
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

GLogS: Interactive Graph Pattern
Matching Query At Large Scale

Longbin Lai, Alibaba Group, China; Yufan Yang, The Chinese University of Hong
Kong, Shenzhen; Zhibin Wang, Nanjing University; Yuxuan Liu and Haotian Ma, The
Chinese University of Hong Kong, Shenzhen; Sijie Shen, Bingqing Lyu, Xiaoli Zhou,

Wenyuan Yu, and Zhengping Qian, Alibaba Group, China; Chen Tian and
Sheng Zhong, Nanjing University; Yeh-Ching Chung, The Chinese University of Hong

Kong, Shenzhen; Jingren Zhou, Alibaba Group, China
https://www.usenix.org/conference/atc23/presentation/lai

GLogS: Interactive Graph Pattern Matching Query At Large Scale

Longbin Lai1∗, Yufan Yang2∗, Zhibin Wang3, Yuxuan Liu2, Haotian Ma2, Sijie Shen1, Bingqing
Lyu1, Xiaoli Zhou1, Wenyuan Yu1, Zhengping Qian1, Chen Tian3, Sheng Zhong3, Yeh-Ching

Chung2 and Jingren Zhou1

1Alibaba Group, China
2The Chinese University of Hong Kong, Shenzhen

3Nanjing University

Abstract

Interactive GPM (iGPM) is becoming increasingly im-
portant, where a series of graph pattern matching (GPM)
queries are created and submitted in an interactive man-
ner based on the insights provided by the prior queries.
To solve the iGPM problem, three key considerations
must be taken into account: performance, usability and
scalability, namely if results can be returned in a timely
manner, if queries can be written in a declarative way
without the need of imperative fine-tune, and if it can
work on large graphs. In this paper, we propose the
GLogS system that allows users to interactively sub-
mit queries using a declarative language. The system
will compile and compute optimal execution plans for
the queries, and execute them on an existing distributed
dataflow engine. In the evaluation, we compare GLogS
with the alternatives systems Neo4j and TigerGraph.
GLogS outperforms Neo4j by 51× on a single machine
due to better execution plans. Additionally, GLogS can
scale to processing large graphs with distributed capabil-
ity. While compared to TigerGraph, GLogS is superior in
usability, featuring an optimizer that can automatically
compute optimal execution plans, eliminating the need
of manual query tuning as required in TigerGraph.

1 Introduction
Graph pattern matching (GPM) aims to compute the
mappings in a data graph that match a given small pat-
tern graph, and it plays an important role in a variety of
applications covering bioinformatics [3, 24, 37], chem-
istry [17, 23], social/web network analysis [20, 26], and
recently in enhancing the expressive power of graph neu-
ral network [15, 53, 55].

Increasingly, interactive GPM (iGPM) is becoming
critical for data scientists to mine relationships, identify
frauds or detect intrusions from a variety of large graphs
in real life. In these scenarios, data scientists create and

∗Equal Contribution.

v1

v2

v3

(d) The mappings of p in G

v3v2v1

u4u1u2

u5u3u2

(b) Interactive GPM

Q: p (without predicates)
Not Good

Got It

Q: p.where(v1.age < 30 && v2.age < 30
&& v3.name==“iPhone14Pro”)

…
Q: p.where(v1.age < 30 && v2.age < 30)
Not Good

(a) Pattern p

Person Product City
Knows Purchases LivesIn

Country
LocatedIn

u6
u1

u2

u3

u4

u5

u7

u8

age: 20
name: John

(c) Graph G

Figure 1: Example of interactive graph pattern match-
ing, where a user will interactively submit graph pattern
matching queries (see Example 2.1) to explore the graph.

submit a series of GPM queries in an interactive man-
ner based on the insights provided by the results of prior
queries. For example, we demonstrate a simplified appli-
cation scenario as follows.

Example 1.1. In Figure 1, a user is exploring recom-
mendation rules in an e-commerce graph, which main-
tains relationships such as “Purchases” between persons
and products. The user is specifically looking at a pat-
tern (Figure 1(a)) of co-purchasing among pairs of peo-
ple who are acquainted. If such co-purchasing occurs
very frequently among these pairs in historical data, a
recommendation rule may be created to recommend the
product that has been purchased by one person to his/her
friends who have not yet purchased it. The user tries dif-
ferent patterns and constraints (using predicates) through
a series of interactive queries. In Figure 1(b), the user
decides to create a rule suggesting that young people
(“age < 30”) tend to co-purchasing the “iPhone 14 Pro”,
rather than an arbitrary product.

In the above scenario of iGPM, it is necessary to con-
sider the requirements of performance, scalability and
usability simultaneously. Performance allows users to
quickly obtain useful insights from the “trial-and-error”

USENIX Association 2023 USENIX Annual Technical Conference 53

process. Usability enables users to easily present arbi-
trary GPM queries. Scalability is also crucial as it is
now common to handle large-scale graphs. Due to the
computation-intensiveness of GPM queries [14, 29], it
is already difficult for a graph expert to tune the execu-
tion [13, 25, 54]. The problem becomes even more com-
plex in iGPM, where users may not be experts and the
queries can involve intricate patterns and optional pred-
icates. Therefore, the following features are essential to
meet the above requirements.
Declarative Language. A declarative query language
can provide users convenience and flexibility to express
complex GPM queries.
Automatic Optimization. Automatic optimization al-
lows non-expert users to focus on exploring valuable pat-
terns without having to worry about the challenging task
of performance tuning.
Distributed Execution. With the graph partitioned
across the cluster, distributed execution is expected to
spread the workloads accordingly.

However, the systems that are potentially usable for
iGPM, including Neo4j [33] and TigerGraph [18], all
fall short in providing one or more above features (Sec-
tion 2). In this paper, we propose the GLogS (name after
GLogue, see Section 5.3) system to fill in the gap. Our
goal is to give the users the convenience and flexibility
of presenting GPM queries interactively, and to have the
system deal with the complexities that arise from compi-
lation, query optimization, and distributed execution. We
mainly make the following technical contributions.
(1) A compilation stack that compiles declarative GPM

queries into distributed programs. We adopt Gremlin’s
declarative match step, an industrial-strength query lan-
guage, for expressing GPM queries. The match step,
after compilation and optimization, will be transformed
into a program that can be executed on a distributed
dataflow engine.
(2) An optimizer that can automatically derive optimal

execution plans for GPM queries. While analyzing the
execution plans of Neo4j, we have identified two criti-
cal impact factors of deriving good execution plans for
GPM: worst-case optimal execution plan [4] and high-
order statistics [12]. We take into considerations both
factors to design and implement the optimizer for GLogS.
(3) A system that allows users to interactively submit and
efficiently execute GPM queries at large scale. We build
the GLogS system upon the existing distributed dataflow
engine GAIA [38] to leverage its optimization for graph
queries. In the evaluation based on the LDBC bench-
mark, we compare GLogS with Neo4j and TigerGraph.
GLogS outperforms Neo4j by 51× on a single machine
due to better execution plans. Additionally, GLogS can
scale to handle large graphs with distributed capability.

While compared to TigerGraph, GLogS is superior in
usability, featuring an optimizer that can automatically
compute optimal execution plans, eliminating the need
of manual query tuning as required in TigerGraph.

2 Background and Challenges
2.1 The Problem of iGPM
We adopt the property graph model [6] for usability. A
property graph G(VG,EG) is a directed labelled graph, as
shown in Figure 1, in which each vertex u ∈ VG models
an entity, and each edge (us,ut) ∈ EG models the rela-
tionship from a source vertex us to a target vertex ut . We
call the edge (us,ut) the adjacent edge of us and ut , and
us (resp. ut) is an in neighbor (resp. out neighbor) of ut
(resp. us). A vertex u (an edge is analogously defined)
is assigned a globally unique identifier (Id) and a label
(Label) to indicate is type. Moreover, it can carry a col-
lection of key-value pairs as the properties. We use u.key
to denote accessing u’s property of given key.

A pattern p(Vp,Ep) is a small connected graph. Given
a pattern p and graph G, the graph pattern matching
(GPM) problem aims to compute all mappings QG(p)
of the pattern in the graph G, where each mapping f ∈
QG(p) matches the pattern vertices1 to a set of non-
duplicate graph vertices one by one, so that if there is
a pattern edge between two pattern vertices, there must
be a graph edge between the two matched graph ver-
tices. For a pattern vertex v, we use f (v) = u to obtain
the matched graph vertex u. The number of mappings is
called the frequency of the pattern in the graph, denoted
as FG(p). When the context is clear, the subscript of G
in above notations may be omitted (i.e. Q(p)). Predi-
cates can be specified, while we mostly omit predicates
to focus on the pattern in the paper. Details of how we
handle predicates are in our open-source page [46].

Example 2.1. In Figure 1, there are two mappings of
the triangle pattern p in the graph as shown, and thus
the frequency of p is 2. Specifically, a mapping f
matches v1 to u2 and v2 to u1, namely f (v1) = u2 and
f (v2) = u1. Obviously, there is a graph edge (u2,u1)
corresponding to the pattern edge (v1,v2). The predi-
cate “v1.age < 30 && v2.age < 30” in Figure 1(b), con-
strains that the vertices matching v1 and v2 must have
“age” smaller than 30.

We target the iGPM scenario to process GPM queries
on large-scale property graphs in an interactive context.

2.2 Solving iGPM using Existing Systems
Graph databases [2, 8, 18, 27, 33] allow users to interac-
tively query the graph using declarative query languages,

1The details of matching edges are not discussed as they are similar
to matching vertices.

54 2023 USENIX Annual Technical Conference USENIX Association

and thus have the most potential to be deployed for
iGPM. However, they often lack support for automatic
optimization or distributed execution, and thus cannot
meet performance, usability and scalability at the same
time. We discuss Neo4j and TigerGraph as representa-
tives. Other related systems are surveyed in Section 8.
Neo4j [33] is one of the most popular graph databases,
but is limited by its single-machine design and insuffi-
cient optimizer, leading to poor scalability and perfor-
mance as reported in previous studies [38, 44, 48]. Tiger-
Graph [18], on the other hand, is a distributed system that
can scale well but lacks an automatic optimizer, requiring
users to manually tune the plan for good performance,
which significantly limits its usability. In addition, users
need to pre-install the queries before they can be exe-
cuted on TigerGraph. The pre-installation involves na-
tive code generation and compilation, which can take 1
to 3 minutes per query in our evaluation and may not be
tolerable in the interactive context.

2.3 Challenges of Solving iGPM
It’s challenging to develop an iGPM system with perfor-
mance, usability and scalability. Here, we discuss the
issues arise from query compilation and optimization.

