
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Pinolo: Detecting Logical Bugs in Database
Management Systems with Approximate

Query Synthesis
Zongyin Hao and Quanfeng Huang, School of Informatics, Xiamen University;

Chengpeng Wang, The Hong Kong University of Science and Technology;
Jianfeng Wang, University of Southern California; Yushan Zhang, Tencent Inc.;

Rongxin Wu, School of Informatics, Xiamen University; Charles Zhang, The Hong
Kong University of Science and Technology

https://www.usenix.org/conference/atc23/presentation/hao

PINOLO: Detecting Logical Bugs in Database Management Systems
with Approximate Query Synthesis

Zongyin Hao1, Quanfeng Huang1, Chengpeng Wang2, Jianfeng Wang3, Yushan Zhang4, Rongxin Wu1∗, Charles Zhang2

1School of Informatics, Xiamen University, 2The Hong Kong University of Science and Technology,
3University of Southern California, 4Tencent Inc.

{haozongyin, huangquanfeng}@stu.xmu.edu.cn, {cwangch, charlesz}@cse.ust.hk,
jianfenw@usc.edu, wurongxin@xmu.edu.cn

Abstract
DBMSs (Database Management Systems) are essential in

modern enterprise software. Thus, ensuring the correctness
of DBMSs is critical for enterprise applications. Among vari-
ous kinds of bugs, logical bugs, which make a DBMS return
an incorrect result set for a given SQL query, are the most
challenging for detection since they typically do not result in
apparent manifestations (e.g., crashes) and are likely to go un-
noticed by users. The key challenge of detecting logical bugs
is the test oracle problem, i.e., how to automatically charac-
terize the expected results for a given query. The state-of-the-
art approaches focus on generating the equivalent forms of
queries via the customized rules, which rewrite a seed query
to achieve the equivalent transformation. This dramatically
limits the forms of SQL queries fed to the DBMS and thus
leads to the under-reporting of many deeply-hidden logical
bugs. In this paper, we propose a novel approach, PINOLO,
to constructing a test oracle for logical bugs. Instead of gen-
erating the equivalent mutants of a seed query, our idea is
to synthesize the queries that theoretically should return a
superset or a subset of the result set of the seed query, form-
ing the over-approximations or under-approximations of the
seed query. A logical bug is detected if the result set returned
by our synthesized query does not follow the expected ap-
proximation relation. We implemented our idea as a DBMS
testing system and evaluated it on four widely-used DBMSs:
MySQL, MariaDB, TiDB, and OceanBase. By the time of
writing, PINOLO has found 41 unique logical bugs in these
DBMSs, 39 of which have been confirmed by developers.

1 Introduction

Database Management Systems (DBMSs) are widely used
as a key component in modern enterprise software. Their
correctness and reliability are critical for many enterprise ap-
plications, such as online banking, e-shopping, e-payment, etc.
Therefore, DBMS testing has attracted considerable attention
in the industry [14, 23, 38, 41] and academia [10, 34–36]. For
example, fuzzing, a widely-used testing technique, has been
extensively applied to DBMSs [14, 38], showing its effective-
ness in detecting crash bugs. However, as another typical kind

∗Corresponding author: Rongxin Wu (wurongxin@xmu.edu.cn)

of bug, logical bugs would cause DBMSs to return an incor-
rect result set for a given query but can easily go unnoticed
by developers since they would not behave with apparent
manifestations like system crash.

The predominant approach to detecting logical bugs con-
sists of various automatic testing techniques. However, design-
ing effective automatic testing techniques is non-trivial. One
of the fundamental technical challenges is to characterize a
correct result concerning a given query for comparison, which
is a classical problem in testing, i.e., test oracle problem [12].
To tackle this challenge, researchers have proposed various
ways to obtain the test oracle. The first category is based on
differential testing [39]. It provides the same generated SQL
query to multiple DBMSs for execution and resorts to the
querying results to construct the test oracle. More concretely,
the inconsistency among the result sets returned by differ-
ent DBMSs indicates the presence of a potential logical bug.
However, as pointed out by the existing studies [34, 36, 39],
differential testing cannot be applied when a generated SQL
query cannot comply with the grammar of all selected DBMSs
or contains operations that have different semantics between
different DBMSs. Although all the DBMSs support the com-
mon core syntax of SQL, each of them provides various ex-
tensions and forms its own dialect [39], which dramatically
limits the generality of differential testing.

The second category is the oracle-guided synthesis ap-
proach [36], which does not rely on multiple DBMSs and
thus mitigates the limitation of differential testing. It first
specifies a randomly-selected row in a database table, namely,
pivot row, as the test oracle and then synthesizes the query
whose result set should contain this pivot row. The failure of
fetching the row with the synthesized query evidences a po-
tential bug underlying the tested DBMS. However, since such
an approach considers only one row each time and the synthe-
sis merely focuses on the where clause generation, it would
miss logical bugs in various scenarios [34, 35]. For example,
those rows that are duplicated to the pivot row are wrongly
fetched or omitted, or the values processed by performing
operators on the original row data are mistakenly computed
and returned. Moreover, as pointed out by some recent stud-
ies [34, 35], the synthesis requires domain knowledge of the
database dialect’s supported operators and functions, and thus
the implementation effort is high.

USENIX Association 2023 USENIX Annual Technical Conference 345

The third category is the metamorphic testing based ap-
proach [34, 35]. It first transforms a given query q into an-
other query q′ such that their querying results satisfy a specific
relation, which is referred to as a metamorphic relation. The
violation of the metamorphic relation upon the querying re-
sults indicates the wrong result of evaluating q or q′. For
example, TLP [35] decomposes a query q into three parti-
tioning sub-queries, each of which computes the result sets
for a boolean predicate to be evaluated as TRUE, FALSE, and
NULL, respectively, and then constructs an equivalent query q′

by performing the union operation on these three sub-queries.
NOREC [34] transforms an optimized version of a query into
a non-optimized one by the customized rule, e.g., changing
“SELECT * FROM t WHERE p” into “SELECT (p IS TRUE)
FROM t.” Compared with the aforementioned two categories
of approaches, metamorphic testing based approaches are
much more lightweight to implement and have been proven
to be more effective in detecting logical bugs [34, 35]. How-
ever, existing studies instantiate the metamorphic relations as
equivalent relations, which are still insufficient to detect many
deeply-hidden bugs. This is because it is highly possible that,
owing to the limited search space of mutations, the pair of
equivalent queries would still share common buggy operators
and functions and eventually return the same results. In such
a case, the oracle from the equivalent query cannot provide
any hint to detect logical bugs.

In this work, we present a new metamorphic testing based
approach, named PINOLO, to detect logical bugs. Our idea to
instantiate the metamorphic relation originates from the obser-
vation that the querying result of a given query is essentially a
multi-set of tuples. The inclusion relation between the multi-
sets, which is the foundation of set theory, is a good choice to
characterize the metamorphic relation of two queries. There-
fore, we try to mutate a given seed query to obtain the queries
over or under-approximating it, of which the querying results
are the superset or the subset of the one of the seed query.
Based on the approximation relations, we can reveal a logical
bug if the actual results violate the approximation relation. To
systematically synthesize the two kinds of mutants, we intro-
duce a series of approximate mutators, e.g., strengthening or
weakening the predicates in where clauses, and propose an ap-
proximate query synthesis algorithm to generate the queries
that have the over and under-approximation relations with
the seed queries. Benefiting from our approximation relation
and flexible approximate mutators, PINOLO can seize more
opportunities to reveal logical bugs, as it can perform more
aggressive mutations over the seed queries (e.g., discarding
several functions), which explore the mutants of a seed query
thoroughly. We also prove the correctness of our test oracle
to solidify the theoretical foundation of PINOLO.

We implemented our idea as a DBMS testing system and
evaluated it using four widely-used and comprehensively
tested DBMSs, including MySQL, MariaDB, TiDB, and
OceanBase. Compared with the state-of-the-art approaches,

PINOLO is more effective in detecting logical bugs. During
the 24-hour run, PINOLO can find 41 unique logical bugs,
while the three state-of-the-art approaches together can only
discover 14 bugs. Upon the submission, 39 out of 41 bugs
have been confirmed by developers, showing the great impact
of PINOLO on the four real-world DBMSs. In summary, this
paper makes the following contributions:

• We introduce the concept of the approximation relation
and a series of approximate mutators to resolve the test
oracle problem in testing logical bugs in DBMSs.

• We propose a systematic metamorphic testing based ap-
proach PINOLO to detecting logical bugs in DBMSs,
which leverages the approximate mutators to synthesize
approximate queries for a seed query.

• We implement our idea as a DBMS testing system
and systematically evaluate it using four widely-used
DBMSs. The evaluation results demonstrate the effec-
tiveness of PINOLO in detecting logical bugs.

2 Background

As discussed in § 1, this paper focuses on finding logical bugs
in the DBMSs. This section provides several preliminaries
as the background, including the concept of the DBMS, the
logical bugs in the DBMSs, and the metamorphic testing
based approaches for DBMS testing.

