_memory dirty_ratio leg
compact_unevictable_allowed dirty writeback_centisecs low

compaction_proactiveness dirtytime_expire_seconds ma x
dirty_background_bytes drop_caches min
dirty backeround ratio extfrag threshold mma

VRONG
GRANULARITY

HawkEye: Efficient Fine-grained
OS Support for Huge Pages

Ashish Panw S ans K. Gopinath
Indian Institute o TC Indian Institute of Technology Delhi Indian Institu Science
ashishpanwar@iisc.ac.in sbhansal@iitd.ac.in gopi@iisc.ac.in

Abstl"ict into focua [32, 49, 59, 61, 63]. Modern architectures IITJ]Jlt"

Hardware Performance Counters

1. Low-Quality Information

1s /proc/sys/vm/

admin_reserve_kbytes dirty_bytes hug
block_dump dirty_expire_centisecs lap
compact_memory dirty_ratio leg

compact_unevictable_allowed dirty writeback_centisecs low
compaction_proactiveness
dirty_background_bytes
backeround ratio

dirty

GRANULARITY

dirtytime_expire_seconds ma x
drop_caches min
extfrag threshold mma

WRONG

HawkEye: Efficient Fine-grained
OS Support for Huge Pages

Sorav Bansal
Indian Institute of Technology Delhi
sbansal@iitd.ac.in

Ashish Pan
Indian Institut

K. Gopinath
Indian Instit F Science
ashishpanwar@i a

Abstract

Effective huge pa lk‘é management in uper ltl_l'lk‘ systems is menting largc multle
supporting multip

sign to determine su

Hardware Performance Counters

nce, RI, USA

#include <sys/mman.h>

int madvise(void *addr,

madvise

size_ t length,

int advice);

1. Low-

1s /proc/sys/vm/

admin_reserve_kbytes dirty_bytes hug
block_dump dirty_expire_centisecs lap
compact_memory dirty_ratio leg
compact_unevictable_allowed dirty_writeback _centisecs Tlow
compaction_proactiveness dirtytime_expire_seconds ma x

dirty_background_bytes
backeround ratio

dirty

drop_caches min
extfrag threshold mma

VRONG
GRANULARITY

HawkEye: Efficient Fine-grained
OS Support for Huge Pages

Sorav Bansal
ology Delhi
.ac.in

K. Gopinath
Indian Institute of Science
gopi@i i

Indian Institute o

ashishpanwar@iisc.ac.in sbansal@iit

into focus [32, 49, 59, 61, 63]. Modern architectures imple-
TLBs and page Il

supporting mul 25 |3 , Te O -
sign to determine or different workloads

Abstract
huge page management in operating systems is
for mitigation of address translation overheads.
However. this continues to remain a difficult area in OS de-

Hardware Performance Counters

menting large multi-1

Quality Information

#incli

HARD TO USE WELL

_——==17

madvise

1. Low-

1s /proc/sys/vm/

admin_reserve_kbytes dirty_bytes hug
block_dump dirty_expire_centisecs lar
compact_memory dirty_ratio leg
compact_unevictable_allowed dirty_writeback_centisecs Tlow

compaction_proactiveness
background_bytes
backeround ratio

dirty_

dirty

dirtytime_expire_seconds ma x
drop_caches min
extfrag threshold mma

VRONG
GRANULARITY

HawkEye: Efficient Fine-grained
OS Support for Huge Pages

Sorav Bansal
Indian Institute of Technology Delhi

K. Gopinath
Indian lnsmute of bcleme

ashishpanwar@iisc.ac.in sbansal@iitd.ac.in

Abstract

supporting mul
sign to determine

Hardware Performance Counters

>s for different \\urklmds

Quality Information

#incli

HARD TO USE WELL

_——==17

madvise

Bits 31-12 of address AVL |G

Page table A/D bits

/Advance CLOCK
Pointer
Test and Clear
Use-Bit

Main
Memory
Frames

[Clear Schedule Page
For Cleaning
Set 3

>’ Replace Page

Figure 1. CLOCK Replacement Algorithm

Page fault freg/location

1. Low-

1s /proc/sys/vm/

admin_reserve_kbytes dirty_bytes hug
block_dump dirty_expire_centisecs lar
compact_memory dirty_ratio leg
compact_unevictable_allowed dirty_writeback_centisecs Tlow

