
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Overcoming the Memory Wall
with CXL-Enabled SSDs

Shao-Peng Yang, Syracuse University; Minjae Kim, DGIST; Sanghyun Nam,
Soongsil University; Juhyung Park, DGIST; Jin-yong Choi and Eyee Hyun Nam,

FADU Inc.; Eunji Lee, Soongsil University; Sungjin Lee, DGIST;
Bryan S. Kim, Syracuse University

https://www.usenix.org/conference/atc23/presentation/yang-shao-peng

Overcoming the Memory Wall with CXL-Enabled SSDs

Shao-Peng Yang
Syracuse University

Minjae Kim
DGIST

Sanghyun Nam
Soongsil University

Juhyung Park
DGIST

Jin-yong Choi
FADU Inc.

Eyee Hyun Nam
FADU Inc.

Eunji Lee
Soongsil University

Sungjin Lee
DGIST

Bryan S. Kim
Syracuse University

Abstract
This paper investigates the feasibility of using inexpensive
flash memory on new interconnect technologies such as CXL
(Compute Express Link) to overcome the memory wall. We
explore the design space of a CXL-enabled flash device and
show that techniques such as caching and prefetching can help
mitigate the concerns regarding flash memory’s performance
and lifetime. We demonstrate using real-world application
traces that these techniques enable the CXL device to have
an estimated lifetime of at least 3.1 years and serve 68–91%
of the memory requests under a microsecond. We analyze the
limitations of existing techniques and suggest system-level
changes to achieve a DRAM-level performance using flash.

1 Introduction

The growing imbalance between computing power and mem-
ory capacity requirement in computing systems has devel-
oped into a challenge known as the memory wall [23, 34, 52].
Figure 1, based on the data from Gholami et al. [34] and
expanded with more recent data [11, 30, 43], illustrates the
rapid growth in NLP (natural language processing) models
(14.1× per year), which far outpaces that of memory capac-
ity (1.3× per year). The memory wall forces modern data-
intensive applications such as databases [8, 10, 14, 20], data
analytics [1, 35], and machine learning (ML) [45, 48, 66] to
either be aware of their memory usage [61] or implement
user-level memory management [66] to avoid expensive page
swaps [37,53]. As a result, overcoming the memory wall in an
application-transparent manner is an active research avenue;
approaches such as creating an ML-centric system [45,48,61],
building a memory disaggregation framework [36, 37, 52, 69],
and designing new memory architecture [23, 42] are actively
pursued.

We question whether it is possible to overcome the mem-
ory wall using flash memory — a memory technology that
is typically used in storage due to its high density and capac-
ity scaling [59]. While DRAM can only scale to gigabytes
in capacity, a flash memory-based solid-state drive (SSD) is

GPU Memory NLP Model Size1.3x/year 14.1x/yeario 12 GShard MT-NLG
GPT-3 LaMDA1011

A100-80 (80GB) H100 (80GB)Microsoft T-NLG Megaon
TPUvs3

10 10 (32GB)
Al 00 (40GB)109 GPT-2

BERT ELECTRAALBERT108 GPT-1

4TB
400GB
40GB
4GB
400MB GPU

 Me
mor

y Si
ze

of
 Par

ame
ters

2018 2019 2020 2021 2022Year
Figure 1: The trend in memory requirements for NLP appli-
cations [11, 30, 34, 43]. The number of parameters increases
by a factor of 14.1× per year, while the memory capacity in
GPUs only grows by a factor of 1.3× every year.

in the terabyte scale [23], a sufficiently large capacity to ad-
dress the memory wall challenge. The use of flash memory as
main memory is enabled by the recent emergence of intercon-
nect technologies such as CXL [3], Gen-Z [7], CCIX [2], and
OpenCAPI [12], which allow PCIe (Peripheral Component
Interconnect Express) devices to be accessed directly by the
CPU through load/store instructions. Furthermore, these tech-
nologies promise excellent scalability as more PCIe devices
can be attached across switches [13] unlike DIMM (Dual
Inline Memory Module) used for DRAM.

However, there are three main challenges to using flash
memory as CPU-accessible main memory. First, there is a
granularity mismatch between memory requests and flash
memory. This results in a significant traffic amplification on
top of the existing need for indirection in flash [23, 33]: for
example, a 64B cache line flush to the CXL-enabled flash
would result in 16KiB flash memory page read, 64B update,
and 16KiB flash program to a different location (assuming a
16KiB page-level mapping). Second, flash memory is still or-
ders of magnitude slower than DRAM (tens of microseconds
vs. tens of nanoseconds) [5, 24]. As a consequence, while the
peak data transfer rate between the two technologies is simi-
lar [4, 15], the long flash memory latency hinders sustained
performance as data-intensive applications can only endure

USENIX Association 2023 USENIX Annual Technical Conference 601

latency within the microsecond range at most [53]. Lastly,
flash memory has limited endurance and wears out after re-
peated writes [24,44]. This limits the usability of the memory
technology as flash memory blocks beyond their endurance
limit exhibit unreliable behavior and high levels of errors [44].

We address the above flash memory challenges by explor-
ing design options, particularly those related to caching and
prefetching, so that a CXL-enabled flash device (or CXL-
flash) can be used to overcome the memory wall. Even though
prior works have explored the scalability aspects of multiple
CXL devices [36, 42] and have proven the feasibility of CXL-
flash [9, 42], to the best of our knowledge, we are the first
open-sourced in-depth study on the design choices of a CXL-
flash device and on the effectiveness of existing optimization
techniques. Due to the large design space, we first explore
the CXL-flash hardware design in § 4 and then evaluate and
analyze detailed policies and algorithms in § 5. We discover
that it is possible to design a CXL-flash with 68–91% of its
requests achieving less than a microsecond latency and an
estimated lifetime of at least 3.1 years using memory traces
of real applications. While exploring various designs and poli-
cies, we make seven observations which collectively indicate
that modern prefetching algorithms are ill-suited to predict
memory access patterns for the CXL-flash. More specifically,
the virtual to physical address translation obfuscates access
patterns for existing prefetchers to perform adequately. To
counter this, we explore passing memory access hints from
the kernel to the CXL-flash to further improve performance.

We make the following contributions with this work.

• We develop a novel tool that collects physical memory
traces of an application, and we simulate the behavior of
a CXL-flash with these traces. Both the memory tracing
tool and the CXL-flash simulator (§ 3) are available at
https://github.com/spypaul/MQSim_CXL.git

• Through synthetic workloads, we demonstrate the potential
to effectively reduce the latency of a CXL-flash by integrat-
ing various system design techniques such as caching and
prefetching, highlighting optimization opportunities. (§ 4)

• Using real-world workloads, we analyze the limitations of
the current prefetchers and suggest system-level changes
for future CXL-flash to achieve near-DRAM performance,
specifically sub-µs latencies for the device. (§ 5)

2 Background

In this section, we first describe the opportunities presented by
CXL (Compute Express Link) [3] as a representation of PCIe-
based memory coherent interconnect technologies (which also
include Gen-Z [7], CCIX [2], and OpenCAPI [12]). We then
discuss the challenges of using flash memory with CXL.

2.1 Opportunities presented by CXL

CXL is a new interconnect protocol built on top of PCIe that
integrates CPUs, accelerators, and memory devices into a
single computing domain [42]. The main benefits of this inte-
gration are twofold. First, it allows coherent memory access
between CPUs and PCIe devices. This reduces the synchro-
nization overheads that are typically required for data transfers
between the CPU and the device. Second, it is easy to scale
the number of CXL devices: through a CXL switch, another
set of CXL devices can be connected to the CPU.

Among the three types of devices that CXL supports, the
Type 3 device for memory expansion is of interest to this
work. Type 3 devices expose host-managed device memory
(HDM), and the CXL protocol allows the host CPU to directly
manipulate the device memory via load/store instructions [3].
While CXL currently only considers DRAM and PMEM
as the primary memory expansion devices, it is possible to
use SSDs, thanks to CXL’s coherent memory access [42].
Moreover, the high capacity and better scaling of flash-based
SSDs, enabled by stacking in 3D [59] and storing multiple bits
in a cell [24], can effectively address the memory wall that
modern data-intensive applications face. Inspired by previous
works on CXL [36, 42], this paper studies the feasibility of
using flash memory as a CXL memory expansion device.

2.2 Challenges with flash memory

We discuss the following three peculiarities of flash that make
it challenging to use it as the system’s main memory.

Granularity mismatch. Flash memory is not randomly
accessible: its data are written and read at page granularity
whose size is in the order of kilobytes [33], resulting in a
large traffic amplification. Furthermore, a page cannot be
overwritten. Instead, a block, which consists of hundreds of
pages, must be erased first, and data can be written to only
erased pages [33]. This restrictive interface causes any 64B
cache line flush to incur a large write amplification through
read-modify-writes. An SSD, as a block device whose access
granularity is much larger (4KiB), has far less overhead.

Microsecond-level latency. Flash memory is orders of
magnitude slower than DRAM, whose latencies are in the
range of tens to hundreds of nanoseconds. The relatively
faster flash memory read is still in the tens of microseconds,
while the slower program and erase operations are in the hun-
dreds and thousands of microseconds. Moreover, the flash
memory latency also depends on their cell technology [24].
As outlined in Table 1 as an example, as more bits are stored
per cell, the latency increases, from SLC (single-level cell) to
TLC (triple-level cell). The ultra-low latency (ULL) flash is
a variant of SLC that improves performance at the expense
of density [46, 76]. Even the ULL technology, however, is
orders of magnitude slower than DRAM. As a block device,
microsecond-level latencies are tolerable due to the software

602 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/spypaul/MQSim_CXL.git

Table 1: Overview of memory technology characteristics.

Technology
Read

latency
Program
latency

Erase
latency

Endurance
limit

DRAM [50] 46ns 46ns N/A N/A
ULL [46, 76] 3µs 100µs 1000µs 100K
SLC [24] 25µs 200µs 1500µs 100K
MLC [24] 50µs 600µs 3000µs 10K
TLC [24] 75µs 900µs 4500µs 3K

overhead in the storage stack. However, for a memory de-
vice that is directly accessed using load/store instructions,
microsecond-level latencies become a challenge.

