
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Arbitor: A Numerically Accurate Hardware
Emulation Tool for DNN Accelerators

Chenhao Jiang and Anand Jayarajan, University of Toronto and Vector Institute;
Hao Lu, University of Toronto; Gennady Pekhimenko,

University of Toronto and Vector Institute
https://www.usenix.org/conference/atc23/presentation/jiang-chenhao

Arbitor: A Numerically Accurate Hardware Emulation Tool for DNN Accelerators

Chenhao Jiang

University of Toronto

Vector Institute

Anand Jayarajan

University of Toronto

Vector Institute

Hao Lu

University of Toronto

Gennady Pekhimenko

University of Toronto

Vector Institute

Abstract
Recently there has been considerable attention on design-

ing and developing hardware accelerators for deep neural net-

work (DNN) training workloads. However, designing DNN

accelerators is often challenging as many commonly used

hardware optimization strategies can potentially impact the

final accuracy of the models. In this work, we propose a hard-

ware emulation tool called Arbitor for empirically evaluating

DNN accelerator designs and accurately estimating their ef-

fects on DNN accuracy. Arbitor takes advantage of modern

machine learning compilers to enable fast prototyping and nu-

merically accurate emulation of common DNN optimizations

like low-precision arithmetic, approximate computing, and

sparsity-aware processing on general-purpose GPUs. Subse-

quently, we use Arbitor to conduct an extensive sensitivity

study to understand the effects of these optimizations on pop-

ular models such as ResNet, Transformers, Recurrent-CNN,

and GNNs. Based on our analysis, we observe that DNN

models can tolerate arithmetic operations with much lower

precision than the commonly used numerical formats sup-

port. We also demonstrate that piece-wise approximation is

effective in handling complex non-linear operations in DNN

models without affecting their accuracy. Finally, enforcing

a high degree of structured sparsity in the parameters and

gradients can significantly affect the accuracy of the models.

1 Introduction

Deep neural networks (DNNs) have shown unprecedented ac-

curacy on many complex tasks like computer vision [26, 44],

natural language processing [15, 65], recommendation sys-

tems [50], speech recognition [6], and robotics [55]. This

superior performance of DNNs, however, comes at the ex-

pense of high computational costs in the training process. As

the models are getting larger and more complex, the compu-

tational requirement for training these models has also been

growing steadily. Therefore, designing and developing spe-

cialized hardware accelerators for DNN training has become

an active area of research in both industry and academia [16].

Modern DNN accelerators are equipped with thousands

of parallel processing units to leverage the abundant com-

putational parallelism available in DNN training workloads.

Moreover, they also employ many hardware-level optimiza-

tions that are designed to take advantage of the error-resilient

nature of the DNN models. For example, DNN accelerators

commonly use low-precision numerical formats for arithmetic

operations to improve hardware utilization and energy effi-

ciency [18,48,74]. Additionally, approximate computing tech-

niques like the linear approximation of non-linear functions

are widely used to reduce the hardware design complexity

and cost [7,43]. Finally, modern accelerators support sparsity-

aware processing cores to minimize redundant computations

in DNN workloads by skipping arithmetic operations over

zeros. In recent years, there have been many studies proposing

different variations of such hardware-level optimizations that

have shown to be highly effective in improving the perfor-

mance of DNN training workloads [56, 72].

Despite being a well-studied area, making the right de-

sign decisions for DNN accelerators is still a challenging

task as many of the proposed hardware optimizations have

non-trivial effects on the convergence accuracy of the DNN

training algorithm and can potentially hurt the final accuracy

of the model [18, 48]. Understanding the influence of these

optimizations on the convergence of different DNN models

requires rigorous experimental analysis on the DNN acceler-

ator design. Unfortunately, currently available methods and

tools are inadequate for such analysis as we explain below.

Software-based architectural simulators are widely used for

the initial prototyping and analysis of different hardware de-

sign choices [8, 9, 34, 64]. These tools are primarily designed

to perform hardware simulations at circuit-level precision and

measure accurate low-level performance counters like instruc-

tions per cycle (IPC), cache miss rate, and branch prediction

accuracy. As a result, architectural simulators are generally

6−7 orders of magnitude slower compared to the real silicon

performance [20, 63]. Since standard DNN benchmark mod-

els [49, 75] take anywhere from hours to months of training

to reach peak accuracy, using software-based simulators to

USENIX Association 2023 USENIX Annual Technical Conference 519

analyze DNN accelerator designs can get prohibitively time-

consuming. Even though other approaches like FPGA-based

prototyping can offer performance close to the real hardware,

programming FPGAs requires unique expertise that is rare

even among hardware researchers. Moreover, building the

software stack that can provide runtime support for training

DNNs on FPGAs requires substantial engineering effort.

To address the limitations of these traditional methods,

recent works [45, 47, 59, 70] have proposed hardware em-

ulation frameworks specifically designed for analyzing the

accuracy effects of common DNN optimizations like low-

precision training. These tools provide convenient APIs to

configure and emulate low-precision arithmetic in the train-

ing process by modifying the computation graphs of DNN

models. Unlike architectural simulators, DNN emulators are

built as extensions over popular machine learning frameworks

like TensorFlow [3] or PyTorch [54] and can be executed over

general-purpose accelerators like GPUs. This enables fast

prototyping of arbitrary low-precision numerical formats and

evaluating their effects on standard DNN benchmark mod-

els within reasonable time frames. However, we observe that

extending these tools to support other hardware features like

approximate or sparsity-aware computing require significant

effort from the user. On top of this, current DNN emulators

are designed to perform low-precision arithmetic emulation

at the DNN layer-level granularity. Under this strategy, the

computation of individual layers in the DNNs like matrix

multiplication and convolution is performed using standard

32-bit floating point format, and the output is rounded down

to the user-defined numerical format. We observe that this

coarse-grained emulation approach can produce numerically

inaccurate results compared to the real hardware. Our em-

pirical evaluation reveals that the relative numerical error of

low-precision arithmetic emulation in state-of-the-art DNN

emulators can be as high as 15% (more details in section 3).

We argue that such inaccurate emulations could lead to incor-

rect evaluation of hardware designs in DNN accelerators.

In this work, we build an easy-to-use, extensible, and more

importantly numerically accurate emulation tool called Ar-

bitor for empirically evaluating DNN accelerator designs. Ar-

bitor is built on top of TensorFlow and provides extensions to

its Keras front-end APIs for users to easily configure and em-

ulate common hardware features like low-precision training,

approximate computing, and sparsity-aware processing on

standard DNN models. In contrast to other DNN emulators,

Arbitor emulates the user-defined hardware features at the

granularity of the primitive mathematical operations in the

DNN layers to accurately mimic the behavior of real hard-

ware. We support this fine-grained emulation in Arbitor with

the help of the XLA compiler-backend in TensorFlow [23].

Modern machine learning compilers like XLA use domain-

specific intermediate representations (IR) for defining the op-

erations in the DNN computation graphs. These IR definitions

of DNN operations are designed to be hardware-independent

and are progressively lowered to GPU executable kernels

by the compiler. We make a key observation that it is possi-

ble to automatically generate GPU kernels that emulate the

user-defined hardware features by modifying the code gen-

eration pipeline of TensorFlow XLA. We empirically show

that, compared to the state-of-the-art layer-level emulation

approach, the operator-level emulation strategy of Arbitor

can perform arithmetic operations and generate results that

accurately match the results from real hardware.

We subsequently use Arbitor to conduct a series of sen-

sitivity studies on the effects of low-precision training, ap-

proximate, and sparse computing on popular DNN architec-

tures like Transformer [65], ResNet-18 [26], Convolutional

Recurrent Neural Network (CRNN) [66], and Graph Neural

Network (GNN) [73]. First, we conduct an extensive analy-

sis of various non-standard floating point specifications and

find that DNN models can maintain their accuracy with much

lower precision than many standard floating point formats

supported in current DNN accelerators. We also observe that

the numerical precision can be reduced even further by comb-

ing low-precision formats with the standard single-precision

floating point. Second, we also analyze the effectiveness of

newly proposed non-floating point numerical formats like

Posit [25] on DNN training. We find that, contrary to the

prior observations [59], Posit does not yield better model ac-

curacy compared to floating point. Third, we evaluate a pop-

ular approximate computing optimization technique called

piece-wise linear approximation [35] and find that natural

language processing (NLP) models like CRNN can maintain

their baseline accuracy even with aggressive approximations.

Finally, we analyze the effect of sparse computing and ob-

serve that enforcing more than 50% sparsity on DNN training

can significantly affect the model accuracy. To the best of our

knowledge, we are the first open study to conduct such an

extensive analysis of common DNN accelerator designs using

numerically accurate methods and tools.

In summary, we make the following contributions:

• We highlight that the hardware research community is

currently lacking a fast and accurate hardware analysis

tool for DNN training accelerators as state-of-the-art

tools are either prohibitively slow or are susceptible to

numerical inaccuracy.

• We build a hardware emulation tool Arbitor using a

compiler-assisted fine-grained emulation strategy for

numerically accurate emulation of optimizations like

low-precision, approximate, and sparse computation.

• Using Arbitor, we conduct the first in-depth empirical

analysis on the effects of low-precision arithmetic, ap-

proximate computing, and sparsity-aware processing on

the accuracy of popular DNN models like Transformer,

ResNet-18, CRNN, and GNN. We will be open-sourcing

Arbitor soon for supporting empirical research in DNN

accelerators.

520 2023 USENIX Annual Technical Conference USENIX Association

2 Hardware Accelerators for DNN Training

Modern DNN models [15,17,26,44] contain millions to even

trillions of parameters and are trained for hours to months

by iteratively processing large batches of data from humon-

gous datasets and updating the model parameters to minimize

the prediction error until the model converges to the desired

accuracy. The DNN training process primarily consists of

the repeated execution of computationally expensive alge-

braic functions such as matrix multiplication, convolution,

and element-wise operations. Fortunately, these functions ex-

hibit abundant computational parallelism which can be lever-

aged to speed up the training process using parallel processing

hardware accelerators like graphics processing units (GPUs).

While GPUs have been the mainstay for DNN training, in

recent years, there has been an increasing interest in devel-

oping more specialized accelerators. For example, Google

TPU [31], Habana Gaudi [30], Graphcore IPU [24], Cerebras

Wafer-Scale engine [14], and Amazon Trainium [5] are a

few notable examples of commercial DNN accelerators. In

addition to massively parallel processing capabilities, these

accelerators also employ several hardware-level optimizations

that exploit the inherent error-resilient nature of DNNs to im-

prove training performance and hardware utilization. Below,

we describe the three most common categories of hardware-

level optimizations supported in DNN accelerators.

