
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Cyclosa: Redundancy-Free Graph
Pattern Mining via Set Dataflow

Chuangyi Gui, National Engineering Research Center for Big Data Technology and System/Service
Computing Technology and System Lab/Cluster and Grid Computing Lab, Huazhong University of Science
and Technology, China; Zhejiang Lab, China; Xiaofei Liao, National Engineering Research Center for Big

Data Technology and System/Service Computing Technology and System Lab/Cluster and Grid Computing
Lab, Huazhong University of Science and Technology, China; Long Zheng, National Engineering Research
Center for Big Data Technology and System/Service Computing Technology and System Lab/Cluster and

Grid Computing Lab, Huazhong University of Science and Technology, China; Zhejiang Lab, China; Hai Jin,
National Engineering Research Center for Big Data Technology and System/Service Computing Technology
and System Lab/Cluster and Grid Computing Lab, Huazhong University of Science and Technology, China

https://www.usenix.org/conference/atc23/presentation/gui

Cyclosa: Redundancy-Free Graph Pattern Mining via Set Dataflow

Chuangyi Gui†‡, Xiaofei Liao†, Long Zheng†‡, Hai Jin†

†National Engineering Research Center for Big Data Technology and System/
Service Computing Technology and System Lab/Cluster and Grid Computing Lab,

Huazhong University of Science and Technology, China
‡Zhejiang Lab, China

Abstract
Graph pattern mining is an essential task in many fields, which
explores all the instances of user-interested patterns in a data
graph. Pattern-centric mining systems transform the patterns
into a series of set operations to guide the exploration and
substantially outperform the embedding-centric counterparts
that exhaustively enumerate all subgraphs. These systems pro-
vide novel specializations to achieve optimum search space,
but the inherent redundancies caused by recurrent set intersec-
tions on the same or different subgraph instances remain and
are difficult to trace, significantly degrading the performance.

In this paper, we propose a dataflow-based graph pattern
mining framework named Cyclosa to eliminate the above
redundancies by utilizing the concept of computation simi-
larity. Cyclosa is characterized by three features. First, it
reorganizes the set operations for a pattern into a set dataflow
representation which can elegantly indicate the possibility
of redundancies while sustaining the optimal scheduling for
high performance. Second, the dataflow-guided parallel ex-
ecution engine decouples data access and computations to
enable efficient results sharing. Third, the memory-friendly
data management substrate can automatically manage the
computation results with high reuse possibility. Evaluation
of different patterns demonstrates that Cyclosa outperforms
state-of-the-art pattern-centric systems GraphPi and SumPA
by up to 16.28× and 5.52×, respectively.

1 Introduction

Graphs are the de facto paths to explore useful information
in various fields, including social media analysis [1, 2], finan-
cial networks [3, 4], and bioinformatics [5]. Graph pattern
mining aims to explore interesting subgraph structures ac-
cording to the user-given constraints. Typical graph pattern
mining applications include subgraph matching [6, 7], clique
finding [8,9], and motifs counting [10–12]. Despite the preva-
lence of graph pattern mining applications, they have high
computational complexity and usually need hours or even
days to complete [13–15].

Graph pattern mining systems have emerged in recent years
to provide high performance and programmability [16–18]. A
common approach is to enumerate all the subgraphs, usually
under a certain depth, to check whether the subgraphs satisfy
the pattern constraints, which is called the embedding-centric
paradigm [16, 19]. This approach is easy to develop and par-
allelize. However, it results in high memory consumption
and wasted computing resources due to a large number of
intermediate partial instances [17, 20]. Recently, advanced
graph pattern mining systems have adopted a pattern-centric
paradigm to overcome inefficiencies [17]. The main idea is
to use the structure information of graph patterns to filter in-
termediates that will not lead to a correct final match. This is
achieved by transforming the graph patterns into a series of
set operations and executing them in a nested loop following
a matching order of pattern vertices. Each loop computes the
candidates of corresponding pattern vertex, where the compu-
tation is represented as a formula of set intersections on the
neighboring lists of previously matched pattern vertices based
on the structural connectivity, e.g., Cand(v2) = N(v0)∩N(v1)
for a triangle pattern after matching an edge (v0, v1). In this
way, only valid partial instances are produced in each loop.

Prior works propose many novel techniques to reduce the
search space also the number of partial instances to be ex-
plored. AutoMine [17] provides a convenient compiler to
generate optimized matching orders automatically (also the
order of computations), which will significantly influence the
search space. Peregrine [20] and GraphZero [21] introduce a
symmetry-breaking method that filters the partial instances
leading to the same final mapping by comparing vertex IDs of
symmetric vertices. GraphPi [22] further explores an optimal
combination of different symmetry-breaking rules and match-
ing orders to minimize the search space. The above systems
mainly optimize the mining of a single pattern. SumPA [23]
further proposed an abstraction approach to reduce workloads
for mining multiple patterns simultaneously.

However, a large number of intrinsic redundant compu-
tations remain in the execution of set operations even in
an optimized search space, the same set intersection, e.g.,

USENIX Association 2023 USENIX Annual Technical Conference 71

N(v0)∩N(v1), repeats throughout the processing. Specifi-
cally, the redundancies can be classified into two categories,
the explicit redundancy and implicit redundancy, based on
whether they rely on the same subgraph instance. In explicit
redundancies, one set intersection can be repeatedly used for
computing different pattern vertices connected to the same
subgraph instances. In implicit redundancies, the same inter-
section appears in computing on different subgraph instances.
The redundant computations usually cost more than 80% of
the runtime and severely degrade the performance. Further-
more, these explicit and implicit redundancies spread over the
runtime when mining a single pattern or multiple patterns,
making it difficult to trace and reuse. Existing systems follow
the principle of structural equality and rewrite the exact same
set formulas of different vertices into a single one to reduce
part of the explicit redundancies [21–23]. However, there are
still more than 60% of the redundancies remaining unsolved.

We observe two kinds of computation similarity in the
set operations providing the opportunity to help identify and
reuse both explicit and implicit redundancies. The first one
is the static similarity which reveals the structural similarity
among the operands of the set operations in a pattern, that
one input operand can be reused in two operators, and the
output results of these operators may have latent redundan-
cies. The static similarity can be analyzed before execution.
We propose to decouple the operands and operators of all set
operations and organize them into a directed flow oriented by
the connections among the inputs and outputs, which is called
a set dataflow, to efficiently exploit the static similarity. Each
node in the set dataflow is a set operand or a set operator. The
explicit redundancies can be removed by keeping only unique
operands in the dataflow, while the implicit redundancies be-
tween different operators can be indicated by the overlapped
input source nodes of the dataflow.

The second one is the dynamic similarity which reveals the
similarity among the inputs of all occurred set intersections
during runtime, which can only be analyzed after execution.
Specifically, we observe that a small number of high-degree
vertices participate in most of the computations, which means
redundant computations are concentrated in these vertices.
This allows us to cache and reuse implicit redundant results
by tracing these high-degree vertices. However, maintaining
correctness and efficiency in the execution of the dataflow is
challenging. How to manage the intermediate computation
results in limited memory space is also a main difficulty.

In this paper, we present Cyclosa, a novel dataflow-based
graph pattern mining system to eliminate both explicit and
implicit redundancies in the pattern-centric paradigm. Specif-
ically, Cyclosa is characterized by the following key features.
First, we propose a novel set dataflow representation and an
efficient constructing approach to generate the set dataflow
for arbitrary patterns. It maintains optimized cost through a
lightweight cost estimation model and introduces the redun-
dancy probability to guide the appropriate reusing of results.

Second, we develop a dataflow-based execution model to ex-
pose the possibility of capturing and reusing redundancies
during runtime. Through the dataflow execution, the data
accesses and computations are decoupled, providing the abi-
lity to maximize data reuse in parallel. Third, we design a
memory-friendly data management substrate to automatically
store the computation results with a high possibility of re-
dundancy. It implements smart cache strategies according to
the reuse probability of results evaluated, thus achieving a
controlled memory consumption. Furthermore, the substrate
can efficiently cooperate with the dataflow execution engine
to provide the results requested by repeated computations. We
implement a prototype of Cyclosa and achieve significant per-
formance improvement over state-of-the-art pattern-centric
graph pattern mining systems.

The key contributions of this paper are as follows:

• It introduces a set dataflow representation to explore the
fine-grained computation similarity in set operations of
pattern-centric graph mining for reducing both explicit and
implicit redundancies.

• It proposes a dataflow-guided execution model and a self-
managed redundancy storage substrate to efficiently share
results among computations, overcoming the challenges of
managing and reusing the results.

• It develops Cyclosa, a high-performance graph pattern min-
ing system that eliminates redundant computations for var-
ious pattern settings. Experimental results show that Cy-
closa outperforms GraphPi and SumPA by up to 16.28×
and 5.52×, respectively.

2 Background and Motivation

2.1 Definition of Graph Pattern Mining
Given a data graph G= ⟨V,E⟩, where V is the vertex set and E
represents the edges, and an input graph pattern p which can
be arbitrary graphs, the basic graph pattern mining problem
aims to find all the subgraphs of G that are isomorphic to
p [20–22]. Each isomorphic subgraph is called an embedding
of p, and the vertices and edges form an one-to-one mapping
between the embedding and p. For example, Figure 1 shows
a data graph and a diamond pattern. The subgraphs connected
by (2, 3, 0, 4) and (2, 3, 1, 4) are two embeddings of the
diamond pattern, and the vertices are mapped correspondingly.
As in prior studies, this work focuses on graph pattern mining
on the undirected graphs.

