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Abstract

Automated management of a physical network’s lifecycle is
critical for large networks. At Google, we manage network
design, construction, evolution, and management via multiple
automated systems. In our experience, one of the primary
challenges is to reliably and efficiently manage change in
this domain — additions of new hardware and connectivity,
planning and sequencing of topology mutations, introduction
of new architectures, new software systems and fixes to old
ones, etc.

We especially have learned the importance of supporting
multiple kinds of change in parallel without conflicts or mis-
takes (which cause outages) while also maintaining paral-
lelism between different teams and between different pro-
cesses. We now know that this requires automated support.

This paper describes some of our network lifecycle goals,
the automation we have developed to meet those goals, and
the change-management challenges we encountered. We then
discuss in detail our approaches to several specific kinds of
change management: (1) managing conflicts between multi-
ple operations on the same network; (2) managing conflicts
between operations spanning the boundaries between net-
works; (3) managing representational changes in the models
that drive our automated systems. These approaches com-
bine both novel software systems and software-engineering
practices.

1 Introduction

In large production networks, changes happen all the time.
Lots of research and development has delivered a wide range
of designs and products for managing changes to network
data planes and control planes. Requirements for scalability,
reliability, security, low cost, and rapid flexibility together
have made it essential to automate many aspects of network
management, but this work has mostly focused on managing
networks after the physical components have been deployed.
For example, Software Defined Networking (SDN) methods
do not directly address designing the physical wiring of a

network, or ensuring that the right switches and cables are
ordered from vendors, or connected to effect a design, or how
to sequence and schedule this physical work.

At Google, we have also found it necessary to automate
many abstract and physical aspects of a network’s full lifecy-
cle, including network planning (what networks do we need
to build and when, given capacity forecasts?), network design
(what specific switches and links do we need?), materials or-
dering (what specific part numbers do we need to order and
when, what cables need to be constructed?), network construc-
tion (where do data center operators need to place equipment
and cables?), firmware installation, physical validation (are
the links correctly connected and not suffering high error
rates?), network repair processes (which links/switches can
we safely drain before doing repairs?), etc. We must also
provide our automated control planes with accurate, detailed
“schematics” for the networks that they manage.

While initially we could perform Network Lifecycle Man-
agement (NLM) manually, in practice this was slow, error-
prone, and inflexible. Those problems worsened with increas-
ing scale, driving us to automate as much of this work as
possible. For example, designing optimal inter-block cabling
for a Jupiter fat-tree network is NP-complete, and a good ap-
proximation requires significant computation [31,38]. Even
at much smaller scales, processes like correctly rolling out
router configuration changes are safest when they are care-
fully automated [23].

As we introduced systems to automate NLM, we discov-
ered that we had not sufficiently understood or appreciated
the difficulty of change management in this specific domain.
Certainly, change management has always been a problem
for network designers and operators, and much useful work
has been done on ways to manage changes to device configu-
rations (or SDN controller configurations) related to routing,
access control lists, and other post-deployment issues.

However, several other aspects of change management be-
gan to delay our progress and undermine the value of our
automation. These include managing conflicts between mul-
tiple operations on the same network; managing conflicts
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between operations spanning the boundaries between net-
works; managing representational changes in the models that
drive our automated systems; and introducing major changes
in our software infrastructure.

In this paper, we focus on these change-management chal-
lenges, the solutions we developed for them, and some of
the experience we gained. In particular, we address several
distinct (but interacting) aspects of change management:
Managing conflicts between operations: deciding what or-
der to do things in, and what process steps can be done in
parallel without conflicts. The physical lifecycle of a network
involves many steps with complex dependencies. In small
networks, changes are sometimes sufficiently rare and rapid
that they can be serialized without loss of efficiency. In a large,
frequently-changing network, multiple changes, sometimes
with extended execution time, must overlap, or else capacity
delivery and upgrades becomes unacceptably sluggish (e.g.,
see §10.1). We must prevent operational conflicts that lead to
outages, or even the risk of outages, because we want to do
these operations on “live” networks.

Planners must also be able to analyze potential sequences
of future changes to decide the best partial order, choose the
least costly option, or detect if a sequence would lead to an
infeasible or invalid state (we call this “what-if analysis™).
Planners also sometimes need to modify the order of existing
plans, as constraints or requirements change.

Therefore, a key contribution of this paper is the design of
a plan-management service (§5.2), and the abstractions that
allow us to explicitly represent how various future lifecycle
states depend on each other or can be done in parallel.
Representational change: Automation depends on machine-
readable data. Foundational to the work in this paper is the
MALT network-model representation [27], which we use to
represent the current, desired, and potential future states of
network topologies at many levels of abstraction. Planning
and design processes form a pipeline of successive refine-
ments of these models, and the generation of derived data,
such as instructions for creation and placement of cables, from
these models. Likewise, operational data, such as device and
SDN controller configurations, are primarily derived from
these models.

A notable challenge in modeling is that our continued in-
novation in network designs and components requires us to
rapidly evolve the MALT representation (e.g., Fig. 8). Previ-
ously, we found it hard to do this safely (without production
outages) and without constantly and tediously updating lots
of model-generating and model-consuming software; this se-
riously slowed our innovation.

We describe how we allow a wide variety of model-
consuming systems, built and maintained by many different
partner teams, to cope with evolution in our MALT represen-
tation and how we use it to encode specific designs, without
requiring unsustainable engineering efforts on the part of
those teams. (§7, §8)
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Figure 1: Some use cases for MALT models.

While this paper reports on our experience with large-scale
datacenter network infrastructures, we are also applying the
same tools and practices in several adjacent domains, such
as the management of WAN systems, of machines, and of
datacenter physical designs. Our approaches are useful at
smaller scales, too.

Ethical concerns: The systems described in this paper do
not handle or store any Personal Identifiable Information (PII),
and do not raise any ethical issues.

2 Context

This paper focuses on our Jupiter datacenter network fab-
rics [30,31], and our B4 WAN fabrics [16, 18]. By “fabric” in
this paper, we generally mean a Clos network consisting of
many switches and links, with SDN controllers.

We drive our network automation using machine-readable
representations, primarily the MALT representation (Multi-
Abstraction Layer Topology) representation, described in [27],
and summarized below in §2.1. We organize these represen-
tations as models of the network fabric’s topology and many
other static details.

Our automation covers many aspects of a network’s entire
lifecycle, including (as depicted in Fig. | and Fig. 2):

e Fabric planning: Our infrastructure planning team de-
cides when we need to build, expand, or decommission a
fabric. They express their high-level goals (where should
the fabric be built? Using what abstract architecture? Of
what size?) via MALT fabric intent models. These mod-
els have relatively few details. Planners might explore
several possible options for a fabric before committing
to a specific choice.

e Fabric design: Before we can construct a network, we
convert the fabric intent into concrete MALT models, via
a fully-automated process somewhat like compilation
of a program. The concrete models, after several levels
of refinement, fully define the structure of the network,
down to individual switches, fibers, racks, etc.

'We have other networks that use a more traditional design consisting of
large non-SDN routers; our management processes for those networks are
somewhat different.
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e Materials ordering: When we commit to a decision to
build or expand a fabric, we take the first (nearly) irre-
versible step of ordering materials (switches, fibers, etc.).
Since these are expensive, after this point we generally
avoid changing our intentions. The choice of exactly
what materials to order is an automated process driven
by MALT models and additional inputs.

e Fabric deployment: With the materials on hand, we can
build the network (place racks, switches, and SDN con-
troller machines, connect them with fibers, and test that
it all works). This step is carried out by humans, using
automatically-generated detailed human-readable plans
based on the MALT models. We also install the necessary
on-switch software using automated processes.

e Controller and switch configuration: Once the net-
work is built, we automatically generate SDN controller
and switch configurations from the MALT models, with
additional configuration inputs.

e Operations: Our operators manage the run-time behav-
ior of a network via various tools and services. For exam-
ple, they might need to “drain” part of a fabric to carry
out repairs or upgrades, and then “undrain” it later. The
systems that carry out these operational changes are also
driven, in part, by MALT models. We also have automated
control planes (e.g., [22]) that depend on structural in-
formation expressed using MALT.

e Health and repairs: We have automated systems to
decide whether the network is unhealthy, to diagnose
the causes of problems, and to help us understand what
systems would be affected by a faulty (or drained) com-
ponent. These all use MALT as some of their input data.

It should be obvious that we rely on accurate and up-to-date
MALT models for virtually all of our network management
automation. The challenges discussed in this paper are all
related to preserving that accuracy when our systems are
constantly evolving.

2.1 Background on MALT

We briefly summarize the aspects of MALT [27] necessary to
understand this paper.

MALT is an entity-relationship model representation, not a
database. In an entity-relationship model, entities represent
“things,” which can be abstract (e.g., an entire fat-tree net-
work) or quite detailed (e.g., a specific strand of fiber), or
in-between (e.g., an IP adjacency aggregating multiple fibers).
Entities have “kinds” (types), names, and attributes, Entities
are connected via relationships, which have kinds, but neither
names nor attributes.

A collection of entities and relationships forms a MALT
model. We divide models into shards, with some shard-
specific metadata. Model shards are typically (but not always)

aligned with physical infrastructure boundaries at the city, re-
gion, or building scale. Some shards have millions of entities.
Please refer to [27, Fig 3.] and [27, Appendix A] for example
MALT models. Detailed, machine-readable versions of these
examples are available for download [13].

We normally store shards in MALTShop, a purpose-built
system that enables easy sharing of models between systems,
which depends on naming, access control, and consistency.
Shards in MALTShop have names (similar to UNIX path-
names) and access-control lists (ACLs). Every update to a
shard creates a new, immutable version, with an immutable
version number. MALTShop uses a copy-on-write mechanism
to efficiently store many versions of a shard that is being
incrementally updated.