Limited endurance. The high voltages applied to flash
memory during the program and erase operations slowly wear
out the cells, making them unusable over time [44, 72]. The
memory manufacturers specify an endurance limit as a guide
to how many times the flash memory block can be erased.
This limit also depends on the flash technology, as shown
in Table 1. While this is nevertheless a soft limit and flash
memory can still be used beyond the limit [72], worn-out
blocks exhibit unreliable behavior and are not guaranteed to
correctly store data [44]. Due to application-level and kernel-
level caching and buffering, the amount of writes to a block-
interfaced SSD is reduced, and the current endurance limit
is often sufficient during the SSD’s lifetime. As a memory
device, however, flash memory will quickly become unusable
with frequent memory writes.

We note that while these challenges for flash also exist
in the storage domain, they are handled by the SSD-internal
firmware. For CXL-flash, however, they should be addressed
by hardware due to the much finer timescale, making it dif-
ficult to implement flexible and optimal algorithms. Thus,
we expect these challenges to exacerbate when moving flash
memory from the storage domain to the memory domain.

3 Tool and Methodology

To understand the behavior of physical memory accesses
from the CPU to the CXL device, we build a physical memory
tracing tool using page fault events (§ 3.1). We then demon-
strate the necessity of this tool by comparing it with a set of
virtual memory traces (§ 3.2). The tools and artifacts gener-
ated in this work are publicly available.

3.1 Tracing memory accesses
Main memory and CXL-flash are accessed via physical mem-
ory addresses. Unfortunately, to the best of our knowledge,
no publicly available tool traces the physical memory transac-
tions between the last level cache (LLC) and the memory con-
troller without hardware modifications. Tracing the load/store
instructions in the CPU is not sufficient as (1) it collects the

Valgrind SimulatedMemoryRequestsVirtualMemoryTrace CacheSimulatorInstrument-ationApplication
PID Translation

Page KernelFault
I______I

RecordVPN-PFNMapping
LinuxKernel PhysicalMemoryTrace

Figure 2: Workflow for collecting physical memory traces. We
collect the virtual memory trace using Valgrind and simulate
its behavior in the cache. Simultaneously, we capture page
fault events to trace the updates to the page table, and use this
to generate physical memory traces.

Table 2: Synthetic workload characteristics.

Workload
Inter-
arrival

time (ns)

Read-write
ratio

Footprint
(GiB)

Hash map 329 53:47 <1
Matrix multiply 38 55:45 <1
Min heap 72 50:50 1
Random 76 50:50 4
Stride 146 50:50 8

virtual address accesses, and (2) the eventual accesses to the
CXL-flash are filtered by the cache hierarchy.

We trace physical memory accesses by combining mem-
ory tracing from Valgrind [19, 57] and information from
page fault events. Figure 2 illustrates this workflow. As
shown in the top path, we instrument the application with
Valgrind for load/store instructions and use its cache simula-
tor (Cachegrind) to filter accesses to memory. More specif-
ically, we modify Cachegrind to collect memory accesses
caused by LLC misses or evictions. However, these memory
accesses from Cachegrind are still addressed virtually, and
the virtual-to-physical (V2P) mapping information is needed
to generate the physical memory trace. For this, as shown in
the bottom path of Figure 2, we collect updates to the page
table caused by page faults while the application is running.
We modify kernel functions that install page table entries
(do_anonymous_page() and do_set_pte()) and store the
V2P translations for the target application’s PID in the /proc
file system. This captures the dynamic nature of page table
updates during the execution of the application with minimal
overhead. We combine the virtual accesses from Valgrind and
the page table updates to generate the physical memory trace.

3.2 Virtual vs. physical memory accesses
We demonstrate our physical memory tracing tool using five
synthetic applications based on prior work on prefetching [25,
56]. The characteristics of collected traces are summarized
in Table 2. We collect the first 20 million memory accesses:

USENIX Association 2023 USENIX Annual Technical Conference 603

Access Order x 1 0

X10 52

7

1
0 20

VPN

(a) Hash map (V)

X10 5

Access Order x 10 7
VPN

2
1
0 20

(b) Matrix mult. (V)

X10 5

0 2Access Order x 10 7

3
2
1

VPN

(c) Min heap (V)

X10 6

7Access Order x 10

3
2
1
0 0 2

VPN

(d) Random (V)

2

0 2Access Order X 107

1VP
N

0

3 X106

(e) Stride (V)

X10 6

0 2Access Order x 10 7

8
6
4

PFN

(f) Hash map (P)

X10 6

0 2Access Order x 107

8
6
4

PFN

(g) Matrix mult. (P)

X10 6

3

0 2
Access Order x 10 7

2

4

PFN
(h) Min heap (P)

X106

0 2
Access Order x 10 7

4
3
2PFN

(i) Random (P)

X10 6

0 2Access Order x 10 7

6

4PFN

(j) Stride (P)

0.0 0.0 2.5Delta X106

0.5
1.0

CD
F

(k) Hash map (∆)

0.0 0.0 2.5Delta X106

0.5
1.0

CD
F

(l) Matrix mult. (∆)

0.0 0.0 2.5Delta X106

0.5
1.0

CD
F

(m) Min heap (∆)

0.0 0.0 2.5Delta X106

0.5
1.0

CD
F

(n) Random (∆)

0.0 0.0 2.5Delta x106

0.5
1.0

CD
F

(o) Stride (∆)

Figure 3: The scatter plots showing access patterns for five synthetic applications: hash map, matrix multiply, min heap, random,
and stride. The top row (Figures 3a–3e) shows the virtual address accesses; the second row (Figures 3f–3j), the physical accesses.
The last row (Figures 3k–3o) shows the CDF of the difference between consecutive accesses. We observe that the physical
memory accesses appear different from the virtual ones due to address translation.

note these are not load/store instructions, but the memory
transactions between the LLC and memory.

Figures 3a–3e (first row of Figure 3) plot the accessed vir-
tual page number (VPN) for the five synthetic traces. We
can observe that the virtual address access pattern matches
our expectations for the application. However, as shown in
Figures 3f–3j (second row of Figure 3), the corresponding
physical frame number (PFN) does not resemble the VPN. We
show the difference between consecutive accesses (∆, delta)
in Figures 3k–3o (last row of Figure 3). The black dashed
line is the delta for the virtual address while the grey solid
lines are the deltas for the physical addresses across five it-
erations, with the two of the iterations running while other
applications are running to inflate the memory utilization.
We make two observations. First, the virtual access patterns
(black dashed lines) have much smaller delta values on aver-
age. However, the physical access patterns (grey solid lines)
may have very large delta values due to virtual-to-physical
address translation. Second, the grey solid lines rarely overlap
with each other, highlighting that the physical memory pat-
tern is dynamic and depends on various runtime factors that
affect memory allocation. To this end, the observed mismatch

between the physical and virtual addresses may be influenced
by dynamic factors, such as memory utilization of the system.

To demonstrate that it is necessary to capture the physical
memory trace, we measure the performance of a CXL-flash
using the virtual and physical address traces as inputs. The
CXL-flash is configured to have a flash memory backend of
8 channels and 8 ways per channel and a 512MiB DRAM
cache, and implements a Next-N-line prefetcher [41] (more
details in § 4). We measure the percentage of memory requests
with less than a microsecond latency for the five synthetic
applications and report the results in Table 3. Using virtual
memory traces generates an overly optimistic result with far
more requests completing under a microsecond compared to
the result from running physical memory traces. The error
between the running with virtual address and physical address
is significantly high: all the matrix multiply experiments have
errors over 25%. The random and stride access workload
have low error rates, making it either too difficult or too easy
to predict access patterns regardless of virtual or physical
addressing.

One technique to mitigate the change of information during

604 2023 USENIX Annual Technical Conference USENIX Association

Table 3: Percentage of sub-µs latencies for a CXL-flash using virtual and physical address traces for the five synthetic applications.
We repeat the physical trace generation five times with iterations 4 and 5 having a higher system memory utilization (thus, a
more fragmented memory layout). We compute the errors for the virtual trace performances in relation to those of the physical
traces, and highlight errors over 10% in yellow (), and over 25% in red ().

Workload
% of sub-µs

latency (virtual)
% of sub-µs latency (physical) Error (%)

1 2 3 4 5 1 2 3 4 5
Hash map 96.9% 86.7% 88.3% 74.5% 63.8% 63.9% 10.2% 8.6% 22.4% 33.1% 33.0%
Matrix mult. 98.2% 72.7% 57.4% 59.2% 48.1% 47.9% 25.5% 40.8% 39.0% 50.1% 50.3%
Min heap 97.8% 92.1% 96.0% 75.6% 69.1% 69.4% 5.7% 1.8% 22.2% 28.7% 28.4%
Random 32.2% 26.4% 27.1% 28.0% 22.4% 21.8% 5.8% 5.1% 4.2% 9.8% 10.6%
Stride 64.7% 64.3% 59.4% 64.5% 51.9% 52.0% 0.4% 5.3% 0.2% 12.6% 12.7%

address translation is to utilize huge pages, which can signifi-
cantly reduce the number of address translations [54, 58] to
preserve memory access patterns. However, such a method
can only reduce its impact on the system partially, and the
address translation is inevitable. With the rapid growth of
memory requirements of applications (14.1 × per year from
Figure 1), within a few years, huge pages would exhibit the
same challenges that the smaller pages face. Therefore, we
decide to keep the configuration general to explore the design
options for a CXL-flash.

4 Design Space for CXL-flash

We explore the design space for building a CXL-flash, specif-
ically on the hardware modules inside it; we later evaluate
algorithms and policies in § 5. To model the hardware, we
build a CXL-flash simulator based on MQSim [68] and its ex-
tension MQSim-E [49], and use the physical memory traces of
the five synthetic applications (Table 2) to evaluate the effects
of design options. The overall architecture of our CXL-flash
is depicted in Figure 4 with starting configuration in Table 4.

We answer the following research questions in this section.