2.1 Database Management Systems

The DBMSs are widely used in many modern software sys-
tems. They enable the developers to perform various data
manipulations, namely insertion, removal, update and search,
according to their demands. Here, we concentrate on the rela-
tional DBMSs in our work as our target, which are one typical
kind of DBMSs. Basically, they are developed on top of the
relational model (RM) [7], where data is organized as a col-
lection of tables. Each table is essentially a relation storing
the records inserted by the developers, which is a multi-set of
tuples from a mathematical perspective. Finally, a database
in the DBMS consists of one or more tables, storing the data
in a relational manner. In this paper, we use the DBMSs to
indicate the relational DBMSs without introducing ambiguity.

There have been an increasing number of DBMSs re-
leased by the industry and academia, including MySQL, Mari-
aDB, TiDB, and OceanBase [9, 22, 26, 29]. To interact with
DBMSs, SQL [3], which is the most commonly used domain-
specific language to store and operate data, was proposed.
When retrieving data, developers write SQL queries and send
them to DBMSs to get querying results. Each querying result
is a multi-set of tuples indicating specific attributes of queried
records in the tables. Overall, DBMSs provide an intuitive and
flexible way to store and retrieve information, promoting the
prosperity of database-backed applications in the real world.

346 2023 USENIX Annual Technical Conference USENIX Association

--create a table
CREATE TABLE t (c1 FLOAT);
INSERT INTO t VALUES (-1);

-- queries
(SELECT 1 FROM t WHERE COT(0.2)=0)
UNION ALL (SELECT (BINARY c1 | 0) FROM t);
--result: {0}

(SELECT 1 FROM t WHERE TRUE)
UNION ALL (SELECT (BINARY c1 | 0) FROM t);
--result: {18446744074709551615, 1}

(SELECT 1 FROM t WHERE FALSE)
UNION ALL (SELECT (BINARY c1 | 0) FROM t);
--result: {18446744074709551615}

Figure 1: An example of a logical bug in OceanBase.

2.2 Logical Bugs in DBMSs

With the prevalent usage of DBMSs in real-world industrial
scenarios, their reliability and correctness have recently been
paid increasingly more attention. As complex software sys-
tems, DBMSs can have bugs that cause crashes and other
unexpected behaviors. Remarkably, the logical bugs are one
of the most tricky bugs underlying the DBMSs. When a de-
veloper writes a SQL query and executes it upon a database,
the returned result may be erroneous, which means that the
semantics of the query is not correctly evaluated.

Figure 1 shows a logical bug in OceanBase [25]. We sim-
plify the creation of the table for better demonstration. Specifi-
cally, the first query selects the constant value 1 from the table
t if the cotangent of 0.2 is equal to 0, while the second and the
third queries replace the predicates in the where clauses with
1 and 0, respectively. Obviously, the querying result of the
first query should be a subset of the one of the second query,
and meanwhile, it subsumes the querying result of the third
one. However, the actual querying results do not conform to
such inclusion relations. As confirmed by the developers of
OceanBase, the querying result of the first query is incorrect,
which is caused by the simultaneous usage of the set operator
UNION ALL and the functions COT and BINARY.

As shown by the above example, logical bugs are more
mysterious than system crashes, which have apparent man-
ifestations. In contrast, people are often unaware of logical
bugs in DBMSs. Typically, the developers of database-backed
applications may realize the abnormal data retrieved from the
database, while they are still uncertain whether their applica-
tion is wrongly implemented or a logical bug of the DBMS
is triggered. Therefore, detecting a logical bug in the DBMS
has been typically recognized as a problem with both high
impact and significant technical challenges.

2.3 Metamorphic Testing
Recent years have witnessed tremendous efforts in resolv-
ing the test oracle for logical bug detection in the DBMSs.
Notably, the metamorphic testing based approach has been
recognized to be state-of-the-art in DBMS testing for logical
bug detection [35, 37]. Generally, the metamorphic testing
based techniques attempt to construct multiple SQL queries
of which the querying results have a specific relation, namely
a metamorphic relation. If the querying results violate the
metamorphic relation, we can have the confidence that at least
one of the queries triggers a logical bug in the tested DBMS.
For example, NOREC [34] transforms a query into a form in
which the DBMS does not apply optimizations, which yields
the test oracle that the two queries should make the tested
DBMS return the same result. Besides, TLP [35] gets the
equivalent query result by splitting the input query into several
sub-queries and merging the results of sub-queries into one.
When adapting the metamorphic testing, they take randomly-
generated queries as the seed queries and then transform them
into other queries to ensure the metamorphic relations, which
automates the testing process for logical bug detection.

Unfortunately, the existing effort has not resolved the test
oracle problem perfectly. To the best of our knowledge, pre-
vious studies only leverage the equivalent transformations,
which are supported by the tested DBMS or conducted by
their approaches, leaving the functions and operators in the
query unchanged. This greatly limits their approaches to ex-
ploring the code of the tested DBMSs and thus reduces the
chance of finding logical bugs. For example, the logical bug
shown in Figure 1 can not be revealed by NOREC [34] and
TLP [35], as the transformations preserve all the operators
and the functions, still triggering the buggy evaluation pro-
cess. To improve the capability of the metamorphic testing in
finding logical bugs in the DBMSs, we propose a new DBMS
testing approach in this work, which relaxes the equivalence
relation with a less restrictive metamorphic relation, finally
supporting finding more insightful logical bugs.

3 Approximate Query Synthesis

We propose the approximate query synthesis technique
PINOLO1 for detecting logical bugs in the DBMSs. Basi-
cally, our insight comes from the intuition that the mutation
of specific grammatical constructs can induce the approxi-
mation relation between the original query and the mutated
one, which can be adopted as the oracle of DBMS testing.
Specifically, we start from a randomly generated seed query
and mutate several constructs, such as predicates in where
clauses, comparison operators, and set operators. Based on the
mutation upon any seed query, we can successfully synthesize

1Pinolo is the English name of a cartoon character named Pinocchio.
Once he tells a lie, his nose will become longer. The relative change in its
length is the evidence to verify whether he is lying.

USENIX Association 2023 USENIX Annual Technical Conference 347

① Populate database
tables randomly

② Generate initial
seed queries

③ Synthesize over-approximate and under-approximate
queries by mutating the seed query

④ Evaluate queries on the
database with the DBMS

⑤ Check the inclusion
relation of querying results

SELECT c1
FROM t1
WHERE
NOT (c1 > 0)

C0 C1

1 2

2 -1

t1:

C2 C3

-1 1

-4 2

t2:

Over-approximate queries Under-approximate queries

q1
q2 q3 q1 q2 q3 ⊆

⊆
Back to② and iterate

Figure 2: The workflow of PINOLO

a series of queries, of which the return results are the superset
or the subset of the result of the seed query. If the seed query
and a synthesized query do not produce the results with the ex-
pected inclusion relation, we safely conclude the existence of
a bug underlying the DBMS. This section presents the system
design of PINOLO to show how it resolves the oracle problem
in detecting logical bugs in the DBMS and demonstrates the
details of mutation-based query synthesis.

3.1 Approach Overview
We demonstrate the overall workflow of PINOLO in Figure 2.
In the pre-processing phase, we populate several tables in a
database by generating table records randomly, which lever-
ages the existing DBMS random testing technique [27]. After
preparing the database, PINOLO first generates a syntactically
valid SQL query as the seed query. Then it parses the seed
query and traverses its AST to determine whether each gram-
matical construct can be mutated. The mutations can make
PINOLO synthesize several new queries of which the querying
results have the inclusion relation with the one of the seed
query, achieving the over or under-approximation for the seed
query. Based on the synthesized queries and their approxima-
tion relation with the seed query, we further evaluate them on
the populated database. Any violation of the approximation
relation reveals a potential logical bug of the DBMS as at
least one of the querying results of the seed query and the
synthesized one is incorrect.

The critical component of PINOLO is to automatically gen-
erate the pairs of SQL queries with known approximation
relations. To show more technical details, we first propose
the approximation relation for SQL queries (§ 3.2), and then
demonstrate how to synthesize the queries with approximation
relations based on mutations (§ 3.3 and § 3.4). We summarize
our design and highlight the advantage of PINOLO (§ 3.5).

3.2 SQL Query Approximation
In this work, we concentrate on the syntax of SQL queries
shown in Figure 3. Basically, a SQL query can be a select-
from-where query or the result of the set operation upon sub-
queries. The logical connectives and arithmetic operators
make the query support depicting sophisticated predicates and

Relation R := t | q | r1⊗ r2 | r1 JOIN r2

Query Q := q1⊗q2 | SELECT a FROM r (WHERE p)? |
SELECT DISTINCT a FROM r (WHERE p)?