Compilation. Compiling a declarative query language
itself is non-trivial, and the interactive context introduces
extra difficulties. Due to the timeliness of iGPM, it’s in-
feasible to generate native codes from the queries and
process a time-consuming online compilation like Tiger-
Graph [18]. Preparing store procedurals for a set of
queries offline is not possible, as the useful patterns re-
main unknown in advance.

Optimization. The automatic optimization of GPM lies
at the core of an iGPM system, but it’s difficult to design
such an optimizer for real-life queries. To see this, in
Figure 2, we’ve demonstrated the execution plans PlanG
and PlanN of a benchmark query derived by the optimiz-
ers of GLogS and Neo4j, respectively. For now, one only
needs to know that a better execution plan typically, if
not definitely, produces less intermediate results, which
are a collective of the mappings of all intermediate pat-
terns that must be computed during the execution. We
mark in Figure 2 the corresponding intermediate pattern
frequencies in the benchmark graph G1 (Table 1). Obvi-
ously, PlanN produces much larger intermediate results
than PlanG. We execute the two plans in our system,
and PlanN not only runs orders of magnitude slower, but
also consumes significantly larger memory, than PlanG.
This demonstrates that Neo4j’s optimizer is insufficient
to handle such complex GPM queries.

There are two main reasons for this. Firstly, the exe-
cution plan given by Neo4j cannot guarantee worst-case
optimality. Secondly, it uses only low-order statistics to

Person City
Knows LivesIn

Country
LocatedIn

92,459(a) Query
Pattern (b) The execution plan of GLogS, 𝑃𝑙𝑎𝑛!
9,882

9,882 5,149,644

9,882

49,890

⋈

⋈ 3,650,839

9,882

⋈ 1,614,224

9,882

⋈ 92,459

(c) The execution plan of Neo4j, 𝑃𝑙𝑎𝑛"

𝑝# 𝑝$ 𝑝% 𝑝& 𝑝' 𝑝

𝑝(

𝑝(

𝑝(𝑝#

𝑝$ 𝑝% 𝑝&

𝑝#

𝑝' 𝑝

9,882 𝑝#

⋈

𝑝(

…

…

9,882 180,623 387,573 387,573 387,573 387,573

Figure 2: Execution plans of GPM. Certain trivial steps
in the plans are not shown for clarity.

estimate the cost of a plan, which can cause the resulting
plan to have small estimated cost even though it actually
costs heavily. We elaborate in details.
Worst-case optimality. An execution plan for comput-

ing a pattern p is worst-case optimal, if the frequency
of any intermediate pattern in the plan does not exceed
F (p) in the worst case. Here, an intermediate pattern
in an execution plan refers to a subgraph (or sub-pattern,
interchangeably) of the queried pattern whose mappings
must be computed during the execution. For instance,
the patterns p1-p6 in PlanG (all plans in this section are
referred to Figure 2) are intermediate patterns of p. The
process of solving GPM typically involves operations of
binary join and vertex expansion. Briefly, binary join in-
volves performing a hash join on the mappings of two
input patterns in order to produce the results of the out-
put pattern. For example, in PlanN , p2 is joined with p3
to produce p4. Execution plans that rely solely on bi-
nary joins, such as PlanN , are called binary-join plans.
However, these plans may not guarantee worst-case opti-
mality [29]. Neo4j’s plan actually falls into this category,
which is a dominant factor of its poor performance [48].

Alternatively, Ammar et al.[4] have looked into Ngo’s
algorithm[35] for GPM optimization. The key operation
to this algorithm is vertex expansion, which involves ex-
panding a base pattern by adding one more vertex to it.
In PlanG, for instance, p2 is expanded to p3 in this way.
Begin with a base pattern that is a vertex, the algorithm
processes vertex expansions iteratively until the desired
pattern is obtained. According to Ngo’s algorithm, we
can obtain an execution plan that is worst-case optimal,
such as PlanG for GPM.

Recent research [1, 32, 54] has shown that the best
possible execution plans for GPM must incorporate both
binary joins and vertex expansions. Consequently, our
optimizer must be capable of handling this hybrid strate-
gies. It’s crucial to note that to achieve worst-case opti-
mality, such hybrid plans must carefully consider the use
of binary joins, as will be explained in Section 5.4.

USENIX Association 2023 USENIX Annual Technical Conference 55

High-order statistics. An optimal execution plan for a
GPM query is the plan that has the smallest cost. The
pattern frequencies are essential for evaluating the cost
of an execution plan. In large-scale graphs, it is more
feasible to estimate these frequencies, rather than trying
to exactly compute them. Neo4j uses Low-order statis-
tics such as the number of vertices and edges (of each
type) to estimate pattern frequencies by assuming inde-
pendent existence of graph edges [34]. However, this as-
sumption is too idealistic and can lead to inaccurate cost
estimation and poor execution plans in practice. To ad-
dress this issue, we follow Mhedhbi et al. [32] to exploit
the high-order statistics [12] of the graph.

Definition 2.1. The high-order statistics of a graph re-
fer to the frequencies of a series of small patterns (also
known as motifs [3]), from the smallest single-vertex pat-
terns to the largest patterns that are complete graphs of k
vertices. Here, k is called the high-order level, and must
be at least 3 to avoid degrading to low-order.

Mhedhbi et al. [32] and us have both demonstrated the
effectiveness of the high-order statistics. However, their
computation is at least as costly as the widely recog-
nized computation-intensive workload of graph pattern
mining [45]. To reduce the computation cost, Mhedhbi
et al. [32] have proposed using a sampling technique that
matches a randomly selected portion of data vertices and
edges at runtime. Nevertheless, the sampling technique
is difficult to apply to large-scale graphs that are parti-
tioned in the cluster.

3 System Overview

We’ve built the GLogS system for iGPM, as shown in
Figure 3, to address the challenges in Section 2.3. The
system allows users to interactively submit their GPM
queries using Gremlin’s declarative match() step [7].
An example of the Gremlin code for the triangle pat-
tern is presented. Because GPM is computationally
intractable [28], users can optionally specify a timeout
to prevent the query from running for an unreasonable
amount of time. It is worth noting that relational opera-
tions, including projection, ordering and grouping, may
also be applied in iGPM. However, for queries that in-
volve these operations, GLogS processes them only af-
ter the execution of GPM. Therefore, their computation
complexity is dominated by that of GPM, and will not be
further discussed in this paper.
Frontend Module. The frontend machine runs the pro-
cessors of a pattern parser, a plan optimizer and a
GLogue manager for parsing and optimizing the GPM
queries. The pattern parser parses a Gremlin query into
a language-agnostic structure called PatternDesc. The

Pattern Parser (4.1)§

Plan Optimizer ()5.4

Graph Sparsifier (5.2)§ RPC Service
Dataflow Plugin (6.1)§
Dataflow Executor 1

Partition 1 (id % # ==1)

GLogue
Manager
(5.3)§ GLogue

Sparsified
Graph

F
R
O
N
T
E
N
D

B
A
C
K
E
N
D

Frequently queried patterns

hdfs://graph.
data

…

PatternDesc

DataflowDesc

p = g.V().match (
as(‘v1’).out(‘Knows’).as(‘v2’),
as(‘v1’).out(‘Purchases’).as(‘v3’),
as(‘v2’).out(‘Purchases’).as(‘v3’)

)

v1

v2

v3

U
S
E
R

§

System
initialization

Figure 3: System overview. Blue components are the
focus of this paper, with the paper’s sections indicated.

key objective of designing PatternDesc is to decouple
the query language and the optimizer. This enables easy
integration with other query languages such as Neo4j’s
Cypher [16]. For given PatternDesc, the plan op-
timizer aims to produce an execution plan that has the
smallest-possible cost based on a generic cost model.
The cost model considers the high-order statistics of
the graph, which are maintained in a novel graph-based
structure called GLogue. The GLogue manager handles
the construction of the GLogue by computing the fre-
quencies on the sparsified graph for patterns up to k ver-
tices (i.e. with high-order level k) when the system is
initiated. It also buffers the frequently queried patterns
whose frequencies are missing from the GLogue, and
launches a procedural periodically to append these fre-
quencies to the GLogue.

Backend Module. The backend module consists of a
distributed dataflow engine, a graph store and a graph
sparsifier, spreading across a cluster of n computing
nodes. We have built the GLogS system on an existing
dataflow engine, which organizes n executors, each cor-
responding to a computing node in the cluster. A declar-
ative DataflowDesc is constructed from the execution
plan produced by the plan optimizer, which embeds the
computing instructions of GPM in a dataflow that is
a directed acyclic diagram (DAG). The DataflowDesc

is then distributed to all executors via RPC services
to launch the computation in parallel. To make the
DataflowDesc executable, a library of dataflow plugin
is implemented that contains the generated code and a
job assembler to assemble the distributed program. The
dataflow plugin is required to co-compile offline with the
underlying dataflow engine, which bypasses a costly on-
line native-code compilation as TigerGraph [18].

The graph store manages the partitioned graph data in
the cluster. As it is not the main focus of this paper, for

56 2023 USENIX Annual Technical Conference USENIX Association

simplicity, we adopt in-memory and immutable graph
store, where the graph data is partitioned using a hash
partition strategy, namely the vertex u will be placed on
the partition of “u.Id % # partitions”, together with all its
properties and adjacent (both in and out) edges. Such a
simple yet widely used partition strategy[4, 29, 38] may
lead to load skew, which can potentially impact query
performance. Nonetheless, a well-optimized execution
plan is still the key to the efficiency and scalability of
GPM. Therefore, rather than exploring alternative parti-
tion strategies [52], we employ the simple strategy and
focus on query optimization in this work. The i[-th] par-
tition of the graph is co-located with the i[-th] executor of
the dataflow engine. Moreover, The raw graph data are
pre-partitioned, encoded and stored in a distributed file
system such as HDFS. Each dataflow executor loads its
partition into the main memory while starting up the sys-
tem. During system initialization, a graph sparsifier will
be simultaneously launched as loading graph data, which
is responsible for sparsifying the large-scale graph into a
small graph that can fit into the main memory of the fron-
tend machine. The sparsified graph will be serialized to
a persistent store to prevent the need for re-sparsification
when the system is restarted.

4 Compiling Declarative GPM Queries
We demonstrate in Figure 4 the process of compiling the
declarative Gremlin’s match() step for a GPM query
into distributed dataflow program.