• How effective is caching in improving performance? (§ 4.1)
• How can we effectively reduce flash memory traffic? (§ 4.2)
• How effective is prefetching in hiding the long flash mem-

ory latency? (§ 4.3)
• What are the appropriate flash memory technology and

parallelism for CXL-flash? (§ 4.4)

HostRequests
Indexing

IndexTable
Prefetcher§4.3

AddrAddrAddr
RequestInfoDataPlacement

FTL

CX
L In

terf
ace ■ Address' Translation TransactionScheduling

. . Flash_Memory. .Channel 0 Chip Chip Chip;Channel 1DRAMCache §4.2
§4 .1 §4.4

MSHR

Figure 4: Architecture of the CXL-flash

Table 4: Initial configuration for the CXL-flash in § 4.

Parameters Value
DRAM latency 46ns
Cache replacement FIFO
Flash parallelism 32 × 32
Flash technology SLC (Table 1)

4.1 Caching for performance

We first explore the effect of adding a DRAM cache in front of
flash memory. The cache mainly serves two purposes. First,
it improves the performance of the CXL-flash by serving
frequently accessed data from the faster DRAM. Second, it
reduces the overall traffic to flash memory on a cache hit.

Figure 5 quantitatively shows the benefit of using a cache.
We vary the cache size from 0 to 8GiB and measure the aver-
age latency for the physical memory accesses (Figure 5a) and
the inter-arrival time of flash memory requests to the backend.
(Figure 5b). When there is no cache, the average latency is
much higher than the flash memory read and program laten-
cies because of queuing delays. This is even though the flash
memory backend is configured to have an ample amount of

I / / J No Cache
I I 0.5GB

m 2GB
I------1 8GB

Ave
rage

Acc
ess

Lat
enc

y(µ
s)

Has
h

map MM Min Hea
p

Ran
d

Stri
de

600
400
200

(a) Average access latency

Fla
sh I

nter
-am

val
Tim

e (µ
s)

Has
h

map

IZ / J No Cache
I I 0.5GB

CZ3 2GB
8GB

MM Min Hea
p

Ran
d

Stri
de0

1

2

(b) Flash memory traffic

Figure 5: Average access latency (Figure 5a) for both 64B
read and write requests and flash memory traffic (Figure 5b)
as the DRAM cache size varies. In general, the cache im-
proves performance and reduces the amount of traffic to flash.
However, even with a sufficiently large cache, the average
latencies are still much higher than that of DRAM due to the
high intensity of memory accesses.

USENIX Association 2023 USENIX Annual Technical Conference 605

I I Total
ZZZ1 Repeated

Cou
nt

PFN x10 6

0
2

4
6

2 4

x10 5

(a) Hash map

I I Total
V//\ Repeated

Cou
nt

2 4PFN x l0 6
0

1

X10 6

(b) Matrix mult.

I I Total
ZZZ1 Repeated

2 4PFN xl0 6

Cou
nt

0

x10 6

(c) Min heap

I I Total
V//\ Repeated

Cou
nt

X10 5

~ i2 4PFN x l06

0
2

4

(d) Random

TotalX10 5

2 4PFN x lO 6

Total

2 4PFN x l0 6

Cou
nt

Repeated

0
2

4

(e) Stride

Figure 6: Flash memory read count for physical memory frames. The solid bar represents the total number of reads, while the
shaded bar, the number of repeated reads. A repeated read is a read request to an outstanding read request.

l.0
0.8
0.6

0 500Access Latency (µs)

CD
F

(a) Hash map

1.0
0.8
0.6

500Access Latency (µs)0

CD
F

(b) Matrix mult.

1.0
0.8
0.6

500Access Latency (µs)0
CD

F

(c) Min heap

500Access Latency (µs)

CD
F

1.0
0.8
0.6

0

0
(d) Random

1.0-
0.8-
0.6-

500Access Latency (µs)0

CD
F

(e) Stride

Figure 7: The latency distribution with (solid lines) and without (dashed lines) MSHR.

parallelism at 32 channels and 32 ways per channel, it is insuf-
ficient to process the memory requests with short inter-arrival
times. Adding a cache significantly reduces the traffic to the
flash memory backend and improves the overall performance.
However, we observe in Figure 5a that the average latencies
for matrix multiply and min heap are still much higher than
the DRAM latency, even though the memory footprints for
these workloads are smaller than the cache. This is due to
the short inter-arrival time of requests that overwhelm the
flash memory backend for fetching data (Figure 5b). This ex-
periment shows that caching alone is insufficient in reducing
the latency of a CXL-flash, and we need additional auxiliary
structures to reduce the traffic to flash memory.

4.2 Reducing flash memory traffic
Memory accesses are at 64B granularity while the flash mem-
ory backend is addressed at 4KiB units. Thus, upon a cache
miss, 4KiB of data will be fetched from flash, and subsequent
64B cache misses that belong to the same 4KiB will generate
additional flash memory read requests even when the flash
memory read is in progress. This scenario is very likely for
memory accesses with high spatial locality, and exacerbated
by the much longer flash memory latency. We call these re-
peated reads, and Figure 6 illustrates the severity of repeated
reads in the hash map, matrix multiply, and heap workloads:
over 90% of flash memory reads are repeats!

Inspired by CPU caches, we add a set of MSHRs (miss sta-
tus holding registers) [29, 47] to the CXL-flash, as shown in
Figure 4. MSHR tracks the current outstanding flash memory

requests and services multiple 64B memory accesses from
a single flash memory read. We note that MSHRs are un-
common in SSDs: in the storage domain, the software stack
merges block I/Os with overlapping addresses so there is no
need for the underlying device to implement MSHRs. How-
ever, for CXL-flash, there is no software layer to perform
this duty as it receives memory transactions directly from
the LLC. We observe in Figure 7 that MSHRs significantly
reduce long tail latencies, particularly for the three workloads
with a significant number of repeated reads. We also observe
small improvements to the other two workloads, random and
stride, by adding MSHR. However, MSHRs only reduce flash
memory traffic, and it does not actively improve the cache hit
rate by bringing data into the cache before they are needed.

4.3 Prefetching data from flash
Prefetching is an effective technique for hiding the long la-
tency of a slower technology. Typically prefetchers fetch ad-
ditional data upon a demand miss or a prefetch hit. To under-
stand the effectiveness of this technique, we implement a sim-
ple Next-N-line prefetcher [41] in our CXL-flash, as shown
in Figure 4. This prefetcher has two configurable parameters:
degree and offset. The degree controls the amount of addi-
tional data to fetch while the offset determines the prefetch
address from the triggering one. In other words, the degree
parameter represents the aggressiveness of the prefetcher, and
the offset controls how far ahead the prefetcher is fetching.

Figure 8 shows the effect of varying the degree and offset
for the prefetcher. For the (X , Y) notation in a unit of the

606 2023 USENIX Annual Technical Conference USENIX Association

Sub
-µs

Req
uest

s
Frac

tion
 (%

)
Has

h
 w/o Prefetcher II (4,16)

(1,16) IZZI (16,16)

map MM Min Hea
p

Ran
d

Stri
de

100
80
60

(a) Sensitivity to degree
Sub

-µs
Req

uest
s

Frac
tion

 (%
)

K//I w/o Prefetcher II 111II (4,16)
1=1 (4,4) = (4,64)

Has
h

map MM Min Hea
p

Ran
d

Stri
de

100
80
60

(b) Sensitivity to offset

Figure 8: The performance of the CXL-flash with different
prefetcher configurations. (X , Y) represents the degree and
offset for the Next-N-line prefetcher.

number of 4KiB pages, X denotes the degree, and Y is the
offset. As shown in Figure 8a, increasing the degree, or the
aggressiveness of the prefetcher generally improves the per-
formance. Even a small degree of 1 increases the portion of
sub-microsecond requests from 64% to 76% for the matrix
multiply workload, highlighting the necessity of prefetching
for CXL-flash. However, the improvement plateaus and fur-
ther increasing the degree may only pollute the cache. On the
other hand, increasing the offset shows two different behav-
iors depending on the workload. For the hash map, matrix
multiply, and min heap workloads, the performance first im-
proves when increasing the offset from 4 to 16. However, an
offset of 64 deteriorates the performance as it fetches data
too far out. The random workload is insensitive to the offset
unless it is large enough, while the stride workload shows
gradual improvement as the offset increases.

4.4 Exploring flash technology and parallelism

In previous subsections, we examine the performance of the
CXL-flash using SLC flash technology and ample flash par-
allelism of 32 channels and 32 ways per channel (32 × 32).
In this section, we experiment with how sensitive technology
(ULL, SLC, MLC, and TLC) and parallelism (8 × 4, 8 × 8, 16
× 16, and 32 × 32) are to the overall CXL-flash performance.

We first examine the effect of flash technology and cache
size for the stride workload as shown in Figure 9. We use this
workload as it performs well in the default configuration, thus
we expect it to represent the workload with the lowest room
for improvement. Figure 9a illustrates the average latency
for the different memory technologies. We observe that even
though ULL and SLC flash have a noticeable difference in
latency (3µs vs. 25µs), the performance difference between
the two is negligible with the existence of a cache. Only
when there is no DRAM cache, ULL flash is outstandingly
better. We also observe that using MLC and TLC technology
degrades the performance significantly. Figure 9b shows the
estimated lifetime of the CXL-flash based on the amount of
flash write traffic. This estimation takes into consideration the

ULL MLC
SLC TLC

100

Flash Only1GB 2GB 4GB

Ave
rage

 Ac
ces

s
Lat

enc
y(µ

s)

Cache Size

50

0

(a) Average access latency

ULL MLC
SLC TLC

Est
ima

ted
Life

tim
e(Y

ear)

0Flash Only IGB 2GB 4GBCache Size

1
2
3
2

4.78 6.54 11.47

(b) Estimated lifetime

Figure 9: Sensitivity test to flash technology and cache size
on the performance and lifetime of CXL-flash with stride.