Pred P := ℓb | ec | p IS ℓb | p IS NOT ℓb

| p1 AND p2 | p1 OR p2 | NOT p

CExpr Ec := ea1⊙ ea2 | ea⊙ALL(r) | ea⊙ANY(r)

AExpr Ea := ℓn | c | ea1⊕ ea2 | f (ea)

SOp ⊗ := UNION |UNIONALL | INTERSECT |MINUS

COp ⊙ := > | < | ≥ | ≤ | == | ̸=
AOp ⊕ := + | − | × | ÷ | · · ·
BLit Lb := TRUE | FALSE NLit Ln := ℓn

Attrs A := c | ea | ea a

Table T := t Attr C := c

Figure 3: The syntax of SQL queries

quantities. Without the loss of generality, we only instantiate
an arithmetic expression with an integer literal, an attribute,
the result of an arithmetic operator, and the result of a SQL
built-in function. Notably, we can also utilize the keywords
ALL and ANY to support advanced comparison between an
arithmetic expression and the numeric attributes.

To resolve the test oracle problem in the DBMS testing,
we follow the spirit of metamorphic testing and propose the
approximation relations among the SQL queries. In what
follows, we first formulate the concept of the approximation
relation and then characterize the form of the SQL queries
that can have approximation relations with other queries.

Definition 3.1. (Approximation Relation) Given a database
D, a SQL query q1 is the over-approximation of q2 over D,
denoted by q2⊴D q1, if and only if R(q2,D)⊆ R(q1,D). Here,
R(q,D) is the return result set of q upon the database D, which
is essentially a multi-set. ⊆ is the inclusion relation between
two multi-sets. We say q2 is the under-approximation of q1
over D, denoted by q1 ⊵D q2, if and only if q2 ⊴D q1.

Intuitively, the approximation relation between two SQL
queries indicates the inclusion relation of their querying re-
sults. If we construct a pair of SQL queries (q1,q2) such that

348 2023 USENIX Annual Technical Conference USENIX Association

q1 ⊴D q2 or q1 ⊵D q2, we can utilize the approximation rela-
tion as an instantiation of the metamorphic relation, which
serves as the test oracle for DBMS testing.

Example 3.1. Assume that we have a database D = {t1},
where the schema of t1 is (c1) and t1= {(−1),(0),(1)}. Con-
sider the following three queries.

q1 : SELECT c1 FROM t1 WHERE NOT (c1 > 0)
q2 : SELECT c1 FROM t1 WHERE TRUE

q3 : SELECT c1 FROM t1 WHERE NOT (c1≥ 0)

The first query q1 selects all the non-positive values of the
attribute c1 of the table named t1. The second query q2 selects
all the values of the attribute c1. The third query q3 selects all
the values of the attribute c1 that are not large than or equal
to 0. Obviously, their querying results, denoted by R(q1,D),
R(q2,D), and R(q3,D), respectively, have the relation that
R(q3,D) ⊆ R(q1,D) ⊆ R(q2,D), implying q3 ⊴D q1 ⊴D q2,
i.e., q2 ⊵D q1 ⊵D q3.

To sum up, the syntax shown in Figure 3 characterizes the
search space of constructing a pair of queries with an approx-
imation relation. Given a seed query in the syntax, we can
always obtain a query upon a smaller/larger relation or with
a stronger/weaker where clause, which induces a subset/su-
perset of the return result of the seed query, achieving the
under/over-approximation of the given seed query. Therefore,
it is feasible to automatically generate the queries that have
the approximation relation with a specific query q by mutating
the query q, which trims/enlarges the relation or strengthen-
s/weakens the predicate in the seed query. In this way, we can
resolve the test oracle problem by synthesizing queries with
approximation relations.

3.3 Approximate Mutators
Based on the key insight in § 3.2, we propose to resolve the
test oracle problem by constructing SQL queries with the
approximation relation. Specifically, we can always obtain
the approximation relation if we transform a query to another
one preserving the set inclusion relation of the relations and
the implication relation of the predicates. According to high-
level intuition, we propose the concept of the approximate
mutator as follows, which is the fundamental ingredient of
the approximate query synthesis in § 3.4.

Definition 3.2. (Approximate Mutator) An approximate mu-
tator is a mapping from a SQL query q1 to a query q2 such
that q1 ⊴D q2 or q1 ⊵D q2.

Essentially, an approximate mutator transforms a SQL
query into another such that they have the over or under-
approximation relation. We notice that a relation can be de-
rived from other relations, e.g., the results of a select-from-
where query and set operations, while compound and atomic

Table 1: Some representative approximate mutators. Trans-
forming the construct C1 into C2 achieves the under-
approximation, while transforming the construct C2 into C1
achieves the over-approximation.

Type C1 C2

Relation

SELECT a FROM r SELECT DISTINCT a FROM r
r1 UNION ALL r2 r1 UNION r2

r1 UNION r2 r1
r1 UNION r2 r1 INTERSECT r2

r1 r1 MINUS r2

Predicate

p FALSE
p IS ℓb FALSE

p IS NOT ℓb FALSE
TRUE p
TRUE p IS ℓb
TRUE p IS NOT ℓb

Comparison
expression

ea1 ≤ ea2 ea1 = ea2
ea1 ≥ ea2 ea1 = ea2
ea1 ≤ ea2 ea1 < ea2
ea1 ≥ ea2 ea1 > ea2
ea1 ̸= ea2 ea1 < ea2
ea1 ̸= ea2 ea1 > ea2

e⊙ANY(r) e⊙ALL(r)

logical expressions pose restrictions over relations. Therefore,
we propose three categories of approximate mutators, which
are shown in Table 1.

Concretely, the mutators alter the relations and predicates
in a SQL query, and meanwhile, mutate the comparison ex-
pressions, which are often atomic constraints in a predicate,
achieving the approximation relation between the queries be-
fore and after the mutation. For each row, if we replace the
SQL grammatical construct in the second column with the
one in the third column, we can obtain a query that under-
approximates the original one; if we replace the one in the
third column with the one in the second column, we can obtain
a new query that over-approximates the original query. Now
we provide more explanations on the approximate mutators.

• Mutating relations. Using DISTINCT in a select-from-
where query removes the duplicate values in the query-
ing result, which under-approximates the original query.
The set operator UNION ALL preserves the duplicate val-
ues and the operator UNION does not, so replacing the
former with the latter ensures the under-approximation
relation between the new query and the original one.
Other mutators altering relations are fairly simple.

• Mutating predicates. For an arbitrary predicate p, we
can strengthen it by mutating it to FALSE and weaken it
by mutating it to TRUE. The logical implication would
pose more or less restrictive constrain upon the tu-
ples in the relations, which finally achieve the under-
approximation or over-approximation, respectively.

• Mutating comparison expressions. For each compari-
son expression as an atomic constraint, we can alter its
comparison operator to strengthen or weaken the con-
straint induced by the expression. For example, replacing

USENIX Association 2023 USENIX Annual Technical Conference 349

≥with= makes the new expression more restrictive than
the original one. Also, mutating the keyword ANY with
ALL also induces a stronger predicate in the query.

Example 3.2. For the simpler SQL query q1 in Example 3.1,
we can mutate it by replacing the negation with TRUE and
altering > to ≥, which yield two queries q2 and q3 that over-
approximate q1, respectively. We can further consider a more
complex SQL query as follows.

q̃ : SELECT 1 FROM t1 WHERE

(NOT (FROM_DAYS(1) = ALL(SELECT c1 FROM t1)))

We can mutate the predicate in the where clause of q̃ to TRUE
to over-approximate the query q̃. Also, mutating ALL to ANY
weakens the comparison expression in the negation, and thus,
strengthens the predicate in the where clause, yielding an
under-approximation of the query q̃.

Notably, the approximate mutator proposed in this section
is a general concept. The mutators shown in Table 1 are
just several instances of the mutators, while we can further
define more mutators to enable us to obtain the queries with
approximation relations more flexibly. Actually, we provide
a systematic framework to instantiate such mutators in these
categories. The complete list of the instantiated mutators,
including REGEXP and IN operators, has been published
online [31].

3.4 Mutation-based Query Synthesis
Leveraging the approximate mutators in § 3.3, we can fi-
nally propose the approximate query synthesis algorithm by
applying the mutators upon a seed query. This section demon-
strates the technical details of the synthesis algorithm on how
to generate two sets of SQL queries that over-approximate
and under-approximate a seed query, respectively. We also
formulate our test oracle with a theorem as the theoretical
guarantee for the approximation relations among the seed
query and the synthesized ones.

Algorithm 1 shows the mutation-based query synthesis al-
gorithm. Initially, it takes a seed query as the input, parses
the query, and generates an AST of the query to facilitate
further mutations (Line 2). Basically, it traverses the AST in a
top-down manner, during which it identifies the potential SQL
constructs for the mutation (Line 3–Line 4). Consider synthe-
sizing the queries that under-approximate the seed query as
an example, where kind is set to be UNDER (Line 4). Specifi-
cally, it processes each SQL construct in two ways.