MALTShop supports a generic query language, which walks
an entity-relationship graph to extract a chosen subset model.
It allows one query to span a set of multiple shards.

To manage evolution, each shard can assert compliance
with one or more profiles. A profile is essentially a contract
between a shard’s producer and consumers that the shard
conforms to a set of predicates. Profiles are versioned; when
we need to change how we represent a network, we signal
that by creating a new version of the corresponding profile.

Our planners, designers, and operators usually want to think
in terms of the high-level abstract designs of these networks
(e.g., a Jupiter network is a collection of blocks connected by
spine blocks), rather than in terms of specific switches and
fibers; the support for multiple abstraction layers in a single
MALT model enables this separation of concerns.

2.2 Why automate?

Our work was motivated by our large, heterogeneous net-
works, but we believe this kind of automated approach would
be valuable for a broad range of network operators (although
we realize that the market for full-lifecycle automation soft-
ware may be small).

Automation enables design flexibility and experimenta-
tion. The research community has generated a wonderful
range of scalable network structures, including Fat-Trees [1],
expander graphs [32], F10 [25], etc. These designs exploit
path redundancy to support high bandwidth and availability
at relatively low cost.

However, most non-hyperscaler enterprises appear not to
be using modern multipath networks. In fact, the dominant
provider of network hardware recommends a simple three-
layer design with large “core” switches at the top, relatively
large “aggregation” switches in the middle, and smaller “ac-
cess” switches (e.g., top-of-rack or ToR switches) at the bot-
tom [8] and other vendors recommend two layers [3].” Why
do most enterprises avoid multipath networks? Our (admit-
tedly anecdotal) understanding from several experts is that

>These are old citations; the age of these documents may reflect an
inherent stasis.
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most enterprises lack the design tools that they would need
to construct and maintain fat-tree networks, let alone less-
regular designs such as expander graphs. We speculate that
the low adoption rate for research-generated network designs
is at least partially due to a lack of tooling, especially to sup-
port safe and frequent changes. (There are, of course, other
reasons.)

Risk management. Hyperscalers use multipath network
topologies [2,31,34,38] also because they support incremen-
tal expansion of, and upgrades to, live networks. The need for
zero-downtime changes to the structure of these networks is
driven by Service Level Objectives (SLOs) targeting 99.99%
or better availability, which allows at most a minute of down-
time per week. Some providers hope to achieve 99.999%
availability, allowing just 5 minutes of downtime per year.

Most enterprise networks are more static than ours; every
change creates the risk of a large-scale outage, so operators
are extremely change-averse. Their use of non-multipath de-
signs leads to less structural redundancy, which we and other
hyperscalers exploit to allow frequent changes at relatively
low risk. Our automated tooling both indirectly supports low-
risk changes by enabling the use of fat-trees, and directly
supports it by allowing us to validate all low-level changes
against higher-level intent. Smaller enterprises would benefit
from using such automation to mitigate change-management
risks; e.g., assigning the same IP address to two different
endpoints (a mistake we have made in manual workflows).
Addressable markets. Our work focuses on automated op-
erations on large and frequently-changing networks. Many
networks are too small or static to require such automation;
how many enterprises actually have large networks? Data on
this topic is difficult to find, often because it is only available
via high-cost market-research reports. While the number of
hyperscalers is small, when we include software-as-a-service
and other forms of cloud, there are at least dozens of such
providers [29]. The number of hyperscaler data centers is
also growing consistently [9]. However, there are many other
large non-hyperscaler data centers. There are also thousands
of smaller “Points of Presence” (POPs); a typical pattern for
both large and small enterprises is to build and maintain small
fabrics in many POPs, motivating frequent use of design and
turnup automation.

Takeaway: Many — perhaps most — network outages result
from human error, often associated with physical-network
changes [15,21]; automation with a specific focus on change
management can make these changes faster and more reliable.
It also enables increased agility and innovation.

2.3 Related work

Prior work on network management has mostly focused on
network device configuration management, such as configu-
ration language design [7] and configuration generation for
existing networks [5,24,34]. Although our networks’ config-
urations are derived from network models, our focus here

is on planning for topology designs, and for the physical
construction, modification, and eventual decommissioning
of networks, as well as for their day-to-day operation.

Most prior work (both academic and commercial) has also
typically focused on managing the network as it is now, or on
verifying near-term intent (i.e., to be implemented as soon as
possible). This includes verification of data-plane [19,20,36]
and control-plane [4] properties.

In contrast, this paper addresses the challenges of planning
for future physical states of a network, especially on how to
manage sequences of dependent changes in the face of con-
founding factors, and on how to validate both individual states
and sequences of changes. We note that validated, accurate
topology models can enable verification of control-plane and
data-plane layers.

Some prior work (e.g., [32,37]) discussed how topology
design affects the complexity of lifecycle management, but
did not address how to automate the management processes.

Network operators often expand network topologies to aug-
ment capacity [37]. Prior work [38] described how we expand
live data center networks, through a layer of patch panels; it
uses an integer linear programming algorithm to minimize
the number of wires to move, while also maintaining suffi-
cient bandwidth through multiple stages (so as to avoid packet
loss). In this paper, we address how those multiple stages are
planned and coordinated.

3 Change management challenges

We start by describing some of the many specific challenges
in change management.

3.1 Orchestration of physical changes

In traditional, non-automated network management, changes
to the physical infrastructure of the network (e.g.,
adding/moving/removing a switch or link) are typically
treated as risky operations. Network operators often limit
these to maintenance windows, during which some or all of
the network becomes unavailable — and because these win-
dows are disruptive, they can only be scheduled rarely, and
then must be carried out as quickly as possible. This approach
supports neither rapid evolution nor high availability.

More modern, scalable network designs such as Jelly-
fish [32] and other expander graphs, Facebook’s Fabric [2],
and Jupiter [31] use “multipath” designs that exploit path
redundancy to support high bandwidth and availability at rela-
tively low cost. Multipath topologies also support incremental
expansion of, and other upgrades to, live networks, because
their redundancy allows “draining” parts of the network dur-
ing these operations.

For example, the Jupiter architecture consists of several
types of blocks, each of which is a Clos fabric. Some of these
blocks (“pods”) provide connectivity to racks of machines via
Top-of-Rack (ToR) switches; some (“fabric border routers”,
or FBRs) provide connectivity to WANs and other Jupiters;
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some provide connectivity between other blocks in the same
Jupiter.” This modular architecture allows us to build a large
fabric (dozens of blocks) incrementally, rather than paying
the capital costs and energy of building an entire fabric before
we need all of it. Modularity also allows us to add blocks built
from newer (faster/cheaper) switches and links to an existing
fabric. In order to manage the evolving connectivity between
blocks without having to completely rewire everything, we
use a layer of patch panels [38], but even so, adding or remov-
ing a block requires significant human effort to reconfigure
the patch panels.”

When we first started automating operations on Jupiter
networks, we ran into the issue that each change to a fabric
typically depends on the previous changes. However, our
original topology-model representation only allowed us to
represent one “intended” view of the network, so we had
to serialize changes to a fabric: generate an intended model
for one change, then carry out that change, and only then
could we generate a model for the next change; the resulting
delays become nearly intolerable. Our use of MALT solved
that problem, because we could create multiple independent
versions of a fabric’s model in advance.

However, this still left us with the problem of managing the
dependencies between a sequence of models — for example,
ensuring that two different changes did not use the same
switch port for conflicting purposes. Our solution to this kind
of conflict avoidance serializes changes by means of a fabric-
level lock, essentially a mutex.

Takeaway: To help us discover and avoid such conflicts as
quickly as possible, we have now formalized the relationships
between multiple plans for a given fabric using the concept
of PlanPoints, described in §5, and managed by a service,
TopoPlan (§5.2).

3.2 Representational change

Our network management systems are highly automated and
thus heavily dependent on machine-readable data. This data
is primarily represented in MALT, on which we focus in this
paper, but we use several other standardized representations,
such as OpenConfig [28] for telemetry. These representa-
tions must evolve over time, to support novel network de-
signs, new hardware, new management concepts (e.g., failure-
independent “zones” for high availability), etc.

For example, initially we did not model connectivity be-
tween machines and top-of-rack (ToR) switches, so we did
not model machines. However, newer policies for machine-
specific security and rate-limiting required authoritative intent
for these connections, so we added machines to MALT models.

3The original Jupiter design incorporated “spine blocks™ to form a folded
Clos connecting the pods and FBRs. More recently, we connect those blocks
directly without using spine blocks, but sometimes the pods themselves
provide transit routing between other blocks [30].

4Our more recent deployments replace patch panels with optical circuit
switches, which avoid much but not all of the human effort for reconfigura-
tion [30].

Table 1: Acronyms and terms used in this paper.

Acronym/
term | Definition

DCNI | Data Center Network Interconnect
MALT | Multi-Abstraction-Layer Topology representation
MALTShop | A storage system for MALT
MSID | Model-Set ID
MBS | Model-building service
MDS | User-facing design service
MQS | Model-query service
NPI | New-product introduction
Block | Modular unit of fabric design
TopoPlan | Change-management service
UIM | Unified Intent Model
PP | Patch panel
PoR | Plan-of-Record

Consequently, a consumer querying a model for “all devices
connected to ToR 7" now receives not just the connected
fabric switches, but also the connected machine entities. In
practice, we’ve found that the complexity and level of detail
in our models tends to increase over time.

While we attempt to make most representational changes
backward-compatible, this is not always possible; sometimes
our best guesses about what matters are wrong. We have
learned that seemingly-innocuous changes lead to outages,
because of the many clever ways in which programmers acci-
dentally build fragile assumptions into their code.

