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Abstract

Deep neural networks are growing large for stronger model
ability, consuming enormous computation resources to train
them. Sparsely activated models have been increasingly pro-
posed and deployed to reduce training costs while enlarging
model size. Unfortunately, previous auto-parallelization ap-
proaches designed for dense neural networks can hardly be
applied to these sparse models, as sparse models are data-
sensitive and barely considered by prior works.

To address these challenges, we propose SMARTMOE to
perform distributed training for sparsely activated models
automatically. We find optimization opportunities in an en-
larged space of hybrid parallelism, considering the workload
of data-sensitive models. The space is decomposed into static
pools offline, and choices to pick within a pool online. To
construct an optimal pool ahead of training, we introduce
a data-sensitive predicting method for performance model-
ing. Dynamic runtime selection of optimal parallel strategy
is enabled by our efficient searching algorithm. We evalu-
ate SMARTMOE on three platforms with up to 64 GPUs. It
achieves up to 1.88x speedup in end-to-end training over the
state-of-the-art MoE model training system FasterMoE.

1 Introduction

In recent years, a promising direction for deep neural network
(DNN) design has been to increase model size. For example,
pre-trained large models have shown extraordinary capabili-
ties in natural language processing (NLP) tasks [1,2, 13,28].

As model size increases, training efficiency becomes in-
creasingly important. From the system side, various parallel
strategies (e.g., data [14, 18,30,33], pipeline [4,10,19,24,25],
and tensor [35, 36, 38] parallelism) have been proposed to
enable scalable distributed training. Furthermore, to hide un-
derlying complex system details from researchers to allow
them to focus on model design, automatic parallelization train-
ing systems [4,24,36,41] have been proposed to automati-
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cally decide among various combinations of different parallel
strategies to improve training efficacy. From the model design
side, sparse architectures have been proposed to break the
coherent relationship between model size and computation
cost in DNN models with dense architectures. One of the
most popular sparse models currently is Mixture-of-Experts
(MoE) [12], which has significantly scaled up DNN mod-
els in many deep learning tasks, including natural language
processing [3, 6, 15, 34], computer vision [11, 32], speech
recognition [39,40], and recommendation [22].

However, few efforts have been put into combining these
two optimization directions. Existing training systems [8, 16,
38] typically adopt a specific expert parallelism to support dis-
tributed training of MoE models. Although expert parallelism
mitigates the problem of high memory consumption of MoE
models, training efficiency is affected. Several previous stud-
ies [9,11,17,23,27,29] try to reduce the overhead of expert
parallelism or combine expert parallelism with other parallel
strategies, but all require special system expertise. Meanwhile,
existing automatic parallelization training systems mainly tar-
get conventional DNN models with dense architectures. To
improve both the user experience and the training efficiency
of MoE models, it is indispensable to design an automatic
parallelization training system for MoE models.

Dense Model MoE Model

=
o
E
[5)
4
o0
£
g
&}

Figure 1: Dense Model Compared with MoE Model.

Figure | compares typical dense models with MoE models.
In a dense model, the inputs are regarded as identical data to
be processed by some layers. In an MoE model, the layers
are replaced by multiple expert sub-networks. For each input,
a special gating network is used to match it with the most
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suitable expert, and it is only processed by the selected expert.
This leads to the dynamic and imbalanced property of MoE
models, as the experts have different workloads. Some experts
have to process more inputs than others, and this imbalanced
situation is ever-changing across layers and iterations.

We identify the critical challenge of applying automatic
parallelization techniques to MoE models due to the dynamic
and imbalanced property, or being data-sensitive. While the
training cost is fixed in dense models over any input, MoE
models behave differently over different data, layers, and train-
ing steps. Because the gating network dynamically matches
training inputs with experts, the workload of experts may vary
a lot, resulting in varying costs for computation and com-
munication. Unfortunately, current automatic parallelization
approaches fail to efficiently deal with data-sensitive training
of MoE models due to the following two limitations.
Limited Optimization Space. Being data-sensitive makes
previous approaches of parallelism combinations perform
differently and introduces more space and opportunities for
optimizations. Compared to dense models, heterogeneous
workloads on different expert sub-networks in MoE training
lead to a much larger combination space of parallelism. We
find that with the workload variance in mind, there are more
opportunities of optimizing training performance. However,
existing works [36,41] assume that the workloads on sub-
networks are homogeneous, and exclude many potentially
faster candidates from their space for hybrid parallelism.
Large Searching Overhead. For data-sensitive models, the
optimal execution plan changes frequently. However, for pre-
vious data-insensitive systems, the workload is static and
can be determined by the model structure before training.
Therefore, they adopt time-consuming algorithms, e.g., dy-
namic programming [24,36] or integer linear programming
(ILP) [41], to search for optimal execution plans. These algo-
rithms commonly take minutes or even hours, only feasible to
be performed offline. However, optimal execution plans for
the dynamic workload should be identified between iterations
that commonly take less than one second.

To address these challenges, we propose SMARTMOE, an
automatic parallelization training system for sparsely acti-
vated models. We explore the space of hybrid parallelism
with awareness of heterogeneous workloads, where more
potentially faster candidate parallel strategies are included.
To sustain high efficiency during the dynamic and imbal-
anced MoE training process, we propose a two-stage solution
for parallelization. Based on a static pool that consists of
mutual-convertible parallel strategies constructed offline, fast
dynamic adaption is performed within the constructed pool
at runtime to select the strategy that fits the current workload.

In the offline stage, we create a pool of strategies that guar-
antees good inherent performance and low switching overhead
at runtime. Also, we design a workload-aware performance
model to estimate the performance of the data-sensitive mod-
els without actually training them so that an optimal pool can

be constructed ahead of training.

In the online stage, we develop light-weight algorithms
to find the optimal parallel strategy for the current workload
within the selected pool. The algorithms are performed peri-
odically at runtime to determine whether we should employ a
new parallel strategy, considering factors including switching
cost and searching overhead.

We evaluate SMARTMOE on three different clusters with
up to 64 GPUs. Results show that SMARTMOE achieves up
to 1.88x speedup in end-to-end training compared with the
state-of-the-art MoE model training system FasterMoE [9].

In summary, we make the following contributions:

* We enlarge the combination space of hybrid parallelism
for data-sensitive models, enabling more potential to
optimize training performance.

