é’ usenix
4 THE ADVANCED

’ COMPUTING SYSTEMS
ASSOCIATION

VectorVisor: A Binary Translation Scheme for
Throughput-Oriented GPU Acceleration

Samuel Ginzburg, Princeton University; Mohammad Shahrad,
University of British Columbia; Michael). Freedman, Princeton University

https://www.usenix.org/conference/atc23/presentation/ginzburg

This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10-12, 2023 « Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference
is sponsored by

alllaac &llall aeala

King Abdullah University of
Science and Technology

(C

ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

VectorVisor: A Binary Translation Scheme for
Throughput-Oriented GPU Acceleration

Samuel Ginzburg

Princeton University

Abstract

Beyond conventional graphics applications, general-purpose
GPU acceleration has had significant impact on machine learn-
ing and scientific computing workloads. Yet, it has failed to
see widespread use for server-side applications, which we
argue is because GPU programming models offer a level of
abstraction that is either too low-level (e.g., OpenCL, CUDA)
or too high-level (e.g., TensorFlow, Halide), depending on the
language. Not all applications fit into either category, resulting
in lost opportunities for GPU acceleration.

We introduce VectorVisor, a vectorized binary translator
that enables new opportunities for GPU acceleration by in-
troducing a novel programming model for GPUs. With Vec-
torVisor, many copies of the same server-side application are
run concurrently on the GPU, where VectorVisor mimics the
abstractions provided by CPU threads. To achieve this goal,
we demonstrate how to (i) provide cross-platform support for
system calls and recursion using continuations and (ii) make
full use of the excess register file capacity and high memory
bandwidth of GPUs. We then demonstrate that our binary
translator is able to transparently accelerate certain classes
of compute-bound workloads, gaining significant improve-
ments in throughput-per-dollar of up to 2.9x compared to
Intel x86-64 VMs in the cloud, and in some cases match the
throughput-per-dollar of native CUDA baselines.

1 Introduction

Server-side GPU acceleration has become ubiquitous, with
all major cloud providers offering virtual machine instances
with attached GPUs. GPU workloads such as graphics and
machine learning have found widespread adoption due to the
superior throughput-per-dollar that GPUs offer.

Typical approaches to accelerating these workloads on
GPUs use domain-specific programming languages (DSLs).
DSLs for GPUs heavily restrict which abstractions can be
used by developers to write applications, and in particular
forces them to use parallel abstractions. For example, ma-
chine learning programming systems such as TensorFlow [24]

Mohammad Shahrad®

Michael J. Freedman

TUniversity of British Columbia

require users to specify programs as a series of operations
performed on n-dimensional arrays. Approaches to extract-
ing parallelism on GPUs for graphical workloads such as
Halide [73] enforce more extreme restrictions such as requir-
ing developers to express image operations as pure mathe-
matical functions, defining the value of each function at each
point. Other DSLs targeting batch dataflow workloads require
developers to express their program using built-in parallel
functions, which impose additional restrictions on application
logic [75].

Developers who cannot express their application logic us-
ing these restricted abstractions are stuck manually rewriting
applications in OpenCL or CUDA, which expose a low-level
programming interface. Complex programs that use large
pre-existing libraries, or where extracting parallelism is dif-
ficult, can be time-consuming to write and require drastic
modifications to run using GPUs.

In this paper, we explore the feasibility of an alternative pro-
gramming model for GPUs—where we take existing single-
threaded programs and execute many copies of them using
GPU threads. Each GPU thread corresponds to an emulated
CPU thread, running a single instance of the program. Un-
like prior approaches [37] which utilize interpretation, we
translate the input program to native GPU code, substantially
boosting performance while enabling a wider variety of tar-
get languages and runtimes. Unlike OpenCL or CUDA pro-
grams, we provide support for system calls and a CPU-like flat
memory model. While less efficient than manual translation,
this approach substantially reduces the barrier to accelerat-
ing throughput-oriented workloads using GPUs, ultimately
improving the throughput and cost efficiency of applications
that would otherwise run on CPUs.

Many applications written to run on CPUs are single-
threaded programs, often implemented using high-level pro-
gramming languages with large imported libraries. Without
modification, these applications do not map cleanly to exist-
ing GPU programming models (e.g., those using language-
level parallel functions such as in TensorFlow or Halide).
Instead, these workloads process requests independently, with

USENIX Association

2023 USENIX Annual Technical Conference 1017

no inter-request synchronization or communication. Exam-
ples of these workloads include cryptographic operations,
image manipulation, and compression. These workloads are
generally amenable to GPU acceleration [60, 67, 73], but are
frequently run on CPUs instead.

Effectively enabling this programming model requires one
to overcome several technical challenges in dealing with the
substantial differences between GPUs and CPUs. These dif-
ferences include how programs are executed—e.g., in which
programs are run to completion without preemption—as well
as a lack of support in GPUs for system calls. Further, failing
to take differences in GPU memory hierarchies into account
can result in an order of magnitude decrease in read and write
performance. Prior approaches to running unmodified pro-
grams on GPUs suffer from poor performance due to the
overheads of interpretation [37] as well as compatibility is-
sues such as the lack of support for system calls [45].

To explore this unique programming model for GPUs, we
built VectorVisor—a system which utilizes a vectorizing bi-
nary translator for GPUs. VectorVisor is designed to accel-
erate existing and unmodified programs that are designed to
run on CPUs but can benefit from GPU acceleration. Tar-
get programs are automatically translated to run on GPUs
efficiently, eliminating the need for complex manual transla-
tion. In particular, VectorVisor uses WebAssembly [54] as the
intermediate binary format, which enables secure, fast, and
efficient compilation for a wide range of applications.

We overcome the differences in program execution and
memory hierarchy by translating WebAssembly programs to
run directly on the GPU as opposed to using interpretation.
We show that the remaining differences between CPUs and
GPUs can be bridged with a combination of three techniques:

Continuations: CUDA and OpenCL do not provide sup-
port for preempting running applications in addition to lacking
support for system calls. Without preemption, we cannot dis-
patch system calls, making it impossible to run complex and
unmodified programs. To bypass this issue, we implement
continuations for OpenCL C. Continuations are language-
level primitives that allow us to save the program state at
arbitrary locations, and then resume execution at a later time.
Doing so allows us to pause and resume running GPU kernels,
and to provide support for system calls. We also benefit from
the portability of our approach—enabling VectorVisor to be
run with multiple GPU vendors (e.g., NVIDIA, AMD).

WebAssembly: WebAssembly (WASM) binaries are de-
signed with performance, portability, and security in mind.
Many popular languages can compile to WASM (e.g., Rust,
Go, C, C++, AssemblyScript, and more), making it an ideal
intermediate format. WASM binaries are designed with run-
time JIT compilation in mind, persisting vital information not
present in x86 binaries. WASM semantics provide VectorVi-
sor with memory alignment information, register allocation
hints, type-checks on operations, and language-enforced struc-
tured control-flow. We heavily utilize this information to deal

with challenges such as efficiently making use of the substan-
tially larger per-thread [14] register space on GPUs—which is
crucial for maximizing performance. Other important perfor-
mance optimizations are also enabled through this compile-
time information.

Memory Interleaving: GPUs organize threads in warps,
or groups of threads. Each thread in a warp has a numerical
index, and threads with adjacent indices must access adjacent
bytes for optimal performance—so that memory accesses can
be coalesced together. Coalesced memory accesses enable
GPUs to maximize memory bandwidth usage at the cost of a
more complex programming model. To bridge the differences
between the GPU and CPU memory hierarchies, we automat-
ically interleave the memory of each virtual machine running
on the GPU to transparently coalesce all memory accesses.

We demonstrate VectorVisor’s capabilities to accelerate
several unmodified, third-party applications which use pop-
ular open-source libraries. We then evaluate VectorVisor’s
efficacy using nine benchmarks with throughput-per-dollar
as our primary metric. Selected benchmarks include multiple
classes of workloads, some of which reflect ideal applica-
tions of VectorVisor, with others reflecting the limitations of
our programming model. Comparisons against native x86-64
and WebAssembly versions of each benchmark are provided,
showing that VectorVisor can achieve superior throughput-
per-dollar. We also provide native CUDA versions of two
benchmarks to evaluate the efficacy of our translation. Our
paper makes the following contributions:

1. We introduce a novel cross-platform approach to running
lightweight virtual machines using GPUs, where VMs
securely execute native code to maximize performance
and support multiple high-level languages.

2. We show that support for system calls can be efficiently
provided using continuations in addition to supporting
recursion and indirect calls in OpenCL.

3. We demonstrate that we can emulate a flat memory model
using an efficient memory interleave, enabling existing pro-
grams to leverage the high memory bandwidth of GPUs.

4. We explore the implications of batch size, latency, and
throughput on VectorVisor’s programming model and dis-
cuss which categories of workloads are optimal for it.

5. We discuss the limitations of our system and optimal GPU
configurations for it.

2 Motivation and Challenges

The past several years have shown a large increase in the avail-
ability of cloud accessible GPUs. GPUs that cost thousands
of dollars are now available at affordable prices per hour. De-
velopers can quickly test if accelerating their program using

1018 2023 USENIX Annual Technical Conference

USENIX Association

a GPU is cost-effective without large up-front investments
in GPU hardware. However, despite having strong parallel
processing power and cloud availability, GPUs are not often
used for running high concurrency server-side applications.

Translating programs originally intended to execute on
CPUs to run on GPUs is difficult due to the substantial differ-
ences between the execution models and memory hierarchies.
Today’s approaches to tackling these issues either require
strong language-level restrictions with unintuitive stumbling
blocks for developers, or slower automated approaches such
as interpretation [37].

2.1 Execution Model Differences

Taking advantage of the throughput that GPUs offer requires
using a different execution model than CPUs offer. GPUs fea-
ture restrictions on both the application runtimes and control
flow that limit the set of possible workloads.

Runtime Limitations: CUDA and OpenCL are the two
most popular compute APIs available for GPUs, and they
share a near identical programming model. Programs that
run on GPUs (GPU kernels) are submitted and execute until
completion without preemption. High-level languages target-
ing general-purpose GPU programming such as CUDA C++
and OpenCL C feature restrictions on the usage of standard
libraries, recursion, indirect function calls, variable length
arrays, virtual functions, and templates [12, 16]. Support for
other common features such as system calls and preemption
are absent, further restricting the set of programs that can run.

Divergence: Unlike CPUs, which allow for different hard-
ware threads to execute different instructions, GPUs organize
threads into groups of threads (warps). Each warp shares a
program counter, so all threads execute the same instruction
on each clock cycle. Support for conditional branching is
provided by executing no-ops for threads that have diverged,
while the remaining threads block on threads executing the
conditional branch. This results in the serialized execution of
branches. Programs with substantial divergence are not able
to efficiently use GPU resources as a result [33,43,51].

2.2 Memory Hierarchy Differences

GPUs and CPUs handle memory accesses differently due to
the different design constraints imposed upon the hardware.
CPUs optimize for reduced memory latency for all threads of
execution, so they feature large cache sizes to minimize ac-
cesses to main memory. In contrast, GPUs seek to maximize
memory bandwidth. GPUs can achieve 3 x the memory band-
width of a comparable CPU [5, 8]. While GPUs can achieve
higher memory bandwidth, memory latency on a given GPU
can be up to 2.75x worse than a comparable CPU [61, 66].
These differences in the memory hierarchy between GPUs
and CPUs have two key implications for developers:
Register Space: At a high level, the memory hierarchies of
CPUs and GPUs are similar, with both devices featuring reg-

isters, data caches, and byte-addressable memory. However,
GPUs feature substantially larger register files. Each thread
on recent NVIDIA GPUs can have a maximum of 255 32-bit
register values [12] (just under 1 KiB of storage). In contrast,
the x86-64 instruction set architecture has 16 64-bit general
purpose registers (128 bytes of storage). Additionally, GPUs
typically feature far more threads of execution than CPUs, fur-
ther magnifying the difference. Making use of this extra space
is critical to maximizing performance on GPUs [36,70].