1. Low-precision arithmetic. Unlike regular parallel pro-

cessing applications that require high-precision floating point

computation, DNN models are highly tolerant towards us-

ing reduced-precision arithmetic due to the error-correcting

nature of the training algorithm. Therefore, many DNN ac-

celerators support low-precision numerical formats that use

fewer bits than the standard 32-bit single-precision floating

point (FP32). This enables accelerators to provide higher pro-

cessing power from the same hardware budget. For example,

Nvidia GPUs can perform 2× higher floating point opera-

tions (FLOPS) with half-precision (FP16) than using single-

precision format [52]. Additionally, low-precision data for-

mats can also help reduce the memory footprint of DNNs and

in turn, improve the cache utilization and lower the memory

bandwidth pressure during training. As a result, many mod-

ern DNN accelerators support a wide range of low-precision

floating point formats outside the traditional IEEE-754 stan-

dard [2] as shown in Figure 1.

In general, floating points are represented using a sign bit,

exponent bits, and mantissa bits. The range and the preci-

sion of a particular format are determined by the number of

exponent and mantissa bits respectively. Therefore, differ-

ent low-precision formats make the fundamental trade-off

between the range and the precision of values the type can

represent. For example, FP16 uses 5 exponent and 10 man-

tissa bits and has a limited range (i.e., ±65,504) compared to

FP32 (i.e., ±3.40×1038). An alternative 16-bit format called

brain float 16 (BF16) [32], on the other hand, uses 8 exponent

sign

FP32

FP16

BF16

TF32

FP24

cFP8

1bit 8 bits 23 bits

1bit 5 bits 10 bits

1bit 8 bits 7 bits

1bit 8 bits 10 bits

1bit 7 bits 16 bits

1bit 5 bits 2 bits

1bit 4 bits 3 bits

1bit 3 bits 4 bits

exponent mantissa

Figure 1: Common floating point formats in DNN accelerators

bits and 7 mantissa bits and can support a similar range of

values as that of FP32. Since BF16 format trades precision

in favor of a wider range, it has shown to be better suited for

DNN training than the standard FP16 and is widely supported

in many DNN accelerators [32].

In addition to floating point formats, hardware researchers

have also been exploring other data formats e.g., fixed-point

arithmetic [41, 71, 74]. In contrast to floating points, fixed-

point arithmetic lends itself to a simpler hardware design

with a smaller chip area and lower power consumption [27]

but lacks the dynamic range and precision that floating point

formats have. In recent years, there has also been propos-

als [13, 46] in using the novel Posit formats [25] for DNN

training as it takes less circuitry than floating point processing

units while providing a wider dynamic range. Despite this

significant research attention, finding numerical formats that

make the right trade-offs in DNN training workloads is still

an open research problem.

2. Approximate computation. The training computation of

DNN models is mostly dominated by linear algebraic func-

tions like matrix multiplication and convolution. These func-

tions are composed of numerous primitive mathematical op-

erations like addition and multiplication that maps very well

with the thousands of parallel arithmetic units provided by

the DNN accelerators. In addition to these, many DNN mod-

els also contain operations that use non-linear functions. For

example, modern NLP and image classification models use

complex activation functions like tanh, sigmoid, GeLU [28],

and Swish [58] which are shown to play an important role in

achieving high accuracy for the models. However, the exact

computation of these functions is often very expensive to

perform in the hardware because of the exponentiation and

division terms present in the functions. Instead, DNN accelera-

tors employ approximations of such functions that are cheaper

to implement in hardware. Examples of such approaches in-

clude piece-wise linear/non-linear approximations [35, 61],

lookup table [37], bit-level mapping [69], or a hybrid of these

methods. Such approximations in DNN accelerators enable

them to achieve improved hardware performance and lower

chip area at the expense of imprecise computation of the non-

linear functions. Therefore, more aggressive approximations

can potentially affect the convergence of DNN training.

USENIX Association 2023 USENIX Annual Technical Conference 521

3. Sparsity-aware computation. Large DNN models are

known to exhibit a significant amount of redundancy due

to the over-parameterization of the model architecture [22].

There have been several efforts in exploiting this redundancy

to improve performance and reduce the memory footprint of

DNN workloads. For example, software-level optimizations

such as DNN pruning [10] has found effective in significantly

reducing the model size by removing the redundant parame-

ters from the model. However, naiv̈ely applying DNN pruning

often ends up with models having randomly distributed spar-

sity patterns. Since DNN accelerators are primarily designed

to process dense data structures, extracting performance ben-

efits from DNNs with unstructured sparsity is often chal-

lenging. To address this issue, modern DNN accelerators are

equipped with specialized processing cores that can improve

the performance of DNN applications in the presence of semi-

structured sparsity patterns. For example, the latest Nvidia

A100 GPUs support Sparse Tensor Cores that can accelerate

matrix multiplication operations by 2× for operands having

2:4 structured sparsity.1 Recent works [56, 72] have proposed

hardware-software co-optimizations that follow structured

DNN pruning strategies during the training process to take ad-

vantage of such sparsity-aware processing units. Despite the

potential performance improvements, enforcing structured

sparsity during training is shown to have a significant im-

pact on the convergence of the DNNs [68]. Finding the right

balance between structural sparsity and model accuracy is

currently an active area of research.

3 Need for an Accurate Hardware Analysis

Tool for DNN Accelerator Design

Many of the aforementioned optimization strategies have the

potential to significantly improve the performance of DNN

training. However, at the same time, depending on the de-

gree and aggressiveness of the optimizations, they can also

negatively affect the model accuracy. Therefore, designing

accelerators for DNN training requires taking both hardware

performance and accuracy effects of the optimizations into

consideration. Even though there are standard methods and

tools available to prototype different chip designs and esti-

mate their performance, they fail to be a good fit for analyzing

their effects on model accuracy as we explain below.

Limitations of Traditional Verification Tools. One of the

most common and cost-effective approaches for prototyp-

ing and verifying hardware designs is to use architectural

simulators [4, 29]. Hardware researchers use simulators like

GPGPU-sim [8], gem5 [9], and Multi2Sim [64] to evaluate

architectural design choices by running software-based sim-

ulations of the proposed features and collecting hardware

performance counters like instructions per cycle (IPC), cache

1Here, an N:M sparsity indicates that out of every block of M contiguous

values in the input operands, only N values are non-zero.

utilization, and energy consumption. These tools are designed

to run simulations with circuit-level precision, but they come

at the cost of high execution time. Our empirical evaluation

shows that running a single 1024×1024 FP32 matrix multi-

plication using GPGPU-sim is more than 5 orders of magni-

tude slower than running on bare-metal GPUs. Since train-

ing involves iteratively executing many such operations and

can take anywhere from hours to months to finish even on

powerful hardware [49, 75], it becomes prohibitively time-

consuming to use these simulators to analyze the convergence

effects of hardware optimizations on modern DNN models.

FPGA-based prototyping is another approach followed in

the industry for hardware design verification. Programmable

chips like FPGAs allow accurate verification of the functional

logic of a design and the ability to run benchmark applica-

tions on custom-designed chips at a speed closer to the perfor-

mance of the physical hardware. But programming FPGAs to

reliably implement the desired hardware features is a labor-

intensive task and requires special expertise and infrastructure

support that is often beyond the reach of many independent

researchers [60]. On top of this, building a full-fledged soft-

ware stack that can provide the requisite runtime support for

training DNN models is a major engineering undertaking that

requires significant time and financial investment.

Since analyzing the statistical effects of DNN accelerator

optimizations using traditional hardware verification tools

is difficult and time-consuming in practice, hardware re-

searchers often end up making design decisions using limited

empirical analysis of the design or based on speculations. As

hardware manufacturing is an extremely lengthy and expen-

sive process, this could potentially cost a substantial amount

of time, money, and resources. To take a real-world example,

Nvidia first introduced half-precision floating point (FP16)

support in Tesla P100 GPUs [52] in 2016 to deliver higher

performance for deep learning workloads. However, it was

soon observed that using half-precision in training can cause

serious convergence issues on many models as algebraic func-

tions like matrix multiplication, convolution, and batch nor-

malization perform reduction over large dimensions of matri-

ces and can suffer from higher accumulation error compared

to single-precision (FP32) training. To correct this issue, it

took researchers another two years to find a software-level fix

called mixed-precision training [48] that uses a combination

of FP16 and FP32 precision (for computation and reduction

respectively) to curtail the numerical errors. More recently,

Nvidia introduced a 19-bit floating point format called Tensor

Float (TF32) in their Ampere architecture-based GPUs [51] as

a drop-in replacement for FP32 data type. This again caused

major pushback from the machine learning community for

the numerical instability it caused on certain non-standard

deep learning workloads [57]. These anecdotes suggest the

importance of having rigorous methods and tools for analyz-

ing the accuracy effects of DNN accelerator designs as early

in the hardware manufacturing process as possible.

522 2023 USENIX Annual Technical Conference USENIX Association

Inadequacy of Current Emulation Tools. To meet this

unique requirement of DNN accelerator research and devel-

opment, recent works have proposed hardware emulation

tools such as TensorQuant [45], QPyTorch [70], and Gold-

enEye [47]. Unlike architectural simulators that perform ex-

pensive cycle-accurate simulations of the entire hardware,

these tools are specifically designed for analyzing DNN opti-

mizations like low-precision training by emulating arbitrary

numerical formats on general-purpose accelerators like GPUs.

State-of-the-art DNN emulators are built on top of popular

machine learning (ML) frameworks like TensorFlow [3] and

PyTorch [54], and provide extensions to their front-end APIs

to configure and train DNN models using user-defined numeri-

cal formats. These tools take advantage of the fact that the ML

frameworks represent DNN models as layers of well-defined

algebraic functions, and therefore, the numerical errors in-

troduced by low-precision arithmetic in DNN training can

be emulated by replacing the individual layers with corre-

sponding software-emulated functions. Since these tools are

well-integrated with ML frameworks and allow fast exper-

imentation through GPU-accelerated emulation, they make

a convenient tool for quick exploration of the low-precision

data formats on a wide range of DNN models.

Despite being a promising approach, current DNN emula-

tion tools suffer from two major limitations. First, they are

primarily designed to target only a narrow scope of DNN op-

timizations, namely, low-precision training. Supporting other

optimizations like approximate or sparsity-aware computation

require intrusive changes in these tools due to their tightly

coupled design and implementation with the underlying ML

frameworks and the targeting GPU backend. Second and more

importantly, we observe that the current DNN emulators are

susceptible to numerical inaccuracies due to a coarse-grained

emulation strategy that they follow. Under this strategy, the

low-precision arithmetic emulation is achieved by performing

individual algebraic functions in the DNN model using the

standard FP32 format supported in GPUs and then rounding

the output down to the user-defined low-precision format.