* We propose a two-stage adaptive auto-parallelization
approach that performs hierarchical optimizations both
offline and online.

* We introduce the awareness of workload to performance
modeling, enabling performance prediction of training
the data-sensitive models.

We develop fast algorithms that can find optimal parallel
strategies within a pool at runtime.

* We implement these techniques into an end-to-end MoE
training system, SMARTMOE, and achieve up to 1.88x
speedup over FasterMoE [9].

The rest of this paper is organized as follows. §2 introduces
background and our motivation. §3 presents an overview of
SMARTMOE. §4 introduces an enlarged space of hybrid par-
allelism for MoE model training. §5 discusses the scope of
pool among the space of data-sensitive hybrid parallelism, and
demonstrates our estimation-based approach of performance
modeling. §6 illustrates our adaptive automatic parallelization
methods. §7 evaluates SMARTMOE. More related works are
described in §8, and §9 concludes this paper.

2 Background and Motivation

2.1 MoE Model and Expert Parallelism

The Mixture-of-Experts (MoE) was proposed decades
ago [12] and applied to DNN models in recent years. It has
been proven to be helpful in improving model accuracy in
many deep learning tasks, including nature language process-
ing [15], computer vision [11], speech recognition [39,40]
and recommendation [22]. In this paper, we focus on sparsely-
gated MoE [34] models, the most widely used MoE technique,
with instant demand for efficient distributed training.

The MoE technique is currently the most feasible way to en-
able the parameter size of a model and its computational cost
to be scaled independently. A model can increase the number

962 2023 USENIX Annual Technical Conference

USENIX Association



——————————————————

Add & Add & ! Add & L Add & |
_> Norm ™ Norm : ™ Norm : : Norm ] :

N | AN [
T _ & 1|« All-to-all Dispatch > ||
Z, Z ! — T . |
Feed = & : FFN; oo FFNg ‘
gyl R : 7 ‘ (f’f/i?ﬁ—ito—éﬁispiaitgﬁjb :
Network v m T |

| ;

(FFN) ‘ Gating ‘ Eo | ‘ Gating ‘ Expert :
F | Parallel |
! Devices |
_)Add& _}Add& ‘_)Add& 1...E Add&(_\
Norm Norm | Norm b Norm |
1 1 R - B —
Multi-Head Multi-Head ! Multi-Head «: .81‘ A Multi-Head |||
Attention Attention /|| Attention | ''g&., | Attention ||
—1 LT¢,,,,‘§L,,, —!
R TR

(a) A Transformer (b) An MoE (c) Expert Parallelism for
Block Transformer Block  the MoE Transformer Block

Figure 2: An Example of MoE Model and Expert Parallelism.

of parameters by applying MoE, while keeping the floating-
point operations (FLOPs) of one training iteration almost
identical. For example, Figure 2 shows the model structure of
the transformer model extended by MoE. A feed-forward net-
work (FFN) is regarded as an expert, and the model contains
multiple experts which are sparsely activated. A trainable gat-
ing network is added to dynamically match training samples
with suitable experts. As each training sample is sent to a
certain expert, which equals the original FFN in size, FLOPs
required to train over the sample remains similar. Meanwhile,
numerous experts can be employed in one MoE layer, greatly
increasing the number of parameters.

Distributed training becomes a must to train MoE models,
as the model is so large that it cannot be held in the mem-
ory of any single device. To support the distributed training,
GShard [15] designs a specific method of parallelism for MoE
models, namely Expert Parallelism (EP). In fact, it is a com-
bination of Data Parallelism and Tensor Model Parallelism
specialized for the MoE scenario. As shown in Figure 2(c),
the model is split up across the dimension of the experts’ in-
dices, and the input and output features are split along sample
dimension. All-to-all communication is performed to dispatch
the input samples to the desired expert models and put the
output back to its original location, e.g. re-arranging words
into sentences in language models.

Dynamic routing is the most unique feature of the MoE
training workload. A trainable gating module dynamically
assigns tokens to different experts in every iteration for every
MOoE layer, according to the input data. Therefore, the train-
ing workload varies at different layers and iterations. This
dynamic nature of the MoE models makes it much different
from a traditional neural network in distributed training.

2.2 Hybrid and Automatic Parallelization

Listed below are three common ways of parallelism to train
typical dense deep neural networks.

Data Parallelism (DP). Each worker stores a complete
copy of parameters, and the training samples assigned to each
worker are different. Forward and backward computation are
completed independently on each worker. Gradients on dif-
ferent workers are aggregated before being used in the op-
timization of the model. DP incurs significant memory and
communication overhead as the model gets larger, because all
the parameters are replicated and synchronized in every itera-
tion. Some approaches [30,37] reduce the memory footprint
by splitting up the replicas, but the communication overhead
is inevitable.

Pipeline Model Parallelism (PP). The model is divided into
multiple stages with sequential data dependency. Each worker
stores the parameters of its corresponding stage. The first
worker reads batches of the training data, and workers with
adjacent stages exchange intermediate results for forward or
gradients for backward computation. To be efficient, PP has
to have evenly distributed stages and bubble-free schedule,
intensively studied by prior works [4, 10,24, 25].

Tensor Model Parallelism (TP). Single operators of a model
are partitioned across multiple workers. Each worker stores a
part of the parameters of the operators and conducts part of its
computation, e.g. a tile of a matrix. TP of different operators
needs to be designed specifically by experts, and the parti-
tioning method is critical to distributed training performance.
Megatron [35] provides the best practice of TP on transformer
models. Other works [36,38] explores unified representation
of TP and automatic generation of the most efficient partition.

To improve distributed training performance, Hybrid Par-
allelism is introduced, which combines a few of the above
parallel strategies to better fit specific models and particular
training hardware. We call an instance of hybrid parallelism
a parallel execution plan. Given a model and a hardware
specification, there can be multiple parallel execution plans,
since multiple parallel strategies are available. For exam-
ple, Megatron-v2 [26] achieves high-performance distributed
training by expert-designed hybrid parallel execution plans,
but only for transformer-based models.

