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3. Scattered implementations

~/1linux/mm
$ grep CONFIG_TRANSPARENT_HUGEPAGE
page_alloc.c
page_1idle.c
vmscan.c
huge_memory.c
Makefile
rmap.c
mempolicy.c

nemcontrol.c Huge page implementation!

hmm. c

gup.c

vmstat.c
page_10.cC
memory.c
pgtable-generic.c
madvise.c

swap.c

migrate.c
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CBMM: KEY IDEA

All MM operations have a cost and a benefit to userspace.
Ex: Copy-on-write
Benefit: processor cycles not spent copying memory

Cost: processor cycles spent on extra page faults

Ensure that cost < benefit.
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Page fault: use base or huge pages?

g Huge avoids 10us of TLB misses?

—— Cost estimate: 100us -> Use base pages

Cost estimate: 0 -> Use huge pages
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Profile Generation and Maintenance
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Implementation and Evaluation

Implementation based on Linux

Eval questions:
* Improved MM op tail latency?

 Match performance?

Methodology:

* Baseline: Linux 5.5.8

e With and without fragmentation
* Much more evaluation in paper!

Test Machine Specs

Intel Xeon Silver 4114
10C/20T @ 2.2 GHz

Skylake 2017
192GB ECC DRAM
480GB SSD

17
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