4.1 The Pattern Parser
As shown in Figure 4(a), in Gremlin’s match() step,
a pattern is described as a collection of clauses in the
form of “as().[in|out]().as()”, in which the start
and end as() steps identify the two vertices with tags
that are unique in the pattern, and the in() or out()
step in between expresses the edge that connects the
two vertices. In this simplest2 form of a match(),
each clause expresses an edge in the pattern. Given a
Gremlin’s match() step, the pattern parser utilizes the
ANTLR tool [21] (officially provided by Gremlin) to
parse a query into an Abstract Syntax Tree, from which
a PatternDesc is built, as illustrated in Figure 4(b).

We first define two computing primitives called GetV

and GetE for describing GPM queries. A GetV primitive
is a 4-tuple (eTag, tag, label, [Source|Target]) that en-
codes the semantics of matching the vertex with “tag”
as the source or target vertex of an “eTag” edge. A
GetE(vTag, tag, label, [In|Out]) encodes matching the
edge with “tag” as the in or out edge of a “vTag” vertex.

A sentence that is an ordered sequence of GetV and
GetE is then used to encode the semantics of a clause

2The other more complex forms only bring in engineering details.

in match(), and a PatternDesc is composed of a col-
lection of sentences. The semantics are self-explanatory,
and we just discuss some special use cases in the first
sentence of Figure 4(b). Observe that the first GetV has
the “eTag” field unspecified (NA), which means that the
vertex may not be bound to any prior edge and should
match all vertices in the graph. In the GetE, the “tag”
field is specified as an empty String. This tells the
runtime that the matched edge (also applied for GetV)
should not be kept in the results, which is useful when
only a part of the matched instances are needed in prac-
tice. Following the GetE, a GetV has an empty “eTag”,
which means the vertex must be obtained directly from
this “previous” edge.

Observe that we include the label information in GetV

that is not actually given in the Gremlin query. In GLogS,
while loading the graph data, we can meanwhile extract
the meta connections that maintain the possible types of
source and target vertices of each edge type. For exam-
ple, a Purchases edge can only connect a Person to a
Product. Such meta connections not only help us vali-
date user queries, but also reduce the number of patterns
stored in the GLogue (Section 5.3).

4.2 The Dataflow Embedding
In the plan optimizer (Section 5.4), an optimized execu-
tion plan will be computed for the PatternDesc, which
will be further embedded into a DataflowDesc that de-
scribes how to compute the pattern in a dataflow engine.

In a dataflow engine, a dataflow is a directed acyclic
graph (DAG) that abstracts the computation, in which a
vertex stands for an operator that defines the computing
logic, and an edge between two operators o1 and o2 rep-
resents the data channel such that the output of o1 is the
input of o2. In the task of GPM, the input and output
data of each operator in a dataflow are mappings of the
patterns. We introduce five operators in this paper:

• Source(udf): A Source operator specifies the in-
put data of the dataflow program, which are a col-
lection of vertices in the graph.

• Sink(udf): The Sink operator (only one allowed)
writes the results to the output channel (e.g. an RPC
port) that users can access.

• Map(udf): For each input item, a Map operator
computes exactly one data item using the given
user-defined function (udf).

• FlatMap(udf): For each input item, a FlatMap

operator can produce arbitrary (none, single or mul-
tiple) number of data items via the udf.

• Join(key1, key2, udf): A Join operator con-
sumes two input data, extracts the corresponding

USENIX Association 2023 USENIX Annual Technical Conference 57

[GetV(NA, ‘v1’, Person, NA),
GetE(‘v1’, ‘’, Knows, Out),
GetV(‘’, ‘v2’, Person, Target)

],

[GetV(NA, ‘v1’, Person, NA),
GetE(‘v1’, ‘’,Purchases, Out),
GetV(‘’, ‘v3’, Product, Target)

],

[GetV(NA, ‘v2’, Person, NA),
GetE(‘v2’, ‘’, Purchases, Out),
GetV(‘’, ‘v3’, Product, Target)

]

(a) Gremlin’s match() Parse (b) PatternDesc Optimize (c) Execution plan

p = g.V().match (
as(‘v1’).out(‘Knows’).as(‘v2’),

as(‘v1’).out(‘Purchases’).as(‘v3’),

as(‘v2’).out(‘Purchases’).as(‘v3’)
)

Map (GetE(‘v1’,‘_t’, Purchases, Out))

Map (GetE(‘v2’,‘_t’, Purchases, Out))

FlatMap (GetV(‘_t’,‘v3’, Product, Other))

Sink (‘v1’, ‘v2’, ‘v3’)

Source (GetV(NA ,‘v1’, Person, NA))

FlatMap (GetE(‘v1’,’’, Knows, Out))

Map (GetV(‘’,’v2’, Person, Target))

v1

v1 v2

v1 v2

v3

Attachment

Intersection

Unwrapping

𝑝!

𝑝"

𝑝#

Embed (d) DataflowDesc

Figure 4: The process of compiling a Gremlin’s match step into a DataflowDesc.

keys, and conducts a join via the joinFunc on the
two input data.

In a nutshell, a DataflowDesc for GPM is a dataflow
that embeds the GPM primitives of such as GetV and
GetE in the above operators as the udfs. Figure 4(d)
illustrates a DataflowDesc for computing the triangle
pattern. We look into the first three operators for now,
which describe the computation of the mappings for v1
and v2. First, v1 is matched in a Source operator that
consumes all Person vertices from the graph. Then for
each vertex that matches v1, a FlatMap operator is as-
signed to traverse its out edges, which is reasonable as
a vertex typically has more than one adjacent edges in
the graph. The last Map operator extracts the target ver-
tex from each edge to match v2. More details of how we
compute the given DataflowDesc will be discussed in
the next section.

5 Automatic Optimization
This section covers the automatic optimization of GPM
queries, which is a collaboration of the system compo-
nents of graph sparsifer, GLogue manager, and plan op-
timizer. For a graph vertex u, we denote Nbr[elabel](u)
as the neighbors3 of u in the graph G subject to the edge
label constraint. Given two graphs G1 and G2, G2 is a
subgraph of G1, denoted as G2 ⊆ G1, if VG2 ⊆ VG1 and
EG2 ⊆ EG1 . Furthermore, G2 is an induced subgraph of
G1, if it contains all edges in G1 among VG2 . For two sets
S1 and S2, we denote S1 \S2 as the set of elements in S1
but not in S2.

5.1 Execution Plan and Cost Model
We first introduce the execution plan for GPM and de-
fine its cost, which allows us to search for the optimal
execution plan as the one with the smallest cost.

3Note that the edges can be in out, in or even both directions, but
we omit the direction in the notation for simplicity.

Execution Plan. To allow the optimizer to derive hybrid
execution plans as mentioned in Section 2.3, we consider
two basic operations: the binary join and vertex expan-
sion that are critical to fulfil the binary joins and worst-
case optimal joins, respectively. A binary join, denoted
as Join({ps1 , ps2} → pt), conducts hash join operation
for Q(ps1) and Q(ps2) on the join key of Vps1

∩Vps2
to

compute the results of Q(pt). The operation of vertex
expansion needs further explanation.

Definition 5.1. Consider two patterns, ps and pt with
Vpt \ Vps = {v}, and Ept \ Eps = {e1 = (v1,v),e2 =
(v2,v), . . . ,ek = (vk,v)} without loss of generality. A
vertex-expansion operation, denoted as Expand(ps →
pt), extends each mapping f of ps by one more graph
vertex corresponding to v. The newly matched graph
vertex must be in the common neighbors of all f (vi) for
1≤ i≤ k, namely

⋂k
i=1Nbr[ei.Label](f (vi)).

Example 5.1. In Figure 4(c), it’s clear that Vp3 \Vp2 =
{v3}. This allows us to perform a vertex expansion
Expand(p2 → p3). We use the graph in Figure 1 to il-
lustrate the process. For a given mapping f = {u2,u1}
of p2, we can expand it to the mapping {u2,u1,u4} for
p3. Here, v3 is matched to {u4}, which is obtained by in-
tersecting Nbr[Purchases](u2) and Nbr[Purchases](u1).
We can similarly perform this process for the other map-
pings {u1,u3} and {u2,u3}.

Given a queried pattern p, we denote an execution plan
for computing p as Plan(p) = (Φ = {p1, p2, . . . , pn =
p},Γ = [τ1,τ2, . . . ,τm]), where Φ represents a set of in-
termediate patterns and Γ is an ordered sequence of
operations that can be either binary join or vertex ex-
pansion. For example, we have the execution plan in
Figure 4(c) as (Φ = {p1, p2, p3},Γ = [Expand(p1 →
p2),Expand(p2→ p3)]).
Cost Model. With the execution plan Plan(p) = (Φ,Γ),
we propose the cost model as

Cost(Plan(p)) = ∑
p′∈Φ

F (p′)+ ∑
τ∈Γ

Cost(τ). (1)

58 2023 USENIX Annual Technical Conference USENIX Association

The first part refers to the cost of accessing the intermedi-
ate results from the memory, which can be considered as
the commmunication cost, namely, the cost of accessing
remote memory. This is because the intermediate results
are a collection of the output from all executors in the
cluster, and the cost of accessing remote data is much
greater than that of accessing local data. The second part
stands for the cost of the operations, also known as the
computation cost.

As any join algorithm must go through the data of both
participants, the cost of a binary join is computed as

Cost(Join({ps1 , ps2}→ pt)) = α j(F (ps1)+F (ps2)),
(2)

where α j is a normalized factor. We do not consider the
joined results in Equation 2 because it must have been
considered as the communication cost in Equation 1.

Consider a vertex expansion Expand(ps→ pt) in Def-
inition 5.1, and let f be one mapping of ps. The cost of
the vertex expansion of f is dominated by intersecting
the neighbors of f (vi) for 1≤ i≤ k, which has the com-
plexity of ∑

k
i=1 |Nbr[ei.Label](f (vi))|. Regarding ei, let

σei(f) = |Nbr[ei.Label](f (vi))| be the vertex-expansion
factor of the mapping f , and σei the average factor of all
mappings. We have the cost of vertex expansion as

Cost(Expand(ps→ pt)) = αve ∑
f∈Q(ps)

k

∑
i=1

σei(f)

= αveF (ps)
k

∑
i=1

σei ,

(3)

where αve is a normalized factor that, along with α j in
Equation 2, aligns the differences in computation cost of
vertex expansion and binary join, as well as the commu-
nication cost and the computation cost.