Moreover, automatic parallelization is desired to make
high-performance hybrid parallelism available to model de-
velopers with less expertise in distributed systems, Alpa [41]
categorizes parallelism into inter-layer (PP) and intra-layer
(DP and MP) levels, and automatically generates hybrid par-
allel execution plans by hierarchically optimizing over both
levels. However, it is very time-consuming for current ap-
proaches to generate an optimal parallel execution plan, due
to the lack of performance models and their excessive search-
ing algorithms. Minutes, or even hours, are taken to generate
an execution plan that may only cost milliseconds or seconds
for an iteration.

In the end, we summarize three key challenges for any
automatic parallelization training system.

Space of Hybrid Parallelism. Hybrid parallelism means
combining multiple different parallel strategies into one ex-
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ecution plan. Specifically, the hybrid of any two different
strategies may involve complicated adaption, and introduce
variance in performance. The more parallel strategies a sys-
tem can handle, the more opportunities exist to find a faster
execution plan.

Performance Modeling. Performance modeling helps ex-
plore a huge hybrid parallelism space efficiently, as it is in-
feasible to measure the cost of every possible execution plan
without actually running it.

Besides, beyond being accurate as a basic requirement, a

good performance model shall be giving extra information,
or guidance, that can provide better understanding of the per-
formance, and indicate the direction of generating a better
execution plan.
Searching Algorithm. The huge space of hybrid parallelism
shall be explored adequately to find an optimal or near-optimal
execution plan. However, for large-scale model training, it
is even unacceptable to enumerate every possible candidate.
The algorithm’s efficiency in finding a near-optimal execution
plan is appreciated, primarily when performed frequently over
different configurations.

2.3 Challenges of Automatic Parallelization for
MoE Models

The aforementioned issues are even more challenging with
MoE models. Unlike typical dense models, the dynamic na-
ture of the MoE training workload makes them more com-
plicated and invalidates existing automatic parallelization ap-
proaches. We use an example of MoE training in Figure 3 to
explain the challenges.
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Figure 3: Example MoE Training Workloads and Related
Parallel Execution Plans.

Larger Space of Hybrid Parallelism. The dynamic nature
of MoE leads to heterogeneous workloads on different expert
sub-networks, resulting in a larger space of hybrid parallelism

for MoE models than that for dense models. For a 4-experts
MoE layer, two possible execution plans are shown at the
top of Figure 3. In the conventional view, these two plans
are identical, as both devices contain two experts, so their
memory consumption and computation costs are identical.
However, the dynamic workload of MoE training can lead
to computational bottlenecks occurring on different experts
during the training process, resulting in performance differ-
ences between the two example execution plans. For example,
execution plan 1 suffers from a load-imbalance problem over
training workload 1, while execution plan 2 does not.

State-of-the-art MoE training systems [9, 11, 17,23,27,29]

fail to support execution plan 2, because none of them study
the order to place expert sub-networks on multiple devices.
State-of-the-art auto-parallelization systems [36,41] also ig-
nore execution plan 2, as both execution plans are treated
as the same in their algorithms. To avoid missing efficient
execution plans, exploring the space of hybrid parallelism
with an awareness of the imbalanced dynamic workload of
MoE models is necessary.
Workload-Aware Performance Modeling. Conventional
performance modeling approaches only use model structure
and hardware information to estimate the performance and
lack consideration of the workload. However, the dynamic
nature of MoE causes a strong relationship between ever-
changing training workloads and efficiency, invalidating con-
ventional performance modeling approaches of DNN opera-
tors. Looking back to the example in Figure 3, the efficiency
of execution plans is different under two training workloads.
Execution plan 1 becomes better in workload 2, though it is
slower in workload 1. There is a strong connection between
the efficiency of an execution plan and the training workload,
being a unique feature of MoE models.

Current auto-parallelization algorithms [36,41] search for

an efficient execution plan ahead of training, lacking consid-
eration of the dynamic workload. A dynamic workload-aware
performance modeling approach is demanded to provide ac-
curate estimation for the MoE training scenario.
Adaptive Automatic Parallelization. For data-insensitive
dense models, parallelization is performed once before train-
ing to generate an optimal execution plan. However, since no
single execution plan can fit all workloads in MoE training,
using a fixed execution plan cannot be efficient throughout the
MOoE training process. Adaptive automatic parallelization is
demanded, which employs runtime execution plans searching
and switching to maintain high efficiency through the training
process. Ideally, the searching and switching procedure is so
efficient that a training system can change the execution plan
at every iteration to achieve ultimately high performance.

However, it is hard to achieve the ideal case due to the
following issues. First, state-of-the-art systems use time-
consuming algorithms such as integer linear programming
for an optimal execution plan, which cannot fit the time limit.
Second, switching between different execution plans can be
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expensive because of the high overhead of parameters ex-
change through inter-device links.

In existing distributed training systems [4,23,24,26,41],
they select an execution plan before training without the abil-
ity of runtime execution plan adaption. Besides, the searching
overhead of current auto-parallelization algorithms [36,41]
is too high to be used at runtime. Light-weight methods to
generate and switch between execution plans according to
the dynamic workload are appreciated for an MoE training
system.

3 Overview

We propose SMARTMOE, an automatic parallel training sys-
tem for sparsely activated models. Previous automatic par-
allelization systems only search for the optimal execution
plans before training, while SMARTMOE uses a two-stage ap-
proach. Beyond prior works that generate optimal execution
plans based on model architecture and hardware specification,
we take the workload into account for data-sensitive models.
We introduce an enlarged space for hybrid parallelism in §4.
It introduces more opportunities for better training efficiency.
With this enlarged space, SMARTMOE supports efficient exe-
cution plans for data-sensitive models. Moreover, to achieve
efficient workload-aware parallelization, we split the process
of automatic parallelization into two stages, performed offline
and online, respectively. Figure 4 presents an overview of our
two-stage algorithm.

An Layer 1 . . n
Model Layer2 Ex B E»

DDDDT/EDJ,DJ,DJ,[D,E L]
| i I EE A

Offline
Pool Construction (§5)

II:MI MH:II

Adaptive Parallelization (§6

Figure 4: Overview of Two-Stage Auto-Parallelization.

