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Message from the 
USENIX ATC ’23 Program Co-Chairs

Introduction
Welcome to the 2023 USENIX Annual Technical Conference (USENIX ATC ’23). We are excited to be holding an in-
person event with minimal visa issues requiring remote participation. Similar to last year, USENIX ATC ’23 is co-located 
with OSDI. We very much look forward to meeting everyone in the systems community whether they attend USENIX ATC, 
OSDI, or both. The rest of this document provides some insights into the submission and selection process that culminated in 
65 accepted works that will be presented at the conference.

Submissions
As in previous years, USENIX ATC ’23 solicited three types of papers. In addition to full length, 11-page research papers, 
authors could submit 5-page short research papers that describe complete and properly evaluated ideas using fewer pages. 
Finally, to align with the USENIX mission of bringing together researchers in academia and systems practitioners, we 
continued the practice of soliciting papers describing the design, implementation, analysis, and experience with real-world 
deployment of systems and networks in a deployed systems track. These “Deployed Systems” papers had different criteria for 
acceptance from research papers, not needing to present new ideas or results to be accepted, but needing to convey practical 
insights.

A submission to USENIX ATC ’23 involved more than a single PDF file. On the HotCRP submission system, each submission 
also contained an artifact description that included further details about the experimental environment. Optionally, authors 
could include a textual description of changes from previous submissions to help in the case where reviewers may have seen 
prior iterations of the paper while on other PCs. Finally, if on the deployed systems track, authors were required to specify a 
justification for why the paper belonged in that track.

Program Committee Selection Process
We assembled a program committee with many goals in mind: good coverage across diverse computer-systems topics, balance 
between academia and industry, a mix of veterans of prior USENIX ATC PCs with individuals in early stages of their  
professional careers, geographic diversity, and adherence to the USENIX diversity and inclusion principles. The assembled PC 
had 107 members from 19 countries, including 44% from North America, 33% from EMEA and 21% from APAC. 70% of the 
PC was from academia and 30% from industry, though some PC members from academia were also affiliated with industry. 
55% of our PC were veteran PC members who had served USENIX ATC at least once in the past 4 years. Our PC had 26% 
female representation, which is higher than recent years (e.g., 18% for USENIX ATC ’22). The main areas of expertise of PC 
members were Storage (24%), Distributed Systems (25%), Operating Systems (26%), Security (15%), Networking (12%), and 
Machine Learning (17%).

For the PC selection process, which was done well in advance of the submission deadline, we drew from a pool of experienced 
PC members who had served at least once in the prior 4 iterations of USENIX ATC, removing those who had served 4 times in 
a row and those who were concurrently serving for OSDI. In making our invitations, we prioritized several factors, including the 
following: reviewers flagged in HotCRP as producing good reviews for previous conferences; recommendations of researchers 
(usually early career) from invitees who were unable to serve; topic matches, trying to anticipate the need for Machine Learning 
expertise based on topic ratios from last year; and female representation, as it has been low in the USENIX ATC community.

During the review process, there were a few cases in which we needed expertise for a paper in which all reviewers identified 
low levels of expertise. For these, we solicited recommendations from the PC and invited external reviewers.

On January 9th, 2023, we held a synchronous online PC pre-review meeting to go over the unique aspects of USENIX ATC ’23 
submissions, and an overview of the duties and processes involving PC members, including bidding, reviewing rounds, online 
discussions, the author rebuttal, the PC meeting, and shepherding. Although attended by both veteran and new PC members, we 
hoped the meeting helped to welcome new PC members and provide opportunities for questions about the process. We held the 
meeting twice (7 hours apart) in an attempt to accommodate the various timezones of our international PC.

Review Process
USENIX ATC ’23 received 353 submissions across all tracks, which was 10% fewer than USENIX ATC ’22. Of these, 22 
(6%) were deployed systems papers and 19 (5%) were short papers. The most popular topics for submissions, as specified by 



authors were: Clouds, clusters, data centers (29%); ML/AI (24%); Storage, file systems (23%); Parallel and Distributed  
Systems (22%); Operating Systems, Kernels (14%); and Networking (14%).

We adopted a double-blind review process to minimize bias with strict anonymity rules. Four papers were ultimately rejected 
due to including author names, directly identifying or sharing a name or title with an existing technical report, or directly 
linking to a github repository under the author’s name or institution. We identified one of these cases prior to reviewing, but 
the others were detected during the reviewing process.

We rejected three other submissions without review due to violations of the formatting guidelines, two papers for exceeding the 
length limits, and one that was too short and did not contain sufficient detail. Of particular note was the misuse of appendices, 
including very long appendices and appendices that contain information that is integral to the paper.

In order to increase the quality and relevance of reviews, we ran a bidding process in which PC members had 8 days to bid on 
which papers they felt were in their competency/expertise area and for which they could provide knowledgeable reviews. PC 
members also updated their topic preferences in HotCRP, which along with bid values were used by the HotCRP algorithm 
to assign papers. We took care to ensure that PC members requesting a lighter workload were assigned fewer papers in each 
round. Especially in the second round, we manually adjusted reviewers in cases where reviewer confidence was low, based 
mainly on PC members’ bid values.

USENIX ATC ’23 had two double-blind rounds of reviews. The goal of the first round was to identify early rejections and also 
identify for which papers the round 1 reviewers lacked sufficient expertise. In the first round we assigned 3 reviewers per paper, 
resulting in 1044 reviews. The reviewers had 5 weeks to review papers and 2 weeks for asynchronous online discussion. We 
notified authors of papers rejected in round 1 (216/353 = 61%) early (sent on March 22nd) to give these authors more time to 
prepare a future submission.

In the second round, we assigned at least two additional reviewers to the 132 submissions not rejected in round 1, amounting to 
284 additional reviews, bringing the total number of reviews for round 2 papers to 5. The reviewers had 3.5 weeks to review these 
additional papers followed by 3 days of asynchronous online discussion to identify the most important questions for authors to 
respond to. Authors had 3 days to write a recommended 500 word response with a limit of 1000 words. Almost all authors wrote 
responses within this range. The reviewers continued the asynchronous online discussion for 1.5 weeks, converging to pre-accept, 
pre-reject, and pc-discussion decisions on papers. 48 papers were pre-accepted, leaving more discussion time for controversial 
papers at the synchronous virtual PC meeting. 37 papers were selected for discussion at the PC meeting, of which (22/37 = 59%) 
of papers were accepted.

We held a two-day synchronous virtual PC meeting with the goals of providing a high-bandwidth channel to resolve  
discussions, exposing all PC reviewers to a broader set of papers to level-set on quality, raising broader issues that may span 
multiple submissions and ultimately selecting the final program. We used Zoom, managing conflicts with breakout rooms 
and HotCRP to manage the discussion order. To manage timezones, we split the paper discussions into 2-hour blocks based 
on a Doodle poll of timezone availability for the specific reviewers on each paper. PC members were encouraged to attend all 
sessions regardless of whether one of their papers was being discussed. While it remains a challenge to have full PC  
participation for the entire meeting due to the wide range of timezones, we found the discussions to be lively and effective.

The PC selected 65 papers for an 18% acceptance rate. 11 were deployed systems papers, 3 were short, and the other 51 were 
full length research papers. Acceptance was based on the quality of the submissions; in-person conference constraints had 
no bearing on our decisions. After selecting the program, the program chairs selected two best papers based on nominations 
from the PC.

Artifact Evaluation Process
USENIX ATC ’23 continued to run a joint artifact evaluation process with OSDI, led this year by Jianyu Jiang, Nathan  
Rutherford, and Cesar A. Stuardo. The artifact evaluation committee chairs assembled a committee consisting of 106  
members. The authors of all accepted papers were invited to submit an artifact for an evaluation. 41 out of the 65 USENIX 
ATC papers (63%) did so. 98% of artifacts received an “Available” badge, 85% received a “Functional” badge, and 63%  
received a “Reproduced” badge. 61% of papers received all three badges (some artifacts were reproduced, but are not  
available).

Daniel Porto, researcher at INESC-ID in Lisbon, Portugal, passed away on April 29, 2023. He was a very talented and  
dedicated researcher, and a recognized expert in the areas of distributed systems and Byzantine consensus. His research led 
to several impactful publications in venues like EuroSys, OSDI, or DSN, and he served with a sense of community in several 
committees including the 2023 USENIX ATC/OSDI artifact evaluation committee. As a human being, Daniel will be  
remembered as an extraordinary person with an endless desire to help others. He touched the lives of many with his  
incredible generosity and kindness.
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Abstract
Existing confidential VMs (CVMs) experience notable net-

work performance overhead compared to traditional VMs.
We present the first thorough performance analysis of var-
ious network-intensive applications in CVMs and find that
the CVM-IO tax, which mainly comprises the bounce buffer
mechanism and the packet processing in CVMs, has a signif-
icant impact on network I/O performance. Specifically, the
CVM-IO tax squeezes out virtual CPU (vCPU) resources of
performance-critical application workloads and may occupy
more than 50% of CPU cycles. To minimize the CVM-IO
tax, this paper proposes Bifrost, a novel para-virtualized I/O
design that 1) eliminates the I/O payload bouncing tax by
removing redundant encryption and 2) reduces the packet
processing tax via pre-receiver packet reassembly, while still
ensuring the same level of security guarantees. We have imple-
mented a Bifrost prototype with only minor modifications to
the guest Linux kernel and the userspace network I/O backend.
Evaluation results on both AMD and Intel servers demonstrate
that Bifrost significantly improves the performance of I/O-
intensive applications in CVMs, and even outperforms the
traditional VM by up to 21.50%.

1 Introduction
As more and more data-processing applications [9, 13, 14, 57]
embrace the cloud, widespread concerns are being raised
about the security and privacy of data in-use on the cloud.
To address these concerns, various confidential computing
solutions have been proposed to safeguard data from unau-
thorized parties. Among them, confidential virtual machine
(CVM) solutions, such as AMD SEV [2, 3], Intel TDX [32]
and ARM CCA [8], run guest operating systems (OSes) in
hardware-isolated environments. In these environments, the
complex virtualization stack, such as hypervisor and host OS,
is no longer trusted and cannot access data in guest OSes arbi-
trarily, while still providing resource management functions.
This CVM abstraction transparently protects user workloads
without requiring any modifications and integrates easily into

�Corresponding author: Zeyu Mi (yzmizeyu@sjtu.edu.cn).

the existing cloud infrastructure. Therefore, it has gained pop-
ularity and is increasingly deployed in data centers.

Unfortunately, while the speed of modern network de-
vices continues to grow (Terabit Ethernet [60] like NVIDIA
400Gbps NIC [51]), the security protections introduced by
existing CVM solutions have a significant negative impact on
network performance. This paper first conducts a series of ex-
periments to thoroughly analyze the network I/O performance
of CVMs. We evaluate widely-deployed network-intensive
applications in an AMD SEV-ES/SNP server and a simulated
Intel TDX server. The results demonstrate that CVM’s secu-
rity protections significantly increase the CVM-IO tax, which
we define as the CPU resources used during CVM’s I/O pro-
cedure, resulting in up to 29% overhead over a traditional
VM that does not use any CVM protections. The CVM-IO tax
is caused by both security protections and intrinsic network
I/O procedures in CVMs, draining substantial CPU resources
from diverse application workloads.

Concretely, there are three common components in the
CVM-IO tax: ① VM exits consume up to 11.54% more CPU
cycles than the traditional VM. The time consumption of VM
exits is greatly increased due to the security checks and pro-
tections from the trusted modules (e.g., AMD-SP [3], Intel
TDX module [31]) and making the guest aware of emulation
events (e.g., AMD #VC [3], Intel #VE [29]). ② The bounce
buffer mechanism, an I/O staging memory shared between
the CVM and hypervisor, takes up to 19.45% CPU cycles
for bouncing packets (including headers and payload). I/O
operations that could previously be done directly by the hy-
pervisor to the traditional VMs must now be assisted by the
bounce buffer mechanism in guest OSes. For example, to
emulate a virtual NIC, the hypervisor in traditional VM sys-
tems can forward packets between the guest OS and the host
network stack by directly copying I/O data to/from the guest
private memory. But hypervisors in CVM systems require
the guest OS to bounce packets to/from a hypervisor-visible
shared memory region due to the memory encryption, intro-
ducing I/O data copy overhead. ③ The packet processing
also spends up to 36.14% CPU cycles preparing payloads
from massive network packets for application workloads. The
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higher the number of packets transferred to the network stack,
the more vCPU resources a CVM requires to process their
headers. Fortunately, the cost of VM exits becomes negligible
when the posted interrupt [59] feature is supported by the
hardware, leaving the bounce buffer mechanism and packet
processing as the main components of the CVM-IO tax.

This paper aims to reduce as much CVM-IO tax as pos-
sible for I/O-intensive applications in CVMs by bypassing
the bounce buffer mechanism and offloading the packet pro-
cessing. A straightforward design to bypass the bounce buffer
mechanism is to keep the packet content in place by dynami-
cally adjusting the accessibility of the same memory region
to the hypervisor. However, this approach is limited by the
memory encryption hardware support [34], which does not al-
low the plaintext contents of a memory region to be preserved
when modifying the accessibility of the memory region [29].
To reduce network packet processing cost, the existing design
is to pass fewer packets to the network stack by reassembling
multiple small packets into a large one in the guest device
driver. But the guest device driver still has to process a large
number of packets, consuming substantial CPU resources.

Fortunately, there are three observations that can help us ad-
dress the challenges mentioned above. We observe that either
end-to-end encryption or a CVM’s private memory alone can
protect data security, while applying both protections to the
payload is redundant. Additionally, we notice that end-to-end
encryption/decryption can also change the payload’s mem-
ory location, which is functionally equivalent to bouncing
between two memory regions. As a result, bypassing payload
bouncing can be achieved by directly encrypting/decrypting
the payload into/from the guest-host shared memory. An-
other observation is that the network I/O backend typically
has plenty of residual CPU resources. Given the bottleneck
experienced by the saturated vCPUs of network-intensive
CVMs, an opportunity arises to offload packet processing to
the network I/O backend. This approach effectively utilizes
the available CPU resources, alleviating the strain on vCPUs
and resulting in improved performance.

Based on these observations, this paper proposes Bifrost1

to improve the paravirtual network performance of the CVM
with three techniques: ① The zero-copy encryption dedupli-
cation eliminates payload bouncing by leveraging dedicated
guest-host shared memory to remove redundant encryptions
on the payload in a zero-copy way. When receiving pack-
ets, the end-to-end encrypted payload is directly decrypted
from the shared memory. When sending packets, the payload
is directly encrypted into the shared memory. To minimize
modifications, the shared memory is in the form of dedicated
non-uniform memory access (NUMA) [37] nodes, allowing
memory allocators in the guest kernel to be reused. ② The one-
time trusted read mechanism protects guest OSes from time

1Bifrost, the rainbow bridge from Norse mythology, metaphorically rep-
resents the secure and rapid transfer of CVM’s I/O data (Asgard’s gods) to
and from the untrusted hypervisor (Midgard).

of check to time of use (TOCTTOU) attacks while accessing
packets in the dedicated shared memory. With these two tech-
niques, the bouncing of the end-to-end encrypted payload,
which takes up much CPU resources of CVMs, is securely by-
passed. ③ The pre-receiver packet reassembly reduces vCPU
resources utilized by the device driver by offloading the task
of reassembling received packets to the network I/O backend.
Thus, CVMs are able to process fewer packets with larger
payload, reducing the packet processing cost on vCPUs.

We have implemented a Bifrost prototype by modifying the
guest OS kernel and host user-level software. The prototype
extends the Linux v6.0-rc1 kernel in the guest OS with 815
lines of code, and adds 175 lines to OpenvSwitch v2.17.3 and
541 lines to DPDK v21.1.2, both of which run in the host
user mode. We have also evaluated Bifrost’s performance on
both AMD and Intel platforms. The results show that, with
advanced posted interrupt support, Bifrost enhances the per-
formance of I/O-intensive applications in CVMs, surpassing
traditional VMs by up to 21.50%.

In summary, this paper makes the following contributions:

• The first thorough performance analysis of I/O-intensive
applications in CVMs on existing and next-generation
hardware platforms, revealing their bottlenecks and over-
head sources compared to traditional VMs.

• A secure paravirtual I/O design that greatly reduces the
CVM-IO tax, significantly improving the performance
of I/O-intensive applications in CVMs.

• A Bifrost prototype and a comprehensive evaluation on
AMD and Intel platforms, demonstrating improvements
on existing and future CVM hardware. The prototype is
available at https://github.com/IPADS-Bifrost.

