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Abstract
Cloud storage is gaining popularity because of features such
as pay-as-you-go that significantly reduces storage costs.
However, the community has not sufficiently explored its con-
tract model and latency characteristics. As LSM-Tree-based
key-value stores (LSM stores) become the building block
for numerous cloud applications, how cloud storage would
impact the performance of key-value accesses is vital. This
study reveals the significant latency variances of Amazon
Elastic Block Store (EBS) under various I/O pressures, which
challenges LSM store read performance on cloud storage. To
reduce the corresponding tail latency, we propose Calcspar, a
contract-aware LSM store for cloud storage, which efficiently
addresses the challenges by regulating the rate of I/O requests
to cloud storage and absorbing surplus I/O requests with the
data cache. We specifically developed a fluctuation-aware
cache to lower the high latency brought on by workload fluc-
tuations. Additionally, we build a congestion-aware IOPS al-
locator to reduce the impact of LSM store internal operations
on read latency. We evaluated Calcspar on EBS with different
real-world workloads and compared it to the cutting-edge
LSM stores. The results show that Calcspar can significantly
reduce tail latency while maintaining regular read and write
performance, keeping the 99th percentile latency under 550µs
and reducing average latency by 66%.

1 Introduction
In recent years, the trend that many businesses and organi-
zations shift their data to the cloud has fueled the growth of
cloud storage [21, 34]. This is due to the advanced features
and cost-effectiveness of cloud storage. For example, Amazon
Web Services (AWS), the world’s most broadly adopted cloud
platform, provides various storage services with high scalabil-
ity and reliability on a pay-as-you-go basis [8] (e.g., Elastic
Block Store, EBS), making them more appealing. Another im-
portant trend is that LSM-Tree-based key-value stores (LSM
stores), such as RocksDB [5], LevelDB [1], Bigtable [14], Dy-

namo [17] and TiDB [19], are becoming the building block for
many cloud applications. However, none of the existing LSM
stores is optimized for cloud storage to eliminate long-tail la-
tency. Notably, it is challenging to balance the estimated peak
performance with the budget for cloud storage performance
(e.g., IOPS). Although many cloud storage providers adver-
tise elastic storage volumes that can accommodate changing
performance needs, these volumes’ scaling capabilities fail to
adapt to an inevitable traffic fluctuation. For instance, AWS
EBS only supports increasing the purchased IOPS, which
would take hours or even days to complete [2]. Hence, it
is impractical to rely solely on elastic volumes for timely
adjustments in the face of short-term workload changes.

To understand how cloud storage would respond to traffic
fluctuation, we have explored the latency characteristics of
AWS EBS volumes. Results show that EBS guarantees a
service agreement called Service Level Agreement (SLA)
in which the processing latency of each request falls within
an appropriate threshold if the accesses do not exceed the
paid IOPS. We observe that the processing latency of each
consecutive request dramatically increases when the demands
in a time window exceed the IOPS agreement. Besides, the
cloud storage’s contract model shows that the higher the paid
IOPS, the lower the latency. However, such an agreement is
constrained by IOPS budgets, and naturally, performance in
terms of latency will suffer if the IOPS is overdrawn.

The latency spike caused by limited IOPS in cloud stor-
age severely impacts the performance of latency-sensitive
applications on top of LSM stores. We take one of the most
widely deployed LSM store implementations, RocksDB, as
an example. The RocksDB first writes the in-memory table
(memtable) to respond quickly with reasonably low latency.
Until the in-memory table is full, RocksDB then persists the
table to the storage volume in large chunk writes (e.g., SSTa-
bles), thus aggregating the random writes into sequential ones.
Such a write scheme reduces the number of write requests and
achieves high write throughput. It then employs internal com-
paction mechanisms to merge and resort the incoming data

USENIX Association 2023 USENIX Annual Technical Conference    451



with multiple levels of on-disk tables. Although the internal
compaction operation ensures the orderliness of data in each
level to improve the lookup performance, a read operation
still needs to traverse multiple levels, resulting in read ampli-
fication. As the IOPS on a cloud storage volume is limited,
the read performance of RocksDB is significantly throttled.

There are several challenges to avoid read latency spikes
in LSM stores. First, the read request performance fluctuates
significantly because the cloud storage volume isn’t flexible
enough to timely keep up with the changing workload. The
fluctuating workload causes the number of read I/Os of an
LSM store to access cloud storage volumes to vary signifi-
cantly. The request latency increases when the I/O number
exceeds the paid IOPS of the cloud storage volume. Second,
the read amplification in an LSM store further strengthens the
workloads fluctuations. Multi-level data layouts inevitably
cause read amplification problems, such as those found at
the LSM-Tree L0 level requires traversing multiple tables, so
reading a single key-value pair may generate multiple I/Os.
Third, the speed limit mechanism of cloud storage volume
conflicts with LSM stores’ internal multi-thread concurrency
mechanism, and requests among multiple threads congestion
on the cloud storage volume leads to an increase in latency
multiples. Fourth, LSM stores’ internally inherent mecha-
nisms amplify the damage on the read latency of cloud storage
volumes. Irregular flush operations or indeterminate size com-
paction operations cause a sudden increase in the number of
I/Os accessing the cloud storage volume, resulting in high tail
latency. Finally, the tradeoff between cost and performance
increases the cost exponentially to get better tail latency, re-
sulting in significant resource waste and limited throughput
improvement.

One natural solution to the above challenges is contracting
a higher IOPS budget with cloud storage volumes, ensuring
that the LSM store’s I/O number do not exceed the paid IOPS
to maintain optimal latency. However, this raises the costs.
Also, the peak IOPS demand in real production environments
is difficult to predict. Instead, we aim to explore the best
performance of an LSM store under a specific IOPS budget.