compaction_proactiveness
background_bytes
backeround ratio

dirty_

dirty

dirtytime_expire_seconds ma x
drop_caches min
extfrag threshold mma

VRONG
GRANULARITY

HawkEye: Efficient Fine-grained
OS Support for Huge Pages

Sorav Bansal
Indian Institute of Technology Delhi

K. Gopinath
Indian lnsmute of bcleme

ashishpanwar@iisc.ac.in sbansal@iitd.ac.in

Abstract

supporting mul
sign to determine

Hardware Performance Counters

>s for different \\urklmds

Quality Information

#incli

HARD TO USE WELL

_——==17

madvise

Bits 31-12 of address AVL |G

DarA +ahla A /N White

Main
Memory
Frames

Schedule Page
For Cleaning
Set 3

>’ Replace Page

Figure 1. CLOCK Replacement Algorithm

Page fault freg/location

2. Cost-Unaware Policies

2. Cost-Unaware Policies

base (4KB) page fault

base (4KB) page fault, fallback

map shared zero page

write-protected fault

write-protected fault, cleared memory
write-protected fault, fallback

huge page created

huge page created, compacted

huge page created, compacted, reclaimed
huge page alloc failed, compacted, fallback A
huge page alloc failed, compacted, fallback B
huge page alloc failed, compacted, reclaimed

various other exotic fallback paths

P99 Latency

< 38us100us

1ms

Mix workload (350GB)
Redis, memhog, matrix-mult
Induces memory pressure

10ms

1s

2. Cost-Unaware Policies —

Redis, memhog, matrix-mult
base (4KB) page fault Induces memory pressure

base (4KB) page fault, fallback

map shared zero page

write-protected fault

write-protected fault, cleared memory

write-protected fault, fallback

| huge page created |

huge page created, compacted

huge page created, compacted, reclaimed
huge page alloc failed, compacted, fallback A
huge page alloc failed, compacted, fallback B

huge page alloc failed, compacted, reclaimed

various other exotic fallback paths

P99 Latency < 38usl100ps 1Ims 10ms 1s

2. Cost-Unaware Policies —

Redis, memhog, matrix-mult
base (4KB) page fault Induces memory pressure

base (4KB) page fault, fallback

map shared zero page

write-protected fault

write-protected fault, cleared memory

write-protected fault, fallback

P99 Latency < 38usl00ps 1Ims 10ms 1s

2. Cost-Unaware Policies —

Redis, memhog, matrix-mult
Induces memory pressure

base (4KB) page fault

base (4KB) page fault, fallback
map shared zero page

write-protected fault

write-protected fault, cleared memory

= 8.7M TLB misses

write-protected fault, fallback

| huge page created |

huge page created, compacted

r_ huge page created, compacted, reclaimed

L huge page alloc failed, compacted, fallback A

L huge page alloc failed, compacted, fallback B

L huge page alloc failed, compacted, reclaimed

r_ various other exotic fallback paths

P99 Latency < 38usl100ps 1Ims 10ms 1s

Q Couchbase ‘ Documentation

Couchbase Server / Install & Upgrade / Deployment Guidelines / Disable THP

2' Cost—Unawa re PO“CleS Disabling Transparent Huge Pages (TF

base (4KB) page faUIt M Transparent huge pages (THP) is a memory management system that is enabled by default in mos
—rnonm THR e be dim~bled in order for Couchbase Server to function correctly on Linux.
GET STARTED ~~ DOCS COMMANDS RESOURCES ~» COMMUNITY o M O n 8 O D B

Docs Home — Develop Applications — MongoDB Manual
3

Diagnosing latency issues

Finding the causes of slow responses

Disable Transparent Huge Page

. : . o Transparent Huge Pages (THP) is a Linux memory management system
This document will help you understand what the problem could be if you are experiencing latency prd P 9 9 () Y J y