Offline Pool Construction (§5). The imbalanced work-
load introduces potentially faster candidate execution plans.
Among them, some pairs of execution plans are identified to
be much more expensive to switch between than others and
infeasible to be performed online. Therefore, SMARTMOE
clusters a group of execution plans as a pool, among which
the switching cost is moderate. SMARTMOE constructs a
promising pool ahead of training, while keeping the ability of
online adaption within the constructed pool.

An optimal pool has to be aware of the workload. We
design a data-sensitive performance model to help construct
good pools among numerous candidates, utilizing model spec-
ifications to estimate the workload without using statistics of
actual workload. As the time limit is relatively relaxed be-
fore training, we exploit searching algorithms of conventional
methods with our performance model to construct the pool.
Online Adaptive Parallelization (§6). A pool commonly
contains an exponential number of execution plans to be se-
lected, but online decisions should be made in milliseconds.
We develop light-weight algorithms to meet the time limit.
The algorithms can be intensively performed to ensure the ex-
ecution plan fits the current workload and quickly find faster
ones from the pool if available.

Online adaptive execution plan switching can only be prac-
tical considering the overhead itself. We find it a trade-off
between the high efficiency of an execution plan and the
latency to switch to it. We utilize temporal locality in the ever-
changing workload of MoE model training to adjust parallel
strategy at the proper time and achieve overall performance
improvement.

4 Enlarged Space for Hybrid Parallelism

In most of the previous MoE model training systems, only
expert parallelism is used for MoE models. A representative
system of this class is FasterMoE [9], which focuses on op-
timizing expert parallelism. Fewer previous works support
hybrid parallelism for MoE models. A notable system of this
class is BaGuaLu [23], which combines expert and data par-
allelism to train MoE models on a full-scale supercomputer.
Different from previous works, SMARTMOE supports hybrid
parallelism for MoE models comprehensively.

SMARTMOE supports an arbitrary combination of data and
tensor, pipeline and expert parallelism, beside a barely stud-
ied aspect of parallel strategies, namely expert placement.
With the help of this enlarged space for hybrid parallelism,
SMARTMOE could cover more efficient parallel execution
plans than previous works.

Table 1: Configuration of Expert Slot.

Parallel Strategy ~ Capacity # Slots # Layers
Expert 1 E/N L
Expert+Data 1 DXE/N L
Expert+Tensor 1/T T xE/N L
Expert+Pipeline 1 E/(N/P) L/P

SMARTMOE supports an arbitrary combination of existing
parallelism using the concept of expert slot. An expert slot
is a basic unit to store parameters of an expert sub-network
on workers. To specify a parallel strategy for an MoE layer,
the configuration of expert slot for every worker should be
determined. Formally, we use three attributes to represent a
configuration of expert slot:
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* The capacity of each slot. It should be a fraction between
0 and 1, as each slot can store the partial or whole of an
expert sub-network.

* The number of slots for each worker. It should be posi-
tive, as each worker contains one or more slots.

* The number of MoE layers for each worker. It should be
a positive integer, depending on the model structure.

These attributes are powerful to represent classic parallel
strategies and their combinations. Suppose a model con-
tains L MoE layers and E experts in each layer. The train-
ing is done on a N workers cluster. D, T, P represent ways
of data, tensor, and pipeline parallelism respectively. We
showcase how to set attributes for different parallel strate-
gies in Table 1. We also provide a concrete example in
Figure 5, where (L,E,N) = (2,4,4). In Figure 5(c), the set-
ting is (D, T,P) = (2,1,1)/(1,2,1)/(1,1,2), respectively. It
is worth noting that only combinations of at most two parallel
strategies are shown in the above examples. SMARTMOE
can instantiate their arbitrary combinations, as they can be
represented as specific configurations of the expert slot.

EP (All-to-all)

|[Eo | |[Ed| |[E]| | B ]
Dev.A Dev.B Dev.C Dev.D
(b) Conventional Expert Parallelism

Layer 1
Layer 2

(a) MoE Layers
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Figure 5: Hybrid Parallelism for MoE Models.

SMARTMOE explores a new parallel strategy, expert place-
ment. The expert placement plan is an essential but under-
studied aspect of MoE model training. An expert placement
plan refers to a mapping from expert sub-networks to expert
slots, as shown in Figure 5(d). When the number of slots
on each workers is more than one, an expert placement plan
could influence performance because of the imbalanced work-
load. Recall the example in Figure 3. Two execution plans
only differ in expert placement, but their efficiency signifi-
cantly varies due to the imbalanced workloads. To the best of
our knowledge, previous MoE training systems do not study
the difference among different expert placements, i.e., expert
sub-networks are stored in multiple slots in serial order.

As Figure 5 suggests, besides supporting combinations of
existing parallelism (Figure 5(b,c)), SMARTMOE can explore

various expert placement plans (Figure 5(d)) for better perfor-
mance. In contrast, existing MoE training systems only work
on limited cases of our space. For example, FasterMoE [9]
focuses on runtime optimization of expert parallelism (Fig-
ure 5(b)). BaGualu [23] and DeepSpeed-MoE [29] adopt
specific hybrid parallel strategies in Figure 5(c).

5 Offline Pool Construction

5.1 Design Principle of a Pool

A pool is a sub-space of hybrid parallelism that contains
multiple execution plans with some parallel strategies fixed
and leaving the others variable. The pool remains unchanged
throughout the process of distributed training. For example, a
pool can be a condition that over multiple nodes with multiple
GPUs, pipeline parallelism shall be used across nodes, which
is fixed. And any parallelism, such as data or model paral-
lelism, can be used among GPUs within a node. SMARTMOE
constructs a good pool before training and switches execution
plans at runtime within this constructed pool.

The critical challenge of defining the scope of pools is divid-
ing parallel strategies into two categories: fixed and variable.
The fixed parallel strategies have inherent latency of execu-
tion plans, which are almost unaffected by dynamic workload.
In contrast, runtime switching on the variable parallel strate-
gies is necessary to fit the current workload. In addition, the
overhead of runtime switching should be balanced with the
performance gain.

In SMARTMOE, we define a pool as a group of execution
plans where expert placement is the only variable paral-
lel strategy. Expert placement, i.e., mapping from experts to
devices, is found to be non-trivial due to the heterogeneous
workload on experts. We identify that hybrid parallel strate-
gies for typical dense models steadily impact performance.
In contrast, expert placement could influence performance
significantly when the workload changes dynamically. So, in
the offline pool construction stage, SMARTMOE searches for
an excellent combination of typical parallel strategies, while
the expert placement plan is variable to be switched online.