5.2 Graph Sparsifier
While it is necessary to compute F (p) of any pattern
p for Equation 1, it’s cost-prohibitive to do so directly.
The sampling technique proposed in [32] cannot be ap-
plied to large-scale graphs (see Section 2.3). Therefore,
we explore the technique of graph sparsification [40, 49].
Specifically, during system initialization, the graph spar-
sifier will conduct sparsification on each partition of the
graph to randomly preserve a subset of edges, and aggre-
gate them at the frontend machine to form the sparsified
graph G∗. It is obviously more feasible to compute the
pattern frequencies on G∗ than on the original graph G.
Thus, we use FG∗(p) (with normalization) as an estima-
tion of FG(p) for cost evaluation.

However, it’s non-trivial to sparsify real-life graphs
that can contain many different types of edges. A naive
uniform sparsification [40, 49] adopts a uniform sparsi-
fication ratio (the probability of keeping an edge) for all

edges during sparsification. Although such a naive ap-
proach can obtain unbiased estimation of FG(p), but it
still works poorly in our evaluation (Section 7). The main
reason is that different types of edges can appear in rather
skewed frequencies in real-life graphs. A less frequent
type of edge, such as the LocatedIn edge in Figure 1 that
appears in thousands compared to the Purchases edge in
billions, is more likely to get eliminated during sparsifi-
cation, causing the estimation to have large variance.

We also notice that there are sparsification [11, 42]
and coarsening [31] algorithms based on spectral graph
theory, aiming to offer a superior approximation via bi-
ased sampling. However, these algorithms emphasize
preserving global statistics such as edge cut, rather than
counting subgraphs that are local information. As a re-
sult, they may not be suitable for our task.

Regarding our task, we adopt the stratified sparsifi-
cation [19] that treats each type of edges as an inde-
pendent stratum, and assign each stratum an individual
sparsification ratio. The stratified sparsification provides
the flexibility in choosing the sparsification ratio, and we
propose an optimization problem that aims to minimize
the estimation variance through tuning the ratio. Before
proposing our optimization problem, we first introduce
the norm factors and discuss its unbiasedness. Let the
sparsification ratios be Ω= {ρ1,ρ2, . . . ,ρl}, where ρi de-
notes the ratio for the stratum of edges with label i with-
out loss of generality. The following lemma holds.

Lemma 5.1. Let F̃ (p)=∏e∈Ep
1

ρe.Label
FG∗(p). We have

E[F̃ (p)] = FG(p), where E[X] denotes the expected
value of a random variable X.

Proof is in Section A.1.1. In the following, when we
write F (p), we by default mean F̃ (p) if not otherwise
specified.

The next question is how to specify the sparsification
ratios. Given that the sparsified graph must reside in the
frontend machine, we model an optimization problem
subject to the memory constraint M, that minimizes the
variance of the frequency estimation regarding a forged
pattern p∗ formed by all types of edges in the graph, as:

argmin
Ω

Var[F̃ (p∗)]

s.t.
l

∑
i=1

siρi ≤M,

(4)

where si denotes the frequency of the edges that have
label i. The optimization problem achieves its optimum
under the following condition:

ρi = min(1,
M
l
× 1

si
),

USENIX Association 2023 USENIX Annual Technical Conference 59

…… …

3

2

2

3

4

2

3

2

Level = 1 Level = 2 Level = 3

5

e1 e2

{ e1: 𝟓
𝟑
, e2: 𝟑

𝟑
}

𝑝!

𝑝"

𝑝#

𝑝$

𝑝%

𝑝&

𝑝'

𝑝(

𝑝)

𝑝!*

⋈

Level = 4
𝑝!!

Level = 5

Figure 5: A fragment of GLogue. The value aside the
pattern indicates its frequency in the graph in Figure 1(c).
Note that the patterns in “Level=4/5” do not actually
present in the GLogue.

Detailed derivation can be found in Section A.1.2. In-
terestingly, if si �M, ρi must be set to 1, which means
that a very infrequent type of edge, such as the above
LocatedIn edges, must not be ruled out during sparsifi-
cation.

5.3 GLogue Manager
Our system aims to automatically derive the optimal ex-
ecution plan for any arbitrary pattern. To do so, we fol-
low the methodology presented in [32] to calculate the
high-order statistics (Definition 2.1) of the graph. How-
ever, the approach in [32], which employs a table-based
catalogue for retaining the high-order statistics, is not
only expensive to construct but also challenging to apply
when there are numerous complex pattern relationships
in real-world graphs that need to be recorded, thereby
making plan searching a difficult task. Instead, we have
recognized the intrinsic suitability of graph structure for
retaining complex relationships of this sort, and thus, we
have proposed GLogue as a graph-based catalogue.

The GLogue is a hierarchical property graph as shown
in Figure 5, in which each vertex is a pattern p at level
|Vp| with its frequency F (p) as the property. To ease
lookup, the pattern will be encoded as a String using
the technique of canonical labelling [10]. We say that
the GLogue has k levels, if it maintains the high-order
statistics up to level k. There’re two types of edges in
GLogue. The first type connects ps and pt in GLogue,
if ps can be expanded to pt via vertex expansion. Re-
garding Expand(ps → pt), the edge (ps, pt) records the
vertex-expansion factors σe for all e∈ Ept \Eps . The sec-
ond type corresponds to a binary join Join({ps1 , ps2} →
pt), which introduces one edge from ps1 to pt with
(ps2 ,F (ps2)) as the property.

We deploy the GLogue manager in GLogS for the con-
struction and maintenance of GLogue. When the sys-
tem is initiated, with a threshold of level k, GLogue will
be constructed from scratch to include all valid patterns
with up to k vertices that satisfy the meta connections
(see Section 4). While processing queries, the GLogue
manager will buffer the incoming patterns (patterns only
without predicates) from the users, and will launch a pro-

cedure to update the GLogue from the buffered patterns
periodically.

Algorithm 1: The Plan Optimizer.
1 Function PlanOptimizer (GLogue, PatternDesc)
2 Construct a pattern p from the PatternDesc;
3 Let QSet organize all induced subgraphs of p by level;
4 Initialize a PlanMap to record {p : (plan,cost)} with

patterns in level 1 and 2 pre-computed;
5 for 3≤ level ≤ |Vp| do
6 for p ∈ QSet[level] do
7 searchPlan (p,PlanMap,GLogue);

8 return PlanMap.get(p);

9 Function searchPlan (p, PlanMap, GLogue)
10 Initialize Plan(p) and Cost(Plan(p))← ∞;
11 for edge= (ps1 , p) ∈ GLogue.getEdges(p) do
12 (plan1,cost1)← PlanMap.get(ps1);
13 if edge is a vertex extension then
14 Compute a new plan′ by merging plan1 and

Expand(ps1 → p);

15 else if edge{(ps2 ,F (ps2))} is binary join then
16 (plan2,cost2)← PlanMap.get(ps2);
17 Compute a new plan′ by merging plan1, plan2

and Join({ps1 , ps2}→ p);

18 Compute a new cost ′ of plan′ by Equation 1;
19 if cost ′ < Cost(Plan(p)) then
20 Update Plan(p) as plan′ and the cost as cost ′;

21 PlanMap.insert(p,(Plan(p),Cost(Plan(p))));

5.4 Plan optimizer
Another benefit of the graph-based GLogue is that the
searching of an optimal plan can be reduced to a vari-
ant of shortest path problem: the optimal plan of p is a
shortest “path” that has the smallest cost regarding Equa-
tion 1, from the base pattern (a single vertex) to p. An
example is highlighted in Figure 5. We first assume that
the queried pattern and all its sub-patterns are present in
the GLogue. The process is shown in Algorithm 1.

The optimizer first builds the pattern from the
PatternDesc that is compiled from a Gremlin query
(line 2), and then organizes all induced subgraphs of the
queried pattern by levels (line 3). Note that the use of in-
duced subgraphs is key to ensuring worst-case optimal-
ity of the computed plan [29]. The searchPlan func-
tion is then launched for each pattern (line 7). We now
consider processing a pattern p in the searchPlan func-
tion. Before searching for the plan for p, the optimal
plans for all its subgraphs in the lower level must have
already been computed in the PlanMap (line 12,16). We
use the graph interface of getEdges in line 11 to obtain
all sub-patterns in the lower level that connect to the cur-
rent pattern p. Depending on whether the edge stands
for a vertex expansion or binary join, the new plan will
be accordingly computed in line 14 and 17. As long as

60 2023 USENIX Annual Technical Conference USENIX Association

the new cost (line 18) is smaller than a previous value,
the plan and its cost will be updated. The optimal plan in
the GLogue can be cached to avoid re-computation. For
example, in Figure 5, the cached optimal plan for com-
puting p9 is highlighted in red, which is the worst-case
optimal plan in Figure 4(c).
Handling Pattern Miss. We discuss how to process the
queried pattern p when it has not yet been recorded in the
GLogue. First of all, given two induced subgraphs p1, p2
of p with Ep = Ep1 ∪Ep2 , by assuming the independent
presence of p1 and p2 in the graph, we can compute the
frequency of p as follows

F (p) = Avgp1,p2

F (p1)×F (p2)

F (p1∩ p2)
, (5)

where p1 ∪ p2 denotes a pattern formed by the common
parts of p1 and p2. Equation 5 can be recursively called
in case p1 and p2 are not present. Then in line 11, instead
of calling getEdges of the GLogue, we simply enumer-
ate all ps that can potentially expand to p, either via ver-
tex expansion or binary join. The remaining process nat-
urally follows Algorithm 1. In Figure 5, p11 is a pattern
missing from the GLogue, which can either be expanded
from p10, or joined from p7 and p8. Thus, p7, p8 and p10
can all be ps in line 11.

5.5 Dataflow Embedding
Given the optimal execution plan Plan(p), one last step
is to embed the execution plan into a DataflowDesc.
Following the operations of Plan(p), there must be some
base patterns (single vertex) that are not target pat-
terns in any operation. We encode these base patterns
as GetV and then embed them into Source operators.
For Join({ps1 , ps2} → pt), a Join operator is installed,
which are connected by the operators that computes ps1
and ps2 , and the keys of the Join operator are set to the
vertex tags of Vps1

∩Vps2
.