Memory Accesses: Rules regarding efficient memory ac-
cess patterns are different for GPUs. GPUs require that pro-
grams perform coalesced memory accesses. Similar to CPUs,
locality of memory accesses allows reads and writes to be
cached, and is required to get optimal performance. However,
GPU kernels must also ensure the locality of memory ac-
cesses across threads. Threads in a GPU warp are numerically
indexed, and adjacent threads must access adjacent bytes of
memory as a general rule. Otherwise, memory accesses within
a warp can be serialized. Without proper memory coalescing
GPU memory bandwidth can be cut by up to 32x [12].

In addition to performance drops, GPUs can have stricter
memory access policies than CPUs. Ideally, memory accesses
are naturally aligned—meaning N byte accesses must be N-
bytes aligned. Unaligned accesses cause running GPU kernels
to fault on NVIDIA GPUs [12], causing programs that would
have run correctly on a CPU to crash on a GPU.

3 System Design

In this section we introduce VectorVisor !, a vectorizing bi-
nary translator for GPUs designed to leverage the implicit par-
allelism provided by our programming model. Our approach
enables us to run many instances of unmodified programs
on the GPU concurrently, making it far easier to utilize the
substantial parallelism that GPUs offer.

We first describe our programming model in depth, where
we explain how developers can leverage VectorVisor to ac-
celerate programs. We characterize a set of ideal workloads
for VectorVisor and explore the limitations of our program-
ming model. Following this, we provide a high-level overview
of VectorVisor’s primary system components. To enable our
simple and easy to use programming model, Vector Visor auto-
mates data transfer to and from the GPU. We illustrate this by
showing the life cycle of a request processed by VectorVisor.
Lastly, we provide an example of a short program, and how
we transform it to run on the GPU.

3.1 Programming Model, Target Workloads

In contrast to OpenCL or CUDA, VectorVisor mimics the ab-
stractions provided by CPU threads, treating each individual
GPU thread as a small virtual machine. Each VM operates
on a statically allocated chunk of memory, fully isolated from

Thttps://github.com/SamGinzburg/VectorVisor

USENIX Association

2023 USENIX Annual Technical Conference 1019

https://github.com/SamGinzburg/VectorVisor

other VMs. This memory model does not support inter-VM
communication, and thus prevents deadlocking. Many copies
of the same program are mapped to GPU threads, which then
operate on distinct inputs.

This approach to parallelism for GPUs enables developers
to run complex and unmodified single-threaded programs
originally written for the CPU. Developers can leverage GPU
acceleration without learning complex programming models
or rethinking the logical structure of their programs.

VectorVisor is designed to function with unmodified work-
loads, but not all programs are equally amenable to acceler-
ation using our programming model. Data parallel, latency-
insensitive, and compute-bound ‘serverless-like’ workloads
are ideal targets for GPU acceleration using VectorVisor. For
a subset of these workloads, correct manual translation can
be difficult without domain-specific knowledge—and those
workloads represent an ideal use-case for VectorVisor. Suit-
able workloads share a number of characteristics:

High Execution Volume: VectorVisor relies on running
many instances of the same program concurrently, instead of
accelerating a single execution. Therefore, the more instances
packed on the GPU, the higher the cost efficiency. Naturally,
the latency QoS of the application should be able to afford
the added batching latency prior to execution.

Application Limitations: VectorVisor runs unmodified
programs where possible, but some abstractions are expen-
sive to emulate on GPUs. Recursion and indirect calls reduce
application performance due to how we implement them (ex-
plained further in Section 3.3).

Navigating tradeoffs between application concurrency and
heap size are key to maximizing performance when using
VectorVisor. We experimentally found in our evaluation that
running 4096-6144 VMs with a heap size of 3-4 MiB proved
optimal for our selected workloads. However, it is possible
to run VectorVisor with varying degrees of concurrency—
adjusting for different heap sizes.

Lastly, floating point differences between CPUs and GPUs
can result in different outputs for applications [11, 37, 65],
depending on the specific application and compiler.

Low Divergence: Ideal workloads should minimize pro-
gram divergence in order to fully utilize the superior through-
put and memory bandwidth that GPUs can offer.

Data Transfer Overheads: VectorVisor automates data
transfer to and from the GPU; however, the overhead involved
can be a substantial fraction of end-to-end request time. Main-
taining a high ratio of GPU compute to input and output size
is ideal for maximizing VM throughput.

3.2 Design Overview

VectorVisor consists of two key components, the binary trans-
lator (compiler) and the vectorized virtual machine monitor
(VMM). We show an overview of VectorVisor in Figure 1,
showing the role of each component as well as the life cy-

Web Server

Incoming > |

Request Buffer |—-| Request Handler I——>
A

Compiler / VMM 2

Other

/ Y

Request Buffer

Static Analysis 7 3
° System Call Buff)ar
(7]
2 Register Allocation 6 T L/
(]
-
8 Syscall Dispatcher
> Program

Transformations 5 T l 4

l Precompiled GPU
7/ a Binary
OpenCL o

PTX/AMDGCN P

Figure 1: System Overview.

cle of an incoming request to the system. Requests are first
queued externally to VectorVisor, before being batched by the
VMM, and submitted to the VMs running on the GPU—which
are blocked on a system call awaiting input. We provide a
pre-configured web server that automatically handles all data
transfer to the VMM. After executing a batch of requests,
responses are returned via another system call, and then back
to the web server. This approach enables VectorVisor to be
used as a drop-in replacement for existing systems, without
the need for developers to manually batch incoming requests.

Binary translation is a separate process, occurring before
applications run. Programs are compiled from any language
targeting LLVM [64] (e.g., Rust, C, C++) into WebAssembly,
our intermediate binary format. We then compile WebAssem-
bly to OpenCL C. Targeting OpenCL C enables VectorVisor
to support multiple GPU vendors. This approach allows us
to run existing programs without the need to worry about
complex language semantics—we only need to concern our-
selves with WebAssembly semantics which are far simpler
than alternatives such as LLVM IR and directly compiling
high-level languages. LLVM IR places minimal restrictions
on control flow structures, and can represent programs that are
impossible for any GPU to run. WebAssembly only provides
structured control flow by design, ensuring that programs can
always be translated to run on the GPU [54]. Alternative ap-
proaches that directly compile high-level languages to run
using GPUs require substantial engineering effort, and can
run into compatibility issues [37].

Our system design features a number of novel contribu-
tions that we employ to bridge the substantial differences that
exist between GPUs and CPUs described in Section 2. Our
contributions succeed in bridging most of the gaps in capabil-
ities between CPU and GPU runtimes. Recursive and indirect
functions limit performance for some workloads but do not
limit our functionality or correctness.

1020 2023 USENIX Annual Technical Conference

USENIX Association

;7 // Pseudocode in C:
;7 1nt main(void) {
;i // fd 1 == stdout
28 char text[] = "ABCD\n";
'y return write(l, text, strlen(text));
I
(module
(import "wasi_unstable" "fd_write"
(func $fd_write (param i32 132 132 132) (result 132
)))

R L S

10 (memory (;0;) 1)

11 (export "memory" (memory 0))

12 (export "_start" (func $_start))

13 (func $_start (result i32)

14 i32.const 1 ;; stdout

15 i32.const 0 ;; iovec ptr

16 i32.const 2 ;; entries

17 i32.const 24 ;; out bytes

18 call $fd_write

19)

20 (data (i32.const 0) "\10\00\00\00\02\00\00\00")
21 (data (i32.const 8) "\12\00\00\00\02\00\00\00ABCD")

2)

Figure 2: WebAssembly Example. We show an example of a
simple program which makes a single system call.

3.3 Compiler

VectorVisor uses a binary translator (compiler) to translate
input programs such that they can run on the GPU. The role
of the compiler is to automate away the difficulties involved
in writing programs for the GPU that are outlined in Section 2.
We explore a set of techniques for enabling the execution of
unmodified programs, which we demonstrate using a simple
example of an input program.

3.3.1 Compiling WebAssembly

WebAssembly (WASM) [54], is a low-level language de-
signed for performance, size, portability, and security. WASM
binaries differ significantly from x86-64 binaries, as they are
designed to be recompiled before runtime, retaining signifi-
cant compilation information that can be used. Using WASM
as an intermediate format simultaneously allows us to avoid
dealing with the complex semantics of higher-level languages
(e.g., Rust, C, C++) while also improving the performance of
VectorVisor. We make use of this information in three places
within our compiler:

1. Register Allocation: Recent NVIDIA GPUs have up to
255 32-bit registers per thread [12], providing roughly 8 x the
amount of storage per CPU thread ignoring vector registers.
Traditional x86-64 binaries target CPUs with only 16 64-bit
general purpose registers. Static analysis could conceivably
be used to place stack allocations in x86-64 binaries into GPU
registers, but WebAssembly provides a more convenient solu-
tion. In contrast to x86-64 binaries, WASM is a stack-based
virtual machine and does not explicitly allocate registers [54].
Instead, values are placed either onto the stack or into local
variables. Figure 2 shows an example WebAssembly program,
which places four integers onto the stack. During compilation,
we are able to store these values directly into variables which
the backend GPU compiler (OpenCL C compiler) can then

1-Byte Interleave | |

Byte 0 Byte 7
4-Byte Interleave | || || || |
Bytes 0-3 Bytes 4-7
8-Byte Interleave | || |
Bytes 0-7 Bytes 0-7

|:| =Thread 0 |:| = Thread 1

Figure 3: Memory Interleaving Examples of 1, 4, and 8-byte
interleavings for a system with 2 threads are shown.

place into GPU registers. This approach allows the OpenCL C
compiler to place values into registers that an x86-64 compiler
would have placed on the stack.

2. Runtime support: Most programs require some degree
of modification to run on GPUs. Memory allocation, locking
primitives, and threading primitives make assumptions about
the underlying system that are false on GPUs. However, many
such modifications are already performed by WebAssembly
compilers. WASM binaries not only provide substantial com-
pilation information, but also a “batteries-included” set of
runtime modifications. Compilers targeting WebAssembly
typically compile programs with a modified standard library
with the necessary modifications already made.

3. Memory Alignment: Misaligned accesses cause run-
ning programs to crash when run using NVIDIA GPUs [12].
Handling misaligned accesses can be done at runtime by
performing multiple aligned reads, but doing so introduces
runtime overhead. Emitting optimized code for aligned ac-
cesses substantially boosts application performance. WASM
binaries contain alignment information (e.g., the align at-
tribute) that we can use to optimize reads and writes. However,
the align attribute is only a hint, and as per the WASM spec-
ification, programs are expected to run correctly even with
incorrectly specified alignments [54]. In practice, WASM
binaries compiled by LLVM always contain the correct align-
ment information. By restricting the set of programs that we
run to those compiled by LLVM, we can leverage these compi-
lation hints safely to improve the performance of VectorVisor.
VectorVisor supports running programs with and without this
optimization using compiler-flags.

3.3.2 Memory Interleaving

GPUs have strict memory access rules to obtain optimal per-
formance. As described in Section 2.2, GPU kernels must
coalesce memory accesses to maximize memory bandwidth.
Doing so requires developers to interleave objects in memory,
such that adjacent threads access adjacent bytes, breaking the
abstraction of a flat memory model. Other aspects of the flat
memory model, such as process (or VM) memory isolation
are also absent on GPUs by design.