This definition of the pool has two main advantages. First,
the space of candidate execution plans has enough flexibility
for online adaption. The number of possible expert place-
ment plans is increased exponentially when there are more
expert slots for each worker. It is promising to find a suitable
execution plan according to the current imbalanced work-
load (Detailed in §6.1). Second, these candidate execution
plans are mutual-convertible with minor overhead, avoiding
introducing much runtime overhead. As they have the same
configuration of expert slots, there is no need for memory
allocation or release when switching. The switching overhead
is only caused by parameter exchange between workers, and
it is possible to maintain a moderate communication overhead
(Detailed in §6.2).
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5.2 Workload-Aware Performance Modeling

In the offline stage, SMARTMOE constructs a good pool be-
fore training. A critical step is using a performance model to
estimate the efficiency of different pools. However, designing
an accurate performance model offline is challenging because
the performance of an execution plan is strongly related to the
dynamic training workload, which cannot be obtained before
training.

We introduce a method to estimate the training workload
to address this challenge. Specifically, it estimates the distri-
bution of expert selection, i.e., the outputs of gating networks,
before training. So, it realizes workload-aware performance
modeling of MoE layers without actual statistics of the train-
ing workload. With its help, we can accurately estimate the
computation and communication costs of candidate pools
before training. Finally, we apply the data-sensitive perfor-
mance model over the candidate pools and enumerate the
search space before initiating distributed training.

Semantics of the gating network guides the workload esti-
mation. Based on the specific algorithm of any given gating
network, the maximum amount of workload for any expert
can be calculated without actually training the model. This
upper bound of workload is commonly close to the actual
workload and is the bottleneck of the training process. There-
fore, using the maximum possible amount of workload, we
can accurately predict the performance of a pool.

We take the most common Choose Top-K along Experts
Axis gating approach as our instance, and our modeling
method is applicable to many others [5]. The key idea is
to understand the design of gating networks for accurate esti-
mation of computation and communication costs. We classify
state-of-the-art MoE gating networks into two classes and
explain our estimation approach for them respectively.
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Faster Gate
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Figure 6: Expert Selections under Different Gating Networks.

One is load-balanced gating networks, which ensures a
balanced workload on experts. GShard [15] gate, a commonly
used gating method, represents this class. The critical design
of the GShard gate is the capacity factor, which limits the
proportion of training samples assigned to remote experts
(i.e., experts placed in different devices with input samples).
We visualize expert selections of GShard gate from a real
training process in Figure 6. The capacity factor is set to 1.2,
4.8, and 4o (i.e., no capacity limit). Controlled by different
capacity factors, the proportion of training samples assigned
to the overloaded experts varies. Despite the variation, there
is a definite load upper bound of the most overloaded expert,
being the bottleneck of the whole layer. Therefore, we use
that upper bound to estimate the performance of execution
plans.

Another is topology-aware gating networks, which limit
the size of cross-nodes communication in the all-to-all dis-
patching stage. Two state-of-the-art MoE models [7, 9] use
topology-aware gates. In Figure 6, Faster Gate proposed by
FasterMoE [9] is visualized. The example cluster has 16 de-
vices on four nodes with a fat-tree network topology. To avoid
suffering low bandwidth across nodes, it prefers to assign
training samples to experts within the same node, as can be
seen in the figure that most expert selection is in 4 x 4 blocks
on the diagonal. We can estimate expert selection considering
its hierarchical gating algorithm. As it also uses hardware
specifications available to us, we follow its algorithm to com-
pute the maximum possible communication volume and com-
putation workload for each device and adopt these data for
our performance prediction.

Generally, although the actual expert selection is unreach-
able, hyper-parameters of these gating networks can be used
to depict the distribution of expert selection. The computa-
tion overhead of the most overloaded expert can be estimated
according to the capacity factor, and the communication over-
head of device pairs can be estimated according to constraints
provided by topology-aware gating networks. After obtaining
the distribution of expert selection, we adopt an existing per-
formance model [9] to estimate the performance of execution
plans. It is worth noting that the original model has to take
the current workload information captured at runtime as its
input. However, in SMARTMOE, we apply it to the estimated
workload. With the help of our estimating method and the
performance model, we apply exhaustively offline searching
for a pool with the best-estimated performance.

6 Online Adaptive Parallelization

6.1 Light-Weight Searching

Adaptive parallelization is required for the MoE model to
keep it on an optimal execution plan considering its current
workload. The challenge of runtime adjustment is a much
stricter time limit of searching overhead, as a single iteration
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of an MoE layer typically takes only tens of milliseconds. Ex-
isting works fail to meet the time requirement of MoE models
because they commonly apply time-consuming algorithms
such as integer linear programming (ILP). In practice, the
overhead of these methods is orders of magnitude greater
than the latency of a single iteration. They are infeasible for
MOoE models because they shall be intensively performed at
runtime to ensure the execution plan fits the current workload.

Defining a pool as only expert placement plans can be
adjusted at runtime is a good equilibrium point: workload-
guided expert placement plans effectively improve training
efficiency, while switching between expert placement plans
does not introduce much communication overhead. Based
on the pool constructed offline, we make minor adjustments
to fit the current workload. To keep moderate overhead, we
design light-weight searching algorithms to transfer within the
pool among execution plans. We invent a greedy algorithm
to replace time-consuming methods such as ILP, which is
intensively performed to ensure the execution plan fits the
current workload.

Motivated by our observation in Figure 3, it is critical to
generate a dedicated expert placement plan which fits the cur-
rent workload. We formalize the expert placement problem as
follows. Supposed that there are E experts and N devices, C;
training samples are assigned to expert i by the gating network.
We need to decide the placement of each expert, where the
placement of expert i is denoted as P;(i C {0,1,...,N—1}).

The optimization goal is to minimize eq. (1), where H%H de-
notes the number of training samples processed by each repli-
cate of expert i, and overall training latency is determined by

the most overloaded device ;.