Graph pattern mining applications have many variants
which may require either a single pattern or multiple patterns
to be mined. For example, subgraph listing outputs all the
instances of a given pattern [24]. The k-clique finding counts
the complete subgraphs with a certain number of vertices [25].
The k-motifs counting counts the number of instances for all

72 2023 USENIX Annual Technical Conference USENIX Association

Parallel For in :

 For in & :

 For in :

 For in & :

 Output()

v0 V
v1 N(v0) v1 > v0
v2 N(v0) ∩ N(v1)
v3 N(v0) ∩ N(v1) v3 > v2

v0, v1, v2, v3

fig:procedure

v0 : C(u0) = V
v1 : C(u1) = N(v0), v1 > v0
v2 : C(u2) = N(v0) ∩ N(v1)
v3 : C(u3) = N(v0) ∩ N(v1), v3 > v2

u0

u1u3

u2 0

21

3

4

Matching Order:

Constraints:
[u0, u1, u2, u3]

{u1>u0, u3>u2}

Pattern Graph Data Graph Mappings

Set Formulas Nested Loop Execution

2 3 0 4
2 3 1 4
2 3 0 1
2 3 4 0

u0 u1 u2 u3

Figure 1: The example of mining a diamond pattern in a
pattern-centric system

the possible patterns with k vertices in the data graph [26].
Our system supports all these variants and aims to provide a
general solution to solve the common redundancy problem in
graph pattern mining.

2.2 Procedure of Graph Pattern Mining

In pattern-centric systems, the mining procedure is typi-
cally performed as a series of nested set operations in three
steps [17, 22, 27]. Firstly, the graph pattern is analyzed to
generate a matching order of pattern vertices. The vertices
in the data graph will be computed and mapped to the pat-
tern following the order. Secondly, the set operations required
for computing each pattern vertex will be generated based
on its prior neighbors in the matching order. Lastly, the set
operations will be executed in a nested loop that starts from
each data graph vertex. The end of each loop represents that
a subgraph instance is found. Usually, the outer loop is exe-
cuted in parallel. Existing systems focus on minimizing the
branches that need to be accessed in the search tree by generat-
ing optimized matching orders. In order to further reduce the
search space, the symmetry-breaking method is also applied
by adding comparison constraints to filter computed results
that will lead to an automorphic instance.

For instance, Figure 1 shows how to find the subgraphs of
a diamond pattern. In the pattern analysis phase, the matching
order of the diamond is defined as [u0, u1, u2, u3]. There are
comparison constraints between vertex pairs <u1, u0> and
<u2, u3> because they are symmetric. Following the matching
order, we can formulate the set operations for each pattern
vertex. Initially, u0 can be mapped to any of the data graph
vertices while u1 is represented as finding a neighbor of u0.
For vertices u2 and u3, they are common neighbors of u0 and
u1, so that a set intersection is defined respectively. The con-
straints are checked when <u1, u0> and <u2, u3> are involved
in the computations. These set operations are organized into
a nested loop of 4 depths for execution. The first two loops
map edges of the data graph to (u0, u1). Assuming that the
edge (2, 3) has been assigned, the candidates for u2 and u3
will be {0, 1, 4}. Due to the symmetry-breaking constraints,

fig:problem

0

2
3

1

4

5

6

Set Computations

Matched Vertices

1

43

?

1

32

?

?

?

3

0

?

1

1

3?

?

Cross Patterns

u2

u0

u3

u1

pa

pb

u0

u1u3

u2

pc Data Graph

u0

u2u1

u3 u4

(1) Patterns and Set Operations (2) Redundancy Examples

Inside a Pattern

(3) Goal: Eliminating Redundancies

v0 ∈ V
v1 ∈ N(v0), v1 > v0
v2 ∈ N(v0), v2 > v1
v3 ∈ N(v1) ∩ N(v2), v3 > v0

v0 ∈ V
v1 ∈ N(v0), v1 > v0
v2 ∈ N(v0) ∩ N(v1)
v3 ∈ N(v0) ∩ N(v1), v3 > v2

v0 ∈ V
v1 ∈ N(v0)
v2 ∈ N(v0) ∩ N(v1), v2 > v1
v3 ∈ N(v0) ∩ N(v1)
v4 ∈ N(v0) ∩ N(v2)

Explicit

Implicit

Implicit

(a) Exp. in One (b) Imp. in One (c) Both Cross

Original:

Existing:

Ours:

N(1) ∩ N(3)5

N(1) ∩ N(3)

N(1) ∩ N(3)

4

1

SolvedCounts
—

(a)

(a) (b) (c)

Merge & Rewrite

Figure 2: An example of redundant computations in graph
pattern mining. The black vertices in dashed cycles represent
redundant computations N(1)∩N(3) in different situations.

q1

fig:problem-statistics

0%
20%
40%
60%
80%

100%

q1 q2 q3 q4 q5 q6

solved unsolved

0%
20%
40%
60%
80%

100%

q1 q2 q3 q4 q5 q6

solved unsolved

WV MI

q2 q3 q4 q5 q6

Figure 3: The ratio of redundancy as repeated set intersec-
tions for different patterns on Wiki-Vote (WV) and MiCo (MI)
graphs. Solved: the redundancy amount that can be addressed
by SumPA against a naïve nested loop execution. Unsolved:
the number of remaining redundancies in SumPA.

we can safely filter (2, 3, 4, 0) and avoid mapping (2, 3, 0, 4)
twice because they are the same subgraph.

Our work incorporates existing optimizations of reducing
the size of explored search space while enabling high effi-
ciency on computations by eliminating redundancies.

2.3 Problem: Redundant Computations

Despite the pattern-centric mining procedure providing good
optimizations on the search space, time-consuming explicit
and implicit redundancies exist in the procedure of mining
single or multiple patterns. This problem is detailed in Fig-
ure 2. The set operations for each vertex corresponding to the
matching order and constraints of patterns Pa, Pb, and Pc are
given. Following the matching order, consider that a part of

USENIX Association 2023 USENIX Annual Technical Conference 73

the substructures of these patterns have been mapped to the
data graph, which is denoted as white vertices. Next, we will
explain the explicit and implicit redundancies in detail.

Explicit Redundancy: A set of intersections that are repeat-
edly operated upon the neighboring lists of the same vertices
from the same subgraph instance. For pattern Pb, (1, 3) is
partially assigned to (u0, u1). In order to compute u2 and u3,
N(1)∩N(3) is performed twice. For pattern Pc, the compu-
tation N(1)∩N(3) must be performed in order to map (1,
3, 4) to u2. To this end, the explicit redundant computation
N(1)∩N(3) is conducted based on the same edge instance
(1, 3) inside single pattern Pb and also in the pattern Pc.

Implicit Redundancy: A set of intersections that are re-
peatedly operated upon the neighboring lists of the same
vertices from the different subgraph instances. In single pat-
tern Pc, consider two subgraph instances (1, 3, 4) and (1, 2,
3) are already mapped to (u0, u1, u2). The repeated set in-
tersections N(1)∩N(3) exist for computing u3 and u4. They
are induced from different subgraph instances. For multiple
patterns, when (0, 1, 3) is partially matched to Pa, the com-
putation of N(1)∩N(3) is induced from different subgraph
instances of all three patterns.

These redundancies can be aggravated in a nested loop
of set operations as in Figure 1, e.g., resulting in more than
twice the number of redundancies for computing u3 of Pb. As
profiled in Figure 3, more than 80% of total computations are
redundant in different patterns. However, existing systems can
only explore parts of the explicit redundancies because they
view each set formula (or a pattern vertex) as a whole in each
loop and all follow the principle of structural equality to merge
equal set formulas. For example, in Figure 4, GraphPi [22] and
GraphZero [21] will merge and rewrite the formulas S3 and
S4 into one loop. SumPA [23] will reduce v2 and v3 into an
abstract pattern vertex and then generate a single set formula
for two vertices. However, the implicit redundancies remain
because they cannot be exposed as structural equality in set
formulas. Besides, in parallel execution, explicit redundancies
on a reverted edge such as N(1)∩N(3) and N(3)∩N(1) will
be omitted. As profiled in Figure 3, existing work can only
solve less than 40% redundancies. Our work aims to eliminate
both explicit and implicit redundancies.

2.4 Insights: Computation Similarity
In order to detect and reuse both the explicit and implicit re-
dundancies, we must explore finer-grained computation simi-
larity rather than the structural equality as in existing work.
If the similarity of computations can be identified before the
execution, then we can use it to guide the reusing of results.
The computation similarity comes from two folds:

• Static Similarity. The static similarity originates from the
operands level of the set operations for a pattern, exposing
the reuse possibility of both inputs and outputs of different
computations. Figure 4 presents the set formulas of Pc in

∩
∩

fig:insight-dataflow

v0 ∈ V
v1 ∈ N(v0)
v2 ∈ N(v0) ∩ N(v1), v2 > v1
v3 ∈ N(v0) ∩ N(v1)
v4 ∈ N(v0) ∩ N(v2)

S1:
S2:
S3:

S5:
S4:

V

N(v0) N(v1)

N(v2)
R

View from Set Formulas View from Set Dataflow

Formula-level
Structural Equality S3 S4=

2 1

Operands-level
Computation Similarity

Figure 4: The dataflow view for analyzing the mining proce-
dure of pc in Figure 2. ❶ S3 and S4 are reduced. ❷ Results of
N(v0) are reused in two ∩.

