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Abstract
Billion-scale distributed file systems play an important role
in modern datacenters, and it is desirable and possible to
support these file systems with a single metadata server. How-
ever, fully exploiting its performance faces unique challenges,
including crash consistency overhead, lock contention in a
shared directory, and NUMA locality.

This paper presents SingularFS, a billion-scale distributed
file system using a single metadata server. It includes three key
techniques. First, SingularFS proposes log-free metadata op-
erations to eliminate additional crash consistency overheads
for most metadata operations. Second, SingularFS designs hi-
erarchical concurrency control to maximize the parallelism of
metadata operations. Third, SingularFS introduces hybrid in-
ode partition to reduce inter-NUMA access and intra-NUMA
lock contention. Our extensive evaluation shows that Singu-
larFS consistently provides high performance for metadata
operations on both private and shared directories, and has a
steadily high throughput for the billion-scale directory tree.

1 Introduction

In modern datacenters, the vast majority of distributed file
systems are within billions of files, and we call them billion-
scale distributed file systems [33]. It is possible to support
these file systems with one single metadata server, which
typically has enough capacity to hold terabytes of metadata.
However, the performance of a single metadata server requires
further attention, as metadata operations account for more
than half of all file system operations [16, 17, 26].

We find it challenging to store billions of files without
sacrificing performance in a single metadata server, so most
distributed file systems support billions of files by scaling
metadata servers [17, 19, 22, 25, 31]. In this paper, we explore
the design space of a billion-scale distributed file system that
achieves high performance in a single metadata server.

Remote direct memory access (RDMA) and persistent
memory (PM) provide new opportunities for the performance
∗Youyou Lu is the corresponding author (luyouyou@tsinghua.edu.cn).

of metadata servers. However, existing solutions fail to fully
exploit them and provide desirable metadata performance.
Our experiments show that both local PM file systems and
distributed file systems have performance limitations in both
private and shared directories. Specifically, for the state-of-the-
art local PM file system, NOVA [32], its file create through-
put in a shared directory drops to only 0.14× of its throughput
in private directories, even for the million-scale directory tree
without the impact of networking.

Exploiting the performance of a single metadata server
brings several challenges to the design of file systems. First,
the overhead to ensure crash consistency is extremely heavy
for a single metadata server that aims to support billions of
files. Second, operations in a shared directory, which are com-
mon in distributed file systems, suffer from limited parallelism
and low performance caused by severe lock contention on the
directory dirents and inode. Third, The NUMA architecture
is under-exploited for file systems, especially for metadata
operations in a single metadata server.

This paper presents SingularFS, a billion-scale distributed
file system using a single metadata server. With only one
metadata server, SingularFS achieves 8.36M/18.80M IOPS
for file create/stat operations, which outperforms InfiniFS
with 32 metadata servers reported in its paper [19], without
sacrificing multi-server scalability. To address the challenges
mentioned above, SingularFS optimizes the directory tree
and the metadata operations with the following designs.

First, we propose log-free metadata operations to remove
the additional crash consistency overheads from most meta-
data operations. The key idea is to identify possible metadata
inconsistency by leveraging both the single-object update
atomicity of the key-value storage backend and the metadata
semantic dependency of the parent inode and child inodes.

Second, we design hierarchical concurrency control to
maximize the parallelism of metadata operations in a shared
directory with less synchronization overhead. The key idea
of this protocol is to synchronize inode operations in a more
fine-grained way. Specifically, inode writer uses the per-inode
read-write lock to synchronize with other operations, and
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inode timestamp updater and reader use a lock-free protocol
to do extra synchronization between themselves.

Third, we introduce hybrid inode partition to reduce inter-
NUMA access and intra-NUMA lock contention. The key
idea is to separate the timestamps from the directory inode
and group it with the directory’s child inodes to the same
NUMA node, thus ensuring NUMA locality of file operations.
SingularFS further partitions the intra-NUMA data structure
to reduce its lock contention.

In summary, this paper makes the following contributions:

• We identify the challenges to fully exploiting the perfor-
mance of a single metadata server.
• We propose SingularFS, an efficient distributed file sys-

tem using a single metadata server, featured with log-free
metadata operations (§3.2), hierarchical concurrency con-
trol (§3.3), and hybrid inode partition (§3.4).
• We implement and evaluate SingularFS to demonstrate

that SingularFS outperforms existing distributed file sys-
tems in latency and throughput of metadata operations,
has comparable latency and throughput with local PM file
systems in file operations, provides high throughput scala-
bility in a shared directory, and maintains a steadily high
throughput for a billion-scale directory tree (§5).

2 Background and Motivation

2.1 Background

Billion-scale file systems are fundamental building blocks
for cloud service vendors and smaller datacenters. Even in
some huge datacenters such as Alibaba [19], massive files are
managed with small storage clusters, which are within billion-
scale. One single metadata server is sufficient to contain all
the metadata at this scale, and it has the following benefits
compared to using more metadata servers:
• Implementation and performance. Distributed transactions

and load balancing across metadata servers are avoided,
which simplifies the implementation and improves the
performance.
• TCO reduction. The installation, maintenance, and daily

cost of a single metadata server are cheaper than multiple
metadata servers.
New network and storage hardware, such as RDMA and

PM, provides new opportunities for metadata performance.
NVIDIA’s latest generation NIC, ConnectX-6, exhibits a
speed of 215Mpps for small packets [4]. RedN [23] also
illustrates that ConnectX-6 shows a 112M verbs/s throughput
in 64B RDMA writes. The only available PM product, Intel
Optane DIMM, shows at least 29.06Mops/s and 8.75Mop-
s/s read/write throughput with the access granularity of less
than 256B [2] while maintaining memory semantics and data
persistence. As inodes are typically tiny in file systems (e.g.,
128B in Ext4), achieving high small-granularity access per-
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Figure 1: Per-NUMA file create and delete throughput
of local PM file systems and distributed file systems (a) in a
private directory for each client, (b) in a shared directory.

formance allows us to build a high-performance distributed
file system with a single metadata server.

2.2 Analysis of Existing Solutions

In this section, we analyze the limitations of existing solutions
that discourage them to support a billion-scale distributed file
system with a single metadata server.

There are mainly two categories of existing solutions, local
PM file systems, and distributed file systems. For each type,
we select two typical file systems for comparison, namely
Ext4-DAX and NOVA [32] for local PM file systems, and
CephFS [31] and InfiniFS [19] for distributed file systems.
We gradually increase the number of client threads until each
file system achieves the peak throughput. The testbed and
configuration details are further described in §5.1.