• When encountering the SQL construct (r1 MINUS r2), it
attempts to trim the relation r1 and enlarge the relation r2
so that the difference of the two relations can be trimmed
(Line 12–Line 15). Similarly, it strengthens the predicate
p for (NOT p) and (p IS NOT TRUE), and also enlarges
the relation r for the comparison expression e⊙ALL(r)
(Line 16–Line 24).

Algorithm 1: Mutation-based query synthesis
1 Procedure synthesizeApproximateQueries(q):
2 τ← parseQuery(q) ;
3 Qover← mutate(q,τ,OVER) ;
4 Qunder← mutate(q,τ,UNDER) ;
5 return (q,Qover,Qunder);
6 Procedure mutate(u, τ, kind):
7 if kind == OVER then
8 negKind← UNDER;
9 else

10 negKind← OVER;
11 S← applyApproxMutator(q,τ,kind)∪{q};
12 if u : (r1 MINUS r2) then
13 S′1← mutate(r1,getAST(r1),kind);
14 S′2← mutate(r2,getAST(r2),negKind);
15 S← S∪{r′1 MINUS r′2 | r′1 ∈ S′1,r

′
2 ∈ S′2} ;

16 else if u : (NOT p) then
17 S′← mutate(p,getAST(p),negKind);
18 S← S∪{NOT p′ | p′ ∈ S′};
19 else if u : (p IS NOT TRUE) then
20 S′← mutate(p,getAST(p),negKind);
21 S← S∪{p′ IS NOT TRUE | p′ ∈ S′};
22 else if u : e⊙ALL(r) then
23 S′← mutate(r,getAST(r),negKind);
24 S← S∪{e⊙ALL(r′) | r′ ∈ S′} ;
25 else
26 Γ← getSubASTs(u) ;
27 Π←⊥;
28 foreach (v,τv) in Γ

29 Π[(v,τv)]← mutate(v,τv,kind);
30 S← S∪concat(q,Γ,Π) ;
31 return S;

• For other SQL constructs, it trims each relation and
strengthens each predicate and comparison expression
appearing in the constructs. Lastly, it composes each
mutated constructs together by the function concat
to obtain the ASTs of the synthesized queries under-
approximating the seed query (Line 26–Line 30).

By applying the approximate mutators during the AST traver-
sal, Algorithm 1 finally synthesizes two sets of queries on the
fly, which are syntactically valid and have the approximation
relation with the seed query q.

Example 3.3. Consider the query q̃ in Example 3.2 as the
seed query. We show how to synthesize the queries that under-
approximate q̃. After generating its AST, which is shown by
the leftmost tree in Figure 4, Algorithm 1 examines each SQL
construct in a top-down manner. When encountering the pred-
icate in the where clause, we can mutate the predicate, which
is a logical negation, to FALSE, or strengthen the predicate in
the logical negation. For the latter case, we can further mutate
the comparison expression in the negation to TRUE, mutate
the comparison operator with ≥, or replace ALL with ANY,
which finally weakens the logical negation. Finally, we can

350 2023 USENIX Annual Technical Conference USENIX Association

SELECT

FROM

t1

WHERE

NOT

=

FROM_DAYS

1

1

ALL

c1 FROM

t1

SELECT

FALSE

NOT

TRUE

()

≥

FROM_DAYS

1

ALL

c1 FROM

t1

SELECT

=

FROM_DAYS

1

ANY

c1 FROM

t1

SELECT

Figure 4: An example of synthesizing queries under-
approximating the query q̃

obtain four queries that under-approximate q̂. Particularly,
one of the synthesized queries is as follows:

q̃′ : SELECT 1 FROM t1 WHERE

(NOT (FROM_DAYS(1)≥ ALL(SELECT c1 FROM t1)))

Fortunately, we find that R(q̃′,D) is not subsumed by R(q̃,D),
indicating that the querying result of q̃ or q̃′ is incorrect, which
is confirmed by the developers of MySQL [21].

It is worth mentioning that we have to restrict the values in
the database tables not to be null. Any comparison between
a non-null value and a null value can introduce an unknown
value of the comparison expression, denoted by NULL with-
out the ambiguity, which is smaller than TRUE but larger than
FALSE in the logical order. However, we can notice that the
predicate (p IS NULL) evaluates to FALSE, TRUE, or FALSE,
if p is TRUE, NULL, or FALSE, respectively, which indicates
that strengthening or weakening the predicate p does not al-
ways strengthen or weaken the predicate p IS NULL. In this
case, we cannot ensure the expected approximation relation
between the seed query and the synthesized queries in Qover
and Qunder. Formally, we state the following theorem to for-
mulate our test oracle.

Theorem 3.1. (Test Oracle) Assume that the database D does
not contain any table storing null values. Taking the query q
as a seed query, Algorithm 1 can always synthesize two sets
of queries Qover and Qunder such that:

• For any q′ ∈ Qover, we have q⊴D q′, i.e., q′⊵D q.

• For any q′ ∈ Qunder, we have q′⊴D q, i.e., q⊵D q′.

To solidify the theoretical foundation of our test oracle, we
sketch the proof of the theorem briefly. First, the fact that
the database tables do not contain null values implies that
the evaluation results of any expressions, including compari-
son expressions and predicates, are not evaluated to unknown
values, and the intermediate relations, such as the results of
the join and the union operator, do not contain null values.
Second, it is trivial to prove that the approximate mutators
applied to different constructs finally yield a weaker pred-
icate or larger relation when kind is OVER in the absence

of null values. A similar argument also holds when kind is
UNDER. Therefore, we can prove the approximation relation
between each synthesized query and the seed query based on
the principle of structural induction.

3.5 Summary
PINOLO automates the DBMS testing via the approximate
query synthesis, which discovers underlying logical bugs in
the DBMSs. The syntax in Figure 3 ensures the syntactical
validity of the seed queries, and furthermore, guarantees that
the synthesized queries have valid SQL syntax. Meanwhile,
our approximate mutators enable us to obtain the approxima-
tion relation between the seed query and the synthesized ones,
which perfectly resolves the test oracle problem. Compared
with the existing techniques [34–36], PINOLO considers more
SQL features, such as set operators, arithmetic expressions,
sub-queries, etc. The expressive syntax permits us to test the
DBMS more thoroughly and discover more logical bugs re-
ported in previous studies, which will be evidenced by our
experiments. Besides, the approximate operators can aggres-
sively mutate the seed query, which may remove the buggy
operators and functions, revealing the logical bugs more thor-
oughly than existing techniques. Lastly, it is worth noting that
PINOLO provides a general framework for discovering the
logical bugs in the DBMS. We can further extend the syntax
of SQL queries and instantiate more approximate mutators,
which can promote the capability of discovering the logical
bugs triggered by sophisticated SQL queries.

4 Implementation

We implemented our approach PINOLO as a DBMS testing
system, which was written in GO with 8,055 lines of code.
The source code of our tool is hosted in the github repository 2.
Next, we present more details of our implementation decisions
that are important for the outcome of our experiments.

Database population. We randomly generate the database
tables by leveraging an existing tool, GO-RANDGEN [27].
Following the best practice summarized in the prior study [36],
we restrict the number of table records to be no more than
30. Besides, we randomly generate the tables with the same
attributes, which makes the join operator yield a non-trivial
result. Particularly, we avoid null values in any table, as the
test oracle requires non-null values as a prerequisite, which is
stated in Theorem 3.1.

Seed query generation and parsing. To generate seed
queries as the input of our synthesis algorithm, we utilize GO-
RANDGEN [27] to automatically produce seed SQL queries.
Specifically, we use the general-purpose parser generator BI-
SON [13] to write a context-free grammar file describing the
SQL syntax with a series of production rules. We provide

2https://github.com/qaqcatz/impomysql.git

USENIX Association 2023 USENIX Annual Technical Conference 351

https://github.com/qaqcatz/impomysql.git

this grammar file to GO-RANDGEN, so that it can generate the
queries by searching each production rule randomly. It then
heuristically selects the terminal or non-terminal symbols to
avoid exceeding the limitation of recursion. Moreover, we
permit users to write embedded LUA code blocks in the gram-
mar file to further restrict the form of seed queries, which
can ensure the successful query execution, e.g., the number
of columns in the two queries of UNION should be equal. To
apply the approximate mutators to seed queries, we utilize
another tool PINGCAP PARSER [28], which accepts the same
context-free grammar as the one for the seed query generation,
to generate ASTs of seed queries for the mutation.

Approximate mutator instantiation. As mentioned at the
end of § 3.3, we instantiate a series of approximate mutators
for the relations, predicates, and comparison expressions in a
given query. Each approximate mutator consists of two SQL
grammatical constructs, which indicate the construct after the
over and under-approximation, respectively. To cover most
features of DBMSs, we instantiate 25 approximate mutators
in total, including the approximate mutators demonstrated
in Table 1. Among them, 5, 6, and 14 approximate muta-
tors correspond to the mutations of the relations, predicates,
and comparison expressions, respectively. Apart from the ap-
proxmiate mutator in Table 1, we also include 7 mutators
supporting LIKE, REGEXP, IN, and BETWEEN.