35k

800
700
600
500
400
300
200
100

0
0 0.5k 1k 1.5k 2k 2.5k 3k

Fr
eq

ue
nc

y

Vertex ID

CiteSeer

0 5k 10k 15k 20k 25k30k

60000

50000

40000

30000

20000

10000

Fr
eq

ue
nc

y

Vertex ID

Email-EU

fig:insight-observation

Figure 5: The frequency of vertices getting involved in com-
putations for size-4 motifs counting on two graphs

Figure 2, other than the formula equality of S3 and S4, the
input operand N(v0) is also getting involved in S2 and S5.
N(v0) can be shared as inputs for four formulas, and it also
results in the implicit redundancies between S4 and S5.

• Dynamic Similarity. The dynamic similarity lies in the run-
time characteristics of the inputs of occurred computations,
reflecting which vertices are more likely to be requested
for computation. Specifically, we observe most of the com-
putations are concentrated in a small part of high-degree
vertices. We make an analysis of 4-motifs counting on two
graphs as shown in Figure 5. The vertices of the graphs
are reordered by a decreasing degree. More than 85% of
the computations lie in about 15% of the first high-degree
vertices, where the redundancies also concentrate.

In this work, we propose a set dataflow to use the com-
putation similarity for redundancy elimination, as shown in
Figure 4. The set dataflow is a directed graph indicating the
procedure of how sets are transferred and computed. The set
dataflow decouples the set formulas into individual operands
and operators, and the directed edges represent the transfer re-
lation of the input/output data between different operators. It
removes explicit and implicit redundancies as follows: ❶ The
explicit redundancies can be removed by cutting and main-
taining unique operators, e.g., only single N(v0) and N(v1)
exist. Original two N(v0)∩N(v1) are thus reduced to one, and
the set operands are fully shared. ❷ The implicit redundancies
between operators are indicated by overlapped inputs, e.g., the
results of N(v0)∩N(v1) and N(v0)∩N(v2). Based on the dy-
namic similarity, we can heuristically cache the computation
results of high-degree vertices for reusing.

74 2023 USENIX Annual Technical Conference USENIX Association

Set Dataflow Analysis Module Dataflow Execution Engine

Data Management Substrate

Patterns

u0

u1u3

u2

u0

u2u1

u3 u4

Load Estimation Dataflow Construction

[u0,u1,u2,u3]
[u0,u2,u1,u3]
[u2,u1,u0,u3]
[u2,u3,u0,u1]

[u0,u1,u2,u3,u4]
[u0,u3,u1,u2,u4]
[u2,u1,u3,u0,u4]
[u3,u0,u1,u2,u4]

u3 > u2
u1 > u0

u2 > u1

+

+
∩

∩

A

B C

D

E

C
Orders Constraints

Orders Constraints

Set Dataflow

Se
t O

pe
ra

tio
n

An
al

yz
er

Reordered Graph Set Buffer

A

∩
B Dataflow

Scheduler

Results
Manager

D E

CB

∩

DB
Graph Retriver Set Processor

fig:overview

Figure 6: Overview of Cyclosa

Challenges. However, there are still several challenges
in constructing an efficient redundancy-free graph pattern
mining system. First, maintaining correctness and efficiency
is difficult. The set dataflow is only aware of sets during
execution, and we need to extract the results correctly while
enabling maximum data sharing. Second, managing a large
number of redundant results is challenging. Simply storing all
the redundant results indicated by set dataflow is inefficient
and may consume a large size of memory footprint.

3 System Overview

Cyclosa is architected to solve the above challenges and
achieves a redundancy-free execution for graph pattern min-
ing. Given arbitrary graph patterns, Cyclosa can fast analyze
the computation similarity via the set dataflow and use the set
dataflow to guide the sharing of computations with high paral-
lelisms. Specifically, Cyclosa works with three main modules,
as presented in Figure 6.

Set Dataflow Analysis Module. The set dataflow of input
patterns is constructed in this module. Each pattern is first
analyzed to generate a reuse-aware matching order and con-
straints with data graph properties. Then, based on the match-
ing order, a set operation analyzer generates a redundancy-
reduced set dataflow by keeping unique operands. Through
the analysis, the generated set dataflow will maintain sufficient
information for correct results and indicate the redundancy
probability of different set operators.

Dataflow Execution Engine. The generated set dataflow is
fed to the dataflow execution engine for processing. It keeps
a decoupled view of the data access and computation that
provides the opportunity to manage the results independently.
Each node in the dataflow is assigned to a worker to process.
The inputs and outputs are managed by the graph retriever
communicating with the data management substrate. The set
operators are assigned to redundancy-aware set processors
that will request redundant results before the computation. A
dataflow scheduler controls the processing order by directed

edges of the set dataflow to ensure correctness.
Data Management Substrate. Computed results are au-

tomatically maintained in the substrate. Once received a re-
sult set, a results manager will implement smart cache strate-
gies and maintain results with different reuse possibilities
in a proper place of a multi-level set buffer. In this way, the
memory footprint is under control. Furthermore, the results
management can overlap with the execution engine for high
parallelism. The substrate also provides a fast request to the
data graph and cached results through efficient data layout.

4 Set Dataflow Analysis

This section first introduces the approach to generate a cost-
efficient reuse-aware matching order and then describes the
procedure for efficiently constructing a set dataflow.

4.1 Pattern Analysis
Existing approaches enumerate all possible orders and es-
timate the cost to find the order with the lowest work-
load [17, 20, 22], but they are oblivious to the redundant
computations exposed in runtime characteristics. Besides,
the overhead for enumerating all orders will increase when
patterns get larger. In this work, we propose a degree-guided
two phases analysis, as shown in Figure 7, to solve the above
challenges. The main idea is to match the high-degree vertices
in a Depth-First-Search (DFS) manner to raise the possibility
of reusing the results on these vertices. At the same time,
we design a lightweight and efficient cost model with graph
information for the optimal cost.

DFS Order Enumeration. This phase will generate all
degree-first DFS orders of a pattern. Firstly, the constraints
of symmetric vertices are generated using the permutation
group theory as in GraphPi [22], independent of the order
of vertices. In the example of Figure 7, there are two equal
constraints because each is sufficient to breaking symmetries,
and the u0 < u2 is selected randomly. Secondly, it traverses

USENIX Association 2023 USENIX Annual Technical Conference 75

from the pattern vertices with the highest degree and follows
a DFS style to get all valid matching orders, e.g., the order
starting from u1 with a degree by 4 is valid while the one from
u0 with a degree by 3 is discarded. These orders will then be
estimated for the minimum cost.

Graph-Aware Cost Estimation. We estimate the total num-
ber of intermediate subgraph instances as the cost. Given a
matching order, we can get the set formulas for computing
each pattern vertex. Cyclosa then iteratively estimates the
number of instances produced in a nested loop execution of
the set formulas. Existing works typically use a fixed metric
(i.e., average degree) to predicate the number of newly gen-
erated instances from each subgraph [17, 23]. However, this
approach omits the filtering effect of set intersections and is
inaccurate [28]. Cyclosa incorporates more graph information
by combining the vertex degree and triangle-count-per-edge
for estimation, because the triangle count enables capturing
the reduction information on neighboring lists after an inter-
section on two or more vertices.

As shown in Figure 7, initially, |V | vertices can be mapped
to u1 after Loop0. In Loop1, because only one N(u1) operator
is used for matching u0, we use the average degree deg to
estimate the number of newly produced instances from each
instance in the previous loop. The total instances in Loop1
are |V | ∗deg. In Loop2, since the results are produced by an
intersection on N(u0) and N(u1), we use the triangle-count-
per-edge ntri, instead of deg, to estimate the number of newly
generated instances. Note that the constraint u0 < u2 is applied
to Loop2 so that some produced instances will be filtered. We
use a parameter α to reflect the reduction of instances. The
cost estimated for subsequent loops is similar. Finally, the
total cost of this order is calculated by summarizing the costs
of all loops for selection.

Similar to Cyclosa, there is also research [28] considering
the data graph properties and using the number of sub-patterns
in a sampled graph to estimate the cost of the whole graph.
However, it requires the extra sampling and matching phase
to get the cost. Different from existing systems, Cyclosa pre-
computes triangle counts and degrees of the original graph to
preserve accuracy without introducing extra steps. Addition-
ally, Cyclosa also considers the factor of instances filtering
by symmetry-breaking constraints.

4.2 Dataflow Construction

Given the matching order, a pattern can be transformed into
a series of set formulas as in prior work. Based on the set
operation, there are mainly two challenges for generating
the set dataflow. First, the set dataflow must be aware of
existing optimizations on symmetry-breaking. Second, we
need a fast approach to save construction time when facing a
large number of set operations.