2 Background
2.1 Confidential VMs (CVMs)
There are different CVM solutions based on specialized hard-
ware extensions. All of these solutions leverage hardware
memory encryption and integrity checking [30,34] to enforce
confidentiality and integrity. They share the same CVM ab-
straction that excludes the entire virtualization stack from the
trusted computing base (TCB). As shown in Figure 1, the
trusted firmware, which is the unique software TCB, isolates
the CVM from untrusted hypervisors and traditional VMs.

Existing CVM systems typically divide the physical mem-
ory of a VM into two major security types: private memory
and shared memory. The private memory is encrypted by hard-
ware and cannot be accessed or modified by any untrusted
entities outside the VM, while the shared memory holding
plaintext data can be accessed by the hypervisor. The CVM
systems also allow the hypervisor to switch private memory
and shared memory to each other at runtime. However, the
data content of the memory page cannot be preserved before
and after the security type switch [29]. Hence, the guest must
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black arrows represent the path of VM exits and VM enters. The light
blue arrows indicate memory copies that consume CPU resources.
The FE Driver and the BE Driver in the figure represent drivers in
frontend and backend, respectively.

move data outside of private memory before the security type
switch, and then copy it back to the new shared memory. Be-
sides, it takes much effort to finish the security type switch.
The guest OS has to cooperate with the host hypervisor to
alter address translation data structures and maintain CPU
micro-architectures, requiring multiple VM exits and inter-
processor communications [4, 29]. As a result, the security
type switch is unsuitable to occur frequently in CVMs.

2.2 Paravirtual I/O Networking in CVM
Paravirtual I/O has become a primary I/O virtualization choice
for modern cloud providers owing to its high performance
and excellent compatibility. There are two cooperative drivers
in paravirtual I/O, a frontend driver in the guest VM and a
backend driver in the hypervisor, which communicate with
each other through shared memory. To provide maximum
network performance, the backend driver can be deployed in
the host userspace, for instance, using vhost-user [46, 53], to
directly control the device in a busy-polling mode [16].

An example of paravirtual I/O networking of the traditional
VM is shown in the left part of Figure 1. The applications
in the userspace deal with payload, while the network stack
and the frontend driver in the kernel handle packet processing.
The packet processing includes network functions that handle
conversions between payload and packets. For example, in the
transmission (TX) direction, the payload from applications
and the headers from the network stack are encapsulated into
network packets, after which the backend driver is notified to
send them out. Because the hypervisor can access the entire
memory space of a traditional VM, the backend driver can
copy the packets freely from the guest memory to its own
memory and forwards them to the NIC driver.

Memory pages in CVMs, including those containing pack-
ets, are set to private by default. However, the host OS is
untrusted and cannot access the private memory of CVMs

(see § 2.1). To allow the host OS to transfer packets, CVMs
utilize a bounce buffer mechanism that sets up a guest-host
shared memory as an intermediary. As shown in the right part
of Figure 1, the guest OS reserves a shared memory region
with the host OS as the bounce buffer and copies the outgoing
packets to it. Afterwards, the backend driver can copy the
packets to the hypervisor as normal. As a result, the bounce
buffer leads to excessive memory copies for I/O virtualization.

2.3 Transport Layer Security (TLS)

TLS is an end-to-end security protocol designed to protect
data in transit by leveraging cryptography. It has been com-
monly used by modern applications to secure their I/O pay-
load in transit [6, 17, 49, 55, 61]. CVM solutions have made
it a mandatory requirement for their applications [22, 26, 54].
Moreover, today’s OSes, such as Linux, provide in-kernel
TLS support, enabling userspace applications to offload TLS
to the kernel for enhanced performance and expanded fea-
tures [19]. As shown in Figure 1, in-kernel TLS allows the
payload from the page cache to be encrypted without going
through the userspace.

The industry currently implements the TLS protocol based
on encryption algorithms such as AES-GCM [18] to assure
the confidentiality and integrity of data simultaneously. The
output of these encryption algorithms consists of encrypted
ciphertext for confidentiality, and an authentication tag gen-
erated from the ciphertext for integrity. To provide complete
data security protection, the correctness of both the ciphertext
and its authentication tag must be guaranteed during encryp-
tion, and vice versa.

2.4 Exitless Interrupt Virtualization

In the paravirtual I/O networking scenario, when a virtual
NIC (i.e., network backend) receives some network packets,
it notifies the guest VM with a virtual interrupt. The guest VM
then needs to interact with the virtual interrupt controller to
perform Acknowledgment (ACK) and End of Interrupt (EOI).
Traditional techniques rely on the hypervisor to emulate in-
terrupt delivery and interrupt controller access of guest VMs
using trap-and-emulate approaches. However, virtualizing in-
terrupts in this way can be a significant source of overhead,
as each virtual interrupt’s completion necessitates multiple
VM exits and entries. To address this issue, modern hard-
ware platforms have introduced the posted interrupt technique
to enable exitless virtual interrupt delivery. They have also
extended their interrupt controllers with specialized virtual-
ization support to eliminate VM exits caused by ACK and
EOI. Interrupt controllers with virtualization extensions are
currently in production by all mainstream hardware vendors
such as Intel, AMD, and ARM. Full-featured posted interrupt
is available on the Intel platform, and it will soon be supported
on other platforms (e.g., next-generation products with AMD
AVIC [4] and ARM GICv4 [7]).
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Figure 2: Normalized overhead compared with traditional VM in I/O-intensive applications. The Y-axis is the normalized overhead
compared to the baseline of each group. CVM+PI represents CVM + Posted Interrupt.

3 Analysis of CVM-IO Tax
In this section, we quantify the performance impact of the
CVM-IO tax by comparing the I/O performance of existing
CVMs with that of traditional VMs. The CPU execution time
of I/O-intensive applications running in a CVM can be divided
into two parts: 1) Application workloads: the time spent on
executing application workloads, including business logic
and payload processing. 2) The CVM-IO tax: the time spent
on CVM-specific security protections and intrinsic network
I/O procedures. It consists of VM exits, the bounce buffer
mechanism, and the packet processing during the payload
preparation for application workloads.

All experiments are conducted on a 128-core AMD SEV-
ES/SNP server and a 24-core Intel server with 200Gbps NICs.
The AMD server is used to evaluate the I/O performance of
real CVMs, referred to as CVM. However, the AMD server
does not support posted interrupt, resulting in degraded per-
formance due to numerous VM exits during virtual interrupt
deliveries. Therefore, we simulate next-generation CVMs
using the Intel server that supports posted interrupt, named
CVM+PI. More detailed testbed and simulation configura-
tions are described in § 7.1. For fair performance comparison,
CVM’s baseline is the vanilla AMD traditional VM, while
CVM+PI’s baseline is the vanilla Intel traditional VM.

To achieve optimal network performance, we choose vhost-
user as the network backend in follow-up experiments. We
still use the SEV-ES VM because the SEV-SNP VM does
not support vhost-user due to its lack of huge page support.
Theoretically, the security protections introduced by SEV-
SNP do not further increase the CVM-IO tax.

3.1 CVM-IO Tax Breakdown
We first evaluate the overall performance using three represen-
tative network-intensive applications: Memcached and Redis
for key/value stores, and Nginx for web servers. All appli-
cations and benchmarks enable the in-kernel TLS support
for end-to-end protection. Figure 2 depicts the normalized
performance overhead of CVMs compared to their respective
baselines. In all three benchmarks, CVM incurs 21%-28%
overhead, while CVM+PI exhibits 13%-29% performance
degradation. As a result, the performance impact of CVM-IO
tax results in significant overhead over baselines.

We further take the Memcached benchmark with the
4vCPU-256KB test cases as an example to break down the
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Figure 3: CPU time breakdown of the Memcached 4vCPU-
256KB case in CVMs. The left subfigure shows the CPU time
breakdown of CVM, CVM+PI and their baselines in the Memcached
4vCPU-256KB case. The right subfigure shows the CPU time break-
down of the bounce buffer part in CVM+PI.

time cost of the CVM-IO tax of CVMs, as shown in Figure 3.
In the left subfigure, the VM Exit, Bouncing and Pkt Process-
ing denote the three corresponding parts of the CVM-IO tax
mentioned earlier. Because all vCPUs are fully utilized during
the benchmark, the impact on overall performance becomes
more significant as the percentage of CPU time consumed
by the CVM-IO tax grows. The CVM-IO tax consumes over
50% of the total CPU time in all CVMs during the bench-
mark. For CVM, VM exits taking up more than 20% CPU
time have more impact than the bounce buffer. For CVM+PI,
the bounce buffer cost occupies more than 19% CPU time,
while VM exits take up a tiny percentage of the total time
in both CVM+PI (less than 1.2%) and its baseline (less than
0.5%). Packet processing in all the above cases accounts for
about 30% of CPU time and thus has a considerable impact.

The overhead over baselines can be attributed to the reduc-
tion in CPU time of application workloads due to the CVM-
IO tax. For example, in the 4vCPU-256KB case of CVM+PI,
the CVM-IO tax leaves 34.35% fewer cycles for application
workloads than the baseline, explaining the 27.44% overhead.
Since packet processing in both CVMs and their baselines
consumes a similar portion (about 30%) of CPU time, VM
exits and the bounce buffer in CVMs contribute the most to
the overhead.
Take-away I

The CVM-IO tax that occupies more than half of to-
tal CPU time incurs a substantial performance impact on
CVMs. VM exits and the bounce buffer are the primary
sources of overhead over baselines.

Lengthy VM Exits The AMD SEV-ES hardware intro-
duces protection for CPU states (e.g., registers) of each CVM
against the untrusted hypervisor during VM exits. In contrast
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to traditional VMs, this protection adds thousands of cycles to
each VM exit. We first break down the VM exit handling cost
during every virtual interrupt delivery, finding that, on aver-
age, CVM spends 7,476 cycles on guest-host world switches,
whereas a traditional VM only spends 1,643 cycles. We then
collect the number of VM exits per second during the Mem-
cached 4vCPU-256KB benchmark for different CVMs. CVM
averagely triggers 41,615 VM exits per second on each vCPU,
while CVM+PI only triggers 2,803 VM exits per second on
each vCPU, an order of magnitude less than CVM.

The results indicate that frequent VM exits taking up more
than 20% of total CPU time have a significant impact on
CVM. However, with posted interrupt support (CVM+PI),
the impact of VM exits is almost negligible. Fortunately, all
next-generation CVM platforms, including AMD SEV, Intel
TDX and ARM CCA, support posted interrupt, so that the
performance impact of VM exits can become minimal.
Take-away II

VM exits may take up a large portion of the CPU time
of CVM due to their high frequency and latency, but their
performance impacts can become minimal with the posted
interrupt support on next-generation hardware.

Bounce Buffer To analyze the overhead of bounce buffers,
we break down the CPU time spent on bounce buffers in the
4vCPU-256KB case of CVM+PI into two parts: copying I/O
data (packets in this case) and maintaining metadata for buffer
allocation and freeing. The breakdown result shown in the
right subfigure of Figure 3 indicates that I/O data copy (cor-
responding to the Memcpy) consumes 50.74% of the bounce
buffer time, while the metadata maintenance (corresponding
to the Metadata) spends 49.25% of the bounce buffer time.
Besides, the experimental results of small and large data sizes
reflect that the performance impact of the bounce buffer rises
as the data size increases.
Take-away III

The bounce buffer consumes a large percentage of CPU
resources due to I/O data copying and metadata mainte-
nance. It is necessary to avoid bouncing large-size I/O data
to minimize the bounce buffer’s performance impact.

Packet Processing Packet processing in both the frontend
driver and the network stack consumes up to 36.14% of CPU
time in Memcached 4vCPU-256KB cases. Since the packet
processing time cost is proportional to the number of pack-
ets processed, the large number of packets in I/O-intensive
scenarios can demand a significant amount of CPU resources.
Take-away IV

Packet processing occupies a large fraction of CPU time
due to the large number of packets to be processed. Reduc-
ing the number of packets to be processed can mitigate its
performance impact.

3.2 Summary
To sum up, our experiments have demonstrated that CVMs
incur up to 29% overhead in I/O-intensive applications com-
pared with traditional VMs. On the next-generation hardware
with posted interrupt support, the tax of VM exits becomes
negligible while the bounce buffer tax has a more significant
impact on CVMs. Additionally, the packet processing tax con-
sumes a great portion of CVMs’ vCPU resources due to the
large number of packets, which is also the case for traditional
VMs. Therefore, it is essential to reduce the cost of the bounce
buffer as well as the packet processing in CVMs to minimize
the CVM-IO tax and achieve high network performance.

4 Overview
4.1 Design Goals
The primary goal of Bifrost is to reduce the paravirtual I/O
network tax of existing CVM solutions while maintaining
the same level of security guarantees. Besides, the design of
Bifrost should be general enough to be easily applied to CVM
solutions on various platforms, such as x86, ARM and RISC-
V, and to support different host and guest OSes, including
Linux, FreeBSD and Windows. Further, it is demanding that
Bifrost should avoid intrusive modifications to existing soft-
ware stacks and keep transparent to userspace applications in
CVMs to make it practical for real-world scenarios.

4.2 Challenges
To reduce the CVM-IO tax, Bifrost should optimize the
bounce buffer mechanism and the packet processing proce-
dure. However, it is not easy to implement these optimizations
due to the following two technical challenges:
C1: Out-of-place hardware encryption and decryption.
The ideal way to eliminate the bounce buffer mechanism
for a network packet is to enable zero copy by maintaining
the packet within the same memory region throughout its
entire lifecycle. In addition, either the guest or the host should
have exclusive access to the packet’s memory region while
processing it to ensure data security, necessitating memory
security type switches at runtime. However, as mentioned in
§ 2.1, when a private page containing a packet is converted
to a shared page (and vice versa), the packet in this page
is lost and unable to be correctly passed to the hypervisor.
Moreover, changing the security type of guest memory pages
is too expensive to be a frequent operation on the I/O critical
path.
C2: Costly packet pre-processing in the device driver.
Packet processing primarily operates on packet headers rather
than payloads. To minimize the cost of packet processing,
a commonly employed technique is to pre-process multiple
small packets within the same flow into larger packets before
submitting them to the network stack. Nonetheless, the vir-
tual NIC driver still has to occupy large quantities of vCPU
resources to handle massive small packets coming from the
high-speed NIC.
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4.3 Observations and Insights
We observe three characteristics of existing CVM systems,
allowing us to propose new designs that are appropriate for
CVM scenarios to address the above challenges.
O1: Either private memory or end-to-end encryption
alone is sufficient to assure data security. Data security
can be ensured by either private memory protection or end-
to-end encryption. Besides, it is not always better to apply
multiple security protections to a piece of data at the same
time, especially for performance-critical I/O data. Specifically,
the guest OS in current CVM solutions initially encrypts the
payload into private memory. But private memory protection
is a redundant security mechanism for data that has already
been encrypted. As a result, the payload bouncing tax can be
eliminated by retaining existing end-to-end encryption while
removing private memory protection at the same time.
O2: End-to-end encryption has the side effect of mov-
ing the memory location of the payload. The procedure
of adding end-to-end encryption allows CVM to relocate
payloads to a different memory location. Hence, end-to-end
encryption at the in-kernel TLS layer provides an opportune
moment to also remove private memory protection on the pay-
load for userspace applications. In particular, the generated
ciphertext during encryption can be directly written to the
target shared memory with the host, ensuring data security
while eliminating unnecessary copies and bouncing overhead.
O3: I/O backends usually have plenty of residual CPU
resources available. Modern virtualization systems usually
leverage dedicated CPUs to run I/O backends of VMs for
high and predictable I/O performance [16, 45]. Unlike CPUs
running CVMs’ vCPUs, which are likely to be fully loaded
due to complex in-guest logic, those running I/O backends
have less work to do and thus have plenty of free CPU re-
sources. As a result, I/O backends with adequate residual
CPU resources can be utilized to release the burden of vCPUs
by pre-processing packets before passing them to CVMs.

4.4 Architecture and High-Level Design
Based on the above observations, Bifrost leverages the side ef-
fect of end-to-end encryption and the residual CPU resources
of network I/O backends to eliminate payload bouncing and
reduce packet processing cost in CVMs in an application-
transparent way. Figure 4 shows the architecture of Bifrost.

To address challenge C1, Bifrost proposes two designs to

enable zero-copy transparently and securely for the end-to-
end encrypted payload in the CVM. D1: zero-copy encryption
deduplication (§ 5.1) eliminates payload bouncing by keeping
the end-to-end protected payload in the same shared mem-
ory during its lifetime. Specifically, Bifrost directly stores
output from the in-kernel TLS layer to the guest-host shared
memory without copying any payload, and vice versa. To min-
imize modifications, Bifrost creates dedicated NUMA nodes
to serve as shared memory for this design, so that memory
allocators in the guest kernel can be reused. However, concur-
rent memory accesses to plaintext data in shared memory may
lead to TOCTTOU attacks. A malicious host can tamper with
data that has passed the security checks of the guest OS, such
as altering a packet header after it has passed the checksum
check. To defend against this attack, Bifrost introduces D2:
one-time trusted read (§ 5.2), which ensures that the guest
OS can only read and trust the target data content from shared
memory once, as additional reads from the same memory
may lead to host-tainted data content. The guest must process
data after it has been read into registers or private memory to
defend against host tampering during guest processing, thus
eliminating TOCTTOU issues.