Since our overall system-of-systems cannot have any sig-
nificant (multi-minute) downtime, when we need to introduce
a new MALT profile (see §2.1) to signal a representational
change, we cannot insist that all producers and consumers
cut over at the same instant. There are many such systems
(especially model consumers) with their own release cycles
and constraints on engineering resources. Beyond that, any
such change is risky; we would not even want to switch to a
new profile without carefully-monitored “canaried” rollouts.

Takeaway: For these velocity and safety reasons, we found
it necessary to decouple profile feature introduction from
model-reader adoption of such features. The previous paper
on MALT [27] briefly discussed our approach to profile evolu-
tion. In §7 and §8.2 we expand that discussion, showing how
we use a layer of abstraction to decouple many consumers
from the details of profiles.

4 Model-generation systems overview

To help readers understand the implications of managing con-
flicts between, and changes to, our network plans, we first
describe how we generate detailed network models. Appen-
dices §A and §B describe model generation in more detail.
Fig. 2 summarizes the model-generation process, and Ta-
ble | summarizes acronyms and terms used in this paper. First,
a model writer (e.g., the network planner) initiates a model
change by sending an RPC request (1) to a “design service,”
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MDS. MDS insulates humans and external systems from a
need to understand the details of UIM or TopoPlan (§5.2).

MDS is responsible for (i) translating an imperative user-
level request (e.g., “add a new block to a Jupiter fabric”)
into a sequence of declarative high-level intent changes, and
(i) managing request concurrency (for instance, we preclude
certain types of requests from simultaneously modifying the
same fabric, and thus sequence those requests with a lock).
MDS also collects additional information (e.g., the available
IP prefixes) necessary to create the UIM changes.

Design PACH g : Query
Service P Writr © o Reader gy Service
® i " Various automated workflows
Planning Service ®
Evaluate
(Planned) Build Service
Future L . ' (Model
Plans Intent Deltas Producers)
@J] Commit Promote
o (to HEAD)
e Pol
A1
Plan Bl B e.8 @ Write |@ Read

MALT Shop (model storage service)

el —
V4.0 profile V4.1 profile V5.0 profile .ee

Figure 2: Model-generation systems.

Models (both Planned
and HEAD)

We express model-generation intent in a Unified Intent
Model (UIM), a form of MALT that abstractly represents the
high-level graph of the global network at a given point in time.
MDS represents intent changes as deltas to UIM.

This use of abstraction is an improvement on our prior sys-
tem, in which all network changes consisted of precise order-
ings of low-level imperative mutations. Those were framed in
terms of low-level details, such as the exact type and number
of switches and their link-level connectivity; that approach
bound decisions too early, making it hard to re-order a se-
quence of plans. Abstraction helps avoid this early binding.

Once MDS has mapped a request to a sequence of intent
changes, it conveys (2) this sequence to the TopoPlan plan
management service (§5.2). TopoPlan supports parallelism
between high-level requests by allowing interleaving of intent
changes when they do not conflict. TopoPlan also supports
“what-if” analysis, by maintaining multiple (sometimes thou-
sands of) branches of possible future states.

Whenever we need to build concrete MALT models from a
UIM plan (e.g., for physical installation), TopoPlan invokes (3)
MBS, a “build service” that compiles the high-level intent to
MALT models, which are stored (4) in MALTShop. Fig. 2 shows
that we simultaneously generate semantically-equivalent con-
crete models in multiple profiles (see §2.1) —e.g., “V4.0,”
“V4.1,” “V5.0” — to support profile evolution (see §7). For
more details on MBS, and many more details on the model-
generation process, including examples of UIM, see §A and
subsequent appendices.

Models represent the intended network, so mismatches

against actual state represent deployment errors (e.g., mis-
cabling, etc.), and we correct reality to match the plans. We
use various mechanisms to detect these mismatches, such as
neighbor discovery via LLDP (IEEE 802.1AB [17]).

Model readers can query (5) these generated models via
MQS, a semantic Query Service that also helps support evolu-
tion (see §8).

A single high-level operation may invoke these processes
multiple times over the course of weeks or months. For in-
stance, when we expand a live Jupiter fabric, we need to do
this in several stages, to ensure the network always has suf-
ficient residual capacity during each expansion step. This
means we need to generate MALT models for each intermedi-
ate stage.

Network model mutations are not real-time. We have safety
checkers to block planned changes if they would violate con-
sistency checks, or capacity thresholds designed to leave room
for switch or link failures. Systems with real-time goals, such
as our SDN controller [11], maintain internal representations
of network links, initialized from MALT models.

5 Physical-change plan management

To illustrate the problems of managing concurrent future
changes, consider a simple example network with two
switches A and B connected via four links (Fig. 3(a)). This
network is currently carrying live traffic; hence we call the
corresponding MALT representation of the network the “live’
model. We would like to expand the network capacity by
adding a third switch C (Fig. 3(b)). We call the MALT repre-
sentation of this future network the “planned” model.

>

Switch A [ Switch A
A1 A2 A3 A4 A

1 A2 A3 A4

~fer
%2 SwitchC

B1 B2 B3 B4
Switch B

(b) Planned Future State

B1 B2 B3 B4
Switch B

L

(a) Current State

Figure 3: Models for current and planned network.

For several reasons, we want to generate a planned model
well in advance. First, it allows us to accurately itemize the
physical resources (switches, racks, fiber optic cabling, etc.)
required to support switch C. Many of the resources have high
costs and lead times: purchasing too much in advance wastes
money, while purchasing too little or too late slows our ability
to deliver network and compute capacity.

Second, modeling in advance allows us to simulate the
future network, and validate it against reliability requirements.
E.g., if we must maintain > 75% of normal capacity during
expansion, we must change the live network in stages, as
shown in Fig. 4. We cannot directly switch between the initial
and planned states, which would move two links from switch
A (and B) simultaneously, causing 50% capacity loss.
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Figure 4: Two-stage migration from initial to final state.
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We can also analyze or validate multiple options for a future
plan, on metrics such as total cost of ownership (TCO).

5.1 Challenges with concurrent plans

Concurrent management of multiple plans creates several
challenges: scaling issues, and (worse) the risks of incorrect
planning decisions made because of stale models.

Scaling concurrent plans across a large and changing net-
work: While one could use ad hoc methods to manage a set
of concurrent plans, such as creating copies of future models
in temporary storage, that quickly runs into scaling issues.
Because our network is large and frequently changing, we
have to manage a large set of concurrent plans. This creates
two main problems: sequencing and validation.

Switch A [ Switch A ] [ Switch A ]
A1 _A2 A3 A4 A__7 42 A3 A4 A1 A2 A3 A4
\ / c1
\Y, & sw.
/\ c3
/\ g C
B1 B2 B3 B4 5‘1 B2 B3 B4 B1 B2 B3 B4
Switch B Switch B Switch B
(a) Initial

(b) Final State P (c) Final State Q

State
Figure 5: Two conflicting updates, P and Q.

For example, consider a planned change P that rewires
the connectivity between switches A and B (Fig. 5(b)). This
change conflicts with another planned change Q (Fig. 5(c)) to
add switch C on ports (A3, A4, B3, B4), and thus we need to
decide whether P or Q should come first.

However, different teams may be making the concurrent
changes without coordinating, and the resultant sequence or-
der can affect materials-ordering, instructions for technicians,
etc. Worse, the live model is continually changing, and a
fabric-level change that is applied to the “live” model (e.g.,
upgrading one or both switches) may invalidate the precondi-
tions for P and Q, such as port reservations.

When each fabric has dozens of blocks and hundreds of
switches, and must evolve rapidly to meet business needs
(via expansions, upgrades, etc.), enforcing serialization on
operations such as P and Q creates painful drag. While manual
management of operational concurrency might be practical
for just a few fabrics, an enterprise with dozens or hundreds
of fabrics would find that unsustainable. Therefore, we need
automation-friendly support: for tracking plans, and how they
are ordered and sequenced; for rapid conflict-detection and

plan-validation; and for speculative analysis of multiple future
options (e.g., to cope with supply-chain issues).

S —
Switch A Switch A Switch A
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™~ \\ c1
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Figure 6: Stale models might lead to an unsafe state.

Stale models: The live network can change unexpectedly,
rendering plans stale, along with any derived actions we might
have taken. For instance, if a link is removed for repairs
(Fig. 6(a)), the initial and final states are both “safe” because
they meet our 75% capacity threshold. However, the transition
to the intermediate state (Fig. 6(b)) creates an unsafe state
(only 50% capacity) while we are changing links. Unless we
update and revalidate the models for all intermediate states,
we would not detect this risk.

Advance planning can also lead to confusion if, during
the long period between plan creation and implementation,
constraints change — e.g., supply-chain issues force the use of
different hardware.

Thus, given hundreds of potentially-conflicting changes
that need to be sequenced, and validated for safety or TCO,
manual management of multiple models, or managing place-
holder elements in a single “live” model, quickly becomes
intractable.

5.2 Plan management service: TopoPlan

To address the many challenges of plan management, we
developed TopoPlan, analogous to a software-development
version control system (VCS). A network change, specified
as patches to high-level intent, may be directly applied to the
live (i.e., HEAD) intent. However, the TopoPlan service also
allows network changes to be sequenced in branches.

As in a VCS, changes within a branch can be added, re-
moved, reordered, or merged, while branches can be rebased
or merged. Branches can represent highly speculative changes
(e.g., hypothetical “what-if”” scenarios), authoritative changes
(e.g., scenarios which we have financially committed to), or
changes that are somewhere in between.’