Figure 1 shows the per-NUMA file create and delete
throughput of the compared file systems with clients operating
on private directories and a shared directory, respectively. We
make the following observations:

1) The overhead of crash consistency limits the through-
put of multi-inode metadata update operations. Ext4-DAX
uses write-ahead-logging (WAL) to guarantee its crash con-
sistency, while InfiniFS and CephFS leverage the transac-
tion support of their storage backend. These methods all
introduce extra costs for the multi-inode metadata update
operations. NOVA reduces the crash consistency cost by us-
ing the log-structured metadata architecture, making its file
create/delete throughput 7.17×/12.19× higher than other
file systems with private directories. However, it cannot com-
pletely get rid of the journaling overhead when coordinat-
ing multi-inode update operations. Also, it introduces extra
garbage collection overhead.

2) The lock contention limits the throughput of metadata
operations in a shared directory. For file create and delete
operations, NOVA shows 0.17×/0.13× throughput in a shared
directory than in private directories. This is because NOVA
directly acquires the shared directory’s write lock when per-
forming these operations, which aggravates lock contention.
The other three file systems show no significant performance
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degradation. This is because they either directly use the jour-
nal for concurrency control (e.g., Ext4-DAX) or leverage the
transaction support of the storage backend (e.g., CephFS and
InfiniFS). These methods coordinate all the metadata opera-
tions similarly no matter they are in private directories or a
shared directory, limiting the performance in both scenarios.

3) File systems fail to scale to multiple NUMA nodes while
maintaining NUMA locality of metadata operations. For the
compared file systems, NOVA doesn’t provide support for
multiple NUMA nodes. Although Ext4-DAX can be mounted
to a RAID 0 device spanning across the PM DIMMs on all
NUMA nodes, the simple striped layout of RAID 0 can not
ensure NUMA locality for metadata operations. For InfiniFS
and CephFS, they scatter the metadata objects to all the PM
DIMMs without specific NUMA-aware partition rules, result-
ing in low NUMA locality as well.

2.3 Challenges
Based on the three observations in §2.2, we find three chal-
lenges to fully exploiting the performance of a single metadata
server in distributed file systems, as discussed below.

Challenge 1. The overhead to ensure crash consistency is
extremely heavy for a single metadata server that aims to
support billions of files.

File systems use journaling or the log-structured design to
provide crash consistency. In the journaling approach, data is
written twice and checkpointed in order. In the log-structured
approach, data is written in newly-allocated places, while
leaving the old places as garbage. Unfortunately, garbage
collection causes high overhead. Intensive prior research
aims to reduce the overhead of the crash consistency mecha-
nisms [14, 18, 21]. However, we need to further reduce this
overhead to exploit the potential of a single server to support
billions of files.

Challenge 2. Operations in a shared directory, which are
common in distributed file systems, suffer from limited paral-
lelism and low performance caused by severe lock contention
on the directory dirents and inode.

In HPC and big data applications, it is common for the
workloads to concurrently access a large shared directory,
such as N-N checkpointing [9] and image processing [1].
The concurrency of metadata operations in a shared directory
significantly influences the overall performance of these ap-
plications. However, concurrent inode create and delete
operations in a shared directory need to update their common
parent’s directory entries (dirents) and inode, which causes
high lock contention. Such contention limits the parallelism
and performance as demonstrated in §2.2.

The previously-proposed solutions are not suitable for the
case of a single metadata server. Previous works use parti-
tion strategy either inside dirents [34] or between metadata

server daemons [22, 31] to increase parallelism. However,
partitioning inside dirents can’t reduce the lock contention
of the common parent inode, and partitioning the super direc-
tories between metadata server daemons can not be used for
one metadata server.

Challenge 3. The NUMA architecture is under-exploited for
file systems, especially for metadata operations in a single
metadata server.

NUMA-aware design is important for metadata perfor-
mance when a server is used only for metadata storage and
processing. On the one hand, NUMA locality is of great impor-
tance for fully utilizing the performance potentials of PM. Pre-
vious works illustrate that remote PM access introduces a sig-
nificant performance drop in bandwidth and small-granularity
throughput, especially for writes [28, 35], which makes meta-
data operations more vulnerable compared to data operations.
On the other hand, our analysis in §2.2 shows that file sys-
tems fail to scale to multiple NUMA nodes while keeping
NUMA locality of metadata operations, which is because of
their coarse-grained partition strategy such as striping.

Existing methods are not desirable for overcoming this chal-
lenge. Randomly scattering the inodes into multiple NUMA
nodes can’t avoid this issue, as some operations like inode
create and delete need to update multiple inodes, which
causes inter-NUMA metadata access. Other methods like
in-DRAM cache [28], thread migration [30], or thread dele-
gation [35] all waste extra resources for coordination or data
structure maintenance.

3 Design and Implementation

With the overall goal of exploiting the performance of a single
metadata server, we design SingularFS with three key design
principles as below:

• Guaranteeing crash consistency without logs. Singu-
larFS performs most metadata operations without extra
crash consistency mechanisms such as logs. This reduces
their overheads while still maintaining POSIX semantics.
• Maximizing parallelism in a shared directory. By uti-

lizing hierarchical concurrency control, SingularFS maxi-
mizes the parallelism of metadata operations in a shared
directory with less synchronization overhead.
• Reducing inter-NUMA access and intra-NUMA lock

contention. SingularFS takes a hybrid approach to meta-
data partition. This ensures NUMA locality of file opera-
tions and reduces lock contention within data structures to
further increase the parallelism in a shared directory.

3.1 Overview
SingularFS is a billion-scale distributed file system using
a single metadata server, exploiting the single-server perfor-
mance while not sacrificing multi-server scalability. Figure 2

USENIX Association 2023 USENIX Annual Technical Conference    917



Clients
SingularFS

library

§3.4 Hybrid Inode Partition

Servers

NUMA 0 NUMA 1
Ordered Indexes

NUMA 0
Ordered Indexes

Directory Tree/

§3.3 Hierarchical Concurrency Control

§3.2 Log-free Metadata Operations

Non-transactional KV Store

Server Threads

Figure 2: SingularFS architecture.

presents the architecture of SingularFS, which contains two
components, clients and servers. Servers maintain a global file
system directory tree inside PM. Clients perform file system
operations through POSIX-like interfaces offered by the user-
space library. Servers and clients are equipped with RDMA
NICs for network communication.
Storage backend. SingularFS uses a generic key-value
store (KV Store) as its storage backend. The KV Store should
be able to execute point queries and prefix matching. Besides,
it should guarantee the atomicity of single-object operations
at a low runtime cost.