VectorVisor provides the abstraction of a flat memory
model to developers, automatically interleaving the address
space of underlying virtual machines (threads) on the GPU

USENIX Association

2023 USENIX Annual Technical Conference 1021

__kernel wvoid wasm_entry (...) {
/ Set up the stack, heap, buffers,
do {
/* call the next func/continuation */
switch (*entry_point) {

O 001w —

case 0:
. Beart (oo p
break;
default:
10 return;
11 }
12 // Check if we are done executing
13 } while (*sfp!=0 && *syscall_number==-2);
14)

Figure 4: The trampoline function serves as the entry point to
each GPU kernel.

to provide both performance and security. This approach al-
lows existing programs to run, while also extracting the full
performance benefits of a GPU—assuming that running VMs
exhibit similar memory access patterns. Randomized memory
access patterns or significant program divergence can reduce
memory bandwidth. Figure 3 shows how memory is inter-
leaved across VMs in VectorVisor. Memory is organized into
cells of contiguous bytes. Cell addresses are computed using
the following pointer arithmetic (C operator precedence):

cell_addr=((;[f;{f‘e;)X (num_vmsxileave)+(vm_idx X ileave)+mem_base

Where the interleave (ileave) represents the byte-width of the
interleaving (e.g., 1, 4 or 8), the offset is the zero-indexed
WebAssembly address, and mem_base is the base address of
the allocated chunk of memory. Memory accesses are rewrit-
ten to operate on cells, with misaligned and larger (e.g., §,
16-byte value) accesses requiring multiple operations. Our
approach enables us to support 1, 4, and 8-byte interleavings,
with larger interleavings typically achieving superior memory
bandwidth.

WASM memory is represented as a zero-indexed linear
array of bytes with pointers in the range of 0-232-1 and does
not expose virtual addresses to running VMs. The relative
addressing model WASM uses enables the compiler to con-
trol the virtual addresses of all memory reads and writes.
Our cell address computation prevents VMs from comput-
ing cell adresses which belong to other VMs— preventing
out-of-bounds accesses from corrupting or leaking data and
providing memory isolation by construction.

3.3.3 GPU Preemption

Section 2.1 described the limitations of GPU programming
models such as OpenCL and CUDA. Common features of
programs such as system calls, recursion, and indirect calls
vary in support—with system calls being absent from both
OpenCL and CUDA. To fully mimic the execution environ-
ment provided by a CPU in VectorVisor, we support all three
features. Implementing these features within OpenCL C re-
quires us to provide support for preempting running programs.
We provide support for preemption in VectorVisor by extend-

1 # 'c' is the called continuation

2 def example_fn(c, ...):

3 4 context restore handler

4 switch (context):

5 case 0:

6 goto resume0;

7 case n:

8 goto resume_N;

9 default:

10 # Direct call, start from the top

11 # Indirect function call
12 switch (func_ptr):

13 case 0:

14 return c (example_fn, 0, resume0, ...)
15 resume0:

16 case n:

17 return c (example_fn, 1, resumel, ...)
18 resumel:

19 default:

20 trap;

21 # Optimized calls can be issued directly
22 call_example_func(...)

23 # Standard function call

24 return c(example_fn, 2, resume2, ...)

25 resume2:

26 # Recursive function call]

27 # In this case example_fn == 3

28 return c(example_fn, 3, resume3, ...)

29 resume3:

30 # System call

31 # These functions return control to the VMM
32 return c(example_fn, 4, resumed, ...)

33 resumed:

Figure 5: Transformed Program Pseudocode example of how
different types function calls are implemented.

ing OpenCL C with support for continuations. Continuations
provide the abstraction of being able to pause and resume
programs at arbitrary points. To maximize the performance
of VectorVisor, we leverage several compiler optimizations
to reduce the overhead they introduce.

Continuations. Continuation-Passing Style [81] (CPS) is
a relatively uncommon programming style where functions
take in an additional parameter (the continuation), and instead
of returning a value call the provided continuation with the
return value. CPS with trampolining [27] is similar to stan-
dard CPS, with the difference being that function calls return
continuations instead of just calling the provided continuation.
A control operator (trampoline function), is used to repeatedly
call the returned continuations. Figure 4 shows the trampo-
line function used in VectorVisor, which is the main entry
point to each running GPU kernel. Implementing CPS with
trampolines in this manner enables VectorVisor to preempt
running GPU kernels at arbitrary locations—although we only
return control to the CPU when either every VM is finished
executing or when every VM is blocked on a system call. In
Figure 5 we see that the only difference between recursive, in-
direct, and standard calls is the returned continuation (which
encapsulates the program control state). This approach makes
it easy to bypass OpenCL C language-level restrictions and
provide support for recursive and indirect calls.

Compiler Optimizations. Naively implementing CPS with
trampolines enables support for system calls and recursion

1022 2023 USENIX Annual Technical Conference

USENIX Association

with large runtime overheads. To obtain better performance,
Vector Visor performs static analysis to minimize the size of
saved program contexts. We apply liveness analysis in addi-
tion to leveraging WASM type and control flow information
to enable (1) incremental context saving, (2) loop-invariant
code motion, and (3) WebAssembly-specific optimizations.
Liveness is associated with local usage inside WASM stack
frames, and we insert all context save and restore opera-
tions around control flow instructions (e.g., block, loop, br,
br_if, and end) and function (or system) calls. Runtime taint
tracking is used to further enhance our liveness estimates.
Stack frame contexts are saved incrementally—only saving
values written to since the previous context save operation.
Liveness estimates are used to minimize context sizes in addi-
tion to only restoring live values when resuming continuations
or unwinding stack frames. Loops without recursive or indi-
rect calls can be further optimized—with context saving and
restoring operations hoisted out of the loop. WASM function
type signatures are used to translate amenable indirect calls
into direct calls by filtering possible indirect call targets.

3.3.4 Profile-Guided Optimization

Minimizing the overhead of translating recursive and indi-
rect calls is key to running complex applications. Compiler
optimizations eliminate much of the overhead in the common-
case. Edge cases, such as heavy usage of indirect and recursive
calls in a tight loop remain a challenge. While recursion often
cannot be eliminated without restructuring programs, indi-
rect calls are easier to remove [25, 34]. Most indirect calls in
high-level languages have only one target—with on average
73.5% of indirect call sites in Java programs being monomor-
phic [59]. Despite aggressive monomorphization in the Rust
compiler [26], up to 37% of the most popular Rust libraries
reduce code size by not removing optimizable indirect calls
where possible [85]. Up to 98% of indirect calls in Java pro-
grams can be optimized out entirely [59].

We package a separate tool for instrumenting binaries, to
implement profile-guided optimization for VectorVisor. Each
program is instrumented and run using sample inputs rep-
resentative of the overall workload. Using profiler data, we
replace all indirect calls with less than 15 seen call targets
with direct calls. To avoid emitting indirect calls to handle
unseen targets, we instead emit panic handlers which check
for valid targets.

3.3.5 Soundness

VectorVisor performs a 1-to-1 translation for all operations in
input WebAssembly programs (e.g., stack operations, memory
access, arithmetic, control flow). Limitations on the soundness
of our approach come from (1) Compilation to WebAssembly
and (2) Optimizations.

Most common workloads can be recompiled to WebAssem-
bly without problems, but programs which rely on specific

x86 instructions (e.g., 80-bit floats), language implementation
details (e.g., undefined and implementation defined behavior),
and complex language runtimes with unimplemented features
(e.g., Go) can experience correctness issues.

Compiler-flags and tools (e.g., wasm-snip) are used to re-
place panic-related functions with unreachable statements.
Unrecoverable errors can be expensive to handle, and in most
cases replacing them with program aborts has no impact on
correctness. Profile-guided optimization (PGO) can reduce
indirect call counts, significantly improving performance in
some cases. Our implementation of PGO only includes func-
tion calls we observe as potential targets at indirect call sites,
aborting on unseen call targets. In practice, the indirect call
targets we observed did not vary significantly with user-input
beyond what we observed during profiling.

34 VMM

VectorVisor’s VMM handles all data transfer between the
running VMs on the GPU and CPU, as well as executing all
system calls. The VMM greatly simplifies the use of VectorVi-
sor by developers, avoiding the need to manage data transfer
manually or to batch incoming requests.

Support for dispatching system calls is provided through
the WebAssembly System Interface (WASI). We implement
two custom WASI system calls—which are used to create
a serverless-like event handler API for running VMs. Other
implemented calls are primarily used to initialize language
runtimes (e.g., reading environmental variables), support ran-
dom number generation, serve as synchronization barriers
(e.g., block on a subset of VMs), and perform simple IO (e.g.,
error logging).

Incoming requests are buffered using the request buffer,
while system calls use an alternate buffer, as shown in Fig-
ure 1. Double buffering adds some overhead, but enables
VectorVisor to overlap expensive network IO with on-GPU
execution time. Sufficiently compute-intensive workloads pre-
vent workloads from bottlenecking on the VMM, which can
process thousands of VMs per-CPU. VectorVisor supports us-
ing pinned memory transfers with multiple GPU vendors (e.g.,
NVIDIA, AMD) to further optimize data transfer speeds—
with vendor-specific optimizations [1,4].

4 Evaluation

In this section, we present an evaluation of VectorVisor. First,
we discuss the efficiency of (1) our memory interleaving and
(2) system call implementation. Second, we explore a vari-
ety of modified and unmodified workloads to better under-
stand the tradeoff space of our novel approach to accelerating
programs. In several cases we show that we obtain superior
throughput-per-dollar against x86 CPUs. Breakdowns of the
end-to-end latencies of each benchmark are provided as well
to explain our results. Finally, we evaluate the efficiency of
our translation against handwritten CUDA baselines.

USENIX Association

2023 USENIX Annual Technical Conference 1023

Instance Name CPU GPU Cost/Hr
gdad.xlarge Intel Cascade Lake AMD Radeon Pro V520 $0.3785
g4dn.xlarge Intel Cascade Lake NVIDIA T4 $0.526
g4dn.2xlarge Intel Cascade Lake NVIDIA T4 $0.752

g5.xlarge AMD EPYC 7002 NVIDIA A10G $1.006
g5.2xlarge AMD EPYC 7002 NVIDIA A10G $1.212
c5.xlarge Intel Cascade Lake N/A $0.17
c5a.xlarge AMD EPYC 7002 N/A $0.154

Table 1: Hardware Configurations. Prices as of 1/5/2023.

4.1 Methodology

Testbed. We evaluated VectorVisor using Amazon Web
Services (AWS). Five different VM types were used to
compare against x86-64 baselines, and an additional two
larger instances types were used to compare VectorVisor
against CUDA baselines. We provisioned three VMs with at-
tached GPUs (g4ad.xlarge, g4dn.xlarge, g5.xlarge), each with
4 vCPUs and 16 GiB of memory. Two additional compute-
optimized VMs were used for evaluating CPU performance
(c5.xlarge, c5a.xlarge), each with 8 GiB of memory and 4
vCPUs. Lastly, we used a single invoker VM (c5.8xlarge)
for sending requests. These instances were used to obtain
the results in Figures 8 and 9. Double extra large (2x1) in-
stances have 2x the memory and CPU of smaller (xlarge)
instances. These instances were used (in addition to xlarge
instances) to evaluate handwritten CUDA programs. CUDA
results which use 2xI instances can be found in Table 4. All
VMs are allocated in us-east-1, in the same availability
zone. Benchmarks are evaluated end-to-end over the network
with IO and system overheads included in all measurements.