Concrete MALT models can be compiled for any change
in any branch, allowing us to analyze the network-capacity
and TCO implications of any hypothetical future network
state. TopoPlan also allows us to detect conflicts over limited
resources — e.g., two plans trying to use the same switch port
for different purposes.

SIn contrast to traditional VCSes, which are geared toward human users,
are text-based, and have change-rate and branching limits, TopoPlan was built
with automation in mind, with arbitrary branching, and focuses on sequencing
changes to high-level intent, using Protobuf-based intent-patches with special
merge semantics [14].
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We show concrete examples in §10 of how using TopoPlan

greatly improves our deployement and operational efficiency
through project pipelining, stacking planned changes, and
enabling accurate material orders for future projects.
Plans and PlanPoints: TopoPlan maintains multiple
branches of possible future state. A single future change to
the network is represented by a PlanPoint, which consists of
(i) deltas to the UIM, and (ii) a best-estimate timestamp at
which the changes will be realized. A series of PlanPoints is
called a Plan, which groups together a set of network changes
into a timeline. A Plan consists specifically of (i) a sequence
of PlanPoints, and (ii) a baseline snapshot of MALT models to
which the PlanPoint deltas are to be applied. MALT models
can be compiled for every PlanPoint in the Plan simply by
starting with the UIM of the baseline, and, for each PlanPoint,
applying its UIM deltas and compiling concrete MALT mod-
els: we term this process evaluating a Plan. The compiling
process internally invokes the model generation service, as
discussed in §4, and attaches the generated concrete models
to the PlanPoint.

"Add X" means "Add X
units of capacity between
these endpoints"”

S 042021 X
—— 3 “ Promote to HEAD

Plan 1 7 Plan 1

/
,/Commit to POR
Plan 2

Plan 2
L 05/2021

Figure 7: TopoPlan plans (left) and operations (right).

The Plan-of-Record, or PoR, is a canonical branch, which

stores changes that we have committed to with a high degree
of certainty (i.e., we have ordered materials that we really
prefer not to waste). In the example of Fig. 7 (left), the PoR
contains two PlanPoints that add capacity between B4 sites
A ->B and A -> C. Plan 1 proposes increasing the capacity
augment between A -> C from 10 to 15 units, while Plan 2
proposes an additional augment between B -> C. Note that,
in this example, Plan 1 is “baselined” from a PlanPoint on the
PoR, rather than from HEAD.
Committing and promoting plans: Changes on a non-PoR
branch can be committed (Fig. 2 (6)) to the PoR (Fig. 7 (right))
if the change does not conflict with other changes on the PoR,
and when infrastructure planners sign off on the financial
readiness of the change.

Only entire Plans can be committed to the PoR. When a
Plan is committed, all its PlanPoints are validated against
those on the PoR, and on success they are copied to the PoR.
Conflicts are automatically detected by TopoPlan, but manu-
ally resolved by backing out, fixing a plan, and retrying. For
example, in Fig. 7 (right), attempting the commit operation
might reveal that we cannot add 5 B -> C units because we
have already committed all free ports at C to the 20 A -> C

units. We currently rely on human planners to make prior-
ity decisions outside TopoPlan, although automating some of
these decisions is clearly worthy of future work.

Once the changes in a PlanPoint are ready to be realized in
the physical network, the PlanPoint can be promoted (Fig. 2
(7)) to HEAD (the intent representing the current desired
state of the network). Promoting a PlanPoint applies its UIM
change directly to HEAD, compiles HEAD to concrete MALT
models, and removes the PlanPoint from the PoR.

Concrete MALT models can also be generated on demand

for any PlanPoint on any branch (including PoR). These mod-
els can be used for what-if analyses, for example.
Changing plans: PlanPoints can be added, removed, edited,
reordered by changing their timestamps, or merged by col-
lapsing their UIM deltas. Plans can be created, deleted, or
rebased by changing their baseline MALT snapshot. Both Plans
and PlanPoints are versioned, and their version numbers are
incremented on any of theses changes.

Every time HEAD is updated (100s of times per day),
TopoPlan rebases the PoR to that new version of HEAD and
does light-weight validation to ensure that no highly-certain
PlanPoints are invalid. We also perform heavy-weight POR
evaluation periodically, but not on every change to HEAD.

We also support backtracking and regeneration of a
“known-good state.” Thankfully we rarely use this; the com-
plexity of backtracking is sometimes high, especially for plans
near their deployment date, since dependencies can force us
to unwind multiple changes. Undoing physical changes is
expensive and risky, so we use multi-layered validations, as
described later in this section, to avoid backtracking.
Lightweight operations: Network changes that are typically
planned in advance are expensive capacity-related operations.
Most network changes, however, are small-scale local up-
dates (e.g., link repairs, ToR modifications); such changes
are typically done immediately and are thus applied directly
to HEAD. As a performance optimization, these direct-to-
HEAD changes are typically not specified as PlanPoints (and
thus skip the PoR), as they almost never affect future planned
capacity changes.

Validations: Because compiling concrete MALT models
could be slow and must be performed in sequence, we can
perform a lighter-weight UIM validation operation on a Plan,
which computes and validates the UIM for every PlanPoint
without full MALT compilation. This runs intent-validation
suites for each network and interconnection intent, first sepa-
rately (to ensure certain properties and assumptions are met),
and then globally (to ensure the UIM intents are consistent).

We also periodically run a detailed validation of the con-
crete models generated from the PoR PlanPoints. This vali-
dation is too expensive to run on every commit, so we made
a tradeoff between speedy commits and full validation. Full
validations still happen often enough to prevent costly mis-
takes. When our automated validations detect a conflict be-
tween plans (e.g., a missed dependency between PlanPoints
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that would lead to double-allocation of a port), this usually
requires human intervention, to modify one or more plans.
Automated resolution is an intriguing research topic.

6 Model generation challenges

Our model-generation system faces several challenges:
Design complexity: Some aspects of our network designs
are complex, requiring deep domain knowledge to convert
abstract intent into concrete models. In a few cases, e.g., the
Data Center Network Interconnect (DCNI) layer of connectiv-
ity between Jupiter aggregation blocks and spine-blocks, the
design is complex enough to require algorithmic support, such
as the ILP solver we use to “restripe” the DCNI on changes,
while minimizing unnecessary changes to wiring [38].
Heterogeneity: We often add new technologies to our net-
works — we call these new product introductions (NPIs). NPIs
sometimes involve novel concepts and so require represen-
tational change (see §7). We add NPIs without retiring old
products during their useful lifetimes, so our networks are
heterogeneous in many design details; our management sys-
tems must cope with that. Similarly, we need to be able to
rapidly evolve our model-generation system without creating
an un-maintainably complex code base.

These challenges, especially our need to support NPIs,
pushed us to adopt a layered, modularized design for our
model-generation system.

We compose our network designs from fundamental units
(“blocks”™, e.g., server-aggregation blocks and spine-blocks
in Jupiter, and B4 blocks [16, 18]). Each block could contain
hundreds of chassis and tens of thousands of ports and internal
links. A complete data center fabric is composed of up to
hundreds of blocks, along with a DCNI. Our fleet has several
dozen distinct block types, and each Jupiter or B4 network
can have several different generations of blocks.

Our model-generation system uses a modular framework to
generate product-specific block-level models, plus additional
modules to compose these blocks into a consistent, complete
network. For each block type, we have a topology “build
unit”: a software component that knows how to instantiate
that block from high-level intent. These block-level build
units are expressed as rules in a concise topology-description
language. For many NPIs, we need only create a slightly-
modified version of an existing build unit. Other build units,
written in traditional programming languages, create inter-
block (DCNI) links, assign IP addresses, or validate that the
generated models are correct, etc.

When TopoPlan invokes MBS (Fig. 2), MBS creates a
dataflow graph, in which the processing steps are the appropri-
ate build units, the input is the intent in UIM, and the outputs
are detailed MALT models. MBS constructs this dataflow graph
dynamically, to account for changes in our overall network
design (the details are beyond this paper’s scope).

Scale: Our dataflow graphs are expensive to evaluate, requir-

ing GiBs of I/O and many minutes of CPU time. Concrete
MALT models are highly detailed, since they must represent
the full underlying detail of our networks. A MALT model
representing a single data center network can have millions
of entities and relationships, and we have many data centers.
Our WAN models have similar scale.

Therefore, MBS uses caching to avoid recomputing
previously-generated models. Truly global changes to the
Google network are rare and most changes are highly local,
so we typically see cache hit rates above 99%, reducing the
graph execution costs by two orders of magnitude.

7 Representation evolution

While MALT provides a common, flexible representation, we
sometimes need to change its schema, or how we use it, to
support NPIs or new management processes.

NPIs generally require changes to model generators, but
not always to model readers. For example, a link-speed up-
grade from 100G to 200G that otherwise involves no topo-
logical changes could be represented by changing the physi-
cal_capacity_bps attributes of some EK_PORT entities; this
change might not require any updates to model readers.

[2; Switch B] : [smtch A ﬁ;] - B1 Switch B
EK_PORT/A1 RK_CONNECTED C1

C1 RK_CONNECTED EK_PORT/B1
(b) After Profile Change

[ Switch A 2;]

EK_PORT/A1 RK_CONNECTED EK_PORT/B1

(a) Before Profile Change

Figure 8: MALT representation of a simple network before and after
a profile change.

However, many changes do require changes to readers.
Fig. 8 illustrates this with a simplified example, where we
add new devices (C1 and C2) between switches A and B.
Suppose a model reader wants to query what peer switch port
is connected to port Al on switch A. With the old design
(Fig. 8(a)), a query could just follow the RK_CONNECTED
relationship from Al to B1. With the new design (Fig. 8(b)),
that query would only reach C1, probably not what the query-
author intended; the model reader would have to be updated.
Because model readers vastly outnumber model writers, such
changes are disruptive. Further, a confused model reader (e.g.,
the configuration generator for our SDN controllers [11])
could cause outages. So, if we fail to realize that a reader
needs an update, these changes are also risky.