SingularFS differs from other file systems with KV Store
backends [17, 19, 24, 25] in two ways. First, instead of rely-
ing on the transaction provided by the KV Store backends
(Non-transactional KV Store in Figure 2), SingularFS uses
a lightweight approach for metadata operations (§3.2, §3.3).
Second, instead of using one ordered KV Store per metadata
server, SingularFS leverages hybrid inode partition to convert
the shared index into multiple ordered indexes scattered to
NUMA nodes, aiming at reducing inter-NUMA access and
intra-NUMA lock contention (§3.4).
Regular metadata operations. We use this term to refer
to metadata operations other than rename. Leveraging the
timestamp dependency of modified inodes, SingularFS uses
ordered metadata update to guarantee their crash consistency
without logs (§3.2). For concurrency control, SingularFS
takes a hierarchical method by utilizing both the per-inode
read-write lock and lock-free timestamp update (§3.3).
Rename. SingularFS uses journaling to guarantee the crash
consistency of rename. As an optimization, ordered metadata
update (§3.2) is adopted to guarantee the crash consistency of
the two parent directories involved in rename, reducing the
number of logged inodes from 4 to 2. SingularFS uses strict
two-phase locking for concurrency control of rename.
Inode. SingularFS adds two fields, the born time btime
and the death time dtime, to the inode to identify metadata
inconsistencies leveraging the timestamp dependency (§3.2).
Besides, SingularFS partitions the directory inode to times-
tamp metadata (atime, ctime, and mtime) and access meta-
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ID: 1

(𝑎)

Directory Tree

key value

1/  B < ID: 2 , B’s inode > 

1/  C < ID: 3 , C’s inode >

1/  D < ID: 4 , D’s inode >

KV Store

(𝑏)

Dirent of A/B

d_type: DT_REG

d_name: B

(𝑐)

d_ino: 2

Figure 3: (a) An example of the directory tree. (b) The format
of directory A’s child inodes in KV Store. For the inode with
ID = i, the keys of its child inodes share the same prefix i. (c)
The way to reassemble dirents in a readdir operation. Sin-
gularFS first does prefix matching with the target directory’s
ID to get the child KV pairs, then uses the keys to generate
d_name and reads the values to get d_ino and d_type.

data (inode ID, permission, btime, dtime, etc.), and places the
timestamp metadata of the parent directory with its child in-
odes into the same NUMA node to ensure NUMA locality of
file operations (§3.4).

Inodes are all stored in the KV Store backend. Directory
access metadata and file inodes are indexed by key <parent
inode ID+name>, and directory timestamp metadata is in-
dexed by key <inode ID>. The root directory has a unique
inode ID 0. Path resolution is done by recursively fetching the
directory access metadata from the root to the target inode.
Dirent. Directory entries (dirents) are omitted from direc-
tory metadata blocks but co-located with the keys and values
of child inode objects. Thus, dirent update and inode up-
date are fused into one key-value update operation. As shown
in Figure 3, in a readdir operation, SingularFS reassem-
bles the dirents of the target directory by adopting prefix
matching provided by the KV Store backend.
Data management. SingularFS employs a decoupled struc-
ture for metadata and data. Therefore, existing approaches for
data management can be directly adopted by SingularFS. Cur-
rently, SingularFS uses the object store [31] to manage data.
It indexes data blocks with key <inode ID+block no>.

3.2 Log-free Metadata Operations
In this section, we first analyze and classify the metadata write
operations. Then, we demonstrate the timestamp dependency
of the parent directory and child inodes and propose the core
of log-free metadata operations, i.e., ordered metadata update.

3.2.1 Analysis of Metadata Write Operations

As illustrated in Table 1, metadata write operations in Singu-
larFS can be classified into three categories according to the
number of modified inodes.

1. Single-node operations. These operations only update the
target inode itself (e.g., file open/close/read/write).

2. Double-node operations. These operations update the tar-
get inode, as well as the timestamps of its parent direc-
tory (e.g., file create/delete). Note that in SingularFS,
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Operation Type Metadata Write Operations Modified Inodes
Target Inode Parent Directory Other Inodes

Single-node open/close/read/write/chmod/chown/utimens •

Double-node mkdir/rmdir/create/delete • •

Rename rename • • •

Table 1: Classification of metadata write operations according to the modified inodes.

parent dirents are co-located with the child inode ob-
jects (§3.1), so there is no need to update the dirents
separately for these operations.

3. Rename operation. This operation updates the original
inode, the new inode, and their parent directories.

According to the real workloads shown in InfiniFS [19] and
HopsFS [20], regular metadata operations, which include read
operations, single-node operations, and double-node opera-
tions, account for more than 90% of all file system operations.
Based on this observation, we design log-free metadata oper-
ations to guarantee the crash consistency of regular metadata
operations.

Since the crash consistency of single-node operations can
be directly guaranteed by the KV Store backend, in this sec-
tion, we seek to guarantee the crash consistency of double-
node operations without incurring additional overheads.

3.2.2 Ordered Metadata Update

As double-node operations set the parent directory’s ctime
to the target inode’s btime or dtime, we observe that the times-
tamps of the parent directory and child inodes have the fol-
lowing dependency:

For an inode d, d.ctime ≥ max(c.btime,c.dtime),
where c is any of d’s child inodes.