To address challenge C2, Bifrost proposes another design
to complete pre-processing network packets before they reach
the CVM. D3: pre-receiver packet reassembly (§ 5.3) makes
use of the network backend’s free CPU resources to pre-
process multiple small incoming packets into a large one
before transmitting them to the guest OS.

As mentioned in § 3.2, while D1 and D2 are designed to
optimize payload bouncing issues that are specific to CVMs,
D3 can also be leveraged to reduce packet processing cost in
traditional VMs.

We explain the Bifrost architecture and its design points
by describing the high-level workflows of packet receiving
and sending. Packet receiving workflow: When a network
packet carrying an end-to-end encrypted payload arrives at the
network I/O backend, Bifrost attempts to merge it with other
same-flow packets, if possible, by pre-processing the packet
with PRPR (D3). Then Bifrost flushes those pre-processed
network packets to the frontend driver through virtual net-
work queues of the CVM. The zero-copy aware TOCTTOU
defense (D2) in the frontend driver only copies small metadata
such as packet headers to private memory for security, while
keeping the end-to-end encrypted payload in the shared mem-
ory allocated from dedicated NUMA nodes (D1). Next, the
frontend driver constructs basic data structures (e.g., skbuff in
Linux) for these pre-processed incoming packets before pass-
ing them to the network stack. Afterwards, Bifrost utilizes the
in-kernel TLS support to decrypt the end-to-end encrypted
payload directly from shared memory into the application’s
private memory. As a result, the packet receiving workflow
experiences no end-to-end encrypted payload bouncing and
less packet processing cost in the CVM.
Packet sending workflow: When an application begins to
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send out a payload from the guest OS, Bifrost first leverages
the in-kernel TLS support to encrypt plaintext from either
application memory or kernel page cache in private memory
and places the encrypted result directly into the guest-host
shared memory allocated from dedicated NUMA nodes (D1).
The memory copy of the end-to-end encrypted payload from
private memory to the shared bounce buffers is removed at
this step. For small metadata that is not protected by end-
to-end encryption, the zero-copy aware TOCTTOU defense
(D2) enforces Bifrost to fall back to the bounce buffer mecha-
nism. Consequently, there is no end-to-end encrypted payload
bouncing in its sending workflow.

4.5 Threat Model and Assumptions
The threat model of Bifrost is the same as that of existing
CVM solutions. The TCB only comprises the CPU hardware
and minimized trusted monitor firmware or software, if any.
Attackers can control any untrusted software entities or hard-
ware devices to launch attacks on CVMs. Therefore, for a
specific CVM, all software outside it, including the hyper-
visor and other CVMs, and hardware devices, are untrusted.
We assume that a CVM does not voluntarily reveal its sensi-
tive data and protects its I/O data with end-to-end encryption.
Denial-of-Service (DoS) attacks [11] are out of scope. Al-
though CVM implementations may have bugs [5, 41] and
are subject to side-channel attacks [12, 39, 40, 47], we do not
consider them because they are orthogonal to this paper.

5 Design and Implementation Details

5.1 Zero-Copy Encryption Deduplication
(ZCED)

Bifrost reserves a contiguous shared memory region for par-
avirtual I/O networking in the guest physical address (GPA)
space. This shared memory appears as NUMA nodes dedi-
cated for ZCED (hereinafter called ZCED NUMA), allowing
Bifrost to utilize mature memory management mechanisms
in existing guest OSes. Moreover, the location and size of
ZCED NUMA memory are fixed at the boot time of a CVM
for optimal performance.
Boot-time initialization: The memory range of a ZCED
NUMA node can be configured by setting the base GPA and
total length via the kernel command line. As shown in § 7.4,
ZCED NUMA nodes of 200MB can satisfy the demands of
all network-intensive benchmarks in our experiments. Bifrost
parses the number of ZCED NUMA nodes and adds the spec-
ified guest memory range to each node. All ZCED NUMA
nodes are created with no associated vCPU. Before a ZCED
NUMA node is available for memory allocations, Bifrost sets
its memory security type to shared. To achieve optimal perfor-
mance, proper distances should be specified between NUMA
nodes to assist the guest kernel in allocating memory [36].
The distances between ZCED NUMA nodes are the same as
those between normal NUMA nodes to which their memory

ranges originally belonged, while each ZCED NUMA node
is zero distance from its original NUMA node.
Runtime allocation: To prevent data leakage caused by unin-
tentional data store into the ZCED NUMA memory, Bifrost
adjusts the memory allocation policies of the guest OS to
only allow explicit allocation to acquire ZCED NUMA mem-
ory. Hence, the original memory allocations in the system do
not allocate from ZCED NUMA nodes, avoiding the security
issue of inadvertently exposing sensitive data. Guest kernel
components are merely able to allocate memory from ZCED
NUMA nodes by assigning a special allocation flag (e.g.,
a GFP flag in Linux) provided by Bifrost to parameters of
memory allocation invocations. The allocator will first try to
acquire memory from the closest ZCED NUMA node to the
vCPU running this component. In the frontend driver, Bifrost
checks the memory location in which the payload resides, and
if it belongs to a ZCED NUMA node, Bifrost will bypass the
bounce buffer mechanism.

In the TX direction, Bifrost modifies the in-kernel TLS
layer to transparently intercept communications between up-
per applications and the lower network stack. The payload
in the TX direction must go through sendmsg and sendpage
functions of the existing in-kernel TLS layer before entering
the network stack. sendmsg is the most often used function
for sending payload from userspace, whereas sendpage is
specialized for transferring payload from the storage (e.g.,
page cache). Bifrost just adds the special allocation flag to
the parameters of memory allocation invocations in these two
functions to allocate memory from ZCED NUMA nodes for
storing encrypted payload.

In the RX direction, the guest memory regions used to
accept incoming packets are allocated and assigned by the
frontend driver (i.e., virtio-net in our case). Bifrost modifies
the memory allocation invocations for these regions by adding
the allocation flag as well. When an application attempts to
receive payload, Bifrost decrypts the ciphertext directly from
the ZCED NUMA memory to private memory.

5.2 One-Time Trusted Read (OTTR)
To defend against TOCTTOU attacks, Bifrost only trusts the
data obtained from the first read of the ZCED NUMA memory
during the guest OS’s handling of packet headers and end-to-
end encrypted payload.
Packet header handling: The content of each packet header
should only be used after it has been validated by the guest
OS’s packet processing functions. However, if a malicious
host modifies the header after the guest OS’s validation, the
guest OS may encounter problems due to the invalid header.
For instance, buffer-overflow problems can happen if the guest
OS uses a modified length to extract payload from packets.

To prevent this, Bifrost must read a packet header from the
ZCED NUMA memory into a private memory region before
further processing it. This read only happens once for each
packet header, and Bifrost will never read the header from
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Figure 5: Comparison of the packet reassembly workflow of the
vanilla CVM and the CVM with PRPR.

the ZCED NUMA memory again to prevent the host from
subsequently tampering with the content of packet headers.
In the TX direction, unlike the end-to-end encrypted payload
that is stored in the ZCED NUMA memory, network packet
headers are placed in private memory. The frontend driver
still leverages the bounce buffer mechanism to copy packet
headers to the guest-host shared memory before transmitting
them to the backend driver. It has a very small impact on
performance due to the small size of packet headers.
End-to-end encrypted payload handling: For end-to-end
encrypted payload, as mentioned in § 2.3, data security pro-
tection requires that the encryption must generate both correct
ciphertext (i.e., encrypted payload) and authenticated tag, and
the decryption must correctly verify the ciphertext integrity
with the authenticated tag. Both the authenticated tag genera-
tion and the integrity verification take the ciphertext as input,
which exists in ZCED NUMA memory and may be tampered
with by the host, resulting in compromised payload integrity.
For instance, in the context of zero-copy I/O, the current Linux
AES-GCM implementation on the x86-64 platform double
reads the ciphertext from the same ZCED NUMA memory
in the last phase of parallel decryption, suffering from TOCT-
TOU attacks on the ciphertext.

To prevent payload TOCTTOU attacks, in the decryption
procedure, Bifrost reads only once from the ZCED NUMA
memory to load the ciphertext value into CPU registers and
always uses the correct ciphertext in the registers afterwards,
avoiding reading a potentially compromised ciphertext. Simi-
larly, during the encryption procedure, the ciphertext for each
payload is guaranteed to remain valid from the moment it is
generated in the register until it exits the register. Thus, Bifrost
calculates the authentication tag using the correct ciphertext
that is still in the CPU registers.

5.3 Pre-receiver Packet Reassembly (PRPR)
Large packets are split into smaller ones before sending out
due to transmission size limit. To save CPU resources con-
sumed by packet handling, prior work [33, 52] has decreased
the number of packets passed to the network stack by reassem-
bling small packets into large ones in advance. Modern OSes
support small packets coalescing at the device driver layer
using GRO [15]. However, packet reassembly in the guest
device driver can still consume significant vCPU resources,
severely affecting the application performance when handling
large numbers of packets. While modern NICs enable hard-
ware coalescing without engaging CPU using LRO [23], it is
hard for hardware to dynamically adjust reassembly rules and

support new packet formats. Inappropriate coalescing even
causes metadata loss and network connection disruptions [15].

In comparison to prior approaches, Bifrost offloads the
packet reassembly to the hypervisor backend driver which has
sufficient CPU time, freeing up precious vCPU resources for
CVMs without sacrificing flexibility. The packet reassembly
logic in Bifrost is similar to that of previous work [15] since
network packets share the same format.
Overall procedure: When a network packet arrives at the
network backend, some packets may be cached in the backend
and waiting for reassembly. Bifrost first parses the current
packet header to determine if any cached packets from the
same flow exist. If present, Bifrost tries to merge the current
packet with the cached same-flow ones. Eventually, based on
the status information in the currently cached packets in the
network I/O backend, Bifrost decides whether it is time to
flush them to the frontend driver in the guest OS.
Same-flow packet detection: Same-flow packets are network
packets that share the same source, destination and sequence
number. As our current implementation focuses on TCP/IP
packets, Bifrost first recognizes headers that have the same
MAC address, IP address and TCP port in both source and
destination directions as same-flow candidates. Then Bifrost
regards these candidates with an identical TCP acknowledg-
ment (ACK) number as same-flow packets.
Flexible per-VM flush rules: It is essential to flush packets
to the guest OS at an appropriate time since the network
performance is highly sensitive to packet latency. When a
newly received packet has a cached same-flow packet, Bifrost
first checks whether these two packets have consistent status
information, such as the time to live (TTL) field. If not, Bifrost
flushes the old cached packet to the frontend driver. Otherwise,
Bifrost reassembles these two packets into a new one. Finally,
Bifrost flushes the new packet if it contains an immediate-
flush flag (e.g., the TCP PSH flag). For a received packet that
has no same-flow packet, Bifrost directly determines whether
to flush it by checking its immediate-flush flag.

In addition to the above basic rules, Bifrost also allows each
guest OS to customize flush rules. Bifrost provides paravirtual
interfaces for receiver CVMs to install their own rules to
disable reassembly, adjust the maximum number and timeout
of cached packets.
Packet reassembly: Among the cached same-flow packets,
the currently received packet can only be reassembled with
the packet whose payload is contiguous with it. Bifrost finds
neighbors of the received packet for reassembly by comparing
their TCP sequence (SEQ) numbers. As depicted in Figure 5,
duplicate packet headers are merged during reassembly.

6 Implementation Complexity
We implement a Bifrost prototype using Linux as the guest
kernel and OpenvSwitch-DPDK as the network I/O backend.

In the Linux v6.0-rc1, we introduce 815 lines of code to
support ZCED and OTTR. These changes include initializing
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ZCED NUMA nodes during memory subsystem bootstrap-
ping, replacing memory allocation invocations, and defending
against TOCTTOU risks in AES-GCM assembly.

In the DPDK v21.11.2, we add 541 lines of code to im-
plement PRPR, which primarily consists of two parts: 1) Re-
organization of network packets, including header trimming
during packet reassembly, flag resetting, etc. 2) Flush rules,
which mainly focus on deciding whether to cache or imme-
diately flush an incoming packet. Our implementation also
adds 175 lines of code to OpenvSwitch v2.17.3, which pre-
processes the network packets by parsing headers in advance,
and invokes the interfaces provided by the DPDK.

7 Evaluation
7.1 Experimental Setup
Testbed: Our testbed remains the same as in § 3, consisting
of an AMD server and an Intel server running Ubuntu 20.04.4
LTS. The AMD server has two 64-core AMD EPYC 7T83
CPUs at 2.45GHz (128 cores in total) and 500GB DDR4
DRAM. The Intel server has two 12-core Intel Xeon Gold
5317 CPU at 3.00GHz (24 cores in total) and 188GB DDR4
DRAM. Both machines are equipped with one single-port
Mellanox Connect-X6 200Gbps NIC and are back-to-back
connected with a fabric cable. We disable CPU frequency
boost features to lessen performance data fluctuation. The
AMD server’s host kernel is Linux v5.19.0-rc6 with SEV-ES
and SEV-SNP support, while the Intel server’s host kernel is
Linux v5.4.0. The guest kernel version of all CVMs and their
baseline VMs is Linux v6.0-rc1. Each guest OS is assigned
with either 1 vCPU or 4 vCPUs, 16GB memory and a 2-
virtqueue virtio-net device backed by the vhost-user backend
based on OpenvSwitch v2.17.3 and DPDK v21.11.2. For each
benchmark, the server side runs in the guest OS while the
client side runs in the host OS on the other server.

To avoid the interference of unintended scheduling or inter-
rupts, we isolate 6 cores on each server. The CPU isolation is
achieved by the isolcpus function in the Linux kernel, and the
binding is done by the qemu-affinity command for vCPUs and
pmd-cpu-mask parameter for the OpenvSwitch-DPDK-based
vhost-user backend. Each thread of vCPUs and the vhost-user
backend is pinned to a different isolated CPU. IOMMUs of
both machines are set to passthrough mode.
Naming Convention and Configurations: As mentioned in
§ 3, CVM represents real SEV-ES/SNP CVMs on the AMD
server, while CVM+PI represents simulated TDX CVMs with
posted interrupt enabled on the Intel server. The simulation
is based on a vanilla Intel traditional VM, which further en-
ables bounce buffer (i.e., Linux SWIOTLB [62]) for virtio
devices and adds an additional 10,000 cycles to each VM exit
to simulate the cost of guest-host world switches. The sim-
ulated world switches consume 2,524 more cycles than that
of the SEV-ES/SNP VM. To the best of our knowledge, SEV-
ES/SNP’s lengthy VM exits primarily result from uncore
co-processor (i.e., AMD-SP) intervention, whereas TDX’s
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Figure 6: TLS normalized throughput on both AMD and Intel
server. The Y-axis is the normalized throughput compared with the
baseline. +PRPR is not shown in (b) because it does not provide
benefits for TX performance.

VM exits solely involve in-core firmware, leading to lower
latency. As a result, though the increased VM exit latency
does not guarantee identical performance to real Intel TDX
hardware, the simulated VM exit overhead should be no less
than that of real TDX VMs.

To get the performance of CVM close to the SEV-ES VM
with posted interrupt, we optimize AMD CVM with reduced
VM exit frequency by modifying the network backend to
lower its notification frequency to the guest OS. We call the
optimized version CVM+RIF, signifying CVM + Reduced
Interrupt Frequency. CVM+RIF’s baseline is the vanilla
AMD traditional VM with reduced VM exit frequency, while
CVM+PI’s baseline is the vanilla Intel traditional VM. To
show the individual contribution of Bifrost’s each technique,
+ZC denotes only applying the ZCED as well as the OTTR,
while +PRPR indicates adding the PRPR alone. The PRPR is
configured to cache up to 1024 TCP flows for 2 virtqueues.
Each flow can hold up to 1024 packets, and at most 32 packets
can be submitted to the I/O frontend simultaneously.

7.2 Performance Improvement
In this section, we focus on the performance improvement of
CVM+RIF and CVM+PI. We first build a microbenchmark to
investigate the upper bound on the performance improvement
that Bifrost can bring to I/O-intensive applications and then
study the performance gains of real-world applications from
Bifrost’s design. Since the posted interrupt hardware has been
able to minimize the performance impact of VM exits, we
concentrate on Bifrost’s effect on CVMs atop such hardware.