We propose a novel abstraction for representing the set
dataflow by introducing three kinds of set operators to provide

fig:matching-order

u1

u0

u4

u2

u3

u1

u0

u4

u2

u3

degree first DFS order

u1

u0

u4

u2

u3

u4u3

u0 u2

general DFS order

or
<

<
constraints

1

2

u1 u0 u4u2 u3
<

Order Enumeration Cost Estimation

Loop0
Loop1

Loop2
Loop3

Loop4
|V|*deg

|V|*deg*ntri*ntriα

|V|

|V|*deg*ntriα

deg: average degree per vertex ntri: average number of triangles per edge

TotalCost:

3

4
TotalCost(ord0)
TotalCost(ord1)

TotalCost(ordk)
[u1,u0,u2,u4,u3]

min …

Figure 7: The procedure of finding an appropriate reuse-aware
matching order for a pattern by ❶ generating constraints, ❷
enumerating valid DFS orders by degrees, ❸ estimating cost
for each order with graph information, and ❹ selecting the
order with minimum cost

fig:dataflow-construction

(b) Generating Sub-dataflows

1 2

Generator Combiner Reducer

v0 ∈ V
SI

V0

V0

N(V0)

V1

R(0)

v3 ∈ N(v0) ∩ N(v1)
V1 N(V1)

V2R(1)V0 N(V0)

v1 ∈ N(v0)

V3R(2)

v2 ∈ N(v0) ∩ N(v1), v2 > v1
(c) Combining and Simplifying Set Dataflow

(a) Core Components of Set Dataflow

Figure 8: An example of constructing the set dataflow given
four set formulas. The sub-dataflow of each set formula is
first constructed with three operators, and the input/output sets
of each operator are uniquely assigned and identified. The
sub-dataflows are then combined into a final set dataflow by
❶ reducing inputs/outputs and ❷ simplifying set operators.

a uniform view and contain all information of set operations
including the symmetry-breaking: Generator, Combiner,
and Reducer. The Generator consumes a valid candidate
set of a pattern vertex to generate the neighboring sets. The
Combiner receives two sets and outputs a single set. The
Reducer checks a result set and selects valid candidates fol-
lowing filtering rules to produce a new candidate set for cer-
tain pattern vertices. Based on these operators, we adopt
the idea of divide-and-conquer by first generating the sub-
dataflow of each set operation and then combining them to
get the final set dataflow, as shown in Figure 8.

Generating Sub-Dataflows. The sub-dataflow of each for-
mula must contain the Generator, Combiner, and Reducer
at the same time, except of the initial one because there is no
intersection required. In this way, the data required for com-
putation and the operators performed are separated, which
are represented in a unified style. For example, in Figure 8,
the sub-flow of initial v0 ∈V only contains one Reducer. For
v1 ∈ N(v0), the N(v0) is first transformed into a flow with
a Generator, the output of the Generator is then sent to a
Combiner and is finally checked by a Reducer. Similarly, the
sub-dataflow for v2 ∈ N(v0)∩N(v1) is given, and the con-

76 2023 USENIX Annual Technical Conference USENIX Association

fig:dataflow-evaluation

operator

neighbor set

result set

NST HST RST

Same-
Depth high middle low

Diff.-
Depth middle low none

Probability. Reusable Results
depth0

depth1

depth2

R(0) R(1) R(2)

R(0) 1 0.3 0.9

R(1) 0.3 1 0.3

R(2) 0.9 0.3 1

Probability Table

Figure 9: Different levels of redundancy probability. NST,
HST, and RST denote operators sharing the same neighboring
sets, sharing the same result set and different neighboring
sets, and sharing only same result sets, respectively. The re-
dundancy probability of each pair of result sets (R(i), R(j)) is
stored in a table where higher values denote higher probability
to be reused in the future.

straints will be recorded in the metadata of the Reducer.
Combining and Simplifying Set Dataflow. Different sub-

flows are first combined by connecting same inputs and out-
puts, e.g., the sub-flows of v1 ∈ N(v0) and initial formula are
combined by the output and input candidate sets denoted with
V0. Only one candidate set of V0 will be maintained after
the combination. After the combination, we then traverse the
combined set dataflow in a BFS style to cut set operators
with the same input nodes. Consider two Combiners used for
computing the results of v2 and v3. They have the same input
nodes so that only one Combiner remains. Thus, the explicit
redundancies of these two operators are eliminated. After the
simplification, the final set dataflow is generated.

4.3 Dataflow Evaluation
This evaluation aims to exploit the latent probability of redun-
dant results among different Combiners in the set dataflow,
which will guide the storing of results. However, providing
an exact prediction of the probability before execution is diffi-
cult. Therefore, we propose to qualitatively analyze the latent
probability of redundancy for different set operators through
their depths and input information in the dataflow.

Generally, the operators with at least one shared input
source and at the same depth have a higher possibility of
producing similar results. Considering the view of pattern
structure, this can be understood as they have similar sub-
structures. In Figure 2, the computations for u3 and u4 have
produced the same results during runtime because these two
vertices have similar triangle structures and share the u0. Fig-
ure 9 summarizes the reuse probability under different situa-
tions of the combinations of depth and shared input sets. The
redundant probabilities of different Combiners are recorded
in a table together with the set dataflow for execution.

5 Redundancy-Free Pattern Mining

This section introduces an efficient set-centric execution en-
gine and a redundancy-aware data management substrate to

enable high performance and optimal results reuse.

5.1 Set-Centric Dataflow Execution

The set formulas are processed in a nested loop in prior works.
Despite of the convenience of parallelizing, it lacks the ability
of fine-grained data management and reuse. In this work, we
present a set-centric dataflow execution engine that decou-
ples data management from computation to maximize results
sharing. The core idea is to put the set instead of a subgraph
as the basic processed element. The set operator in the set
dataflow will start processing whenever the input sets from
directed edges are ready. This discrete view enables sharing
any results to any of the computations.

To realize the goal, we correspondingly design an executor
for each Generator, Combiner, and Reducer together with
a Dataflow Monitor, as shown in Figure 10(a). Each set con-
tains two parts for identification: the set ID and the elements
value, e.g., ID < 3,−1 > for the neighboring set of vertex 3.
Set operators coordinate through flow signals. The monitor
identifies from the flow signals to know where to move the
results and activates the next operator.

Generator Module. It traverses each vertex element from
the input candidate set or the initial set to generate related
neighboring sets. Each input set is assigned a signal consisting
of an operator ID and an instance ID. The output will inherit
the operator ID, and a new instance ID is produced to indicate
a newly generated subgraph instance for correctness. In the
case of Figure 10(a), the signal nei < 3,−1,op,gid∗,value >
is sent to the monitor. The monitor will then transfer the
output set to a Combiner needed.

Combiner Module. In order to support reuse-aware com-
putation, it introduces a check unit and a compute unit. The
check unit first queries whether there are already computed
results with the same ID, req < 3,5,op,gid > in Figure 10(a).
The monitor will transfer the request to the data manager.
If the request hits, then the computation is omitted. Other-
wise, the compute unit is called to generate a new output. The
new result res < 3,5,gid,value > is then transferred to the
monitor for the next operator.

Reducer Module. Each input to this module will be a result
directly computed from the Combiner or fetched from the
cached results. The output is a set with valid candidates for
a pattern vertex. The constraint information is checked by
accessing the metadata of the set dataflow. Once an output set
is generated, the related signal, i.e., ret < op,gid,value >, is
sent to the monitor.

Dataflow Monitor. The monitor coordinates the movement
of sets guided by the set dataflow. It has three components:
1) the Flow Map storing the metadata of a set dataflow by
recording unique IDs for operators, 2) the Activator handling
the signals of operators and scheduling the sets based on the
flow map, and 3) the Retriever communicating with the data
manager for accessing the graph data and cached results.

USENIX Association 2023 USENIX Annual Technical Conference 77

fig:dataflow-execution

SI V0

N(V0)R(0)

V1 N(V1)

R(1)

V3V2

ID0 ID1 e0 e1 e2 ej

ID0 ID1 b0 b1 b2

Sparse:

Dense:

high

middle

low

DegreeID

Prob.

Hits
Re-evalue

LFU

MRU

LRU

Input OutputOperator

V0

V1

V2

Candidates Buffer

2 6 7 9

6 7

ID Value
3 5 1 2 6 7
3 6 7 9

R(0) R(1) R(2)

Compute
Unit

Check
Unit

3 -1 1 2 6 7 9

5 -1 1 2 6 7 8

Results Buffer

3 5 1 2 6 7
res<3, 5, op, gid, value>

req<3, 5, op, gid>

hit/miss

miss

<3, 5, op, gid>

3 -1 1 2 6 7 90 1 2 3 4 ..
<op, gid> nei<3, -1, op, gid*, value>

3 5 1 2 6 7
v2 > v0

6 7
<3, 5, op, gid> ret<op, gid, value>

0 1 2 3 4 ..