This paper presents Calcspar, a cloud storage volume
contract-aware LSM store based on Amazon’s EBS with re-
duced latency spikes, and it tolerates both external workload
fluctuations and internal operation contentions. Calcspar first
employs fluctuation-aware caching, which combines hotspot-
aware proactive prefetching and shift-aware passive caching,
to adapt to changing workloads. The prefetching strategy iden-
tifies hotspots for high load periods and proactively fetches
them during low load periods, thus smoothing out the external
load changes. Then, during the high load periods, the passive
caching leverages the temporal locality to extrude the stale
prefetched data and adapt to hotspot shifts without issuing
extra requests. Calcspar then leverages a congestion-aware
IOPS allocator to assign priority for different internal requests
and avoid elevated latency due to limited IOPS budgets. The

allocator employs a multi-queues throttling structure to pre-
vent thread congestion. The opportunistic compaction then
assigns write requests in different LSM levels into different
priority queues, thus balancing the read amplification and
write throttling. The contributions of this paper include:

1) We conducted an in-depth analysis of the performance
of cloud storage volumes, which first illustrates the un-
written contract between latency and load pressures.

2) We propose a rate-limiting performance model for cloud
storage volumes based on the observations, experimen-
tally validate the model and reveal opportunities to obtain
optimal latency.

3) Our proposed Calcspar is better suitable for AWS cloud
storage volumes where IOPS budgets are vital to the
performance and significantly reduced the tail latency of
LSM-Tree.

The rest of this paper is organized as follows. Section 2
takes Amazon’s EBS as the example to models the perfor-
mance characteristics of cloud storage volumes. The chal-
lenges of reducing the latency for an LSM store on cloud
storage are discussed in section 3. Calcspar designs are then
introduced in section 4 to address these challenges and they
are evaluated in section 5. Finally, the related work and con-
clusions are presented in sections 7 and 8, respectively.

2 Modeling Cloud Storage Performance

2.1 Contract Model of Cloud Storage

The cloud storage providers, such as AWS, offer a variety of
cost-efficient storage volumes for users to meet their distinct
needs and adapt to the changing market. Table 1 shows the
contract model of the cloud storage, which illustrates the price
and performance relationship of the corresponding volume
type. The pricing is based on block storage in the AWS ap-
northeast-2 region in July 2022 [3, 4]. The contract model
indicates that as the price of IOPS increases, the lower latency
of the corresponding type. Thus, it entails users choosing the
appropriate storage volume and IOPS budget based on their
needs. However, the paid IOPS only guarantees the number
of returned I/Os rather than the optimal latency. Also, EBS
performance scaling supports only increasing paid IOPS and
takes hours to days to take effect [2]. There’s no agreement on
how the request would be responded to when the loads exceed
the IOPS. Hence the corresponding latency characteristics are
widely ignored by existing LSM stores.

2.2 Unwritten Latency Performance

To unwrap the hidden latency characteristics and understand
how the above contract model would affect the performance
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Table 1: EBS IOPS prices and latencies.
Type Init IOPS IOPS price ($) Latency (µs)
gp2 3×GB 0.038 ∼200
gp3 3000 0.0058 ∼300
io1 100 0.0666 ∼100
io2 100 0.067 ∼10
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Figure 1: Latency CDF of different cloud storage.

of an LSM store, we first perform a series of experiments on
cloud storage volumes, then proposing a performance model.

Experiment #1: Cumulative Distribution Function (CDF)
of latency under vary I/O pressures. We measure the latency
of EBS volumes gp2, gp3, io1, and io2 with paid 3000 IOPS
for each by sending 4KB random read requests with varying
pressures. We employ fio [22] to tune the I/O pressure by con-
trolling the size of Submit IOPS, which is the number of I/Os
submitted to EBS per second. Yet, the cloud storage volume
won’t handle more than the paid IOPS. Figure 1 shows the
latency CDF results that support the following two findings.

Finding 1: When the I/O pressure exceeds the paid IOPS,
the latency increases deterministically and significantly. On
the contrary, their average latency performance is much better
when the Submit IOPS is under paid IOPS. For example, the
average latency of io2 even reached 100µs.

Finding 2: The IOPS budget is proportional to the cost
when considering Table 1. The slightly higher-cost io2 has
the best and most stable latency. The latency performance of
the cheapest gp3, which initially provides 3000 IOPS, is far
lower than the other three EBS types.

Experiment #2: Limited IOPS budgets. In this experiment,
we explore the latency CDF under different IOPS budgets.
We evaluate one io2 under two different pressures. Request
latency distributions are given in Figure 2. Results indicate
that regardless of the paid IOPS, the access latency when
the Submit IOPS exceeds the paid IOPS is more than 5×
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Figure 2: Latency CDF under different paid IOPS. “1k” means
io2’s paid IOPS. “+” indicates that the Submit IOPS exceeds
the paid IOPS; “-” means not exceed.
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worse than the access latency when not exceeded. The 99th

percentile latency are below 270µs when the Submit IOPS
does not exceed the corresponding paid IOPS. However, when
the Submit IOPS exceeds the paid IOPS, the access latency
increases to 1000∼11000µs. These long-tail latencies degrade
the user experience.

Experiment #3: Elevated latency spike. To explore rea-
sons behind the latency spike under high I/O pressures, we
rigorously control the I/O send rate in a single thread for an
1000-IOPS io2 volumes. The latency of each request is shown
in Figure 3. In the 1st second, when the Submit IOPS does
not exceed the paid IOPS, the latency is lower than 200µs. In
2nd second, the Submit IOPS is 1600, the latencies of the first
1000 requests are identical to that of the first second. However,
the latencies of the rest 600 requests increase significantly
to about 1000µs, which renders 1/IOPS second. The Submit
IOPS in the 5th second is twice the paid IOPS, the first 1000
requests can get low latency while the latencies of the last
1000 requests equal 1/IOPS second again. Although the Sub-
mit IOPS drops to 1000, the latencies of subsequent requests
remain high. Until we pause the workload at the 14th second
and resume it at the 15th second, the latencies recuperate.

Speculative Reason #1: We speculate the reason behind
the observation is due to the speed-limiting mechanism inside
EBS, which handles the current excess I/O by overdrawing
the next 1 second of IOPS, and at the same time, the “punitive”
improvement latency is 1/IOPS to prevent the requests beyond
the payment from continuing to be responded.

For example, the last 600 I/O requests in the 2nd-second
overdraw 600 IOPS from the 3rd second. Hence, only the
remaining 400 (=1000− 600) can be served quickly in the
3rd second. The overdraft is paid off when no I/O request is
sent in the 14th second. Therefore, the latency returns to a
lower level in the following 15∼19 seconds

Since the resources of cloud services are on a pay-per-use
basis, cloud storage providers use this mechanism to maintain
SLAs to prevent users from constantly acquiring benefits
beyond what they paid. Meanwhile, by increasing the delay,
the operation continues from the user’s perspective; thus,
there is no opportunity for recalling the service.