Some hardware configurations could not be evaluated
due to AMD-specific bugs. AMD v520 GPUs, which are
the only cloud-available AMD GPU on AWS, are unsup-
ported in ROCm [21, 23] resulting in runtime crashes. Two
benchmarks (Strings-Go and Strings-AScript) are built with
WebAssembly-focused runtimes and do not have evaluated
x86-64 configurations. Detailed results for all system configu-
rations can be found in Tables 5 and 6 (Appendix).

Table | shows the hardware each VM has attached.
NVIDIA configurations use the latest CUDA 12 backend,
while AMD GPUs use ROCm 5.4.0 with the latest AMDGPU-
Pro driver. For our GPU instances, we do not run any fraction
of our workload on the available CPU cores to focus on eval-
uating GPU performance using VectorVisor. Undoubtedly, a
hybrid CPU/GPU deployment would be more cost-efficient.
We leave the exploration of heterogeneous deployments to
future work. VectorVisor runs each benchmark using a 4- or
8-byte memory interleaving.

Workloads. Workloads are run using a cross-platform
‘serverless-like” event-loop. Figures 11, 12, and 13 (Appendix)
demonstrate how programs are written to run using our event-
loop with x86-64, WASM, and VectorVisor. Our benchmarks
evaluate VectorVisor using ‘as-is’ open-source library code in
addition to optimized code written to run more efficiently. We

explore the translation of lightweight (e.g., Rust) and complex
language runtimes featuring garbage collection such as Go
using TinyGo [22], and AssemblyScript [19]—a TypeScript-
like language. Our x86-64 baselines are compiled at -O3
with SIMD enabled. Two benchmarks (Blur-Bmp, PHash-
Modified) were manually rewritten to run natively using
NVIDIA CUDA APIs to explore the efficiency of our trans-
lation. Table 2 shows each benchmark, its category, whether
it features code that runs inefficiently in our system, whether
we had to modify the imported library, batch sizes, and the
total number of downloads on crates.io, a public repository
for Rust libraries [10]. Benchmarks are run for 10 minutes to
compute the average throughput (RPS).

Example Functions. Perceptual hashing is widely used
in industry, such as by Facebook [6, 7], to cross-reference
a given image against a database of images. We evaluate
an open-source implementation of Blockhash—a variation
on existing perceptual hashing algorithms [9,90]. To further
evaluate the efficiency of our translation, we also evaluate a
modified blockhash library that we optimized to run more
efficiently using VectorVisor. Additionally, we evaluate a bill
generator which generates PDFs containing a set of purchased
items formatted with a default template. Both benchmarks use
mock data to simulate realistic workloads, with the hashing
benchmark using 200x200 randomly generated images and
the bill generation benchmark using 25 randomly generated
item names and prices with an attached image.

Microbenchmarks. We evaluate a set of common mi-
crobenchmarks, including image processing workloads (e.g.,
Gaussian image blur), cryptography (e.g., password-based
key derivation functions such as Scrypt and Pbkdf2), string
compression (LZ4), histogram computation (Histogram), and
string processing (e.g., stop word filtering and hashtag extrac-
tion). Our image processing, histogram, and cryptographic
benchmarks operate on realistic, synthetic, and random inputs.
We use the same parameters as Cisco type 8 passwords [20]
for Pbkdf2 and Litecoin parameters for Scrypt [15]. To sim-
ulate realistic workloads, the compression and string bench-
marks use as input a public dataset of tweets [41].

Baseline comparison. For our evaluation, we use two dif-
ferent baselines as points of comparison. First, for each of
our benchmarks we compile them to WebAssembly (WASM),
optimize them using wasm-snip and wasm-opt [17,91], and
execute them using Wasmtime [18] (a popular WASM JIT
compiler). VectorVisor takes in the same WASM binary as
an input. Second, for each of our benchmarks we compile
and run them natively on an x86-64 CPU. This is the default
choice for many developers who choose to run applications
in the cloud, as most programs target x86-64. Each CPU
benchmark is evaluated with multiple threads executing in
parallel—proportional to the number of cores available.

1024 2023 USENIX Annual Technical Conference

USENIX Association

Features Scrypt Pbkdf2 Blur Blur PHash PHash Bill Histogram LZ4 Strings
Jpeg Bmp Modified PDF
Category Crypto. Crypto. Image Proc. Image Proc. Image Proc. Image Proc. Misc. Misc. Misc. Misc.
Reason for Inclusion M A M&A Alg. Uses Indirect Calls Alg. D A A D
Recursive or Indirect Code X X v’ X v’ X v’ X X X

Unmodified Library Code v’ v’ v’ N

v’ X v v’ v v’

Batch Size (V520, T4, A10G) 2048, 4096, 6144 2048, 4096, 6144 1536, 3072, 4096 1536, 3072, 4096 1536, 3072, 4096 1536, 3072, 4096 1536, 3072, 4096 2048, 4096, 5120 1536, 3072, 4096 2048, 4096, 6144

Downloads 1.OM 12.4M 10.5M 10.5M

80k 0 10K 4.8M 298K 16K

Table 2: Details of evaluated benchmarks. We count benchmarks as containing recursive or indirect calls only if they execute
those calls in the critical path of the application. All-Time crates.io download counts are as of 1/5/2023. ‘M’ and ‘A’ represent
memory and arithmetically intensive benchmarks respectively. ‘D’ represents benchmarks with substantial divergence. ‘Alg’
represents benchmarks with significant algorithmic differences. *Bill-PDF uses a no-op system call as a barrier to mitigate heavy

program divergence, but does not modify imported libraries.

I Interleave = 1 Byte —— Theoretical Max B.w.
B Interleave = 4 Bytes =~ - Prev. Measured Max B.w.
2= Interleave = 8 Bytes

E NVIDIA T4 NVIDIA A10G

m 600

Q

2400 R
o

> -

5 200 - _

9 o | | | | | | | | | | | | | | | | | |
= A a gy grd ﬂ%)(\\? A A gy grd \}M\\F

Figure 6: GPU memcpy bandwidth (Bytes copied xunroll #)

Syscall Bandwidth (Device Transfer Overhead)

Bandwidth (MB/s)

— R T L
Copy Size (KiB)

Figure 7: System call host-to-GPU PCle transfer bandwidth.

4.2 System Performance
4.2.1 Copy Efficiency

Memory Bandwidth. To demonstrate that our memory in-
terleaving can efficiently utilize the high memory bandwidth
of GPUs, we evaluate five different memcpy implementations
which vary copy size (bytes copied per-loop iteration) and
loop unroll count. For each configuration we copy 1 MiB
of data (using volatile memory accesses to bypass caching
effects) from one array in memory to another non-aliased
array. Each benchmark is run 50 times, with a heap size of
3 MiB with 4096 (on T4) or 6144 (on A10G) VMs running
concurrently. Figure 6 shows that VectorVisor can achieve
close to 100% of the experimentally derived maximum mem-
ory bandwidth of the T4 [61] and 74% of the theoretical
memory bandwidth of the A10G [5]. We can see that larger
interleaves, loop unrolling, and instruction level parallelism
(ILP) [88] all have substantial impacts on memory bandwidth.
VectorVisor leverages the memory.copy and memory.fill
WASM intrinsics to insert optimized copy and fill functions
into programs.

Syscall Performance. System calls provide a simple, famil-
iar abstraction for developers to transfer inputs to and from
a GPU. However, performing per-VM system calls incurs
high data transfer overheads for smaller inputs. To evaluate
our system call implementation, we copy inputs to and from
the GPU, using batch sizes of 2048 (v520), 4096 (T4), and
6144 (A10G). Figure 7 shows the bandwidth for our VMM
excluding network I0. Native CUDA transfer speeds peak at
6.3 GB/s for the T4 and 12.9 GB/s for the A10G—for a single
large transfer. Despite high batching overheads, VectorVisor
obtains ~25% of the max possible bandwidth for fine-grained
transfers of 256 KiB per-request using the T4. VectorVisor
additionally supports overlapping data transfers with running
GPU programs to avoid bottlenecks on VMM overhead.

4.2.2 Throughput

We evaluate VectorVisor’s throughput against native x86-64
and WebAssembly baselines—with x86-64 being our primary
baseline. WebAssembly numbers show the potential for het-
erogeneous deployments of VectorVisor in addition to show-
ing the overhead of using WebAssembly. Figure 8 shows the
best throughput for each configuration that we evaluated in
terms of requests per second (RPS). AMD-specific issues,
detailed in Section 4.1, prevent some configurations from
being evaluated. Detailed throughput results for all system
configurations can be found in Table 5 (Appendix).
VectorVisor outperforms x86 and WebAssembly for all
but one benchmark (LZ4). We see high variation in through-
put for each benchmark across our configurations. Device
architecture (e.g., Turing vs. Ampere vs. RDNA 1), memory
interleave size, backend compiler optimizations, and program
characteristics have outsized impacts on performance. To eval-
uate the impact of program characteristics such as recursive
and indirect function calls, we make use of profile-guided op-
timization (PGO) to remove indirect calls. Table 3 shows that
we can remove all indirect calls from our benchmarks, reduc-
ing unoptimized function calls by up to 3430x. Removing
all indirect calls and inlining functions where possible obtains
mixed results. Bill-PDF improves in throughput by 1.3,
while other benchmarks are 10-20x slower. Function inlining
caused by removing indirect calls can result in expensive reg-
ister spilling. Counterintuitively, not removing indirect calls
can improve throughput despite the context saving overhead.

USENIX Association

2023 USENIX Annual Technical Conference 1025

100x

10x A

1x

Normalized Throughput

0.1x §

N
A

i,
i,
% |

%((\Q 0 \e@%‘\

)
¥

> u
6("\; Q‘)\Lé %\\)‘

x86-64 baseline
1 WASM

v520

A10G

T4

x‘\od o o gt & o g

Ko |
W \e-\\s’ﬁog oS 66\(\(3

o sd\“gg

Figure 8: Normalized throughput (average RPS of each benchmark). Results are normalized to the x86-64 baseline for each
benchmark except for Strings-Go and Strings-AScript, which are normalized to the x86-64 baseline of Strings-Rust instead.

*Benchmarks without an AMD v520 result.

Scrypt Pbkdf2 Blur-Jpeg Blur-Bmp PHash PHash-Modified Bill-PDF Histogram LZ4 Strings Strings-Go Strings-AssemblyScript

Total Slowcalls 52062 4828 4023 1416 11460
Total Slowcalls w/PGO 206 1211 206 213 7844

Indirect Calls 1 5228 162007 2 207031
Indirect Calls w/PGO 0 0 0 0 0

285632 4117086 804807 43941 2172120 137212574
2023 206 206 43744 2990690 143397289
211656 1 1 2 2869093 820142
0 0 0 0 0 0

Table 3: Profile-Guided Optimization Results. Cumulative indirect and unoptimized call counts for 200 invocations of each
instrumented WASM function. These benchmarks were run locally using a 16-core, 64 GB RAM machine running Ubuntu 18.04.

Complex runtimes such as Go and AssemblyScript have sig-
nificantly higher overhead than Rust on x86-64 WASM base-
lines (on average 0.41x the throughput of the Rust baseline
for Strings-Go using the T4). Runtime support for garbage
collection, reflection, and compiler design choices in Tiny-
Go/AssemblyScript all contribute to the observed overheads.

4.2.3 Throughput-per-dollar

Throughput as a metric is insufficient to evaluate Vector Visor.
Improving throughput for data parallel workloads by allocat-
ing more resources (VMs) represents the status quo. Instead,
we show that VectorVisor can achieve greater efficiency
improving throughput using fewer resources. Measuring effi-
ciency requires normalizing performance across both CPUs
and GPUs, which we accomplish using throughput-per-dollar.
It is computed by dividing the requests-per-second (RPS)
by the cost of each respective instance per-hour using on-
demand pricing in us-east-1. On-demand prices are used
as a conservative measure of the cost benefits of VectorVisor.
Spot instance pricing can be cheaper, further improving the
throughput-per-dollar of GPU (T4) instances vs CPU (Intel)
instances by 1.49x (reported as of 1/5/2023).