Even though this layer-level rounding approach lends itself

to a simpler DNN emulator design, we observe that this strat-

egy fails to accurately reproduce numerical errors that can

occur with low-precision arithmetic. For instance, many DNN

layers like matrix multiplication and convolution internally

perform several primitive mathematical operations like multi-

plication and addition. Under the coarse-grained layer-level

emulation approach, these primitive operations are performed

using higher-precision FP32 arithmetic. As a result, they fail

to account for the low-precision multiplication and accumula-

tion error occurring within the algebraic functions.

rnd((a1 ∗b1)+(a2 ∗b2)+(a3 ∗b3)) (1)

To illustrate this limitation, we use a simple matrix multi-

plication between a 1×3 matrix ([a1 a2 a3]) and a 3×1

matrix ([b1 b2 b3]
T) as an example. Equation 1 shows the

 0

 2

 4

 6

 8

 10

 12

 14

 16

10-510-410-310-2

R
e
la

ti
v
e
 e

rr
o
r

(%
)

Range of floating point values

MatMul

10-610-510-410-3

Conv

Figure 2: The numerical difference between real hardware

and the layer-level emulation

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
c
c
u
ra

c
y
 (

%
)

Epoch

Native FP32
Native FP16

QPyTorch FP16
Arbitor FP16

Figure 3: Comparison of training curves for ResNet-50 with

native FP32, native FP16, QPyTorch-emulated FP16, and

Arbitor-emulated FP16

definition of this matrix multiplication performed using FP16

arithmetic following the layer-level emulation strategy. In this

case, all the primitive multiplication and addition operations

are performed using FP32 arithmetic, and only the final result

is rounded to FP16 using rnd(). In contrast, an accurate em-

ulation of FP16 matrix multiplication requires rounding on

every primitive operation as shown in Equation 2.

rnd(rnd(rnd(a1 ∗b1)+ rnd(a2 ∗b2))+ rnd(a3 ∗b3)) (2)

To empirically estimate the extent of the inaccuracy, we em-

ulate FP16 arithmetic using the layer-level strategy on matrix

multiplication and 3×3 convolution operation over 128×128

matrices. Then we compare the output matrix generated with

that obtained using the native FP16 supported in real hard-

ware such as Nvidia 2080 Ti GPU [53]. Figure 2 shows the

relative error between the emulated and the hardware native

outputs on different input matrices with floating point val-

ues randomly generated from the range [10−6
,10−2]. As we

show, in comparison to the GPU native FP16 results, the re-

USENIX Association 2023 USENIX Annual Technical Conference 523

sult generated by the emulated version can differ by as much

as 15.74%. Since DNN training is an iterative process, such

numerical inaccuracies in emulation can accumulate over the

course of training, leading to making incorrect assessments

about the effects of low-precision data formats on the DNN

accuracy. To demonstrate this, we first train ResNet-50 using

both FP32 and FP16 on Nvidia 2080 Ti and get validation

accuracy curves as shown in Figure 3. The highest accuracy

with FP16 is 70.36%, which is 3.7% lower than FP32 due to

the numerical error with low-precision arithmetic. We sub-

sequently use the state-of-the-art QPyTorch which applies

layer-level emulation to run the training with emulated FP16.

However, the validation accuracy using emulated FP16 in

QPyTorch is observed to be close to the native FP32 accu-

racy. This shows that the layer-level emulation strategy fails

accurately reproduce the numerical error of FP16 arithmetic.

Based on the above observations, we argue that current

DNN emulators are ill-suited for accurately estimating the

accuracy effects of low-precision arithmetic on DNN training

due to their inherent design limitations.

4 Arbitor: Overview

To address the aforementioned limitations, we propose Ar-

bitor. Arbitor strives to achieve three main goals. First, to pro-

pose a DNN emulator with an extensible design that can emu-

late common hardware-level optimizations like low-precision

training, approximate computation, and sparsity-aware pro-

cessing. Second, to enable easy prototyping of these opti-

mizations and facilitate empirical analysis on their statistical

effects on popular DNN models. Finally, we strive to provide

numerically accurate emulation support that precisely mimics

the functional logic of the hardware optimizations on general-

purpose accelerators like GPUs. To achieve these goals, we

make the following implementation choices.

First, we build Arbitor on top of the popular machine learn-

ing framework TensorFlow [3]. TensorFlow supports the con-

venient and user-friendly Keras front-end APIs for writing

DNN training applications and offers implementations of a

wide range of state-of-the-art DNN models [33]. To allow fast

prototyping of low-precision arithmetic, approximate compu-

tation, and sparsity-aware processing on DNN models, Arbitor

provides extensions in the Keras APIs for the users to define

two emulation policies: (i) Data type policy for defining ar-

bitrary precision numerical formats and the implementations

of basic primitive mathematical operations on top of the user-

defined data types. (ii) Masking policy for enforcing N : M

sparsity patterns on the parameter updates during training.

Providing numerically accurate emulation support for these

hardware features requires fine-grained manipulations of the

computations involved in DNN training workloads. However,

manual modifications to the implementation of algebraic func-

tions in the ML framework are intrusive and require signifi-

cant engineering effort. Such modifications can also hamper

the extensibility of the emulation tool, as supporting new

DNN models or hardware features would require potential

code changes. To address these challenges, we make a key

observation: despite the apparent differences among hardware

features like low-precision arithmetic, approximate comput-

ing, and sparsity-aware processing, all of them can be emu-

lated by manipulating a small set of primitive operations, such

as addition, multiplication, memory read and write, which

constitute the DNN algebraic function implementations.

Based on this observation, we design Arbitor with the help

of the XLA compiler in TensorFlow [23] to provide fine-

grained emulation support. The XLA compiler operates on

an intermediate representation (IR) named HLO IR, which

precisely represents the computation through a concise set

of fundamental primitive operations. This representation for-

mat of DNN computation is particularly well-suited for fine-

grained manipulations to support numerically accurate emula-

tion. Moreover, due to the model and hardware-independent

nature of HLO IR, this compiler-based design of Arbitor pro-

vides seamless support for a wide range of DNN models and

easy extensions for the emulation of more DNN accelerator

optimizations. The XLA compiler compiles the high-level

computation graph of DNN progressively down to hardware-

specific kernels using standard code generation techniques,

as illustrated in Figure 5. Initially, the computation graph de-

scribed in the Keras front-end is transformed to HLO IR. The

XLA compiler takes the HLO IR as the input and proceeds

to perform a series of optimizations and analyses, ultimately

lowering the HLO IR to hardware-specific kernel implemen-

tations. Notably, XLA leverages LLVM infrastructure for

generating kernels on GPU, which is the target environment

of Arbitor. During this process, Arbitor incorporates user-

defined emulation policies into the computation by modifying

the compilation pipeline.

Below, we provide details about the emulation policies and

the fine-grained emulation strategy supported in Arbitor.

4.1 Emulation Policies

Figure 5 shows an example of Keras computation using the

two emulation policies supported in Arbitor. Users can define

and configure the dtype and mask policies using the Keras

APIs. The policies can be assigned either to specific layers (in

the Figure 5), or as a global policy for the entire DNN model.

The data type policy allows users to configure low-

precision arithmetic and approximate computing emulation.

Under this policy, the user can define a custom data type spec-

ification as an implementation of an abstract C++ class called

Cus. The specification should include two components. First,

two casting functions to convert the custom data type to and

from the standard FP32 data type. Second, implementations

of primitive mathematical operations over the custom data

type such as addition and multiplication, and mathematical

functions such as exponent and logarithm.

524 2023 USENIX Annual Technical Conference USENIX Association

class EmuBF16: public Cus {
public:
 unsigned int v;
 EmuBF16(unsigned int v) : v(v) {}
};
EmuBF16 from_float(float f) {
 unsigned int bits = *(unsigned int*)&f;
 unsigned int rounding_bias = 0x7fff + ((bits >> 16) & 1)
 return EmuBF16((bits + roounding_bias) >> 16);
}
float to_float(EmuBF16 b) {
 unsigned int bits = b.v << 16;
 return *(float*)&tmp;
}
EmuBF16 operator+(const EmuBF16& a, const EmuBF16& b) {
 return from_float(to_float(a) + to_float(b));
}
EmuBF16 operator*(const EmuBF16& a, const EmuBF16& b) {
 return from_float(to_float(a) * to_float(b));
}
....

Figure 4: Custom data type specification of BF16

Figure 4 shows a specification of BF16 [32] data type in

Arbitor named EmuBF16. In this example, from_float and

to_float are the two casting functions. In addition, the Fig-

ure also shows example implementations of addition and

multiplication operations defined over EmuBF16. It should be

noted that the abstract class Cus makes very few assumptions

about the specification of the data type and the implementa-

tions of the primitive operators. This allows Arbitor to support

a wide range of arbitrary numerical formats and customized

operator implementations on top of them to emulate low-

precision arithmetic and approximate computing.

Next, the masking policy allows the users to configure

an arbitrary N : M sparsity pattern on the layers during the

training process. In addition to N and M, the masking policy

also takes a scoring function as a configuration parameter. The

scoring function is a user-defined function that takes an array

of M values as input and assigns an importance score for each

value in the array. The masking policy defined in Figure 5

uses the absolute value as the scoring function. Based on these

configurations, Arbitor dynamically generates masks for each

parameter and gradient matrices accessed during the training

and selects the top N values with the highest importance score

on every block of M contiguous values in the matrix.

Once the policies are defined and assigned, Arbitor auto-

matically takes care of emulating the corresponding hardware

feature in the DNN training computation as we explain below.

4.2 Compiler-Aided Fine-Grained Emulation

Arbitor generates customized GPU kernel implementations to

achieve numerically accurate emulation of user-defined data

types and masking policies by leveraging the XLA compiler.

For the emulation of low-precision arithmetic and approxi-

mate computing, Arbitor injects user-defined data types and

operator specifications into the generated kernels. This is ac-

complished by compiler passes that replace the primitive oper-

ations in the HLO IR with the corresponding user-defined op-

erations and automatically insert casting operations for FP32

inputs, as shown in Figure 5. For example, when emulating

the user-defined EmuBF16 arithmetic in matrix multiplication,

the default FP32 addition and multiplication operations within

the kernel are replaced with the corresponding functions de-

fined in the data type specification. This approach could also

support emulating approximation of intricate mathematical

operations, such as exponential function and hyperbolic tan-

gent (tanh) function, where users are granted the capability to

define customized implementations of these complex opera-

tions based on approximation techniques like the piecewise-

linear approximation [35]. All of these are made possible

because Arbitor makes few assumptions of specifics of data

type representation and operator behavior that users provide.