There are two cases for hanlding a vertex expansion
Expand(ps→ pt). If pt has only one more edge than ps,
the vertex expansion will be transformed into a pair of
FlatMap(GetE) and Map(GetV), which has been dis-
cussed in Section 4.2. Otherwise, suppose pt has k > 1
more edges than ps. The execution will be decomposed
into three phases, namely attachment, intersection and
unwrapping, as shown in Figure 4(c). In the attachment
phase, a Map(GetE) operator is installed, which tells the
runtime to attach the adjacent edges of the given ver-
tex as a set. The intersection phase handles k− 1 con-
secutive intersection operations, while each intersection
is achieved by a Map(GetE) that instructs computing
the common edges between the existing set and the cur-
rent adjacent edges. The last unwrapping phase uses a
FlatMap(GetV) to unwrap the neighbors into discrete
elements.

impl MapFunction for GetE { vtag ,tag ,label ,dir } {
fn map(&self , mut datum: GRecord) -> GRecord {

let v = datum.get(self.vtag)?;
// edge tag already present , do intersection
if let Some(set) = dataum.get_mut(self.tag) {

set.intersect(to_set(
G.get_edges(// G is a graph handle

v.get_id(), self.label , self.dir))
);

} else { // not present , do attachment
dataum.insert(self.tag , to_set(

G.get_edges(
v.get_id(), self.label , self.dir));

);
}
return datum;

}
}

Figure 6: Code generation of Map(GetE).

Example 5.2. In Figure 4(c), let’s consider a mapping f
that matches (v1,v2) before entering the process of ver-
tex expansion. The attachment phase first maps f into
(f | set :=Nbr(f (v1))) by directly attaching the adjacent
edges (we reuse the notation of neighbors) as a set. In
the phase of intersection, the set is updated by intersect-
ing with the current neighbors of f (v2), as (f | set :=
set∩Nbr(f (v2))). Finally, the set is unwrapped into dis-
crete vertices to match v3.

6 System Implementation
We have implemented the frontend components includ-
ing pattern parser, plan optimizer and GLogue manager
in Java, to easily connect with Tinkerpop’s Java run-
time. The backend components are implemented in Rust
to be compatible with the underlying dataflow engine,
GAIA [38]. The GAIA engine runs n executors in the
cluster, and each executor further forks working threads
for parallel processing. The frontend and backend com-
ponents of the system are bridged via the RPC services.

We implement GRecord to record a mapping of a pat-
tern, which is essentially a Map with the key as pattern’s
tag (Section 4), and the value that is an Object to ei-
ther encode a vertex, an edge, or a set of vertices/edges.
Consequently, a collection of GRecords serve as the in-
put and output data of all operators of the GAIA engine.
Initially, the executors will load corresponding vertices
as GRecords according to the graph partition. In the fol-
lowing computation, we can use the Repartition prim-
itive of GAIA to reshuffle the data as needed. For exam-
ple, a vertex v will be loaded by the executor numbered
as “v.Id % #partitions”. Moreover, in order to get adja-
cent edges from the matched vertices tagged as v, we can
Repartition the GRecords according to the field of v.

6.1 The Dataflow Plugin
The dataflow plugin is key to making the DataflowDesc
executable (Section 4) on the dataflow engine, which is

USENIX Association 2023 USENIX Annual Technical Conference 61

a native library consisted of the generated code for oper-
ators in DataflowDesc and a job assembler for assem-
bling the GAIA job.

We perform code generation for all possible operators
in DataflowDesc, and co-compile the generated code
with GAIA. In Figure 6, we show the generated code of
Map(GetE) that fulfils the phases of attachment and in-
tersection for vertex expansion (Section 5.4). Note that
in the Map operator for attachment in Figure 4(c), the sys-
tem assigns a “ t” (as temporary) tag in the GetE, which
will cause the adjacent edges maintaining as a set in the
“ t” field of a GRecord. In the Map operator for intersec-
tion, as the “ t” field must present, it does an intersection
between the existing set and the current adjacent edges.

The job assembler, after receiving the DataflowDesc,
attempts to assemble the GAIA job. Basically, it will in-
stall the corresponding GAIA operator for each operator
in the DataflowDesc. For example, a Map(GetE) will
be installed as a Map operator with the generated code
in Figure 6. The job assembler is also responsible for
installing the Repartition primitive in case that data
shuffling is needed.

7 Evaluation

7.1 Setup
Datasets. We base the evaluation on Linked Data Bench-
mark Council (LDBC)’s social network benchmark [30],
which is the only publicly available resource that pro-
vides the scale we target in this work. As shown in Ta-
ble 1, 5 datasets are generated using LDBC data gen-
erator, where Gs f denotes the graph generated with scale
factor s f . The largest graph G1000 consumes around 2TB
on disk and roughly 6TB aggregated memory in the clus-
ter. The default sparsifying rate γ = 100 |EG∗ |

|EG|
% is given

for each graph. With γ , we set the memory constraint
M = γ|EG| (Section 5.2) for graph sparsification. We by
default construct the GLogue with level = 3 using the cor-
responding sparsified graph.

Table 1: The LDBC datasets.

Graph |V | |E| Size γ

G1 3M 17M 1.5GB 100%
G30 89M 541M 40GB 1%
G100 283M 1,754M 156GB 0.1%
G300 817M 5,269M 597GB 0.1%
G1000 2,687M 17,789M 1,960GB 0.03%

Queries. On the basis of the business intelligence (BI)
workloads from LDBC benchmark, we’ve manually con-
structed 10 queries, denoted as p1 to p10, for evaluation.
Details of the construction of these queries and their ex-
ecution plans are in Section A.2. These queries have suf-
ficient variance, ranging from simple triangle patterns to

complex patterns like p9 that contains 7 vertices and 9
edges. We will specify predicates corresponding to the
BI workloads for p4 to p10 on G100, G300 and G1000, to
prevent the tests from running unnecessarily long. The
LDBC benchmark driver has been modified to run each
queries 5 times from a set of randomly selected parame-
ters. Average query latency is reported.
Systems. We compare GLogS with Neo4j [33] and
TigerGraph [18], two potential systems for iGPM (Sec-
tion 2). We directly use the execution plans of Neo4j.
By default, GLogS runs the optimal execution plan of a
query p, which are derived from the GLogue (on each
sparsified graph) specifically constructed from p. As
TigerGraph does not have an optimizer, on the one hand,
we used the queries generated by its graph studio [47],
on the other hand, we manually wrote the queries ac-
cording to the optimal plans of GLogS. Note that we did
not include the results of our base system, GAIA [38],
as it could not terminate in reasonable time in most of
our large-scale tests. On the one hand, GAIA has opti-
mized graph workloads by utilizing a breadth-first/depth-
first hybrid scheduling and memory-bounded execution
model, enabling it to handle considerable amounts of
data without overflowing the memory. In fact, our GLogS
has benefited from GAIA in handling large-scale data
(Section 7.3). On the other hand, GAIA lacks proficiency
in executing GPM queries efficiently, primarily due to
the fact that GAIA must comply with Gremlin’s impera-
tive traversal which conforms to a sub-optimal EdgeJoin
execution plan [29] that sequentially joins edges.

We use the default system configurations of Neo4j and
TigerGraph. For GLogS, we have measured the differ-
ences in the operations of vertex expansion and binary
join, as well as the communication and computation cost,
which allows us to set α j = 60 and αve = 1 in Equa-
tions 2 and 3, respectively. We deploy a cluster for the
evaluation that contains one frontend server and up to 16
backend servers. Each server configures two 24-core In-
tel(R) Xeon(R) Platinum 8163 CPUs at 2.50GHz and a
512GB RAM. The servers are connected to an EDR 25
Gbps InfiniBand network, which can scale deterministi-
cally and achieve full bisection bandwidth. If not men-
tioned, we will use 32 threads on each server for GLogS
(some threads are reserved for communication and sys-
tem calls) as suggested by GAIA authors [38]. Tiger-
Graph will use all threads as recommended.

7.2 Compare with Alternative Systems
We first compare GLogS with Neo4j on a single machine,
using the smallest graph G1 to allow Neo4j processing all
queries in a reasonable time. The query latencies of both
systems are shown in Figure 7a. GLogS with a single
thread still performs better than Neo4j for most queries,
with 4.4× speedup. After using 32 threads, GLogS out-

62 2023 USENIX Annual Technical Conference USENIX Association

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

103

104

105

La
te

nc
y

(m
s)

GLogS 1 thread
GLogS 32 threads

Neo4j

(a) GLogS v.s. Neo4j on G1

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

101

102

La
te

nc
y

(s
)

GLogS TigerGraph

(b) GLogS v.s. TigerGraph on G300

Figure 7: Compare with alternative systems.

1 2 4 8 16
Servers s

103

104

105

106

La
te

nc
y

(m
s)

P1
P2

P3
P4

P5

(a) Scale-Out: Group1

1 2 4 8 16
Servers s

102

103

104

105

106

La
te

nc
y

(m
s)

P6
P7

P8
P9

P10

(b) Scale-Out: Group2

1 2 4 8 16 32
Threads t

104

105

106

La
te

nc
y

(m
s)

(c) Scale-Up: Group1

1 2 4 8 16 32
Threads t

103

104

105

106

La
te

nc
y

(m
s)

(d) Scale-Up: Group2

30 100 300 1000
Data Scales d

103

104

105

106

La
te

nc
y

(m
s)

(e) Data-Scale: Group1

30 100 300 1000
Data Scales d

102

103

104

105

106

La
te

nc
y

(m
s)

(f) Data-Scale: Group2

Figure 8: Scalability Experiments

performs Neo4j by an average of 51× for all queries.
The tests against TigerGraph are performed on G300

using 16 machines. While benefiting from the opti-
mal execution plans of GLogS, TigerGraph still performs
59% slower on average. Note that the results obtained
from TigerGraph’s graph studio are not reported as they
exceed the time limit (one hour) in all tests. Addition-
ally, TigerGraph requires the installation of queries via
native-code compilation before they can be run, with in-
stallation times ranging from 1 to 3 minutes. In contrast,
GLogS does not have this overhead because of the design
of dataflow plugin (see Section 6.1). The time required to
compile and optimize all queries in GLogS is less than 1
millisecond, which is insignificant compared to the query
execution time. This demonstrates GLogS’s advantage in
usability for iGPM.