Figure 9 shows the best throughput-per-dollar results for
each configuration. Detailed throughput-per-dollar results for
all system configurations can be found in Table 6 (Appendix).
VectorVisor outperforms x86 instances for four benchmarks
(Scrypt, Blur-Bmp, PHash-Modified, Bill-PDF), and on all

but two benchmarks versus WebAssembly. Throughput-per-
dollar results are overall lower than our throughput results in
Section 4.2.2. Leveraging GPU acceleration requires substan-
tial throughput improvements to offset the high cost of GPU
hardware (e.g., 3.42x for the T4 vs. AMD x86-64 CPUs).
Bottlenecks on application-level divergence (e.g., Strings)
and data transfer overheads (e.g., LZ4 and Histogram) result
in lower throughput and throughput-per-dollar results.

In three out of the four benchmarks where VectorVisor sur-
passes our x86-64 baselines, the T4 outperforms the A10G,
even though it belongs to an earlier generation of GPUs (e.g.,
Turing vs. Ampere). Despite differences in GPU hardware,
the best predictor of superior throughput-per-dollar with Vec-
torVisor is the ratio of the global memory size (e.g., the num-
ber of VMs that can fit) to cost. Compared to the A10G and
v520, the T4 packs 27.5% and 43% more VMs-per-dollar
respectively. Workloads such as Scrypt, which leverage hard-
ware differences like the larger memory bandwidth of the
A10G, can break this trend.

4.2.4 Latency

VectorVisor runs many instances of a program in parallel,
improving total throughput, but not latency. Batches of re-
quests have higher on-device execution times than x86-64,
ranging from 84-1040x longer using the T4—Ilimiting usage
to non-latency sensitive applications.

1026 2023 USENIX Annual Technical Conference

USENIX Association

100x
“r
S 10x 4
2
g
I
|E 1x A b
N
g
E 0.1x § i s
X
0.01x - h .

Q o
%\\)"%«\ e

—=—=- x86-64 baseline
L WASM

N V520

\~/ Al0G

N T4

SR o oS

. Q&*
B8 o <«
‘_\(\()6 g ‘S\(\Q ’Pﬁ

&
5%

Figure 9: Benchmark Throughput-per-Dollar. Results are normalized to the x86-64 baseline for each benchmark except for
Strings-Go and Strings-AScript, which are normalized to the x86-64 baseline of Strings-Rust instead. *Benchmarks without an

AMD v520 result.

K% On Device Execution Time
HEm Continuations Overhead

A10G Latency Breakdown

mmm Network
Em VMM Overhead

T4 Latency %rea kdown

— Z 4.0
240 35 3
3. 3.
a 2. 2.
5 2. 2.
1. 1.
720 h !
— 0, 0
w . E .

o~
L
0% T

: v POV . %) —

SEISETENESE SR8553FNSS 8

CEroTs86 588 S68F586 588

VESST LY QO HOF WESST R g H Y

Q Q =2 S v Q Q = S v

Q F D’qg’ Q F 578’

g g

2] 2]

Figure 10: Per-benchmark latency breakdown of execution
time, VMM overhead (e.g., syscall overhead), continuations
overhead (e.g., context saving/restoring), and network 0.
Breakdowns correspond to the best performing configura-
tions with PGO disabled from Table 5.

4.3 Latency breakdown

Figure 10 shows the end-to-end (E2E) latency breakdown for
each benchmark. Batch sizes, which impact request latency,
can be found in Table 2. On-device execution time dominates
the E2E latency for most benchmarks, with the histogram
benchmark being the exception. We see that supporting pre-
emption using continuations has low overhead, varying be-
tween <1% (PHash-Modified) and 19% (Blur-Bmp) of the
on-device execution time. Similarly, by overlapping compute
with VMM and network IO VectorVisor significantly reduces
related overheads. Benchmarks with a low operational inten-
sity (Ops/Byte) (e.g., Histogram, LZ4) which cannot overlap
on-device execution time with batch formation as efficiently
are more likely to bottleneck on VMM or network I10.

GPU Platform Instance Name Benchmark Throughp Throughput/$
NVIDIA T4 VectorVisor gddn.xlarge Blur-Bmp 804.83 1530.10
NVIDIA A10G VectorVisor g5.xlarge Blur-Bmp 1365.84 1357.69
NVIDIA T4 VectorVisor gddn.xlarge PHash-Modified 384.32 730.65
NVIDIA A10G VectorVisor g5.xlarge PHash-Modified 608.02 604.40
NVIDIA T4 CUDA g4dn.xlarge Blur-Bmp 576.28 1095.59
NVIDIA T4 CUDA g4dn.2xlarge Blur-Bmp 1118.95 1487.96
NVIDIA A10G CUDA g5.xlarge Blur-Bmp 652.96 649.06
NVIDIA A10G CUDA g5.2xlarge Blur-Bmp 1250.33 1031.62
NVIDIA T4 CUDA gddn.xlarge PHash-Modified 408.85 777.27
NVIDIA T4 CUDA g4dn.2xlarge PHash-Modified 821.15 1091.95
NVIDIA A10G CUDA g5.xlarge PHash-Modified 462.27 459.52
NVIDIA A10G CUDA g5.2xlarge PHash-Modified 896.35 739.56

Table 4: Performance of handwritten CUDA benchmarks.

4.3.1 CUDA Comparison

Leveraging GPU acceleration typically involves manually
breaking down a program into fine-grained tasks which can
be parallelized—speeding up individual invocations of a func-
tion. In contrast, VectorVisor runs many instances of the same
program in parallel, improving throughput but not latency.
To evaluate the efficiency of our translation, we manually
rewrote two benchmarks (Blur-Bmp and PHash-Modified)
using CUDA. CUDA baselines incur additional CPU over-
head from increased kernel launch overheads and running a
fraction of the workload on the CPU. To fairly evaluate these
baselines, we benchmark them using both xlarge and 2xlarge
instances with additional CPUs (Table 1).

We see in Table 4 that VectorVisor slightly outperforms a
handwritten CUDA Gaussian blur function, and obtains 67%
of the throughput-per-dollar of our CUDA PHash function.
PHash-Modified has higher VMM overhead than Blur-Bmp
(35% vs 12% of the E2E latency) which affects overall effi-
ciency.

5 Discussion

Workload Characterization. Identifying ideal workloads for
VectorVisor is key to improving the cost efficiency of real

USENIX Association

2023 USENIX Annual Technical Conference 1027

applications. Ideal workloads minimize divergent execution,
recursion, indirect calls, and are compute-bound. Future work
can incorporate model-based approaches [79] to identifying
acceleration opportunities for VectorVisor.

Evaluation Limitations. We use both throughput and
throughput-per-dollar as evaluation metrics. Throughput-per-
dollar is a powerful metric that enables us to compare the
end-to-end efficiency of VectorVisor, which considers system
complexities as well as the capital and operational cost im-
plications of running throughput-oriented workloads. Cloud
providers allow customers to insure themselves against high
variation in hardware pricing [62, 63], providing a steady
baseline cost (at a premium). On-premises hardware configu-
rations can be less expensive over long periods of time, for
those willing to pay higher up-front costs. Despite shortcom-
ings, cost-based efficiency metrics provide tangible baselines.

System Call Implementations. Providing support for sys-
tem calls using continuations was key to running realis-
tic workloads using VectorVisor. Systems such as GPUTfs,
GPUnet, and Berkeley Borph [76-78, 82, 86] instead provide
support using a more performant RPC-like interface using
vendor-specific APIs or custom drivers. RPC-style interfaces
rely on the ability to perform concurrent and consistent CPU-
GPU memory accesses. OpenCL 2.0 in theory enables this
with fine-grained buffer SVM [3, 53]. In practice, support
for fine-grained SVM is mixed—with NVIDIA OpenCL 3.0
not supporting the APT and AMD providing partial support *.
Continuations provide a cross-platform and reasonably perfor-
mant approach to supporting system call support for GPUs.

6 Related Work

Continuations. Continuations are often used by compilers
to support complex control flow operations such as excep-
tions and preemption [27,28, 30,71, 84]. VectorVisor uses
continuations to efficiently provide support for preemption
and complex control flow on GPUs.

GPU Preemption. GPU kernel preemption can be sup-
ported through compiler-based approaches that partition (or
slice) programs into chunks [29, 35, 39, 89, 93, 94], or with
hardware/driver support [13, 68, 83, 86].

High-Level GPU Languages. CUDA or OpenCL require
developers to write programs using low level abstractions.
High level language approaches [2,31,44,48,52,55,57,72,92]
make it easier to accelerate existing programs by reusing exist-
ing codebases. Common language features such as dynamic
memory allocation, garbage collection, reflection, and recur-
sion are often absent. Unlike VectorVisor, code often must be
rewritten to explicitly leverage parallel APIs.

Domain-Specific GPU Systems and Languages. Pro-
gramming languages designed for domain-specific workloads
(DSLs) [24,38,40,46,58,73—75,80] can offer substantially im-
proved performance over general-purpose programming lan-

2Fine-grained SVM support is present, but not SVM Atomics.

guages. DSLs obtain superior performance through language
restrictions, forcing developers to express programs using
specific syntax or function calls. While DSLs can efficiently
accelerate specific workloads, they trade off performance for
programmability—e.g., many workloads cannot be expressed
using restrictive DSLs. Similar to DSLs, domain-specific sys-
tems can significantly improve performance for throughput-
oriented workloads [32,42, 56, 87]. Domain-specific systems
vectorize common workloads (e.g., image processing, ma-
chine learning, database operations) using handwritten GPU
kernels. Other systems manually vectorize functions from
(non GPU-specific) DSLs (i.e. SQL) [50,51, 69].
Vectorized Program Translation. Systems that abstract
a SIMT or SIMD lane as a VM often target restricted use-
cases (e.g., fuzz testing) [37,45,47,49]. VectorVisor’s design
and implementation notably differ from prior work, offering
superior GPU language, runtime, and hardware support.

7 Conclusion

VectorVisor is a research prototype which demonstrates that
applications originally written for CPUs can be directly
run on GPUs without significant modifications. Not only is
such GPU execution possible, but it can in fact yield supe-
rior throughput-per-dollar versus compute-optimized x86-64
CPUs in the cloud.

Binary translation for GPUs is an exciting and predomi-
nantly unexplored area of research, with many potential appli-
cations. VectorVisor shows the viability of our new approach
to parallelism, opening up the area to future research.

8 Acknowledgements

We would like to thank our shepherd, Redha Gouicem, and
the anonymous reviewers for helping us improve this paper.
We also thank Rachit Nigam, Mieszko Lis, and Devon Loehr
for their valuable comments on earlier versions of it.

References

[1] NVIDIA OpenCL Best Practices Guide.
https://www.nvidia.com/content/cudazone/
CUDABrowser/downloads/papers/NVIDIA_OpenCL_
BestPracticesGuide.pdf, 2009.

[2] Aparapi. https://code.google.com/archive/p/
aparapi/, 2011.

[3] OpenCL™ 2.0 Shared Virtual Memory Overview.
https://www.intel.com/content/www/us/en/
developer/articles/technical/opencl-20-
shared-virtual-memory-overview.html, 2014.

[4] AMD OpenCL Programming Optimization
Guide. https://developer.amd.com/wordpress/
media/2013/12/AMD_OpenCL_Programming_
Optimization_Guide2.pdf, 2015.