We mitigate the risk by signalling change through the use
of profiles. A profile [27] is effectively a versioned contract be-
tween model generators and readers, attached to each model.
When a generator changes its output in a way that might
confuse readers or require updates, we increment the pro-
file version. Thus, a reader can detect during testing when it
encounters a model with a profile it cannot understand.

MALT profiles by themselves do not avoid the need for
updating model readers. Churn due to profile change was a
major problem once MALT became widely adopted, which
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led us to two requirements: (i) Model readers should have
to change their code as little as possible (ideally, not at all)
in response to profile changes, (ii) We must provide strong
guarantees that migrating to a new profile will not result in
regressions to model readers.

Key design choices. To avoid the need to update both model
generators and all consumers at the same time, our generators
produce multiple semantically-equivalent models, with dif-
ferent profiles, from the same intent (the example in Fig. 2
shows models in versions V4.0, V4.1, and V5.0). This allows
some consumers to start testing against a new profile, while
most consumers read from the most recent “released” profile
(a few stragglers may use older profiles).

To simplify or avoid the code-update problem for most
model consumers, we developed a semantic query engine,

MQS (§8).

8 Model query service

MALT supports querying models via raw traversal-based
queries [27]. However, profile changes could break raw MALT
queries (see §7). Generating multiple profile versions miti-
gates this, but migrating to a new profile version is toilsome:
(i) Raw MALT queries are structural rather than semantics-
based; (ii) Client code does not always include regression tests
for new profiles, and when it does, it is difficult to narrow
errors to specific queries; (iii) Client code typically queries
for specific data (e.g., ports within a rack), but raw queries
return full MALT subgraphs (e.g., all the devices, trays, ports
and their relationships), making it hard to predict whether a
profile change will affect a given client.

This motivated us to develop MQS, an abstraction layer
above MALT query, to minimize profile evolution toil. Stone-
braker et al. discuss a somewhat different solution to the
problem they call “database decay” [33].

8.1 Semantic queries

Instead of writing code that explicitly traverses the MALT
graph, as was previously done, developers now write code
in a new language that captures the semantics of their query
(e.g., “give me all peer ports connected to this device”) and
hides the mechanics of the MALT graph traversal (e.g., “follow
RK_CONNECTED relationships on this device’s ports until I
reach other ports”). The underlying implementation of these
“semantic queries” might be different for each profile; this is
hidden from the caller.

Semantic queries are recorded in a registry, allowing us to
automatically test that they return the same (or at least, consis-
tent) results across profiles and data sets. This testing frame-
work automatically detects unexpected changes in query re-
sults for any potential profile or data change at change-review
time, protecting model readers well before such changes can
affect production.

8.2 Canned queries

MQS offers a canned query API. A canned query is a named
function, with defined semantics that are profile-independent.
Canned queries are registered with MQS. When called to
execute a canned query, MQS translates it to an appropriate
MALT query, executes it, and processes the returned subgraph
to return a set of entities (see Fig. 9).

Canned Query APIs Raw MALT Queries

MALTShop

——
Model Semanticall
ly MQs :
e R s Q. Result: subgraphs
(@ =) > B

Figure 9: An MQS canned query converts a subgraph to just the
entities that are semantically useful to the caller.

Several properties of MQS enable it to return consistent
results across multiple profiles, without client code changes:
(i) Canned queries can use different MALT queries for different
profile versions. (ii) Canned query registration includes seman-
tic tests, allowing centralized regression tests on upcoming
“beta” profile versions. (iii) Canned queries return entities with
attributes restricted to those that are relevant to clients. This,
combined with returning entities rather than MALT subgraphs,
greatly reduces the API surface of a model query, allowing
easier testing and query evolution.

We run several kinds of centralized validations to ensure
minimal profile evolution toil:

(a) Profile version tests: we test canned queries across mul-
tiple profile versions (including upcoming “beta” ver-
sions). Failing tests cause us to either fix the profile or to
update the canned-query definition for the new version.

(b) Data change tests: When we backport bugfixes or intro-
duce new kinds of products into our network, we intro-
duce changes in multiple profile versions. Before commit-
ting these data changes to production models, we generate
models in a test environment and compare canned query
results between test and production environments.

(c) Binary and configuration rollout tests: Prior to releas-
ing a new MQS binary or its associated configuration to
production, we run canned queries against the canary and
production versions; release automation proceeds only if
the results are identical.

9 Cross-shard consistency

We do not try to represent all of Google’s networks as one
giant model. Not only would the scale create prohibitively
expensive memory and communication costs, and complex
coordination challenges, but also a single fault could put the
entire infrastructure at risk. Instead, we shard the models
at natural boundaries (e.g., one shard per datacenter fabric).
Sharding allows us to limit the scope of most changes, which
greatly simplifies conflict detection.

Many operations span shard boundaries (e.g., adding a
WAN link to a datacenter). MALTShop allows queries to trans-
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parently span multiple shards, but this raises a question: since
we can have multiple future plans (hence, model versions) for
each shard, and these plans can be mutated by independent
processes, how do we query a consistent set of shard versions?

We currently lack a general solution to the shard-
consistency problem®, but we have a workable solution for
all datacenter and B4 shards: we (conceptually) rebuild all
shards from high-level intent on any intent change (and then
use aggressive caching to avoid actually building more than
necessary). Thus, each intent-change leads to a new model set,
which is given a unique model set ID (MSID) via MALTShop’s
model-labeling feature. An MSID thus represents a consistent
view across these model shards (but unfortunately, not across
adjacent shards owned by other systems). MBS uses MSIDs
to support consistent queries that cross shard boundaries.

10 Operational experiences

In this section, we dig into several operational experiences and
lessons learned. We found the change-management features
of TopoPlan to be especially useful in speeding up deployment
activities by weeks or months.

10.1 Deadzone reduction

To illustrate one benefit of the PlanPoint abstraction (§5.2),
we explain how this speeds up a capacity-delivery process.

We add capacity to Jupiter fabrics, in units of blocks, in a
three-step process. The early modeling step creates a place-
holder version of the block that will exist at a future time.
This yields a concrete model from which we can create an
order for materials, and it reserves resources, such as patch
panel (PP) ports, for this expansion. Once materials are ready
for deployment on the data center floor, the turnup/prepare
step installs and qualifies the new block, but does not connect
it to the DCNI. Finally, the restripe step gradually folds the
new block into the fabric’s topology.

However, the same Jupiter fabric may have multiple capac-
ity changes in flight, and we are not always able to overlap
the substeps of these augments. Consider the case of a PP
expansion followed immediately by a block expansion. We
cannot generate the block-to-PP physical striping for the new
block until the new PPs and their port reservations are avail-
able in a model. Therefore, if we had only one model, the
first two steps of the block expansion would be blocked until
the PP expansion is completed. This results in a deadzone,
a period when there is work that could be done in a fabric,
and is technically unblocked (i.e., we have all the software
infrastructure to do the work), but we cannot start because of
model-change serialization.

The PlanPoint abstraction allows us to avoid this serial-
ization and effectively pipeline execution. We can create a

SWe suspect it is similar to distributed-replica consistency, and something
like vector clocks might work.

PlanPoint for the block’s early model that uses the post-PP-
expansion PlanPoint as its “previous model.” The resulting
PlanPoint captures a future state when the PP expansion has
fully completed and the block’s early has been built from it.
We can then calculate specific fiber-bundle lengths from this
PlanPoint, allowing us to order those bundles long before the
PP expansion starts.

10.2 WAN change management

Our B4 WAN [16, 18] is mutated even more rapidly than a
Jupiter fabric, due to its global scale. We change B4 multi-
ple times per day: adding new “neighborhoods,” expanding
an existing neighborhood, augmenting link capacity between
neighborhoods, migrating a neighborhood to a new technol-
ogy (which entails moving some link endpoints), or removing
a neighborhood.

As with Jupiter, we change a live neighborhood or adja-
cency in multiple steps, to preserve enough capacity to meet
SLOs. Thus, we not only generate planned-state models for
the end-state topology, but for all intermediate steps as well.

Sometimes projects may be executed independently (e.g.,
augmenting 2 disjoint edges), but in other cases they are inter-
dependent: e.g., if neighborhood B is port-constrained, adding
capacity between neighborhoods A <-> B might first require
removing links between B <-> C. Due to real-world con-
straints, such as supply-chain disruptions, data-center con-
struction delays, etc., the actual execution sequence of these
projects rarely follows the global order by which they are
initially committed to the plan-of-record (which happens well
in advance).

We augmented TopoPlan to express and track such depen-
dencies, adding a layer above TopoPlan to prevent unsup-
ported execution sequences. This allows us to manage WAN
projects extending years into the future. Because of the long
lead times for materials (fiber bundles, optics, etc.), our ability
to pipeline and avoid unnecessary and rigid serialization of
plans can shorten deployment timelines by weeks or months.

10.3 Early materials procurement

Supply-chain problems often make procurement of materials
(switches, transceivers, etc.) the longest step in a network
change. So, we try to order materials as early as possible,
ideally before we know exactly how a new network block will
fit when we install it (given other in-progress changes with
fuzzy completion schedules). In the past, we used heuristics
based on prior projects (and some simple scaling rules) to do
early orders; this was not always reliable.