Redis. Lookaside Buffer (TLB) lookups on machines with large amounts of men

F

huge page created, compacted e ORACLE' Help Center nith THP enabled, b

uge page created, compacteaq, rec aime
[D PINgCAl allae failad ~ramnactad fallhack A | —— 2 10 Dlsabllng Transparent Huge

s

Starting with Red Hat Enterprise Linux 6, Oracle Linux 6, SUSE 11 and
runtime. However, Transparent HugePages might cause delays in men
Transparent HugePages on all Oracle Database servers to avoid perfo

2020-12-10 Engi i
[IR Although Transparent HugePages are similar to HugePages, they are ¢

preallocated at startup. Oracle recommends that you use standard Huc
rJJ I_GLCII\.—Y > jéubluuus

3. Scattered implementations

Kernel

3. Scattered implementations

Kernel

3. Scattered implementations

~/1linux/mm
$ grep CONFIG_TRANSPARENT_HUGEPAGE
page_alloc.c
page_1idle.c
vmscan.c
huge_memory.c
Makefile
rmap.c
mempolicy.c

nemcontrol.c Huge page implementation!

hmm. c

gup.c

vmstat.c
page_10.cC
memory.c
pgtable-generic.c
madvise.c

swap.c

migrate.c

Roadmap

Roadmap

Three challenges to consistent kernel MM behavior:
1. Low-quality information
2. Cost-unaware policies
3. Scattered implementations

Roadmap

Three challenges to consistent kernel MM behavior:
1. Low-quality information
2. Cost-unaware policies
3. Scattered implementations

Cost-benefit Memory Management (CBMM)
» Userspace cost < userspace benefit ARTIFACT
. . . . EVALUATED
* Centralized policy implementation susenix

* Profiles augment kernel info
() github.com/multifacet/cbmm-artifact

] ’ ASSOCIATION

ARTIFACT
EVALUATED

Fusenix

4 . ASSOCIATION

FUNCTIONAL

Roadmap

Three challenges to consistent kernel MM behavior:
1. Low-quality information
2. Cost-unaware policies
3. Scattered implementations

Cost-benefit Memory Management (CBMM)
» Userspace cost < userspace benefit ARTIFACT
. . . . EVALUATED
* Centralized policy implementation susenix

* Profiles augment kernel info
() github.com/multifacet/cbmm-artifact

] ’ ASSOCIATION

Results
* Improve soft page fault tail latency by orders of magnitude
* Match or improve performance, especially if fragmented

ARTIFACT
EVALUATED

Fusenix

4 . ASSOCIATION

FUNCTIONAL

Roadmap

Three challenges to consistent kernel MM behavior:
1. Low-quality information
2. Cost-unaware policies
3. Scattered implementations

Cost-benefit Memory Management (CBMM)
» Userspace cost < userspace benefit ARTIFACT
. . . . EVALUATED
* Centralized policy implementation susenix

* Profiles augment kernel info
() github.com/multifacet/cbmm-artifact

] ’ ASSOCIATION

Results
* Improve soft page fault tail latency by orders of magnitude
* Match or improve performance, especially if fragmented

ARTIFACT
EVALUATED

Fusenix

4 . ASSOCIATION

FUNCTIONAL

~ | CBMIM:KEYIDEA
= = N

| CBMM: KEY IDEA |
> | s = | <

All MM operations have a cost and a benefit to userspace.

10

| CBMM: KEY IDEA |
> | s = | <

All MM operations have a cost and a benefit to userspace.
Ex: Copy-on-write

Benefit: processor cycles not spent copying memory
Cost: processor cycles spent on extra page faults

10

B N
CBMM: KEY IDEA

All MM operations have a cost and a benefit to userspace.
Ex: Copy-on-write
Benefit: processor cycles not spent copying memory

Cost: processor cycles spent on extra page faults

Ensure that cost < benefit.