1028 2023 USENIX Annual Technical Conference

USENIX Association

https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
https://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
https://code.google.com/archive/p/aparapi/
https://code.google.com/archive/p/aparapi/
https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/opencl-20-shared-virtual-memory-overview.html
https://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide2.pdf

[5] NVIDIA A10G Datasheet. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/
al0/pdf/al0-datasheet.pdf, 2019.

[6] Open Sourcing Photo and Video-Matching Tech-
nology to Make the Internet Safer. https:
//about.fb.com/news/2019/08/open-source-
photo-video-matching/, 2019.

[7] Threatexchange. https://github.com/facebook/
ThreatExchange, 2019.

[8] AMD EPYC 7002 Processor Datasheet.
https://www.amd.com/system/files/documents/
AMD-EPYC-7002-Series-Datasheet.pdf, 2021.

[9] Blockhash. https://web.archive.org/web/
20210827144701/http://blockhash.io/, 2021.

[10] crates.io. https://crates.io/, 2021.

[11] CUDA. https://developer.nvidia.com/cuda-
toolkit, 2021.

[12] CUDA C Programming Guide. https:
//docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html, 2021.

[13] cuda-gdb. https://docs.nvidia.com/cuda/pdf/
cuda-gdb.pdf, 2021.

[14] CUDA Toolkit Documentation. https:
//docs.nvidia.com/cuda/ampere-tuning-quide/
index.html, 2021.

[15] Scrypt.
Scrypt, 2021.

https://litecoin.info/index.php/

[16] The OpenCL C Specification. https:
//www.khronos.org/registry/OpenCL/specs/
3.0-unified/html/OpenCL_C.html, 2021.

[17] wasm-snip. https://github.com/rustwasm/wasm-
snip, 2021.

[18] Wasmtime. https://github.com/
bytecodealliance/wasmtime, 2021.

[19] AssemblyScript. https://
www.assemblyscript.org/, 2022.
[20] Cisco Password Types: Best Practices. https:

//media.defense.gov/2022/Feb/17/2002940795/
-1/-1/1/CSI_CISCO_PASSWORD_TYPES_BEST_
PRACTICES_20220217.PDF, 2022.

[21] Radeon Pro v520 ROCm Support. https:
//github.com/RadeonOpenCompute/ROCm/issues/
1706, 2022.

[22] TinyGo. https://github.com/tinygo-org/tinygo,
2022.

[23] ROCm Installation Guide v5.0. https:
//docs.amd.com/bundle/ROCm_Installation_
Guidev5.0/page/Prerequisite_Actions.html,
2023.

[24] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), 2016.

[25] Gerald Aigner and Urs Holzle. Eliminating virtual func-
tion calls in C++ programs. In European Conference on
Object-Oriented Programming (ECOOP), 1996.

[26] Hudson Ayers, Evan Laufer, Paul Mure, Jachyeon Park,
Eduardo Rodelo, Thea Rossman, Andrey Pronin, Philip
Levis, and Johnathan Van Why. Tighten Rust’s Belt:
Shrinking Embedded Rust Binaries. In Proceedings of
the 23rd ACM SIGPLAN/SIGBED International Confer-
ence on Languages, Compilers, and Tools for Embedded
Systems (LCTES), 2022.

[27] Henry G Baker. CONS should not CONS its arguments,
part II: Cheney on the M.T.A. ACM Sigplan Notices,
1995.

[28] Joel F Bartlett. SCHEME-> C a portable Scheme-to-C
compiler. In WRL Research Report 89/1, 1989.

[29] Can Basaran and Kyoung-Don Kang. Supporting pre-
emptive task executions and memory copies in GPGPUs.
In 24th Euromicro Conference on Real-Time Systems
(ECRTS), 2012.

[30] Samuel Baxter, Rachit Nigam, Joe Gibbs Politz, Shriram
Krishnamurthi, and Arjun Guha. Putting in all the stops:
Execution control for JavaScript. In 39th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI), 2018.

[31] Tim Besard, Christophe Foket, and Bjorn De Sutter. Ef-
fective Extensible Programming: Unleashing Julia on
GPUs. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 2018.

[32] Nils Boeschen and Carsten Binnig. GaccO-A GPU-
accelerated OLTP DBMS. In Proc. Intl. Conference on
Management of Data (SIGMOD), 2022.

[33] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A
quantitative study of irregular programs on GPUs. In
IEEE International Symposium on Workload Character-
ization (IISWC), 2012.

USENIX Association

2023 USENIX Annual Technical Conference 1029

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/a10-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/a10-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/a10-datasheet.pdf
https://about.fb.com/news/2019/08/open-source-photo-video-matching/
https://about.fb.com/news/2019/08/open-source-photo-video-matching/
https://about.fb.com/news/2019/08/open-source-photo-video-matching/
https://github.com/facebook/ThreatExchange
https://github.com/facebook/ThreatExchange
https://www.amd.com/system/files/documents/AMD-EPYC-7002-Series-Datasheet.pdf
https://www.amd.com/system/files/documents/AMD-EPYC-7002-Series-Datasheet.pdf
https://web.archive.org/web/20210827144701/http://blockhash.io/
https://web.archive.org/web/20210827144701/http://blockhash.io/
https://crates.io/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/pdf/cuda-gdb.pdf
https://docs.nvidia.com/cuda/pdf/cuda-gdb.pdf
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html
https://litecoin.info/index.php/Scrypt
https://litecoin.info/index.php/Scrypt
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://github.com/rustwasm/wasm-snip
https://github.com/rustwasm/wasm-snip
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://www.assemblyscript.org/
https://www.assemblyscript.org/
https://media.defense.gov/2022/Feb/17/2002940795/-1/-1/1/CSI_CISCO_PASSWORD_TYPES_BEST_PRACTICES_20220217.PDF
https://media.defense.gov/2022/Feb/17/2002940795/-1/-1/1/CSI_CISCO_PASSWORD_TYPES_BEST_PRACTICES_20220217.PDF
https://media.defense.gov/2022/Feb/17/2002940795/-1/-1/1/CSI_CISCO_PASSWORD_TYPES_BEST_PRACTICES_20220217.PDF
https://media.defense.gov/2022/Feb/17/2002940795/-1/-1/1/CSI_CISCO_PASSWORD_TYPES_BEST_PRACTICES_20220217.PDF
https://github.com/RadeonOpenCompute/ROCm/issues/1706
https://github.com/RadeonOpenCompute/ROCm/issues/1706
https://github.com/RadeonOpenCompute/ROCm/issues/1706
https://github.com/tinygo-org/tinygo
https://docs.amd.com/bundle/ROCm_Installation_Guidev5.0/page/Prerequisite_Actions.html
https://docs.amd.com/bundle/ROCm_Installation_Guidev5.0/page/Prerequisite_Actions.html
https://docs.amd.com/bundle/ROCm_Installation_Guidev5.0/page/Prerequisite_Actions.html

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Brad Calder and Dirk Grunwald. Reducing indirect
function call overhead in C++ programs. In 27/st ACM
SIGPLAN-SIGACT symposium on Principles of Pro-
gramming Languages (POPL), 1994.

Jon Calhoun and Hai Jiang. Preemption of a CUDA
Kernel Function. In 13th ACIS International Confer-
ence on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, 2012.

Bryan Catanzaro, Alexander Keller, and Michael Gar-
land. A decomposition for in-place matrix transposition.
In Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), 2014.

Ahmet Celik, Pengyu Nie, Christopher J Rossbach, and
Milos Gligoric. Design, Implementation, and Appli-
cation of GPU-Based Java Bytecode Interpreters. In
Proceedings of the ACM on Programming Languages
(OOPSLA), 2019.

Manuel MT Chakravarty, Gabriele Keller, Sean Lee,
Trevor L. McDonell, and Vinod Grover. Accelerating
Haskell Array Codes with Multicore GPUs. In Proceed-
ings of the sixth workshop on Declarative aspects of
multicore programming (DAMP), 2011.

Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang
Zhou. EffiSha: A Software Framework for Enabling Ef-
ficient Preemptive Scheduling of GPU. In Proceedings
of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2017.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An
automated End-to-End optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You
are where you tweet: a content-based approach to geo-
locating Twitter users. In /19th ACM International Con-
ference on Information and Knowledge Management
(CIKM), 2010.

Periklis Chrysogelos, Panagiotis Sioulas, and Anasta-
sia Ailamaki. Hardware-conscious query processing in
gpu-accelerated analytical engines. In 9th Biennial Con-
ference on Innovative Data Systems Research (CIDR),
2019.

Bruno Coutinho, Diogo Sampaio, Fernando
Magno Quintao Pereira, and Wagner Meira Ir.
Divergence analysis and optimizations. In International
Conference on Parallel Architectures and Compilation
Techniques (PACT), 2011.

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

Christophe Dubach, Perry Cheng, Rodric Rabbah,
David F Bacon, and Stephen J Fink. Compiling a High-
Level Language for GPUs: (via language support for
architectures and compilers). In 33th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), 2012.

Ryan Eberhardt, Artem Dinaburg, and Peter Goodman.
Let’s build a high-performance fuzzer with GPUs!
https://blog.trailofbits.com/2020/10/22/
lets-build-a-high-performance-fuzzer-with-
gpus/, 2020.

Venmugil Elango, Norm Rubin, Mahesh Ravishankar,
Hariharan Sandanagobalane, and Vinod Grover. Diesel:
DSL for linear algebra and neural net computations on
GPUs. In 2nd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages
(MAPL), 2018.

Brandon Falk. Vectorized Emulation: Hardware ac-
celerated taint tracking at 2 trillion instructions per
second. https://gamozolabs.github.io/fuzzing/
2018/10/14/vectorized_emulation.html, 2018.

Juan Fumero, Michel Steuwer, Lukas Stadler, and
Christophe Dubach. Just-in-time GPU compilation for
interpreted languages with partial evaluation. In /3th
ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE), 2017.

Juan Fumero, Athanasios Stratikopoulos, and Christos
Kotselidis. Running parallel bytecode interpreters on
heterogeneous hardware. In 4th International Confer-
ence on Art, Science, and Engineering of Programming
(Programming), 2020.

Henning Funke, Sebastian Bref3, Stefan Noll, Volker
Markl, and Jens Teubner. Pipelined query processing in
coprocessor environments. In Proc. Intl. Conference on
Management of Data (SIGMOD), 2018.

Henning Funke and Jens Teubner. Data-parallel query
processing on non-uniform data. Proceedings of the
VLDB Endowment, 2020.

Kate Gregory and Ade Miller. C++ AMP: accelerated
massive parallelism with Microsoft Visual C++. Mi-
crosoft Press, 2012.

Khronos OpenCL Working Group. The OpenCL
Specification Version: 2.1 Document Revision: 24.
https://registry.khronos.org/OpenCL/specs/
opencl-2.1.pdf#page=174, 2018.

Andreas Haas, Andreas Rossberg, Derek L Schuff,
Ben L Titzer, Michael Holman, Dan Gohman, Luke Wag-
ner, Alon Zakai, and JF Bastien. Bringing the web up

1030 2023 USENIX Annual Technical Conference

USENIX Association

https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/
https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/
https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/
https://gamozolabs.github.io/fuzzing/2018/10/14/vectorized_emulation.html
https://gamozolabs.github.io/fuzzing/2018/10/14/vectorized_emulation.html
https://registry.khronos.org/OpenCL/specs/opencl-2.1.pdf#page=174
https://registry.khronos.org/OpenCL/specs/opencl-2.1.pdf#page=174

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

to speed with WebAssembly. In 38th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), 2017.

Michael Haidl and Sergei Gorlatch. PACXX: Towards
a unified programming model for programming acceler-
ators using C++ 14. In LLVM Compiler Infrastructure
in HPC, 2014.