7.2.1 Microbenchmark

We develop a TCP-based TLS client/server pair to evaluate
the network throughput. They simply contain simple code for
single-threaded I/O data sending and receiving. This mini-
mizes the time cost of business logic, demonstrating the maxi-
mum possible application performance improvement. To fully
saturate the vCPU like an I/O-intensive application, we run 4
TLS server instances in a 1-vCPU VM.
RX Throughput: Figure 6a shows the network throughput
comparisons in the RX direction. CVM+RIF attains 5.26 Gb/s,
which is 24.10% slower than its baseline’s 6.93 Gb/s. With the
ZCED, +ZC alone (6.38 Gb/s) can reduce the slowdown to
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7.81%. With the PRPR, +PRPR itself (8.39 Gb/s) can outper-
form the baseline by 21.10%. By combining both techniques,
Bifrost reaches 10.64 Gb/s, which is 53.55% higher than the
baseline. For CVM+PI (7.48 Gb/s), it incurs 27.03% overhead
than its baseline (10.26 Gb/s). The throughput is increased
to 9.99 Gb/s in +ZC (2.59% overhead) and grows to 10.76
Gb/s in +PRPR (4.95% better). Integrating both techniques
makes Bifrost reach 16.64 Gb/s, which is 62.20% higher than
the baseline. Therefore, Bifrost can boost performance by
up to 89.23% (from 27.03% overhead to 62.20% better than
the baseline) for applications experiencing high RX traffic in
existing CVMs.
TX Throughput: Figure 6b shows the throughput compar-
isons in the TX direction. CVM+RIF attains 9.59 Gb/s, which
is 23.03% slower than its baseline’s 12.45 Gb/s. +ZC (11.04
Gb/s) reduces the slowdown to 11.37%. Bifrost has 10.79%
overhead (11.11 Gb/s), slightly better than +ZC. Experiments
of CVM+PI yield similar results. Therefore, Bifrost can have
up to 12.24% (CVM+RIF) and 15.00% (CVM+PI) perfor-
mance improvement for applications with high TX traffic.

Combining +ZC and +PRPR in the RX direction shows
a greater performance improvement than the sum of each
technique’s individual improvement (explained in § 7.2.2).
The TX improvement is less significant because PRPR only
optimizes RX traffic. Limited CPU resources on a single
vCPU for both packet processing and TLS operations result
in a large gap from reaching the NIC’s maximum bandwidth.

7.2.2 Applications

We utilize the same network-intensive applications as in § 3
to evaluate and break down the performance improvement of
Bifrost. TLS/SSL is enabled in all the applications. We run
each benchmark for 30 seconds and report the average value
of the results from 10 rounds. To save space, we only present
and analyze the results of the 32KB and the 256KB data sizes
in detail, and provide an overview of the results for other data
sizes. The detailed benchmark configurations and results are
shown below.
Memcached [20] is a popular multi-threaded in-memory key-
value store application. We use the memtier_benchmark [56]
tool to measure throughput and average latency. The Mem-
cached server is configured with either 1 or 4 threads for VM
with 1 or 4 vCPUs respectively, and 4096MB memory. We set
up 4 clients, 16 concurrent requests for 1-thread server and 8
clients, 32 concurrent requests for 4-thread server.

Figure 7a and Figure 8a show the throughput and latency
overhead, respectively, of Memcached in CVM+RIF. Both
throughput and latency improve as a result of alleviating the
vCPU bottleneck. In 32KB cases, Bifrost cuts down more than
half of CVM+RIF’s overhead over its baseline. Either +ZC or
+PRPR alone slightly mitigates the overhead. In 256KB cases,
Bifrost performs about 10% better than its baseline. Either
+ZC or +PRPR alone reduces the overhead by more than half.
With the same number of vCPUs, Bifrost’s performance im-

provement increases as the data size grows. This is primarily
because the performance impact of the CVM-IO tax, espe-
cially the bounce buffer tax, becomes more pronounced with
the growth of data size, providing more room for improve-
ment.

Figure 9a displays the time breakdown and backend utiliza-
tion of CPUs in 4vCPU-256KB cases. The ZCED reduces
the total timeshare of the bounce buffer tax from 15.67% to
less than 2.50%. It cannot completely eliminate the bounce
buffer cost because some small I/O data (e.g., TCP handshake
packets) still falls back to the bounce buffer. The PRPR re-
duces the timeshare of the packet processing tax from 28.73%
to 21.88%. Bifrost spends 2.39% more time on application
workloads than the baseline and has more than 10% speed
gain on the TLS processing in application workloads, which
explains the 8.26% improvement over the baseline. Due to
the higher throughput and PRPR cost, Bifrost’s backend CPU
utilization increases by 8.75% compared to the baseline.

Figure 7d and Figure 8b show the throughput and latency
overhead, respectively, of Memcached in CVM+PI. Bifrost
outperforms the baseline in all cases. The throughput accel-
eration over the baseline can reach 3.06% in 32KB cases
and 21.50% in 256KB cases. The latency overhead is almost
eliminated in 32KB cases and can outperform the baseline
by 17.45% in 256KB cases. +ZC obtains more individual
performance gain than +PRPR, and their combined improve-
ment is larger than the sum of their individual gains. This is
because applying both techniques can provide more available
CPU cycles to application workloads than applying only one
of them. As shown in Figure 9a, when only applying PRPR,
part of the released CPU cycles will be occupied by bouncing
packets.

Figure 9b depicts the breakdown and backend utilization of
CPUs in 4vCPU-256KB cases. The ZCED reduces the total
timeshare of the bounce buffer tax from 19.45% to less than
2.77%. The PRPR reduces the timeshare of the packet process-
ing tax from 36.14% to 26.83%. Compared to the baseline,
Bifrost provides application workloads with 11.53% more
CPU time and more than 10% speedup in TLS processing.
This can explain the 21.50% improvement over the baseline.
Due to the higher throughput and PRPR cost, Bifrost’s back-
end CPU utilization is 19.05% more than the baseline.
Nginx [50] is a well-known high-performance HTTP(S) web
server. We run the wrk [21] benchmark tool to measure the
throughput represented by requests per second (RPS). The
client configurations are similar to the other two applications.

Figure 7b illustrates the Nginx throughput overhead of
CVM+RIF. Since the traffic type of the Nginx benchmark
is mainly in the TX direction, the majority of Bifrost’s per-
formance improvement comes from the ZCED, as analyzed
in § 7.2.1. +ZC reduces the overhead by less than half be-
cause lengthy VM exits still significantly impact performance.
The PRPR even increases the overhead for a little bit in the
1vCPU-256KB case, because there are more VM exits after
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Figure 7: Application performance comparisons when applying some or all of Bifrost’s techniques. The Y-axis indicates relative overhead
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Figure 8: Memcached average latency comparisons when ap-
plying some or all of Bifrost’s techniques. The Y-axis indicates
relative overhead compared with baseline VMs, negative overhead
represents performance improvement.

the PRPR is applied. Figure 7e shows the Nginx throughput
overhead of CVM+PI. Bifrost brings the overhead to less than
2.8% in all cases, thanks to the ZCED. The PRPR no longer
impacts the performance negatively because VM exits cost is
trivial when posted interrupt is enabled.
Redis [28] is a single-threaded in-memory key-value store
application widely deployed in production environments. We
also use the memtier_benchmark tool to measure the through-
put. The Redis server is configured with 4096MB memory.
The memtier_benchmark uses the same configurations as
Memcached. To fully utilize vCPU resources in 4vCPU cases,
we use redis-cli to build a Redis cluster with 4 instances.

Figure 7c and Figure 7f present the Redis throughput over-
head, which have similar patterns to those of Memcached.
VM Scalability: To show Bifrost is scalable as the number
of VM grows, we evaluate applications in 1, 2 and 4 Bifrost-
enabled 4-vCPU 2-virtqueue CVM+RIFs. We conduct ex-
periments on the AMD server because it has sufficient CPU
cores on a single NUMA node. Figure 10 demonstrates that
in multi-VM cases, Bifrost can always achieve comparable
performance improvements to that of the single VM scenario.
Bifrost’s good VM scalability comes naturally because ZCED
uses Linux’s scalable memory allocator and PRPR is applied
to each virtqueue without contention.

7.3 TOCTTOU Protection Overhead
Bifrost defends the guest OS against TOCTTOU attacks with
OTTR by copying packet headers into private memory and
keeping end-to-end encrypted payload in registers during
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Figure 10: Performance comparisons of Bifrost in 1, 2 and 4
CVM+RIF VMs using Memcached 4vCPU-256KB experiments.
The Y-axis indicates relative overhead compared with baseline VMs,
negative overhead represents performance improvement.

their processing. To evaluate the performance impact of these
operations, we implement a prototype of Bifrost without ap-
plying OTTR, called Bifrost-noprot. We repeat application
benchmarks to compare Bifrost’s performance with that of
Bifrost-noprot. The overhead of Bifrost in different bench-
marks is shown in Figure 11, indicating no more than 2.0%
overhead caused by TOCTTOU protections in all cases.

7.4 Memory Footprint
Bifrost must utilize memory efficiently to avoid unavailability
due to the depletion of the ZCED NUMA memory. We first
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Figure 11: Application performance overhead of TOCTTOU
protection. (a), (b) and (c) compare Bifrost with Bifrost-noprot (i.e.,
w/o OTTR) on the AMD server. (d), (e) and (f) compare Bifrost with
Bifrost-noprot on the Intel server.

measure the ZCED NUMA’s memory consumption via the nu-
mastat tool. Among all of our benchmarks, Bifrost consumes
no more than 200MB out of the 512MB capacity of the ZCED
NUMA memory. This amount does not exceed the default
1GB size of the bounce buffer area in the 16GB CVM+RIF
VM. As for the footprint in the network backend, PRPR main-
tains a packet cache list in the backend memory for each
virtqueue. Each cache list contains at most 8 network flows,
each caching at most 1024 network packets. The maximum
memory cost of one cache list is 1,088KB. In our benchmarks,
we enable 2 virtqueues, consuming only 2.125MB memory.

8 Security Analysis
Bifrost introduces three major techniques to existing CVMs,
in which only the ZCED and the OTTR retrofit the guest ker-
nel and may have an impact on the network I/O data security.
The only difference between the network I/O of Bifrost and
a vanilla CVM is that Bifrost needs to process packets in
the guest-host shared memory, while a vanilla CVM handles
packets in private memory. Thus, we only need to analyze
the security risks caused by TOCTTOU attacks on network
packets during network I/O.
Headers: In the RX direction, a header is received in the
guest-host shared memory. Bifrost copies the header into pri-
vate memory, and subsequent header processing only uses the
private copy, which does not suffer from TOCTTOU attacks.
In the TX direction, each header is born in private memory
and sent out through the bounce buffer mechanism, which is
the same as in the existing CVMs.
Encrypted payload: In the RX direction, the in-kernel TLS
layer decrypts the encrypted payload from the guest-host
shared memory into private memory. Bifrost ensures that the
decryption code has a consistent view of the encrypted pay-
load by reading from shared memory only once and keeping it
in CPU registers. In the TX direction, the in-kernel TLS layer
encrypts the plaintext payload directly into shared memory.
Bifrost ensures that the encryption code always refers to the
correct ciphertext in CPU registers, which is isolated by CVM
platforms and immune to TOCTTOU attacks.
Plaintext payload: There are also packets carrying plaintext

payload due to procedures such as handshaking. In the RX
direction, the plaintext payload is not accessed until the guest
kernel copies it from shared memory to private memory. In
the TX direction, the plaintext payload is no longer accessed
once the guest kernel copies it from private memory to shared
memory. Avoiding shared memory access eliminates the risks
of TOCTTOU vulnerability.

Therefore, Bifrost does not expose guest OS’s network
processing to TOCTTOU attacks, achieving the same level of
security guarantees as vanilla CVMs.

9 Related Work
Secure Virtualized Systems. A long line of research works
and commercial products have been proposed to build se-
cure virtualized systems [3, 8, 10, 11, 26, 32, 38, 48]. AMD
SEV [2, 3], Intel TDX [29, 32] and ARM CCA [8] enable
the CVM abstraction with hardware extensions, especially
memory encryption and integrity protection [30, 34]. While
AMD SEV relies on a secure processor [1], Intel TDX and
ARM CCA employ trusted firmware [31] to manage CVMs.
TwinVisor [38] provides an TrustZone-based alternative to
ARM CCA by retrofitting the virtualization extension on ex-
isting ARM platforms. The design of Bifrost is not restricted
to AMD or Intel and can be applied to other CVM systems.
Zero Copy I/O. Prior research works have proposed vari-
ous techniques to eliminate data copies for better I/O perfor-
mance [24,27,35,42–44]. For user-level applications, zIO [58]
can transparently remove redundant I/O copies. For the I/O
stack in the kernel, DAMN [44] and Demikernel [63] elimi-
nate I/O memory copies by directly allocating buffers from
the I/O memory pool. PASTE [25] performs DMA directly
into non-volatile memory to avoid copies. Unlike these sys-
tems that target traditional scenarios and/or require intrusive
software modifications, Bifrost focuses on eliminating unnec-
essary I/O data copies in CVMs with minor modifications.

10 Conclusion
This paper presents the first systematic analysis of the CVM-
IO tax for network-intensive workloads in CVMs. To optimize
the I/O performance of CVMs, we propose a new paravirtual
I/O design called Bifrost. Bifrost eliminates redundant packet
bounces and greatly reduces packet processing cost, while
maintaining the same level of security guarantees as existing
CVMs. Evaluation results show that Bifrost significantly im-
proves the I/O performance of CVMs, and even outperforms
traditional VMs by up to 21.50%.
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Abstract
With the increasing public attention to data security and pri-
vacy protection, privacy-preserving machine learning (PPML)
has become a research hotspot in recent years. Secure multi-
party computation (MPC) that allows multiple parties to
jointly compute a function without leaking sensitive data
provides a feasible solution to PPML. However, developing
efficient PPML programs with MPC techniques is a great
challenge for users without cryptography backgrounds.

Existing solutions require users to make efforts to port
machine learning (ML) programs by mechanically replacing
APIs with PPML versions or rewriting the entire program. Dif-
ferent from the existing works, we propose SecretFlow-SPU,
a performant and user-friendly PPML framework compatible
with existing ML programs. SecretFlow-SPU consists of a
frontend compiler and a backend runtime. The frontend com-
piler accepts an ML program as input and converts it into
an MPC-specific intermediate representation. After a series
of delicate code optimizations, programs will be executed
by a performant backend runtime as MPC protocols. Based
on SecretFlow-SPU, we can run ML programs of different
frameworks with minor modifications in a privacy-preserving
manner.

We evaluate SecretFlow-SPU with state-of-the-art MPC-
enabled PPML frameworks on a series of ML training tasks.
SecretFlow-SPU outperforms these works for almost all ex-
perimental settings (23 out of 24). Especially under the wide
area network, SecretFlow-SPU is up to 4.1× faster than MP-
SPDZ and up to 2.3× faster than TF Encrypted.

1 Introduction

Privacy-preserving machine learning (PPML) [24, 27, 34, 43,
44, 47, 49, 56, 57] has been gaining popularity due to the
pervasive usage of machine learning (ML) and attendant pri-
vacy problems. Secure multi-party computation (MPC) [39],

∗Junming and Yancheng contribute equally in this work.
†Corresponding author: tanjin.tj@antgroup.com.

a cryptographic technique that enables multiple parties to
jointly compute a function without leaking each party’s pri-
vate inputs, brings a provable and practical solution to ML
users with strong privacy concerns. For example, financial
and medical data analysts can collaboratively train a model
on private datasets that contain sensitive information.

However, incorporating MPC techniques in ML applica-
tions introduces great challenges due to the natural differences
between these two fields. MPC experts mainly focus on de-
signing performant cryptographic protocols for low-level com-
putation primitives. In contrast, ML practitioners are more
accustomed to constructing high-level ML models using user-
friendly frameworks that encapsulates commonly-used ML
building blocks. Consequently, it poses a massive obstacle for
ML users without cryptography expertise to achieve complex
PPML tasks efficiently in real-world scenarios.

A series of works have been proposed to eliminate this
obstacle. EzPc [9], ABY [15], MP-SPDZ [29], etc. [18] de-
sign domain-specific languages (or use high-level languages)
to provide general purpose MPC compilers and support ar-
bitrary computations upon MPC. These works significantly
reduce the difficulty of developing MPC programs and al-
low for MPC-specific compilation optimizations. Whereas,
these works remain a significant gap from mainstream ML
frameworks on API designs, thus lacking user-friendliness to
develop complex ML programs.