Experiment #4: Thread congestion. The effect of the num-
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ber of threads on the latency is evaluated in this experiment.
Two different I/O pressures are sent to each io2 volume with
different number of threads. Request average latencies are
shown in Figure 4. When the Submit IOPS does not exceed
the paid IOPS, the average latency holds around 120µs and
does not increase with more threads. However, when the Sub-
mit IOPS is higher than the IOPS paid, the access latency first
grows to the level of 1/IOPS seconds while growing linearly
with the number of threads. This phenomenon is consistent
with queuing theory [30], so we conjecture the following
based on the knowledge gained from queuing theory:

Speculative Reason #2: Requests are queued when they
enter the EBS, and the queue size equals the paid IOPS. The
latency in the EBS will follow the following two rules: 1)
When the Submit IOPS is lower than the paid IOPS, the la-
tency of each request will be around the threshold, depending
on the EBS type. 2) When the Submit IOPS exceeds the paid
IOPS, the latency (respone time W) conforms to the queueing
equation W = L/A, where A is the paid IOPS and L is the
number of threads.

2.3 Latency Model of EBS

Based on the above analysis, we construct an EBS latency
model to reveal the internal latency mechanism of cloud stor-
age, as shown in Figure 5.

Suppose an EBS volume a buffer queue (called I/O domain)
to maintain requests, where the queue length is equal to the
paid IOPS. When a request arrives, the I/O domain allocates
a free slot in the queue. EBS then pulls requests from the I/O
domain to promptly executes them. When the number of the
responded requests exceeds paid IOPS, the EBS stops fetching
new requests. Consequently, the pending requests are blocked
until EBS can resume the services. Congestion can occur
under multi-threaded workloads, although the total number
of requests submitted by all threads is estimated to be no
higher than the budget in one second. This is because thread
scheduling uncertainties would fire some working threads
more often, thus accidentally overdrawing the budget. Such
an overdrawing leads the consequent requests to be blocked,
resulting in significantly higher latency per request.

Overdraft Rule. EBS controls the responding speed of the
request to manage the rotation of the I/O domain. Specifically,
we use the “tokens" to describe the speed control mechanism
of EBS. Each cloud storage volume retains a token bucket

IO Perform

IOPS

I/O domain

Response of I/O requestI/O Request

Storage Device

New IOPS  
tokens Slow

return
Fast

return

Overdraft Token
Regular Token

EBS

Figure 5: Estimated EBS IOPS throttling mechanism.

and a borrowing pool, which contains the same number of
tokens equal to the paid IOPS. The user request first gets
the regular token from the token bucket. If no token is in
the bucket, the overdraft token must be obtained from the
borrowing pool. EBS ensures that requests carrying regular
tokens return quickly. In contrast, requests with overdraft
tokens are processed slowly to ensure that the user does not
use too many IOPS to maintain SLAs. The EBS is replenished
with IOPS tokens per second, which are prioritized in the
borrowing pool.

The above EBS latency model explains the aforementioned
findings (#1 and #2) and speculations (reasons #1 and #2)
about cloud storage latency: 1) When the Submit IOPS does
not exceed the paid IOPS, requests get regular tokens and
return quickly, and requests between threads do not block, so
the optimal latency is obtained. 2) When the Submit IOPS
exceeds the paid IOPS, some requests obtain overdraft tokens.
3) When the return speed is lower than the request arrival
speed, the unprocessed requests will fill the I/O domain slots,
and further tokens are replenished by replenishing the bor-
rowing pool first so that the high latency state will last for a
long time. 4) The inter-thread blocking in I/O domain leads
to increasing user-perceived latency.

3 Modeling RocksDB Performance

3.1 RocksDB under IOPS Limitation
As suggested by the above performance model, cloud stor-
age emphasizes more limitations on latency and IOPS rather
than bandwidth. The evidence is that the allowed request size
is relatively large, and increasing the IOPS budget is expen-
sive. Such a contract and performance model fits bandwidth-
sensitive workloads; however, it is unfavored by many latency-
sensitive and request-heavy workloads. For example, our anal-
ysis indicates that the data write and compaction in RocksDB
works well on cloud storage as its’ request sizes are more sig-
nificant and the number of requests is limited. However, the
read performance of RocksDB is seriously affected by the lim-
ited IOPS budget. Many applications that employ RocksDB
to serve metadata indexing expect excellent read throughput
as well as low and stable read latency [27]. Unfortunately,
they will fail to achieve their purpose if the underline device
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Figure 7: Client random read QPS and request latency with
single thread.

is cloud storage.
RocksDB does not work well on cloud storage because

its LSM-Tree is generally a write-optimized indexing struc-
ture instead of tuned for reducing the number of read I/Os.
Moreover, the hierarchical structure of the LSM-Tree results
in many read requests needing to access multiple levels of
the indexing table to locate the corresponding key. On the
contrary, write operations can be cached and aggregated into
large chunks before they finally hit the cloud storage in one
backend request. As shown in Figure 6, we perform read and
write stress tests on io2 storage volumes with different paid
IOPS. As the IOPS increases, the read throughput increases,
and the write throughput remains the same. Therefore, when
deploying RocksDB on the cloud, the maximum 1000MB/s
bandwidth of the cloud storage volume is usually sufficient.
However, the RocksDB read I/Os will easily and repeatedly
hit the IOPS limitations, which causes elevated tail latency.

3.2 Challenges in Avoiding Latency Spikes
This subsection elaborates on several challenges encountered
when optimizing the read performance of RocksDB in cloud
storage. To analyze the performance, we employ Facebook’s
most recent benchmark Mixgraph [12], which synthetically
generates key-value requests that accurately represent the
real-platform load fluctuation.