Tayler H Hetherington, Mike O’Connor, and Tor M
Aamodt. MemcachedGPU: Scaling-up scale-out key-
value stores. In Proceedings of the Sixth ACM Sympo-
sium on Cloud Computing, 2015.

Eric Holk, Milinda Pathirage, Arun Chauhan, Andrew
Lumsdaine, and Nicholas D Matsakis. GPU program-
ming in Rust: Implementing high-level abstractions in a
systems-level language. In IEEE International Sympo-

sium on Parallel & Distributed Processing, Workshops
and PhD Forum (IPDPSW), 2013.

Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor
Mudge, and Scott Mahlke. Sponge: Portable stream
programming on graphics engines. In Proceedings of the
16th International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS). ACM, 2011.

Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue,
Hideaki Komatsu, and Toshio Nakatani. A study of
devirtualization techniques for a Java Just-In-Time com-
piler. In Proceedings of the ACM on Programming
Languages (OOPSLA), 2000.

Keon Jang, Sangjin Han, Seungyeop Han, Sue Moon,
and KyoungSoo Park. Accelerating SSL with GPUs.
ACM SIGCOMM Computer Communication Review,
2010.

Zhe Jia, Marco Maggioni, Jeffrey Smith, and
Daniele Paolo Scarpazza. Dissecting the NVidia Turing
T4 GPU via microbenchmarking. arXiv preprint
arXiv:1903.07486, 2019.

Michael Kan. Read it and weep: Here’s how
bad Nvidia GPU prices got in a single year.
https://www.pcmag.com/news/read-it-and-
weep—heres-how-bad-nvidia-gpu-prices—-got-
in-a-single-year, 2021.

Michael Kan. Corsair: Expect some GPU prices
to dip ’below msrp’ soon as prices normalize.
https://www.pcmag.com/news/corsair-expect-
some-gpu-prices-to-dip-below-msrp-soon-as-—
prices-normalize, 2022.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transforma-
tion. In In International Symposium on Code Generation
and Optimization (CGO), 2004.

David Monniaux. The pitfalls of verifying floating-point
computations. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 2008.

Samuel Naffziger, Noah Beck, Thomas Burd, Kevin
Lepak, Gabriel H Loh, Mahesh Subramony, and Sean
White. Pioneering chiplet technology and design for the
AMD EPYC™ and Ryzen™ processor families : Indus-
trial product. In ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 2021.

Adnan Ozsoy, Martin Swany, and Arun Chauhan.
Pipelined parallel LZSS for streaming data compression
on GPGPUs. In IEEE 18th International Conference on
Parallel and Distributed Systems (ICPADS), 2012.

Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke.
Chimera: Collaborative Preemption for Multitasking on
a Shared GPU. In Proceedings of the 20th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM,
2015.

Johns Paul, Bingsheng He, Shengliang Lu, and
Chiew Tong Lau. Improving execution efficiency of just-
in-time compilation based query processing on GPUs.
Proceedings of the VLDB Endowment, 2020.

Phitchaya Mangpo Phothilimthana, Archibald Samuel
Elliott, An Wang, Abhinav Jangda, Bastian Hagedorn,
Henrik Barthels, Samuel J Kaufman, Vinod Grover, Em-
ina Torlak, and Rastislav Bodik. Swizzle inventor: data
movement synthesis for gpu kernels. In 24th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS),
2019.

Donald Pinckney, Arjun Guha, and Yuriy Brun. Was-
m/k: delimited continuations for WebAssembly. In /6th
ACM SIGPLAN International Symposium on Dynamic
Languages (DLS), 2020.

Philip C Pratt-Szeliga, James W Fawcett, and Roy D
Welch. Rootbeer: Seamlessly using GPUs from Java.
In IEEE 14th International Conference on High Per-
formance Computing and Communication & IEEE 9th
International Conference on Embedded Software and
Systems (HPCC-ICESS), 2012.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image

USENIX Association

2023 USENIX Annual Technical Conference 1031

https://www.pcmag.com/news/read-it-and-weep-heres-how-bad-nvidia-gpu-prices-got-in-a-single-year
https://www.pcmag.com/news/read-it-and-weep-heres-how-bad-nvidia-gpu-prices-got-in-a-single-year
https://www.pcmag.com/news/read-it-and-weep-heres-how-bad-nvidia-gpu-prices-got-in-a-single-year
https://www.pcmag.com/news/corsair-expect-some-gpu-prices-to-dip-below-msrp-soon-as-prices-normalize
https://www.pcmag.com/news/corsair-expect-some-gpu-prices-to-dip-below-msrp-soon-as-prices-normalize
https://www.pcmag.com/news/corsair-expect-some-gpu-prices-to-dip-below-msrp-soon-as-prices-normalize

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2013.

Christopher J Rossbach, Jon Currey, Mark Silberstein,
Baishakhi Ray, and Emmett Witchel. PTask: operating
system abstractions to manage GPUs as compute de-
vices. In 23th ACM SIGOPS Symposium on Operating
Systems Principles (SOSP), 2011.

Christopher J Rossbach, Yuan Yu, Jon Currey, Jean-
Philippe Martin, and Dennis Fetterly. Dandelion: a
compiler and runtime for heterogeneous systems. In
24th ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), 2013.

Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett
Witchel. GPUfs: Integrating a file system with GPUs. In
18th International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2013.

Mark Silberstein, Sangman Kim, Seonggu Huh, Xinya
Zhang, Yige Hu, Amir Wated, and Emmett Witchel.
GPUnet: Networking abstractions for GPU programs.
ACM Transactions on Computer Systems (TOCS), 2016.

Hayden Kwok-Hay So and Robert Brodersen. A uni-
fied hardware/software runtime environment for FPGA-
based reconfigurable computers using BORPH. ACM
Transactions on Embedded Computing Systems (TECS),
2008.

Akshitha Sriraman and Abhishek Dhanotia. Accelerom-
eter: Understanding acceleration opportunities for data
center overheads at hyperscale. In 25th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

Arvind K. Sujeeth, Austin Gibbons, Kevin J. Brown,
HyoukJoong Lee, Tiark Rompf, Martin Odersky, and
Kunle Olukotun. Forge: Generating a High Performance
DSL Implementation from a Declarative Specification.
In Proceedings of the 12th International Conference
on Generative Programming: Concepts & Experiences
(GPCE). ACM, 2013.

Gerald Jay Sussman and Guy L Steele. Scheme: A
interpreter for extended lambda calculus. Higher-Order
and Symbolic Computation, 1998.

Yusuke Suzuki, Hiroshi Yamada, Shinpei Kato, and
Kenji Kono. GLoop: an event-driven runtime for consol-
idating GPGPU applications. In 8th ACM Symposium
on Cloud Computing (SoCC), 2017.

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

(91]

[92]

(93]

Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex
Ramirez, Nacho Navarro, and Mateo Valero. Enabling
preemptive multiprogramming on GPUs. In Proceeding
of the 41st Annual International Symposium on Com-
puter Architecture (ISCA). IEEE Press, 2014.

David Tarditi, Peter Lee, and Anurag Acharya. No as-
sembly required: Compiling standard ML to C. ACM
Letters on Programming Languages and Systems (LO-
PLAS), 1992.

Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan
Chong, and Adrian Sampson. Verifying dynamic trait
objects in Rust. Proceedings of the ICSE-SEIP, 2022.

Jan Vesely, Arkaprava Basu, Abhishek Bhattacharjee,
Gabriel H Loh, Mark Oskin, and Steven K Reinhardt.
Generic system calls for GPUs. In ACM/IEEE 45th
Annual International Symposium on Computer Architec-
ture (ISCA), 2018.

Matthias Vogelgesang, Suren Chilingaryan, Tomy dos
Santos Rolo, and Andreas Kopmann. UFO: A scalable
GPU-based image processing framework for on-line
monitoring. In IEEE 14th International Conference
on High Performance Computing and Communication
& IEEE 9th International Conference on Embedded
Software and Systems, 2012.

Vasily Volkov. Better performance at lower occupancy.
In GPU Technology Conference, GTC, 2010.

Bo Wu, Xu Liu, Xiaobo Zhou, and Changjun Jiang.
FLEP: Enabling flexible and efficient preemption on
GPUs. In Proceedings of the 22nd International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). ACM, 2017.

Bian Yang, Fan Gu, and Xiamu Niu. Block mean value
based image perceptual hashing. In IEEFE International
Conference on Intelligent Information Hiding and Mul-
timedia, 2006.

Alon Zakai. Binaryen. https://github.com/
WebAssembly/binaryen, 2022.

Wojciech Zaremba, Yuan Lin, and Vinod Grover. JaBEE:
framework for object-oriented Java bytecode compila-
tion and execution on graphics processor units. In 5th
Annual Workshop on General Purpose Processing with
Graphics Processing Units (GPGPU), 2012.

Lior Zeno, Avi Mendelson, and Mark Silberstein. GPU-
plIO: The case for I/O-driven preemption on GPUs. In
9th Annual Workshop on General Purpose Processing
with Graphics Processing Units (GPGPU), 2016.

1032 2023 USENIX Annual Technical Conference

USENIX Association

https://github.com/WebAssembly/binaryen
https://github.com/WebAssembly/binaryen

[94] Husheng Zhou, Guangmo Tong, and Cong Liu. GPES:
A preemptive execution system for GPGPU computing.
In 21st IEEE Real-Time and Embedded Technology and

Applications Symposium, 2015.

2023 USENIX Annual Technical Conference 1033

USENIX Association

A Appendix

A.1 Tables
System Platform PGO Interleave Scrypt Pbkdf2 Blur Blur PHash PHash Bill Histogram LZ4 Strings (Rust/ Go / AScript)
Jpeg Bmp Mod. PDF
VectorVisor AMD v520 Y 4 32.27 N/A 20224 368.64 70.28 77.85 N/A 832.43 449.89 N/A / N/A I N/A
VectorVisor AMD v520 Y 8 29.29 N/A 24576 N/A 79.67 89.86 N/A 848.31 N/A N/A / N/A / N/A
VectorVisor NVIDIA T4 N 4 109.32 71.09 209.94 726.59 129.18 341.73 339.06 1570.90 818.90 9535.47/4112.16/ 861.24
VectorVisor NVIDIA T4 N 8 160.25 1355.05 177.07 804.83 140.44 367.31 380.55 1730.05 1114.30 10242.08/3735.93/826.29
VectorVisor NVIDIA T4 Y 4 108.51 63.68 50.66 720.79 10.44 34998 398.26 182791 371.75 9077.32/4204.24 / 845.07
VectorVisor NVIDIA T4 Y 8 179.54 59.49 60.59 72886 10.90 384.32 49742 1676.06 486.94 10332.82/3842.04/841.04
VectorVisor ~ NVIDIA A10G N 4 297.29 2596.52 93.30 1237.87153.99 546.35 480.29 886.25 1527.21 24543.24/8438.01/1781.76
VectorVisor ~ NVIDIA A10G N 8 389.08 168.56 69.52 1365.84158.99 592.87 509.71 484.22 1490.67 25981.84 / 8030.55 / 1965.93
VectorVisor ~ NVIDIA A10G Y 4 297.08 145.66 71.73 1166.44 14.81 533.85 308.62 2356.72 722.01 24109.98 /8377.06 / 2398.01
VectorVisor ~ NVIDIA A10G Y 8 397.10 143.55 127.47 1163.57 20.87 608.02 619.04 517.97 945.06 26598.05/8302.31/1977.61
CPU (x86-64) AMD N/A N/A 33.89 123344 176.63 147.14 66.05 68.02 111.18 114020 2235.93 11002.53 / N/A / N/A
CPU (x86-64) Intel N/A N/A 3427 14933 148.53 13543 5583 58.00 85.95 114496 1987.63 10182.98 / N/A / N/A
CPU (WASM) AMD N/A N/A 5.33 52.67 3381 36.13 19.86 2578 24.97 697.94 700.77 1536.22/1450.18 / 485.62
CPU (WASM) Intel N/A N/A 435 4649 2583 1733 12,13 13.70 21.44 659.40 596.05 1431.18 / 1375.47/ 514.84

Table 5: Average requests per second (RPS) of each benchmark. Bold values correspond to the best throughput.