TF Encrypted [14] and CrypTen [33] take a step further in
this direction by providing general ML interfaces with MPC
implementations. These works mimic the existing ML frame-
works’ API designs (e.g., TensorFlow [5] and PyTorch [45])
to hide the underlying MPC cryptographic details and gain
further user-friendliness. However, efforts still need to be
made to port ML programs from TensorFlow/PyTorch by sub-
stituting PPML version APIs mechanically. Take CrypTen as
an example: given a pre-defined PyTorch model, the user must
manually re-write the model training/prediction programs by
replacing PyTorch tensors, loss function, and optimizer with
CrypTen counterparts. Besides, these frameworks rely on Ten-
sorFlow or PyTorch as their underlying runtime, which lacks
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MPC domain-specific knowledge for compilation optimiza-
tions.

A question then arises: can we efficiently run ML programs
of mainstream frameworks in a privacy-preserving manner?
As an attempt to answer this question, we propose SecretFlow-
SPU in this paper. For simplicity, we will refer to it as SPU
throughout the rest of this paper. SPU is a general-purpose
PPML framework designed to bridge the gap between ML
and MPC communities more naturally. The core components
of SPU include a frontend compiler and a backend MPC run-
time. SPU provides users with Python APIs to accept an ML
program (with minor modifications to specify protected data)
as input, and the frontend compiler emits a customized inter-
mediate representation (IR) named PPHLO (short for Privacy-
Preserving High-Level Operations) as output. The backend
runtime is a virtual device built on multiple connected com-
puting nodes, which receives PPHLO and executes it as MPC
protocol implementations among nodes to complete private
ML training or prediction.

SPU’s architecture makes it friendly to both ML and MPC
developers. On the one hand, ML developers can conve-
niently run ML applications developed through mainstream
ML frameworks in a privacy-preserving manner on SPU (Sec-
tion 3.3) without the cryptographic knowledge of MPC. Be-
sides, SPU is not bound to one specific ML framework. Di-
verse frameworks and libraries can be supported in SPU if
there is a path from ML source code to PPHLO. On the other
hand, SPU provides great extensibility to MPC protocol de-
velopers, who only need to focus on designing fundamental
MPC primitives and implementing corresponding APIs de-
fined by SPU. New MPC protocol supports can be easily
supplemented without caring about high-level ML workflows
(Section 3.6.1).

Besides user-friendliness, PPHLO enables us to propose
and implement MPC-specific optimizations at both frontend
and backend to achieve high performance. At the frontend,
we observe that traditional ML frameworks usually generate a
computation graph that is not optimal for MPC computations.
The reason behind the observation is that MPC computations
have a rather different cost model than plaintext computations
due to additional communication overhead. Based on PPHLO,
we design and implement several compiler passes to generate
more efficient IR (Section 3.5). At the backend, we implement
strategies such as vectorization and streaming to reduce MPC
communication overhead. Meanwhile, SPU backend runtime
employs inter- and intra-operation concurrency to execute
PPHLO efficiently (Section 3.6.2).

We develop SPU frontend and backend in C++ and provide
PPML developers with Python APIs to run applications. We
mainly use ML programs written in JAX [8] to evaluate SPU’s
performance and user-friendliness. For performance, we use
three state-of-the-art MPC-enabled PPML frameworks (i.e.,
MP-SPDZ [29], TF Encrypted [14], and CrypTen [33]) as the
baseline. We train four common-evaluated neural networks

on the MNIST [37] dataset for image classification under
both local area network (LAN) and wide area network (WAN)
settings. SPU achieves comparable classification accuracy
and superior training speed. Concretely, SPU outperforms the
state-of-the-art works for almost all the settings (23 out of 24).
Especially under the WAN setting, SPU is up to 4.1× faster
than MP-SPDZ and up to 2.3× faster than TF Encrypted.

Regarding user-friendliness, we evaluate SPU by running
JAX programs from popular open-source JAX projects’ offi-
cial examples. We only need to modify a few lines of code to
make these examples run seamlessly on SPU. Experimental
results show that SPU can be easily applied to other mod-
els such as Long Short-Term Memory [23] and Variational
Auto-Encoder [32]. This compatibility is hard to achieve for
existing MPC-enabled frameworks. Moreover, we also vali-
date SPU’s feasibility in supporting different ML frameworks
by running TensorFlow and PyTorch programs.

The contributions we make in this paper are summarized
as follows:

• We design and implement SPU as the first MPC-enabled
PPML framework to support ML programs (with minor
modifications) from different mainstream ML frame-
works, significantly accelerating the development, test-
ing, debugging, and deployment of PPML applications.

• We design an MPC-specific IR, i.e., PPHLO, which con-
nects ML and MPC worlds. Besides, we propose/imple-
ment a series of compilation optimizations and develop
a high-performance runtime to execute PPHLO.

• We validate SPU with a series of experiments on perfor-
mance and user-friendliness. The experimental results
demonstrate SPU’s efficiency and ease of use.

• We open-source SPU to bolster the advancement of
PPML for academic and industry communities. The code
is available at https://github.com/secretflow/spu.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief introduction to the background of ML
compilers and MPC. We describe the design details of SPU
in Section 3. Section 4 describes the system implementation
and evaluation results. Section 5 describes SPU’s limitations.
Related work is discussed in Section 6. Finally, we conclude
this paper in Section 7.

2 Background

SPU is an interdisciplinary work of ML compiler and MPC.
In order to better understand the motivation and design of
SPU, we give a more detailed description of the background
of ML compiler and MPC in this section.

18    2023 USENIX Annual Technical Conference USENIX Association

https://github.com/secretflow/spu


2.1 Machine Learning Compilers

In the past decade, artificial intelligence technologies driven
by ML have made numerous breakthroughs in many fields,
such as natural language processing [55], computer vi-
sion [19], and drug discovery [26]. As the key infrastructure
for implementing ML algorithms, an easy-to-use and efficient
ML framework is crucial. A large number of ML frameworks
(and libraries) are currently on the market, including Tensor-
Flow [5], PyTorch [45], JAX [8], and MxNet [11], providing
developers with similar capabilities to train and serve models.

Meanwhile, in addition to traditional CPU and GPU, many
application-specific integrated circuits for ML workloads have
been developed to accelerate program execution. Typical rep-
resentatives are Google TPU [25] and Hisilicon NPU [38].
Generating machine code for different ML frameworks to
adapt to different types of hardware requires substantial en-
gineering efforts, especially when the number of ML frame-
works and hardware devices keeps increasing. ML compilers
are proposed as the solution to this problem. Usually, the
compiler frontend will transform source code written with
the existing frameworks into hardware-independent IR, and
the compiler backend will further transform IR into hardware-
dependent machine code. With ML compilers, frontend frame-
works only need to focus on generating IR, and backend hard-
ware vendors only need to pay attention to supporting IR
instructions.

The IR used in ML compilers is typically expressed as
a computation graph (i.e., a directed acyclic graph). Graph
nodes are ML operations (such as matrix multiplication and
convolution) whose input and output are tensors (i.e., multi-
dimensional arrays). Graph edges show the data dependen-
cies between operations. One widely-used ML compiler is
Google’s XLA [4]. XLA defines its IR as HLO (High-Level
Operations) to represent computation graphs. A series of
frontends, including TensorFlow, PyTorch, and JAX, support
XLA. ML programs written in these frameworks can be com-
piled into HLO. After performing hardware-independent and
hardware-dependent optimizations, HLO is finally lowered to
machine code by the XLA backend to run on the CPU, GPU,
or TPU.

2.2 Secure Multiparty Computation

MPC originates from the Yao’s Millionaires’ problem [59] in
the 1980s, where two rich people want to compare their wealth
without giving away the exact value. Beyond this, MPC has
shifted from an academic theory to practical usage in more
complicated tasks, such as training ML models [30, 44, 56].

One fundamental technique used in MPC is secret shar-
ing [6, 51]. A secret value is divided into multiple random
shares and distributed to several parties. Each party only gets
a subset of the shares and cannot reconstruct the original value
independently. These parties jointly compute pre-defined com-

putations (e.g., ML training) without leaking any sensitive
information of the inputs or intermediate computation results.
Usually, the final computation result (e.g., the trained model)
are revealed to some designated parties. At that time, all par-
ties put together their holding shares to reconstruct the result.

The private inputs, including integer and boolean values,
are typically encoded over an algebraic ring or finite field.
For integers, arithmetic secret sharing encrypts a secret over
the ring Z2k and supports efficient arithmetic operations, in-
cluding additions and multiplications. Correspondingly for
boolean values, binary secret sharing provides a scheme to
encrypt a secret over the ring Z2 and supports more effi-
cient boolean operations, including XOR and AND compu-
tations. Addition (resp., XOR) operation of two arithmetic
(resp., boolean) secret shares is equal to add (resp., XOR) the
share of the two secrets locally. Operations with similar local-
computation properties include a secret value adding a public
value and a secret value multiplying a public value. In con-
trast, the multiplication (resp., AND) of two secret values is
more complicated, which requires additional communication
among the participating parties to exchange extra information.
The heavy communication overhead has weakened the perfor-
mance of MPC, especially in handling complex computations
in real-world scenarios.

To improve the efficiency, mixed-protocols [15,43,46] that
use arithmetic and binary secret sharing interchangeably shed
light on MPC. With dedicated protocols, arithmetic and binary
secret shares can be transformed back and forth to handle
complex computations, including both arithmetic and non-
arithmetic computations. However, these conversions also
need communication. Despite the great efforts that have been
made, the performance of MPC operations is still heavily
communication-bound and sensitive to the network environ-
ment. Such characteristic makes MPC significantly different
from traditional plaintext computations over CPU.

Besides integer and boolean operations, MPC also supports
decimal computations, which are common in ML. It is more
common and efficient to encode decimals as fixed-point num-
bers, which can be interpreted as the integer value multiplying
a scaling factor. This factor is configurable and indicates how
many bits represent the fractional part, and the remaining
bits (except the sign bit) represent the integer part. When a
fixed-pointed value multiplies another fixed-pointed value, the
fractional bits double. In order to maintain that the result has
consistent fractional bits with the input, a truncation operation
is required.

The addition and multiplication of integers, fixed-point
numbers, and boolean logic operations constitute MPC’s most
fundamental building blocks. ML scenarios require more com-
plex and high-level operations. For linear operations such as
matrix multiplication and convolution, a combination of those
basic building blocks can accomplish them. For non-linear
operations such as activation functions, we can approximate
these functions using mathematical algorithms like Newton-
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Raphson method [60]. Based on the linear and non-linear
operations, complex ML tasks can be completed.

3 System Design

We describe the detailed system design of SPU in this sec-
tion. The threat model of SPU is given first, followed by an
overview of SPU’s architecture and individual descriptions of
SPU’s main components, including programming interfaces,
PPHLO, frontend, and backend.

3.1 Threat Model
SPU follows a standard MPC threat model and runs pre-
defined programs among multiple parties, protecting input
data and all intermediate results, typically only revealing the
final results to some designated parties. Taking ML model
training as an example, MPC can protect participating parties’
training datasets and intermediate results like gradients, and
reveal the trained model weights as the final results.

Furthermore, as an MPC computing engine, SPU is not re-
stricted to any specific MPC threat models, such as the number
of participating parties or if participants behave honestly [39].
The underlying MPC protocol used in SPU is configurable,
allowing the threat model of the entire SPU system to be deter-
mined by the selected MPC protocol at runtime. For instance,
using the semi-honest (with honest majority) ABY3 [43] pro-
tocol in SPU indicates SPU inherits ABY3’s threat model, i.e.,
all participants follow the protocol honestly but may attempt
to gain additional information from exchanged messages.

3.2 Architecture Overview
The goal of SPU is to run ML programs in a privacy-
preserving manner. To complete this goal, we propose SPU’s
architecture, as illustrated in Figure 1. In the rest of this sec-
tion, we use JAX as an example ML framework to describe
SPU’s design although SPU is not limited to JAX. We give
evaluations on SPU’s support to other frameworks in Sec-
tion 4.2.3. Given an ML program written in JAX, our pro-
gramming interfaces will implicitly call JAX API to convert
this program into HLO (Section 2.1). This HLO graph and
data visibility defined by users will be passed to SPU frontend,
which compiles HLO to SPU’s customized IR, i.e., PPHLO.
After generating PPHLO, the frontend will further perform
MPC-specific optimizations. The optimized PPHLO will then
be sent to SPU backend, a virtual device built on multiple
networked computing nodes. These nodes host SPU runtime
responsible for executing MPC operations, and their number
should match the supported parties of the configured MPC
protocol.

SPU employs the SPMD (Single-Program-Multiple-Data)
programming model. All nodes receive the same PPHLO to
execute. The data consumed by each node are secret shares
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Figure 1: SPU architecture.

derived from original data held by data providers. Following
the workflow described above, sensitive data from different
sources can be jointly used to finish a PPML job by simply
running a JAX program on SPU.

The design of SPU has the following advantages:

• By supporting ML programs of mainstream ML frame-
works, SPU is extremely easy to use. SPU does not
require users to learn a new library or language, or have
MPC expertise.

• SPU frontend consumes HLO generated by ML pro-
grams rather than the source code. This design choice
makes SPU can support a series of existing frameworks
that have a lowering path to HLO directly. Moreover,
SPU can benefits from platform-independent optimiza-
tions from existing ML compilers.

• SPU backend is also extensible. We can implement mul-
tiple pluggable MPC protocols in the backend without
modifying PPHLO and frontend programs.

• PPHLO allows SPU to do systematic optimizations at
the granularity of the high-level computational graph,
which enables it to generate high-performance code for
MPC execution.

3.3 Programming Interface
In order to achieve ease of use, we provide simple Python
APIs so that developers can run ML programs on SPU with
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1 i m p o r t j a x . numpy as j n p
2 i m p o r t numpy as np
3 i m p o r t spu . b i n d i n g . u t i l . d i s t r i b u t e d as ppd
4

5 # i n i t SPU backend nodes
6 wi th open ( " / p a t h / t o / c o n f i g " , ’ r ’ ) a s f i l e :
7 con f = j s o n . l o a d ( f i l e )
8 ppd . i n i t ( con f [ " nodes " ] , con f [ " d e v i c e s " ] )
9

10 # s p e c i f y d a t a v i s i b i l i t y
11 @ppd . d e v i c e ( " P1 " )
12 d e f d a t a _ f r o m _ a l i c e ( ) :
13 r e t u r n np . random . r a n d i n t ( 1 0 0 , s i z e = ( 4 , ) )
14

15 # s p e c i f y d a t a v i s i b i l i t y
16 @ppd . d e v i c e ( " P2 " )
17 d e f da ta_ f rom_bob ( ) :
18 r e t u r n np . random . r a n d i n t ( 1 0 0 , s i z e = ( 4 , ) )
19

20 # s p e c i f y a p r i v a t e f u n c t i o n
21 @ppd . d e v i c e ( "SPU" )
22 d e f compare ( x , y ) :
23 r e t u r n j n p . maximum ( x , y )
24

25 # x & y w i l l be a u t o m a t i c a l l y
26 # f e t c h e d by SPU ( as s e c r e t s h a r e s )
27 x = d a t a _ f r o m _ a l i c e ( )
28 y = da ta_ f rom_bob ( )
29

30 # compare w i l l be e v a l u a t e d p r i v a t e l y by SPU
31 z = compare ( x , y )
32

33 # r e v e a l t h e r e a l v a l u e o f z
34 p r i n t ( f " z = { ppd . g e t ( z ) } " )

Figure 2: A demonstration of how to use SPU’s API run JAX
programs privately. Developers use decorators to specify data
visibility and functions to be protected.

a few lines of code modifications. An example is given in
Figure 2. We use SPU to solve Yao’s Millionaires’ problem
as a simple demonstration.

We assume the two participants are called Alice and Bob.
In line 3, at the start of this code, we import SPU’s APIs as
module ppd. In lines 6 to 8, we initialize the backend SPU
nodes and data providers (i.e., P1 and P2 are to represent
Alice and Bob). The decorators in lines 11 and 16 are data
visibility marks that specify these data come from P1 and P2,
which means that the two functions can only be evaluated
locally on P1 and P2. The derived results are private data to
be protected on SPU. The decorator on line 21 is a private
function mark that specifies the function compare is private
and should be evaluated on SPU. Lines 27 to 31 compare
Alice and Bob’s data. Variables x and y will be automatically
fetched by SPU as secret shares, and the compared result z is
also secret shares. To get the plaintext result of z, developers

should use ppd.get() to reconstruct z as shown in line 34.
As we can see, the most crucial part of SPU’s APIs is the

decorator @ppd.device(), which is used to specify protected
data and private functions. In the example demonstrated in
Figure 2, the private function is a JAX maximum function. In
fact, this can be extended to more complex JAX functions,
such as an ML model training function from JAX libraries.
Decorator @ppd.device() is the entry point for using SPU as
the workflow described in Section 3.2, which will trigger HLO
generation, compilation to PPHLO, and PPHLO execution.
We can have SPU do all the stuff in the background by putting
the decorator on top of a JAX function.