Instead, now we speculatively generate a detailed model of
the post-change network, and from that we compute and place
a precise order. TopoPlan allows us to create these speculative
models and manipulate them exactly as we manipulate “real”
models, using unmodified software and workflows.
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10.4 Software migration

Every software system sooner or later becomes obsolete. Our
modeling infrastructure has gone through major software mi-
grations several times, first transitioning consumers from an
older representation to MALT, and then changing from a set
of monolithic model generators to a modular, more evolvable
framework. Managing these migrations without production
outages required us to carefully introduce changes in phases.
We describe our approach to migration in appendix §C.

11 Summary and future work

We have described how we plan and coordinate changes to
large network infrastructures, with a specific emphasis on
the need to support parallelism in the face of plan-changes
caused by evolving real-world constraints. Since our network-
management systems are heavily automated, our plan man-
agement must therefore also be automated to keep up with
the pace of change, and to avoid mistakes.

We described the TopoPlan system for change manage-
ment (§5.2), and the fundamental concepts (PlanPoints and
branches) it relies on. We discussed how this approach has
significantly increased the velocity with which we man-
age changes to both datacenter networks and WANSs (§10.1,
§10.2).

Automated network management also depends on explicit
models of current and planned topologies, and innovation
often requires representational change for our modeling lan-
guage. We described how we support representational change
without major software-engineering disruption, by means of
explicit profiles (§7), and a profile-independent query layer
that supports many (but not all) model consumers (§8).
Research challenges: While we have already greatly ben-
efited from the work described in this paper, we see many
challenges that demand future improvements in change man-
agement. In particular, supporting cross-shard consistency, at
scale and without funneling all changes through a logically-
centralized owner, remains unsolved (see §9). There might
also be ways to expand the set of properties that can be vali-
dated automatically — not just simple resource conflicts, but
also higher-level goals such as fault-resilience.
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Appendices

Whenever it is necessary to build concrete MALT models from
a UIM, we invoke MBS (§A), a “build service” that compiles
the high-level intent from TopoPlan to generate MALT models,
using product-specific model producers. Collectively, we refer
to our module-generating software as Nimble (§B).

A Generic build service: MBS

Model production is the result of the execution of a dataflow
graph of build units (§B.1). Build units are product-specific,
but the orchestration of their execution to construct MALT
models is generic. MBS is an execution engine that, given a
set of named inputs, (i) constructs the dataflow graph of build
units, (ii) executes that graph to produce MALT models, and
(i) transactionally stores the generated models in MALTShop.
A set of output models in one transaction is given a Model
Set ID (MSID), so that model readers can see a consistent
snapshot of models.

The main input to MBS is a global UIM representing spec-
ifications for the entire Google network at a given point in
time; this concisely represents the desired high-level state
(e.g., the number of network fabrics in a location, their topol-
ogy type, interconnect capacity between sites, etc.). MBS is
also stateful; build units record their low-level decisions as an
input to future model builds, to reduce network churn.

Worker Pool

Build Leader Build Leader

A Build 1
© (&
® © —
[ MAmShp |

Figure 10: An illustration of our distributed build system showing
two independent builds in progress.
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Two-phase build. MBS is a distributed dataflow graph evalu-
ator. A graph node can represent either a datum or a rule: data
nodes are almost always MALT model fragments, while rule
nodes execute build units. Rule nodes are connected to data
nodes via either input edges, which specify the input models
for a build unit, or output edges, which specify a build unit’s
output models.

Because the dataflow graph used to generate a set of con-
crete MALT models is highly data-dependent (e.g., a new MALT
model output will be added if we’re modeling a new data cen-
ter location), we dynamically construct this dataflow graph in
MBS, by executing a much smaller, static dataflow graph. Spe-
cial build units in the static graph read the intent model and
compute the full, dynamic graph, which MBS then executes
to produce concrete models.

Graph execution (static or dynamic) is orchestrated by a
leader and worker distributed system (Fig. 10). To execute a
graph, MBS assigns it to one leader, which parses and validates
the graph, then executes rules in parallel, using a pool of
workers, as the rule inputs become available.

Build performance optimization. The resulting full-size
dataflow graph, with 100s of thousands of rule nodes, is slow
and expensive to evaluate, requiring GiBs of I/O and many
minutes of CPU time. Therefore, MBS uses extensive caching
to avoid recomputing previously-generated models. Caching
is based on hashes of input data nodes and rule specifications,
allowing MBS to skip rule evaluation if the corresponding
hashes identify a cached output model.

Why we built a distinct system: While Google and others
have created extensive distributed dataflow graph execution
engines [6, 10] and tooling to efficiently manage and build
binaries from source code [12, 26], we created MBS as a
distinct system for several reasons:

(a) Dynamic graphs: Existing systems expect the execution
graph to be provided as an input, rather than itself being
dynamically generated based on the input intent models.

(b) Stateful execution: Updates to a fabric’s concrete model
should implement the new planned intent while making
as few changes as possible to the existing network (to
limit the costs of physical changes). Existing build sys-
tems [12] did not easily allow execution i of model gen-
eration to consume the output of execution i — 1.

We suspect the combination of (a) and (b) is novel in the

context of build systems.
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Figure 11: Simplified build graph for producing Jupiter and B4 models, with some areas abstracted for clarity. An expanded view of the B4

subgraph is shown on the right as an example (with some IRs omitted).

B Model generation: Nimble

We developed an ecosystem of re-usable build unit software
modules, collectively called Nimble, each responsible for con-
structing a specific part of a model. We organize the build
units into a dataflow graph that makes their dependencies ex-
plicit. Compared with a monolithic generator, using modular
build units respects the knowledge domains involved in de-
signing different aspects of a network (e.g., topology design,
IP assignment, port allocation, link striping, etc.).

Modularity also provides natural boundaries to confine
problem complexity. For instance, we divide topology design
into deterministic descriptor-driven build units and dynamic
solver-driven build units. This makes the generation of large-
scale topologies with specific properties more tractable than
directly solving a monolithic topology optimization problem.
Modules without dependencies (or satisfied dependencies)
can be executed in parallel, which helps scaling. Finally, mod-
ularity supports heterogeneity, since we can add or change
just the necessary build units, and reuse others.

Each product’s model-producers typically define dozens
of build-unit types, to collectively perform the full spectrum
of model generation tasks for each fabric and interconnect in
the network, including topology generation, IP address allo-
cation, SDN controller domain assignment, etc. We roughly
categorize build units into four classes: (i) intra-block topol-
ogy generators (§B.1.1), (ii) inter-block capacity generators
(§B.1.2), (iii) model fragment composers (§B.1.3), and (iv)
model validators (§B.1.4). While the first two categories both
generate topologies, their designs are drastically different.
The model fragment composers and validators are at the end
of the design pipeline, and are necessary to support model
sharding and ensure correctness.

Fig. 11 depicts a simplified example build graph involving
the model producers for both B4 and Jupiter networks. Build
units shown in the figure are abstracted, simplified represen-
tations of those we use in production.

B.1 Build unit overview

A build run creates two categories of model data: (i) the final
concrete MALT model(s) adhering to a specific profile, and (ii)

Intermediate Results (IRs): internal data, also represented in
MALT, that facilitate communication between build units, but
are not exposed for external consumption.

Some IRs are ephemeral, since they are consumed by down-
stream build units in the same build run. Some IRs are mem-
oized results, required for the future build runs (e.g., the set
of allocated ports). Memoization avoids the need to always
build all output from scratch. Some IRs are part of the in-
puts to the composers (see §B.1.3), which process and stitch
these together to generate the concrete, versioned model-shard
outputs. Each build unit may take as input the model intent,
previous IRs, and previous concrete models, and outputs IRs
or concrete models.

We compose our network fabrics from fundamental units
called “blocks” (e.g., server-aggregation blocks and spine-
blocks in Jupiter, and B4 blocks [16, 18]). Each block could
contain hundreds of chassis and tens of thousands of ports
and internal links. A complete data center fabric is composed
of up to hundreds of blocks, along with a “Data Center Net-
work Interconnect” (DCNI). Our fleet can have several dozen
distinct block types, as their technology evolves.

Each block type has a fixed, deterministic internal topology,
but the DCNI or WAN interconnect depends on their dynamic
properties (e.g., block type, uplink capacity, port availability,
etc.). We generate each intra-block topology from a declara-
tive topology description (§B.1.1) but we generate the DCNI
and WAN interconnects via solvers that optimize link striping
and port allocations (§B.1.2).

B.1.1 Intra-block topology generator

The intra-block topology generator is effectively a compiler
that parses a fopology descriptor that declaratively describes
the desired block topology, and emits a corresponding MALT
fragment of the detailed design. These descriptors are param-
eterized templates for each topology type. This process is
deterministic, and does not require a complex solver, given
the regular design of block internals.

The descriptor language expresses intent for a given block
type as a hierarchy of modules, with specific entity-kinds
(e.g., packet switches or ports) as leaf nodes. Descriptors can
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specify entity attributes, which can be parameterized (e.g., the
index of a module within its parent), and naming schemes.
Interconnection patterns between entities, such as ports, are
selected via mappers such as fullmesh or biject, within a scope
called a group. When invoking the compiler, a build unit can
pass certain parameters (abstracted from the model intent) to
the descriptor; e.g., to control the number of racks within the
B4 block. This allows one descriptor to support a variety of
topologies for the same block-type generation. (§B.2 provides
more details on the descriptor-based approach.)

While the build-graph structure is flexible, for simplicity,
the typical pattern in most model producers’ pipelines is for
the first build unit to invoke the compiler to construct the
backbone IR for a block, while subsequent build units build
on this IR with additional entities and relationships (e.g.,
allocating management IPs, SDN control domains, etc.).