8GB 2GB
4GB 1GB

8x4 8x8 16x16 32x32Sub
-µs

Req
uest

 (%
) 100

80
60
40

(a) Random

2GB
1GB

Sub
-µs

Req
uest

 (%
) 100

80
60
40

8GB
4GB

8x4 8x8 16x16 32x32

(b) Stride

Figure 10: Percentage of sub-µs requests when varying flash
parallelism and cache size. The x-axis represents the flash
memory parallelism (channels × ways). The lines represent
values for different cache sizes.

endurance limit, the capacity, and the amount of data written;
it optimistically assumes that the write amplification at the
flash memory backend is negligible. We observe that with
ULL and SLC technologies and some cache, the CXL-flash
can achieve a lifetime of more than 4 years. Increasing the
size of the cache further improves the lifetime due to reduced
flash write traffic. For MLC- and TLC-based CXL-flash, it
would only be viable with a sufficiently large cache: with only
a 1GiB of cache, it would not last more than a year.

Next, we investigate the effect of varying flash parallelism
and cache size on the overall performance using the random
(Figure 10a) and stride (Figure 10b) workloads. We use these
two as they have the largest memory footprint (8GiB and
4GiB, respectively). Flash technology here is SLC. We ob-
serve that with a sufficiently large cache, reducing parallelism
to (8 × 4) does not adversely affect the performance. However,
with smaller caches, the flash parallelism matters. Interest-
ingly, the two workloads exhibit slightly different behaviors.
The random workload shows high sensitivity to the cache
size. On the other hand, the stride workload is less sensitive
to the cache size but more to the parallelism. This is due to
the prefetcher’s effectiveness with stride workloads.

USENIX Association 2023 USENIX Annual Technical Conference 607

Table 5: Workload characteristics of real-world applications. The spatial and temporal locality values range between 0 and 1, and
are computed using the stack and block affinity metrics [32]: a higher value indicates higher locality.

Workload Category Description
Inter-

arrival
time (ns)

of
accesses

(M)

Read-
write
ratio

Footprint
(GiB)

Spatial
locality

Temporal
locality

BERT [18] NLP Infers using a transformer model 297 41 73:27 0.5 0.64 0.66
Page rank [6] Graph Computes the page rank score 51 435 68:32 3.7 0.40 0.42
Radiosity [17] HPC Computes the distribution of light 1863 61 84:16 1.6 0.93 0.87
XZ [21] SPEC Compresses data in memory 237 71 55:45 0.9 0.31 0.38
YCSB F [22] KVS Read-modify-writes on Redis [14] 1137 110 65:35 1.8 0.56 0.55

4.5 Summary of findings

We briefly summarize our findings.

• Caching alone is not sufficient to hide the much longer flash
memory latencies (§ 4.1), and we need auxiliary structures
to reduce the flash memory traffic (§ 4.2).

• Prefetching data improves the CXL-flash’s performance,
but the best configuration (or even the algorithm) is
workload-dependent (§ 4.3).

• The performance difference between using ULL and SLC
is only marginal, and it is challenging to utilize MLC and
TLC flash in terms of both performance and lifetime (§ 4.4).

5 Evaluation of Policies

Building on top of our design space exploration for the CXL-
flash architecture from § 4, we evaluate advanced caching
and prefetching policies in this section. We use five different
real-world applications that are memory-intensive from a
wide variety of domains: natural language processing [18,70],
graph processing [6, 27], high-performance computing [17,
62], SPEC CPU [16, 21], and key-value store [22, 31]. We
collect the physical memory traces using our tool (§ 3) and
summarize the workload characteristics in Table 5.

However, the memory footprints of the real applications
are smaller than we had anticipated, even though they are
collected on a machine with 64GiB of memory. Thus, we
intentionally configure the cache to be small (64MiB) so that
experimental results would scale up for larger workloads. We
also scale down the flash parallelism to a more realistic setting
and use ULL flash. The default parameters for the CXL-flash
in this section are summarized in Table 6.

Table 6: Default parameters for the CXL-flash in § 5.

Parameters Value
DRAM size 64MiB
DRAM latency 46ns
Flash parallelism 8 × 8
Flash technology ULL (Table 1)

5.1 Cache replacement policy
Unlike the previous examination of cache size on performance
(§ 4.1), here we fix the cache size and evaluate the effects
of different cache replacement policies across different set
associativities. In particular, we implement the following four.

FIFO evicts the oldest data.
Random selects data arbitrarily to evict.
LRU kicks out the least recently used data.
CFLRU [60] prefers to evict clean data over modified ones.

We select Random as our baseline, and FIFO and LRU
are two standard CPU cache policies implementable in hard-
ware. To further reduce traffic and extend the device’s lifetime,
we implement CFLRU to explore the benefits of prioritizing
evicting clean cache lines to reduce flash write activities.

Figure 11 measures the percentage of memory requests
to the CXL-flash with less than a microsecond latency, and
Figure 12 shows the number of flash memory writes. We
make five observations from these figures. First, increasing
associativity improves performance as it increases the cache
hit rate. For a caching system whose miss penalty is high,
increasing the hit rate has a greater impact than reducing
hit time. Second, CFLRU outperforms the other replacement
policies, particularly in BERT, XZ, and YCSB (Figures 11a,
11d, and 11e). This is supported by the significant reduction
in write traffic as shown in Figures 12a, 12d, and 12e. Third,
workloads with high localities such as Radiosity are insensi-
tive to cache replacement policies (Figures 11c and 12c): at
least 83% of the request have sub-microsecond latency regard-
less of the policy. Four, read-dominant workloads generally
perform better than write-heavy ones as the flash memory
program latency is disproportionately larger than that of read.
BERT and Radiosity only generate as low as 0.7M and 1.0M
flash writes, respectively (Figures 12a and 12c), and in turn,
their portion of sub-microsecond latencies are as high as 84%
and 85%, respectively (Figures 11a and 11c). Lastly, work-
loads with low localities not only perform poorly but also are
less sensitive to the cache policies. In particular, as shown in
Figure 11b, only at most 65% of the requests achieve a sub-
microsecond latency for the page rank workload due to its
low localities and large footprint. The XZ trace in Figure 11d

608 2023 USENIX Annual Technical Conference USENIX Association

FIFO
Rand

LRU
CFLRU

Sub
-µs

Req
ues

t (%
)

80
60

Set Associativity

100

1 4 16

(a) BERT

FIFO
Rand

LRU
CFLRU

Sub
-µs

Req
ues

t (%
) 100

80
60

16Set Associativity41
(b) Page Rank

FIFO
Rand

LRU
CFLRU

Sub
-µs

Req
ues

t (%
) 100-

80-
60-

16Set Associativity41
(c) Radiosity

FIFO LRU
CFLRURand

100

Sub
-µs

Req
ues

t (%
)

Set Associativity

80
60

1 4 16
(d) XZ

FIFO LRU
CFLRURand

100

Sub
-µs

Req
ues

t (%
)

Set Associativity

80
60

1 4 16
(e) YCSB

Figure 11: Percentage of CXL-flash latencies smaller than a microsecond with respect to cache replacement policies and set
associativity. In general, increasing associativity reduces the latency and CFLRU performs better than the others.

FIFO
Rand

LRU
CFLRU

Wri
te C

oun
t(M

)

Set Associativity1 4 160
1
2
3

(a) BERT

FIFO
Rand

LRU
CFLRU100

Wri
te C

oun
t(M

)

Set Associativity

50
0 1 4 16
(b) Page Rank

FIFO
Rand

LRU
CFLRU

Wri
te C

oun
t(M

)
Set Associativity16410

1
2

(c) Radiosity

FIFO LRU
CFLRURand

Wri
te C

oun
t(M

)

Set Associativity

20

10

0 1 4 16

(d) XZ

FIFO -y- LRU
Rand CFLRU

Wri
te C

oun
t(M

)

10

0 16Set Associativity1 4
(e) YCSB

Figure 12: Number of flash memory write requests with respect to cache replacement policies and set associativity. CFLRU
noticeably reduces the number of writes as the associativity increases.

also exhibits low localities but is more sensitive to CFLRU
than page rank as the workload has a higher write ratio.

In the storage domain, reducing the amount of data written
to the SSD is achieved by various software-level techniques,
including the OS-level page cache. Cache management for
CXL-flash, however, behaves similarly to CPU caches, and
there may be limitations to how close it approaches optimality.

5.2 Prefetching policy
Previously in § 4.3, we measured the effectiveness of a simple
Next-N-line prefetcher with a large 8GiB cache. In this sec-
tion, we scale down the cache to 64MiB, set its associativity to
16, and manage it using the CFLRU algorithm, and measure
the performance of the following five prefetcher settings.

NP (No prefetch) does not prefetch any data.
NL (Next-N-line) [41] brings in the next N data upon a
demand miss or prefetch hit.
FD (Feedback-directed) [65] dynamically adjusts the ag-
gressiveness of the prefetcher by tracking prefetcher accu-
racy, timeliness, and pollution.
BO (Best-offset) [55] learns the deltas between consecutive
accesses by tracking the history of recent requests. It also
has a notion of confidence to disable prefetching.
LP (Leap) [53] implements a majority-based prefetching
with dynamic window size adjustment. It also gradually
adjusts aggressiveness based on the prefetcher accuracy.

We select these algorithms as they are proven to be effec-
tive, implementable in hardware, and fit into the design space

of a CXL-flash. In particular, NL, FD, and BO are prefetch-
ers for CPU cache, where BO is an enhancement of NL, and
FD utilizes performance metrics we will later discuss. LP is
primarily for prefetching data from remote memory, where
the latency difference between a cache hit and a cache miss
can be similar to that in our design space.

Observation #1: Although 68–91% of requests have a
latency of under a microsecond, using a prefetcher can be
detrimental to the performance of real-world applications.
As shown in Figure 13a, the state-of-the-art prefetchers de-
grade the performance for three workloads, BERT, XZ, and
YCSB workloads, and are only helpful for the other two work-
loads. Radiosity, in particular, shows a 36% increase in sub-
microsecond latencies when using the best-offset prefetcher.
To understand why, we examine the cache hit, hit-under-miss
(HUM), and miss rate in Figure 13b. A cache hit-under-miss
refers to a hit in the MSHR where while the data is not in
the cache yet, it is being fetched due to a previous miss. We
observe that BO on Radiosity converts 25% of hit-under-miss
into hits, indicating high effectiveness of prefetching on work-
loads with a high spatial locality factor (cf. Table 5). Our
observation indicates that the performance of prefetchers de-
pends on the characteristics of workloads, and they can have
detrimental effects on applications.