Challenge #1: The read latency fluctuates significantly be-
cause cloud storage isn’t flexible enough to meet the changing
demand. In this experiment, we send fluctuating read requests
to an io2 volume in a single thread. To reduce expense, the
paid IOPS of io2 storage volumes is the average of fluctuat-
ing requests. The experimental results in Figure 7 show that
RocksDB is significantly affected by the latency character-
istics of cloud storage volumes. When the client queries per
second (QPS) exceeds the paid IOPS, the QPS being executed
(the white part under the black line) can exceed the paid IOPS
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Figure 8: Read amplification of RocksDB.
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Figure 9: Io2 Respond IOPS and latency with 10 threads.

in a brief period, which is due to the overdraft rule. Then exe-
cuted QPS will fall to the paid IOPS and the user-perceived
latency is significantly higher than during low load. This also
results in the user’s excessive requests not being executed
(the red part of the top in Figure 7), and they will be blocked.
As the number of client requests drops below the paid IOPS,
the latency drops to the bottom level, which causes another
problem where the paid IOPS are wasted during low-load
periods, as shown in green in Figure 7.

Challenge #2: The read amplification in LSM-Tree further
strengthens the workloads fluctuation. RocksDB’s write ag-
gregation and hierarchical data layouts result in significant
read I/O amplification. As shown in Figure 8, the actual IOPS
is about 3× of the submit IOPS, amplifying the volatility of
the load, when the access I/O exceeds the paid IOPS, the re-
quest latency will be high. In addition, the L0 and L1 level,
which occupy a very small amount of data, but taking up close
to 1/3 of the I/O accesses.

Challenge #3: Thread I/O competition. Requests among
multiple threads are congested in the I/O domain resulting in
a multiplication of tail latency. We send the same QPS as in
Figure 7 with ten threads. The results in Figure 9 show that
the latency increases 10× at high loads compared to single
threads. This is because with more requests being sent to
the io2 per second, the requests are returned slower than the
requests that enter the I/O domain. When the I/O domain
is full, requests are queued on each thread, so the latency
perception is a multiple of the thread.

Challenge #4: Bulk write blocking. We sent some write
requests while keeping the read QPS constant to measure
the impact of write operations on user read requests, and the
results are shown in Figure 10. At the 70th second, RocksDB
launched compaction operations, which took up more IOPS,
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Figure 10: RocksDB I/Os and latency for a mixed read and
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Figure 11: RocksDB performance at different storage costs.

causing some of the user’s requests to wait in a queue. Hence
the 99th percentile latency bursts to 40ms. Secondly, at the
300th second, even in low workload period, RocksDB inter-
nally initiates some compression operations, which blocks
user requests, resulting in high latency.

Challenge #5: Performance vs. cost. We choose the av-
erage of the highest QPS and the lowest QPS of the load as
the benchmark cost to measure the performance of RocksDB
when choosing storage volumes with different costs under
the same load. Results in Figure 11 show that, as the cost in-
creases, although the latency appears to decrease, the through-
put does not improve due to serious resource waste.

4 Calcspar Design

To build an LSM store that fully exploit the optimal latency
of cloud storage volumes, the high latency caused by the
observed overdraft rules and thread I/O congestion must be
addressed. Rather than simply increasing expenses to improve
the paid IOPS of storage volumes to avoid overdraft and
congestion, we propose Calcspar to investigate the optimal
latency of LSM stores in a cost-effective manner. With a
limited number of IOPS available per second, Calcspar’s four
designs in Figure 12 holistically answer questions on getting
the optimal latency: (1) How to smooth out I/O plateaus that
are higher than the paid IOPS (§4.1 and §4.3). (2) How to
take the most of available I/Os per second for user and LSM
internal I/O requests (§4.2 and §4.4).
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Figure 12: Architecture of Calcspar.

4.1 IOPS Stabilizer for EBS

Calcspar first aims to prevent latency fluctuation from the
EBS. As discussed in §2.2, the overdraft rules do not result
in throughput improvements but higher processing latency
for EBS under high request pressures. Once the EBS enters
the overdraft status, the application is not able to withdraw
any pending requests, thus missing opportunities for further
optimization but waiting. Rather than passively detecting un-
expected latency spikes, Calcspar proactively controls the
number of I/Os during high-load periods by only submitting
requests with the highest priority. To achieve this, Calcspar
employs the observed EBS latency model (§2.3).

Figure 13 details the IOPS Stabilizer, which throttles the
request rate to match the EBS I/O budget, thus eliminating
overdraft latency spikes. The essence is to mimic the token
speed limit mechanism, which insides EBS and is widely
ignored, to the upper-layer applications. We demand each
request must obtain a token before accessing the EBS. The
number of tokens is refreshed every second decided by the
paid IOPS. By controlling the number of tokens, Calcspar
guarantees requests sent to EBS do not exceed the paid IOPS,
thus EBS processing latencies can be secured in the tens of
microseconds. Consequently, applications can expect more
stable latencies once a request successfully obtains a token.

4.2 Congestion-Aware IOPS Allocating

The second goal of Calcspar is to eliminate the latency spike
caused by request congestion among threads. To minimize
cloud storage costs, we assume the paid IOPS is only guar-
anteed to meet I/Os for the average usage. Hence, the muti-
threads design adopted by modern LSM stores will inevitably
congest due to limited tokens provided by the IOPS Stabi-
lizer. Many works prioritize the execution of latency-sensitive
I/Os by adjusting the I/O stack or leveraging multi-device
parallelism [11, 20, 26]. However, they can not prevent less
critical I/O requests from occupying precious available tokens
in each time period (e.g. one second). To solve this problem,
Calcspar uses multi queues of different priority together with
the time window policy to ensure that critical requests are not
occasionally blocked and are served in a best-effort manner.

Multi-priority Queues. Calcspar employs a multi-priority
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Figure 13: Congestion-Aware IOPS Allocator and Stabilizer

queue mechanism to categorize different I/O requests and
allocate I/O tokens based on a dynamic time window pol-
icy. Calcspar treats I/Os that straightly affecting the LSM
store as user-aware requests, and classifies I/Os that do not
instantly hinder user requests as non-user-aware requests.
User-aware requests are mainly for responding foreground
user requests, so Calcspar places them into the highest pri-
ority queue. Non-user-aware requests are mainly from LSM
background tasks (e.g., compactions and prefetching). Since
different background tasks impact the read/write amplifica-
tions differently, Calcspar assigns them to medium-priority
or low-priority queues. For example, prefetching requests go
into the lowest priority queue. Note that compaction requests
are further differentiated later (§4.4).