Bug report post-processing. After synthesizing queries,
PINOLO obtains the querying results by evaluating queries on
the populated database in the tested DBMSs. It is noted that
inconsistent querying results frequently occur in our testing
process. For example, during a 24-hour testing period, 46,772
inconsistent query pairs are generated for MySQL. The large
number of such query pairs makes the process of confirming
and fixing bugs quite verbose. To make the testing results eas-
ier to understand, we borrow the idea of delta debugging [56]
to localize the root cause of the inconsistent returned results of
each query pair. Specifically, we associate each problematic
query pair with a release version of the under-test DBMS’s
code base, the earliest one where inconsistent query results
appear. We denote such release version with respect to a given
query pair as the bug-inducing version. Further, two bugs are
considered the same if their bug-inducing versions are the
same. Based on our interactions with DBMS developers, our
bug reports and the release version’s change lists can help
developers pinpoint culprit updates easily.

5 Evaluation

To evaluate the performance of our approach PINOLO in de-
tecting logical bugs in the popular real-world DBMSs, we
design the following research questions:

• RQ1: How many logical bugs in real-world DBMSs can
be detected by PINOLO?

• RQ2: Can PINOLO outperform the state-of-the-art logi-
cal bug detection techniques?

• RQ3: How does the randomness introduced by the seed
query generation affect the performance of PINOLO?

5.1 Experiment Setup

Environment. We conducted the experiments on one server
with 104-cores Intel(R) Xeon(R) Gold 6230R CPU @
2.10GHz and 500 GB memory. The server runs Ubuntu 18.04
system that uses Linux kernel version: 5.4.0-135-generic. To
ensure fair comparisons, we allocated four threads for each
DBMS testing in our following experiments.

Tested DBMS. Our focus was on testing four widely-used and
large-scale open-source DBMSs: MySQL, MariaDB, TiDB,
and OceanBase. There are two main reasons for the sub-
ject selection. First, these selected DBMSs are representative
DBMSs from phenomenal open-source and/or commercial
products: MySQL and MariaDB are the two most well-known
open-source DBMSs; OceanBase is a mature commercial
database product from Ant Group; TiDB is developed by
PingCap Inc. They are also commonly used in the evaluation
of previous studies [34–36]. Moreover, we admit and discuss
potential limitations introduced by our selection of DBMS
systems in § 6. Second, we chose a DBMS whose SQL syn-
tax is compatible with MySQL as an evaluation subject to
reduce the implementation effort. This is because, although
our approach can be generalized to other DBMSs, the im-
plementation of the seed query generation and parsing (See
§ 4) requires a grammar file that describes the SQL syntax
of a tested DBMS. To obtain timely feedback from devel-
opers, we tested the latest release versions of the selected
DBMSs: MySQL 8.0.31, MariaDB 10.11.1, TiDB 6.4.0, and
OceanBase 4.0.0.

Baseline. We compared PINOLO with the three state-of-
the-art logical bug detection techniques, namely PQS [36],
NOREC [34], and TLP [35], respectively, which correspond
to three kinds of test oracles. Similar to our approach, these
baselines also require knowledge about the SQL syntax of
different DBMSs for seed query generation and parsing. Un-
fortunately, their implementations cannot support all the se-
lected DBMSs. We also sought help from their authors, but
they still could not fix the problems before the paper submis-
sion. Therefore, we skipped the evaluation of the baselines on
the unsupported DBMSs. Moreover, we tried to use the same
random seed as the baselines. However, we found that they
can neither export their random seeds nor import the random
seeds provided by users. Therefore, we generated the random
seeds by ourselves for PINOLO. To understand the impacts
of the random seed query generation, we investigated how
PINOLO is robust to such randomness in § 5.4.

352 2023 USENIX Annual Technical Conference USENIX Association

0 2 4 6 8 10 12 14 16 18 20 22 24

Testing Time(h)

0

2

4

6

8

10

12

14

16

U
n

iq
u

e
B

u
g

(a) MySQL

PINOLO

TLP

0 2 4 6 8 10 12 14 16 18 20 22 24

Testing Time(h)

0

2

4

6

8

10

12

14

16

U
n

iq
u

e
B

u
g

(b) MariaDB

PINOLO

NoREC

0 2 4 6 8 10 12 14 16 18 20 22 24

Testing Time(h)

0

2

4

6

8

10

12

U
n

iq
u

e
B

u
g

(c) TiDB

PINOLO

TLP

0 2 4 6 8 10 12 14 16 18 20 22 24

Testing Time(h)

0

1

2

3

U
n

iq
u

e
B

u
g

(d) OceanBase

PINOLO

Figure 5: Comparison between PINOLO and the baselines. (a)-(d) show the number of unique logical bugs over time (24 hours)
on each DBMS. We ignore the results of the baselines on the unsupported DBMSs and the baselines finding no bugs.

Table 2: The demographics of the DBMSs under the test
DBMS Version GitHub Stars LOC First Release

MySQL 8.0.31 8.6K 4,766,086 1995
MariaDB 10.11.1 4.6K 3,727,410 2009

TiDB 6.4.0 33.1K 985,518 2017
OceanBase 4.0.0 5.1K 2,722,881 2021

Table 3: Applicability of existing logical detection techniques
and PINOLO for the selected DBMSs

DBMS PQS NOREC TLP PINOLO

MySQL ✓ × ✓ ✓
MariaDB × ✓ × ✓

TiDB × × ✓ ✓
OceanBase ✓ ✓ ✓ ✓

5.2 Effectiveness of PINOLO

We used PINOLO to test the latest version of MySQL, Mari-
aDB, TiDB, and OceanBase for 24 hours. Table 4 summarizes
the results of PINOLO. The column All shows the number of
problematic query pairs that induce unexpected results, which
indicate the existence of logical bugs. As we can see, PINOLO
discovered a large number of problematic query pairs, rang-
ing from 4,675 to 46,772 for the tested DBMSs. However,
we found that most of these pairs can be attributed to the
same bug. To relieve the developers from the heavy burden
of checking the duplicate bugs, we leverage the bug-inducing
version to deduplicate the bugs (See § 4). The column Unique
shows the number of bug reports after deduplication, which
is significantly smaller than the value in column All, ranging
from 2 to 14. We submitted the deduplicated bugs to the de-
velopers for confirmation. The column Verified shows the
number of bug reports that have been verified by developers,
ranging from 2 to 14.

Table 4: The number of logical bugs found by PINOLO.

DBMS All Unique Verified

MySQL 46,772 14 14
MariaDB 42,208 14 12

TiDB 5,268 11 11
OceanBase 4,675 2 2

In total, PINOLO found 41 unique logical bugs in these
DBMSs, 39 of which have been confirmed by developers. For
MySQL, TiDB, and OceanBase, all of the detected bugs have
been confirmed by developers. For MariaDB, twelve out of
fourteen bugs have been confirmed, while the rest are still
waiting for the investigation. We sampled several bug reports
of MariaDB submitted by others and found that developers
typically take a much longer time to handle the bugs. To keep
track of the status of our reported bugs, we release the bug
list in a public GitHub repository3.

Answer to RQ1: PINOLO discovers 41 unique bugs
on MySQL, MariaDB, TiDB, and OceanBase, 39 of
which have been confirmed by DBMS developers.

5.3 Comparisons on Detecting Logical Bugs
Logical bug detection. We compared PINOLO with the three
state-of-the-art baselines, i.e., PQS, NOREC, and TLP. We
ran all methods with a time budget of 24 hours. The compari-
son results are shown in Figure 5. Note that the baselines do
not support all the DBMSs, and thus we only concentrated on
the comparison between PINOLO and the runnable baselines
with respect to each DBMS.

For MySQL, PINOLO detected 14 logical bugs, while TLP
only discovered 2 bugs. For MariaDB, PINOLO detected 14
bugs, while NOREC discovered 10 bugs. For TiDB, PINOLO
detected 11 bugs, while TLP only discovered 2 bugs. For
OceanBase, PINOLO can detect 2 bugs, while the baselines
cannot find any. We also manually verified the overlap in the
bugs detected by PINOLO and the baselines. For MariaDB,
4 out of 10 bugs detected by NOREC can also be found by
PINOLO. For TiDB, 1 out of 2 bugs detected by TLP can also
be found by PINOLO. There are no bugs detected by PQS.

Figure 5 shows the logical bug detection progress over
time for PINOLO and the baselines. We found that PINOLO is
more efficient in finding logical bugs compared to all of the
baselines. Within one hour, PINOLO was able to detect 57.1%
(8/14) of bugs on MySQL, 85.7% (12/14) on MariaDB, 63.6%
(7/11) on TiDB and 50% (1/2) on OceanBase.