Observation #2: Even under high-intensity workloads, a
CXL-flash has a lifetime of at least 3.1 years. We estimate
the lifetime of the CXL-flash under real workloads based on
the amount of data written to flash, endurance limit, and 1TiB
capacity, as shown in Figure 13c. We observe, in the worst
case, the device would last 3.1 years under Page Rank, but

USENIX Association 2023 USENIX Annual Technical Conference 609

I I NP [ZZJ NL I I FD I I BO EES LP
100-
80 -
60 -

BERT Page Rank Radiosity XZ YCSBSub
-µs

Req
uest

(%)

(a) Percentage of sub-µs requests
I I Cache Hit IZ/J Hit-under-miss I I Cache Miss

100-
80
60

NPNL FD BO LP NPNL FD BO LP NPNL FD BO LP NPNL FD BO LP NPNL FD BO LPBERT Page Rank Radiosity XZ YCSB

Rat
e

(b) Cache hit, cache hit-under-miss (HUM), and cache miss

Est
ima

ted
Life

tim
e(Y

ear) 403 402 402 40261 7489 88

BERT Page Rank Radiosity XZ YCSBEst
ima

ted
Life

tim
e (Y

ear) 403 402 402 40261 7489 88

BERT Page Rank Radiosity XZ YCSBEst
ima

ted
Life

tim
e (Y

ear) 403 402 402 40261 7489 88

BERT Page Rank Radiosity XZ YCSB

60 76 40
2 77 79 81 83

NP NL FD BO LP

(c) Device lifetime

Figure 13: CXL-flash’s performance and lifetime with differ-
ent prefetchers. Figure 13a shows the portion of requests with
a latency of less than a microsecond. Figure 13b shows the
hit, hit-under-miss, and miss rate of the 64MiB cache inside
the CXL-flash. Figure 13c plots the estimated lifetime.

under workloads such as Radiosity, it would be as much as
403 years. Three factors contribute to the lifetime: workload
intensity, read-write ratio, and locality; Page rank has the
highest workload intensity, a high ratio of writes, and a low
locality. Even under this adverse condition, the CXL-flash
provides a reasonable lifetime; hence, the durability of the
CXL-flash can sustain the intensity of memory requests.

Observation #3: A CXL-flash has a better performance
per cost than a DRAM-only device. While a CXL-flash falls
slightly short of achieving a DRAM-like performance for
sub-µs requests, our analysis reveals its potential to provide
benefits for memory-intensive applications. As a CXL-flash
can serve 68–91% of the memory requests under a microsec-
ond, and the recent price point of DRAM is 17 - 100× higher
than that of NAND flash [39, 64, 77], we expect an 11 - 91×
performance-per-cost benefit from a CXL-flash over a DRAM-
only device, as depicted in Figure 14. Although some cases
may still prefer a DRAM-only device when achieving the best
performance is essential, a CXL-flash can be a cost-effective
memory expansion option depending on the workload.

Interestingly, we observe that while prefetchers are useful
for Page Rank, their performance is overall the worst, with
only at most 68% of requests completing under a microsecond.
To further understand the performance of prefetchers, we
measure the following four metrics.

Perf
orm

anc
e pe

r $
(x o

ver
DR

AM
-onl

y)

BERT Page Rank Radiosity XZ YCSB

100
75
50
25
0

Figure 14: Performance-per-cost benefits of a CXL-flash with
BO prefetcher over a DRAM-only device. The estimation is
derived from the performance results in Figure 13a, the recent
price point of DRAM at 5 $/GB [77], and the price range of
NAND flash varying from 0.05 to 0.30 $/GB [39, 64].

Accuracy measures how much of the data brought in by
the prefetcher is actually used. Higher is better.
Coverage is the portion of prefetched data cache hits among
the memory requests. A high coverage means that cache hits
are thanks to the prefetcher, while a low coverage indicates
that the prefetcher is not contributing.
Lateness is the portion of late prefetches among all the
prefetches. A prefetched data is late if it is accessed while
it is being prefetched. Lower is better.
Pollution measures how many cache misses are caused by
the prefetcher among cache misses. Lower is better.

Observation #4: In cases where the prefetcher improves
the performance, it is due to achieving high accuracy. We
plot the four metrics for the evaluated prefetchers in Figure 15.
Lateness and pollution are negative metrics (the lower the bet-
ter), so we invert their bars so that higher is better for all
metrics. We observe that the defining characteristic for the
workloads where the prefetcher is helpful (Page Rank and
Radiosity) is that the accuracy is high. For example, the Leap
(LP) prefetcher attains 85% accuracy under Radiosity while
only reaching 27% under BERT. Additionally, the Best-offset
(BO) prefetcher achieves 48% accuracy under XZ; however,
its limited coverage of 4% suggests that despite achieving rel-
atively higher accuracy, the prefetcher is not actively fetching
data to contribute to performance improvement.

We further analyze Page Rank to understand why prefetch-
ers are able to reach relatively high accuracy even though the
workload has the lowest locality (computed using the stack
and block affinity metrics [32]). As Figure 16 shows, the Page
Rank exhibits distinct phases in their workload. During the
first phase, Page Rank loads graph information and exhibits
high locality (Figure 16a). The best-offset prefetcher is also
able to attain high coverage and accuracy (Figure 16b). How-
ever, in the second phase, Page Rank builds the graph, and
the access pattern here has a very low locality. Consequently,
the best-offset prefetcher becomes more inactive (low cover-
age) as its accuracy drops. During the last phase, Page Rank
computes the score for each vertex. While its access locality
is not high, the prefetcher performs well and most of the ac-
cesses hit in the cache. Note that while the pollution is bad,
the cache miss rate is very low so its impact on performance

610 2023 USENIX Annual Technical Conference USENIX Association

I I Accuracy I I Coverage V A Lateness Lw-w-wl Pollution
Pre

fetc
her

 Me
tric

s

I IFD BOBERT
i iLP NL i iFD BOPage Rank

i i i iLP NL FD BORadiosity
i i i iLP NL FD BOXZ

i i i i iLP NL FD BO LPYCSB
i iLP NL

100
50

0
50

100
NL

Figure 15: Accuracy, coverage, lateness, and pollution metrics for the prefetchers.

Spatial Cache Hit Rate
Temporal

Loc
ality

Cac
he H

it R
ate

0 Access Order 5X10

111

00

1

(a) Locality and hit rate

* Accuracy Lateness
• Coverage — Pollution

Pre
fetc

her
Me

tric
s

10050050100 0 Access Order 5
X10 8

(b) BO prefetcher metrics
Figure 16: Page Rank behavior over time.

I I Accuracy I I Coverage \ / / \ Lateness E±l Pollution
100

50
0

50
100Pre

fetc
her

 Me
tric

s

■ 1
IIii i i i i i i i i iVirt Phy Virt Phy Virt Phy Virt Phy Virt PhyBERT Page Rank Radiosity XZ YCSB

Figure 17: BO prefetcher metrics for virtual vs. physical.

is negligible. This analysis indicates that while the prefetcher
is beneficial for the first and last phases, the low locality in
the second phase limits the performance.

Observation #5: Cache pollution is the main reason
behind performance degradation when the accuracy is
low. As shown in Figure 15, BERT and YCSB have low
accuracies while their pollutions are high, leading to a re-
sult where enabling prefetchers degrades performance (Fig-
ure 13a). For XZ, even though the accuracy of the best-offset
(BO) prefetcher is low, it is no worse than no prefetcher as
it causes little pollution. We attribute this to BO’s ability to
disable prefetching based on its accuracy. For Page Rank and
Radiosity, prefetchers exhibit low pollution although their
lateness is high. Cache pollution degrades the performance of
a CXL-flash, and prefetchers should be aware of the impact
to avoid having detrimental effects on the device.

Observation #6: The virtual-to-physical address transla-
tion makes it difficult for the CXL-flash to prefetch data. To
understand the effect of V2P address translation, we simulate
the CXL-flash with the best-offset prefetcher using the virtual
memory traces of the five application workloads, and Fig-
ure 17 compares the four prefetcher metrics between virtual
and physical traces. We make two observations. First, aside

%of
 HU

M C
onv

erte
d

90
80 10 20

to H
it

Top N% IntensivelyAccessed Address
0 5

100

Sub
-µs

Req
uest

s (%
)

0
2
4

(a) Sensitivity to # of addresses.

Prefetch Chance (%) % o
f H

UM
 Co

nve
rted

to H
it

0 2 5 10 0
2
4

Sub
-µs

Req
uest

s (%
)

80

90

100

(b) Sensitivity to hint chance.

Figure 18: Improvement in performance with memory access
pattern hints for BERT. Figure 18a is the sensitivity to the
number of addresses for which hints are provided. Figure 18b
shows the performance improvement as more hints are added.
In both figures, the line represents the number of hit-under-
misses without hints converted to cache hits with hints.

from Radiosity, we observe a significant drop in accuracy
from virtual to physical traces. The BO prefetcher under Page
Rank is 99% accurate for the virtual memory trace, but with
the physical trace, accuracy drops to 42%. Second, coverage
also drops, indicating that the prefetcher becomes less active
under physical memory accesses: for example, it drops from
76% to 26% under BERT. The drop in both accuracy and
coverage for physical traces shows that the CXL-flash would
perform better if it were addressed virtually.

Observation #7: If the kernel were to provide memory
access pattern hints to the device, the CXL-flash perfor-
mance improves by converting hit-under-misses into cache
hits. We consider a hypothetically clairvoyant kernel that
knows the physical memory access pattern. This is not too far-
fetched as data-intensive applications often iterate multiple
times and their behaviors can be profiled. More specifically,
we assume that the kernel has information on the top inten-
sively accessed physical frames, and can pass hints to the
device prior to their actual accesses. To limit the overhead of
kernel involvement, we model a probabilistic generation of
access hints. Figure 18a shows the performance improvement
for BERT when hints are generated at 10% for the top N% of
intensively accessed addresses. We observe that with access
hints to more addresses, the percentage of sub-microsecond
latencies increases from 86% to 91% by converting hit-under-

USENIX Association 2023 USENIX Annual Technical Conference 611

misses (HUM) into cache hits. Figure 18b considers a variable
hint generation chance, from 0% to 10% for the top 10% of
intensively accessed addresses. Similarly, we see an overall
improvement in performance, though it plateaus at 91%. Our
experiments show that host-generated access pattern hints
leveraging the host’s knowledge of the workload behaviors
can potentially improve the CXL-flash performance.