7.3 Scalability
It’s important to test the scalability on GPM workload
given its nature of irregularity [14, 29, 54]. The re-
sults are in Figure 8, where the queries are split into two
groups based on their latency for clear illustration.
Scale-Out. We vary the server number as 1, 2, 4, 8, 16
and run all queries on G100. Note that G100 is the largest

graph that can reside in the main memory of a single
server. The results are reported in Figure 8a and Fig-
ure 8b. Most queries scale well, with up to 15× (average
6×) performance gain from one machine to 16.
Scale-Up We use 16 servers and vary the number of
working threads on each server from 1 to 32. The results
on G300 are shown in Figure 8c and Figure 8d. We see an
improvement in runtime of up to 23× (average of 10×)
when increasing the number of threads from 1 to 32. A
common trend in both scale-out and scale-up tests is that
some queries, such as p2 and p10, scale less significantly
when using more working threads. This phenomenon is
not unique to our system [14, 38] and is mostly due to
the sensitivity of GPM workloads to data skew [14]. It’s
a future work to further address this issue.
Data-Scale Using 16 servers, we run all queries on the
graphs of G30, G100, G300 and G1000. The results are re-
ported in Figure 8e and Figure 8f. As the graphs become
larger, most queries demonstrate an almost linear trend
in performance degradation, except for p6 and p10. As
for p6, its execution time only tripled from G30 to G1000,
because it is a short-running query that visits a small part
of the graph. However, for p10, its performance degrades
by 100× from G30 to G1000. This is likely because the
execution plan for p10 is the only plan that involves a
join operator, which maintains a hashmap for the “build”
component of the join. When processing a large volume
of data, a hashmap lookup can become slower because
many entries may have been mapped to the same bucket.
Despite this, the plan with the join operator still performs
much better than the one without it.

In summary, GLogS exhibits excellent scalability in
the test, which we attribute to both the well-designed op-
timizer and GAIA’s graph-specific optimizations.

7.4 Plan Optimization
In this experiment, we will study the impact of high-
order statistics and graph sparsification on plan optimiza-
tion for all queries. While running a query, we obtain
the time t using the optimal execution plan, and the time
t ′ using the computed execution plan in a certain con-
text. We report the slow-down rate as 100 t ′

t %. For con-
venience, we run all tests in a single server.

Table 2: The effectiveness of high-order statistics.

level=2 level=3 level=4
Slow-down (%) 966 245 243
Generation Time(s) 6 55 1664
Memory Usage(GB) 2 3 105
Patterns 34 248 4164

High-Order v.s. Low-Order. To study the effectiveness
of high-order statistics, we construct the GLogue of level
2, 3 and 4 for G1, and try to evaluate the average slow-
down rate of all queries while using the execution plans

USENIX Association 2023 USENIX Annual Technical Conference 63

100%1%0.1%0.001%
Sparsification Rate r

102

103

104

Sl
ow

-D
ow

n
%

Stratified Uniform

(a) Uniform v.s. Stratified

100%1%0.1%0.001%
Sparsification Rate r

103

105

Sl
ow

-D
ow

n
%

G1 G30 G100

(b) Vary graphs.

Figure 9: Impact of sparsification on plan optimization.

computed from these GLogue. Here, we use the unspar-
sified G1 to rule out potential impact from sparsification.
The results are shown in Table 2. When increasing the
level of GLogue from 2 (low-order statistics only) to 3,
the performance of queries improves by 4× on average.
The shows that high-order statistics can contribute to de-
riving better execution plans for GPM queries. More-
over, the performance of queries remains almost un-
changed when we increase GLogue’s level from 3 to 4,
but the time and memory consumption for constructing
the 4-level GLogue increase significantly. Given that the
GLogue will be further updated from frequently queried
patterns, we suggest that the initial construction of 3-
level GLogue is sufficient.
Uniform v.s. Stratified. This test verifies the advan-
tage of the proposed stratified sparsification over the uni-
form alternative. As shown in Figure 9a, we apply both
methods on G100, and report the average slow-down rate
for all queries using the execution plans computed from
the sparsified graphs of various sparsifying rate ranging
from 0.001% to 100%. Stratified sparsification performs
much better than the uniform alternative, as it has re-
sulted in a better execution plan at a lower sparsifying
rate and, at the same sparsifying rate, it has achieved a
lower slow-down. With statified sparsification, the graph
can be sparsified 10× more edges, on which the opti-
mizer can still derive the optimal execution plans.
Vary Graphs. To verify whether we can use larger spar-
sifying rate on larger graph, we sparsify three graphs G1,
G30 and G100 (G300 and G1000 are too large to process in
a single server) using different rates, and report the av-
erage slow-down of all queries from the resulting plans
in Figure 9b. Clearly, larger graphs can be sparsified at
a lower rate, while still rendering good execution plans.
For example, the performance of queries on G100 and
G30 only notably downgrades when γ < 0.1%. In com-
parison, the downgrading point of G1 are γ < 1%. Fur-
thermore, while sparsified to 0.001%, the resulting plans
from G100 slow down by roughly 50×, but those from
G30 and G1 downgrade by over 500×.

8 Related Work

GPM Algorithms. Ullmann proposed the first back-
tracking algorithm [50] for GPM, based on which many

optimizations have been proposed, such as tree in-
dexing [41], symmetry breaking [25] and compres-
sion [13]. As it’s hard to parallelize the backtracking
algorithm, join-based algorithms, such as binary-join al-
gorithms [28, 29, 43], have been developed in the dis-
tributed context. Aware that binary-join algorithms can-
not guarantee worst-case optimality, [4] implemented
the worst-case-optimal join algorithm [35] for solving
GPM. A hybrid mechanism [1, 32, 54] has been further
explored to combine the advantage of binary join and
worst-case optimal join. The above algorithms all rely
on low-order statistics to devise execution plans. In order
to improve cost estimation, [32] proposed to leverage the
high-order statistics of the graph to compute execution
plans for GPM. These algorithmic approaches are lack-
ing essential system components needed to solve iGPM.
Query Languages and Graph Databases. GPM lies
at the core of the query languages of Gremlin [39],
Cypher [22], G-Core [5], PGQL [51] and GSQL [18].
These languages have been widely adopted in graph
databases and systems. Tinkerpop [7] uses the Gremlin
language to express graph traversal and pattern matching.
Neo4j [33] is one of the most popular graph databases
that uses Cypher as the query language. Gremlin-enabled
JanusGraph [27], Orient DB [36] and Neptune [9] store
graph data in distribution, but they adopt a sequential
computing engine and can still suffer from scalability
issue [38]. Targeting large scale, GAIA [38] has been
developed to compile Gremlin traversal queries into a
distributed dataflow program. However, the imperative
Gremlin traversal cannot guarantee worst-case optimal-
ity, and it requires users to manually tune the execution.
TigerGraph [18] is a distributed graph database, that uses
the GSQL query language. However, the lack of an au-
tomatic optimizer greatly limits its usability for iGPM.

9 Conclusion
We’ve presented the GLogS system in this paper to solve
the iGPM, meeting the requirements of performance, us-
ability and scalability. GLogS allows users to interac-
tively submit declarative GPM queries. With the worst-
case optimality and high-order statistics, we’ve imple-
mented an optimizer in GLogS that can automatically de-
rive optimal execution plans for arbitrary GPM queries.
Furthermore, on top of an existing distributed dataflow
engine, GLogS is capable of being deployed in a large
cluster to handle large-scale real-life graphs.

Acknowledgments
We sincerely thank our shepherd Călin Iorgulescu and
the anonymous reviewers for their insightful comments.
This work was supported by Alibaba Innovative Re-
search (AIR) Program.

64 2023 USENIX Annual Technical Conference USENIX Association

References
[1] ABERGER, C. R., LAMB, A., TU, S., NÖTZLI, A., OLUKO-

TUN, K., AND RÉ, C. Emptyheaded: A relational engine
for graph processing. ACM Transactions on Database Systems
(TODS) 42, 4 (2017), 1–44.

[2] AGENSGRAPH. https://bitnine.net/. [Online; accessed
20-October-2022].

[3] ALON, N., DAO, P., HAJIRASOULIHA, I., HORMOZDIARI, F.,
AND SAHINALP, S. C. Biomolecular network motif counting and
discovery by color coding. Bioinformatics 24, 13 (2008), i241–
i249.

[4] AMMAR, K., MCSHERRY, F., SALIHOGLU, S., AND
JOGLEKAR, M. Distributed evaluation of subgraph queries using
worst-case optimal low-memory dataflows. Proc. VLDB Endow.
11, 6 (oct 2018), 691–704.

[5] ANGLES, R., ARENAS, M., BARCELO, P., BONCZ, P.,
FLETCHER, G., GUTIERREZ, C., LINDAAKER, T., PARADIES,
M., PLANTIKOW, S., SEQUEDA, J., VAN REST, O., AND
VOIGT, H. G-core: A core for future graph query languages.
In Proceedings of the 2018 International Conference on Man-
agement of Data (New York, NY, USA, 2018), SIGMOD ’18,
Association for Computing Machinery, p. 1421–1432.

[6] ANGLES, R., ARENAS, M., BARCELÓ, P., HOGAN, A., REUT-
TER, J., AND VRGOČ, D. Foundations of modern query lan-
guages for graph databases. ACM Comput. Surv. 50, 5 (sep 2017).

[7] APACHE TINKERPOP. http://tinkerpop.apache.org/.
[Online; accessed 20-October-2022].

[8] ARANGODB. https://www.arangodb.com/. [Online; ac-
cessed 20-October-2022].

[9] AWS NEPTUNE. https://aws.amazon.com/neptune/. [On-
line; accessed 20-October-2022].

[10] BABAI, L., AND LUKS, E. M. Canonical labeling of graphs. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory
of Computing (New York, NY, USA, 1983), STOC ’83, Associa-
tion for Computing Machinery, p. 171–183.

[11] BATSON, J., SPIELMAN, D. A., SRIVASTAVA, N., AND TENG,
S.-H. Spectral sparsification of graphs: theory and algorithms.
Communications of the ACM 56, 8 (2013), 87–94.

[12] BENSON, A. R., GLEICH, D. F., AND LESKOVEC, J. Higher-
order organization of complex networks. Science 353 (2016),
163–166.

[13] BI, F., CHANG, L., LIN, X., QIN, L., AND ZHANG, W. Ef-
ficient subgraph matching by postponing cartesian products. In
Proceedings of the 2016 International Conference on Manage-
ment of Data (2016), pp. 1199–1214.

[14] CHEN, X., ET AL. Efficient and scalable graph pattern mining
on {GPUs}. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22) (2022), pp. 857–877.

[15] CHEN, Z., CHEN, L., VILLAR, S., AND BRUNA, J. Can graph
neural networks count substructures? Advances in neural infor-
mation processing systems 33 (2020), 10383–10395.

[16] CYPHER QUERY LANGUAGE. https://neo4j.com/

developer/cypher/. [Online; accessed 20-October-2022].

[17] DESHPANDE, M., KURAMOCHI, M., WALE, N., AND
KARYPIS, G. Frequent substructure-based approaches for clas-
sifying chemical compounds. IEEE Transactions on Knowledge
and Data Engineering 33, 8 (2005), 1036–1050.

[18] DEUTSCH, A., XU, Y., WU, M., AND LEE, V. Tigergraph:
A native mpp graph database. arXiv preprint arXiv:1901.08248
(2019).