Similarly, the masking policy in Arbitor enforces sparsity

patterns on weight and gradient matrices by overriding the

memory access operations to these matrices with masking op-

erations, as shown in Figure 5. Therefore, whenever the values

in the matrices are read during the training process, Arbitor

dynamically generates the corresponding mask according to

users’ specifications and computes the element-wise product

between the user-defined mask and the accessed matrix, re-

turning the resulting masked values. This approach allows

Arbitor to preserve the original matrices to handle dynami-

cally changing sparsity patterns during training.

Emulating at the granularity of these primitive operations

allows Arbitor to accurately mimic the numerical behaviors

of the algebraic functions on real hardware, as shown in Equa-

tion 2. To empirically validate this, we re-run the experiment

in Figure 2 and Figure 3 using Arbitor-emulated FP16 and

compare the results against the hardware native FP16 results.

The results of matrix multiplication and convolution using

Arbitor’s emulated FP16 precisely match with the hardware-

native FP16 results with zero relative error, affirming that

Arbitor is numerically accurate. Furthermore, we also show

in Figure 3 that the validation accuracy curve of ResNet-

50, employing Arbitor’s emulated FP16 arithmetic, closely

matches that obtained with native FP16. The margin of error

in the validation accuracy achieved is only 0.48%. In contrast,

the accuracy obtained by QPyTorch exhibits a discrepancy of

4.32% from native FP16 accuracy. These findings underscore

Arbitor’s capability to accurately estimate the effects of low-

precision arithmetic on DNN training. In addition, we also

analyse the emulation overhead of Arbitor compared to hard-

ware native performance that can be found in Appendix B.

5 Arbitor: Case Studies

We build Arbitor to provide a reliable analysis tool for hard-

ware research to explore DNN accelerator design space. We

USENIX Association 2023 USENIX Annual Technical Conference 525

Keras
Computation

User-Defined
Operations

EmuBF16 from_float(float f) {...}
float to_float(EmuBF16 b) {...}
EmuBF16 operator+(const EmuBF16 & a,
 const EmuBF16 & b){...}
EmuBF16 operator*(const EmuBF16 & a,
 const EmuBF16 & b){...}
EmuBF16 tanh(const EmuBF16 & a){...}
EmuBF16 exp(const EmuBF16 & a){...}
...

Memory Access
Rewriting

 %7 = load float, float* %6, align 4
 %8 = call i32 @from_float(float %7)
 …
 %11 = load float, float* %10, align 4
 %12 = call i32 @from_float(float %11)
 %13 = call i32 @cus_mul(i32 %8, i32 %12)
 …
 %16 = load float, float* %15, align 4
 %17 = call i32 @from_float(float %16)
 %18 = call i32 @cus_add(i32 %13, i32 %17)
 %19 = call float @to_float(i32 %18)

%convert.3 = emu_bf16[1]{0} convert(f32[1]{0} %param_3)
%convert.2 = emu_bf16[1]{0} convert(f32[1]{0} %param_2)
%multiply.0 = emu_bf16[1]{0}
 multiply(emu_bf16[1]{0} %convert.3, emu_bf16[1]{0} %convert.2)
%convert.1 = emu_bf16[1]{0} convert(f32[1]{0} %param_1)
ROOT %add.0 = emu_bf16[1]{0}
add(emu_bf16[1]{0} %multiply.0, emu_bf16[1]{0} %convert.1)

%multiply.0 = f32[1]{0} multiply(f32[1]{0} %param_3, f32[1]{0} %param_2)
ROOT %add.0 = f32[1]{0} add(f32[1]{0} %multiply.0, f32[1]{0} %param_1)

Default FP32 HLO:

HLO with dtype policy:

LLVM IR with dtype policy:

LLVM IRHLO IR

XLA Analyses &
Optimizations

XLA

Mask Policy

M =

W' = M W =

dtype_policy =
 arbitor.dtype("EmuBF16")Dtype Policy

LLVM IR

Arithmetics
Rewriting

Y = W'X = (M W)XY = W X

model = keras.Sequential([
 keras.layers.Dense(32,
 activation="relu",
 dtype=dtype_policy,
 mask=mask_policy),
 keras.layers.Dense(10),
])

model.compile()

mask_policy =
 arbitor.mask(N=2, M=4,
 lambda x: abs(x))

GPU Kernel Executable

define i32 @from_float(float %0) {
 %2 = bitcast float %0 to i32
 %3 = lshr i32 %2, 16
 %4 = and i32 %3, 1
 %5 = add i32 %2, 32767
 %6 = add i32 %5, %4
 %7 = lshr i32 %6, 16
 ret i32 %7
}

define float @to_float(i32 %0) {
 %2 = shl i32 %0, 16
 %3 = bitcast i32 %2 to float
 ret float %3
}
define i32 @cus_add(i32 %0, i32 %1){...}
define i32 @cus_mul(i32 %0, i32 %1){...}
define i32 @cus_tanh(i32 %0){...}
define i32 @cus_exp(i32 %0){...}
...

LLVM IR of use-defined operations

0.7 0.90.3

0.4 0.9
0.81.1 0.61.3

0.3 0.1
0.30.1 0.4 0.5

W =

0.4

0

0.4
0.5

0 0.7

0.9
01.1 0

0
1.3

0.9

0
0 0 0.4

0 0 1 1

01 1

1 1

0

0 0

0 0 1 1

Figure 5: Arbitor workflow and multiple layers of IR

illustrate the benefits of Arbitor through a series of case stud-

ies on common hardware-level optimizations proposed for

DNN accelerators. Specifically, we conduct an in-depth em-

pirical analysis on the sensitivity of low-precision training,

approximate computing, and sparsity-aware processing on

DNN training. To the best of our knowledge, we are the first

open study to conduct a numerically accurate and extensive

study on these optimizations. We would also like to highlight

that the case studies presented in this section are just a few

examples of the many potential applications of Arbitor. We

believe Arbitor is flexible and extensible to provide emulation

support for an even wider range of hardware features.

5.1 Experiment Setup

Model Dataset Accuracy

ResNet-18 [26] CIFAR-10 [36] 93.78

GNN [73] Cora [62] 84.06

Transformer [65] FordA [1] 87.24

CRNN [66] eng-fra [12] 87.25

Table 1: Benchmark models, datasets, and baseline accuracy

Workloads: Table 1 shows the DNN models we use in our ex-

perimental study, namely ResNet-18 [26], Transformer [65],

GNN [73], and CRNN [66], selected from the Keras model

hub [33]. These model implementations are based on a di-

verse range of model architectures that are part of the standard

DNN training benchmark suite MLPerf [49]. For instance,

ResNet-18 is a convolutional neural network (CNN) that is

used for image classification applications. Transformer model

is an attention-based DNN used in sequence classification and

translation. GNN is a graph neural network used for node pre-

diction in graph datasets. CRNN is a recurrent neural network

(RNN) based model used for natural language translation.

Hardware and Runtime: We conduct our experiments on

32-core AMD EPYC 7371 machines with four Nvidia 2080Ti

GPUs each with 12 GB memory. The runtime environment

uses Ubuntu 20.04 with CUDA 11.0, cuDNN 8.0, and CUT-

LASS 2.6. Arbitor is built on top of TensorFlow v2.4.0 [3].

Metrics: In our experiments, we use the peak validation ac-

curacy as the main evaluation metric. To measure the accu-

racy, we train ResNet-18 for 100 epochs, Transformer for 120

epochs, GNN for 300 epochs, and CRNN for 100 epochs on

their respective data sets. We train each model three times and

use their averaged accuracy for comparison to minimize the

effects of slight variations in the final accuracy. We use the val-

idation accuracy of each model trained using single-precision

floating point (FP32) as the baseline for all our comparisons.

The baseline accuracy of each model is shown in Table 1.

5.2 Case Study #1: Low-Precision Training

We use Arbitor to investigate the impact of low-precision

arithmetic on the model accuracy by training the DNN models

in Table 1 with different numerical formats. Current DNN

accelerators support a variety of floating point formats with

different numbers of exponent and mantissa bits, as described

in Section 2. Therefore, we conduct a sensitivity study on

different floating point formats and analyze how they affect

the model accuracy. In addition, we also evaluate the effects

of other numerical formats like Posit [25] on DNN training.

526 2023 USENIX Annual Technical Conference USENIX Association

Full low-precision

 1 2 3 4 5 6 7 8
 0

 2
 4

 6
 8

 10
 0

 20
 40
 60
 80

 100

with fp32 reduction

 1 2 3 4 5 6 7 8
 0

 2
 4

 6
 8

 10
 0

 20
 40
 60
 80

 100

without subnormal

 1 2 3 4 5 6 7 8
Exponent bits

 0
 2

 4
 6

 8
 10

Mantissa bits 0
 20
 40
 60
 80

 100

(a) CRNN

Full low-precision

 1 2 3 4 5 6 7 8
 0

 2
 4

 6
 8

 10
 0

 20
 40
 60
 80

 100

with fp32 reduction

 1 2 3 4 5 6 7 8
 0

 2
 4

 6
 8

 10
 0

 20
 40
 60
 80

 100

without subnormal

 1 2 3 4 5 6 7 8
Exponent bits

 0
 2

 4
 6

 8
 10

Mantissa bits 0
 20
 40
 60
 80

 100

(b) GNN

Full low-precision

 1 2 3 4 5 6 7 8
 0

 2
 4

 6
 8

 10
 0

 20
 40
 60
 80

 100

with fp32 reduction

 1 2 3 4 5 6 7 8
 0

 2
 4

 6
 8

 10
 0

 20
 40
 60
 80

 100

without subnormal

 1 2 3 4 5 6 7 8
Exponent bits

 0
 2

 4
 6

 8
 10

Mantissa bits 0
 20
 40
 60
 80

 100

(c) Transformer

Full low-precision

 1 2 3 4 5 6 7 8
 0

 2
 4

 6
 8

 10
 0

 20
 40
 60
 80

 100

with fp32 reduction

 1 2 3 4 5 6 7 8
 0

 2
 4

 6
 8

 10
 0

 20
 40
 60
 80

 100

without subnormal

 1 2 3 4 5 6 7 8
Exponent bits

 0
 2

 4
 6

 8
 10

Mantissa bits 0
 20
 40
 60
 80

 100

(d) ResNet-18

Figure 6: Validation accuracy of models trained using different exponent and mantissa widths of floating point format

5.2.1 Sensitivity Study on Floating Point Numbers

Single-precision floating point (FP32) is one of the most com-

monly used numerical formats for DNN training. According

to IEEE 754 standard [2], FP32 is specified as follows.

value =











(−1)s
×2−126

×0.m if e = 0x00 (subnormal)

NaN or in f if e = 0xFF

(−1)s
×2(e−127)

×1.m otherwise (normal)

(3)

Here, s, e, and m correspond to the sign, exponent, and man-

tissa of the FP32 value. As shown in Equation 3, the speci-

fication primarily follows two different modes, normal and

subnormal, depending on the value of the exponent. Other

floating point formats supported in DNN accelerators also

follow a similar specification but with different numbers of

exponent and mantissa bits, each making different trade-offs

in the range and precision of values it can represent.