Dynamic Time Window Policy. Calcspar adopts a dy-
namic time window policy to optimize the utilization of paid
I/Os per second. Under this policy, a time window represents
a period within a second during which Calcspar grants re-
quests to acquire tokens on a best-effort basis, so the size
of a window matches the priority of the queue. The time
windows of the queues are aligned at the tail within each one-
second period, enabling Calcspar to prioritize processing I/Os
from higher priority queues before those from lower priority
queues. This ensures that requests from the highest priority
queue are processed first, minimizing the chances of them be-
ing blocked by middle- or low-priority requests. Specifically,
Calcspar always allocates a one-second time window for the
high-priority queue. For other queues, Calcspar dynamically
adjusts their time window sizes based on the allocated tokens
in the previous second, using the formula Allocated_IOPS /
Paid_IOPS. For example, during a one-second period, Calc-
spar assigns the time windows [0,1), [0.7,1), and [0.9,1)
to the high-, middle-, and low-priority queues, respectively.
In this case, the time window [0.9,1) signifies that requests
in the low-priority queue cannot acquire tokens until the 0.9th
second. Conversely, requests in the high-priority queue with
the time window [0,1) are eligible to compete for tokens
upon arrival.

4.3 Fluctuation-Aware Caching
Considering the read I/O amplification problem of an LSM
store will cause significant latency spikes on the EBS, an EBS
latency-aware cache plays an essential role on flattening I/O
request plateaus to the EBS when the workload is heavy as
well as improving the paid IOPS utilization when the work-
load is light. We find few existing cache schemes are designed
on this purpose, and their design metrics do not take into ac-

count the available paid IOPS of the underlying EBS. This
will significantly affect choices of the optimal cache policy
when workload fluctuates.

Hotspot-Aware Proactive Prefetching. When the work-
load is light, Calcspar consumes spare paid IOPS to trade
for a better cache hit ratio by prefetching SSTable. Calcspar
manage data in the unit of EBS-block (e.g., 256KB, which is
the maximum size allowed by the EBS for one I/O request),
this ensures that each prefetching I/O reads as many data as
possible. Calcspar then maintains a global table to track the
hotness of EBS-blocks using the exponential smoothing al-
gorithm based on their access history. Furthermore, Calcspar
periodically and proactively rewarms the frequently accessed
LSM top layer (e.g., L0 and L1) data, because LSM stores
retrieves key-value pairs in a top-to-bottom layer fashion.

Shift-Aware Passive Caching. When the workload is
heavy, an EBS latency-aware cache should minimizes its I/Os
to the EBS while improving space efficiency. Calcspar man-
ages the cache space passively in this case. Calcspar refines
cache space management in the unit of 4KB and uses the LRU
policy for better space efficiency because evicting any data
can be punished by competing one I/O with user requests to
access the EBS.

Cache Integration. Calcspar integrates the two cache poli-
cies introduced above and switches between them based on
workload. These two policies manage the same cache space,
but at any time, only one is active and evicts data. When the
highest priority queue requests consume more than 95% of
the tokens, Calcspar considers the workload to be heavy and
activates the Shift-Aware Passive Caching policy. Otherwise,
Calcspar harvests the available paid IOPS using the Hotspot-
Aware Proactive Prefetching policy. It is worth noting that
the global track table has a negligible memory overhead, as
1GB of data requires about 64KB of memory. Furthermore,
the minimal cache pollution resulting from coarse-grained
hotspot-aware proactive prefetching during periods of low
load does not lead to a degradation in overall performance.
This is because only frequently accessed data, known as hot
data, is loaded based on historical access patterns. Addition-
ally, given the ample IOPS budget available during low load
and the consistently low latency of cloud storage, the penalty
incurred from cache misses is negligible.

4.4 Opportunistic Compaction
The last goal of Calcspar is to remedy LSM compaction I/Os.
After launching a compaction, its bulk read operations on
at least two SSTables and write operations on at least one
SSTable will compete with user I/O requests. An LSM store,
on the other hand, retrieves a key-value pair level by level
and merges SSTables in a copy-on-write manner, providing
Calcspar with opportunities for differentiating I/Os for com-
paction jobs on different levels, thereby mitigating the compe-
tition on paid IOPS from LSM compaction operations. For L0
SSTables, which significantly affects read I/O amplifications,
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Calcspar prioritizes compaction on them. For L1 and L2 SSTa-
bles, Calcspar puts their compaction I/Os into the medium
priority queue, where they are opportunistically processed.
As for SSTables in levels below L2, Calcspar assigns these
compaction I/Os to the lowest priority queue, since short-term
deferral has no noticeably affect on performance.

5 Evaluation
We implement Calcspar based on RocksDB and evaluate it
to demonstrate its advantages. Specifically, we perform an
extensive time delay to answer the following questions. (1)
How does Calcspar perform compared to the state-of-the-
art approach? (§5.2) (2) The impact of several techniques of
Calcspar on performance. (§5.3, §5.4, §5.5) (3) The sensitivity
analysis of Calcspar (§5.6).

5.1 Experimental Setup
Test platform. We employ the most widely deployed AWS
as our test platform. The EC2 instance is m5d.2xlarge, con-
figured with 8 vCPUs and 32 GB Memory. A representative
io2 storage volume with 100 GB capacity and 1000 IOPS is
used by default for performance evaluation.

Comparisons. We compare Calcspar with RocksDB and
the other three state-of-the-art key-value stores. They are: 1)
Autotuned RocksDB [6]: isolating the I/O bandwidth between
user requests and internal flush/compaction operations to im-
prove tail latency. 2) SILK [10]: Opportunistically allocates
bandwidth to different internal I/O operations and allows low-
level Compaction preemption. 3) CruiseDB [25]: Maintains
SLAs employing an adaptive access mechanism based on
memory usage, removes L0, and optimizes memory buffer.
To make a fair comparison, all the databases take 4 threads
for compaction and 4 for flushing. The default key, value, and
SSTable sizes are set to 16B, 256B, and 8MB. The size of
Memtables is set to the default value for RocksDB. A cache
space of 500MB is opened for each database.