B.1.2 Inter-block capacity design

The internal topology of a block is typically static throughout
its lifecycle. Inter-block connectivity, however, is frequently
updated as we add or decommission blocks, add capacity
between blocks, or fix incorrectly-wired fibers. Updates to the
topology must meet capacity and availability requirements,
and also minimize change to deployed reality (i.e., not move
fibers unnecessarily). We have several solver-based build units
for inter-block connectivity that tackle different classes of
problems. E.g., the Internetwork build unit in Fig. 11 uses
a generic interconnect design and management solver for
block-level striping, port-allocation, interface IP addressing,
etc. This is used to generate WAN connections between B4
sites, and to the Border Routers of the data center fabrics.

These build units try to maximize the path diversity be-
tween pairs of sites or blocks, which improves tolerance of
physical faults (e.g., link-, chassis-, block-level failures), while
adhering to physical deployment constraints (e.g., minimizing
the number of wasted ports).

For pairs of B4 sites, for example, each site may span
several Points of Presence (PoPs), each containing multiple
blocks; the interconnect solver minimizes the maximum im-
balance in block-to-block, PoP-to-PoP, and block-to-PoP al-
locations of links across block-pair. We formulate this as a
mixed integer programming optimization problem.

The design problem for the data center network intercon-
nect (DCNI) has a large optimization space. We discuss that
solver in appendix §B.3.

B.1.3 IR composers

At the end of each model generation run, a set of composers
is responsible for stitching together the IRs produced by the
upstream built units to create the concrete model shards. The
MALT models are sharded for a variety of reasons, such as

domain isolation and scalability, as discussed in [27]. We have
a dedicated composer for each model shard.

Within each shard, the composer processes and merges IRs,
based on their tagged profiles, to generate profile-compliant
models for all supported profile versions. We define our
pipeline such that any profile-agnostic processing (e.g., re-
source allocation, etc.) is done as early as possible, while
profile-dependent modeling is typically branched further
downstream, at or near the composers; this helps ensure data
consistency across profiles.

B.1.4 Validators

During each model generation run, we also validate attributes,
and design rules in several categories: (i) Intent validation en-
sures that the UIM is internally consistent and its changes are
legitimate; e.g., the UIM satisfies the properties required by
model producers. (ii) Property validation focuses on validat-
ing network-specific invariants we expect in each model (e.g.,
ports do not conflict, IP addresses are not duplicated), and (iii)
intent-to-model validation, which is designed to harden the
intent-to-model translation that typically requires dynamic
solvers (e.g., whether the striping between a B4 neighborhood
and Jupiter delivers the intended capacity, while satisfying di-
versity and balance requirements). Finally, (iv) model-change
scope validation ensures the scope of model changes matches
the corresponding change in the intent. ’

During the course of development, all these validation
suites have caught some exceptions, especially for NPIs,
which if left undetected would have caused network outages
or costly deployment errors.

B.2 Details: intra-block topology generator

This section provides additional details on how we support
a high-level approach to block-level design. The intra-block
topology generator includes (i) topology descriptors that fully
declare the topology and (ii) a compiler that parses the descrip-
tors and translates them into MALT models. These descriptors
deterministically declare the intended topology.

We explain several key aspects of topology descriptors
using an example snippet (Fig. 12) of the descriptor of a B4
Stargate block [16]. We simplified the descriptor for clarity.
Hierarchy: A network is a hierarchy of modules with a single
tree root and multiple branches. The root module of a block
is usually an EK_NETWORK, and its name is globally unique.
Modules: A module, the basic building block in descrip-
tors, defines one MALT entity kind and the topology within
the entity. As our networks are heterogeneous, multiple
modules (with distinct names) may refer to the same en-
tity kind. For instance, we have two module definitions for
EK_PHYSICAL_CHASSIS in Fig. 12. A descriptor can have
multiple instances for the same module.

7MBS also performs more basic validations such as MALT lint checks and
profile schema checks.
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module { module {
name: "STARGATE BLOCK" kind: EK NETWORK name: "S2_CHASSIS" kind: EK_PHYSICAL_CHASSIS
fo:r1|fo:|e.r1t-( r:m.dlile-. RACi()- ........ NEREERERREER g>< ...........
}
module {
name: "S1_CHASSIS" kind: EK_PHYSICAL_CHASSIS
module { component { module: “S1_NODE” name: “s1_node” }
name: "RACK" kind: EK_ RACK parameter { name: “chassis_index” value: “${_index_}"}
c c [ [ I - A AR
module: "S1_CHASSIS" module: "S2_CHASSIS" }
name: "s1_chassis" name: "s2_chassis"
indices: “[1:32]" indices: “[33:48]" module {
name: "S1_NODE" kind: EK_PACKET_SWITCH
group{ component {
name: “s2_ports” module: "SINGLETON_PORT"
select{ name: “port” indices: “[1:31:2]"
path: “s2_chassis[33:40].s2_node.port[2:16:2]" }
poere g>< ........ ) g’<
}
group{ module {
name: “s1_ports” name: "SINGLETON_PORT" kind: EK_PORT
select{ parameter { name: “port_num” value: “${_index_}" }
path: “s1_chassis[1:8].s1_node.port[1:15:2]" attributes {
name: “device_port_name” value: “ge/${port_num}”
st Rt EEET | Itvvtveivit S- vl
} }
generate { name_scheme {
group_a: “s1_ports”  group_z: “s2_ports” kind: EK_PORT
mapper: “biject” kind: RK_CONNECTED format: “df1${chassis_index}:qe/${port_num}"
}
} }

Figure 12: A snippet of a topology descriptor for a Stargate Block.

Components: The topology within a module is defined by
recursively including other modules as its components. The
number of components (of the same entity kind) included in
the parent module is concisely expressed using indices. For
instance, in the module “S1_NODE”, the singleton port com-
ponent is defined with indices [1:31:2], indicating that there
are 16 entities in this module, with indices from {1,3,...,31}.
The default relationship between a module and its components
is that the module entity RK_CONTAINS all its components.
Other relationship types can be specified to override that de-
fault, at the component type granularity.

Attributes: Entities in MALT models can have attributes,
such as taxonomy (e.g., chassis type) and state (e.g., link is
in turnup). Attributes specified in topology descriptors are
self-contained: i.e., they are either static values, or they are
deterministically computable using the parameters defined
within the upstream hierarchy (branch) of the entity.

Parameterization: The descriptor is not another topology
programming language — we omitted constructs such as condi-
tionals. However, allowing basic parameterization of modules
offers useful flexibility and concision. The most common use
of parameters is to pass information top-down. For instance,
the chassis_index parameter of the “S1_CHASSIS” module
is subsequently used by the singleton port contained by the
chassis. If a module is componentized with indices, we have
multiple instances of this module; the “${__index__}” pro-
vides each instance’s index. Parameters defined in a module
are recursively visible to all components and sub-components
in the module.

Relationships: To create relationships between components
or create intra-block links between ports, the descriptor in-
troduces the Group operation to Select a set of components
within a module hierarchy, and then applies a Generate op-
eration to generate relationships or links between the com-

ponents of the two groups. A mapper is used to decide how
the components in group_a are mapped to those of group_z.
Two common mappers are biject (pairwise, requiring the two
groups to have the same number of items) and fullmesh. In
Fig. 12, the “RACK” module uses group and generate to
define how S1 ports and S2 ports are connected.

Naming schemes: Each MALT entity has a unique ID, com-
bining its name and entity kind. A topology descriptor spec-
ifies a naming scheme by either constructing it ad-hoc (po-
tentially using parameters) or simply referring to a precon-
structed regular expression (in most cases).

Given a descriptor, the topology compiler is responsible for
parsing the descriptor and generating the corresponding MALT
model fragment. Internally, the compiler parses modules top-
down, builds multiple branches based on the component in-
dices while enforcing parameter scopes within each branch,
and finally constructs entity names, attributes and relation-
ships. The compiler also allows customized mappers in the
Generate operations to compensate for topology irregularities.
Because the compiler does not make any topology-specific
assumptions, it is generic and reusable across all descriptors.

For most model producers, their first build unit instructs the
topology compiler to construct the backbone IR for a network.
Subsequent build units decorate the IR with additional entities
and relationships (e.g., allocating management IPs and SDN
control domains). Fig. 11 depicts these data flows. When in-
voking the compiler, a build unit can pass certain parameters
(abstracted from the model intent) to the descriptor; for in-
stance, to control the number of racks within the B4 block.
This enables us to support a variety of topologies for the same
network generation while reusing the same descriptor.

B.3 Details: inter-block topology generator

This section expands on the discussion in §B.1.1, describ-
ing how we generate models for the Data Center Network
Interconnect (DCNI) in a Jupiter network.
DCNI overview. A Jupiter network uses a layer of Patch
Panels (PPs) between server blocks and spine blocks. Each
block (server or spine) directly connects to the front side of
PPs, and the block-to-block connectivity is (indirectly) estab-
lished by cross-connecting the back side of PPs. Having a PP
layer removes a lot of complexity that would be introduced by
directly connecting server and spine blocks, e.g., reduced fiber
length and human labor. This is discussed in detail in [38].
We use the term DCNI (Data Center Network Interconnect)
to describe the two collections of “physical” links, i.e., block-
to-PP links and PP cross-links. The challenge for inter-block
design is to produce an optimal DCNI. We call the resulting
block-to-block paths “logical” links.
Block-to-PP generation. The Jupiter model producer has a
dedicated DCNI build unit. This build unit first performs the
block-to-PP link generation to construct the physical topol-
ogy, and then generates PP cross-links to produce the desired
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logical block-to-block topology. For a given block, its block-
to-PP fibers fan out equally across every patch panel using
a predetermined pattern (i.e., agnostic to intent). Once the
block is deployed, such fibers never change.