To analyze the sensitivity of model accuracy towards differ-

ent floating point specifications, we define a data type policy

in Arbitor of a generic floating point specification with con-

figurable exponent and mantissa bits based on the IEEE 754

standard. We use eXmY to represent a floating point specifi-

cation with 1 sign bit, X exponent bits, and Y mantissa bits.

Using the custom floating point format, we train the DNN

models in two ways. First, we train and measure the accuracy

of the models while only using the custom floating point for-

mat for the whole model. Second, we use a combination of

the custom floating point and FP32 arithmetic following the

mixed-precision training strategy described in Section 3. Un-

der this strategy, all arithmetic operations are performed using

the custom floating point except the reduction operations in

algebraic functions like matrix multiplication, convolution,

and batch normalization which are performed using FP32

arithmetic. Figures 6a to 6d shows the validation accuracy

measured on models trained using custom floating point for-

mat by varying the number of exponent and mantissa bits.

Observation 1: DNN models can maintain their accu-

racy with much lower precision than many standard

low-precision floating point formats supported in cur-

rent DNN accelerators (e.g., BF16 and TF32). Addition-

ally, the precision can be reduced even further by using

single-precision arithmetic for reduction operations.

From our results, CRNN, GNN, Transformer, and ResNet-

18 can train to the FP32 accuracy with e6m6, e6m3, e6m4,

and e6m6 respectively. That means, reserving 6 bits for the ex-

ponent is sufficient to represent the floating point values gen-

erated during the training of these models which is lower than

the standard floating point formats like FP32 (e8m23), BF16

(e8m7), and TF32 (e8m10), but higher than FP16 (e5m10).

Reducing the exponent and mantissa bits beyond these config-

urations either causes a drop in accuracy or makes the models

fail to converge altogether. We also observe that the accuracy

of the models is less sensitive towards mantissa bits than ex-

ponent bits. This reasserts the fact that an optimal numerical

format for DNN training workloads should allocate more bits

for exponent and less for mantissa to be able to represent

a wide range of values. Moreover, the mantissa bits can be

further reduced for CRNN, GNN, and ResNet-18 to e6m1,

e6m2, and e6m2 respectively using FP32 arithmetic for re-

duction operations. This suggests that the numerical errors in

low-precision training are primarily contributed by reduction

operations. Therefore, using a combination of low and high-

precision floating point formats in training can provide higher

training performance with little to no loss in accuracy.

USENIX Association 2023 USENIX Annual Technical Conference 527

Next, we evaluate the importance of handling subnormal

numbers in floating point formats. The subnormal mode in

the floating point specification is introduced to gracefully han-

dle underflow for the values that fall between zero and the

smallest floating point number normal mode can represent.

However, handling the subnormal mode in floating point im-

plementation adds extra complexity to the hardware design.

Therefore, certain implementations like BF16 in TPUs [31]

do not support subnormal mode. In Figures 6a to 6d, we show

the model accuracy measured using the custom floating point

specification but with the subnormal numbers set to zero.

Observation 2: Subnormal mode has negligible impact

on the model accuracy.

Comparing the accuracy measurements with and without

subnormal mode, we observe that the subnormal numbers

can often be safely ignored on configurations with sufficient

exponent bits without affecting the model accuracy in almost

all cases. This is due to the fact that floating point specifi-

cations with larger exponent bits have a smaller subnormal

range and therefore approximating a small range of subnormal

numbers to zero only introduces minimal numerical error in

low-precision training. However, in certain cases like ResNet-

18, low-precision training without subnormal mode can cause

a slight drop in the accuracy of about 1.46%. We also observe

that this accuracy loss can be compensated by adding more

mantissa bits. For instance, ResNet-18 can achieve the base-

line accuracy using e6m8 without subnormal compared to

e6m6 with subnormal mode.

5.2.2 Posit as an Alternative for Floating Point

Even though floating point formats are the industry standard,

there have been proposals for alternative numerical formats

in the literature. Posit [25] is one such example and is a

novel data type designed as a direct drop-in replacement for

IEEE standard 754 floating point formats. Posit format is

purportedly more hardware-friendly with lower power use

and a smaller silicon footprint and can perform more oper-

ations per watt and per dollar than floating points under the

same hardware budget. Moreover, the original paper [25] and

subsequent studies [42] have shown that Posit can represent

decimal numbers more precisely than floating point format on

common arithmetic and linear algebra operations. Therefore,

Posit is considered to be a viable alternative for floating point

in deep learning applications. In this section, we evaluate the

effectiveness of Posit in DNN training with Arbitor.

An n-bit Posit format with es exponent bits, abbreviated as

P(n,es), is represented using a sign (s), regime (k), exponent

(e), and fraction (f) bits as follows:

value = (−1)s
×22es

×k
×2e

× (1. f) (4)

Similar to the floating point sensitivity study, we specify

a data type emulation policy in Arbitor using the software-

based Posit implementation available in the BFP library [40].

Then we train CRNN, GNN, and Transformer models using

Posit configurations with different n and es values. Figure 7

shows the validation accuracy measured on these models.

Observation 3: Contrary to the observations made in

prior works [59], low-precision training with Posit does

not yield better accuracy compared to floating point.

CRNN, GNN, and Transformer achieves the FP32 accuracy

with P(13,3), P(11,3), and P(9,2) respectively. However, com-

paring a Posit and floating point configuration that uses the

same number of bits in total, we observe they both converge

to similar accuracy. This suggests that the higher precision of

the Posit representation has limited benefits for DNN training

workloads which are known to be tolerant of low-precision

arithmetic. Despite this, we believe that Posit can still be a

viable replacement for floating point in DNN accelerators due

to its comparatively simpler and hardware-friendly design.

It is important to note that, the observation we make above

goes against some of the prior works that claim that Posit

can achieve better accuracy compared to floating point with a

smaller hardware budget. For instance, Raposo et. al [59] have

shown that 8-bit Posit can substitute 32-bit floating point for

DNN training with no impact on accuracy. This underscores

the importance of using a numerically accurate hardware

emulation tool like Arbitor for such analysis. Moreover, the

experimental evaluation conducted in this work was based on

smaller models and datasets than what we use in our study.

We believe our emulation tool can help hardware researchers

to conduct accurate experimental analysis in the future and

avoid making suboptimal design decisions.

5.3 Case Study #2: Approximate Computing

In this section, we use Arbitor to conduct a sensitivity study

on a common approximate computing technique called piece-

wise linear approximation. As described in Section 2, piece-

wise linear approximation has been proposed as a cost-

effective way to support non-linear algebraic functions like

exponents and tanh that are common in natural language pro-

cessing (NLP) models [35, 61, 69]. The key idea of this op-

timization is to break down curves of a non-linear function

into pieces of line segments each approximating a part of the

curve. Therefore, the fewer the pieces of line segments, the

higher the numerical error in the approximation.

We analyze piece-wise linear approximation of the non-

linear functions tanh and sigmoid in the CRNN model and

their effect on the model accuracy by varying the number of

pieces in the approximation. For this, we use the data type

emulation policy in Arbitor to override the tanh and sigmoid

function implementations of FP32 arithmetic with the piece-

wise approximated version. Table 2a shows the validation

accuracy curve of CRNN measured during the training.

528 2023 USENIX Annual Technical Conference USENIX Association

 6 8 10 12 14
Number of bits

 1

 2

 3

Exponent b
its 0

 20
 40
 60
 80

 100

(a) CRNN

 6 8 10 12 14
Number of bits

 1

 2

 3

Exponent b
its 0

 20
 40
 60
 80

 100

(b) GNN

 6 8 10 12 14
Number of bits

 1

 2

 3

Exponent b
its 0

 20
 40
 60
 80

 100

(c) Transformer

Figure 7: Validation accuracy of models trained using Posit format with different total bit widths and exponent bits

Observation 4: CRNN model can tolerate aggressive ap-

proximation on non-linear functions without affecting

the accuracy.

We observe that even with an aggressive 3-piece approxi-

mation on both tanh and sigmoid functions, CRNN can main-

tain the baseline FP32 accuracy. This shows that piece-wise

linear approximation is an effective optimization for DNN

training. We also observe that a more aggressive 2-piece ap-

proximation on either function can significantly reduce the

accuracy by up to 5%, and the accuracy drops further by 12%

if both use 2-piece approximation. Since piece-wise linear ap-

proximation is often used in FPGAs and ASICs designed for

NLP models, we believe our tool can be helpful in estimating

the trade-offs of the approximation for specific models.

5.4 Case Study #3: Sparsity-Aware Processing

Finally, we use Arbitor to analyze how structured sparsity can

affect the model accuracy. Sparsity-aware processing units

are one of the recent innovations in DNN accelerators, e.g.,

Sparse Tensor Cores in Nvidia A100 [51]. Sparse tensor pro-

cessing cores are designed to accelerate matrix multiplication

over matrices with N : M sparsity patterns, i.e., at most N

values in every contiguous M block of values are non-zero.

However, prior works [72] have pointed out that sparsity in

DNN training is inherently unstructured, and enforcing any

kind of structure to it in order to leverage Sparse Tensor Cores

can affect the accuracy of the model.

We analyze the extent of these effects on ResNet-18 and

Transformer with different sparsity patterns enforced on the

weight parameter update operations during training. For this

experiment, we define a masking policy in Arbitor with differ-

ent N and M values. We use the absolute value of the weight

parameter as the scoring function as it is one of the common

heuristics for estimating the importance score in DNN prun-

ing techniques [22]. Tables 2b and 2c shows the validation

accuracy measured on ResNet-18 and Transformer.

Observation 5: The accuracy effects of sparse weight

updates is highly model dependent. Moreover, enforc-

ing more than 50% sparsity can have a significant im-

pact on the model accuracy.