Retriever

Activator

Data
Manager

nei<..> res<..>
req<..> ret<..>

Flow Map

SI

N(k)

Monitor

R(k)

SI
<op, gid>

V

Vk

N(k) R(k)Vk

op0

op1

op2

1. control it to
guarantee
correctness of
results. the depth
define the
dependency. the
deepest one is first
consumed then the
previous one will
produce more results

2. new gid is generated
by deeper extender

3. each pattern has a
printer to consume
the results and
output subgraphs

0
1
2
3
4

0
1
2
3
4

Data Graph

Degree Reordering

Index
Edge

CSR Data Layout

nei
N(k)

Fetcher

Printer

Printer
3

67

Updaterret resreq

Maintainer

N(k)
<3,5>

hit

R

update

R

(a) The Workflow of Set Dataflow Execution Engine

(b) The Workflow of Data Management Substrate

Figure 10: The workflows of set dataflow execution engine
and data management substrate

fig:cache-strategy

high

middle

low

<ID0, ID1, op> LFU

MRU

LRU

Probability Table
R(0) R(1) R(2)

R(0) 1 0.3 0.9
R(1) 0.3 1 0.3
R(2) 0.9 0.3 1

R(1)

Degree(ID0,ID1)
high high
high low

+

0 2 3 5 6 7
2 4 1 3 8
3 5 1 2 6 7
3 6 7 9Re

-e
va

lu
at

e hits
6
5
9
3

Results Map

Figure 11: The caching strategy for result sets. The vertex de-
grees of result R(1) are first checked, and only results with at
least one high-degree vertex are maintained. The correspond-
ing row of the probability table is then accessed to further
decide the caching strategy.

5.2 Reuse-Aware Data Management Substrate

The dataflow execution engine will continuously produce new
result sets. However, due to the large search space, maintain-
ing the results in a limited memory space while maintaining
high reuse ratio is challenging. We propose a memory-friendly
data management substrate to solve this challenge. The main
idea is to selectively store result sets with the highest reuse
probability. It also overlaps with the computation phase to
embrace correctness and efficiency. The substrate implements
three main components: the results maintainer, the candidates
updater, and the graph fetcher, as shown in Figure 10(b).

Results Maintainer. The cores of the results maintainer are
three fixed-size result buffers under different caching strate-
gies, i.e., the Least Frequently Used (LFU), the Least Recently
Used (LRU), and the Most Recently Used (MRU) buffers
storing results with high, middle, and low reuse probability,
respectively. High reusable results come from high-degree
vertices, which are more likely to be generated at the upper
levels of the dataflow and are the most frequently requested.
Middle reusable results are from parallel computations at the
same middle level, yielding better time locality. Low reusable

results occurs at the lower levels, which are often infrequently
requested by low-degree vertices that are deferred to be pro-
cessed in Cyclosa. This module dynamically maintains the
computed results and responds to the req and res signals. The
sets in the buffer are stored in a <key, value> manner. When
a req signal arrives, it will search for results by the set ID, up-
date the hit information, and respond to the dataflow monitor.
When a res signal arrives, the maintainer will estimate the
reuse probability with smart caching strategies and store the
result in a proper buffer.

The strategy for identifying the reuse probability of a result
set is demonstrated in Figure 11. It combines the static and
dynamic computation similarities to estimate the reuse proba-
bility during runtime. Higher values in the probability table
of the set dataflow analysis and higher degrees of the vertices
by the result set ID, in particular, will result in a higher reuse
probability evaluated. For instance, in Figure 11, the result
has a low reuse probability. This is because there is a low
degree vertex in the computation, which may not participate
in other computations.

Candidates Updater. It is responsible for maintaining the
candidate sets produced by the Reducer and extracting cor-
rect subgraph instances. Each candidate set is allocated with
independent memory space. When a ret arrives, the op in-
formation is used for indicating the correct candidate sets.
After each update, a Printer will consume the candidate sets
using the gid information once all candidate sets are updated.
The Printer records current pointers in the candidates set and
produces exact subgraph instances. In order to overlap with
the updating process, we use a double buffer for extracting
the subgraph instances in the Printer.

Data Graph Fetcher. It reorganizes the data graph to im-
prove the reuse efficiency and responds to the nei signal by
returning the neighboring list as a set to the execution moni-
tor. Specifically, based on the degree information, the vertices
and edges are reordered so that the vertices with higher de-
grees will be assigned smaller IDs. In addition, the edges
of the high-degree vertices are stored in a contiguous space
to improve the cache efficiency because these edges will be
frequently accessed during computation. It also conducts a
triangle counting process to get the number of triangles of the
data graph for pattern analysis.

Discussions. Through the above designs, Cyclosa enables
efficient results sharing for redundant computations. In the
case of operating intersections upon small sets, directly re-
computing may be faster than reusing the results. However,
this case rarely happens since most cached results are related
to high-degree vertices that have large-size sets. We track the
cached intersection results of size-4 motif counting on MiCo
graph in Cyclosa and find that only 7.3% of results benefit
from recomputations while most prefer the reuse method that
can yield higher speedups against the former.

Currently, Cyclosa focuses on mining unlabeled patterns
because they generally yield higher computation complex-

78 2023 USENIX Annual Technical Conference USENIX Association

fig:parallel-implementation

local

SI V0

N(j)N(i)

subflowsubflow

thd0 thd1

thd0 thd1

thd2 thd3

Replicate

Parallel
Operators

0 1 2 3 ..

3

1N(i)

N(j)

thd0 thd1

(a) Dataflow Replicating (b) Dataflow Cutting
Data Manger

Figure 12: Parallel processing of the set dataflow that exploits
multi-level parallelisms

ity than the labeled ones. For handling labeled patterns, we
can simply add label information as constraints in Reducers.
During execution, the structural information of a pattern is
first explored for set computation, and the label information
is then used only for filtering elements in a set. The labels
provide more filtering opportunities that help reduce the to-
tal workload amount with fewer redundancies. However, the
proposed set dataflow can still benefit labeled patterns by ex-
ploring the explicit redundancies in the pattern topology. Note
that the dynamic computation similarity may change when
the high-degree vertices have different labels.

6 Implementations

Cyclosa is currently built with C++ as an in-memory system
on a single machine. This section will introduce the parallel
implementations in Cyclosa for mining flexible patterns.

Flexible Pattern Interpretation. Cyclosa provides a conve-
nient interface, PatternGraph(), for users to construct flexi-
ble pattern graphs by providing exact structures or graph prop-
erties, e.g., the edge list of a triangle or clustering coefficient,
through EdgeList and Restriction parameters. The above in-
formation will be automatically interpreted into possible pat-
terns. Users only need to interact with the PatternGraph()
while the underlying runtime is transparent.

Parallel Execution of Set Dataflow. We use OpenMP for
parallel execution in Cyclosa. The set dataflow inherently pro-
vides multi-level parallelisms, as shown in Figure 12. First,
the sub-parts of a dataflow can be replicated and assigned to
different threads to exploit the data parallelism. The starting
point of the replicas is divided by the Generator. Take Fig-
ure 12(a) for example. Two threads handle the neighboring
sets of vertex 1 and 3, respectively. Second, the Combiners
at the same depth can be conducted in parallel because there
are no dependencies, as shown in Figure 12(b). Note that the
thread-local memory maintains an input set and an output
set for every dataflow node which are reused throughout the
execution. Since the number of dataflow nodes is small and
the input/output set size is limited to the maximum degree of
the data graph, the thread-local memory is often small.

Load Balancing. The skewness in Cyclosa relates to dif-
ferent numbers of sets produced by Generators. We ad-

Table 1: Real-World Graphs
Graphs |V| |E| Size

WikiVote (WV) 7.1K 100.8K 0.81MB
MiCo (MI) 96.6K 1.1M 8.24MB

WikiTalk (WT) 2.39M 5.02M 40.16MB
Patents (PA) 3.8M 16.5M 0.12GB

LiveJournal (LJ) 4.0M 34.7M 0.26GB
Orkut (OR) 3.1M 117.2M 0.87GB

Friendster (FR) 65.6M 1.8B 13.46GB

dress it in two folds: 1) Static task assignment. The input of
the first Generator is initialized by assigning the reordered
graph vertices in a round-robin fashion. This makes the up-
per Generators in a dataflow for different threads produce
similar workloads. 2) Dynamic work stealing. This can be
safely realized by managing the independent thread-local set
space. Specifically, Cyclosa identifies the input-set position
in the dataflow of the busy thread and replicates its workloads
and relevant local set states to idle threads, which launch their
corresponding Generators with higher parallelism.

Parallel Data Management. The data management sub-
strate maintains the data graph and computation results. The
data graph is stored in the Compressed Sparse Row (CSR)
format. For cliques, the graph is oriented by enforcing a direc-
tion between each pair of vertices to reduce workloads. The
results buffers are implemented using a concurrent hash map
with a fixed-size space. Each candidate set is independently
allocated with the size of the maximum degree. In this way,
we can keep a controlled memory consumption.

7 Evaluation

In this section, we evaluate the effectiveness of the set
dataflow and present the efficiency of Cyclosa.

7.1 Methodology

Patterns and Graph Datasets. The real-world graph datasets
in our experiments are shown in Table 1, which are from the
Stanford SNAP collection of datasets [29]. They represent
typical graphs from different domains and are widely used in
previous works [21–23]. The graph pattern mining algorithms
evaluated are classified into two categories: 1) single pattern
query that includes mining the single non-clique patterns
(SM) [24] and cliques finding (CF) [25], 2) multiple patterns
query that includes mining all patterns with a certain number
of vertices, i.e., counting k-motifs (k-MC) [30] and multiple
patterns satisfying specific graph property like pseudo cliques
(PC) which are constrained with the given density [31]. These
applications cover different kinds of representatives of graph
pattern mining algorithms in prior works [20–23, 32].
Baseline Systems. Cyclosa is compared with two state-of-the-
art pattern-centric systems, GraphPi [22] and SumPA [23].