Code coverage. To understand why PINOLO can find more

3https://github.com/qaqcatz/impomysql_bugreports

USENIX Association 2023 USENIX Annual Technical Conference 353

0 2 4 6 8 10 12 14 16 18 20 22 24

Testing Time(h)

100

110

120

130

140

150

C
o
v
er

ag
e(

K
)

(a) MySQL

PINOLO

PQS

TLP

0 2 4 6 8 10 12 14 16 18 20 22 24

Testing Time(h)

10

13

16

19

22

25

28

C
o
v
er

ag
e(

K
)

(b) MariaDB

PINOLO

NoREC

Figure 6: Code coverage comparison between PINOLO and
the three baselines over 24 hours

logical bugs than all other methods, we used GCOV [30] to
compute the line coverage achieved by PINOLO and all oth-
ers. Note that we are unable to provide code coverage results
for TiDB and OceanBase. As TiDB is developed in GO, we
cannot find any feasible tool to support the program instru-
mentation or the code coverage profile for system test 4. For
OceanBase, the instrumented binary has to be deployed by the
specific tool OBDEPLOY [24], which breaks the functionality
of code coverage profiling.

Figure 6 shows the code coverage over time for MySQL
and MariaDB. The results show that PINOLO achieves a
higher line coverage than the three baselines. For MySQL, the
improvement of PINOLO over PQS and TLP is 2.2% (3,008
lines) and 4.0% (5,316 lines), respectively. For MariaDB, the
improvement of PINOLO over NOREC is 12.4% (2,835 lines).

Code coverage is well recognized as an approximation
of testing capability, because a bug cannot be detected if its
buggy code is not executed. However, larger code coverage
does not mean more bugs. To better understand the impact of
larger code coverage achieved by PINOLO, we further inves-
tigated whether there were some bugs whose buggy code is
uniquely covered by PINOLO. TiDB#40015 [42] is a typical
example. The root cause of this bug is the improper exception
handling in the function vecGetDateFromString, which has
been covered by PINOLO but missed by other baselines during
the 24-hour running.

Answer to RQ2: Compared with the state-of-the-art
techniques, PINOLO can find more unique logical bugs
and achieve higher line coverage.

5.4 Impacts of The Seed Query Generation

PINOLO uses GO-RANDGEN, which takes a random seed to
generate a set of seed queries. To understand whether the ran-
domness affects the efficiency and effectiveness of PINOLO,
we conducted the experiments which used GO-RANDGEN
with five different random seeds to generate five sets of seed
queries. We then ran PINOLO under each set and compared
their performance on detecting logical bugs.

4Go 1.20 plans to cover the features of program instrumentation and code
coverage profile, but will be available after Feb 2023 [15].

Table 5: The numbers of the discovered logical bugs when
feeding different seed queries to PINOLO

DBMS Seed1 Seed2 Seed3 Seed4 Seed5 Common

MySQL 14 18 16 16 17 11
MariaDB 14 16 13 13 13 10

TiDB 11 9 11 11 13 9
OceanBase 2 2 2 2 2 2

Table 6: Importance of the logical bugs found by PINOLO

DBMS Severity Bug impact duration
S2 S3 <1 year 1∼5 years 5∼10 years

MySQL 6 8 1 7 6
MariaDB 9 3 1 7 4

TiDB 8 3 5 6 0
OceanBase - - 1 1 0

Figure 7 shows the progress of detecting unique logical
bugs over time for the five sets of seed queries. We found that
the growth trend of the number of unique bugs over time is
similar under different sets. Table 5 shows more details about
these detected logical bugs. Among the five sets of random
seed queries, the common bugs, of which the numbers are
shown in the column Common, account for an average of
68.4%, 72.9%, 82.9%, and 100% of the total bugs on MySQL,
MariaDB, TiDB, and OceanBase respectively. This result
shows that PINOLO can find different unique logical bugs via
different sets of random seed queries.

Answer to RQ3: The randomness introduced by the
seed query generation does not have a significant
impact on the overall bug detection performance of
PINOLO. Meanwhile, the different random seed queries
can benefit PINOLO in detecting different bugs.

5.5 Discussion

Bug Importance. To understand the importance of the bugs
found by PINOLO, we investigated their severity and the im-
pact duration. The results are shown in Table 6. The column
Severity indicates the severity of the bugs labeled by develop-
ers. Our reported bugs were classified as the levels of S2 and
S3, which represent the second and third highest severity lev-
els, respectively. Typically, the S2 level indicates a severe loss
of service or missing significant functionality, while the S3
level indicates a minor loss of service or inconvenient usage.
Note that there is no severity level in the bug tracking system
of OceanBase, so we skipped the discussion for OceanBase.
We discovered 6, 9, and 8 bugs in the S2 level in MySQL,
MariaDB, and TiDB, respectively, which account for 62.2%
of the bugs in the three DBMSs. The bugs in the S3 level are
less severe, but developers still considered them to be fixed

354 2023 USENIX Annual Technical Conference USENIX Association

0 2 4 6 8 10 12 14 16 18 20 22 24

Testing Time(h)

0

2

4

6

8

10

12

14

16

18

20

U
n

iq
u

e
B

u
g

(a) MySQL

Seed1

Seed2

Seed3

Seed4

Seed5

0 2 4 6 8 10 12 14 16 18 20 22 24

Testing Time(h)

0

2

4

6

8

10

12

14

16

18

U
n

iq
u

e
B

u
g

(b) MariaDB

Seed1

Seed2

Seed3

Seed4

Seed5

0 2 4 6 8 10 12 14 16 18 20 22 24

Testing Time(h)

0

2

4

6

8

10

12

14

U
n

iq
u

e
B

u
g

(c) TiDB

Seed1

Seed2

Seed3

Seed4

Seed5

0 2 4 6 8 10 12 14 16 18 20 22 24

Testing Time(h)

0

1

2

3

U
n

iq
u

e
B

u
g

(d) OceanBase

Seed1

Seed2

Seed3

Seed4

Seed5

Figure 7: The number of unique logical bugs over time for each group of the random seed queries on the tested DBMSs

necessarily. For example, we received an appreciation from
the MySQL developers in one of the bug reports with the S3
level: “Thank you for your contribution. It is our standpoint
that all bugs should be fixed, whether major or minor.”

Table 6 also shows the bug impact duration, which is
computed as the interval between the time of the bug-inducing
version and the bug reporting time. Surprisingly, we found
that 10 (25.6%) and 21 (53.8%) of bugs have lasted for 5-
10 and 1-5 years, respectively. Specifically, the two earliest
bugs of MySQL [20] and MariaDB [17] can be traced back to
2014. This result indicates that the logical bugs are typically
difficult and slow to be found, which is also consistent with
the findings of the prior study [35].

False Positive and False Negative. According to Theo-
rem 3.1, PINOLO will not produce false positives in theory.
However, we observe two bugs that have not been confirmed
by developers for more than five months, and thus suspect that
they are false positives. We manually inspected the two cases.
In one bug report, a query returns “0”, while the approximated
query returns “-0”. In the other one, a query returns “0”, while
the approximated query returns “-0.001”. Although PINOLO
considers the above inconsistency results as bugs, developers
may have a higher tolerance for such inconsistencies. These
reports allowed us to refine our implementation to reduce
false positives in the future.

In terms of false negatives, we observed 9 cases that are
detected by the baseline approaches but cannot be detected
by PINOLO. This is mainly due to the DBMS features that are
currently not supported by PINOLO. Specifically, there are
six, two and one bugs that are related to aggregate functions,
left/right join, and three-valued logic, respectively.

Limitations and Future Work. We currently do not support
all features of DBMSs, such as aggregate functions, window
functions, and left/right join. This is because, these features
may break the approximation relation (Definition 3.1). For ex-
ample, aggregate functions typically map a set of values into
a single value (e.g., sum, average, maximum, minimum, and
so on), and the mapped value will not preserve the inclusion
relation of the original sets, thus breaking the approximation
relation. In our future work, we will design new approxima-
tion relations to support more features. In addition, we intend
to explore the application of metamorphic testing in other
system software domains (such as networking and distributed

systems [1, 32, 43, 44]).
As shown in § 5.4, different random seed queries can ben-

efit PINOLO in detecting different bugs. This indicates that
adjusting seeds dynamically is helpful to make PINOLO find
more bugs. Therefore, in the future, we will consider to inte-
grate PINOLO into the fuzzing framework to better prioritize
the seed selection and enhance the bug detection capability.

Another possible direction for the future exploration is bug
deduplication. In this work, we determine whether two bugs
are duplicated by checking their bug-inducing versions. How-
ever, the bug-inducing version is an approximation of root
causes, which would misclassify the bugs. This is because a
release version of DBMS would introduce numerous bugs,
which lead to multiple problematic query pairs. In the future,
we will consider leveraging the spectrum-based fault localiza-
tion techniques or mutation testing to improve the precision
of discovering the root cause of the bugs, so as to improve the
precision of bug deduplication.

6 Threats to Validity

The threat to internal validity is primarily associated with the
implementation of our approach. To mitigate this concern, we
have employed several DBMSs to cross-check whether the
mutants generated by PINOLO accurately represented over-
approximations or under-approximations of the seed query.