Table 2: YCSB workload characteristics.
Workload Description

A write-intensive:50% Update, 50% Read, Zipfian
B read-intensive: 5% Update, 95% Read, Zipfian
C read-only: 100% Read, Zipfian
D read-latest: 95% Read, 5% Insert, Latest
E scan-intensive: 5% Update, 95% Scan, Zipfian
F write-intensive:50%Read,50%read-modify-write,Zipfian

Benchmarks. Two benchmarks, Mixgraph [12] and YCSB
[15] are used to evaluate performance. YCSB is a widely used
benchmark for evaluating the key-value store systems, provid-
ing six workloads configurations and key-value pair access
distribution models listed in Table 2. YCSB can also provide
uniform distribution workloads. Mixgraph is the latest bench-
mark test developed by Facebook. The workload is more
spatially localized to simulate Facebook production work-
loads better and generate more accurate key-value queries.
Benchmarks run in 10 threads in all the key-value stores by

default, except for SILK, as multi-threading is not supported.
In all experiments, 100 million Key-value pairs are first in-
serted into the key-value store system, and the key-value store
has about 25 GB of data in its initial state.

5.2 Overall Performance
We first use the latest Mixgraph with fluctuating load char-
acteristics to evaluate the overall performance of the five
key-value stores on the cloud. Then we evaluate the perfor-
mance using the YCSB benchmark and explore the effect
under uniform load using the YCSB benchmark. To guar-
antee the fairness of the evaluation, the hardware resource
allocation is the same for each key-value store. All evalua-
tions start by randomly writing 100 million key-value pairs
and executing one million requests.

The Mixgraph benchmarks. Figure 14 shows the perfor-
mance for different read/write ratio configurations under Mix-
graph. Since read requests affect IOPS more, the ratio of read
requests is increased by varying the number of write requests.
Based on the comparison of test results, the following conclu-
sions can be drawn: 1) The throughput of Calcspar is better
than other systems under all read ratios. In Figure 14(a), Calc-
spar throughput exceeds paid IOPS the most because of the
high spatial locality of the Mixgraph load that is fully ex-
ploited. 2) Calcspar significantly reduces the average latency.
As seen in Figure 14(b), the average latency of Calcspar does
not exceed 200µs, which is 45∼66% lower than the average
latency of other key-value store systems. 3) Calcspar achieves
a lower and more stable tail latency. Figure 14(c) shows the
statistical plot of 99th percentile latency, and it can be seen
that Calcspar has the smallest box plot volume with almost
no outliers of extra-long delays. The 99th percentile latency
can be stabilized at around 0.55ms with minimal fluctuations.
CruiseDB also reduces tail latency by limiting request access,
but it is unstable and sacrifices throughput.

The YCSB benchmarks. We use YCSB workloads with
stronger time locality for performance evaluation. Figure 15
and Figure 16 show the throughput and the 99th percentile
latency for each key-value stores system under the six work-
loads of YCSB. Calcspar can guarantee that the throughput
is not lower than RocksDB in all cases, and the throughput
can be improved under workload F. Throughput is not further
improved due to the cloud storage IOPS budget constraints.
Furthermore, the hot key of Zipfian distribution is scattered
throughout the whole key space, resulting in underutilization
of aggressive prefetching cache performance. Calcspar’s main
goal is optimizing latency, and as shown in Figure 16, the 99th

percentile latency of Calcspar is reduced by 50% compared
to other schemes. The best access latency is obtained because
Calcspar is throttling the number of I/Os per second to access
the cloud storage volume within a range of no more than
paid IOPS. And cache redirection solves the queuing latency
problem, so the latency per request is low. In other systems,
requests beyond the paid IOPS will only to debit without strict
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Figure 14: Evaluation results with different read request ratios under Mixgraph workload.
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Figure 15: Throughput under YCSB workload.
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Figure 16: The 99th percentile latency under YCSB workload.

limits, and the request latency will be significantly higher.
For uniform workloads. We further use YCSB to evaluate

the performance of calcspar under a uniform workload. Figure
17 shows that although the fluctuation-aware caching is less
efficient under Uniform load, Calcspar exhibits shorter latency
due to its flexible I/O throttling. CruiseDB’s adaptive access
mechanism can also reduce the average latency, but its tail
latency increases to 20ms.

5.3 Congestion Mitigation Effectiveness

Here, we investigate the effect of Calcspar on solving thread
congestion. We first test the latency performance under dif-
ferent threads and then explore the effect of the time window
allocation IOPS strategy.

Avoid multi-thread congestion. Figure 18 shows the av-
erage latency and 99th percentile tail latency of the experi-
ment running the default Mixgraph load on io2 with 1k paid
IOPS using different user threads. Calcspar can keep the aver-
age latency at 175µs, 99th percentile latency always around
500µs, and the other schemes keep increasing both the av-
erage latency and 99th percentile latency as the number of
threads increases. On cloud drives, the 99th percentile latency
growth reaches 60× under 20 threads. Because other Key-
value stores limit bandwidth without restricting the granularity
of I/O. Therefore, as the number of threads increases, con-
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Figure 17: Evaluation results under Uniform workload. "RR"
means random read, "RRW" means 50% random read and
50% random write.
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Figure 18: The latency with different user threads.

gestion becomes increasingly severe. Calcspar utilizes the
EBS rate-limiting model, and the Congestion-Aware IOPS
allocating avoids requests queuing in the I/O domain queue.

IOPS allocation strategy evaluation. We compared Calc-
spar’s time window policy allocate IOPS (TWA) with three
other IOPS allocation schemes: contention IOPS without al-
location (NA), static allocation of IOPS among three queues
in the ratio of 6:3:1 (SA), and dynamic allocation of IOPS
based on the usage of the highest priority queue (DA). Us-
ing mixgraph load, where 5% are read requests and 95% are
write operations, guarantees enough flush and compaction
operations with 10 user threads running. The evaluation re-
sults in Figure 19 show that the time window strategy has
a good throughput and 99th percentile latency is reduced by
50% compared to the NA. The SA has the worst performance
because of resource wastage. The DA can fully utilize IOPS
and the average latency is the lowest, but the 99th percentile
latency is higher than TWA because the requests in other
queues will block user requests.
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Figure 19: Performance of four IOPS allocation schemes.
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Figure 20: Hit ratios of different caching schemes under dif-
ferent workloads.