Ci
_— 1
NN M

max {
0<j<N 6<;2F. jeP,

Algorithm 1 Greedy Expert Placement

1: function EXPERTPLACEMENTGREEDY(E,N,C[E])

2 samples[0...N] «+ 0 © current samples per device
3 experts[0...N] <0 > current experts per device
4: P[0...E]+ 0 > placement of experts
5: for i, C; € DescendingSort(C) do

6 Thin <= o0

7 for all j do > decide the placement
8 if experts|j] < & and samples[j] < Ty, then
9: Tin < samples|j)

10: p—J

11: Pli] < P[{jup

12: samples|p) + tokens[p] + C;

13: experts|p| < experts[p] + 1

14: return P[0...E]

We propose a light-weight greedy approach in Algorithm 1.
An intuitive idea is to avoid placing overloaded experts on the

same device. Therefore, Algorithm | decides each expert’s
placement in the order of amounts of computation on experts.
To avoid increasing memory overhead on certain devices, the
number of experts placed in one device is limited to % This
algorithm’s computational complexity is O(NE), which is
light enough for runtime searching.

We also propose a more accurate but costly dynamic pro-
gramming approach. The state of dynamic programming is
defined as F(i,S), in which i denotes the number of devices
that are fully used, S is a subset of N experts to denote which
experts have been placed. And F represents the minimal size
of the most overloaded device in the first i devices. Equa-
tion (2) shows the transfer function between states, which
enumerates experts placed on device i for a minimum cost. In
this dynamic programming approach, the number of states is
O(N x 2F), and O(2F) states are enumerated in one transfer,
resulting in total computation complexity O(N x 4£). This
approach is guaranteed to find an optimal solution.

F(i,S):ngin{max{F(i—l,So), Y ¢}y @

ecS—Sp

To leverage the advantages of the two algorithms above, we
design Algorithm 2 to combine them. The problem of placing
E experts into N devices is divided into two steps: in the first
step, E experts are placed into M virtual devices using the
greedy algorithm; in the second step, M virtual devices are
placed into N devices using the dynamic programming algo-
rithm. The computation complexity of this hybrid algorithm
is O(ME + N x 4M). The number of virtual devices M is a
tunable parameter, which controls the overhead of the search-
ing algorithm. For example, modern clusters usually have tree
topology: there are multiple devices within a compute node,
and multiple nodes are working together. In this setting, the
M can be set as the number of devices within a node, in which
the greedy algorithm is used across nodes, and the dynamic
programming algorithm is used within a node.

Algorithm 2 Hybrid Approach of Expert Placement

1: function EXPERTPLACEMENTHYBRID(E,N,C[E])
2 M < DEVICES_PER_NODE » tunable parameter
3; Py|E] < ExpertPlacement Greedy(E,M,C[E])
4 P[0...E]«+ 0
5 fori<0,....Mdo
within a virtual device

> Use dynamic programming

6 S+ {el|iePe]}

7 Ps < P(F(M,S)) > Get placement of DP state S
8: P+ PUPs

9 return P[0...E]

By properly tuning M according to hardware configuration
and searching time limit, these algorithms can work together
with minimum overhead and maximum effect.
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6.2 Efficient Adaptive Training

The goal of the online stage is to obtain performance gain
by applying an execution plan that fits the current workload
while keeping moderate switching overhead between exe-
cution plans. A few configurations of SMARTMOE are im-
portant to ensure performance gain. We currently tune them
manually by heuristics, as discussed below.

Threshold of Switching Overhead. Switching from the
current expert placement plan to a newly generated one in-
troduces non-negligible all-to-all communication overhead.
However, in practice, some newly generated expert placement
plans only make slight advancements over the current one
while introducing much communication overhead. To address
this problem, we set a tunable threshold to filter out new ex-
pert placement plans with minor improvement in eq. (1). In
addition, if two new plans have the same latency in eq. (1),
SMARTMOE chooses the one similar to the current plan to
minimize the switching overhead.

Frequency of Online Searching. Although online search-
ing fits the expert placement plan with the current workload,
searching and switching costs extra time. One extreme case
is to perform searching at every iteration, which can always
fit the current workload with the best execution plan but in-
troduces too much overhead. However, if the search interval
is too large, the training throughput usually decreases as the
workload changes. Fortunately, as a neural network, param-
eters of the gating network change slightly in adjacent itera-
tions, which leads to a gradual change in the distribution of
expert selections. Thanks to this temporal locality, we can
conduct runtime searching every several iterations. Figure 12
reveals the trade-off between searching frequency and train-
ing performance in real model training. We currently select
an appropriate frequency by experimentation.

Frequency of History Collecting. Our online searching al-
gorithm depends on the history of expert selection. To obtain
this data, SMARTMOE needs to dump the output of the gating
network and synchronize among workers. These operations
could be time-consuming if performed too frequently. In prac-
tice, we find an effective strategy is only collecting the history
of expert selection at a few iterations immediately before the
iteration of online adaption. This strategy also utilizes the tem-
poral locality of the expert selection, and prevents collecting
useless stale history.

7 Evaluation

7.1 Experimental Setup

Clusters. We evaluate SMARTMOE on three representative
clusters, as shown in Table 2, which differ in accelerators, net-
work topology, network bandwidth, and scale. Evaluation on
these clusters demonstrates that optimization of SMARTMOE
works on different hardware environments.

Table 2: Hardware Platforms for Evaluation.

Name GPUs Per Node Max GPUs Infiniband Bandwidth
blinky ~ 8x NVIDIA V100 PClIe 32 50Gb/s
pinky 4x NVIDIA V100 SXM 64 100Gb/s
inky 8x NVIDIA A100 SXM 32 200Gb/s

Models. The models used for evaluation are shown in Ta-
ble 3. We choose models from two popular deep learning
tasks for evaluation: one is GPT-MoE for natural language
processing, and the other is Swin-MoE for computer vision.
We use typical batch sizes for each of them. Model param-
eters are increased along with the number of GPUs. One of
the most popular gating methods proposed by GShard [15] is
used. GShard gate has a tunable parameter named capacity
factor, which controls the degree of load imbalance problem
(Smaller capacity factor results in a more balanced workload).
This optimization is from the model design side to improve
MOoE model training performance. We apply the GShard gate
with different capacity factors to evaluate our system-side
optimization.

Table 3: Models Used for Evaluation.