3.4 Privacy-Preserving High-Level Operations

We design PPHLO based on HLO as a customized IR for SPU
because HLO lacks MPC-related semantics for optimization
and efficient execution. In general, PPHLO represents a com-
putational graph consisting of a series of operations. Each
operation’s input and output are tensors. The tensor type sys-
tem is the most significant difference between PPHLO and
other ML counterparts. A tensor’s type in PPHLO can be rep-
resented by a triple <Shape, Data Type, Visibility>. Shape is
a tensor’s dimensionality. As for data type, PPHLO currently
supports boolean, integer, and fixed-point numbers. Visibility
is a unique tensor attribute in PPHLO. It can be either secret
or public. Secret means that the tensor needs to be protected,
and its real value is not visible to any node in SPU backend
nodes. In contrast, public means that the tensor does not need
to be protected, and any backend node can get its value.

Application developers specify the visibility of PPHLO’s
initial input tensors. As we described in Section 3.3, the vari-
ables generated by functions with decorator @ppd.device()
are secret tensors, such as x and y in Figure 2. Otherwise,
variables are public tensors. For each operation in PPHLO,
we use the following rules to determine the output’s type ac-
cording to the input’s type (shape is not considered here as
it is determined by operation semantics). 1) Data Type Pro-
motion: if one of the operands is a fixed-point number, the
result is also a fixed-point number; 2) Visibility Narrowing:
if one of the operands is a secret, the result is also a secret.
Based on the two rules, we can deduce the types of all tensors
in PPHLO.

Figure 3 gives an example of PPHLO in static single assign-
ment form [50]. This code snippet corresponds to the JAX
maximum function in Figure 2. The symbol @main is the
program entry point. Lines 1 and 2 represent the program has
two input arguments and one return value. The symbol ten-
sor<4x!pphlo.sec<i32>> describes a tensor whose shape is 4,
and that is a 32-bit integer secret value. Inside the braces
is the program body, which contains two operations, i.e.,
pphlo.greater and pphlo.select (lines 3 to 6). An operation’s
output is assigned to the symbol on the left, which can be used
as the operand of subsequent operations. When all operations
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1 f u n c . f u n c @main(% arg0 : t e n s o r <4x ! p p h l o . s e c < i32 > > , %arg1 : t e n s o r <4x ! p p h l o . s e c < i32 > >)
2 −> t e n s o r <4x ! p p h l o . s e c < i32 >> {
3 %0 = " p p h l o . g r e a t e r " (%arg0 , %arg1 ) : ( t e n s o r <4x ! p p h l o . s e c < i32 > > , t e n s o r <4x ! p p h l o . s e c < i32 > >)
4 −> t e n s o r <4x ! p p h l o . s e c < i1 >>
5 %1 = " p p h l o . s e l e c t " (%0 , %arg0 , %arg1 ) : ( t e n s o r <4x ! p p h l o . s e c < i1 > > , t e n s o r <4x ! p p h l o . s e c < i32 > > ,
6 t e n s o r <4x ! p p h l o . s e c < i32 > >) −> t e n s o r <4x ! p p h l o . s e c < i32 >>
7 r e t u r n %1 : t e n s o r <4x ! p p h l o . s e c < i32 >>
8 }

Figure 3: An example of PPHLO. Generated from JAX maximum function shown in Figure 2.

are finished, the return value is given at line 7. PPHLO opera-
tions are extended from HLO operations [3]1. An operation
can accept public or secret tensors as its operands and has cor-
responding plaintext or MPC computation implementations
on SPU backend runtime.

3.5 Frontend
SPU frontend is responsible for PPHLO generation and opti-
mization. The frontend first receives an ML program’s HLO
and initial data visibilities as inputs and applies rules pro-
posed in Section 3.4 to deduce the entire graph’s data types
and visibilities. After this step, a legal PPHLO representation
is generated. The frontend will further perform code optimiza-
tions to modify PPHLO. PPHLO optimizations come from
this insight: an ML computational graph generated for non-
MPC hardware may not be optimal in the MPC scenario. We
propose/implement the following compilation optimizations
based on analyzing initially-generated PPHLO and our MPC
expertise.

convert

mul/dot

int

fxp

fxp

mul/dot

fxp

int fxp

fxp

Figure 4: Mixed-data-type multiplication fusion.

Mixed-data-type multiplication fusion. In regular ML
computations, when multiplying an integer to a decimal num-
ber, a convert operation will be called first to convert this
integer to a floating-point number. Then the multiply oper-
ation can be dispatched to the floating-point multiplication
kernel. A computation graph is illustrated in Figure 4. If we

1Supported PPHLO operations can be found at
https://github.com/secretflow/spu/blob/main/docs/reference/pphlo_op_doc.md

use this graph directly in SPU, an integer will be converted
to a fixed-point number first, followed by a fixed-point multi-
plication which requires a truncation to maintain fractional
bits (Section 2.2). However, an integer can directly multiply
with a fixed-point number. Therefore, we can fuse the two
operations into one multiply operation to reduce redundant
truncation and conversion. This optimization applies to other
similar operations like dot.

public
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fxp1

mul

mul

secret fxp1

public
fxp1

public
fxp2

mul

mul

public fxp

secret fxp

      secret fxp

public fxp1
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Figure 5: Mixed-visibility multiplication operands reorder.

Mixed-visibility multiplication operands reorder. An-
other scenario where truncation can be optimized is multiply-
ing consecutive fixed-point numbers with mixed visibilities.
As shown in Figure 5, a secret fixed-point number multiplying
two public fixed-point numbers involves two multiplication
operations. Each operation generates a secret product requir-
ing a truncation that have a high communication overhead
under some MPC protocols [24,43]. However, we can reorder
the operands without affecting the correctness. The multipli-
cation of two public fixed-point numbers can be calculated
first. The product is also public, so we can truncate the result
by shifting bits locally. Then the result is used to multiply
the secret fixed-point number. By reordering multiplication
operands, one expensive truncation can be saved.

Inverse square root transformation. This optimization is
demonstrated in Figure 6. When SPU frontend detects a com-
putation of y/(

√
x+u) where u is a tiny constant to prevent a

division-by-zero problem, it will transform the computation
to y∗ rsqrt(x+eps()). In the transformed computation, eps is
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Figure 6: Inverse square root transformation.

a unique operation that will generate a minimum fixed-point
number. The reason behind this transformation is that the
inverse square root rsqrt operation has a fast MPC imple-
mentation than computing the reciprocal of the sqrt result
(an approximation is needed). This computation pattern is
observed in state-of-the-art optimizers such as Adam [31]
and AMSGrad [48] when they update weights in each learn-
ing step. This optimization technique was first used by Lu et
al. [41] and applied in related systems like MP-SPDZ [30] and
TF Encrypted [14]. These frameworks must re-implement cus-
tomized Adam and AMSGrad optimizers to employ this opti-
mization. However, as we do the optimization at the PPHLO
level, original Adam and AMSGrad optimizers in the existing
JAX libraries can be directly reused.
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Figure 7: Select predicate reuse.

Select predicate reuse. Select is a commonly-used ML
operation that receives a predicate and a pair of values a and
b. If the predicate is true, then a is returned. Otherwise, b is
returned. The predicate usually is generated with a previous
comparison or logical operations and is represented as a bi-
nary secret sharing. The secret select operation works as a
computation listed in Equation 1, where the predicate is trans-
formed into 0 (false) and 1 (true) as a multiplier that demands
converting binary secret sharing to arithmetic secret sharing.
The conversion requires communication and is expensive [15].
We observe that a predicate may be used by multiple select

operations when training some convolutional neural networks.
Once SPU frontend detects this pattern, a prefer_a operation
that explicitly converts binary secret sharing to arithmetic
secret sharing will be inserted before the first select operation
to reduce redundant conversions (as shown in Figure 7).

Select(pred,a,b) = b+ pred ∗ (a−b) (1)

Max-pooling transformation. Max-pooling is a widely-
used layer in convolutional neural networks, usually con-
nected behind the convolutional layer for downsampling in-
put features. In the forward propagation stage, max-pooling
needs to find the maximum value in a window of values.
In the backpropagation stage, max-pooling needs to replace
the maximum value with its gradient while other values are
set to zeros. We observe that the two stages are computed
by two independent operations (i.e., reduce_windows and
select_and_scatter in Figure 8) when ML frameworks train
models. Although the reduce_window operation has found the
maximum value in a window, select_and_scatter will do the
same to find the index of the maximum value. Redundant and
expensive comparisons would be called in both operations.
Therefore, SPU frontend transforms this computation pattern
to two new operations we proposed in PPHLO, i.e., argmax
and maxpool_scatter. In the argmax operation, we will get
the maximum value and its index in the window. The index
can be directly reused by maxpool_scatter operation. We use
a one-hot vector to represent the index. The maximum value
can be updated by multiplying the index by the gradient.
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input

input
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scatter

inputs output 1

output 2

scatter value
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Figure 8: Max-pooling transformation.

In this section, we share observations on generated PPHLO
from the ML computation graph and operation optimization
strategies we implemented. Optimization techniques for ML
computational graphs are much more mature with the efforts
of countless experts and engineers. However, MPC compu-
tations introduce a different cost model compared to CPU or
GPU computing, which enables us to adopt novel optimiza-
tion techniques on PPHLO. We believe that more optimiza-
tion opportunities are waiting to be discovered in this new
interdisciplinary field.
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3.6 Backend

SPU backend consists of multiple computing nodes, and each
node contains a runtime to execute PPHLO operations. The
number of nodes should match the parties of the underlying
MPC protocol. The design goal of SPU backend is scalable to
support different MPC protocols with a pluggable experience
and efficiently execute PPHLO operations as MPC protocols.
This section describes the operation dispatching mechanism
and runtime optimizations used in SPU backend.

3.6.1 Operation Dispatching

We design the layered dispatching mechanism to achieve
extensibility to different MPC protocols, as shown in Fig-
ure 9. For each PPHLO operation, the SPU runtime will first
dispatch it to the PPHLO layer, which has a one-to-one map-
ping function acting as the operation entrance. The PPHLO
mapping function will further dispatch the operation to fine-
grained HAL (Hardware Abstraction Layer) functions. We
borrow the concept of HAL from traditional operating system
implementation which is mean to eliminate the boundary be-
tween hardware and software. We use HAL to hide the MPC
implementation details from PPHLO operations. Specifically,
at the HAL level, the SPU runtime will decompose an op-
eration into a set of MPC-primitive functions according to
the data type and visibility of operands. As the example in
Figure 9, a secret fixed-point number multiplication will be
decomposed to a secret integer multiplication function and a
truncation function. Each MPC-primitive function will be fi-
nally dispatched to the MPC layer, corresponding to a specific
implementation of fundamental MPC protocols. Adding a
new MPC protocol in SPU only needs to implement the MPC-
primitive function set. When users configure a new backend
protocol, SPU’s runtime will dispatch PPHLO operations to
the new MPC implementation.

3.6.2 Runtime Optimizations

We employ the following techniques in SPU runtime to
achieve high performance.

Vectorization. Vectorization is a standard technique used
on CPUs supported by SIMD (Single Instruction, Multiple
Data) instructions. Applying one instruction to multiple data
enables parallelism and improves program execution effi-
ciency. SPU implements a similar vectorization mechanism
by running one operation on a list of data to reduce the number
of executed operations. For example, there are two operations
mul(a,b) and mul(c,d) where mul stands for an element-wise
multiplication operation and a, b, c, d are tensors. SPU will
pack a, b, and c, d together and execute one mul operation
on these tensors. As MPC multiplication needs communica-
tions, SPU can reduce the number of communication rounds
through vectorization.

pphlo.multipy(sfxp, sfxp)

pphlo::mul(x,y) 
// pphlo entrance 

hal::mul(x,y) 
// general multiplication 

hal::f_mul(x,y) 
// fixed-point multiplication 

hal::_trunc(hal::_mul(x,y)) 
// multiplication and truncation 

hal::_truncpr_s(x) 
// secret truncation 

aby3::TruncPrA(x) 
// aby3 protocol implementation 

mpc::truncpr_s(x) 
// mpc truncation entrance 

PPHLO 
Layer 

HAL 
Layer 

MPC
Layer

Figure 9: The dispatching path from a PPHLO operation to
an MPC protocol in SPU. Different protocols can reuse the
same PPHLO/HAL layer code and diverge at the final MPC
layer.

Streaming. Many MPC operations involve both intensive
network I/O activities and local computations. If such an
MPC operation processes a very large tensor, a more efficient
method is to tile the tensor into sub-tensors and use multiple
operations to process them concurrently. We illustrate this
problem with the toy model in Figure 10. An ML model train-
ing stage consists of many iterations. When a processed tensor
is enormous, the processing operations repeatedly block net-
work I/O and local computing, affecting the overall execution
efficiency. Suppose we tile the tensor into two small tensors
and execute them concurrently. In that case, multiple sub-
tensors and sub-operations can significantly improve network

Network  
I/O

Before tensor tiling

Local  
Compute

Network 
 I/O

Local  
Compute

Network 
 I/O

Local
Compute

Network 
 I/O

Local
Compute

Network 
 I/O

Local
Compute

Network 
 I/O

Local
Compute

After tensor tiling

Performance
Improvement

Figure 10: Streaming for MPC operations.
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and computing resource utilization, thereby shortening execu-
tion time.

Concurrency. SPU supports both intra- and inter-operation
concurrency to gain performance benefits. For intra-operation
concurrency, most PPHLO operations consist of more than
one HAL function. We implement these operations with well-
established engineering experience and execute multiple func-
tions without data dependencies in different threads. Taking
the implementation of rsqrt operation as an example, we fol-
low the protocol proposed by Lu et al. [41] to compute the
inverse square root of a tensor x. The calculation consists of a
fractional part computation and an exponential part computa-
tion which can be computed independently in two threads.

For inter-operation concurrency, SPU uses an aggressive
strategy at the PPHLO graph granularity to prevent oper-
ations with communications blocking the use of comput-
ing resources. When executing PPHLO computation graph,
SPU runtime launches as many operations as possible asyn-
chronously. Once an operation’s dependencies are completed,
this operation will be scheduled for execution.

4 Implementation and Evaluation

We implement SPU frontend compiler based on MLIR (Multi-
Level Intermediate Representation) [36], a compiler infras-
tructure for domain-specific computations. PPHLO is imple-
mented as a new MLIR dialect for MPC computations. Fron-
tend optimizations are implemented as compiler passes. We
develop SPU backend with modern standard C++, and its com-
puting nodes communicate through a high-performance RPC
library, bRPC [1]. The SPU C++ library is binding to Python
interfaces exposed to application developers as a Python mod-
ule (Section 3.3). Currently, we provide users with three built-
in MPC protocols, i.e., the semi-honest implementations of
a three-party protocol ABY3 [43] and a N-party protocol
SPDZ2k [13], and a two-party protocol Cheetah [24]. Our
overall code base contains more than 50k LOC of C++ and
3k LOC of Python.

In the rest of this section, we evaluate SPU on performance
and user-friendliness. Evaluations are done on three Alibaba
Cloud ecs.g7.xlarge instances with 4 vCPU and 16GB RAM
each. We complete evaluations under local area network
(LAN, 10.1Gbps bandwidth and 0.1ms round-trip time) and
wide area network (WAN, 300Mbps bandwidth and 40ms
round-trip time) settings.

4.1 Performance
To evaluate SPU’s performance, we compare SPU to general
MPC-enabled PPML frameworks rather than some specific
protocol implementations. We use SPU and three optimized
frameworks (i.e., MP-SPDZ [29], TF Encrypted [14], and
CrypTen [33]) to train four neural network models for image
classification on the MNIST dataset. The models are trained

privately with the encrypted training dataset and revealed to
evaluate on the plaintext validation dataset. All frameworks
train models with three ML optimizers, i.e., SGD, Adam [31],
and AMSGrad [48] (except CrypTen which does not sup-
port Adam and AMSGrad). Using different optimizers to
train models results in distinct computation graphs, causing
varying computation costs that are noticeably divergent be-
tween MPC scenarios and plaintext training. Consequently,
evaluating diverse optimizers showcases SPU’s performance
extensibility.

The selected four models have been widely used in related
literature for evaluations [30, 40, 44, 49, 56, 57], and their de-
tailed architectures are listed in Appendix A.1 (Table 2, 3, 4,
and 5). We follow the numbering (from A to D) given by
Wagh et al. [56] to refer to these models. All training exper-
iments use a semi-honest three-party MPC (3PC) protocol,
which is widely used and supported by all frameworks.