Based on this observation, we update the metadata in order,
to guarantee the crash consistency of double-node operations
without incurring the logging overhead.
inode creation. As shown in Figure 4(a), inode creation
includes two atomic steps. First, we insert the inode with
btime = t0, where t0 is the current timestamp. Second, we set
the ctime and mtime of its parent directory to t0.
inode deletion. As shown in Figure 4(b), inode deletion
includes three atomic steps. First, we invalidate the target
inode and set its dtime to the current timestamp t0. Second, we
set the ctime and mtime of its parent directory to t0. Finally,
we physically remove the target inode from KV Store.
Crash recovery. When a crash occurs between the two steps
in inode creation, or between step 1 and step 2 in inode dele-
tion, the inconsistency can be identified by checking if the
maximum btime and dtime of child inodes > ctime of the
parent directory, and fixed by setting the ctime and mtime
of the parent directory to the maximum value. When a crash
occurs between step 2 and step 3 in inode deletion, the incon-
sistency can be identified by checking if the target inode is
invalid and fixed by physically removing the invalid inode.
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Figure 4: The process of inode creation and inode deletion
in log-free metadata operations. (a) Inode creation includes
two steps. First, insert the target inode with btime = current
timestamp t0. Then, update the timestamps of the parent di-
rectory to t0. (b) Inode deletion includes three steps. First,
mark the target inode as invalid and set its dtime to the current
timestamp t0. Then, update the timestamps of the parent di-
rectory to t0. Finally, physically remove the target inode. The
inconsistency of the directory tree is marked with red lines.

In order to detect and fix all the inconsistencies mentioned
above, the most straightforward approach is to scan the whole
directory tree. However, this process can be costly. Singu-
larFS detects and fixes the inconsistency lazily when the
inconsistent directory is accessed, as described in §4.

3.3 Hierarchical Concurrency Control

In traditional file systems, it is challenging to maximize the
parallelism of double-node operations in a shared directory,
as they cause contention over the parent dirent and times-
tamps. In SingularFS, the update of the parent dirent is
co-located with the update of the child inode, whose concur-
rency is guaranteed by the KV Store backend. Therefore, the
remaining challenge lies in the concurrent timestamp update.

We observe that double-node operations only modify the
parent directory’s ctime and mtime, whose size is 16B in
total. Therefore, the concurrency control of the timestamp
updates could be executed in a lock-free manner by leveraging
the 16B atomic compare-and-swap instruction.

We divide operations on a target inode into three categories,
updater, writer, and reader. updater contains inode update
operations that involve only the target inode’s ctime and
mtime, and writer contains all other update operations. reader
contains all inode read operations. For example, double-node
operations like file create/delete are both writers of the
target inode and updaters of the parent directory, and file stat
is a reader of the target inode.
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1 struct Inode {
2 ...
3 uint64 ctime; # aligned at a 16B boundary.
4 uint64 mtime;
5 ...
6 }
7

8 def writer(this: Inode *):
9 this->write_lock() # sync with other operations.

10 modify_inode(this)
11 this->write_unlock()
12

13 def updater(this: Inode *, timestamp: uint64):
14 this->read_lock() # sync with writer
15 while True:
16 # acquire timestamp snapshot.
17 cur = { this->ctime, this->mtime }
18 nxt = { timestamp, timestamp }
19 # update ctime and mtime atomically.
20 if (cur[0] >= timestamp or
21 cmpxchg16b(&this->ctime, cur, nxt)):
22 break
23 this->read_unlock()
24

25 def reader(this: Inode *):
26 this->read_lock() # sync with writer
27 while True:
28 # use ctime as the version number.
29 last_ctime = this->ctime
30 compiler_barrier()
31 inode = *this
32 compiler_barrier()
33 # OCC-like method.
34 cur_ctime = this->ctime
35 if cur_ctime == last_ctime:
36 break
37 this->read_unlock()
38 return inode

Algorithm 1: Hierarchical concurrency control algorithm.

Algorithm 1 shows the hierarchical concurrency control
algorithm among writer, updater, and reader.

Writer-other synchronization. Synchronization between
writers and other operations is handled by the per-inode read-
write locks. The writer acquires the write lock to guarantee
exclusive access to the target inode (line 9). Updaters and
readers acquire the read lock to avoid concurrent writer doing
inode update or remove operations (line 14, line 26).

Updater-updater synchronization. With the purpose of min-
imizing the length of the critical section, updaters use atomic
instructions to synchronize between themselves in a lock-free
manner. As the updater only updates the ctime and mtime
of the target inode, they are placed in a 16B-aligned block
(line 3), and the updater uses cmpxchg16b to atomically up-
date ctime and mtime to the maximum of the timestamp
parameter and the original value (lines 15-22). Specifically,
the updater first acquires the current snapshot of ctime and
mtime (line 17). If the current ctime is not less than the
timestamp parameter, there is no need to update the times-
tamps as they have been updated by another updater with a
later timestamp (line 20). If the current ctime is less than the
timestamp parameter and there is no concurrent updater in the
critical area (line 21), then update the timestamps atomically.

Updater-reader synchronization. We observe that ctime
monotonically increases when updaters modify the inode, so

it has the same semantic as a version number. Based on this
observation, we adopt optimistic concurrency control (OCC)
to synchronize between readers and updaters without locks.
Specifically, ctime is fetched by the reader before and after
getting the whole inode (line 29, line 34). The reader validates
the inode by comparing the two ctimes (line 35).

3.4 Hybrid Inode Partition

In this section, we first show how to partition the inodes
among NUMA nodes and execute multi-object directory op-
erations introduced by the partition. Then, we propose the
intra-NUMA data structure.

3.4.1 Inter-NUMA Inode Partition

Partition for NUMA locality of file operations. As file oper-
ations account for the majority of all metadata operations [19],
we seek to guarantee their NUMA locality.

For single-node file operations, we delegate metadata re-
quests to the corresponding NUMA node to ensure their
NUMA locality. However, this does not work for double-node
file operations (create/delete), as the two related inodes
may reside in different NUMA nodes. Fortunately, in Singu-
larFS, these operations only modify the parent directory’s
ctime and mtime, so NUMA locality of them can be guar-
anteed by grouping the parent directory’s ctime and mtime
with the child file inodes to the same NUMA node.

Therefore, SingularFS partitions the directory inode into
timestamp metadata (atime, ctime, and mtime) and access
metadata (inode ID, permission, btime, dtime, etc.). For each
directory, SingularFS aggregates the directory timestamp
metadata, its child file inodes, as well as its child directories’
access metadata into a metadata group. The objects within
a metadata group are placed in the same NUMA node. Sin-
gularFS uses consistent hashing to distribute the groups to
NUMA nodes of the metadata server, thus achieving NUMA
locality of file operations.