USENIX Association 2023 USENIX Annual Technical Conference 79

Sp
ee

du
p

0

2

4

6

q1 q3 q4 q5 q6

MI WT PA OR

Sp
ee

du
p

0

6

12

18

q1 q3 q4 q5 q6

MI WT PA OR
Comparison with SumPA Comparison with GraphPi

fig:ex-single

Figure 13: Performance comparison on listing single patterns

Table 2: Execution Time (Seconds) of Clique Finding
Systems App. MiCo Patents LiveJournal
Cyclosa 4-CF 0.23 0.11 2.27

5-CF 21.82 0.29 463.02
SumPA 4-CF 1.21 0.37 5.98

5-CF 50.77 0.45 1182.33
GraphPi 4-CF 1.64 0.44 12.14

5-CF 60.51 0.52 1625.47

Both systems are designed based on the mining procedure
of Figure 1. GraphPi is a single pattern matching system
that preserves the highest efficiency by finding an optimal
combination of matching orders and symmetry constraints for
an arbitrary pattern. SumPA is most related to our work and
achieves higher performance on multiple patterns than prior
works through a novel pattern abstraction.
Hardware Environments. All the experiments are conducted
on a single server which is equipped with two 14-core Intel
Xeon E5-2680v4 processors, 256GB RAM, and 512GB SSD.
It runs a 64-bit Ubuntu 18.04 with kernel 5.4. We use gcc
7.3.0 to compile the applications with optimization under -O3.
We use all the physical cores, and hyper-threading is enabled
when the threads number exceeds 28.

7.2 Performance Comparison
Single Pattern Query. We first compare the performance of
matching single non-clique patterns in Figure 3. These pat-
terns are widely used in prior works [20, 21, 23]. Figure 13
shows the normalized speedups. Compared with GraphPi, Cy-
closa achieves a speedup from 1.19× to 16.28×. The lowest
speedup is for mining q1. Cyclosa can not only eliminate the
explicit redundancies for q1 but also provide an efficient data
graph layout. The highest speedup comes from q5 on Orkut.
There are more implicit redundancies in q5 that cannot be
removed by GraphPi, which can be explored in Cyclosa. Com-
pared with SumPA, Cyclosa achieves a speedup from 1.13×
to 5.52×. The pattern abstraction of SumPA can only ex-
pose parts of the explicit redundancies, while the set dataflow
and smart cache in Cyclosa provide more opportunities for
handling both explicit and implicit redundancies.

Table 2 shows the execution time for counting size-4 and
size-5 cliques on different graphs. Overall, Cyclosa outper-
forms GraphPi by up to 7.13× and SumPA by up to 5.26×
(4-CF on MiCo). GraphPi performs the lowest in all cases
because all vertices in a clique are symmetric to each other,

1E+00

1E+01

1E+02

1E+03

PC-0.7 PC-0.8 PC-0.7 PC-0.8 PC-0.7 PC-0.8

GraphPi SumPA Cyclosa

fig:exp-pc

WikiVote MiCo LiveJournal

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Figure 14: Performance on finding pseudo cliques

Table 3: Execution Time (Seconds) of Motifs Counting
Systems App. WikiVote MiCo Patents
Cyclosa 4-MC 1.25 9.56 6.81

5-MC 257.34 1211.7 336.57
SumPA 4-MC 1.67 14.18 9.34

5-MC 492.31 4789.5 662.03
GraphPi 4-MC 2.33 17.83 12.99

5-MC 694.74 5803.97 803.55

and the optimal matching order is unique. SumPA has lim-
ited improvement over GraphPi since the pattern abstraction
will select a large sub-clique and omit opportunities for data
reusing inside. In Cyclosa, the set dataflow can fully exploit
the operands level redundancy for clique vertices, and the
total workloads are reduced by graph orientation.
Multi-Pattern Query. We compare the performance of Cy-
closa with SumPA and GraphPi on motifs counting and
pseudo cliques. To support multiple patterns, we add a merg-
ing phase in GraphPi as in Automine [17]. Table 3 compares
the execution time of counting size-4 and size-5 motifs on
different graphs. With a larger size, the number of patterns
increases (6 in 4-MC and 21 in 5-MC). Cyclosa outperforms
SumPA and GraphPi by up to 3.95× and 4.79× for 5-MC
on MiCo, respectively. The average speedups of Cyclosa on
4-MC and 5-MC of all cases are 1.64× and 2.95×. Note
that Cyclosa achieves higher speedup when the pattern size
and number increase. Existing approaches based on struc-
tural equality will face too many divergent branches when
processing in-equal parts of these patterns. The set dataflow
execution in Cyclosa can explore the computation similarity
of both equal and in-equal parts.

Pseudo cliques (PC-k) algorithm finds patterns with a den-
sity greater than k. Figure 14 shows the results for mining all
pseudo cliques with vertices less than six [23]. Notice that Cy-
closa is superior to GraphPi and SumPA by 4.01×∼ 7.52×
and 1.48×∼ 2.63×, respectively. Pseudo cliques are denser
patterns, where one vertex is usually involved in most compu-
tations for other vertices. The set dataflow of Cyclosa can cap-
ture this similarity and fully reuse these operands as described
in Section 2.4. Besides, the data management substrate can
efficiently share results among different patterns.

Note that different mining algorithms can benefit from Cy-
closa since the redundancies are highly related to the pattern
topology and are independent of algorithm types. For larger
patterns, more static similarity opportunities can be exploited.
Also, an increased number of total computations amplifies the

80 2023 USENIX Annual Technical Conference USENIX Association

fig:ex-sensitivity

1
1.5

2
2.5

3
3.5

4

Results Cache Capacity
5% 10% 15% 20% 25% 30%

WikiVote MiCo Patents
Sensitivity on Cache Strategies Sensitivity on Cache Capacity

N
or

m
al

ize
d

Sp
ee

du
p

N
or

m
al

ize
d

Sp
ee

du
p

0
0.5

1
1.5

2
2.5

3

Results Caching Strategies
LFU LRU MRU Hybrid Null

WikiVote MiCo Patents

Figure 15: Normalized speedups under various settings of the
cache capacity and caching strategy for 4-MC

Table 4: Execution Time (Seconds) on the Large Graph (FR)
App. Cyclosa SumPA GraphPi
3-MC 94.26 143.38 281.42
4-CF 512.97 1491.72 1647.55

reusable computation amount arising from dynamic similarity.
However, the size of set dataflow may increase and require
more local memory space for parallel processing.

7.3 Sensitivity Study
Cache Strategy. The left chart in Figure 15 investigates the
behaviors of different caching strategies for 4-MC. We fix
the buffer capacity as 15% size of corresponding graphs.
Notice that no single strategy can outperform others in all
cases. Among all graphs, the LFU behaves better on Patents
graph (2.36×), and the LRU behaves better on the WikiVote
(2.17×). This is due to the diverse sparsity of the graphs, and
the Patents graph is sparser than WikiVote. The MRU stra-
tegy is slowest in all cases, and this is because the results of
high-degree vertices in the prior phase will be discarded even
though they may be frequently reused. The hybrid strategy
can combine the pattern and graph information to select the
best buffer and thus achieves the highest performance.
Cache Capacity. The right chart in Figure 15 shows the nor-
malized speedups with various buffer sizes. Initial buffer size
is defined as the 5% size of a given data graph. Typically,
larger cache capacity brings higher performance gains, e.g.,
3.1× improvement from 5% to 20% on WikiVote, because
more results can be cached and reused. However, the growth
slows down gradually while increasing the buffer size. The
main reason is that a larger buffer size induces higher latency
in maintaining and querying the results.

7.4 Scalability
Figure 16 compares the performance of different systems by
varying the number of threads. The results are normalized to
GraphPi with a single thread. Hyperthreading is enabled when
the number of threads exceeds 28. For GraphPi and SumPA,
each thread is saturated with computations. More threads offer
more compute parallelism but have to compete for compu-
tation resources. Thus, hyperthreading improves efficiency,

fig:exp-scalability

0
20
40
60
80

100

#Threads
1 2 4 8 16 32 48

Cyclosa
SumPA
GraphPi
Cyclosa-opt
SumPA-opt
GraphPi-opt

0
20
40
60
80

100

#Threads
1 2 4 8 16 32 48

Cyclosa
SumPA
GraphPi
Cyclosa-opt
SumPA-opt
GraphPi-opt

0
40
80

120
160
200

#Threads
1 2 4 8 16 32 48

Cyclosa
SumPA
GraphPi
Cyclosa-opt
SumPA-opt
GraphPi-opt

0
70

140
210
280
350

#Threads
1 2 4 8 16 32 48

Cyclosa
SumPA
GraphPi
Cyclosa-opt
SumPA-opt
GraphPi-opt

4-MC on PA 4-CF on PA

4-MC on MI 4-CF on MI

N
or

m
al

ize
d

Sp
ee

du
p

N
or

m
al

ize
d

Sp
ee

du
p

N
or

m
al

ize
d

Sp
ee

du
p

N
or

m
al

ize
d

Sp
ee

du
p

Figure 16: The normalized speedups with various number of
threads for different applications

Table 5: Memory Consumption on Orkut with 28 Threads
Systems 4-CF 4-MC 5-MC PC-0.8
Cyclosa 2.69GB 2.75GB 2.96GB 2.94GB
GraphPi 3.81GB 3.83GB 4.16GB 3.97GB

but the growth slows down gradually. Cyclosa resolves the
redundant computation bottleneck, therefore offering more
speedups against the above earlier systems. However, memory
access contention becomes important when hyperthreading
is used, incurring the increasingly-saturated performance im-
provement as shown in Figure 16. This is because Cyclosa
has to maintain and query the results cache.