Table 1 reports the classification accuracy and seconds
per batch when training 5 epochs with a batch size of 128.
MP-SPDZ data is collected by running scripts provided by
its author Keller [30] (commit 0f7020d). TF Encrypted data
is collected by directly running scripts provided in its code
repository (commit 51de98f). CrypTen data is collected by
running an adaption of its official example mpc_autograd_cnn
(commit 909df45). For SPU, we write JAX programs to train
models and run these programs on SPU to collect data.

In Table 1, CrypTen has a significant gap with the other
three frameworks in terms of both training speed and clas-
sification accuracy. One possible reason for this may be
that CrypTen is primarily implemented in Python. Besides,
CrypTen differs from the other three works in that it does not
strictly employ a standard semi-honest 3PC protocol based on
replicated secret sharing [6]. The protocol CrypTen uses can
support any number of participants (N ≥ 2), and we evaluate
its performance in the three-party scenario.

Therefore, in order to ensure fairness, our comparisons
in this section will mainly focus on SPU, MP-SPDZ, and
TF Encrypted. For accuracy, the three frameworks all get
high and close results. These is no single framework can
achieve optimal results in every configurations. For training
time, MP-SPDZ has better results under LAN while losing
its advantages under WAN compared to TF Encrypted . The
possible reason is that MP-SPDZ implements a more efficient
multi-threaded kernel for operation execution, so it benefits
from the intensive local computations under LAN. However,
when network I/O communications become the bottleneck
under WAN, TF Encrypted which relies on the underlying
TensorFlow for graph scheduling works better.

Compared with MP-SPDZ and TF Encrypted, SPU
achieves the fastest training on 11 out of 12 configurations
under LAN and all configurations under WAN. Under LAN,
SPU’s advantage over MP-SPDZ is minor but achieves 1.4-
4.6× faster training than TF Encrypted. Under WAN, SPU
achieves up to 4.1× faster training than MP-SPDZ and up to
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Table 1: The accuracy and seconds per batch of training four neural network models on the MNIST dataset with SGD/Adam/AMS-
Grad optimizer in four MPC-enabled PPML frameworks. M, T, C, and S are abbreviations of MP-SPDZ [29], TF Encrypted [14],
CrypTen [33], and our SPU, respectively. CrypTen does not support Adam and AMSGrad as of the time we write this paper.

Network
Accuracy Seconds per Batch (LAN) Seconds per Batch (WAN)

M T C S M T C S M T C S

A (SGD) 96.8% 96.4% 92.7% 96.9% 0.16 0.19 1.43 0.12 8.94 4.60 58.68 4.60
A (Adam) 97.5% 97.2% N/A 97.4% 0.42 0.56 N/A 0.39 17.72 12.60 N/A 7.67

A (AMSGrad) 97.6% 97.4% N/A 97.5% 0.42 0.71 N/A 0.41 18.28 13.26 N/A 7.68
B (SGD) 98.1% 98.3% 96.5% 98.4% 1.00 4.82 25.62 1.04 34.70 15.66 230.15 9.87
B (Adam) 97.9% 98.7% N/A 98.7% 1.13 4.90 N/A 1.12 44.92 18.18 N/A 11.15

B (AMSGrad) 98.7% 98.8% N/A 98.6% 1.13 4.78 N/A 1.12 45.73 18.08 N/A 11.23
C (SGD) 98.5% 98.9% 97.3% 98.8% 2.10 7.23 34.06 1.81 50.05 22.41 272.11 12.98
C (Adam) 98.8% 99.0% N/A 98.9% 2.92 8.33 N/A 2.37 67.03 49.51 N/A 22.87

C (AMSGrad) 99.2% 98.9% N/A 99.1% 2.94 8.93 N/A 2.37 67.49 51.06 N/A 22.53
D (SGD) 97.0% 97.6% 95.7% 97.2% 0.23 0.39 1.77 0.22 11.20 5.35 59.44 4.89
D (Adam) 97.8% 98.0% N/A 97.7% 0.45 0.69 N/A 0.43 19.87 12.12 N/A 7.66

D (AMSGrad) 98.3% 97.5% N/A 97.9% 0.45 0.81 N/A 0.43 20.42 12.76 N/A 7.66

2.3× faster training than TF Encrypted. Overall, the evalu-
ation results demonstrate that SPU achieves state-of-the-art
performance by combining the two aspects of WAN and LAN.

We further analyze the performance benefits of SPU. Al-
though we implement a series of compiler passes to optimize
the computation graph, it should be noted that these optimiza-
tions are workload-dependent, and not all optimizations will
be effective for a specific workload. Taking training Network
C with the Adam optimizer, which has the most complex com-
putation graph, as an example. We find that when all compiler
passes are disabled, the training time is 2.0× slower under
LAN (4.63 versus 2.37 seconds) and is 1.9× slower under
WAN (43.49 versus 22.87 seconds). Additionally, we find
that nearly all performance benefits come from two frontend
optimizations, i.e., max-pooling transformation and inverse
square root transformation. This phenomenon does not mean
that other implemented optimizations are meaningless, as we
observe that those compiler passes are more effective on other
workloads with corresponding computational patterns, such
as training decision tree models.

Another conclusion we can draw is that the backend run-
time also plays a significant role in contributing to SPU’s
performance improvement. Network A does not have a max-
pooling layer and the SGD optimizer also does not involve the
rsqrt operation. As a result, the two optimizations mentioned
above do not apply to training Network A with SGD. How-
ever, SPU also achieves state-of-the-art in this experimental
setting. Therefore, we believe SPU’s high-performance bene-
fits from collaborative frontend/backend implementations.

4.2 User-friendliness
This section evaluates SPU’s user-friendliness through its
compatibility with ML applications from different main-
stream ML frameworks. We select two ML training programs
from well-known open-source JAX projects and run them on
SPU to train models privately. We found that only minor mod-
ifications to these programs are required to run them on SPU
with acceptable overhead and achieve results comparable to
plaintext training on CPUs. Besides, we test SPU’s feasibility
to run TensorFlow and PyTorch programs. These experiments
show that SPU can be easily extended to other ML models
and frameworks. The evaluations for SPU also use the same
setting (a semi-honest 3PC protocol) as in Section 4.1 under
LAN. The evaluations for plaintext training and prediction on
CPUs run on a single cloud server.

4.2.1 Long Short-Term Memory

This example of training a Long Short-Term Memory (LSTM)
model [23] comes from Haiku [21], a JAX neural network
library developed by DeepMind. LSTM is a recurrent neural
network model for processing sequential data such as text
or speech. This example trains an LSTM model to predict
time series, using the data generated from a sine wave for
training and validation. The model is trained privately with
the encrypted training dataset and revealed to evaluate on
the plaintext validation dataset. We modify about 8 lines of
the example’s source code to enable SPU to run the training
program.

The vanilla JAX program takes 3.01 seconds to train 2001
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Figure 11: Predictions with LSTM models trained by JAX
and SPU.

steps, reducing the training loss from 0.45737 to 0.00067.
SPU takes 7177.83 seconds (2384.7× slowdown) to reduce
the training loss to 0.00099. Figure 11 shows that we use JAX
and SPU-trained models to predict validation data with ground
truth. The SPU-trained model achieves similar prediction
results with high accuracy compared to the JAX model that is
trained in plaintext.

4.2.2 Variational Auto-Encoder

This section describes a Variational Auto-Encoder [32] (VAE)
model training example from Flax [20], a JAX neural net-
work library developed by Google. VAE is a generative
model which can map high-dimensional input space into low-
dimensional latent space and regenerate the input from the
latent representation. This example trains a VAE model to
compress and regenerate images from the MNIST dataset.
The model is trained privately with the encrypted training im-
ages and revealed to evaluate on the plaintext testing images.
We modify about 22 lines of code to enable SPU to run the
training program.

It takes JAX and SPU 214 and 9131 seconds (42.7× slow-
down) to train 5 epochs with a batch size of 128,2 reducing
the training loss from 535 to 106. Figure 12 shows that using
the model trained by SPU to reconstruct MNIST digits has a

2The times include an extra evaluation on testing dataset in each iteration.

(a) JAX.

(b) SPU.

Figure 12: Reconstruct MNIST digits with VAE models
trained by JAX and SPU. The digits above are original inputs.

comparable result to JAX.

4.2.3 Beyond JAX

Technically, SPU is able to support any ML frameworks that
can be translated to HLO. In this section, we validate SPU’s
feasibility to support TensorFlow and PyTorch as frontend ML
frameworks. For TensorFlow programs, SPU Python APIs can
also be used directly on ML training or prediction functions
made of TensorFlow functions. SPU will call tf.function API
provided by TensorFlow to compile these composite functions
into HLO as SPU frontend inputs. For PyTorch programs,
SPU relies on the Torch-MLIR [2] project to convert them
into HLO, which SPU can further consume.

We train a TensorFlow logistic regression model with the
diagnostic Wisconsin breast cancer dataset [52]. The model is
trained privately on SPU with the encrypted training dataset
and revealed to evaluate on the plaintext testing dataset. SPU
achieves the same ROC-AUC (Area Under the Receiver Op-
erating Characteristic Curve) [16] of 0.99 as the plaintext
training result on CPU. Training times on CPU and SPU are
0.067 and 1.121 seconds (16.7× slowdown).

As for PyTorch, we use the same dataset to train a linear
classification model on the plaintext data and run predictions
with jointly encrypted features on SPU (the model weights
are not protected in this example). Experimental results show
that compared to plaintext prediction on vanilla PyTorch, SPU
achieves the same ROC-AUC of 0.97 with a 345.7× speed
slowdown (0.05186 versus 0.00015 seconds). Overall, these
results demonstrate SPU is feasible to support different ML
frameworks.

5 Limitations and Discussion

This section discusses some known issues of SPU. SPU uses
the fixed-point representation to encode decimal numbers like
other MPC-based ML systems, which leads to two limitations.
First, fixed-point numbers have limited precision and range
compared to floating-point numbers. This problem will cause
running some ML programs on SPU to get incorrect results.
We can mitigate this problem by using more fractional bits to
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encode fixed-point numbers in SPU. Second, some function
implementations rely on floating-point number representa-
tions (such as JAX random.normal), which will cause SPU to
compute these functions with unexpected results. We will try
to provide a library overwriting these functions in the future.

Besides, SPU currently does not support secret conditions
as some operations (such as while) may use. In most cases,
these tensors are not data that need to be protected. Developers
can implement these values as public tensors.

6 Related Work

In recent years, there has been a line of works studying apply-
ing MPC techniques for PPML [9,24,27,34,43,44,49,56,57].
Most of these works focus on protocol optimizations and
innovations, improving MPC-enabled PPML’s performance
and making it a practical solution. These works diverge on
security models (malicious or semi-honest adversaries, honest-
majority or dishonest-majority), secret sharing schemas, the
number of supported parties, and implementation details of
basic operations. These protocol innovations are orthogonal to
SPU, which can implement them as the underlying protocols.

Another bunch of works try to reduce MPC usage difficulty
for non-MPC experts by implementing general-purpose MPC
compilers. These compilers convert functions written in high-
level or domain-specific languages to MPC circuits, which
are later executed by backend runtime in an MPC manner.
Hastings et al. [18] have a detailed survey on these compilers.
However, these works are not tailored-made for ML scenarios.
Using them to develop complex and efficient ML programs
takes significant work.

The most relevant works to SPU are TF Encrypted [14],
CrypTen [33], and MP-SPDZ [29]. TF Encrypted and
CrypTen provide programming interfaces similar to Tensor-
Flow and PyTorch in their Python modules. Refactoring an
ML program into the PPML version must replace original
ML APIs with TF Encrypted/CrypTen APIs corresponding to
MPC implementations. The frontend of MP-SPDZ is Python.
Users write ML programs based on Python APIs provided by
MP-SPDZ, which compiles programs to byte code and runs
in an MPC manner. Compared with these frameworks, SPU
runs programs written in existing ML frameworks. Besides,
SPU can support more than one ML framework.

There are other PPML frameworks developed based on
Trusted Execution Environments (TEE) [47] or federated
learning (FL) [28]. TEE-based solutions require special hard-
ware and are vulnerable to side-channel attacks [10, 54]. FL
also enables multiple participants to jointly and privately train
a model. In the classic FL scenario, each participant performs
local gradient computations on the plaintext datasets, and then
a centralized server aggregates the model parameters from
participants. As the original input data remains within the
owner’s domain throughout the training process, FL can be
considered as a PPML solution. However, some works have

already shown that even only exchanging model parameters
may also threaten the original input data [35, 42, 61].

Compared with FL frameworks, SPU provides end-to-end
privacy protection based on provable MPC techniques. MPC
does not necessarily require an independent server responsible
for model aggregation. Participants’ data is first encrypted
and then fed into SPU. SPU then performs computations on
the encrypted data (such as gradient updates) and trains a
model, which is also kept in encryption. Finally, the model
is reconstructed to plaintext and revealed to some designated
parties. In addition to model training, another use case for
SPU is private model inference, in which one party protects
the input data, and the other protects the model parameters.

More advanced FL frameworks have been proposed in
recent years to improve FL’s security. Chen et al. [12] intro-
duce MPC techniques into model aggregation to resist gen-
erative adversarial network attacks [22]. HybridAlpha [58]
uses functional encryption [7] to prevent curious aggrega-
tors and colluding participants from inferring private data.
Both approaches require a model aggregator and an addi-
tional trusted third party, which are not necessarily required
in SPU. Besides, Chen et al. [12] mainly target convolutional
neural networks, while SPU is not limited to specific model
types. Triastcyn et al. [53] propose FedGP to replace partici-
pants’ original data with artificial data by training generative
adversarial networks [17]. However, their approach is limited
to protecting image data and lacks a theoretical security guar-
antee. Compared with FedGP, SPU has no restrictions on the
protected data types, and its security guarantee is based on
provable MPC techniques.

7 Conclusion

In this paper, we propose SPU, a compiler and runtime suite,
which converts ML programs into an MPC-specific IR and
executes the IR in an MPC manner. Using the Python APIs
provided by SPU, users can achieve privacy-preserving ML
training and prediction by writing programs in mainstream
ML frameworks. We believe that using SPU can significantly
lower the threshold for users to achieve privacy protection and
promote the development of the entire PPML community.
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A Supplementary Materials

A.1 Evaluated Neural Network Models
This section describes models used in Section 4.1. Network
A is defined in [44]. Network B is defined in [40]. Network C
is defined in [37]. Network D is defined in [49].

Table 2: Architecture of Network A (SecureML [44] model).
Layer Input Description Output

Fully Connected 784 784×128 matrix multiplication 128
ReLU 128 Element-wise ReLU on input 128

Fully Connected 128 128×128 matrix multiplication 128
ReLU 128 Element-wise ReLU on input 128

Fully Connected 128 128×10 matrix multiplication 10

Table 3: Architecture of Network B (MiniONN [40] model).
Layer Input Description Output

Convolution 1×28×28 5×5 kernel, 1×1 stride 16×24×24
MaxPooling 16×24×24 2×2 kernel 16×12×12

ReLU 16×12×12 Element-wise ReLU on input 16×12×12

Convolution 16×12×12 5×5 kernel, 1×1 stride 16×8×8
MaxPooling 16×8×8 2×2 kernel 16×4×4

ReLU 16×4×4 Element-wise ReLU on input 16×4×4

Fully Connected 256 256×100 matrix multiplication 100
ReLU 100 Element-wise ReLU on input 100

Fully Connected 100 100×10 matrix multiplication 10

Table 4: Architecture of Network C (LeNet [37] model).
Layer Input Description Output

Convolution 1×28×28 5×5 kernel, 1×1 stride 20×24×24
MaxPooling 20×24×24 2×2 kernel 20×12×12

ReLU 20×12×12 Element-wise ReLU on input 20×12×12

Convolution 20×12×12 5×5 kernel, 1×1 stride 50×8×8
MaxPooling 50×8×8 2×2 kernel 50×4×4

ReLU 50×4×4 Element-wise ReLU on input 50×4×4

Fully Connected 800 800×500 matrix multiplication 500
ReLU 500 Element-wise ReLU on input 500

Fully Connected 500 500×10 matrix multiplication 10

Table 5: Architecture of Network D (Chameleon [49] model).
Layer Input Description Output

Convolution 1×28×28 5×5 kernel, 2×2 stride 5×14×14
ReLU 5×14×14 Element-wise ReLU on input 5×14×14

Fully Connected 980 980×100 matrix multiplication 100
ReLU 100 Element-wise ReLU on input 100

Fully Connected 100 100×10 matrix multiplication 10

B Artifact Appendix

B.1 Abstract
SecretFlow-SPU is an open-source framework designed for
privacy-preserving machine learning. This artifact contains

32    2023 USENIX Annual Technical Conference USENIX Association



the source code of SecretFlow-SPU, along with documenta-
tion for reproducing the experiments reported in this paper.
Additionally, we provide scripts and a Docker container image
to quickly build the experimental settings.