10

CBMM Design: Overview

Kernel

11

CBMM Design: Overview

Kernel

Estimator

Centralized MM policies

11

CBMM Design: Overview

Kernel

Estimator

Centralized MM policies

Consult Estimator for
each policy decision

12

CBMM Design: Overview

Centralized MM policies
Kernel

Consult Estimator for

Estimator each policy decision

Cost-Benefit Models

4
wﬁ? B

, Units: userspace cycles
Cost-Benefit

Models

12

CBMM Design: Overview

Centralized MM policies
Kernel

Consult Estimator for

Estimator each policy decision

Cost-Benefit Models

Z
> &

Units: userspace cycles
Cost-Benefit Workload +—_ P Y

Models Profiles

Workload Profiles

12

CBMM Design: Overview

Kernel

Estimator

il

Cost-Benefit = Workload
Models Profiles

Centralized MM policies

Consult Estimator for
each policy decision

Cost-Benefit Models

Units: userspace cycles

Workload Profiles

12

CBMM Design: Overview

Centralized MM policies
Kernel

Consult Estimator for

Estimator each policy decision

Cost-Benefit Models

Z
> &

Units: userspace cycles
Cost-Benefit Workload +—_ P Y

Models Profiles

Workload Profiles

12

Creating and Implementing Models

Estimator

il

Cost-Benefit
Models

13

Creating and Implementing Models

mm_estimate_t my_model(
mm_op_t *op
){
... // Logic
Estimator return mm_estimate_t {
.cost = ..,
.benefit = ..,

wﬁl’? b

Cost-Benefit
Models

Creating and Implementing Models

Estimator

il

Cost-Benefit
Models

mm_estimate_t my_model(
mm_op_t *op

){
... // Logic

return mm_estimate_t {
.cost = ..,
.benefit = ..,
b
}

MM operation info

Model

Creating and Implementing Models

Estimator

il

Cost-Benefit
Models

mm_estimate_t my_model(
mm_op_t *op

){
... // Logic

return mm_estimate_t {
.cost = ..,
.benefit = ..,
b
}

MM operation info

Model

Cost, Benefit
Estimates

Creating and Implementing Models

Estimator

il

Cost-Benefit
Models

mm_estimate_t my_model(
mm_op_t *op

){
... // Logic

return mm_estimate_t {
.COSt = ..
.benefit -
b
}

MM operation info
Kernel/HW State

Cost, Benefit
Estimates

Creating and Implementing Models

Estimator

il

Cost-Benefit
Models

mm_estimate_t my_model(
mm_op_t *op

){
... // Logic

return mm_estimate_t {
.COSt = ..
.benefit -
b
}

MM operation info
Kernel/HW State
Preloaded Profiles

Cost, Benefit
Estimates

Creating and Implementing Models

Estimator

il

Cost-Benefit
Models

mm_estimate_t my_model(
mm_op_t *op

){
... // Logic

return mm_estimate_t {

.cost = ..,
.benefit = ..,

Preloaded Pro

A Benefit

ates

Ex: Huge Page Model

>rnenting Models

mm.estimate_t my_model(
mn_op_t *op

)
... // Logic

return mm_estimate_ t o
.cost = ..,
.benefit = ..,

A Benefit
ates

13

Ex: Huge Page Model

COST

Have Huge
Pages?

>rnenting Models

mm.estimate_t my_model(
mn_op_t *op

)
... // Logic

return mm_estimate_ t o
.cost = ..,
.benefit = ..,

A Benefit
ates

13

Ex: Huge Page Model

COST

Have Huge
Pages?

>rnenting Models

mm.estimate_t my_model(
mn_op_t *op

)
... // Logic

return mm_estimate_ t o

.cost = ..,
.benefit = ..,

Preloaded Pro

A Benefit
ates

13

Example: Huge Page Cost-Benefit Model

Example: Huge Page Cost-Benefit Model

Page fault: use base or huge pages?

14

Example: Huge Page Cost-Benefit Model

Page fault: use base or huge pages?

g Huge avoids 10us of TLB misses?

14

Example: Huge Page Cost-Benefit Model

Page fault: use base or huge pages?

g Huge avoids 10us of TLB misses?

—— Cost estimate: 100us -> Use base pages

14

Example: Huge Page Cost-Benefit Model

Page fault: use base or huge pages?

g Huge avoids 10us of TLB misses?