[19] ESFAHANI, M. S., AND DOUGHERTY, E. R. Effect of separate
sampling on classification accuracy. Bioinformatics 30, 2 (2014),
242–250.

[20] FLAKE, G. W., LAWRENCE, S., GILES, C. L., AND COETZEE,
F. M. Self-organization and identification of web communities.
Computer 35, 3 (2002), 66–70.

[21] FOR LANGUAGE RECOGNITION, A. T. https://www.antlr.
org/. [Online; accessed 20-October-2022].

[22] FRANCIS, N., GREEN, A., GUAGLIARDO, P., LIBKIN, L., LIN-
DAAKER, T., MARSAULT, V., PLANTIKOW, S., RYDBERG, M.,
SELMER, P., AND TAYLOR, A. Cypher: An evolving query lan-
guage for property graphs. In Proceedings of the 2018 Inter-
national Conference on Management of Data (2018), pp. 1433–
1445.

[23] GAÜZÈRE, B., BRUN, L., AND VILLEMIN, D. Graph kernels in
chemoinformatics. In Quantitative Graph TheoryMathematical
Foundations and Applications, M. Dehmer and F. Emmert-Streib,
Eds. CRC Press, 2015, pp. 425–470.

[24] GROCHOW, J. A., AND KELLIS, M. Network motif discov-
ery using subgraph enumeration and symmetry-breaking. In Re-
search in Computational Molecular Biology (Berlin, Heidelberg,
2007), T. Speed and H. Huang, Eds., Springer Berlin Heidelberg,
pp. 92–106.

[25] HAN, W.-S., LEE, J., AND LEE, J.-H. Turboiso: Towards ul-
trafast and robust subgraph isomorphism search in large graph
databases. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data (New York, NY,
USA, 2013), SIGMOD ’13, Association for Computing Machin-
ery, p. 337–348.

[26] HU, Y., JI, S., JIN, Y., FENG, L., STANLEY, H. E., AND
HAVLIN, S. Local structure can identify and quantify influen-
tial global spreaders in large scale social networks. Proceedings
of the National Academy of Sciences 115, 29 (2018), 7468–7472.

[27] JANUSGRAP. https://janusgraph.org/. [Online; accessed
20-October-2022].

[28] LAI, L., QIN, L., LIN, X., AND CHANG, L. Scalable subgraph
enumeration in mapreduce. Proceedings of the VLDB Endow-
ment 8, 10 (2015), 974–985.

[29] LAI, L., QING, Z., YANG, Z., JIN, X., LAI, Z., WANG, R.,
HAO, K., LIN, X., QIN, L., ZHANG, W., ET AL. Distributed
subgraph matching on timely dataflow. Proceedings of the VLDB
Endowment 12, 10 (2019), 1099–1112.

[30] LDBC SOCIAL NETWORK BENCHMARK. https://

ldbcouncil.org/benchmarks/snb/. [Online; accessed 20-
October-2022].

[31] LOUKAS, A., AND VANDERGHEYNST, P. Spectrally approxi-
mating large graphs with smaller graphs. In International Con-
ference on Machine Learning (2018), PMLR, pp. 3237–3246.

USENIX Association 2023 USENIX Annual Technical Conference 65

https://bitnine.net/
http://tinkerpop.apache.org/
https://www.arangodb.com/
https://aws.amazon.com/neptune/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://www.antlr.org/
https://www.antlr.org/
https://janusgraph.org/
https://ldbcouncil.org/benchmarks/snb/
https://ldbcouncil.org/benchmarks/snb/

[32] MHEDHBI, A., AND SALIHOGLU, S. Optimizing subgraph
queries by combining binary and worst-case optimal joins. arXiv
preprint arXiv:1903.02076 (2019).

[33] MILLER, J. J. Graph database applications and concepts with
neo4j. In Proceedings of the southern association for information
systems conference, Atlanta, GA, USA (2013), vol. 2324.

[34] NEO4J EXECUTION PLAN. https://neo4j.com/docs/

cypher-manual/current/execution-plans/. [Online; ac-
cessed 20-October-2022].

[35] NGO, H. Q., PORAT, E., RÉ, C., AND RUDRA, A. Worst-
case optimal join algorithms. Journal of the ACM (JACM) 65,
3 (2018), 1–40.

[36] ORIENT DB. hhttps://orientdb.org/. [Online; accessed
20-October-2022].

[37] PRŽULJ, N., CORNEIL, D. G., AND JURISICA, I. Efficient esti-
mation of graphlet frequency distributions in protein–protein in-
teraction networks. Bioinformatics 22, 8 (2006), 974–980.

[38] QIAN, Z., MIN, C., LAI, L., FANG, Y., LI, G., YAO, Y., LYU,
B., ZHOU, X., CHEN, Z., AND ZHOU, J. GAIA: A system for
interactive analysis on distributed graphs using a High-Level lan-
guage. In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21) (Apr. 2021), USENIX Asso-
ciation, pp. 321–335.

[39] RODRIGUEZ, M. A. The gremlin graph traversal machine and
language (invited talk). In Proceedings of the 15th Symposium on
Database Programming Languages (2015), pp. 1–10.

[40] SANEI-MEHRI, S.-V., SARIYUCE, A. E., AND TIRTHAPURA,
S. Butterfly counting in bipartite networks. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (2018), pp. 2150–2159.

[41] SHANG, H., ZHANG, Y., LIN, X., AND YU, J. X. Taming veri-
fication hardness: An efficient algorithm for testing subgraph iso-
morphism. Proc. VLDB Endow. 1, 1 (aug 2008), 364–375.

[42] SPIELMAN, D. A., AND TENG, S.-H. Spectral sparsification of
graphs. SIAM Journal on Computing 40, 4 (2011), 981–1025.

[43] STEINBRUNN, M., MOERKOTTE, G., AND KEMPER, A.
Heuristic and randomized optimization for the join ordering prob-
lem. The VLDB Journal 6, 3 (1997), 191–208.

[44] SUN, S., SUN, X., CHE, Y., LUO, Q., AND HE, B. Rapidmatch:
a holistic approach to subgraph query processing. Proceedings of
the VLDB Endowment 14, 2 (2020), 176–188.

[45] TEIXEIRA, C. H., FONSECA, A. J., SERAFINI, M., SIGANOS,
G., ZAKI, M. J., AND ABOULNAGA, A. Arabesque: a system
for distributed graph mining. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles (2015), pp. 425–440.

[46] THE OPEN SOURCE PAGE OF GLOGS. https://github.

com/MeloYang05/GLogS-Artifact. [Online; accessed 7-
June-2023].

[47] TIGERGRAPH GRAPHSTUDIO. https:

//docs.tigergraph.com/gui/current/

graphstudio/build-graph-patterns/

visual-query-builder-overview. [Online; accessed
20-October-2022].

[48] TRUTH BEHIND NEO4J’S “TRILLION” RELATIONSHIP
GRAPH. https://www.tigergraph.co.jp/blog/

truth-behind-neo4js-trillion-relationship-graph/.
[Online; accessed 20-October-2022].

[49] TSOURAKAKIS, C. E., DRINEAS, P., MICHELAKIS, E.,
KOUTIS, I., AND FALOUTSOS, C. Spectral counting of trian-
gles via element-wise sparsification and triangle-based link rec-
ommendation. Social Network Analysis and Mining 1, 2 (2011),
75–81.

[50] ULLMANN, J. R. An algorithm for subgraph isomorphism. Jour-
nal of the ACM (JACM) 23, 1 (1976), 31–42.

[51] VAN REST, O., HONG, S., KIM, J., MENG, X., AND CHAFI,
H. Pgql: A property graph query language. In Proceedings of
the Fourth International Workshop on Graph Data Management
Experiences and Systems (New York, NY, USA, 2016), GRADES
’16, Association for Computing Machinery.

[52] VERMA, S., LESLIE, L. M., SHIN, Y., AND GUPTA, I. An
experimental comparison of partitioning strategies in distributed
graph processing. Proc. VLDB Endow. 10, 5 (jan 2017), 493–504.

[53] XU, K., HU, W., LESKOVEC, J., AND JEGELKA, S. How pow-
erful are graph neural networks? In International Conference on
Learning Representations (2019).

[54] YANG, Z., LAI, L., LIN, X., HAO, K., AND ZHANG, W. Huge:
An efficient and scalable subgraph enumeration system. In Pro-
ceedings of the 2021 International Conference on Management
of Data (2021), pp. 2049–2062.

[55] YOU, J., GOMES-SELMAN, J. M., YING, R., AND LESKOVEC,
J. Identity-aware graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence (2021), vol. 35,
pp. 10737–10745.

A Appendix

A.1 Graph Sparsification

In the paper, we adopt the stratified sparsification [19]
that treats each type of edges as an independent stra-
tum, and assign each stratum an individual sparsification
ratio. For clarity, we use v (or e) and u (or ε) to de-
note a vertex (or edge) in the pattern and graph, respec-
tively. Moreover, given an edge e (or ε), we denote its
label as L(e). Let {1,2, . . . , l} ⊂ N+ be the domain of
edge labels without loss of generality, and {s1,s2, . . . ,sl}
be the frequencies of the edges with the given label in
the graph G. Then we define the sparsification ratios as
Ω = {ρ1,ρ2, . . . ,ρl}, where ρi denotes the ratio for the
stratum of edges with label i.

For two random variables X , X ′, we denote
E[X],Var[X] as the expected value and variance of X ,
and Cov[X ,X ′] the covariance of X and X ′. Given that
we only eliminate edges in the sparsification process,
we assume that the vertex set retains after sparsification,
namely VG =VG∗ .