We observe that ResNet-18 can achieve close to the base-

line FP32 accuracy with sparse weight updates. We also ob-

serve that ResNet-18 accuracy has slightly improved from

the baseline accuracy with 50% sparsity patterns 1 : 2, 2 : 4,

and 4 : 8. We believe this improvement is due to the regular-

ization effects of the sparse computation. On the other hand,

Transformer shows a significant 4.3% drop in accuracy with

50% sparsity. This suggests that different models affect dif-

ferently with sparsity-aware processing and require rigorous

experimental analysis to accurately estimate the trade-offs.

Applying patterns with more than 50% sparsity shows a sig-

nificant drop in accuracy on both models by up to 7.5%.

6 Related Work

TensorQuant [45] is one of the first DNN emulation tools

proposed and is specially designed for analyzing fixed point

arithmetic primarily using layer-level quantization strategy. In

addition, TensorQuant offers provision for fine-grained emu-

lation strategy but requires users to write custom implementa-

tions for the operators in the DNN model. In contrast, Arbitor

can support fine-grained emulation automatically with mini-

mal effort from the user because of the compiler-based design

that we follow. Moreover, due to the narrow focus on fixed

point arithmetic emulation, the applicability of TensorQuant

is limited to the analysis of DNN quantization methods. Ar-

bitor, on the other hand, is capable of emulating arbitrary

numerical formats using the data type emulation support and

has a wider application. PositNN [59] is another DNN em-

ulator built specifically for analyzing the efficacy of Posit

numerical formats in DNN workloads. Therefore, like Ten-

sorQuant, PositNN also only has limited applicability. More-

over, PositNN uses a considerable amount of hand-written

code for emulating Posit and only support a narrow range of

DNN models. As we explain in Section 5.2.2, our analysis

on a wider range of standard DNN models has refuted some

USENIX Association 2023 USENIX Annual Technical Conference 529

CRNN

sigmoid tanh Accuracy (%)

3-piece 3-piece 88.12

2-piece None 82.26

None 2-piece 84.92

2-piece 2-piece 70.95

(a) CRNN with piece-wise linear approximation

ResNet-18

N

M
2 4 8

1 94.07 93.64 92.99

2 - 94.09 93.59

4 - - 94.19

(b) ResNet-18 with sparse weight updates

Transformer

N

M
2 4 8

1 82.11 78.78 75.45

2 - 82.94 80.72

4 - - 82.94

(c) Transformer with sparse weight updates

Table 2: Validation accuracy of CRNN, ResNet-18, and Transformer with approximate and sparse computing

of the observations made using PositNN. Specifically, the

authors of PositNN claim that 8-bit Posit format can substi-

tute 32−bit floating point, which we find to be untrue on the

models that we analyzed.

More recent emulators, QPyTorch [70] and GoldenEye [47]

are both implemented on top of PyTorch. These tools are pri-

marily designed for exploring low-precision formats on DNN

training and provide emulation support for a wide range of

numerical formats like floating point, fixed point, and block

floating point [21] and follow layer-level emulation strategy

with the help of the hook functionality in the framework.

GoldenEye also provides hardware error injection support

to evaluate the reliability of DNN accelerators. However, as

described in Section 3, these tools are susceptible to numer-

ical inaccuracies in emulation which can lead to incorrect

assessment of the hardware design. We argue that numerically

accurate emulation should be a necessary quality of hardware

emulators. Moreover, unlike QPyTorch and GoldenEye, Ar-

bitor is capable of supporting other common optimizations

like approximate and sparse computing.

7 Discussion

We have presented a numerically accurate approach for em-

ulating hardware optimizations and estimating their effects

on DNN accuracy to guide the hardware design. Below, we

discuss the generalizability and limitations of Arbitor, as well

as our future plans to overcome these limitations.

Supporting a broader set of numerical data formats. Al-

though we focus on case studies of floating point formats and

Posit formats in this work, Arbitor is designed to support any

arbitrary data formats through the generic data type emula-

tion policy. Hence, other floating point formats like FP8 and

fixed point formats like INT8 can also be emulated under

this generic emulation policy. We have also extended Ar-

bitor to support more complex block-based data formats, such

as block floating point format [21] and MSFP [19]. These

formats employ a block-based representation, where values

within each block share the same exponent. Emulating such

data formats is more challenging compared to regular data

formats that only require considering individual data points,

as the operations for each value depend on global informa-

tion like the value of the shared exponent. The extensible

design of Arbitor allows for adding compiler passes to rewrite

operations for different blocks to support such data formats.

Supporting more front-end frameworks. We chose to im-

plement Arbitor on top of XLA because we find it to be

the most mature ML compiler with training support and is

well-integrated with popular front-end frameworks like Ten-

sorFlow [3] and JAX [11]. However, the compiler-based ap-

proach is not tied to any specific compiler backend. We plan

to migrate Arbitor to the latest OpenXLA that is based on the

MLIR [38] infrastructure. Additionally, since the concept of

operation-level emulation is not tied to any specific compiler

backend, it is possible to apply the design of Arbitor to other

ML compilers like TorchDynamo [67].

Supporting other complex hardware features. In this work,

we demonstrate Arbitor’s support for the three most common

categories of hardware-level optimizations supported in DNN

accelerators. However, it is worth noting that there exist intri-

cate hardware features that are out of Arbitor’s current scope.

For instance, complex custom processing units, such as 3D

cube in Huawei NPU [39], are currently not supported by

Arbitor. We consider addressing these advanced hardware

features as future work.

8 Conclusion

In this paper, we showcase that hardware researchers currently

lack an accurate hardware analysis tool for empirically evalu-

ating different design choices for DNN training accelerators.

To fill this gap, we propose Arbitor, a hardware emulation tool

for analysing common hardware optimization strategies like

low-precision training, approximate computing, and sparsity-

aware processing. Unlike prior emulators, Arbitor follows an

extensible design and numerically accurate emulation support

with the assistance of modern machine learning compilers like

TensorFlow XLA. We subsequently demonstrate the utility of

Arbitor by conducting an extensive sensitivity analysis on the

aforementioned optimization strategies and their influence on

the accuracy of popular DNN models.

530 2023 USENIX Annual Technical Conference USENIX Association

Acknowledgments

We would like to thank our shepherd and the anonymous re-

viewers for their valuable feedback and comments. We also

thank members of the EcoSystem lab for their support, inspi-

ration, and constructive feedback during the development of

this work. This project was supported by the Canada Foun-

dation for Innovation JELF grant, NSERC Discovery grant,

AWS Machine Learning Research Award (MLRA), Facebook

Faculty Research Award, Google Scholar Research Award,

and VMware Early Career Faculty Grant.

Availability

The artifact of this paper is open-sourced on GitHub

(https://github.com/arbitor-project/artifact).

References

[1] Forda: A dataset for time series classification.

[2] Ieee standard for floating-point arithmetic. IEEE Std

754-2008, pages 1–70, 2008.

[3] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. Tensorflow: A system for large-

scale machine learning. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

16), pages 265–283, 2016.

[4] Ayaz Akram and Lina Sawalha. A survey of computer

architecture simulation techniques and tools. IEEE Ac-

cess, 7:78120–78145, 2019.

[5] Amazon Web Services. AWS Trainium.

[6] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl

Case, Jared Casper, Bryan Catanzaro, Jingdong Chen,

Mike Chrzanowski, Adam Coates, Greg Diamos, Erich

Elsen, Jesse Engel, Linxi Fan, Christopher Fougner,

Tony Han, Awni Hannun, Billy Jun, Patrick LeGresley,

Libby Lin, Sharan Narang, Andrew Ng, Sherjil Ozair,

Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh,

David Seetapun, Shubho Sengupta, Yi Wang, Zhiqian

Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun Zhan,

and Zhenyao Zhu. Deep speech 2: End-to-end speech

recognition in english and mandarin, 2015.

[7] Giorgos Armeniakos, Georgios Zervakis, Dimitrios

Soudris, and Jörg Henkel. Hardware approximate tech-

niques for deep neural network accelerators: A survey.

ACM Computing Surveys, 55(4):1–36, nov 2022.

[8] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung,

Henry Wong, and Tor M. Aamodt. Analyzing cuda

workloads using a detailed gpu simulator. In 2009 IEEE

International Symposium on Performance Analysis of

Systems and Software, pages 163–174, 2009.

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black,

Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel

Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad

Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.

The gem5 simulator. SIGARCH Comput. Archit. News,

39(2):1–7, August 2011.

[10] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan

Frankle, and John Guttag. What is the state of neural

network pruning? In I. Dhillon, D. Papailiopoulos, and

V. Sze, editors, Proceedings of Machine Learning and

Systems, volume 2, pages 129–146, 2020.

[11] James Bradbury, Roy Frostig, Peter Hawkins,

Matthew James Johnson, Chris Leary, Dougal Maclau-

rin, George Necula, Adam Paszke, Jake VanderPlas,

Skye Wanderman-Milne, and Qiao Zhang. JAX: com-

posable transformations of Python+NumPy programs,

2018.

[12] Jason Callaway. fra-txt-details. Kaggle Dataset.

[13] Zachariah Carmichael, Hamed F. Langroudi, Char Khaz-

anov, Jeffrey Lillie, John L. Gustafson, and Dhireesha

Kudithipudi. Deep positron: A deep neural network

using the posit number system. In 2019 Design, Au-

tomation and Test in Europe Conference and Exhibition

(DATE), pages 1421–1426, 2019.

[14] Cerebras. Cerebras Wafer-Scale Engine.

[15] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,

Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri

Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-

man, Alex Ray, Raul Puri, Gretchen Krueger, Michael

Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,

Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,

Alethea Power, Lukasz Kaiser, Mohammad Bavarian,

Clemens Winter, Philippe Tillet, Felipe Petroski Such,

Dave Cummings, Matthias Plappert, Fotios Chantzis,

Elizabeth Barnes, Ariel Herbert-Voss, William Heb-

gen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie

Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,

William Saunders, Christopher Hesse, Andrew N. Carr,

Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,

USENIX Association 2023 USENIX Annual Technical Conference 531

https://github.com/arbitor-project/artifact

Alec Radford, Matthew Knight, Miles Brundage, Mira

Murati, Katie Mayer, Peter Welinder, Bob McGrew,

Dario Amodei, Sam McCandlish, Ilya Sutskever, and

Wojciech Zaremba. Evaluating large language models

trained on code, 2021.

[16] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and

Tianqi Tang. A survey of accelerator architectures for

deep neural networks. Engineering, 6(3):264–274, 2020.