—— Cost estimate: 100us -> Use base pages

Cost estimate: 0 -> Use huge pages

14

Example: Huge Page Cost-Benefit Model

Page fault: use base or huge pages?

g Huge avoids 10us of TLB misses?

—— Cost estimate: 100us -> Use base pages

Cost estimate: 0 -> Use huge pages

14

Profile Generation and Maintenance

Estimator

il

Cost-Benefit
Models

15

Profile Generation and Maintenance

Address Range Benefit

0x0 to 0x7fcc76400000 243632025
0x7fcd83400000 to 0x7fce09c00000 229284
Estimator 0x7ffbbf400000 to 0x7ffc45c00000 1311889877

Q
e n
Cost-Benefit Workload
Models Profiles

Profile Generation and Maintenance

Address Range Benefit

0x0 to 0x7fcc76400000 243632025
0x7fcd83400000 to 0x7fce09c00000 229284
Estimator 0x7ffbbf400000 to 0x7ffc45c00000 1311889877

> A B =N cycles
M ﬁ cycles
Cost-Benefit ~ Workload D D

Models Profiles

Profile Generation and Maintenance

Estimator

il

Cost-Benefit
Models

Workload
Profiles

Address Range

Saved usermode cycles

0x0 to Ox7fcc76400000

243632025

O0x7fcd83400000 to Ox7fce®9c00000

229284

0x7ffbbf400000 to 0x7ffc45c00000

1311889877

(Huge) — (Base) = 1311889877

1.031

Normalized Runtime
=
o
N

o '
©
(o]

0 20 40

60 80 100

Address Range

All together...

All together...

Before Deployment

16

All together...

Before Deployment

Ok

_ QQ

L

l

1

All together...

Before Deployment

I]_O

All together...

Before Deployment

Runtime

Estimator

il

Cost-Benefit Workload
Models Profiles

16

All together...

Before Deployment

Runtime

Estimator

Mﬁ. S

Cost-Benefit Workload
Models Profiles

16

All together...

Before Deployment

e

Runtime

&

Estimator e.g., handle_mm_fault()

il

use huge page?

Cost-Benefit Workload
Models Profiles

16

All together...

Before Deployment

e

Runtime

&

Estimator e.g., handle_mm_fault()

il

use huge page?

Cost-Benefit Workload
Models Profiles

16

All together...

Before Deployment

e

Runtime

&

Estimator e.g., handle_mm_fault()

il

use huge page?

Cost-Benefit Workload
Models Profiles

16

All together...

Before Deployment Runtime

e

&

Estimator e.g., handle_mm_fault()

il

use huge page?

Cost-Benefit Workload
Models Profiles

16

All together...

Before Deployment Runtime

e

&

Estimator e.g., handle_mm_fault()

il

use huge page?

Cost-Benefit Workload
Models Profiles

16

Implementation and Evaluation

17

Implementation and Evaluation

Implementation based on Linux

17

Implementation and Evaluation

Implementation based on Linux

Eval questions:
* Improved MM op tail latency?

17

Implementation and Evaluation

Implementation based on Linux

Eval questions:
* Improved MM op tail latency?
 Match performance?

17

Implementation and Evaluation

Implementation based on Linux

Eval questions:
* Improved MM op tail latency?

 Match performance?

Methodology:

* Baseline: Linux 5.5.8

e With and without fragmentation
* Much more evaluation in paper!