System Platform PGO Interleave Scrypt Pbkdf2 Blur Blur PHash PHash Bill Histogram LZ4 Strings (Rust / Go / AScript)
Jpeg Bmp Mod. PDF
VectorVisor AMD v520 Y 4 85.27 N/A 53432 97395 185.68 205.69 N/A 2199.28 1188.61 N/A /N/A /N/A
VectorVisor AMD v520 Y 8 77.38 N/A 649.30 N/A 21049 23741 N/A 2241.24 N/A N/A /N/A/N/A
VectorVisor NVIDIA T4 N 4 207.84 135.16 399.13 1381.34 24558 649.67 644.60 2986.51 1556.85 18128.26/7817.80/1637.33
VectorVisor NVIDIA T4 N 8 304.67 2576.15 336.63 1530.10 26699 698.31 723.48 3289.07 2118.43 19471.63/7102.54/1570.90
VectorVisor NVIDIA T4 Y 4 20630 121.06 96.31 137032 19.85 665.35 757.15 3475.12 706.74 17257.26 / 7992.86 / 1606.60
VectorVisor NVIDIA T4 Y 8 341.32 11311 11520 1385.66 20.73 730.65 945.67 3186.43 925.75 19644.15 / 7304.26 / 1598.94
VectorVisor ~ NVIDIA A10G N 4 295.52 2581.03 92.74 123048 153.07 543.09 477.42 880.96 1518.10 24396.86/8387.68 / 1771.13
VectorVisor ~ NVIDIA A10G N 8 386.76 167.56 69.11 1357.69 158.04 589.33 506.67 481.33 1481.78 25826.88 /7982.65/ 1954.21
VectorVisor ~ NVIDIA A10G Y 4 29531 14479 71.30 1159.48 14.72 530.66 306.78 2342.66 71770 23966.18 / 8327.10/2383.71
VectorVisor ~ NVIDIA A10G Y 8 39473 142.69 12671 1156.63 20.74 604.40 615.35 514.88 939.43 26439.41/8252.79 / 1965.81
CPU (x86-64) AMD N/A N/A 220.08 8009.37 1146.95 95545 428.87 441.67 721.94 7403.91 14519.04 71444.98 / N/A / N/A
CPU (x86-64) Intel N/A N/A 201.60 87840 87370 796.63 32839 341.18 505.61 6735.05 11691.97 59899.89 / N/A / N/A
CPU (WASM) AMD N/A N/A 3460 342.03 219.52 234.62 12897 167.39 162.16 4532.09 4550.45 9975.48 / 9416.76 / 3153.38
CPU (WASM) Intel N/A N/A 2558 27347 15195 10195 71.34 80.58 126.13 3878.82 3506.18 8418.72/8091.03 / 3028.45

Table 6: Benchmark Throughput-per-Dollar. Values correspond to the average RPS of each benchmark normalized to instance
cost. Bold values correspond to the best throughput-per-dollar.

1034 2023 USENIX Annual Technical Conference

USENIX Association

A.2 Rust Example

O 0NN B W=

#[macro_use]
extern crate lazy_static;
// Import existing open-source libraries!
use pdf_writer::*;
use pdf_writer::types::{ActionType, AnnotationType, BorderType};
use std::fs::File;
use std::io::Write;
use std::time::Instant;
// Import our custom 'serverless' runtime. We use this in our x86 and WASM benchmarks as well.
// WASM benchmarks run the same binary that VectorVisor does!
use wasm_serverless_invoke::wasm_handler::*;
use wasm_serverless_invoke::wasm_handler::WasmHandler;
use wasm_serverless_invoke::wasm_handler::SerializationFormat::MsgPack;
use serde::Deserialize;
use serde::Serialize;
// Image and compression libraries
use image::{ColorType, GenericImageView, ImageFormat};
use miniz_oxide::deflate::{compress_to_vec_zlib, CompressionLevell};
// Include a sample template image for our PDF footer
lazy_static! {

static ref EMBED_IMAGE: &'static [u8] = include_bytes! ("test.png");
}
// Syntactic sugar for (de)serializing JSON/MsgPack inputs
#[derive (Debug, Deserialize)]
struct FuncInput {

name: String,

purchases: Vec<String>,

price: Vec<f64>, // Typically prices should not be encoded as floats, we do this for simplicity.
}
#[derive (Debug, Deserialize)]
struct BatchInput {

inputs: Vec<FuncInput >
}
#[derive (Debug, Serialize)]
struct FuncResponse {

resp: Vec<u8>
}
#[derive (Debug, Serialize)]
struct BatchFuncResponse {

resp: Vec<FuncResponse>
}
#[inline (never)]
fn makePdf (event: FuncInput) -> Vec<u8> {

// Perform PDF formatting, image manipulation, and compression to generate a valid PDF
}
fn batch_genpdf (inputs: BatchInput) -> BatchFuncResponse {

let mut results = vec![];

for input in inputs.inputs {

results.push (FuncResponse { resp: makePdf (input) });
// Bill-PDF is the only benchmark to use system calls as synchronization barriers

unsafe { vectorvisor_barrier() }; // We can wait on arbitrary subsets of VMs (unlike OpenCL barrier (..

}
return BatchFuncResponse{ resp: results };
}
fn main () {
// Specify input format type and buffer sizes
let handler = WasmHandler::new(&batch_genpdf);
// Starts the event-loop and encapsulates serverless_invoke/serverless_response
handler.run_with_format (1024*512, MsgPack);

Figure 11: Bill-PDF. This benchmark performs PDF processing, image manipulation, and compression.

2))

USENIX Association

2023 USENIX Annual Technical Conference

1035

A.3 Golang Example

O 0NN B W=

package main;

// define our system call interface
// #include "serverless.c"
import "C"

import (
// Import JSON + string manipulation libraries
"github.com/json-iterator/tinygo"
"unsafe"
"strings"

)

//go:generate go run github.com/json-iterator/tinygo/gen
type Payload struct {

}

Tweets [Istring ~json:"tweets"®

//go:generate go run github.com/json-iterator/tinygo/gen
type Response struct ({

}

Tokenized [][]string
Hashtags [][]string

// Go doesn't provide Map/Filter for us, so we use our own implementation
func Map [T, U any](ts []T, f func(T) U) []U {

}

func Filter (vs []string, f func(string) bool) []string {

}

func main () {

}

json := jsoniter.CreateJsonAdapter (Payload_json{}, Response_json{})
// Use this as a set, track all stopwords
stopwordSet := make (map[string]bool)
for _, word := range stopWords f{
stopwordSet [word] = true
}
input_buf := make([]byte, 1024*450) // buffer for raw inputs from VectorVisor
for { // serverless_invoke is the system call used for transferring inputs from the host (CPU) to the GPU
in_size := C.serverless_invoke ((*C.char) (unsafe.Pointer (&input_buf[0])), 1024*450
if in_size == 0 { // if in_size == 0, then this VM is blocked off and has no input for this batch
fakeaddr := uintptr (0x0) // serverless_response copies inputs from the GPU back to the CPU.
C.serverless_response ((*C.char) (unsafe.Pointer (fakeaddr)), 0)
continue

}

var input Payload;

json.Unmarshal (input_buf[0:in_size], &input);

// First tokenize each tweet []string --> [][]string

// Now process each tweet, filtering out stop words

// Get the hashtags, we will add them as we see them
var tags = make ([][]string, 0)

var response Response; // create a JSON response and return it!
response.Tokenized = tokenized;

response.Hashtags = tags;

bytes, _ := json.Marshal (response);
C.serverless_response ((*C.char) (unsafe.Pointer (¢bytes[0])), (C.uint) (len(bytes)))

Figure 12: Strings-Go. Tokenize some input tweets and return the hashtags. TinyGo (https://tinygo.org/docs/reference/lang-
support/) provides us with a conservative mark and sweep garbage collector, limited runtime reflection and goroutine support.

1036 2023 USENIX Annual Technical Conference USENIX Association

A.4 AssemblyScript Example

1 import { Console, FileSystem, Descriptor } from "as-wasi/assembly"; // Import needed syscalls
2 import { JSON, JSONEncoder } from "assemblyscript-json/assembly"; // Import a JSON encoder/decoder
3 import { listen } from "./env"; // Import our event-driven runtime

4 import { stopWords, initSet, getSet } from "./stop"; // Import a dataset of stopwords

5 function abort (message: usize, fileName: usize, line: u32, column: u32): void {

6 unreachable () // needed for the AssemblyScript runtime

7

8 initSet(); // init our set of "stop words"

9 let set: Set<string> = getSet ();

10

11 // TypeScript-1like syntax for GPU programing!

12 function process_tweets (input: JSON.Obj): Uint8Array | null {

13 let tweets: JSON.Arr | null = input.getArr ("tweets");

14 if (tweets != null) {

15 let strTweets: string[] = tweets._arr.map<string>((val: JSON.Value): string => val.toString());
16 // Split each tweet (tokenize)

17 let tokenize: string[][] = strTweets.map<string[]>((val: string): string[] => val.split("_"));
18 // Remove empty values and stop words

19 let filtered: string[][] = tokenize.map<string[]>((arr: string[]): string[] =>
20 arr.filter ((word: string): bool => {

21 if (set.has (word)) {

22 return false;

23 } else {

24 return true;

25 }

26 1))

27 // Get the array of hashtags for each tweet

28 let hashtags: string[][] = filtered.map<string[]>((tweet: string[]): string[] =>
29 tweet.filter ((word: string): bool => {

30 if (word.charAt (0) == '#' && word.charAt (1) != "") {
31 return true;

32 } else {

33 return false;

34 }

35 1))

36 let encoder = new JSONEncoder (); // encode a JSON response

37 encoder.pushArray ("tokenized");

38 for (let tweet_idx = 0; tweet_idx < filtered.length; tweet_idx++) {

39

40 }

41 encoder.popArray () ;

42 encoder.pushArray ("hashtags™");

43 for (let tweet_idx = 0; tweet_idx < hashtags.length; tweet_idx++) {

44

45 }

46 encoder.popArray () ;

47 let json: Uint8Array = encoder.serialize();

48 return json;

49 }

50 // else we failed somehow...

51 return null;

52}

53 1listen(1024*512, process_tweets); // Starts the

event -loop and encapsulates serverless_invoke/serverless_response

Figure 13: Strings-AssemblyScript. Same as Strings+Strings-Go, but with different syntax. Support for incremental garbage

collection is provided.

USENIX Association

2023 USENIX Annual Technical Conference

1037

	Introduction
	Motivation and Challenges
	Execution Model Differences
	Memory Hierarchy Differences

	System Design
	Programming Model, Target Workloads
	Design Overview
	Compiler
	Compiling WebAssembly
	Memory Interleaving
	GPU Preemption
	Profile-Guided Optimization
	Soundness

	VMM

	Evaluation
	Methodology
	System Performance
	Copy Efficiency
	Throughput
	Throughput-per-dollar
	Latency

	Latency breakdown
	CUDA Comparison

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Appendix
	Tables
	Rust Example
	Golang Example
	AssemblyScript Example