The threat to external validity lies in the representative of
the evaluation subjects. Our proposed approach was evaluated
on a restricted set of DBMSs, as explained in the evaluation
section. As a result, the conclusion drawn in this paper may
be limited. However, we believe that it is non-trivial to detect
new bugs in these selected DBMSs, as they have been thor-
oughly tested by SQLancer [33]. In the future, we will extend
the implementation of PINOLO to support the evaluation of
additional open-source and commercial DBMSs.

7 Related Work

PINOLO is an unique DBMS testing system for finding logical
bugs in DBMSs, but draws inspiration from several areas in
the literature, including DBMS testing, metamorphic testing,
differential testing, and grammar fuzzing.

USENIX Association 2023 USENIX Annual Technical Conference 355

DBMS testing. Recent efforts on DBMS testing focus on
various aspects of DBMSs. Most of them target discovering
logical bugs in the relational DBMS [34–36]. They use spe-
cific metamorphic relations or multiple implementations as
the oracles and generate syntactically valid SQL queries for
metamorphic testing [5] or differential testing [18]. Some
also attempt to improve the coverage of the DBMSs and lever-
age fuzzing techniques to enumerate the queries in various
forms [10, 46, 49, 57]. PINOLO uses a new design, termed
approximate query synthesis, and does not use other DBMS
implementations as the oracle.

Metamorphic testing. Metamorphic testing [5] has become
more and more popular over the past decade. It has been
used in testing many software systems, such as compil-
ers [16, 50], SMT solvers [48, 54], DBMSs [35, 36], and
AI systems [2, 47, 55]. Metamorphic testing uses one type
of metamorphic relations to compare outputs produced by
a seed input and a mutated one. As long as the two outputs
violate the specific metamorphic relation, then at least one
of the two inputs yields a wrong result [4]. PINOLO utilizes
an instantiation of a metamorphic relation, i.e., the approxi-
mation relation, as an effective testing oracle for discovering
logical bugs in the DBMSs. Similar to the skeleton approxi-
mation enumeration in the SMT solver testing [54], PINOLO
performs the over-/under-approximation of the seed queries.
However, PINOLO has to deal with more sophisticated syntax
and supports more flexible mutations so that more buggy op-
erators and functions can be removed. Therefore, it is able to
detect insightful logical bugs that existing approaches, such
as NOREC [34] and TLP [35], fail to discover.

Differential testing. Apart from metamorphic testing, differ-
ential testing provides another testing paradigm for resolving
the oracle problem in software testing [6, 40, 52, 53]. Uti-
lizing another software system with the same functionality
as an oracle implementation, differential testing techniques
compare the system’s outputs under testing and the oracle
implementation and reveal potential functional bugs with the
divergent outputs. Although the techniques can generate the
inputs of the systems flexibly, they can only be applied to soft-
ware systems that have other implementations supporting the
same functionality, such as JVM [6], ORM frameworks [40],
and SMT solvers [53]. We believe PINOLO and other meta-
morphic testing approaches are orthogonal to differential test-
ing techniques, which can be applied and strengthened to each
other in testing DBMSs.

Grammar fuzzing. Grammar fuzzing is used to generate in-
puts that satisfy a specific language syntax [8, 11, 19, 19].
It has been widely used in testing many real-world soft-
ware systems, such as browsers [45], compilers [51], and
DBMSs [36, 57]. The generated inputs can always pass the
syntax checking of software systems, which avoids the un-
necessary enumeration of the inputs in an ill form, improving
the effectiveness of generated inputs. Instead of relying on

a specific grammar, PINOLO mutates an existing seed query
to synthesize an approximate query. Our synthesis process
rewrites specific grammatical constructs in the seed query,
which ensures the syntactical validity of the synthesized one.
We do think it is also promising to utilize existing grammar
fuzzing techniques to enumerate initial seed queries auto-
matically [36, 57], which can provide more opportunities for
improving the coverage in the DBMS testing.

8 Conclusion

This paper presents PINOLO, an automatic query synthesizer
for discovering logical bugs in DBMSs. Given a seed query,
PINOLO mutates specific SQL constructs and generates a
query that over-approximates or under-approximates the seed
query. We posit that the approximation relation provides effec-
tive guidance for discovering logical bugs underlying DBMSs.
Our experimental results demonstrate the effectiveness of
PINOLO. Benefiting from our approximate query synthesis,
PINOLO discovers 41 logical bugs in four mature DBMSs. At
the time of the submission, 39 bugs have been confirmed by
the developers. We hope that the promising results will put
forward the study of DBMS testing, further promoting the
reliability of database-backed systems.

Acknowledgments

We thank anonymous reviewers and the shepherd for their
insightful comments. This work is supported by the Leading-
edge Technology Program of Jiangsu Natural Science
Foundation (BK20202001), Natural Science Foundation of
China (62272400), and Xiamen Youth Innovation Fund
(3502Z20206036).

References

[1] Kinan Dak Albab, Jonathan DiLorenzo, Stefan Heule,
Ali Kheradmand, Steffen Smolka, Konstantin Weitz,
Muhammad Timarzi, Jiaqi Gao, and Minlan Yu.
Switchv: Automated sdn switch validation with p4 mod-
els. In Proceedings of the ACM SIGCOMM 2022 Confer-
ence, page 365–379, New York, NY, USA, 2022. ACM.

[2] Jialun Cao, Meiziniu Li, Yeting Li, Ming Wen, Shing-
Chi Cheung, and Haiming Chen. Semmt: A semantic-
based testing approach for machine translation systems.
ACM Trans. Softw. Eng. Methodol., 31(2):1–36, 2022.

[3] Donald D Chamberlin and Raymond F Boyce. Sequel: A
structured english query language. In Proceedings of the
1974 ACM SIGFIDET workshop on Data description,
access and control, pages 249–264, 1974.

[4] Tsong Yueh Chen, S. C. Cheung, and Siu-Ming Yiu.
Metamorphic testing: A new approach for generating
next test cases. CoRR, abs/2002.12543, 2020.

356 2023 USENIX Annual Technical Conference USENIX Association

[5] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok
Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou. Meta-
morphic testing: A review of challenges and opportuni-
ties. ACM Comput. Surv., 51(1):4:1–4:27, 2018.

[6] Yuting Chen, Ting Su, and Zhendong Su. Deep differ-
ential testing of JVM implementations. In Proceedings
of the 41st International Conference on Software Engi-
neering, pages 1257–1268. IEEE / ACM, 2019.

[7] Edgar F Codd. A relational model of data for large
shared data banks. Communications of the ACM,
13(6):377–387, 1970.

[8] Joeri de Ruiter and Erik Poll. Protocol state fuzzing of
TLS implementations. In Proceedings of 24th USENIX
Security Symposium, pages 193–206. USENIX Associa-
tion, 2015.

[9] MariaDB Foundation. MariaDB Database. https:
//mariadb.org/, 2022. [Online; accessed Dec-2022].

[10] Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang,
and Yu Jiang. Griffin: Grammar-free dbms fuzzing.
In The 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022.

[11] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.
Grammar-based whitebox fuzzing. In Proceedings of
the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, pages 206–215.
ACM, 2008.

[12] William E Howden. Theoretical and empirical studies
of program testing. IEEE Transactions on Software
Engineering, SE-4(4):293–298, 1978.

[13] Free Software Foundation Inc. BNU Bison. https:
//www.gnu.org/software/bison/, 2022. [Online;
accessed Jan-2023].

[14] Google Inc. american fuzzy lop - a security-oriented
fuzzer. https://github.com/google/AFL, 2022.
[Online; accessed Dec-2022].

[15] Google Inc. Go 1.20 Release Notes. https://tip.
golang.org/doc/go1.20, 2022. [Online; accessed
Jan-2023].

[16] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler
validation via equivalence modulo inputs. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages
216–226. ACM, 2014.

[17] MaraiaDB. Bug #30249 of MaraiaDB. https://jira.
mariadb.org/browse/MDEV-30249, 2022. [Online;
accessed Jan-2023].

[18] William M. McKeeman. Differential testing for soft-
ware. Digit. Tech. J., 10(1):100–107, 1998.

[19] Michaël Mera. Mining constraints for grammar fuzzing.
In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 415–
418. ACM, 2019.

[20] MySQL. Bug #108937 of MySQL. https://bugs.
mysql.com/bug.php?id=108937, 2022. [Online; ac-
cessed Jan-2023].

[21] MySQL. Bug #109407 of MySQL. https://bugs.
mysql.com/bug.php?id=109407, 2022. [Online; ac-
cessed Jan-2023].

[22] MySQL. MySQL Database. https://www.mysql.
com/, 2022. [Online; accessed Dec-2022].

[23] MySQL. The MySQL Test Framework.
https://dev.mysql.com/doc/dev/mysql-server/
latest/PAGE_MYSQL_TEST_RUN.html, 2022. [Online;
accessed Dec-2022].

[24] OceanBase. A deployer and package manager for Ocean-
Base. https://github.com/oceanbase/obdeploy,
2022. [Online; accessed Jan-2023].