Test Machine Specs

Intel Xeon Silver 4114
10C/20T @ 2.2 GHz

Skylake 2017
192GB ECC DRAM
480GB SSD

17

Soft Page Fault Tail Latency

27.8 h

2.8 h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms

100.0 us
10.0 us

Avg time between events

Latency

Linux
Linux,fragmented

memcached
192GB peak mem

18

Soft Page Fault Tail Latency

27.8 h

2.8 h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms

100.0 us
10.0 us

Avg time between events

Latency

Linux
Linux,fragmented

memcached
192GB peak mem

18

Soft Page Fault Tail Latency

27.8 h

2.8 h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms

100.0 us
10.0 us

Avg time between events

Latency

Linux
Linux,fragmented

memcached
192GB peak mem

18

Soft Page Fault Tail Latency

27.8 h

2.8 h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms

100.0 us
10.0 us

Avg time between events

Latency

Linux
Linux,fragmented

memcached
192GB peak mem

18

Soft Page Fault Tail Latency

27.8 h

2.8 h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms
100.0 us
10.0 us

Upper Left
is better

Avg time between events

Latency

Linux
Linux,fragmented

memcached
192GB peak mem

18

Soft Page Fault Tail Latency

27.8 h

2.8 h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms
100.0 us
10.0 us

Upper Left
is better

Avg time between events

Latency

Linux
Linux,fragmented

memcached
192GB peak mem

18

Soft Page Fault Tail Latency memcached

192GB peak mem

Upper Left
is better

Avg time between events

<,

& 2

&

Latency

Linux — CBMM
Linux,fragmented - CBMM,fragmented '8

Soft Page Fault Tail Latency memcached

192GB peak mem

Upper Left
is better

Avg time between events

<,

& 2

N\

Latency

Linux — CBMM
Linux,fragmented - CBMM,fragmented '8

Soft Page Fault Tail Latency

27.8h
2.8h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms

27.8h
2.8h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms
100.0 us
10.0 us

e &

& uﬂj-\"&) 45‘{.7 Qf o (2
0 ‘?.;P L OINEN Y
Y A Py '\E} v

27.8h
2.8h
16.7 m
1.7 m
10.0s
1.0s
100.0 ms

en events
en events
en events

e
e
e

Upper Left
is better

10.0 ms
1.0 ms
100.0 pus
10.0 us

. s}%ﬁ‘d‘:’ %t _\\-&: {5-: 0.;-{'-:‘»{}»:
W P _E_": '» N,Q

10.0 ms
1.0 ms
100.0 us
10.0 us

o

¥

Avg time betw
Avg time betw
Avg time betw

E P & 27 o7
?QQ 2-\;\ ..»':} 2 "
A8

Latency Latency

memcached mongodb dc-mix

Latency

27.8h
2.8h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms
100.0 pus
10.0 us

. s}%ﬁ‘d‘:’ %t _\\-&: {5-: 0.;-{'-:‘»{}»:
¥ Sy -':'2
- Sy .@

27.8h
2.8h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms
100.0 us
10.0 us

Q.h:' -Q? \L?'\\—‘ g N Q—
O 5] h
‘? 2-\, ..\":)

27.8h
2.8h
16.7 m
1.7 m
10.0s
1.0s
100.0 ms
10.0 ms
1.0 ms
100.0 us
10.0 us

en events
en events
en events

e
e
e

Avg time betw

[
A
u
0
1]
E
=
on
=
<L

Avg time betw

WA A,
> \

Latency Latency Latency

Xz canneal mcf

Linux — CBMM

Linux,fragmented ---- CBMM,fragmented

Soft Page Fault Tail Latency

27.8h
2.8h
16.7 m
1.7 m
10.0s
1.0s
100.0 ms
10.0 ms
1.0 ms
100.0 us
10.0 us

27.8h
2.8h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms
100.0 pus
10.0 us

en events
en events

e
e

yetw
yetw

Upper Left
is better

Avg time |
Avg time |

O & PO <& 2% o2
N %.;\Ef{,‘ '\’Q{\ &L

P ¢ P& & RKR%07
L ‘? QQ Q' \} %\,\ ':} -»
~

Sy ..:-.:I 2
S VA8

Latency Latency

memcached mongodb

27.8h
2.8h
16.7 m
1.7 m
10.0s
1.0s
100.0 ms
10.0 ms
1.0 ms

27.8h
2.8h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms
100.0 us 100.0 pus
10.0 us 10.0 us

¥ G{"&a‘ W ¥ éﬂ:,"(ba@% K79
VAR > RN

en events
en events

e
e

yetw
yetw

Avg time |
Avg time |

Latency Latency

Xz canneal

Linux — CBMM

en events

etwe

Avg time |

etween events

Avg time |

27.8h
2.8h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms
100.0 pus
10.0 us