Multi-object directory operations. As the directory meta-
data is partitioned into two parts (i.e., two objects in the KV
Store backend), the KV Store backend cannot intrinsically
guarantee crash consistency for updates on the two parts. To
solve this problem without incurring extra cost, SingularFS
performs these operations in certain orders.
1. Directory mkdir and rmdir. Three objects are involved in

these operations, specifically the target directory’s access
metadata and timestamp metadata, as well as the parent di-
rectory’s timestamp metadata. Note that when a directory
is created, all its timestamps are set to its btime, which is in-
side the access metadata of the target directory. Leveraging
this, SingularFS creates the target directory’s timestamp
metadata after creating its access metadata. After a crash,
the target directory’s timestamp metadata is re-generated
with its access metadata.
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2. Directory set_permission. Two objects are involved
in this operation, specifically directory access metadata
and timestamp metadata. To guarantee the crash consis-
tency, we expand the semantic of btime to the maximum
of born time and last set_permission time. When ex-
ecuting set_permission, SingularFS first updates the
target directory’s permission fields and its btime at the
same time. Then, SingularFS updates its ctime. On crash
recovery, SingularFS identifies whether the directory’s
btime is greater than its ctime and fixes them if needed.

3.4.2 Intra-NUMA Inode Partition

Partition for less lock contention. To generate dirents of
a particular directory, SingularFS relies on the range query
operation, which is supported by the ordered index. However,
typical B+-tree-based ordered indexes suffer from high lock
contention caused by traversing and node splits when updates
prevail in workloads. To reduce such intra-NUMA lock con-
tention while keeping the functionality of the range query,
inside each NUMA node, SingularFS uses the hash algorithm
to scatter all metadata uniformly to n ordered indexes, where
n is a configurable parameter.

When executing point queries, SingularFS queries the
value from the key’s corresponding index calculated by its
hash. When performing range queries, such as in directory
readdir operation, SingularFS makes range queries in all
the indexes and merges the results.

Optimization for removal. Directory rmdir requires deter-
mining whether the target directory is empty. As the dirents
are co-located with the child inodes, this process can be imple-
mented using prefix matching. However, with intra-NUMA
inode partition, we would have to perform prefix matching in
all n ordered indexes, which could be costly.

We optimize this process by adding a num_dents variable
to the metadata of each directory, identifying the number of
dirents. The crash consistency of this variable is easily guar-
anteed because it can be recovered by executing a complete
prefix matching for the directory.
num_dents should meet two requirements for concurrency

safety. First, it must allow concurrent updates from updaters.
To achieve this goal, directory updaters use fetch_and_add
and fetch_and_sub to synchronize with each other. Second,
its value must be correct when a rmdir occurs. Since rmdir
is a writer of the target inode, there can be no concurrent
updaters when SingularFS is executing rmdir. Therefore,
num_dents will keep unchanged during rmdir and it is safe
for us to use its value to judge the directory’s emptiness.

4 Crash Recovery

Algorithm 2 shows the overall crash recovery algorithm for
a single directory inode in SingularFS. It mainly consists
of three aspects: Parent timestamp recovery (lines 9-14) and

1 def recover(ino: Inode):
2 ino.num_dents = 0
3 # re-create incomplete timestamp metadata
4 recreate_timestamp_meta(ino)
5 # inconsistency caused by set_permission
6 if ino.btime > ino.ctime:
7 ino.ctime = ino.btime
8 for c in ino.child_inodes:
9 if (c.valid and c.btime > ino.ctime) or

10 (!c.valid and c.dtime > ino.ctime):
11 # crash before timestamp update.
12 ino.ctime = max(c.btime, c.dtime)
13 ino.mtime = max(c.btime, c.dtime)
14 redo(c) # create / delete.
15 else if not c.valid:
16 remove(c) # invalid inode
17 ino.num_dents += 1 # maintain num_dents

Algorithm 2: Crash recovery algorithm for inode ino.

invalid inode removal (lines 15-16) in log-free metadata op-
erations, directory timestamp metadata recovery (lines 4-7)
in inter-NUMA inode partition, and num_dents maintenance
(line 2, line 17) in intra-NUMA inode partition.

SingularFS detects and fixes the inconsistent directory
only when it is accessed. Specifically, SingularFS maintains
a global restartCnt variable, which increases by one at
each restart. Inside each directory inode, we keep a local
restartCnt padded in the directory read-write lock. Lock-
ing a directory also sets its local restartCnt to the global
value. After a crash, an inconsistent directory will contain an
outdated restartCnt. Such inconsistency will be detected
and fixed according to Algorithm 2 on the next access.

5 Evaluation

In this section, we evaluate SingularFS to answer the follow-
ing questions:
• How does SingularFS compare to local PM file systems

and distributed file systems utilizing RDMA and PM on
metadata performance? (§5.2)
• How does SingularFS scale on concurrent racing metadata

operations in a shared directory? (§5.3)
• How do the techniques employed by SingularFS impact

its metadata performance? (§5.4)
• How does SingularFS perform with a billion-scale direc-

tory tree? (§5.5)
• What is the performance of rename in SingularFS? (§5.6)
• What is the end-to-end performance of SingularFS? (§5.7)
• What is the overhead of crash recovery? (§5.8)

5.1 Experimental Setup

Hardware configuration. In the experiments, unless other-
wise stated, we use one server node and one or two client
nodes. The metadata server and data server are co-located.
Each server node has two Intel Xeon Gold 6330 CPUs, with
28 cores per socket. Hyperthreading is disabled on servers, for
it aggravates contention and degrades the overall performance.
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Each socket has four 128GB Intel Optane DC Persistent Mem-
ory (DCPMM) DIMMs, 256GB DRAM, and one 200Gb/s
Mellanox ConnectX-6 NIC. The Optane DIMMs are config-
ured in App Direct mode.

Each client node has two Intel Xeon Platinum 8360Y CPUs,
with 36 cores (72 threads) per socket, so as to issue as many re-
quests as possible to saturate the metadata server. Each socket
has 256GB DRAM and one 200Gb/s Mellanox ConnectX-6
NIC. All the clients and servers are connected with a Mel-
lanox QM8790 switch. For ConnectX-6 NICs, the driver and
firmware versions are OFED 5.5-1.0.3.2 and 20.32.1010.

Compared systems. We use two types of baseline file system
in the comparison, specifically local PM file systems and
distributed file systems.

For local PM file systems, we choose Ext4-DAX and
NOVA [32]. For these file systems, we clear the VFS cache
before each directory and file stat operation to mitigate its
impact and ensure that the acquired performance reflects the
actual metadata performance of the file system.