6 Related Work

The evaluated cache policies and prefetching algorithms
are well-studied in prior proposals. However, most of them
are for managing and optimizing the CPU cache [41, 55, 65],
where the latency difference between a cache hit and a cache
miss is much smaller than that in a CXL-flash. CFLRU [60]
and Leap [53] share a similar design space to our device;
however, the memory access intensity they face is not as
extreme as what a CXL-flash needs to handle. Therefore, it
is crucial to evaluate the effectiveness of these policies and
algorithms under the design space of a CXL-flash.

Techniques to mitigate the performance degradation
due to address translations and limitations of flash has
been explored in prior works. Utilizing huge pages can reduce
the number of address translations [54, 58]. FlashMap [40]
and FlatFlash [23] combine address translation of the SSD
with the page table to reduce overheads. eNVY [73] employs
write buffering, page remapping, and a cleaning policy to
enable direct memory addressability and sustain performance.
Future research in CXL host systems should further explore
the potential benefits of host-generated hints and insights from
these prior works to reduce the overheads.

Memory disaggregation organizes memory resources
across servers as a network-attached memory pool, enabling
meeting the high memory requirements for data-intensive ap-
plications [37, 38, 52, 69]. While our work does not directly
investigate memory disaggregated systems, using CXL-flash
as disaggregated memory helps overcome the memory wall.

Utilization of non-DRAM to expand memory has been
explored in prior works [28,40,63,74]. HAMS [75] aggregates
persistent memory and ULL flash as a memory expansion by
managing data paths among hosts and memory hardware
in an OS-transparent manner. Suzuki et al. [67] present a
lightweight DMA-based interface that bypasses the NVMe
protocols to enable flash read access with DRAM-like perfor-
mance. SSDAlloc [26] is a memory manager and a runtime
library that allows applications to use flash as a memory de-
vice through the OS paging mechanism, which can cause
overheads when accessing data in SSDs. FlatFlash [23] ex-
poses a flat memory space using DRAM and flash memory by
integrating the OS paging mechanism and the SSD’s internal
mapping table. While these prior works primarily focus on
OS-level management and host-device interaction, our work
builds on top of them by investigating the design decisions
internal to a memory expansion device.

Memory expansion with CXL Type 3 devices is an ac-
tive research area [36, 42, 50, 71]. Pond [50] utilizes CXL
to improve DRAM memory pooling in cloud environments
and proposes machine-learning models to manage local and
pooled memory. While this work investigates how to use a
CXL Type 3 device in a cloud setting, our work studies how
to implement one using flash memory. DirectCXL [36] suc-
cessfully connects host processors with external DRAM via
CXL in real hardware and develops a software runtime to di-
rectly access the resources. Lastly, CXL-SSD [42] advocates
combining CXL and SSD to expand host memory. While we
share the same goal with this work, it mainly discusses the
CXL interconnect and scalability potentials of CXL-SSDs.

ML-specific designs build systems that address the mem-
ory wall challenge [45, 48, 51]. MC-DLA [48] proposes an
architecture that aggregates memory modules to expand the
memory capacity for training ML models on accelerators. Be-
hemoth [45] observes that many NLP models require large
amounts of memory but not a lot of bandwidth, and proposes a
flash-centric training framework that manages data movement
between memory and SSDs to overcome the memory wall.

7 Conclusion

We explore the design space of a CXL-flash device and evalu-
ate existing optimization techniques. Using physical memory
traces, we find that 68–91% of memory access achieves a sub-
microsecond latency for a CXL-flash device that can last at
least 3.1 years. We discover that the address translation for vir-
tual memory makes it particularly difficult for the CXL-flash’s
prefetcher to be effective and suggest passing kernel-level ac-
cess pattern hints to further improve the performance.

While we attempt to generalize the results by testing the
device with a variety of workloads and design parameters, it
is important to acknowledge a few limitations. The current
design of a CXL-flash as explored in this paper does not
consider the flash’s internal tasks such as garbage collection
and wear leveling. In addition, the host system considered may
not fully reflect the new system characteristics introduced by
CXL. Therefore, we believe more work needs to be done in
the CXL-flash research space, and our work can be a platform
on which future research can build upon.

Acknowledgements

We thank our Shepherd, Animesh Trivedi, and the anonymous
reviewers for their insightful comments. We thank Jongmoo
Choi for reviewing the early draft of this paper. This work is
funded in part by FADU Inc., the National Research Foun-
dation of Korea (NRF-2018R1A5A1060031), the MOTIE
(Ministry of Trade, Industry & Energy) (1415181081), and
the KSRC (Korea Semiconductor Research Consortium)
(20019402).

612 2023 USENIX Annual Technical Conference USENIX Association

References

[1] Apache Spark. https://spark.apache.org/.

[2] CCIX consortium. https://
www.ccixconsortium.com/.

[3] CXL consortium. https://
www.computeexpresslink.org/.

[4] DDR memory speeds and compatibility.
https://www.crucial.com/support/memory-
speeds-compatability.

[5] The difference between RAM speed and CAS
latency. https://www.crucial.com/articles/
about-memory/difference-between-speed-and-
latency.

[6] GAP benchmark suite. https://github.com/
sbeamer/gapbs.

[7] Gen-Z consortium. https://genzconsortium.org/
specifications/.

[8] Memcached. http://memcached.org/.

[9] Memory-Semantic SSD. https://samsungmsl.com/
ms-ssd/.

[10] MongoDB. https://www.mongodb.com/home.

[11] NVIDIA H100Tensor core GPU. https:
//www.nvidia.com/en-in/data-center/h100/.

[12] OpenCapi consortium. https://opencapi.org/.

[13] PCIe 5.0 multi-port switch. https://www.rambus.com/
interface-ip/controllers/pci-express-
controllers/pcie5-multi-port-switch/.

[14] Redis. https://redis.io/.

[15] Samsung PM9A3. https://
semiconductor.samsung.com/ssd/datacenter-
ssd/pm9a3/.

[16] SPEC CPU 2017. https://www.spec.org/cpu2017/.

[17] The Splash-3 benchmark suite. https://github.com/
SakalisC/Splash-3.

[18] TensorFlow code and pre-trained models for BERT.
https://github.com/google-research/bert.

[19] Valgrind. https://valgrind.org/.

[20] VoltDB. https://github.com/VoltDB/voltdb.

[21] XZ utils. https://www.tukaani.org/xz/.

[22] Yahoo! cloud serving benchmark. https://
github.com/brianfrankcooper/YCSB.

[23] Ahmed Abulila, Vikram Sharma Mailthody, Zaid
Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong,
and Wen mei Hwu. FlatFlash: Exploiting the byte-
accessibility of SSDs within a unified memory-storage
hierarchy. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems, page
971–985. Association for Computing Machinery, 2019.
https://doi.org/10.1145/3297858.3304061.

[24] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 1.00 edition, August 2018.

[25] Grant Ayers, Heiner Litz, Christos Kozyrakis, and
Parthasarathy Ranganathan. Classifying memory ac-
cess patterns for prefetching. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 513–526. Association for
Computing Machinery, 2020. https://dl.acm.org/
doi/10.1145/3373376.3378498.

[26] Anirudh Badam and Vivek S. Pai. SSDAl-
loc: Hybrid SSD/RAM memory management made
easy. In Proceedings of the 8th USENIX Con-
ference on Networked Systems Design and Imple-
mentation, NSDI’11, page 211–224. USENIX Asso-
ciation, 2011. https://www.usenix.org/legacy/
event/nsdi11/tech/full_papers/Badam.pdf.

[27] Scott Beamer, Krste Asanović, and David Patterson. The
GAP benchmark suite. arXiv:1508.03619 [cs.DC],
2015. https://arxiv.org/abs/1508.03619.

[28] Adrian M. Caulfield, Laura M. Grupp, and Steven Swan-
son. Gordon: Using flash memory to build fast, power-
efficient clusters for data-intensive applications. In Pro-
ceedings of the 14th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS XIV, page 217–228. As-
sociation for Computing Machinery, 2009. https:
//dl.acm.org/doi/10.1145/2528521.1508270.

[29] Xi E. Chen and Tor M. Aamodt. Hybrid analytical
modeling of pending cache hits, data prefetching, and
MSHRs. In 2008 41st IEEE/ACM International Sympo-
sium on Microarchitecture, pages 59–70, 2008.

[30] Eli Collins and Zoubin Ghahramani. LaMDA: our
breakthrough conversation technology, 2021. https:
//blog.google/technology/ai/lamda/.

USENIX Association 2023 USENIX Annual Technical Conference 613

https://spark.apache.org/
https://www.ccixconsortium.com/
https://www.ccixconsortium.com/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://www.crucial.com/support/memory-speeds-compatability
https://www.crucial.com/support/memory-speeds-compatability
https://www.crucial.com/articles/about-memory/difference-between-speed-and-latency
https://www.crucial.com/articles/about-memory/difference-between-speed-and-latency
https://www.crucial.com/articles/about-memory/difference-between-speed-and-latency
https://github.com/sbeamer/gapbs
https://github.com/sbeamer/gapbs
https://genzconsortium.org/specifications/
https://genzconsortium.org/specifications/
http://memcached.org/
https://samsungmsl.com/ms-ssd/
https://samsungmsl.com/ms-ssd/
https://www.mongodb.com/home
https://www.nvidia.com/en-in/data-center/h100/
https://www.nvidia.com/en-in/data-center/h100/
https://opencapi.org/
https://www.rambus.com/interface-ip/controllers/pci-express-controllers/pcie5-multi-port-switch/
https://www.rambus.com/interface-ip/controllers/pci-express-controllers/pcie5-multi-port-switch/
https://www.rambus.com/interface-ip/controllers/pci-express-controllers/pcie5-multi-port-switch/
https://redis.io/
https://semiconductor.samsung.com/ssd/datacenter-ssd/pm9a3/
https://semiconductor.samsung.com/ssd/datacenter-ssd/pm9a3/
https://semiconductor.samsung.com/ssd/datacenter-ssd/pm9a3/
https://www.spec.org/cpu2017/
https://github.com/SakalisC/Splash-3
https://github.com/SakalisC/Splash-3
https://github.com/google-research/bert
https://valgrind.org/
https://github.com/VoltDB/voltdb
https://www.tukaani.org/xz/
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://doi.org/10.1145/3297858.3304061
https://dl.acm.org/doi/10.1145/3373376.3378498
https://dl.acm.org/doi/10.1145/3373376.3378498
https://www.usenix.org/legacy/event/nsdi11/tech/full_papers/Badam.pdf
https://www.usenix.org/legacy/event/nsdi11/tech/full_papers/Badam.pdf
https://arxiv.org/abs/1508.03619
https://dl.acm.org/doi/10.1145/2528521.1508270
https://dl.acm.org/doi/10.1145/2528521.1508270
https://blog.google/technology/ai/lamda/
https://blog.google/technology/ai/lamda/

[31] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking
cloud serving systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing, SoCC
’10, page 143–154. Association for Computing Ma-
chinery, 2010. https://dl.acm.org/doi/10.1145/
1807128.1807152.