[17] Aakanksha Chowdhery, Sharan Narang, Jacob De-

vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,

Paul Barham, Hyung Won Chung, Charles Sutton, Se-

bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha

Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker

Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-

hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner

Pope, James Bradbury, Jacob Austin, Michael Isard, Guy

Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya,

Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski,

Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fe-

dus, Denny Zhou, Daphne Ippolito, David Luan, Hyeon-

taek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sep-

assi, David Dohan, Shivani Agrawal, Mark Omernick,

Andrew M. Dai, Thanumalayan Sankaranarayana Pil-

lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-

won Child, Oleksandr Polozov, Katherine Lee, Zong-

wei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,

Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-

Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and

Noah Fiedel. Palm: Scaling language modeling with

pathways, 2022.

[18] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Training deep neural networks with low preci-

sion multiplications, 2014.

[19] Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming

Liu, Jeremy Fowers, Kalin Ovtcharov, Anna Vinograd-

sky, Sarah Massengill, Lita Yang, Ray Bittner, et al.

Pushing the limits of narrow precision inferencing at

cloud scale with microsoft floating point. Advances

in neural information processing systems, 33:10271–

10281, 2020.

[20] David Kaplan. When hardware must just work, 2015.

[21] Mario Drumond, Tao Lin, Martin Jaggi, and Babak Fal-

safi. Training dnns with hybrid block floating point. In

Proceedings of the 32nd International Conference on

Neural Information Processing Systems, NIPS’18, page

451–461, Red Hook, NY, USA, 2018. Curran Associates

Inc.

[22] Trevor Gale, Erich Elsen, and Sara Hooker. The state of

sparsity in deep neural networks, 2019.

[23] Google. TensorFlow XLA, 2018.

[24] GraphCore. Introducing the Colossus MK2 GC200 IPU.

[25] Gustafson and Yonemoto. Beating floating point at its

own game: Posit arithmetic. Supercomput. Front. Innov.:

Int. J., 4(2):71–86, jun 2017.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition.

CoRR, abs/1512.03385, 2015.

[27] Meyr Heinrich, Lüthje Olaf, Holger Keding, and Coors

Martin. Design and dsp implementation of fixed-point

systems. EURASIP Journal on Advances in Signal Pro-

cessing, 2002, 09 2002.

[28] Dan Hendrycks and Kevin Gimpel. Gaussian error linear

units (gelus), 2016.

[29] James C. Hoe, Doug Burger, Joel Emer, Derek Chiou,

Resit Sendag, and Joshua Yi. The future of architectural

simulation. IEEE Micro, 30(3):8–18, 2010.

[30] Intel. Gaudi2: High Performance Training and Inference

Solution.

[31] Norman P. Jouppi, Cliff Young, Nishant Patil, David

Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah

Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick

Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,

Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,

Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-

tipati, William Gulland, Robert Hagmann, C. Richard

Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,

Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander

Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,

Naveen Kumar, Steve Lacy, James Laudon, James Law,

Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,

Alan Lundin, Gordon MacKean, Adriana Maggiore,

Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi

Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,

Mark Omernick, Narayana Penukonda, Andy Phelps,

Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,

Chris Severn, Gregory Sizikov, Matthew Snelham, Jed

Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-

gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay

Vasudevan, Richard Walter, Walter Wang, Eric Wilcox,

and Doe Hyun Yoon. In-datacenter performance anal-

ysis of a tensor processing unit. In Proceedings of the

44th Annual International Symposium on Computer Ar-

chitecture, ISCA ’17, pages 1–12, New York, NY, USA,

2017. ACM.

[32] Dhiraj D. Kalamkar, Dheevatsa Mudigere, Naveen

Mellempudi, Dipankar Das, Kunal Banerjee, Sasikanth

532 2023 USENIX Annual Technical Conference USENIX Association

Avancha, Dharma Teja Vooturi, Nataraj Jammala-

madaka, Jianyu Huang, Hector Yuen, Jiyan Yang, Jong-

soo Park, Alexander Heinecke, Evangelos Georganas,

Sudarshan Srinivasan, Abhisek Kundu, Misha Smelyan-

skiy, Bharat Kaul, and Pradeep Dubey. A study

of BFLOAT16 for deep learning training. CoRR,

abs/1905.12322, 2019.

[33] Keras. Keras Code Examples.

[34] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and

Timothy G. Rogers. Accel-sim: An extensible simula-

tion framework for validated gpu modeling. In 2020

ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA), pages 473–486, 2020.

[35] Seok Young Kim, Chang Hyun Kim, and Seon Wook

Kim. Applying piecewise linear approximation for dnn

non-linear activation functions to bfloat16 macs. In 2021

International Conference on Electronics, Information,

and Communication (ICEIC), pages 1–4, 2021.

[36] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.

Cifar-10 (canadian institute for advanced research).

[37] Abhisek Kundu, Alex Heinecke, Dhiraj Kalamkar, Su-

darshan Srinivasan, Eric C. Qin, Naveen K. Mellem-

pudi, Dipankar Das, Kunal Banerjee, Bharat Kaul, and

Pradeep Dubey. K-tanh: Efficient tanh for deep learning,

2019.

[38] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert

Cohen, Andy Davis, Jacques Pienaar, River Riddle, Ta-

tiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-

nenko. Mlir: Scaling compiler infrastructure for do-

main specific computation. In 2021 IEEE/ACM Inter-

national Symposium on Code Generation and Optimiza-

tion (CGO), pages 2–14. IEEE, 2021.

[39] Heng Liao, Jiajin Tu, Jing Xia, and Xiping Zhou.

Davinci: A scalable architecture for neural network com-

puting. In 2019 IEEE Hot Chips 31 Symposium (HCS),

pages 1–44, 2019.

[40] libcg. bfp - Beyond Floating Point.

[41] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Anna-

pureddy. Fixed point quantization of deep convolutional

networks. In Proceedings of the 33rd International Con-

ference on International Conference on Machine Learn-

ing - Volume 48, ICML’16, page 2849–2858. JMLR.org,

2016.

[42] Peter Lindstrom, Scott Lloyd, and Jeffrey Hittinger. Uni-

versal coding of the reals: Alternatives to ieee floating

point. In Proceedings of the Conference for Next Gen-

eration Arithmetic, CoNGA ’18, New York, NY, USA,

2018. Association for Computing Machinery.

[43] Zhenhong Liu, Amir Yazdanbakhsh, Taejoon Park,

Hadi Esmaeilzadeh, and Nam Sung Kim. Simul: An

algorithm-driven approximate multiplier design for ma-

chine learning. IEEE Micro, 38(4):50–59, 2018.

[44] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Fe-

ichtenhofer, Trevor Darrell, and Saining Xie. A convnet

for the 2020s. In 2022 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages

11966–11976, 2022.

[45] Dominik Marek Loroch, Norbert Wehn, Franz-Josef

Pfreundt, and Janis Keuper. Tensorquant - a simulation

toolbox for deep neural network quantization, 2017.

[46] Jinming Lu, Siyuan Lu, Zhisheng Wang, Chao Fang, Jun

Lin, Zhongfeng Wang, and Li Du. Training deep neural

networks using posit number system, 2019.

[47] Abdulrahman Mahmoud, Thierry Tambe, Tarek Aloui,

David Brooks, and Gu-Yeon Wei. Goldeneye: A plat-

form for evaluating emerging numerical data formats

in dnn accelerators. In 2022 52nd Annual IEEE/IFIP

International Conference on Dependable Systems and

Networks (DSN), pages 206–214, 2022.

[48] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-

gory Diamos, Erich Elsen, David Garcia, Boris Ginsburg,

Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh,

and Hao Wu. Mixed precision training, 2017.

[49] MLPerf. MLPerf Training v0.6 Results, 2019.

[50] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael

Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo

Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,

Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey

Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman

Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,

Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vi-

jay Rao, Bill Jia, Liang Xiong, and Misha Smelyan-

skiy. Deep learning recommendation model for per-

sonalization and recommendation systems. CoRR,

abs/1906.00091, 2019.

[51] Nvidia. NVIDIA AMPERE GA102 GPU ARCHITEC-

TURE.

[52] Nvidia. NVIDIA Tesla P100 White Paper.

[53] Nvidia. NVIDIA Turing GPU ARCHITECTURE.

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,

Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

USENIX Association 2023 USENIX Annual Technical Conference 533

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-

tala. Pytorch: An imperative style, high-performance

deep learning library, 2019.

[55] Harry A. Pierson and Michael S. Gashler. Deep learning

in robotics: A review of recent research, 2017.

[56] Jeff Pool and Chong Yu. Channel permutations for n:m

sparsity. In M. Ranzato, A. Beygelzimer, Y. Dauphin,

P.S. Liang, and J. Wortman Vaughan, editors, Advances

in Neural Information Processing Systems, volume 34,

pages 13316–13327. Curran Associates, Inc., 2021.

[57] PyTorch. RFC: Should matmuls use tf32 by default?

[58] Prajit Ramachandran, Barret Zoph, and Quoc V. Le.

Searching for activation functions, 2018.

[59] Gonçalo Raposo, Pedro Tomás, and Nuno Roma.

PositNN: Training Deep Neural Networks with Mixed

Low-Precision Posit. In ICASSP 2021 - 2021 IEEE In-

ternational Conference on Acoustics, Speech and Signal

Processing (ICASSP), page 7908–7912. IEEE, jun 2021.

[60] run.ai. FPGA for Deep Learning.

[61] Maicon A. Sartin and Alexandre C. R. da Silva. Ap-

proximation of hyperbolic tangent activation function

using hybrid methods. In 2013 8th International Work-

shop on Reconfigurable and Communication-Centric

Systems-on-Chip (ReCoSoC), pages 1–6, 2013.

[62] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise

Getoor, Brian Gallagher, and Tina Eliassi-Rad. Col-

lective classification in network data. AI magazine,

29(3):93–93, 2008.

[63] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder,

Shi Dong, Xiang Gong, Shane Treadway, Yuhui Bao,

Spencer Hance, Carter McCardwell, Vincent Zhao, Har-

rison Barclay, Amir Kavyan Ziabari, Zhongliang Chen,

Rafael Ubal, José L. Abellán, John Kim, Ajay Joshi,

and David Kaeli. Mgpusim: Enabling multi-gpu perfor-

mance modeling and optimization. In Proceedings of

the 46th International Symposium on Computer Archi-

tecture, ISCA ’19, page 197–209, New York, NY, USA,

2019. Association for Computing Machinery.

[64] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana

Schaa, and David Kaeli. Multi2sim: A simulation frame-

work for cpu-gpu computing. In 2012 21st International

Conference on Parallel Architectures and Compilation

Techniques (PACT), pages 335–344, 2012.

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,

and Illia Polosukhin. Attention is all you need. In

I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing Systems,

volume 30. Curran Associates, Inc., 2017.

[66] Ruishuang Wang, Zhao Li, Jian Cao, Tong Chen, and Lei

Wang. Convolutional recurrent neural networks for text

classification. In 2019 International Joint Conference

on Neural Networks (IJCNN), pages 1–6, 2019.