For distributed file systems, we choose CephFS [31] and In-
finiFS [19]. For CephFS, we use version 15.2.16 with RDMA
enabled. The latency of CephFS is obtained by running it in
RDMA mode, while the throughput is obtained by running
it in IPoIB mode because we find that CephFS will always
crash if run in RDMA mode for a relatively long time. For
InfiniFS, we add support for RDMA and multiple NICs with
eRPC [13]. Since InfiniFS uses RocksDB [5] storage backend,
we run it on Ext4-DAX mounted on top of a RAID 0 device
spanning across all the PM DIMMs.

We use P-Masstree [15] as the ordered index of SingularFS
and set the per-NUMA index number n to 8. For SingularFS
and InfiniFS, we use 56 worker threads executing in-line
requests, and clients connect to them in a round-robin way.
SingularFS stores its data objects in PM for fairness.

Benchmark. We use mdtest v3.3.0 provided by IOR [3] to
evaluate the metadata performance of the aforementioned file
systems. We use OpenMPI v4.1.2 to generate parallel mdtest
client processes, which are placed on the metadata server for
local PM file systems and scattered across all the client nodes
for distributed file systems. We use the POSIX interface for
local PM file systems. For distributed file systems, we use
either the intercepted POSIX syscall [6] or the client libraries
(e.g., libcephfs of CephFS). Our experiments create files of
zero length like the previous works [17, 19, 25] because we
focus on the insights into metadata performance. For end-to-
end benchmarks, we use Filebench [27] to evaluate the overall
performance.

For lack of multi-NUMA support in some of the compared
file systems (e.g., NOVA and CephFS), we compare their per-
NUMA throughput instead of overall throughput to guarantee
the fairness of the comparison. For Ext4-DAX and NOVA,
we limit their CPU and PM resources to a single NUMA node
and use the results directly as their per-NUMA performance.
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Figure 5: Per-NUMA throughput of metadata operations in
private directories. The Y-axis is log-scaled.

For CephFS, we restrict its server-side PM and NIC resources
and directly use the results as its per-NUMA performance.
For SingularFS and InfiniFS, we do not limit their hardware
resources and average their throughput results to get their
per-NUMA performance.

5.2 Metadata Performance

In this section, we compare the overall metadata performance
of the file systems mentioned above. We use mdtest to mea-
sure the performance of directory mkdir/stat/rmdir and
file create/stat/delete operations. Each client handles 2
million directories and 2 million files in its private directory.
For CephFS and InfiniFS, we get their peak performance by
modestly reducing the directory and file quantity per client
process, as they show a relatively low performance at the
aforementioned scale.

5.2.1 Throughput

In this section, we evaluate the throughput of metadata op-
erations in different file systems. We gradually increase the
number of client processes to achieve the peak per-NUMA
throughput for each file system.

Figure 5 shows the per-NUMA metadata throughput of
different file systems in private directories. From the figure,
we make the following observations:

1) SingularFS outperforms local PM file systems in file
create and delete operations and outperforms the dis-
tributed file systems by more than an order of magnitude.
SingularFS achieves 3.13×/1.93× and 22.49×/23.57× higher
throughput for file create/delete operations than NOVA
and InfiniFS. This is because the log-free metadata opera-
tions in SingularFS removes the extra transaction logic from
the critical path of these operations, which saves both PM
bandwidth and the CPU cycles spent writing logs and wait-
ing for persistence. Inter-NUMA inode partition also guaran-
tees NUMA locality of file operations, reducing inter-NUMA
communication. These two designs make SingularFS fully
exploit the single-server performance of file metadata write
operations.
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Figure 6: Latency of metadata operations. Note that the result
of SingularFS, CephFS, and InfiniFS includes the network
delay, while the result of Ext4-DAX and NOVA doesn’t.

2) The throughput of directory mkdir and rmdir is much
lower than file create and delete, but still comparable with
local PM file systems (0.96×/0.73× than NOVA) and much
higher than distributed file systems (7.82×/7.77× higher than
InfiniFS). This is because these operations need to write both
the target directory’s access metadata and its timestamp meta-
data, which are not guaranteed to be in the same NUMA node.
However, these metadata update operations are transformed
into several simple KV writes by utilizing log-free metadata
operations, accelerating this process.

3) SingularFS outperforms local PM file systems and dis-
tributed file systems in the case of metadata read operations.
For file stat operation, SingularFS achieves 9.54×/10.10×
higher throughput than NOVA/Ext4-DAX, and 7.54×/10.97×
higher throughput than CephFS/InfiniFS. This is because by
adopting log-free metadata operations and hierarchical con-
currency control, SingularFS separates the transaction logic
from KV Store. This enables SingularFS to use a lightweight
KV Store backend (e.g., P-Masstree [15]) to accelerate the
stat operation.

4) SingularFS demonstrates high NUMA scalability. Us-
ing inter-NUMA inode partition, SingularFS guarantees
NUMA locality for file operations. Although it utilizes all
the hardware resources rather than just one NUMA node, its
per-NUMA throughput of file operations still outperforms
that of file systems running on one NUMA node.

5.2.2 Latency

In this section, we evaluate the latency of metadata opera-
tions in different file systems. We launch one mdtest client to
measure the latency of each metadata operation.

Figure 6 shows the average latency of different metadata
operations of the compared file systems. From this figure, we
make the following observations:

1) Compared with local PM file systems, SingularFS
achieves comparable latency with Ext4-DAX and NOVA in
file operations. This is because SingularFS has a shorter
server-side critical path for metadata write operations by lever-
aging log-free metadata operations and inter-NUMA inode
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Figure 7: Per-NUMA throughput scalability of file create
and delete in a shared directory.

partition. SingularFS also has a low latency for read opera-
tions by guaranteeing NUMA locality of file metadata. Even
though suffering from the µs-level inherent latency of RDMA,
SingularFS still achieves comparable latency with local PM
file systems for file operations.

2) Compared with distributed file systems, SingularFS
achieves lower latency than CephFS and InfiniFS. This is
because with the lightweight KV Store and log-free metadata
operations, SingularFS has a more lightweight software stack
than CephFS and InfiniFS, contributing to its lower latency.

5.3 Scalability in a Shared Directory

In this section, we evaluate the throughput scalability of con-
current racing metadata operations in a shared directory. In
the evaluation process, we gradually increase the number
of mdtest clients and get the per-NUMA throughput for file
create and delete operations in a shared directory.