We also test the ability of Cyclosa to scale to large graphs
with billion edges, as shown in Table 4. For size-3 mo-
tifs counting, Cyclosa gains 1.52× and 2.99× speedups
over SumPA and GraphPi. Cyclosa outperforms SumPA and
GraphPi on the Friendster graph for size-4 clique by 2.91×
and 3.21×, respectively. Caching the results for large graphs
is difficult because of the vast amount of intermediates. The
performance improvement proves the efficiency of the set
dataflow and caching strategies on larger graphs.

7.5 Overhead

Memory Consumption. Table 5 compares the memory con-
sumption of Cyclosa and GraphPi on the Orkut graph. Cyclosa
and GraphPi take an average of 2.84GB and 3.94GB of mem-
ory space in these cases. Although Cyclosa needs to maintain
some of the results, the memory footprint is still kept small.
This is because GraphPi maintains intermediate subgraph
instances while Cyclosa shares the same result set for differ-
ent vertices and executes the dataflow in a DFS style. Each
thread in Cyclosa only maintains a local space for each set
dataflow node. Besides, the smart caching strategies explore
the trade-off between the space efficiency and reuse possibil-
ity. The memory space in the data management substrate is

USENIX Association 2023 USENIX Annual Technical Conference 81

Table 6: Time for Constructing Set Dataflow
App. WikiVote Patents Orkut
5-CF 1.74ms 1.72ms 1.69ms
5-MC 9.32ms 9.44ms 9.37ms
PC-0.8 3.16ms 3.09ms 3.22ms

pre-allocated by a small fixed size.
Dataflow Construction. Table 6 presents the dataflow con-
structing time for different applications. This includes pattern
analysis to get matching order, building the set dataflow, and
evaluating redundancy probability. The triangle counting time
is excluded because it is only conducted once and can be
reused for different algorithms. Notice that the constructing
time rises when the number of patterns increases. However,
the dataflow construction is only executed once throughout
processing and is negligible compared with the computation
time. For example, it takes over 250s for 5-MC on WikiVote,
while the dataflow construction only takes 9.32ms.

8 Related Work

Early graph pattern mining research focuses on customized
improvements for specific given algorithms. For counting
cliques, kClist [33] designs an efficient algorithm for process-
ing sparse graphs based on the core value. To handle motifs
effectively, G-tries [34] creates a novel tree-like data structure.
PGD [26] counts all size-3 and size-4 motifs using partial
patterns by some combinatorial rules. There have also been
works that use GPUs to speed the subgraph isomorphism
problem in finding network motifs and enumerating sub-
graphs [18,35–37]. Cyclosa, as opposed to algorithm-specific
improvements, focuses on tackling the common redundancy
challenges in a more general situation. Prior optimizations
can also be integrated into Cyclosa.

General-purpose graph pattern mining systems use expres-
sive and efficient programming paradigms to automatically
parallelize a variety of graph mining applications in a con-
sistent manner [16, 38]. Early distributed systems, such as
Arabesque [16] and Fractal [19], adopt the embedding-centric
model to iteratively extend and enumerate all subgraphs size
by size and verify the user-defined constraints for each inter-
mediate embedding. RStream [39] and Kaleido [40] optimize
the embedding-centric model in an out-of-core manner on a
single machine to alleviate the data shuffling and communica-
tion cost. Pangolin [41] and Sandslash [42] provide flexible
interfaces that integrate customized algorithmic optimizations
to enhance the filtering of intermediate embeddings. Despite
the expressiveness and massive parallelisms of these systems,
managing a large number of intermediate embeddings be-
comes the main bottleneck, which suffers from high memory
consumption and heavy I/Os [15].

Compared to the embedding-centric model, Cyclosa works
in a pattern-aware manner, pioneered by AutoMine [17] and

Peregrine [20], to avoid unnecessary storage and process of
embeddings under the guide of pattern constraints. The cores
of these systems are efficient matching engines that execute
fast set operations [27]. AutoMine is a compilation-based sys-
tem that automatically transforms graph patterns into set pro-
grams. GraphZero [21] is an enhanced version of AutoMine
that removes explicit redundancies among multiple patterns
by introducing the symmetry-breaking optimizations that de-
fine a partial order between symmetric vertices. GraphPi [22]
further explores the optimal combination of matching orders
and symmetry-breaking constraints to speed set programs.
Despite the efficiency, the compilation method may induce
non-negligible overhead while generating new set programs
for newly coming patterns. Dryadic [43] proposes a flexi-
ble tree-structured intermediate representation to solve this
problem, which supports both compilation and runtime opti-
mizations. DecoMine [28] decomposes a large pattern into
smaller ones for faster pattern counting. SumPA [23] merges
multiple patterns in a pattern abstraction to minimize work-
loads. Cyclosa aims to eliminate the inherent computation
redundancies, and the data management substrate can also be
integrated into the above systems to reduce redundancies.

9 Conclusion

In this work, we present a redundancy-free framework, Cy-
closa, that eliminates both explicit and implicit redundancies
in pattern-centric graph mining systems. Cyclosa explores
the computation similarity through a novel set dataflow rep-
resentation, which exploits a finer-grained similarity at the
operand level instead of the structural equality as in exist-
ing works, making it possible to indicate both explicit and
implicit redundant computations. Based on the set dataflow,
Cyclosa implements an efficient dataflow-guided execution
model collaborated with a memory-friendly data management
substrate to efficiently reuse computing results, embracing
high performance and correctness. The proposed substrate
may also be incorporated into the runtime of existing systems
to reduce redundancies. Evaluation of a variety of patterns
and real-world graphs shows that Cyclosa can significantly
outperform state-of-the-art systems GraphPi by up to 16.28×
and SumPA by up to 5.52× for various applications.

Acknowledgments

We thank our anonymous reviewers and shepherd for their
insightful suggestions. This work is supported by the Na-
tional Key Research and Development Program of China
under (Grant No. 2022YFB4501403), the NSFC (Grant
No. 61832006 and 61929103), the Zhejiang Lab (Grant No.
2022PI0AC02), and the Fundamental Research Funds for
the Central Universities (Grant No. YCJJ202202011). Long
Zheng is the corresponding author.

82 2023 USENIX Annual Technical Conference USENIX Association

References

[1] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, An-
thony Giardullo, Sachin Kulkarni, Harry C. Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkateshwaran Venkataramani. TAO: Facebook’s
distributed data store for the social graph. In Proceed-
ings of the USENIX Annual Technical Conference, pages
49–60, 2013.

[2] Vasileios Trigonakis, Jean-Pierre Lozi, Tomás Faltín,
Nicholas P. Roth, Iraklis Psaroudakis, Arnaud Delamare,
Vlad Haprian, Calin Iorgulescu, Petr Koupy, Jinsoo Lee,
Sungpack Hong, and Hassan Chafi. aDFS: An almost
depth-first-search distributed graph-querying system. In
Proceedings of the USENIX Annual Technical Confer-
ence, pages 209–224, 2021.

[3] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng,
Ying Zhang, Xuemin Lin, and Jingren Zhou. Real-time
constrained cycle detection in large dynamic graphs.
Proceedings of the VLDB Endowment, 11(12):1876–
1888, 2018.

[4] Dan Chen, Chuangyi Gui, Yi Zhang, Hai Jin, Long
Zheng, Yu Huang, and Xiaofei Liao. Graphfly: Effi-
cient asynchronous streaming graphs processing via
dependency-flow. In Proceedings of the International
Conference on High Performance Computing, Network-
ing, Storage and Analysis, pages 1–14, 2022.

[5] Yuhang Wang, Fillia Makedon, James Ford, and Heng
Huang. A bipartite graph matching framework for find-
ing correspondences between structural elements in two
proteins. In Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society, pages 2972–2975, 2004.

[6] Bibek Bhattarai, Hang Liu, and H. Howie Huang. CECI:
Compact embedding cluster index for scalable subgraph
matching. In Proceedings of the ACM International
Conference on Management of Data, pages 1447–1462,
2019.

[7] Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and
Bingsheng He. RapidMatch: A holistic approach to
subgraph query processing. Proceedings of the VLDB
Endowment, 14(2):176–188, 2020.

[8] Mohammad Almasri, Izzat El Hajj, Rakesh Nagi, Jinjun
Xiong, and Wen-mei Hwu. Parallel k-clique counting
on GPUs. In Proceedings of the ACM International
Conference on Supercomputing, pages 1–14, 2022.