[67] Peng Wu. Pytorch 2.0: The journey to bringing com-

piler technologies to the core of pytorch (keynote). In

Proceedings of the 21st ACM/IEEE International Sym-

posium on Code Generation and Optimization, pages

1–1, 2023.

[68] Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang,

and Lanshun Nie. Balanced sparsity for efficient

dnn inference on gpu. In Proceedings of the Thirty-

Third AAAI Conference on Artificial Intelligence and

Thirty-First Innovative Applications of Artificial In-

telligence Conference and Ninth AAAI Symposium

on Educational Advances in Artificial Intelligence,

AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019.

[69] Babak Zamanlooy and Mitra Mirhassani. Efficient vlsi

implementation of neural networks with hyperbolic tan-

gent activation function. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 22(1):39–48,

2014.

[70] Tianyi Zhang, Zhiqiu Lin, Guandao Yang, and Christo-

pher De Sa. Qpytorch: A low-precision arithmetic sim-

ulation framework. ArXiv, abs/1910.04540, 2019.

[71] Xishan Zhang, Shaoli Liu, Rui Zhang, Chang Liu,

Di Huang, Shiyi Zhou, Jiaming Guo, Qi Guo, Zidong Du,

Tian Zhi, and Yunji Chen. Fixed-point back-propagation

training. In 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2327–

2335, 2020.

[72] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhi-

jie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li.

Learning n:m fine-grained structured sparse neural net-

works from scratch. In International Conference on

Learning Representations, 2021.

[73] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, and Maosong Sun. Graph neural net-

works: A review of methods and applications. CoRR,

abs/1812.08434, 2018.

[74] Feng Zhu, Ruihao Gong, Fengwei Yu, Xianglong Liu,

Yanfei Wang, Zhelong Li, Xiuqi Yang, and Junjie Yan.

Towards unified int8 training for convolutional neural

network, 2019.

534 2023 USENIX Annual Technical Conference USENIX Association

[75] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayara-

jan, A. Phanishayee, B. Schroeder, and G. Pekhimenko.

Benchmarking and analyzing deep neural network train-

ing. In 2018 IEEE International Symposium on Work-

load Characterization (IISWC), pages 88–100, Sep.

2018.

A Artifact Appendix

Abstract

We provide the source code and scripts for Arbitor to repro-

duce the results of our experiments (in Section 3 and 4) and

case studies (in Section 5) presented in the paper. While our

paper explores three hardware optimizations: low-precision

arithmetic, approximate computing, and sparsity-aware pro-

cessing, the artifact focuses specifically on low-precision arith-

metic. To this end, it contains the validation of accurate emula-

tion of Arbitor. Additionally, the artifact conducts a sensitivity

study between the validation accuracy and a subset of floating-

point formats we study in the paper, similar to Figure 6. By

following our provided instructions, users can expect to obtain

results that closely align with those presented in the paper.

Scope

The artifact comprises two main components. Firstly, it gen-

erates the validation accuracy of training ResNet-18 using

FP16 format emulated with Arbitor and QPyTorch and com-

pares it to the native FP16 accuracy on GPU. This analy-

sis highlights the negligible difference in accuracy between

Arbitor-emulated FP16 and native FP16 while revealing a sig-

nificant accuracy difference when using QPyTorch. Therefore,

it could validate our claim that prior approaches like QPy-

Torch struggle to accurately replicate the numerical behavior

of training with specific data formats, such as FP16, while

Arbitor is designed to overcome this limitation.

Furthermore, the artifact automates the training process of

GNN using a subset of floating-point formats evaluated in the

paper, employing full low-precision training. This sensitivity

study explores the variations in validation accuracy as the

floating-point data format changes, thus validating the results

presented in the corresponding section (Section 5) and sup-

porting all associated claims. The results of all these training

instances will be aggregated to generate a figure similar to

Figure 6b but with fewer data points.

Contents

The artifact includes the source code of Arbitor, providing

researchers with the ability to reproduce and modify the im-

plementation. In addition to the evaluated ResNet-18 and

GNN model, the artifact also includes the other two models,

CRNN and Transformer, used in the case studies. Their corre-

sponding datasets, including CIFAR-10 for ResNet-18, Cora

for GNN, FordA for Transformer, and eng-fra for CRNN (as

outlined in Table 1), are provided in the artifact. Therefore,

researchers can readily evaluate these models and datasets,

allowing for result replication, fast customization, and further

investigation. Furthermore, the artifact provides a set of prede-

fined data formats tailored to the experiments and case studies

in the paper, including the floating-point and Posit formats,

along with guidelines for incorporating these data formats in

the training.

Hosting

The artifact can be downloaded from the main branch of

GitHub link https://github.com/arbitor-project/artifact.

Requirements

A.0.1 Hardware requirement:

Arbitor requires the use of a multi-core CPU and an NVIDIA

GPU with the Turing architecture or a more advanced counter-

part to run the artifact. In our experiment, we employed four

NVIDIA 2080Ti cards, but augmenting computation power

by utilizing GPUs like NVIDIA A100, could further optimize

the efficiency of artifact execution.

A.0.2 Software requirement:

The experiments provided in this artifact is prepared to run

inside a docker container. We recommend using a machine

with Ubuntu 20.04 with docker installed to reproduce the

results.

Installation and Environment Setup

We provide docker files to set up the runtime environment for

all the experiments.

• Install docker following the instructions in

https://docs.docker.com/engine/install/ubuntu/.

• Make sure the machine has NVIDIA GPU(s) and the

corresponding driver installed. If the NVIDIA driver is

not installed, follow the instructions at NVIDIA tutorial

to install it.

• Clone the git repository using the following command:

git clone --recursive

https://github.com/arbitor-project/artifact

• Build a docker image and enter the docker environment:

cd artifact && bash run.sh

USENIX Association 2023 USENIX Annual Technical Conference 535

https://github.com/arbitor-project/artifact
https://docs.docker.com/engine/install/ubuntu/
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html

Experiment Workflow

We provide an end-to-end script to run everything all at once.

When inside the docker environment, execute e2e.sh to run

all the experiments and generate the results. The total execu-

tion may take several days to finish.

We also provide the step-by-step workflow as shown below:

1. Reproduce QPytorch ResNet-18 result with emulated

FP16: bash qpytorch.sh

2. Reproduce Tensorflow ResNet-18 result with native

FP16:

cd native_half && bash ./expr.sh resnet

3. Reproduce Arbitor ResNet-18 result with emulated

FP16:

cd /root/arbitor && bash ./expr.sh resnet

4. Generate a subset of data formats for GNN training sen-

sitivity study:

cd /root/ && bash ./gnn.sh

Evaluation and Expected Results

Once the above execution has finished, two files, namely

results/validation.csv and results/sens.pdf will be

generated. results/validation.csv presents the final val-

idation accuracy for three configurations: QPyTorch, native,

and Arbitor FP16. It is expected that the validation accuracy

of QPyTorch will be closely aligned with the FP32 baseline

accuracy (93.78%), while both results of native and Arbitor

are around 2% less than FP32 accuracy, consistent with the

findings from Figure 3. Since the training process involves

inherent randomness, it may be necessary to run multiple tri-

als and compute an average for more accurate results. The

file results/sens.pdf encompasses a figure depicting the

relationship between accuracy, exponent bits, and mantissa

bits. This is anticipated to bear resemblance to the first figure

of Figure 6b, with fewer data points presented.

Experiment Customization

The emulated data format can be modified by modifying the

arbitor/data_format.sh script to specify properties of

data formats. Specifically, F_OR_P decides whether to em-

ulate float or posit numbers. ACC represents the data type

for accumulation, where f32_acc is to use FP32 to accumu-

late during a dot product, and cus_acc is to use the same

type as computation for accumulation. In floating point con-

figs, EXP and MANTISSA represent the bit-width of exponent

and mantissa respectively. Setting SUBNORMAL=_subnormal

causes subnormal numbers to be enabled during emulation

and SUBNORMAL=_wo_subnormal otherwise. For Posit con-

figs, POSIT_NBITS is the whole width of the number format,

and POSIT_ES is the width of the exponent of Posit.

100

101

102

103

104

T
im

e
 (

m
s
)

FP32 (Native)
exp=8 acc=f32

exp<8 acc=f32
exp=8 acc=cus

exp<8 acc=cus
Posit

Figure 8: GNN training time with different number formats

emulated by Arbitor

After changing data_format.sh, run

bash ./expr.sh [gnn | transformer | crnn |

resnet]

to train the model with the specified data format.

B Overhead of Arbitor

In addition to accurate emulation, generating customized GPU

kernels enables execution of Arbitor on GPU, in contrast

to accurate software-based simulators that primarily rely on

CPU-based execution. This allows Arbitor to leverage the

high bandwidth and massive parallelism of GPU to achieve a

level of performance that is more practical for executing DNN

training workload compared to software-based simulators. To

demonstrate the performance impact of Arbitor, we train the

whole GNN model with different data formats emulated by

Arbitor using the same experiment setup in Section 5.1. Fig-

ure 8 shows the training time for each step with different

data formats, where exp is the width of exponent bits, and

acc=cus or acc=f32 represents whether the accumulation

type is the same as computation type or is FP32. Emulating

different data formats introduces different amounts of over-

head, as the execution of emulated operations for each format

requires a distinct number of cycles on the GPU. For the float-

ing point format with 8 exponent bits with FP32 accumulation,

Arbitor incurs a 3.59× overhead. When the data format is

significantly different from FP32, such as Posit, Arbitor could

introduce a slowdown of up to 164.7×. These results show

that with the GPU acceleration, the performance of Arbitor is

significantly better than software-based simulators and is prac-

tical for the accurate emulation of DNN training. Moreover,

Arbitor can also leverage data parallel training to scale the

training over multiple GPUs to compensate for the emulation

overhead.

536 2023 USENIX Annual Technical Conference USENIX Association

	Introduction
	Hardware Accelerators for DNN Training
	Need for an Accurate Hardware Analysis Tool for DNN Accelerator Design
	Arbitor: Overview
	Emulation Policies
	Compiler-Aided Fine-Grained Emulation

	Arbitor: Case Studies
	Experiment Setup
	Case Study #1: Low-Precision Training
	Sensitivity Study on Floating Point Numbers
	Posit as an Alternative for Floating Point

	Case Study #2: Approximate Computing
	Case Study #3: Sparsity-Aware Processing

	Related Work
	Discussion
	Conclusion
	Artifact Appendix
	Hardware requirement:
	Software requirement:

	Overhead of Arbitor