The block-to-PP links are dynamically allocated in three

steps: (i) A block-to-PP spec generator translates the UIM
into an IR specifying the number of PP ports needed for each
block; (i) A patch panel port allocator takes that IR as input,
and dynamically assigns available ports to block-to-PP fibers
in an on-demand manner. It must read the previous models in
order to honor deployed reality; (iii) A bad port swapper reads
bad-port UIM, and uses reserved ports to replace those bad
ports. An external device-repair workflow automatically cre-
ates bad-port UIM to record faulty ports. Since block-to-PP
link restripe does not affect traffic (because these new links
have not been used to carry traffic), this restripe is accom-
plished in one shot, i.e., without phasing.
PP cross-link generation. Given the physical topology, ob-
taining the desired logical topology is a complex problem.
Thus, the DCNI build unit invokes a dedicated external solver,
which translates PP cross-link generation into an ILP (Integer
Linear Programming) problem, as described in [38].

Although the ILP solver is able to compute the desired
final state, it does not naturally support the crucial require-
ment that the DCNI must carry live traffic during restripe.
This requirement is addressed by having multiple incremental
restripe stages, where each stage only alters a small portion
of topology, to ensure that the network has sufficient resid-
ual capacity in all stages. We use an automated expansion
planner to decide the number of required stages. Given a
restripe request, the expansion planner iteratively searches for
the smallest number of stages C (starting from 1) that satisfies
the residual capacity requirement. For each evaluated value
of C, the DCNI build unit invokes MDS to generate a series of
C hypothetical models that resemble each intermediate stage.
The residual bandwidth is then calculated, from these models,
by counting the number of added/removed links. We provide
additional details for the restripe process in §B.4.

Another goal of the DCNI build unit is to ensure topology
stability. By its nature, the logical topology solver is not de-
terministic. Invoking the solver in different model generation
runs could cause the DCNI to change arbitrarily, even without
any intent change, forcing us to do useless re-wiring. Thus,
we use a persistent memoization layer, allowing the solver to
store its calculated topology solutions persistently. This both
prevents redundant calculation, and ensures that the DCNI
build unit generates deterministic output.

B.4 Case study: Jupiter restripe

When we add blocks or spine blocks to a Jupiter network,
we must perform a “restripe” operation, to redistribute up-
links from aggregation blocks to spine blocks. When we do
a restripe that could affect in-service links, we must do it
incrementally, to avoid distrupting too much capacity at once.

In this section, we use the restripe process to illustrate
details about the DCNI build unit.

There are three major catogeories of Jupiter data center re-
stripes. (i) Front-only restripe: the restripe only adds/removes
the block-to-PP links that do not have fiber jumpers on the
back side, so it touches only the front side of patch panels.
These added/removed links do not carry live traffic, so in-
cremental restripe is not required. (ii) Back-only restripe: the
restripe only alters the PP cross-links, so the scope of change
is limited to the fiber jumpers on the back side. Incremental
restripe is required since it changes the logical block-to-block
links. (i) Combined restripe: the restripe alters both block-
to-PP and PP cross-links at the same time. It is the most
labor-intensive process compared with the other categories,
and it is also required to be an incremental restripe.

We observed that for most common restripe use cases, the
model update process could be divided into one front-only
restripe and multiple stages of back-only restripe. As an ex-
ample, when a new block is added to a Jupiter fabric, we
first add the block-to-PP links (front-only restripe), and then
we use multiple incremental stages to update PP cross-links
(back-only restripes). Such granularization helps reduce the
sequence requirement in the workflow, and allows better paral-
lelism among different workflows that are expanding different
parts of a Jupiter fabric.

Intermediate restripe stages. Similar to most model
changes, the DCNI design is also driven by intent changes.
Fig. 13 shows an example of high-level Jupiter data center
intent (on the left side), which is part of the global UIM. The
fields that are related to DCNI are highlighted in blue (e.g.,
the number of PP chassis). The DCNI build unit is responsible
for translating the Jupiter intent into DCNIShape, a protocol
buffer defined as the input to the topology solver interfaced
with the PP-Cross-Link Gen build unit, a subcomponent of
the logical DCNI build unit.

The PP cross-link restripe process consists of small stages
to gradually transform the current topology to the desired one
given by the solver. We use a single PP rack as the smallest
granularity of restriping stages, because it provides natural
grouping of the logical block-to-block links. Thus the whole
restripe process boils down to rewiring patch panels in multi-
ple incremental stages.

Conceptually, the model for each stage could be summa-
rized as a 4-tuple: (T,,PP,, T,,PP,), where T, and T, denote
the two sets of all physical block-to-block links in the old
and new topologies; PP, and PP, form a partition of all PP
indices, where PP,, represents PPs that are restriped to have
links from T,,, and PP, represents the rest of patch panels that
still have links from T,. Fig. 14 shows a 3-stage restripe with
three PPs:

(a) Before restripe. There is no old topology. The “new”
physical topology Tp connects server block 1 and
spine block 1 via PP 1, 2, and 3. Thus the tuple is
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Jupiter Datacenter Intent (Part of UIM)

name: "data-center-1"
ip_capacity_intent{...}
server_blocks_intent {

server_block {
index: 1
type: SERVER_BLOCK_TYPE_A
num_dcn_links: 6
server_racks{...}

DCNI Shape (Input to Jupiter DCNI Solver)

server_blocks_intent {
server_block {
index: 1
type: SERVER_BLOCK_TYPE_A
num_dcn_links: 6
dcn_transmission_rate: 1

server_block {
index: 2
type: SERVER_BLOCK_TYPE_B
num_dcn_links: 6

server_racks{...} server_block {

} Translate index: 2

type: SERVER_BLOCK_TYPE_B
num_dcn_links: 6
dcn_transmission_rate: 2

aggregation_blocks_intent {
aggregation_block {
index: 1
type: AGGREGATION_BLOCK_TYPE_A }

inks: }
} num_den links: 6 aggregation_blocks_intent {

} aggregation_block {

index: 1
type: AGGREGATION_BLOCK_TYPE_A
num_dcn_links: 6
dcn_transmission_rate: 2

}

——

border_routers_intent {
border_router {
index: 1
peers { b4_peer_name: "b4-network-1"}

} }

patch_panels_intent { num_connected_patch_panels: 3

patch_panel { index: 1 connected: true }

patch_panel { index: 2 connected: true }
patch_panel { index: 3 connected: true }

}

Figure 13: An example of DCNI intent translated from UIM.

({3 {3 7o, {1,2,3}).

(b) Stage #1. The new topology physical T connects server
block 1, 2, and spine block 1. Only patch panel 1 has
been updated. Thus the tuple is (To, {2,3},T1,{1}).

(c) Stage #2. The new topology T1 remains the same. PP
2 is further folded into the logical topology. Thus, the
tuple could be summarized as (To,{3},Ti,{1,2}).

(d) Stage #3. The new topology T1 remains the same. All
PPs are updated into the logical topology. There is no
more “old” topology as restripe is completed. Thus, the

is tuple ({},{},T1,{1,2,3}).

This tuple is stored in an IR called MaskedDcnTopology
IR. The PP-Cross-Link Gen build unit will read the previous
MaskedDcnTopology IR and Jupiter intent to update the tuple,
and then translate the tuple to an intermediate topology.

C Live migration to new infrastructure

Our legacy modeling infrastructure® had numerous problems,
including scaling issues, and weak support for schema evolu-
tion and parallel operations. For production safety, we could
not simply stop using the old systems and immediately mi-
grate its many users to our new model-generation infrastruc-
ture (Nimble) until we were confident that the old and new
systems were functionally equivalent. Even small discrepan-
cies can cause serious outages. However, we could not just
stop using the old systems while we tested the new ones, as
that would have blocked all network operations for weeks or
months.

8The legacy infrastructure was similar to a relational database schema.

Spine Block #1 Spine Block #1

\ | [ |l I \ | [ |l

[ Server Block #1 ] [ Server Block #2 ] [ Server Block #1 ] [ Server Block #2 ]

Before Restripe Restripe Stage #1

Spine Block #1 Spine Block #1

\ ] J [ I \ ] J [

{ Server Block #1 J [ Server Block #2 J { Server Block #1 J [ Server Block #2 J

Restripe Stage #2

{ [ ratchpanel(Pp)

Restripe Stage #3

Block-to-PP Links T = PPCrossLinks J

Figure 14: An example of 3-stage restripe with three PPs.

We conducted a live migration from the old systems in four
phases:

Phase I: Exporter. We wrote an exporter pipeline that con-
verted legacy models to equivalent MALT models. This al-
lowed most model consumers to migrate to MALT. At this
point, the legacy models were still treated as authoritative.
Phase II: Validation. To avoid production outages, we had
to ensure that models produced by Nimble were function-
ally equivalent to the exporter-generated models. We built a
pipeline that reverse-engineered UIM and relevant state from
the exporter’s output, yielding intent that we could feed to
Nimble. We could then check that Nimble and the exporter gen-
erated identical MALT models from semantically-equivalent
intent.

Phase III: Read migration. After the model equivalence
checks passed consistently for several weeks, we atomically
flipped the MALTShop paths where the exporter and Nimble
wrote their models, automatically causing readers to consume
Nimble-generated models. We staged this changeover on a per-
model-shard basis, enabling read migration for some shards
while we were still fixing differences for other shards.
Phase I'V: Write migration. We then migrated all model
writers (e.g., capacity-delivery and data center expansion
workflows) to use MDS. After this, we deprecated the legacy
model-design tools.

Phased migration turned out to be invaluable. Together
with our high-level design principles for reliable systems [35],
we managed to finish the fleet-wide migration of our critical
modeling infrastructure without any production incidents.
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