[9] Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel
clique counting and peeling algorithms. In Proceedings

of the SIAM Conference on Applied and Computational
Discrete Algorithms, pages 135–146, 2021.

[10] Pedro Ribeiro, Pedro Paredes, Miguel E. P. Silva, David
Aparicio, and Fernando Silva. A survey on subgraph
counting: Concepts, algorithms, and applications to net-
work motifs and graphlets. ACM Computing Surveys,
54(2):28:1–28:36, 2021.

[11] Lorenzo De Stefani, Erisa Terolli, and Eli Upfal. Tiered
sampling: An efficient method for counting sparse mo-
tifs in massive graph streams. ACM Transactions
on Knowledge Discovery from Data, 15(5):79:1–79:52,
2021.

[12] Nishil Talati, Haojie Ye, Sanketh Vedula, Kuan-Yu Chen,
Yuhan Chen, Daniel Liu, Yichao Yuan, David Blaauw,
Alex Bronstein, Trevor Mudge, and Ronald Dreslinski.
Mint: An accelerator for mining temporal motifs. In
Proceedings of the IEEE/ACM International Symposium
on Microarchitecture, pages 1270–1287, 2022.

[13] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis,
Zuhair Khayyat, and Fuad Jamour. Scalemine: Scal-
able parallel frequent subgraph mining in a single large
graph. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, pages 716–727, 2016.

[14] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan,
Da Yan, and James Cheng. G-Miner: An efficient task-
oriented graph mining system. In Proceedings of the
ACM European Conference on Computer Systems, pages
1–12, 2018.

[15] Pengcheng Yao, Long Zheng, Zhen Zeng, Yu Huang,
Chuangyi Gui, Xiaofei Liao, Hai Jin, and Jingling Xue.
A locality-aware energy-efficient accelerator for graph
mining applications. In Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 895–907, 2020.

[16] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Ser-
afini, Georgos Siganos, Mohammed J. Zaki, and Ashraf
Aboulnaga. Arabesque: A system for distributed graph
mining. In Proceedings of the ACM Symposium on
Operating Systems Principles, pages 425–440, 2015.

[17] Daniel Mawhirter and Bo Wu. AutoMine: Harmonizing
high-level abstraction and high performance for graph
mining. In Proceedings of the ACM Symposium on
Operating Systems Principles, pages 509–523, 2019.

[18] Xuhao Chen and Arvind. Efficient and scalable graph
pattern mining on GPUs. In Proceedings of the USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 857–877, 2022.

USENIX Association 2023 USENIX Annual Technical Conference 83

[19] Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes,
Wagner Meira, and Srinivasan Parthasarathy. Fractal:
A general-purpose graph pattern mining system. In
Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 1357–1374, 2019.

[20] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora.
Peregrine: A pattern-aware graph mining system. In
Proceedings of the ACM European Conference on Com-
puter Systems, pages 1–16, 2020.

[21] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tong-
ping Liu, and Bo Wu. GraphZero: A high-performance
subgraph matching system. ACM SIGOPS Operating
Systems Review, 55(1):21–37, 2021.

[22] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai.
GraphPi: High performance graph pattern matching
through effective redundancy elimination. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 1–14, 2020.

[23] Chuangyi Gui, Xiaofei Liao, Long Zheng, Pengcheng
Yao, Qinggang Wang, and Hai Jin. SumPA: Efficient
pattern-centric graph mining with pattern abstraction. In
Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, pages 318–
330, 2021.

[24] Zhengyi Yang, Longbin Lai, Xuemin Lin, Kongzhang
Hao, and Wenjie Zhang. HUGE: An efficient and scal-
able subgraph enumeration system. In Proceedings of
the ACM SIGMOD International Conference on Man-
agement of Data, pages 2049–2062, 2021.

[25] Xiaowei Ye, Rong-Hua Li, Qiangqiang Dai, Hongzhi
Chen, and Guoren Wang. Lightning fast and space ef-
ficient k-clique counting. In Proceedings of the ACM
Web Conference, page 1191–1202, 2022.

[26] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi,
and Nick Duffield. Efficient graphlet counting for large
networks. In Proceedings of the IEEE International
Conference on Data Mining, pages 1–10, 2015.

[27] Maciej Besta, Zur Vonarburg-Shmaria, Yannick
Schaffner, Leonardo Schwarz, Grzegorz Kwasniewski,
Lukas Gianinazzi, Jakub Beranek, Kacper Janda, Tobias
Holenstein, Sebastian Leisinger, Peter Tatkowski, Esref
Ozdemir, Adrian Balla, Marcin Copik, Philipp Linden-
berger, Marek Konieczny, Onur Mutlu, and Torsten
Hoefler. GraphMineSuite: Enabling high-performance
and programmable graph mining algorithms with
set algebra. Proceedings of the VLDB Endowment,
14(11):1922–1935, 2021.

[28] Jingji Chen and Xuehai Qian. DecoMine: A
compilation-based graph pattern mining system with
pattern decomposition. In Proceedings of the ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, page
47–61, 2022.

[29] Jure Leskovec and Andrej Krevl. SNAP datasets:
Stanford large network dataset collection. 2014.
http://snap.stanford.edu/data.

[30] Chenhao Ma, Reynold Cheng, Laks V. S. Lakshmanan,
Tobias Grubenmann, Yixiang Fang, and Xiaodong Li.
LINC: A motif counting algorithm for uncertain graphs.
Proceedings of the VLDB Endowment, 13(2):155–168,
2019.

[31] Takeaki Uno. An efficient algorithm for enumerating
pseudo cliques. In Proceedings of the International
Symposium on Algorithms and Computation, pages 402–
414, 2007.

[32] Da Yan, Guimu Guo, Md Mashiur Rahman Chowdhury,
M. Tamer Özsu, Wei-Shinn Ku, , and John C. S. Lui. G-
thinker: A distributed framework for mining subgraphs
in a big graph. In Proceedings of the IEEE International
Conference on Data Engineering, pages 1369–1380,
2020.

[33] Maximilien Danisch, Oana Balalau, and Mauro Sozio.
Listing k-cliques in sparse real-world graphs. In Pro-
ceedings of the International World Wide Web Confer-
ence, pages 589–598, 2018.

[34] Pedro Ribeiro and Fernando Silva. G-Tries: An efficient
data structure for discovering network motifs. In Pro-
ceedings of the ACM Symposium on Applied Computing,
pages 1559–1566, 2010.

[35] Wenqing Lin, Xiaokui Xiao, Xing Xie, and Xiaoli Li.
Network motif discovery: A GPU approach. IEEE
Transactions on Knowledge and Data Engineering,
29(3):513–528, 2017.

[36] Li Zeng, Lei Zou, M. Tamer Özsu, Lin Hu, and Fan
Zhang. GSI: GPU-friendly subgraph isomorphism. In
Proceedings of the IEEE International Conference on
Data Engineering, pages 1249–1260, 2020.

[37] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xi-
aokui Xiao, and Kian-Lee Tan. GPU-accelerated sub-
graph enumeration on partitioned graphs. In Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data, pages 1067–1082, 2020.

[38] Laurent Bindschaedler, Jasmina Malicevic, Baptiste Lep-
ers, Ashvin Goel, and Willy Zwaenepoel. Tesseract:
Distributed, general graph pattern mining on evolving

84 2023 USENIX Annual Technical Conference USENIX Association

graphs. In Proceedings of the European Conference on
Computer Systems, pages 458–473, 2021.

[39] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang
Nguyen, and Guoqing Harry Xu. RStream: Marrying
relational algebra with streaming for efficient graph min-
ing on a single machine. In Proceedings of the USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 763–782, 2018.

[40] Cheng Zhao, Zhibin Zhang, Peng Xu, Tianqi Zheng, and
Jiafeng Guo. Kaleido: An efficient out-of-core graph
mining system on a single machine. In Proceedings of
the IEEE International Conference on Data Engineer-
ing, pages 673–684, 2020.

[41] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and
Keshav Pingali. Pangolin: An efficient and flexible
graph mining system on CPU and GPU. Proceedings of
the VLDB Endowment, 13(10):1190–1205, 2020.

[42] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Loc
Hoang, and Keshav Pingali. Sandslash: A two-level
framework for efficient graph pattern mining. In Pro-
ceedings of the ACM International Conference on Su-
percomputing, pages 378–391, 2021.

[43] Daniel Mawhirter, Samuel Reinehr, Wei Han, Noah
Fields, Miles Claver, Connor Holmes, Jedidiah McClurg,
Tongping Liu, and Bo Wu. Dryadic: Flexible and fast
graph pattern matching at scale. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, pages 289–303, 2021.

USENIX Association 2023 USENIX Annual Technical Conference 85

	Introduction
	Background and Motivation
	Definition of Graph Pattern Mining
	Procedure of Graph Pattern Mining
	Problem: Redundant Computations
	Insights: Computation Similarity

	System Overview
	Set Dataflow Analysis
	Pattern Analysis
	Dataflow Construction
	Dataflow Evaluation

	Redundancy-Free Pattern Mining
	Set-Centric Dataflow Execution
	Reuse-Aware Data Management Substrate

	Implementations
	Evaluation
	Methodology
	Performance Comparison
	Sensitivity Study
	Scalability
	Overhead

	Related Work
	Conclusion