Figure 7 shows the throughput scalability of file create
and delete in a shared directory in different file systems.
From the figure, we make the following observations:

1) SingularFS shows much better throughput scalability
in a shared directory than other file systems, outperforming
them by at least 7.76×/5.61× on file create/delete oper-
ations. This is because SingularFS leverages hierarchical
concurrency control to maximize the parallelism of meta-
data operations in a shared directory, and adopts intra-NUMA
inode partition to reduce lock contention inside the intra-
NUMA data structure. These two methods contribute to the
shared-directory scalability of SingularFS.

2) SingularFS achieves nearly the theoretical peak per-
formance in a shared directory. The file create/delete
throughput of SingularFS in a shared directory converges to
around 4Mops/s for the whole metadata server, which is close
to the per-NUMA peak throughput of SingularFS illustrated
in Figure 5. This is because all the inodes in a shared directory
are placed in the same NUMA node. Therefore, all the oper-
ations are handled in the same NUMA node, and the upper
bound for performance is the per-NUMA peak performance
of SingularFS.
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Figure 8: Performance breakdown. (a) Average latency. (b) Throughput in private directories. (c) Throughput in a shared directory.
Design techniques are accumulated.

5.4 Factor Analysis
In this section, we analyze how our designs contribute to the
latency and throughput by breaking down the performance
gap between the Baseline and SingularFS. We apply our de-
signs one by one to the Baseline, and measure the average
latency and throughput of file create and delete. For the
latency breakdown evaluation, we initiate one mdtest client
to operate on 2 million files in a directory. For the throughput
breakdown evaluation in private directories, we initiate 112
mdtest clients, and each client handles 2 million files in its
private directory. For the throughput breakdown evaluation
in a shared directory, we gradually increase the client num-
ber from 1 to 112 to achieve the peak throughput of each
configuration. Each client operates on 2 million files in a
shared directory. The results are not averaged to per-NUMA
performance.

We implement the Baseline based on the framework of
SingularFS, but without the key design features. It uses P-
Masstree running on Ext4-DAX mounted on top of a RAID 0
device built from all the PM DIMMs, with pessimistic two-
phase locking (2PL) and WAL for transaction support. In
these three figures, +Log-free stands for utilizing log-free
metadata operations instead of WAL to guarantee crash con-
sistency. +CC represents adopting hierarchical concurrency
control instead of simply using 2PL to do concurrency control.
+Inter-NUMA partition and +Intra-NUMA partition are the
two design parts of hybrid inode partition.

5.4.1 Private Directories

As shown in Figure 8(a) and Figure 8(b), SingularFS has
much higher throughput and lower latency against Baseline.
Specifically, for file create operation, SingularFS achieves
2.15× higher throughput with 1.13× lower average latency.
For file delete operation, SingularFS achieves 1.58× higher
throughput with 1.16× lower average latency. Here, we sep-
arately analyze all the design techniques in terms of file
create workload (file delete has the same conclusions).

Inter-NUMA inode partition improves the throughput by
1.52× and reduces the average latency by 1.05×, since it guar-
antees NUMA locality of file operations, thus reducing the

frequency of inter-NUMA PM access.
By using log-free metadata operations to guarantee crash

consistency, SingularFS gains another 1.58× and 1.06× im-
provement in terms of throughput and average latency. This
is because WAL is replaced in the critical path with log-free
metadata operations, reducing the bandwidth waste of PM for
logs and saving the CPU cycles of log persistence.

Hierarchical concurrency control and intra-NUMA parti-
tion bring a 10% throughput drop and a minor latency in-
crease since they introduce extra synchronization overhead
when there are few conflicts. Besides, the intra-NUMA inode
partition has a negative effect on the cache friendliness of the
overall data structure, accounting for the throughput drop.

5.4.2 Shared Directory

Figure 8(c) shows the throughput of file create and file
delete in a shared directory. Compared with Baseline, Sin-
gularFS achieves 15.93×/11.40× higher throughput for file
create/delete operations separately.

Inter-NUMA inode partition and log-free metadata opera-
tions contribute to 1.21×/1.15× throughput increase for file
create/delete operations by reducing the length of the
critical area, which shortens the critical area. However, the
major bottleneck still lies in the lock contention of the shared
directory. Hierarchical concurrency control mitigates this lock
contention, thus increasing the throughput by 7.66×/6.09×.
This is the peak throughput of P-Masstree in the case of high
lock contention brought by the common prefix. The intra-
NUMA inode partition mitigates this lock contention and
contributes to another 1.72×/1.62× higher throughput.

5.5 Billion-scale Directory Tree
In this section, we demonstrate that SingularFS can efficiently
support the billion-scale directory tree. We repeatedly create
and stat 50 million files per NUMA node to increase the
directory tree size until the file system is full.

Figure 9 shows the evaluation results. We make the follow-
ing observations from the figure:

1) SingularFS delivers a steadily high throughput for file
create and file stat operations with the billion-scale direc-
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Figure 9: Per-NUMA throughput of file create and stat
for the billion-scale directory tree. The Y-axis is log-scaled.
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Figure 10: Performance of directory rename and file rename.
(a) Latency. (b) Per-NUMA throughput.

tory tree. Specifically, it shows a steady per-NUMA through-
put of ∼4.40Mops/s for file create and ∼9.10Mops/s for
file stat, which is 41.90×/9.83× higher than Ext4-DAX. Al-
though NOVA shows a relatively high throughput when the
directory tree is nearly empty, its throughput is not even as
high as Ext4-DAX when there is a billion-scale directory tree.

2) SingularFS shows similar directory tree scalability to
local PM file systems. SingularFS supports 1.75 billion files
per NUMA node, which is higher than Ext4-DAX (1 billion
files) and lower than NOVA (2.05 billion files). The reason
why SingularFS supports fewer files than NOVA is that Sin-
gularFS uses a KV Store to store the inodes, while NOVA
uses per-core linked lists. The index of SingularFS has a
higher capacity overhead than NOVA. However, it provides
significantly higher performance.

5.6 Rename

In this section, we evaluate the latency and per-NUMA
throughput of directory rename and file rename in Singu-
larFS. In the experiments, each client renames 1 million
directories and 1 million files from one directory to another.