5.4 Cache Effectiveness
Then, we evaluate the effect of Fluctuation-Aware Caching
regarding the cache hit ratio, the impact of cache size and the
corresponding read amplification.

Cache Hit Ratio. We compared Calcspar’s fluctuation-
aware cache (FA-Cache) with only passive cache (P-Cache)
and only proactive prefetching cache (PP-Cache) under YCSB
and Mixgraph workloads. Figure 20 shows that FA-cache has
the highest hit ratio under both workloads. For YCSB load,
the hotkeys are randomly distributed in the key space, so it is
more suitable for P-cache with small prefetching. However,
under Mixgraph load, the hotkeys are relatively concentrated
and more suitable for PP-cache. Calcspar’s FA-cache com-
bines these two advantages. Also, we can find less than 5% of
data space can achieve up to 60% hit rate, which can increase
the overall capacity of the system at a lower cost.

Impact of Cache Sizes. We increased the cache size from
0.1% to 20% of the total number to explore its impact on
performance. Figure 21 shows that Calcspar outperforms
RocksDB regarding latency at any cache size. With 1% cache
size, Calcspar can reduce the average latency to below 200µs.
RocksDB’s block cache requires the cache size at least 5% of
the total data to get an average latency close to 200µs, but the
99.9th percentile latency is still as high as 1200µs.

Read amplification. We count the number of read requests
sent from the client side and the I/O accesses to the EBS to
explore the effect of Calcspar in mitigating read amplification.
We use Mixgraph default configuration for evaluation and
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Figure 21: Average latency and 99.9th percentile latency of
RocksDB and Calcspar with different cache sizes under Mix-
graph load.
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Figure 23: Write performance.

compare it with RocksDB without cache and RocksDB with
the same size (500MB) blockcache turned on. In Figure 22,
the results show that Calcspar sends the least number of I/O
requests to EBS with the same user requests, even during peak
periods, because the fluctuation-aware caching can cache L0
and L1 in advance during low-load periods. RocksDB with
blockcache enabled is limited by the IOPS budget during high
load, and RocksDB without blockcache enabled sends more
I/O to EBS during low load because of read amplification.

5.5 Impact of Opportunistic Compaction
Write performance. We compare the performance of Calcspar
with the rest of the schemes under full write load. Figure
23(a) shows the throughput of 10 threads writing 100 million
key-value pairs randomly (except for SILK single threads).
Compared to RocksDB, Calcspar’s write performance is only
1.2% lower. Both Autotuned RocksDB and CruiseDB allocate
bandwidth to prioritize upper-level write operations, which
improves performance. SILK can only write in a single thread,
so performance is poor.

Write amplification. Figure 23(b) shows that Calcspar re-
duces write amplification the most because Calcspar blocks
L0 level to L1 compaction slightly. However, the write per-
formance can not be improved because of IOPS allocation.
CruiseDB removes the L0 level to reduce the write amplifi-
cation. SILK prioritizes the execution of flush and L0 level
compaction, resulting in frequent reads and writes of L1 level
data, which in turn causes higher write amplification.

5.6 Sensitivity Analysis
Paid IOPS of EBS. We first evaluate five KV stores on io2
with different paid IOPS using Mixgraph to explore the im-
pact of paid IOPS on performance, where Mixgraph uses the
default read/write configuration and ensures that the average
value of load fluctuations is equal to paid IOPS. Figure 24(a)
shows that regardless of the paid IOPS of io2, Calcspar en-
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Figure 25: Performance at different workload intensities.

sures the 99th percentile latency stays low. As the paid IOPS
increases, the request latency under high pressure becomes
progressively smaller, but at 15k paid IOPS, Calcspar’s 99th

percentile latency is still 24% ~50% less than other solutions.
Type of EBS. We use four types of EBS volumes with 3000

IOPS to explore the applicability of Calcspar on AWS EBS.
Figure 24(b) shows that Calcspar exhibits the lowest 99th

percentile latency on all four EBS compared to the remaining
four options. As the performance of the storage volume gets
better, the 99th percentile latency of Calcspar gets lower, e.g.,
io2 has a lower 99th percentile latency than gp3 by 200µs.
In contrast, the other schemes have a higher latency or no
change. The results fully illustrate that our scheme is suitable
for various types of cloud block storage devices in AWS.

Workload pressure. We evaluate the pressure resistance
by varying the workload intensity, which is the ratio of the
average read requests of Mixgraph fluctuating load to paid
IOPS of io2. Figure 25(a) shows that Calcspar can handle up
to twice the paid IOPS for read requests. Figure 25(b) shows
that Calcspar can guarantee an average latency of 200µs even
at twice the workload, while the rest of the solutions have
higher latency when the read workload exceeds paid IOPS.
The 99th percentile latency of Calcspar is still the smallest at
high workloads in Figure 25(c). Overall, Calcspar has good
pressure resistance and adaptability.

Different Cloud Vendors. To demonstrate the versatility
of Calcspar, we conducted a performance comparison be-
tween Calcspar and vanilla RocksDB on three prominent
cloud provider platforms, namely AWS, Alibaba Aliyun [7],
and Microsoft Azure [29]. Our evaluation encompassed in-
stances equipped with 8v CPUs and 32GB RAM, coupled
with cloud block storage volumes configured with 5000 paid
IOPS. Specifically, AWS utilized EBS io2, Aliyun utilized
ESSD PL1, and Azure employed Azure managed disk Pre-
mium SSD v2. Figure 26 illustrates the evaluation results,
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Figure 26: Performance at different cloud vendors.

highlighting Calcspar’s better performance across all three
cloud storage types when compared to vanilla RocksDB. On
Aliyun, Calcspar exhibited notable achievements, with a sig-
nificant decrease in the 99th percentile latency from 9.6ms
to 509µs and an average latency reduction of 69.5%. These
improvements arise from Aliyun’s utilization of a throttling
mechanism that triggers longer latencies when the number of
requests exceeds the contractual agreement, which Calcspar
is designed to avoid. While Azure managed disk Premium
SSD v2 demonstrated comparatively higher latency than the
other two cloud block storage devices, Calcspar still high-
lights its efficacy and managed to reduce both average and
99th percentile latencies.