¥

¥ Sy .__':'2
¥

27.8h
2.8h
16.7 m
1.7 m
10.0 s
1.0s
100.0 ms
10.0 ms
1.0 ms
100.0 pus
10.0 us

el

¥ Q‘%t & & 0.5{%@%
V.8

Latency

dc-mix

H & BH o LGe 5
NV Qt'\\“ RN

¥ Sy .__':'2
¥

'»..}'I}

Latency

mcf

CBMM

Linux,fragmented ---- CBMM,fragmented

improvement

19

Performance (Normalized Workload Runtime)

Lower
is better

20

Performance (Normalized Workload Runtime)

Lower
is better

6.0
5.0
4.0
3.0
2.0
1.0

M Linux, unfragmented Linux, fragmented

Y

7z
%

I 1 1

o) NS 3 Q
< o) \ >
& & & &
> 5 > O
N %

20

Performance (Normalized Workload Runtime)

Linux, fragmented

M Linux, unfragmented
E CBMM, unfragmented

N
LN

j

Y

—
—

@ CBMM, fragmented

A NN

N
~N

|

O

2.0

|

Lower
is better

1.0

1]

0.5

0.0

20

Performance (Normalized Workload Runtime)

Linux, fragmented

M Linux, unfragmented
E CBMM, unfragmented

N
LN

j

Y

—
—

@ CBMM, fragmented

A NN

N
~N

|

O

2.0

|

Lower
is better

1.0

1]

0.5

0.0

20

Performance (Normalized Workload Runtime)

Linux, fragmented

M Linux, unfragmented
E CBMM, unfragmented

N
LN

g%

Y

—
—

@ CBMM, fragmented

A NN

N
~N

|

O

2.0

|

Lower
is better

1.0

1]

0.5

0.0

20

Performance (Normalized Workload Runtime)

Linux, fragmented

M Linux, unfragmented
E CBMM, unfragmented

N
LN

j

Y

—
—

@ CBMM, fragmented

A NN

N
~N

|

O

2.0

|

Lower
is better

1.0

1]

0.5

0.0

20

Performance (Normalized Workload Runtime)

Lower
is better

2.0

1.0

0.5

0.0

M Linux, unfragmented Linux, fragmented
E CBMM, unfragmented @ CBMM, fragmented
2.2 %5.2
” 35%
_ - faster

A R R R Y
: |

Y

07/‘,, AR

<
‘[»e
@c? Y
o
0%

Q),%
% %
%
%

Q))o
2

20

2

Performance (Normalized Workload Runtime)

M Linux, unfragmented

Linux, fragmented

E CBMM, unfragmented @ CBMM, fragmented

2.0

‘ 2.2 /5.2
Lower Z
is bet . . ,)) P
Improves tail latency without regressing performance ter
Z 7 Z
o é
0.5 2B N N
7 7 Z
é é é
7 7 Z
OO o, /o /S
K A, AN O 0 3
(Q(J + Qéb ‘(\Q’ Ob ﬂ°\
) 5 (Qc,’b(’ (QOQQO ¥ }

2

Conclusion

21

Conclusion
Challenges

CBMM Design

21

Conclusion

Challenges

Scattered implementation
Cost-unaware policies
Low-quality information

CBMM Design

Centralized policy implementation
Models: userspace cost < benefit
Profiles augment kernel info

21

Conclusion

Challenges CBMM Design

Scattered implementation Centralized policy implementation
Cost-unaware policies Models: userspace cost < benefit
Low-quality information Profiles augment kernel info
Results

* Improve soft page fault tail latency, often by 2-3 orders of magnitude
* Competitive performance; 35% faster on fragmented systems on average

21

Conclusion

Challenges CBMM Design

Scattered implementation Centralized policy implementation
Cost-unaware policies Models: userspace cost < benefit
Low-quality information Profiles augment kernel info
Results

* Improve soft page fault tail latency, often by 2-3 orders of magnitude
* Competitive performance; 35% faster on fragmented systems on average

ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

Fusenix Fusenix

] , ASSOCIATION

» . ASSOCIATION

FUNCTIONAL

) github.com/multifacet/cbomm-artifact .