Figure 10 shows the overall results. From the figure, we
make the following observations:

1) For file rename, SingularFS shows comparable latency
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Figure 11: Per-NUMA throughput of Fileserver and Varmail
workloads in Filebench.

with local PM file systems and at least 3.95× higher per-
NUMA throughput than other file systems. Although Singu-
larFS uses journaling to ensure crash consistency, the journal
is lightweight as it only contains the two target KV pairs. Logs
of the parent directories are omitted with log-free metadata
operations. However, because of the journaling overhead and
inevitable inter-NUMA access, the throughput of file rename
is 0.17×/0.15× of file create/delete, lower than a half of
their throughput (i.e., theoretical throughput limit).

2) The latency and throughput of directory rename are
both worse than those of file rename. This is because Singu-
larFS adopts the directory metadata cache like the previous
works [17, 19, 25]. Directory rename causes cache invalida-
tion and path re-resolution, reducing its performance.

5.7 End-to-end Performance

In this section, we test the end-to-end performance of Sin-
gularFS. Specifically, we run the per-NUMA throughput of
Filebench Fileserver and Varmail workloads on SingularFS
and baseline systems. We set the file number of Varmail to
100K. The result of InfiniFS is not included as it focuses on
metadata service rather than the whole file system.

Figure 11 shows the results. From the figure, we make the
following observations:

1) SingularFS outperforms CephFS and Ext4-DAX in both
workloads. Specifically, SingularFS outperforms Ext4-DAX
by 1.05× in Fileserver and 1.71× in Varmail. With its meta-
data design, SingularFS gets more performance gains in Var-
mail, which is metadata-intensive.

2) SingularFS shows 0.74× and 0.41× the throughput of
NOVA in Fileserver and Varmail respectively. The lower per-
formance of SingularFS stems from the existing inter-client
metadata dependencies (e.g., client 1 creates a file, then client
2 deletes it) within the workload, which makes the high per-
formance of the metadata server hard to be fully exploited.
As the metadata server is under-saturated, the latency of meta-
data operation becomes the primary influence on the overall
performance. Because SingularFS is accessed over the net-
work, it has higher metadata operation latency (as discussed
in §5.2.2) and thus lower throughput than NOVA.
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Method Launch Consistent Inconsistent
Scan 32.1s 5.3µs -
Lazy 0s 5.3µs 30.8ms

Table 2: Recovery overhead. Launch: recovery time during
launch. Consistent: latency of file create that does not re-
quire recovery. Inconsistent: latency for file create to detect
and fix the inconsistent parent directory.

5.8 Crash Recovery

In this section, we evaluate the impact of lazy recovery on the
latency of metadata operations, compared to scanning the di-
rectory tree. In the experiments, the server crash results in one
inconsistent directory with 100K files in it. For lazy recovery,
SingularFS detects and fixes this inconsistent directory while
doing file create in it. For scan, the server scans the whole
directory tree during launch. The directory tree size is 100M.

Table 2 shows the results. From the table, we make the
following observations:

1) The time of lazy recovery is much shorter than scanning
the directory tree. This is because SingularFS only scans
the 100K files in the inconsistent directory on lazy recovery.
However, all the 100M files must be accessed when scanning
the whole directory tree, contributing to its high latency. This
issue is even more severe in the billion-scale directory tree.

2) The lazy recovery time is still orders of magnitude higher
than metadata operations. This is because SingularFS still
needs to scan the 100K files in the inconsistent directory
during lazy recovery. The recovery time is expected to be
lower if the inconsistent directory contains fewer files.

6 Related Work

The efficiency of file systems has always been an interest-
ing and important research topic, both for local PM file sys-
tems [10, 11, 32, 35] and distributed file systems [7, 17, 19, 22,
25, 31]. Different from the works mentioned above, Singu-
larFS improves metadata efficiency by optimizing the transac-
tions in metadata operations with ordered updates and improv-
ing NUMA locality of metadata operations. In this section,
we focus on these two aspects of related work.
Transactions and Ordering in metadata operations.
Transactions are a way to guarantee the atomicity and crash
consistency of metadata operations. For local PM file systems,
BPFS [10] relies on copy-on-write (CoW) and 8-byte in-place
atomic updates to provide metadata consistency. PMFS [11],
in contrast, uses larger in-place atomic updates with jour-
naling, while NOVA [32] uses a log-structured data struc-
ture for metadata consistency. For distributed file systems,
HopsFS [20] relies on both row-level locking and the NDB
backend for strong metadata consistency semantics, while
InfiniFS [19] leverages the transaction mechanism of the
key-value storage backend and the two-phase commit pro-
tocol separately for local and distributed metadata transac-

tions. CephFS [7,31] and CFS [29] also leverage their storage
backend to guarantee the atomicity and crash consistency of
metadata operations. These methods have considerable CPU
overhead, and SingularFS mitigates this overhead by using
log-free metadata operations to guarantee crash consistency
with minimal cost and adopting hierarchical concurrency con-
trol to maximize parallelism.

Ordering is another way to support crash consistency. Soft
Updates [12] ensures that data and metadata are written to
disks in an ordered way, so as to enable recovery after a crash.
One of the obstacles to using Soft Updates is the complexity
of keeping general orders between different metadata blocks.
In comparison, SingularFS only needs to keep the orders of
timestamp metadata, and thus is more practical in use.

NUMA-aware file systems. Several recent studies propose
approaches for mitigating the NUMA effect in PM file sys-
tems. NThread [30] uses thread migration to alleviate the
NUMA issues of the PM file systems. Assise [8] uses on-
die DMA engines for remote PM writes to bypass hardware
cache coherence. OdinFS [35] uses NUMA-aware delegation
threads to handle PM access with large granularity. These
approaches are mainly for data service in the file system, and
can not be easily applied to metadata service, because meta-
data operations 1) are not more costly than thread migration,
2) have a more complex indexing logic other than simple
read/write, 3) have small access granularity. SingularFS uses
hybrid inode partition to ensure NUMA locality of file opera-
tions while minimizing the extra cost of scheduling.

7 Conclusion

This paper presents SingularFS, a billion-scale distributed
file system using a single metadata server. SingularFS uses
log-free metadata operations to eliminate additional crash
consistency overheads for most metadata operations; then
uses hierarchical concurrency control to maximize the paral-
lelism of metadata operations; and finally, takes hybrid inode
partition to reduce inter-NUMA access and intra-NUMA lock
contention. Our extensive evaluation shows that SingularFS
consistently provides high performance for metadata opera-
tions on both private and shared directories, and has a steadily
high throughput for the billion-scale directory tree.
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