6 Discussion
Cloud Storage Vendors. We selected AWS EBS as a rep-
resentative cloud storage platform due to its significant
market share (32%) and its provision of easy-to-use, high-
performance block storage at any scale. While different cloud
storage vendors may vary in terms of equipment and pricing
for block storage volumes, they all follow an IOPS-based con-
tract model to deliver services to the public. This model is
also adopted by other providers such as Microsoft Azure [29],
Google Cloud [18], and Alibaba Aliyun [7]. During periods of
bursty large numbers of requests, it is common for paid IOPS
to be exceeded, leading the cloud provider to enforce request
processing limits in order to uphold the contract. However,
simply restricting request processing or increasing the latency
of each request would result in higher tail latency. Calcspar
mitigates such issues through a series of techniques that can
be applied across different cloud storage platforms. Figure 26
validates Calcspar’s design on various representative cloud
storage vendors.

Throttling Models. Cloud providers employ different mea-
sures to maintain contract compliance and minimize the im-
pact on other users within the cloud environment. AWS EBS
utilizes an overdraft rule, which offers little opportunity for
applications to prioritize their request queues. Experiment 3
in Section 2.2 demonstrates that once requests are queued
in EBS, they cannot be withdrawn to accommodate more ur-
gent tasks. The overdraft rule, in effect, obscures the traffic
congestion from users. On the other hand, blocks user re-
quests for a relatively long duration, resulting in prolonged
tail latency. This situation is unfavorable as it halts request
processing during that period. Other cloud storage providers
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employ varying throttling mechanisms, often achieved by in-
troducing increased latency. Consequently, enabling priority
masks or rejecting overdraft requests would be beneficial. An-
other possibility is to allow users to employ customized cache
algorithms to digest temporary workload peaks.

7 Related Work
Latency-aware Storage Stack. Many works focus on provid-
ing fast I/O services by optimizing the I/O stack [11] to exploit
the µs-scale latency of storage devices. Blk-switch [20] brings
network switch techniques into the block storage stack and
proposes an I/O scheduler, thus solving the head-of-line block-
ing problem and achieving low tail latency. FastResponse [26]
targets on ultra-low latency SSDs, and it coordinates the
scheduling of different I/O levels to mitigate I/O interfer-
ences. PAIO [28] proposes an I/O optimization framework,
enabling flexible I/O scheduling policies through I/O informa-
tion propagation. However, these efforts focus on either how
to fully explore the potential of multi-core/hardware resources
or how to alleviate contentions between latency-sensitive and
throughput-demanding applications. Calcspar targets LSM-
Tree key-value stores over the cloud storage, and Calcspar
addresses the I/O contentions between user read I/Os and
LSM internal I/Os, achieving low latency.

LSM Store Compaction. Compaction I/O operations
within LSM-Tree will compete with user read operations,
resulting in long-tail latency. There are approaches to re-
duce data writes by delaying or merging some compaction
actions [31, 33, 41]. Some studies reduce contention for stor-
age devices by tuning and scheduling internal tasks [9,10,13].
Some adaptive compaction schemes have also been proposed
for performance optimizing [16, 35]. However, these are all
compaction optimizations targeting bandwidth-constrained
SSDs. Optimizing compaction operation alone is not enough,
as user-read requests already dominate the paid IOPS.

Software and Hardware Co-design for Latency. Hard-
ware and software coordination can better reduce long-tail
latency. For example, RStore [24] fully utilizes the advantages
of multiple cores to reduce the tail latency of in-memory key-
value stores. BCW [37] achieves low write latency on HDDs
by reshaping patterns that utilize the HDD internal buffer.
Vigil-KV [23] demonstrates the latency state of NVMe SSDs
using a predictable latency mode interface and ensures con-
trollable tail latency by scheduling compaction/flush opera-
tions and client requests.

Data Cache. Prefetching or caching frequently accessed
data to a high-performance cache device can greatly improve
read performance by reducing the number of slow I/O oper-
ations. Leaper [40] leverages machine learning methods to
predict hot data and proactively prefetch them to the cache.
AC-Key [38] aims at LSM cache mechanisms in the mem-
ory, hybrids different kinds of cache objects, and dynamically
adjusts their sizes to improve cache efficiency. To reduce
cache invalidation due to hotspot shifting and internal com-

paction, A parallel cache prefetching method [43] is proposed
to prefetch the most valuable blocks into the cache by hotspot
key-value pair tracking. Thus, read operations are not affected
by the compression. LSM-tree [36] uses a compaction buffer
to minimize these cache pollutions.

Reduce Storage Cost. Cloud storage users are often sensi-
tive to storage costs, and they usually hybrids cloud storage
volumes of different prices to cut the overall storage cost. Mu-
tant [42] controls the overall storage cost by adaptively tuning
the size of expensive high-performance storage volumes. Pris-
mDB [32] pines hot data in the upper LSM levels to reduce
storage costs. RocksMash [39] stores all metadata and fre-
quently accessed data in local storage, while putting the rest
in the cloud for cost efficiency. SA-LSM [44] uses survival
analysis algorithms to predict hot and cold data at records
granularity, and schedules compaction with external services
to reduce costs by storing hot and cold data separately. Calc-
spar trades higher IOPS capabilities with the smaller memory
or higher performance storage devices as cache, rather than
simply purchasing more IOPS for cloud volumes.

8 Conclusions
This paper profoundly explores and models the latency mech-
anism of AWS’s EBS cloud storage. Experimental analy-
ses show that limited IOPS budgets in EBS contracts cause
high latency spikes to endpoint users when requests exceed
a threshold. We specifically investigate the LSM-tree based
key-value store, which both amplifies external workload fluc-
tuations and develops internal request congestion. We propose
Calcspar, a contract-aware LSM store for cloud storage with
reduced latency spikes. The fluctuation-aware caching strat-
egy in Calcspar reduces 99th percentile latency by more than
66% under varying workload pressures without incurring no-
ticeable caching costs. The congestion-aware IOPS allocation
further avoids up to 60× tail latency spikes by assigning differ-
ent priorities for internal operations and preventing thread I/O
contentions. Our sensitivity study demonstrates that Calcspar
is generalizable for different cloud storage volumes. Accord-
ingly, Calcspar can be offered as a companion service to cloud
storage providers, significantly balancing the performance and
cost for endpoint users.
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