[32] Cory Fox, Dragan Lojpur, and An-I Andy Wang. Quan-
tifying temporal and spatial localities in storage work-
loads and transformations by data path components.
In 2008 IEEE International Symposium on Modeling,
Analysis and Simulation of Computers and Telecom-
munication Systems, pages 1–10, 2008. https://
ieeexplore.ieee.org/document/4770561.

[33] Eran Gal and Sivan Toledo. Algorithms and data
structures for flash memories. ACM Comput. Surv.,
37(2):138–163, 2005. https://dl.acm.org/doi/
10.1145/1089733.1089735.

[34] Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W
Mahoney, and Kurt Keutzer. Ai and memory wall.
RiseLab Medium Post, 2021. https://github.com/
amirgholami/ai_and_memory_wall.

[35] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,
Daniel Crankshaw, Michael J. Franklin, and Ion
Stoica. GraphX: Graph processing in a distributed
dataflow framework. In 11th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 14), pages 599–613. USENIX Association, 2014.
https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/gonzalez.

[36] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and
Myoungsoo Jung. Direct access, high-performance
memory disaggregation with DirectCXL. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 287–294. USENIX Association, 2022.
https://www.usenix.org/conference/atc22/
presentation/gouk.

[37] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient memory dis-
aggregation with Infiniswap. In 14th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 17), pages 649–667. USENIX Associa-
tion, 2017. https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/gu.

[38] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: A hardware-software co-
designed disaggregated memory system. In Proceed-
ings of the 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and

Operating Systems, ASPLOS ’22, page 417–433. As-
sociation for Computing Machinery, 2022. https:
//dl.acm.org/doi/abs/10.1145/3503222.3507762.

[39] Gertjan Hemink and Akira Goda. 5 - nand flash tech-
nology status and perspectives. In Andrea Redaelli
and Fabio Pellizzer, editors, Semiconductor Memories
and Systems, Woodhead Publishing Series in Elec-
tronic and Optical Materials, pages 119–158. Woodhead
Publishing, 2022. https://www.sciencedirect.com/
science/article/pii/B9780128207581000030.

[40] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi,
and Karsten Schwan. Unified address trans-
lation for memory-mapped SSDs with FlashMap.
In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, ISCA ’15,
page 580–591. Association for Computing Machin-
ery, 2015. https://www.usenix.org/conference/
hotstorage18/presentation/koh.

[41] Norman Jouppi. Improving direct-mapped cache per-
formance by the addition of a small fully associative
cache and prefetch buffers. In [1990] Proceedings.
The 17th Annual International Symposium on Com-
puter Architecture, pages 364–373, 1990. https://
ieeexplore.ieee.org/document/134547.

[42] Myoungsoo Jung. Hello bytes, bye blocks: PCIe stor-
age meets compute express link for memory expan-
sion (CXL-SSD). In HotStorage ’22, page 45–51.
Association for Computing Machinery, 2022. https:
//doi.org/10.1145/3538643.3539745.

[43] Paresh Kharya and Ali Alvi. Using Deep-
Speed and Megatron to train Megatron-Turing
NLG 530B, the world’s largest and most
powerful generative language model, 2021.
https://developer.nvidia.com/blog/using-
deepspeed-and-megatron-to-train-megatron-
turing-nlg-530b-the-worlds-largest-and-
most-powerful-generative-language-model/.

[44] Bryan S. Kim, Jongmoo Choi, and Sang Lyul Min.
Design tradeoffs for SSD reliability. FAST’19,
page 281–294. USENIX Association, 2019.
https://www.usenix.org/conference/fast19/
presentation/kim-bryan.

[45] Shine Kim, Yunho Jin, Gina Sohn, Jonghyun Bae,
Tae Jun Ham, and Jae W. Lee. Behemoth: A flash-
centric training accelerator for extreme-scale DNNs. In
19th USENIX Conference on File and Storage Tech-
nologies (FAST 21), pages 371–385. USENIX Associ-
ation, 2021. https://www.usenix.org/conference/
fast21/presentation/kim.

614 2023 USENIX Annual Technical Conference USENIX Association

https://dl.acm.org/doi/10.1145/1807128.1807152
https://dl.acm.org/doi/10.1145/1807128.1807152
https://ieeexplore.ieee.org/document/4770561
https://ieeexplore.ieee.org/document/4770561
https://dl.acm.org/doi/10.1145/1089733.1089735
https://dl.acm.org/doi/10.1145/1089733.1089735
https://github.com/amirgholami/ai_and_memory_wall
https://github.com/amirgholami/ai_and_memory_wall
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/atc22/presentation/gouk
https://www.usenix.org/conference/atc22/presentation/gouk
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://dl.acm.org/doi/abs/10.1145/3503222.3507762
https://dl.acm.org/doi/abs/10.1145/3503222.3507762
https://www.sciencedirect.com/science/article/pii/B9780128207581000030
https://www.sciencedirect.com/science/article/pii/B9780128207581000030
https://www.usenix.org/conference/hotstorage18/presentation/koh
https://www.usenix.org/conference/hotstorage18/presentation/koh
https://ieeexplore.ieee.org/document/134547
https://ieeexplore.ieee.org/document/134547
https://doi.org/10.1145/3538643.3539745
https://doi.org/10.1145/3538643.3539745
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.usenix.org/conference/fast19/presentation/kim-bryan
https://www.usenix.org/conference/fast19/presentation/kim-bryan
https://www.usenix.org/conference/fast21/presentation/kim
https://www.usenix.org/conference/fast21/presentation/kim

[46] Sungjoon Koh, Changrim Lee, Miryeong Kwon, and
Myoungsoo Jung. Exploring system challenges of ultra-
low latency solid state drives. In Proceedings of the
10th USENIX Conference on Hot Topics in Storage and
File Systems, HotStorage’18, page 15. USENIX Associ-
ation, 2018. https://www.usenix.org/conference/
hotstorage18/presentation/koh.

[47] David Kroft. Lockup-free instruction fetch/prefetch
cache organization. In Proceedings of the 8th An-
nual Symposium on Computer Architecture, Minneapo-
lis, MN, USA, May 1981, pages 81–88, 1981. http:
//dl.acm.org/citation.cfm?id=801868.

[48] Youngeun Kwon and Minsoo Rhu. Beyond the memory
wall: A case for memory-centric HPC system for deep
learning. In Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture, page
148–161. IEEE Press, 2018. https://dl.acm.org/
doi/10.1109/MICRO.2018.00021.

[49] Dusol Lee, Duwon Hong, Wonil Choi, and Jihong Kim.
MQSim-E: An enterprise SSD simulator. IEEE Com-
puter Architecture Letters, 21(1):13–16, 2022.

[50] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa
Hsu, Dan Ernst, Pantea Zardoshti, Monish Shah, Samir
Rajadnya, Scott Lee, Ishwar Agarwal, Mark D. Hill,
Marcus Fontoura, and Ricardo Bianchini. Pond: CXL-
based memory pooling systems for cloud platforms. In
Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), March 2023. https:
//arxiv.org/abs/2203.00241.

[51] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang,
Huawei Li, and Xiaowei Li. Cognitive SSD: A deep
learning engine for in-storage data retrieval. In Proceed-
ings of the 2019 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’19, page 395–410.
USENIX Association, 2019. https://dl.acm.org/
doi/10.5555/3358807.3358841.

[52] Kevin Lim, Jichuan Chang, Trevor Mudge,
Parthasarathy Ranganathan, Steven K. Reinhardt,
and Thomas F. Wenisch. Disaggregated memory
for expansion and sharing in blade servers. In
Proceedings of the 36th Annual International Sympo-
sium on Computer Architecture, page 267–278.
Association for Computing Machinery, 2009.
https://doi.org/10.1145/1555754.1555789.

[53] Hasan Al Maruf and Mosharaf Chowdhury. Ef-
fectively prefetching remote memory with leap.
In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), pages 843–857. USENIX Associ-
ation, 2020. https://www.usenix.org/conference/
atc20/presentation/al-maruf.

[54] Theodore Michailidis, Alex Delis, and Mema Rous-
sopoulos. Mega: Overcoming traditional problems with
os huge page management. In Proceedings of the 12th
ACM International Conference on Systems and Stor-
age, SYSTOR ’19, page 121–131. Association for Com-
puting Machinery, 2019. https://doi.org/10.1145/
3319647.3325839.

[55] Pierre Michaud. Best-offset hardware prefetching. In
2016 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 469–480,
2016. https://ieeexplore.ieee.org/document/
7446087.

[56] Sparsh Mittal. A survey of recent prefetching techniques
for processor caches. ACM Comput. Surv., 49(2), 2016.
https://dl.acm.org/doi/10.1145/2907071.

[57] Nicholas Nethercote and Julian Seward. Valgrind: A
framework for heavyweight dynamic binary instrumen-
tation. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’07, page 89–100. Association
for Computing Machinery, 2007. https://doi.org/
10.1145/1250734.1250746.