Model Task  Batch Size  # params (billion) Capacity Factor
GPT-MoE  NLP 256/512 4.5/7.3/9.9/14.0
Swin-MoE ~ CV 4096 0.54/1.0 1.2/24/4.8/ +

Baselines. We compare SmartMoE with four strong train-
ing systems. DeepSpeed-MoE [29] is an MoE training sys-
tem with both system-side and model design-side optimiza-
tion. It is implemented on DeepSpeed [31] and Megatron-
LM [35]. For fairness of comparison, we only turn on the
system-side optimization in the following experiments. Tu-
tel [11] targets the scalability problem of MoE training, which
achieves promising performance on large-scale MoE training.
And Tutel designs Swin-MoE models by extending Swin-
Transformer [20,21] with the MoE technique. FasterMoE [9],
the latest version of FastMoE [8], is one of the early efforts
of data-sensitive optimization for MoE training. It proposes
runtime smart scheduling and expert shadowing. For fairness
of comparison, we manually tune hyper-parameters of Faster-
MoE to achieve good performance. Alpa [41] is a state-of-
the-art general-purpose auto-parallelization training system,
which hierarchically generates inter- and intra-operator paral-
lel execution plans. It should be noticed that we do not directly
compare our system with Alpa. Alpa is implemented on JAX,
while the other systems we used are implemented on PyTorch.
For fairness of comparison, we use parallelism recommended
in the Alpa paper on our system to simulate its performance.
Evaluation Metrics. For end-to-end evaluation, we measure
the training latency including forward, backward, gradient
synchronization, and optimization stages in both MoE and
dense layers in the real model training process. Instead of us-
ing randomly generated input samples, we apply real datasets
for training to ensure that the dynamic workload in MoE lay-
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Figure 7: End-to-End Speedup of GPT-MoE Models.
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7.2 End-to-End Speedup

We evaluate the end-to-end performance of two types of mod-
els on three different clusters. Evaluations are done in a form
of weak scaling, where model sizes are increased along with
the number of GPUs. And different capacity factors are ap-
plied at each scale. X /Y means evaluation on X devices with
capacity factor Y. "OOM" means out-of-memory. The perfor-
mance of FasterMoE is used as a baseline.

Figure 7 shows the end-to-end speedup of GPT-MoE mod-
els. SMARTMOE achieves on average 1.53 x speedup on inky
cluster, and achieves on average 1.17x speedup on pinky clus-
ter. Comparing inky cluster and pinky cluster, SMARTMOE
achieves higher speedup on inky, where SMARTMOE achieves
a maximum speedup of 1.88x. This can be explained by two
reasons. First, the bandwidth gap between intra-node and
inter-nodes links is greater, making hybrid parallelism more
efficient. Second, inky has more GPUs in a node, increas-
ing possible intra-node parallel strategies. Figure 8 shows
the speedup of Swin-MoE models. SMARTMOE achieves on
average 1.14x speedup on blinky cluster.

Comparing different GShard capacity factors, SMARTMOE
achieves a more significant speedup when the capacity factor
is higher. This reveals the tight relationship between model
design and system-side optimization. Both of them improve
training performance by alleviating the load-imbalance prob-
lem in MoE layers, so there are fewer optimization opportu-
nities as the gate is set up with stricter load-balancing limits.
In this case, SMARTMOE brings improvement because it
constructs a better pool. A good pool replaces the originally
expensive all-to-all of expert parallelism by communication
among fewer workers in hybrid parallelism. Systems with
only runtime optimization (e.g. FasterMoE) could reduce the
computation overhead by balancing workload, but they fail to
reduce the communication overhead, as detailed in §7.5.

Figure 8: End-to-End Speedup of Swin-MoE Models.

7.3 Offline Parallelization Ablation Study

We study the effectiveness of our offline parallelization
algorithm. In order to verify that SMARTMOE can find
a good pool, we compare performance of different auto-
parallelization systems in Figure 9. X /Y means evaluation
on X devices with capacity factor Y. The performance of
FasterMoE is used as a baseline. To compare with the data-
insensitive auto-parallelization approach, we use execution
plans recommended by Alpa, in which expert parallelism is
used within a node, and pipeline parallelism is used across
nodes. To fairly compare the effect of offline parallelization,
online optimizations of all systems are disabled. SMARTMOE
uses a random execution plan generated by the offline data-
sensitive auto-parallelization approach. Both data-sensitive
and insensitive approaches generate more efficient execu-
tion plans compared with pure expert parallelism, attributing
to the high performance of hybrid parallelism. Meanwhile,
the data-sensitive approach of SMARTMOE achieves 2.67 x
speedup, while the data-insensitive approach only achieves
2.36x speedup.

3
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Figure 9: Performance of Offline Parallelization.
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Figure 10 shows the accuracy of our data-sensitive perfor-
mance model. X —Y means evaluation on X devices with
local batch size Y. We use MoE layers with expert selection
recorded in a real training process to verify the accuracy of
SMARTMOE performance model. Different scales and batch
sizes are used. For all configurations, it achieves R?2>0.5.
Results show that the execution time of an MoE layer varies
under different training data. However, the data-insensitive
performance model of MoE operators only gives a constant
estimation of execution time for each scale and batch size, as
shown by vertical lines, inaccurate for most cases. In contrast,
our data-sensitive performance model predicts execution time
based on current training data. Results show that its accu-
racy is higher when workers are in the same node, because
an unstable cross-node network prevents us from precisely
modeling cross-node all-to-all communication latency.

~ 40 g4 ][00 88 _ PpSO{[  16-8
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©
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Figure 10: Accuracy of Performance Modeling.

7.4 Online Parallelization Ablation Study

Now we evaluate performance improvement from the adap-
tive automatic parallelization approach in SMARTMOE. A
16-layer MoE model is trained on 64 V100 GPUs of pinky.
We set the execution plan adjustment frequency to once every
10 iterations. Figure 11 shows the speedup of all 16 MoE
layers. SMARTMOE achieves on average 1.16x speedup per
layer, and at most 1.43x speedup in layer 2. Performance
opportunities differ among layers because they are trained
to have different internal features. The overhead of execu-
tion plan adjustment is insignificant, because training with
dynamic execution plans beats the static execution plan at
every layer.
2.0
2 1.5
0 1.0 1

Sl N

S05-
1234567 8 9101112131415
Layers

[ Static [N Dynamic

Figure 11: Speedup of Online Parallelization.