66 2023 USENIX Annual Technical Conference USENIX Association

https://neo4j.com/docs/cypher-manual/current/execution-plans/
https://neo4j.com/docs/cypher-manual/current/execution-plans/
hhttps://orientdb.org/
https://github.com/MeloYang05/GLogS-Artifact
https://github.com/MeloYang05/GLogS-Artifact
https://docs.tigergraph.com/gui/current/graphstudio/build-graph-patterns/visual-query-builder-overview
https://docs.tigergraph.com/gui/current/graphstudio/build-graph-patterns/visual-query-builder-overview
https://docs.tigergraph.com/gui/current/graphstudio/build-graph-patterns/visual-query-builder-overview
https://docs.tigergraph.com/gui/current/graphstudio/build-graph-patterns/visual-query-builder-overview
https://www.tigergraph.co.jp/blog/truth-behind-neo4js-trillion-relationship-graph/
https://www.tigergraph.co.jp/blog/truth-behind-neo4js-trillion-relationship-graph/

A.1.1 The Proof of Lemma 6.1

Proof. Let EG(u1,u2) = 1 indicate the existence of edge
(u1,u2) in the graph G and 0 otherwise. We formulate
that

FG∗(p) = ∑
(u1,u2,...,u|Vp |)∈V

|Vp |
G∗︸ ︷︷ ︸

For each possible subgraph,

∏
e∈Ep,

e=(v j ,vk)

EG∗(u j,uk)

︸ ︷︷ ︸
verify the existence

,

(6)
and obtain

E[FG∗(p)]

= ∑
(u1,u2,...,u|Vp |)∈V

|Vp |
G∗

∏
e∈Ep,

e=(v j ,vk)

ρL(e)×EG(u j,uk)

= ∏
e∈Ep

ρL(e) ∑
(u1,u2,...,u|Vp |)∈V

|Vp |
G∗

∏
e∈Ep,

e=(v j ,vk)

EG(u j,uk),

Since VG =VG∗ , we have

E[FG∗(p)] = ∏
e∈Ep

ρL(e)FG(p).

Thus, the lemma holds.

A.1.2 The Optimization Problem for the Stratified
Sparsification

Let M denote a memory constraint to ensure that the spar-
sified graph can reside in the frontend machine. We first
consider a specific pattern p, and later generalize to an
arbitrary pattern. We formulate the stratified sparsifica-
tion as an optimization problem as:

argmin
Ω

Var[F̃ (p)]

s.t.
l

∑
i=1

siρi ≤M.

(7)

Given an ordered set of vertices S =
(u1,u2, . . . ,u|Vp|) ∈ V |Vp|

G from the graph G, we denote
1(fG(p)|S) to indicate whether there is a subgraph with
S in G that can match the pattern p. If 1(fG(p)|S) = 1,
in other words, S must be mapping of p in G, we directly
use fG(p)|S to represent the matched subgraph regarding
S. Note that the notations will be applied to both the
eMap and G∗ in the following. For example, given a
vertex set S (same vertex set in both eMap and G∗),
if 1(fG(p)|S) = 1 but 1(fG∗(p)|S) = 0, we know that
some edge in the matched subgraph has been eliminated
during sparsification. With the indicator, we have

FG∗(p) = ∑
S∈V

|Vp |
eMap

1(fG∗(p)|S).

Therefore,

Var[FG∗(p)]

= ∑
S1,S2∈V

|Vp |
G

Cov [1(fG∗(p)|S1),1(fG∗(p)|S2)]

= ∑
S1,S2∈V

|Vp |
G

(E[1(fG∗(p)|S1)1(fG∗(p)|S2]

−E[1(fG∗(p)|S1)]×E[1(fG∗(p)|S2)].

(8)

We observe that the covariance in Equation 8 must be
zero in either of the following case.

• S1 or S2 cannot form a mapping of p in G,
i.e., 1(feMap(p)|S1) = 0 or 1(feMap(p)|S2) = 0. In
this case, the matched subgraph must not ex-
ist in G∗, leading to E[1(fG∗(p)|S1)] = 0 or
E[1(fG∗(p)|S2)] = 0.

• S1∩S2 = /0, namely the two sets are disjoint.

Therefore, we only need to study the two sets S1 and
S2, such that 1(feMap(p)|S1) = 1 and 1(feMap(p)|S2) = 1,
and S1∩S2 6= /0. In this case, feMap(p)|S1 and feMap(p)|S2
may share either none, one, or more than one common
edges. The trivial case of sharing no edge results in zero
variance. For other cases, we empirically studied their
occurrences while matching all benchmark queries on
G1. We found that the case of sharing one single edge
occurs much more frequently than that of sharing mul-
tiple edges. Let the common edge be ε , which must be
matched by a pattern edge e′ ∈ Ep. According to Equa-
tion 8, the covariance becomes

Cov
[
1(feMap(p)|S1),1(feMap(p)|S2)

]
=

(
∏

e∈Ep

ρL(e)

)2

∗
(

ρ
−1
L(e′)−1

)
.

(9)

We then group these pairs by the labels of e′, which
eliminates e′ in Equation 9 and transforms Equation 8
into

Var[FG∗(p)]

≈

(
∏

e∈Ep

ρL(e)

)2

∗ ∑
e∈Ep

(
ρ
−1
L(e)−1

)
λeMap(p|e),

(10)

where λeMap(p|e) denotes the number of pairs of S1 and
S2 in eMap whose common edge is matched by e in pat-
tern p.

Figure 10 demonstrates a pair of S1 and S2 that
matches a triangle pattern, as an example. In addi-
tion, matched subgraphs feMap(p|S1) and feMap(p|S2)
share a common edge in the example. We observe that
feMap(p|S1) and feMap(p|S2) together form a new pattern,

USENIX Association 2023 USENIX Annual Technical Conference 67

(a) Pattern 𝑝

(b) Common edge 𝑒 (c) A pair of 𝑆! and 𝑆"

𝑆!

𝑆"

Figure 10: Example of a pair of S1 and S2 with shared
edge e.

which is a mirror symmetric structure with respect to the
common edge. In terms of an edge e ∈ Ep, we denote
such a mirror pattern as p+e . It’s clear that λeMap(p|e)
is equal to the frequency of pattern p+e in eMap, namely
λeMap(p|e) = FG(p+e). Combining with the Equation 4
in the paper, we have

λeMap(p|e) = FG(p+e)≈
FG(p)×FG(p)

FG(e)
=

FG(p)2

sL(e)
,

(11)
Combining the definition of F̃ (p), Equation 10, and

Equation 11, we obtain

Var[F̃ (p)]≈ ∑
e∈Ep

(
ρ
−1
L(e)−1

)FG(p)2

sL(e)
,

Note that FG(p) can be treated as a constant value
in the optimization problem. Consequently, we can
rephrase the optimization problem in Equation 7 as

argmin
Ω

∑
e∈Ep

(
ρL(e)sL(e)

)−1
,

s.t.
l

∑
i=1

siρi ≤M.

(12)

Till now, the optimization problem only considers a
specific pattern p. For generalizing to an arbitrary pat-
tern, we construct a pattern p that is formed by all types
of edges in the graph, and in Equation 12, we enumer-
ate all labels rather than those in the pattern p, which
becomes

argmin
Ω

l

∑
i=1

(siρi)
−1 ,

s.t.
l

∑
i=1

siρi ≤M.

The minimal variance is achieved when ρi =
M
l ×

1
si

.
Since the sparsification ratio ρi has a upper bound 1,
i.e., all edges with label i are preserved, we have ρi =
min(1, M

l ×
1
si
).

A.2 Queries and Execution Plans
We reported all queries used in the experiments, along
with their execution plans generated by the optimizer of
GLogS, in Figure 11. In the execution plans, we also
marked the corresponding intermediate pattern frequen-
cies in the benchmark graph G1 for the evaluation of their
performance. The table in Figure 11 explains how the
queries are constructed. Specifically, their main struc-
tures of all queries are extracted from LDBC [30] Busi-
ness Intelligence (BI) workloads, and then modified to
cover more test scenarios. Overall, the queries contains
Long-Chain, Triangle, Square, 4-Clique, House that are
commonly used for benchmarking GPM queries [29, 32].
Their execution plans cover both Expand and Join oper-
ators.

68 2023 USENIX Annual Technical Conference USENIX Association

P1

𝑝! 𝑝" 𝑝

P2

𝑝! 𝑝" 𝑝# 𝑝

P3

𝑝"
𝑝#

𝑝

2129882

𝑝!

1003605

41713 19314

4444191011420

98822052168 83558

1011420 P4

𝑝! 𝑝" 𝑝# 𝑝$ 𝑝

𝑝! 𝑝"
𝑝#

𝑝

P5 P6

𝑝! 𝑝"
𝑝# 𝑝

P7

𝑝! 𝑝" 𝑝# 𝑝$ 𝑝

9882

90492

90492

1003605

1003605

2052169

1011420 1011420 139493375

2052169 1040749 22930 176 1613181

2333021484721040749

751677

P8

𝑝! 𝑝" 𝑝# 𝑝$ 𝑝

P9

𝑝! 𝑝" 𝑝#
𝑝$ 𝑝% 𝑝& 𝑝

P10

𝑝! 𝑝" 𝑝# 𝑝$ 𝑝$∗
𝑝

9882

9882

212

2052169

9882

32261

92459

557638

83558 19314 19314

180623 387573 387573 387573 387573

1040749 48472

Person City Country ForumComment PostTag
Knows LivesIn LocatedIn HasInterest HasTag
HasTag Likes HasCreator HasCreator
ReplyOf ContainerOf HasMemberReplyOf

clone

Likes

𝑝$ ⋈ 𝑝$∗

Query Source Explanation
p1 BI-8 p1 is extracted from BI-8

p2 BI-5 Wedge Person→ Comment→ Person is extracted from BI-5. Additionally, a City vertex and
two LivesIn edges are added to form a Square

p3 BI-15 p3 is extracted from BI-15
p4 BI-17 p4 is extracted from BI-17
p5 BI-17 p5 is extracted from BI-17
p6 BI-4, BI-15 Some subgraphs are extracted from BI-4 and BI-15 to form a 4-Clique

p7 BI-19, BI-4 Its right square is extracted from BI-19. In addition, a Forum hat is extracted from BI-4 and
added to the square to form a House

p8 BI-19, BI-17 Its right square is extracted from BI-19. In addition, a Tag hat is extracted from BI-17 and
added to the square to form a House

p9 BI-11 p9 is the main structure of BI-11

p10 BI-5 p10 consists of two p2 by joining on the City vertex. This is designed to verify whether GLogue
can generate a plan with join

Figure 11: Queries and their executions plans generated by GLogS’s Optimizer

USENIX Association 2023 USENIX Annual Technical Conference 69

	Introduction
	Background and Challenges
	The Problem of iGPM
	Solving iGPM using Existing Systems
	Challenges of Solving iGPM

	System Overview
	Compiling Declarative GPM Queries
	The Pattern Parser
	The Dataflow Embedding

	Automatic Optimization
	Execution Plan and Cost Model
	Graph Sparsifier
	GLogue Manager
	Plan optimizer
	Dataflow Embedding

	System Implementation
	The Dataflow Plugin

	Evaluation
	Setup
	Compare with Alternative Systems
	Scalability
	Plan Optimization

	Related Work
	Conclusion
	Appendix
	Graph Sparsification
	The Proof of Lemma 6.1
	The Optimization Problem for the Stratified Sparsification

	Queries and Execution Plans