[25] OceanBase. Issue #1100 of OceanBase. https://
github.com/oceanbase/oceanbase/issues/1100,
2022. [Online; accessed Jan-2023].

[26] OceanBase. OceanBase Database. https://www.
oceanbase.com/, 2022. [Online; accessed Dec-2022].

[27] PingCap. go randgen. https://github.com/
pingcap/go-randgen, 2022. [Online; accessed Dec-
2022].

[28] PingCap. Parser - A MySQL Compatible SQL
Parser. https://github.com/pingcap/tidb/tree/
master/parser, 2022. [Online; accessed Jan-2023].

[29] PingCAP. TiDB Database. https://github.com/
pingcap/tidb, 2022. [Online; accessed Dec-2022].

[30] GNU Project. gcov——a Test Coverage Pro-
gram. https://gcc.gnu.org/onlinedocs/gcc/
Gcov.html, 2022. [Online; accessed Jan-2023].

[31] qaqcatz. The Complete List of Instantiated Muta-
tors in PINOLO. https://github.com/qaqcatz/
impomysql_binary/blob/main/mutators.md, 2022.
[Online; accessed Jan-2023].

[32] Mian Qin, Qing Zheng, Jason Lee, Bradley Settlemyer,
Fei Wen, Narasimha Reddy, and Paul Gratz. Kvrangedb:
Range queries for a hash-based key-value device. ACM
Trans. Storage, jan 2023.

[33] Manuel Rigger. sqlancer. https://github.com/
sqlancer/sqlancer, 2022. [Online; accessed Jan-
2023].

[34] Manuel Rigger and Zhendong Su. Detecting optimiza-
tion bugs in database engines via non-optimizing refer-
ence engine construction. In 28th ACM Joint European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 1140–
1152. ACM, 2020.

[35] Manuel Rigger and Zhendong Su. Finding bugs in
database systems via query partitioning. Proc. ACM
Program. Lang., 4(OOPSLA):211:1–211:30, 2020.

USENIX Association 2023 USENIX Annual Technical Conference 357

https://mariadb.org/
https://mariadb.org/
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/
https://github.com/google/AFL
https://tip.golang.org/doc/go1.20
https://tip.golang.org/doc/go1.20
https://jira.mariadb.org/browse/MDEV-30249
https://jira.mariadb.org/browse/MDEV-30249
https://bugs.mysql.com/bug.php?id=108937
https://bugs.mysql.com/bug.php?id=108937
https://bugs.mysql.com/bug.php?id=109407
https://bugs.mysql.com/bug.php?id=109407
https://www.mysql.com/
https://www.mysql.com/
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN.html
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN.html
https://github.com/oceanbase/obdeploy
https://github.com/oceanbase/oceanbase/issues/1100
https://github.com/oceanbase/oceanbase/issues/1100
https://www.oceanbase.com/
https://www.oceanbase.com/
https://github.com/pingcap/go-randgen
https://github.com/pingcap/go-randgen
https://github.com/pingcap/tidb/tree/master/parser
https://github.com/pingcap/tidb/tree/master/parser
https://github.com/pingcap/tidb
https://github.com/pingcap/tidb
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/qaqcatz/impomysql_binary/blob/main/mutators.md
https://github.com/qaqcatz/impomysql_binary/blob/main/mutators.md
https://github.com/sqlancer/sqlancer
https://github.com/sqlancer/sqlancer

[36] Manuel Rigger and Zhendong Su. Testing database
engines via pivoted query synthesis. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 667–682. USENIX Association, 2020.

[37] Manuel Rigger and Zhendong Su. Intramorphic test-
ing: A new approach to the test oracle problem. In
Proceedings of the 2022 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software, pages 128–136.
ACM, 2022.

[38] Andreas Seltenreich. SQLsmith: A random SQL query
generator. https://github.com/anse1/sqlsmith,
2022. [Online; accessed Dec-2022].

[39] Donald R Slutz. Massive stochastic testing of sql. In
VLDB, volume 98, pages 618–622. Citeseer, 1998.

[40] Thodoris Sotiropoulos, Stefanos Chaliasos, Vaggelis Atl-
idakis, Dimitris Mitropoulos, and Diomidis Spinellis.
Data-oriented differential testing of object-relational
mapping systems. In 43rd IEEE/ACM International
Conference on Software Engineering, pages 1535–1547.
IEEE, 2021.

[41] SQLite. How SQLite is Tested. https://www.sqlite.
org/testing.html, 2022. [Online; accessed Dec-
2022].

[42] TiDB. Issue #40015 of TiDB. https://github.
com/pingcap/tidb/issues/40015, 2022. [Online;
accessed Jan-2023].

[43] Jianfeng Wang, Tamás Lévai, Zhuojin Li, Marcos A. M.
Vieira, Ramesh Govindan, and Barath Raghavan. Quad-
rant: A cloud-deployable NF virtualization platform. In
Proceedings of the 13th Symposium on Cloud Comput-
ing, page 493–509, New York, NY, USA, 2022. ACM.

[44] Jianfeng Wang, Tamás Lévai, Zhuojin Li, Marcos Au-
gusto M. Vieira, Ramesh Govindan, and Barath Ragha-
van. Galleon: Reshaping the square peg of NFV. CoRR,
abs/2101.06466, 2021.

[45] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Su-
perion: grammar-aware greybox fuzzing. In Proceed-
ings of the 41st International Conference on Software
Engineering, pages 724–735. IEEE / ACM, 2019.

[46] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chi-
jin Zhou, Huafeng Zhang, and Yu Jiang. Industry prac-
tice of coverage-guided enterprise-level DBMS fuzzing.
In 43rd IEEE/ACM International Conference on Soft-
ware Engineering: Software Engineering in Practice,
pages 328–337. IEEE, 2021.

[47] Shuai Wang and Zhendong Su. Metamorphic object
insertion for testing object detection systems. In 35th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 1053–1065. IEEE, 2020.

[48] Dominik Winterer, Chengyu Zhang, and Zhendong Su.
Validating SMT solvers via semantic fusion. In Pro-
ceedings of the 41st ACM SIGPLAN International Con-
ference on Programming Language Design and Imple-
mentation, pages 718–730. ACM, 2020.

[49] Zhiyong Wu, Jie Liang, Mingzhe Wang, Chijin Zhou,
and Yu Jiang. Unicorn: detect runtime errors in time-
series databases with hybrid input synthesis. In 31st
ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 251–262. ACM, 2022.

[50] Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang,
and Shuai Wang. Metamorphic testing of deep learn-
ing compilers. Proc. ACM Meas. Anal. Comput. Syst.,
6(1):15:1–15:28, 2022.

[51] Haoran Xu, Shuhui Fan, Yongjun Wang, Zhijian Huang,
Hongzuo Xu, and Peidai Xie. Tree2tree structural lan-
guage modeling for compiler fuzzing. In Algorithms
and Architectures for Parallel Processing - 20th Inter-
national Conference, pages 563–578. Springer, 2020.

[52] Yibiao Yang, Yuming Zhou, Hao Sun, Zhendong Su,
Zhiqiang Zuo, Lei Xu, and Baowen Xu. Hunting for
bugs in code coverage tools via randomized differential
testing. In Proceedings of the 41st International Confer-
ence on Software Engineering, pages 488–498. IEEE /
ACM, 2019.

[53] Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai
Shi, Rongxin Wu, and Charles Zhang. Fuzzing SMT
solvers via two-dimensional input space exploration.
In Proceedings of 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
322–335. ACM, 2021.

[54] Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai
Shi, Rongxin Wu, and Charles Zhang. Skeletal approxi-
mation enumeration for SMT solver testing. In Proceed-
ings of 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering, pages 1141–1153. ACM, 2021.

[55] Yuanyuan Yuan, Shuai Wang, Mingyue Jiang, and
Tsong Yueh Chen. Perception matters: Detecting per-
ception failures of VQA models using metamorphic
testing. In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16908–16917.
Computer Vision Foundation / IEEE, 2021.

[56] Andreas Zeller. Why Programs Fail - A Guide to Sys-
tematic Debugging, 2nd Edition. Academic Press, 2009.

[57] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang,
Wenke Lee, and Dinghao Wu. SQUIRREL: testing
database management systems with language validity
and coverage feedback. In 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
955–970. ACM, 2020.

358 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/anse1/sqlsmith
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html
https://github.com/pingcap/tidb/issues/40015
https://github.com/pingcap/tidb/issues/40015

	Introduction
	Background
	Database Management Systems
	Logical Bugs in DBMSs
	Metamorphic Testing

	Approximate Query Synthesis
	Approach Overview
	SQL Query Approximation
	Approximate Mutators
	Mutation-based Query Synthesis
	Summary

	Implementation
	Evaluation
	Experiment Setup
	Effectiveness of Pinolo
	Comparisons on Detecting Logical Bugs
	Impacts of The Seed Query Generation
	Discussion

	Threats to Validity
	Related Work
	Conclusion