In another view, Figure 12 shows the latency of an MoE
layer from iteration 1 to 1500. The performance of using
either static or dynamic execution plans with different fre-
quencies of adjustment is shown by curves. dyn.X denotes
switching execution plans every X iteration. Before the first
time of switching, the execution plan used is the same as the

origin, which does not fit the workload dynamically, result-
ing in inefficient training. After switching execution plans, it
immediately becomes efficient, because SMARTMOE uses
recent history of expert selections to guide switching. As train-
ing progresses, the distribution of expert selection gradually
changes. We can find that for frequencies of 250 and 500 itera-
tions, after switching, performance degrades as time increases.
This suggests that the frequency of the execution plan adjust-
ment should be high enough for the varying workload. But we
also find that the switching overhead could hurt overall perfor-
mance when adjustment frequency is too high. Moreover, it
is interesting that the actual execution plan adjustment tends
to be less frequent as the training progresses. For example,
in Figure 12, the performance of different switching frequen-
cies becomes more close after iteration 1000. We speculate
the reason for this phenomenon is that the distribution of the
expert selection becomes more stable after thousands of itera-
tions. In conclusion, we think how to set a proper frequency
of dynamic parallelization is still an open problem.
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Figure 12: Performance of different adjusting frequencies.

7.5 Fine-Grained Performance Breakdown

We present a fine-grained performance breakdown in Fig-
ure 13. FasterMoE is the baseline implementation of MoE
model training, which uses pure expert parallelism with sim-
ple runtime load-balancing strategies. Alpa represents state-
of-the-art training systems with only offline parallelization.
SMARTMOE represents MoE model training with both offline
and online parallelization. Baseline systems and SMARTMOE
are used to train two MoE models, which are only different in
the capacity factor of the gate. The overhead of communica-
tion and computation for one iteration is measured separately.

As models with smaller capacity factor tend to have a
more balanced workload, the execution time of three systems
for the case capacity = 1.2 is shorter than its counterpart,
capacity = +oo. Because FasterMoE only supports pure ex-
pert parallelism, while Alpa and SMARTMOE support hybrid
parallelism, both communication and computation overhead
are reduced by the latter. In the case, capacity = 1.2, the
speedup of communication is more significant, because com-
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Figure 13: Fine-Grained Performance Breakdown.

putation is forced to be more balanced with the restricted
expert selection. SMARTMOE outperforms Alpa because of
workload-awareness.

7.6 Overhead Analysis

The overhead of SMARTMOE parallelization approaches is
insignificant, compared with the end-to-end training time.
Table 4 shows an execution time breakdown of a model which
has 16 experts and is trained on a 16 V100 GPUs cluster.

Table 4: Execution Time Breakdown.

Forward and Backward

Searching Original Optimized

Switching Alpa’s Searching

0.05ms 20ms 75ms 67ms 825s

Searching algorithms cost less than 1ms, because there are
only 16 experts. We test the searching algorithms for 1024
experts further, the cost of a single searching process is still
less than 50ms. Switching costs 20ms in this example, be-
cause the size of expert sub-networks is non-negligible. For a
single forward and backward step, the overhead of switching
could influence training performance. However, the switching
of execution plans brings on average 10% performance gain,
which is 8ms in this example. After 3 steps, the end-to-end la-
tency of adaptive parallelization is lower than the original one.
Typically, tens of forward and backward steps are performed
in one iteration, so the switching cost is acceptable for end-
to-end training. We also evaluate the overhead of Alpa [41]
for this example, which takes 825 seconds to generate an ex-
ecution plan. The searching overhead of Alpa is orders of
magnitude greater than our approaches.

8 Related Work

MOoE training systems. Early efforts implement expert
parallelism to enable MoE model training in the existing
frameworks, including GSPMD [38] for TensorFlow and
Fairseq [16], FastMoE [8] for PyTorch. More recent literature
has proposed some MoE-specific optimization techniques
from different perspectives. To optimize all-to-all commu-
nication in MoE training, DeepSpeed-MoE [29] proposes a
hierarchical all-to-all algorithm to reduce latency. Lita [17]
systematically analyzes all-to-all overhead in MoE training

and designs a new communication scheduling scheme. For
improving hardware utilization, Tutel [11] delivers adaptive
parallelism and pipelining, and scales MoE training to thou-
sands of GPUs. FasterMoE [9] provides a comprehensive
performance analysis of MoE training and designs multiple
techniques to alleviate load-imbalance problems.

Efforts above focus on the optimization of expert paral-

lelism, which are complementary with SMARTMOE. To en-
able hybrid parallelism, Tutel [11] combines expert, data,
and tensor model parallelism to scale up MoE training.
BaGualLu [23] combines expert and data parallelism to train
an MoE model on a full-scale supercomputer. SMARTMOE
implements more complete parallelism for MoE models,
which brings more performance opportunities.
Automatic parallelization training systems. Previous
works target different parallel strategies. Tofu [36] generates
tensor model parallel execution plans by a novel DP algo-
rithm. PipeDream [24] and DAPPLE [4] propose pipeline
parallelism planners for efficient pipeline partitioning and
scheduling. Alpa [41] generates more sophisticated execu-
tion plans, considering both inter-operator (i.e., pipeline) and
intra-operator (i.e., data and tensor) parallelism.

These efforts are mainly designed for models with dense
architecture. SMARTMOE analyzes unique challenges of au-
tomatic parallelization for models with sparse architecture,
and designs specific techniques to address them.

9 Conclusion

We propose SMARTMOE, an automatic parallelization system
for distributed training of sparsely activated models. We iden-
tify the key challenge of applying automatic parallelization
for sparsely activated MoE models as their dynamic nature or
being data-sensitive. To address this challenge, we propose
a two-stage solution. The combination space of hybrid par-
allelism, which enables more potential for optimization, is
decomposed by pools. To construct an optimal static pool be-
fore training, we design a workload-aware performance model
to predict the training performance with estimations of gating
networks. At runtime, we invent light-weight searching algo-
rithms to change execution plans with minimum overhead.
Compared with selected baselines, SMARTMOE achieves up
to 1.88x speedup in end-to-end MoE model training.
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