[58] Ashish Panwar, Aravinda Prasad, and K. Gopinath. Mak-
ing huge pages actually useful. In Proceedings of
the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’18, page 679–692. Association
for Computing Machinery, 2018. https://doi.org/
10.1145/3173162.3173203.

[59] K. Parat. and A. Goda. Scaling trends in NAND
flash. In 2018 IEEE International Electron Devices
Meeting (IEDM), pages 2.1.1–2.1.4, 2018. https:
//ieeexplore.ieee.org/document/8614694.

[60] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-
soo Kim, and Joonwon Lee. CFLRU: A replacement
algorithm for flash memory. In Proceedings of the
2006 International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems, CASES
’06, page 234–241. Association for Computing Ma-
chinery, 2006. https://dl.acm.org/doi/10.1145/
1176760.1176789.

[61] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Ar-
slan Zulfiqar, and Stephen W. Keckler. VDNN: Virtual-
ized deep neural networks for scalable, memory-efficient
neural network design. In The 49th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 1
– 13. IEEE Press, 2016.

USENIX Association 2023 USENIX Annual Technical Conference 615

https://www.usenix.org/conference/hotstorage18/presentation/koh
https://www.usenix.org/conference/hotstorage18/presentation/koh
http://dl.acm.org/citation.cfm?id=801868
http://dl.acm.org/citation.cfm?id=801868
https://dl.acm.org/doi/10.1109/MICRO.2018.00021
https://dl.acm.org/doi/10.1109/MICRO.2018.00021
https://arxiv.org/abs/2203.00241
https://arxiv.org/abs/2203.00241
https://dl.acm.org/doi/10.5555/3358807.3358841
https://dl.acm.org/doi/10.5555/3358807.3358841
https://doi.org/10.1145/1555754.1555789
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://doi.org/10.1145/3319647.3325839
https://doi.org/10.1145/3319647.3325839
https://ieeexplore.ieee.org/document/7446087
https://ieeexplore.ieee.org/document/7446087
https://dl.acm.org/doi/10.1145/2907071
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3173162.3173203
https://ieeexplore.ieee.org/document/8614694
https://ieeexplore.ieee.org/document/8614694
https://dl.acm.org/doi/10.1145/1176760.1176789
https://dl.acm.org/doi/10.1145/1176760.1176789

[62] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras,
and Alberto Ros. Splash-3: A properly synchronized
benchmark suite for contemporary research. In 2016
IEEE International Symposium on Performance Analy-
sis of Systems and Software (ISPASS), pages 101–111,
2016. https://ieeexplore.ieee.org/abstract/
document/7482078.

[63] Mohit Saxena and Michael M. Swift. FlashVM:
Virtual memory management on flash. In Proceed-
ings of the 2010 USENIX Conference on USENIX
Annual Technical Conference, USENIXATC’10,
page 14. USENIX Association, 2010. https:
//www.usenix.org/conference/usenix-atc-10/
flashvm-virtual-memory-management-flash.

[64] Carol Sliwa. SSD and NAND flash prices
will decline through start of 2021, 2020.
https://www.techtarget.com/searchstorage/
news/252487918/SSD-and-NAND-flash-prices-
will-decline-through-start-of-2021.

[65] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and
Yale N. Patt. Feedback directed prefetching: Improv-
ing the performance and bandwidth-efficiency of hard-
ware prefetchers. In 2007 IEEE 13th International Sym-
posium on High Performance Computer Architecture,
pages 63–74, 2007. https://ieeexplore.ieee.org/
document/4147648.

[66] Suhas Jayaram Subramanya, Harsha Vardhan Simhadri,
Srajan Garg, Anil Kag, and Venkatesh Balasubrama-
nian. BLAS-on-flash: An efficient alternative for large
scale ML training and inference. In 16th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 19), pages 469–484. USENIX Associa-
tion, 2019. https://www.usenix.org/conference/
nsdi19/presentation/subramanya.

[67] Tomoya Suzuki, Kazuhiro Hiwada, Hirotsugu Kajihara,
Shintaro Sano, Shuou Nomura, and Tatsuo Shiozawa.
Approaching dram performance by using microsecond-
latency flash memory for small-sized random read ac-
cesses: A new access method and its graph applica-
tions. Proc. VLDB Endow., 14(8):1311–1324, apr 2021.
https://doi.org/10.14778/3457390.3457397.

[68] Arash Tavakkol, Juan Gómez-Luna, Mohammad
Sadrosadati, Saugata Ghose, and Onur Mutlu. MQsim:
A framework for enabling realistic studies of modern
multi-queue SSD devices. In Proceedings of the
16th USENIX Conference on File and Storage Tech-
nologies, page 49–65. USENIX Association, 2018.
https://www.usenix.org/conference/fast18/
presentation/tavakkol.

[69] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated key-
value stores. In 2020 USENIX Annual Technical Confer-
ence (USENIX ATC 20), pages 33–48. USENIX Associ-
ation, 2020. https://www.usenix.org/conference/
atc20/presentation/tsai.

[70] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Well-read students learn better: On the im-
portance of pre-training compact models. arXiv preprint
arXiv:1908.08962v2, 2019.

[71] Daniel Waddington, Moshik Hershcovitch, Swami-
nathan Sundararaman, and Clem Dickey. A case for
using cache line deltas for high frequency VM snapshot-
ting. In Proceedings of the 13th Symposium on Cloud
Computing, SoCC ’22, page 526–539. Association for
Computing Machinery, 2022. https://dl.acm.org/
doi/abs/10.1145/3542929.3563481.

[72] Ellis Herbert Wilson, Myoungsoo Jung, and Mahmut T.
Kandemir. ZombieNAND: Resurrecting dead NAND
flash for improved SSD longevity. In IEEE 22nd In-
ternational Symposium on Modelling, Analysis & Sim-
ulation of Computer and Telecommunication Systems
(MASCOTS), pages 229–238, 2014. https://doi.org/
10.1109/MASCOTS.2014.37.

[73] Michael Wu and Willy Zwaenepoel. Envy: A non-
volatile, main memory storage system. In Proceedings
of the Sixth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS VI, page 86–97. Association for Com-
puting Machinery, 1994. https://doi.org/10.1145/
195473.195506.

[74] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An empirical guide to
the behavior and use of scalable persistent memory. In
Proceedings of the 18th USENIX Conference on File and
Storage Technologies, page 169–182. USENIX Associ-
ation, 2020. https://www.usenix.org/conference/
fast20/presentation/yang.

[75] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Nam Sung Kim, Mahmut Taylan Kandemir, and
Myoungsoo Jung. Revamping storage class memory
with hardware automated memory-over-storage solu-
tion. In Proceedings of the 48th Annual International
Symposium on Computer Architecture, ISCA ’21, page
762–775. IEEE Press, 2021. https://dl.acm.org/
doi/abs/10.1109/ISCA52012.2021.00065.

[76] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Changlim Lee, Mohammad Alian, Myoungjun

616 2023 USENIX Annual Technical Conference USENIX Association

https://ieeexplore.ieee.org/abstract/document/7482078
https://ieeexplore.ieee.org/abstract/document/7482078
https://www.usenix.org/conference/usenix-atc-10/flashvm-virtual-memory-management-flash
https://www.usenix.org/conference/usenix-atc-10/flashvm-virtual-memory-management-flash
https://www.usenix.org/conference/usenix-atc-10/flashvm-virtual-memory-management-flash
https://www.techtarget.com/searchstorage/news/252487918/SSD-and-NAND-flash-prices-will-decline-through-start-of-2021
https://www.techtarget.com/searchstorage/news/252487918/SSD-and-NAND-flash-prices-will-decline-through-start-of-2021
https://www.techtarget.com/searchstorage/news/252487918/SSD-and-NAND-flash-prices-will-decline-through-start-of-2021
https://ieeexplore.ieee.org/document/4147648
https://ieeexplore.ieee.org/document/4147648
https://www.usenix.org/conference/nsdi19/presentation/subramanya
https://www.usenix.org/conference/nsdi19/presentation/subramanya
https://doi.org/10.14778/3457390.3457397
https://www.usenix.org/conference/fast18/presentation/tavakkol
https://www.usenix.org/conference/fast18/presentation/tavakkol
https://www.usenix.org/conference/atc20/presentation/tsai
https://www.usenix.org/conference/atc20/presentation/tsai
https://dl.acm.org/doi/abs/10.1145/3542929.3563481
https://dl.acm.org/doi/abs/10.1145/3542929.3563481
https://doi.org/10.1109/MASCOTS.2014.37
https://doi.org/10.1109/MASCOTS.2014.37
https://doi.org/10.1145/195473.195506
https://doi.org/10.1145/195473.195506
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://dl.acm.org/doi/abs/10.1109/ISCA52012.2021.00065
https://dl.acm.org/doi/abs/10.1109/ISCA52012.2021.00065

Chun, Mahmut Taylan Kandemir, Nam Sung Kim, Ji-
hong Kim, and Myoungsoo Jung. FlashShare: Punching
through server storage stack from kernel to firmware
for ultra-low latency SSDs. In Proceedings of the 13th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’18, page 477–492. USENIX
Association, 2018. https://www.usenix.org/
conference/osdi18/presentation/zhang.

[77] Tobias Ziegler, Carsten Binnig, and Viktor Leis. Scale-
store: A fast and cost-efficient storage engine using
dram, nvme, and rdma. SIGMOD ’22, page 685–699.
Association for Computing Machinery, 2022. https:
//doi.org/10.1145/3514221.3526187.

USENIX Association 2023 USENIX Annual Technical Conference 617

https://www.usenix.org/conference/osdi18/presentation/zhang
https://www.usenix.org/conference/osdi18/presentation/zhang
https://doi.org/10.1145/3514221.3526187
https://doi.org/10.1145/3514221.3526187

	Introduction
	Background
	Opportunities presented by CXL
	Challenges with flash memory

	Tool and Methodology
	Tracing memory accesses
	Virtual vs. physical memory accesses

	Design Space for CXL-flash
	Caching for performance
	Reducing flash memory traffic
	Prefetching data from flash
	Exploring flash technology and parallelism
	Summary of findings

	Evaluation of Policies
	Cache replacement policy
	Prefetching policy

	Related Work
	Conclusion