B.2 Scope
The artifact includes experiments for secure neural network
training, secure Variational Auto-Encoder (VAE) training, and
secure Long Short-Term Memory (LSTM) training using JAX.
We also provide two simple TensorFlow and PyTorch demos.
These experiments cover all we reported results in the paper.

B.3 Contents
README.md describes the artifact and provides a road map
for evaluation. For more details on the SecretFlow-SPU repo’s
directory layout, please refer to REPO_LAYOUT.md under
the base directory.

B.4 Hosting
The artifact is available at https://github.com/secretflow/spu
(branch atc23_ae).

B.5 Requirements
SecretFlow-SPU has no special hardware requirements.
To reproduce our results, users should have at least three
servers that are connected within a high-performance net-
work. We have done our evaluations on three Alibaba Cloud
ecs.g7.xlarge cloud servers with 4 vCPU and 16GB RAM
each. The CPU model is Intel(R) Xeon(R) Platinum 8369B
CPU @ 2.70GHz. We evaluated SecretFlow-SPU on Ubuntu
20.04.5 LTS with Linux kernel 5.4.0-125-generic. Technically,
SecretFlow-SPU is supported to run on any Linux servers with
software requirements described in CONTRIBUTING.md.
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Abstract
TLS termination, which is essential to network and security
infrastructure providers, is an extremely latency-sensitive
operation that benefits from access to sensitive key material
close to the edge. However, increasing regulatory concerns
prompt customers to demand sophisticated controls on where
their keys may be accessed. While traditional access-control
solutions rely on a highly-available centralized process to
enforce access, the round-trip latency and decreased fault
tolerance make this approach unappealing. Furthermore,
the desired level of customer control is at odds with the
homogeneity of the distribution process for each key.

To solve this dilemma, we have designed and implemented
Portunus, a cryptographic storage and access control system
built using a variant of public-key cryptography called attribute-
based encryption (ABE). Using Portunus, TLS keys are pro-
tected using ABE under a policy chosen by the customer. Each
server is issued unique ABE keys based on its attributes, allow-
ing it to decrypt only the TLS keys for which it satisfies the
policy. Thus, the encrypted keys can be stored at the edge, with
access control enforced passively through ABE. If a server
receives a TLS connection but is not authorized to decrypt the
necessary TLS key, the request is forwarded directly to the near-
est authorized server, further avoiding the need for a centralized
coordinator. In comparison, a trivial instantiation of this sys-
tem using standard public-key cryptography might wrap each
TLS key with the key of every authorized data center. This
strategy, however, multiplies the storage overhead by the num-
ber of data centers. Deployed across Cloudflare’s 400+ global
data centers, Portunus handles millions of requests per second
globally, making it one of the largest deployments of ABE.

1 Introduction

Transport Layer Security (TLS) is a cryptographic protocol
widely used to secure communication and protect data integrity

*Equal contribution
†Work done while at Cloudflare

between clients, such as browsers, and servers, who host the
websites. In a TLS handshake, the server presents a certificate—
containing its public key—to the client, and uses the associated
private signing key to create a digital signature. This verifies
the website’s authenticity and creates a secure connection.

Seeking enhanced performance and security, website
operators often enlist the services of infrastructure providers
like Content Delivery Networks (CDNs). These providers—
offering services such as DDoS protection, load balancing, and
caching—run on globally distributed data centers to ensure
low latency and high performance, and to maintain availability.
They also need to be able to inspect the TLS connection
between clients, who are the end users of their customer’s
websites, and their customer’s servers. This process of
intercepting a TLS connection at an intermediary point in the
network is called TLS termination. To handle TLS termination
on behalf of their customers, service providers require access
to the private signing key for their respective websites.

However, customers utilizing these services have different
degrees of comfort concerning the use of their key material
across data centers. For example, European customers may
stipulate key storage exclusively within the European Union.
Another might demand key storage only in data centers secured
with bulletproof glass and laser alarm systems. These cus-
tomers would like providers to control access to their key mate-
rial based on geographical and security properties. Given that
the TLS handshake is in the critical path of establishing a con-
nection to a website, any latency introduced by key access con-
trol methods could significantly disrupt service quality. Addi-
tionally, for larger infrastructure providers handling millions of
TLS terminations per second, minimizing computational over-
head from the access control method is essential to scalability.

Unfortunately, traditional access control mechanisms
fall short in this endeavor. Centralized methods of access
control [41] require edge data centers to communicate
with the network’s control plane to access specific keys,
leading to an expensive round-trip which adds latency and
reduces reliability. Alternately, access control using standard
public-key encryption provides low latency by assigning
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unique encryption keys to each data center and encrypting
the customer’s private signing key with the keys of each data
center that complies with the access policy. This encrypted
data can then be disseminated across all edge data centers in
advance of connection requests, reducing latency. However,
this strategy becomes rather complex to manage in the face
of heterogeneous policies and large scale. The ciphertext size
grows in proportion to the number of data centers, creating
large overheads. Newly added centers cannot participate in
establishing TLS connections unless the customer’s signing
key is re-encrypted with their newly issued encryption keys.

To address these issues, we required a more direct way
to enforce access control through cryptography. Our first
attempt [52, 53] combined identity-based encryption [11, 51]
and broadcast encryption [25], but ultimately was too inflexible
and limited in the types of access policies it could support.
Spurred by these restrictions, we created Portunus. Portunus
uses a variant of traditional public key cryptography called
ciphertext-policy attribute-based encryption (CP-ABE) [9],
which can implement fine-grained access control on a crypto-
graphic level. CP-ABE is a a variant of the more general notion
of attribute-based encryption (ABE), which was first proposed
by Sahai and Waters [46] as a type of public-key encryption in
which the keys and ciphertexts are associated with attributes
instead of individual users. Concretely, CP-ABE links the
secret keys to the attribute set of the key holders, and the
ciphertexts to access policies that govern which key holders
can decrypt them. Those policies are determined by the
encryptor, who can therefore manage access to their data in
the spirit of attribute-based access control (ABAC) [38].

We have adopted Portunus at scale. Using Portunus, TLS
keys are encrypted using an X25519 key that serves as a data
encryption key, which we call the policy key. This policy key
is further encrypted using ABE under a policy chosen by the
customer. Both the encrypted customer keys and policy keys
are stored in a globally replicated database present on every
machine at Cloudflare. Each edge machine has attributes deter-
mined by a database mapping its core cryptographic identity to
a set of attributes, e.g., country and region. Edge machines are
issued unique ABE secret keys by a key generation authority
run in the control plane, allowing them to decrypt only the
policy keys that they are authorized to access based on their
attributes. Thus, both the encrypted customer keys and policy
keys can be stored at the edge, with access control enforced
passively through ABE. If a server receives a TLS connection
but is not authorized to decrypt the necessary TLS key, the
request is forwarded directly to the nearest authorized server,
further avoiding the need for a centralized coordinator. As
new machines are added, they automatically have access to
the keys to which they are permitted by the policy.

While decryption in ABE is more computationally expen-
sive than its equivalent in traditional public key cryptography,
we are able to significantly mitigate its impact through session
resumption and caching decrypted policy keys.

Adopting CP-ABE as a storage-layer access control
solution means that all nodes share the same data, simplifying
the distribution process. It also makes it easy for newly added
nodes to take up the burden of satisfying requests. Furthermore
there are no centralized components whose failure would lead
to breaks in the availability of the system. Cryptographically
enforced access control is inherently less coupled and more
fault tolerant than a centralized system would be.

Our core contributions are:

1. Portunus, a real-world deployment of an ABE-based
access control system for key management. Al-
though several works have shown interest in using
ABE [22, 23, 32, 48], few have resulted in large-scale
real-world deployments.

2. A discussion of the practical costs and benefits of such
a scheme, concluding that it is effective in solving
distributed access control

3. Lessons learned for future use of CP-ABE by engineers
and for ABE researchers about real-world requirements

2 Requirements

In the design process for Portunus, we identified a series
of requirements arising from customer needs, internal
engineering demands, and the experience of operating the
predecessor of Portunus, Geo Key Manager [52, 53].
Low computational overhead: As TLS handshakes can
happen at extremely high volumes for legitimate reasons, it
is essential that we not add significant computational overhead
to the responding process.
Rotation capable: It should be easy to rotate encryption
keys used in the system. Key rotation is the practice of
systematically replacing cryptographic keys with new ones
periodically, to limit the amount of data exposed by the
compromise of a particular key. A rotation ensures that
newly-uploaded TLS signing keys are not decryptable by
machines that have not been updated with new key material.
Recovery from strong attackers: We assume an attacker
that is capable of compromising multiple edge machines and
reading the database of certificates and associated signing
keys. We would like this attacker to be unable to continue
impersonating sites after their access is removed, unless
the site’s certificate was decryptable on the machines they
compromised. We also want subsequent certificates not to be
decryptable by the attacker after key rotation.
Flexible attributes: Historically, the set of attributes
customers want changes over time, such as when a new compli-
ance standard is introduced. Accommodating these changes in
the prior system, Geo Key Manager, took considerable work.
Flexible policies: From experience, we know that customers
and internal services would need a wide range of policies. Even
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if the eventual product did not expose the full expressiveness,
future developments would be difficult to anticipate.

Limited storage: Quicksilver, Cloudflare’s configuration
management system [43], has limited space because it
duplicates all data across all machines globally. To preserve
fault tolerance and the ability to serve requests quickly from
all machines, our system needs to minimize storage overhead.

Uniformity of data: Quicksilver employs a homogeneous
tree replication strategy: data centers around the world are
organized into a tree and writes at the root are replicated
downward. As a response to server failure, the tree is
reorganized: such reorganization requires all nodes in the
tree to be accessing the new data. Therefore, the system must
accommodate a consistent data view across all edge machines.

3 Cryptographic Building Blocks

This section describes the various components of the ABE
scheme implemented in Portunus. We start by describing the
language to specify policies and attributes. Next, we define CP-
ABE and its security property, collusion resistance. After that,
we delve into pairings, a mathematical operation used to build
many ABE schemes. This includes the scheme of our choice,
TKN20, which uniquely satisfies all of our requirements. Pre-
sented informally and intuitively, we strive to make this com-
plex scheme accessible to a broad audience. We further discuss
necessary aspects for achieving strong security guarantees. Fi-
nally, we conclude by discussing the software implementation
of this scheme and a usage example of the ABE library API.

3.1 Policy Specification Language
In Portunus, the set of attributes assigned to data centers is
an injective map from labels to values, both represented as
strings, e.g., country: Japan. The policies that are enforced
on the wrapped private keys are non-monotone Boolean
formulas (consisting of AND, OR and NOT operators) over
statements that demand that a label has a value, or that it
does not have a certain value, e.g., country: Japan or
country: not Japan. Table 1 shows some example policies
and corresponding semantics.

For the negations (i.e., NOT operators), we put the NOT
operator on the attribute value rather than on the entire
attribute. This means that, to satisfy a negation, e.g., country:
not Japan, the attribute set must have an attribute with the
same label, i.e., country, and it must differ from the value i.e.,
Japan. In contrast, many schemes put the NOT on the entire
attribute, e.g., not country: Japan [40]. In these schemes,
the attribute set satisfies the negation if it does not contain
the attribute country: Japan. However, the problem with
this type of negation is that attribute sets that do not have any
attributes with this label trivially satisfy this negation. This
is especially problematic when new labels are added. Then,

all previously issued keys automatically satisfy the negation,
regardless of whether they may have the negated value or not.

To express and represent policies, we implement a simple
language that parses strings from the API and converts them
into the structures that are consumed by the ABE scheme
(Section 3.2.7). This means the front end of our policy
language is composed of Boolean expressions as strings, such
as country: JP or (not region: EU), while the back end
is a monotonic Boolean circuit consisting of wires and gates.

Monotonic Boolean circuits only include AND and OR
gates. In order to handle NOT gates, we assign positive or
negative values to the wires. Every NOT gate can be placed
directly on a wire because of De Morgan’s Law, which allows
the conversion of a formula like not (X and Y) into not X
or not Y, and similarly for disjunction.

3.2 Attribute-Based Encryption

Attribute-based encryption (ABE) is a variant of public-key
cryptography in which the key pairs are associated with at-
tributes rather than individual users [46]. Unlike traditional
public-key encryption, ABE allows users to enforce a more
fine-grained access control to the encrypted data [3, 9, 27, 42,
59]. There are two variants of ABE: key-policy ABE (KP-
ABE) [27], and ciphertext-policy ABE (CP-ABE) [9].

3.2.1 Key-Policy ABE (KP-ABE)

In KP-ABE, users’ secret keys are generated based on an
access policy that defines the privileges scope of the concerned
user, and data are encrypted over a set of attributes. For
example, consider a military setting. A confidential document
about nukes is encrypted under the attributes type: nuclear,
clearance: top-secret. Then a user with a key defined
over the access policy (type: nuclear or type: laser)
and clearance: top-secret can decrypt the document,
but a user with a key clearance: top-secret cannot.

3.2.2 Ciphertext-Policy ABE (CP-ABE)

In CP-ABE, encrypting users specify access policies that
determine who is allowed to decrypt the data. Users’ secret
keys are generated over a set of attributes. For example,
consider a hospital setting in which a doctor has attributes
role: doctor and region: US, while a nurse has attributes
role: nurse and region: EU. A document encrypted under
the policy role: doctor or region: EU can be decrypted
by both the doctor and nurse.

We restrict our discussion to CP-ABE in this paper, because
it is a more natural fit to the desired semantics of Portunus:
our fleet of servers have natural attributes like location and
compliance standards, and our customers choose their policies.
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Table 1: Example Policies and Semantics

Example Policy Semantics

country: US or region: EU Decrypt only in US or European Union
NOT (country: RU or country: US) Do not decrypt in Russia and US
country: US and security: high Decrypt only in US data centers with a high level of security

3.2.3 Formal Definition of CP-ABE

A ciphertext-policy ABE (CP-ABE) scheme consists of four
algorithms [9]:

• Setup(λ) → (MPK,MSK): The setup takes as input a
security parameter λ, it outputs the master public-secret
key pair (MPK,MSK).

• KeyGen(MSK,S)→ SKS: The key generation takes as
input a set of attributes S and the master secret key MSK,
and outputs a secret key SKS.

• Encrypt(MPK,A,M)→ CTA: The encryption takes as
input a plaintext message M, an access policy A and the
master public key MPK. It outputs a ciphertext CTA.

• Decrypt(SKS,CTA)→M′: The decryption takes as input
the ciphertext CTA that was encrypted under an access
policy A, and a secret key SKS associated with a set of
attributes S. It succeeds and outputs the plaintext message
M′ if S satisfies A. Otherwise, it aborts.

A scheme is called correct if decryption of a ciphertext with
secret key yields the original plaintext message.

3.2.4 Collusion Resistance

The security models for ABE schemes consider their secu-
rity against chosen-plaintext (CPA) and chosen-ciphertext
attacks (CCA), as well as their collusion resistance. Infor-
mally, collusion resistance ensures that multiple users with
secret keys cannot join forces and decrypt a ciphertext that
they could not decrypt individually. For example, a cipher-
text encrypted under the policy role: doctor and region:
EU cannot be decrypted by a user with the attributes role:
doctor and region: US, and another user with the attributes
role: nurse and region: EU. To capture this type of secu-
rity, the security models allow the attacker to request multiple
secret keys for attributes that are not authorized to decrypt the
challenge ciphertext. Furthermore, the models capture security
against chosen-plaintext attacks or chosen-ciphertext attacks.
We define these security models more formally in Appendix A.

3.2.5 Pairing-Based ABE

A popular type of ABE is pairing-based ABE, because it is
efficient and can support many desirable properties [59]. A
pairing—also known as a bilinear map—is a map e : G1 ×

G2→GT defined over three groupsG1,G2 andGT of prime or-
der p with generators g1∈G1,g2∈G2 such that (i) e(ga

1,g
b
2)=

e(g1,g2)
ab for all a,b∈Zp (bilinearity), (ii) e(g1,g2) is not the

identity in GT (non-degeneracy) and (iii) e is efficiently com-
putable. Note that Zp denotes the ring of integers modulo p.

Intuitively, pairings are used to ensure that we can achieve
security guarantees for both the keys and the ciphertexts. We
need those guarantees, because we require ABE schemes to be
secure against collusion, meaning that users should not be able
to combine their keys and obtain better decryption powers. In
contrast, traditional public-key encryption typically only pro-
vides security guarantees for the ciphertexts. Therefore, we can
use discrete-log based assumptions such as the Diffie-Hellman
assumption [19] to create secure encryption schemes such
as the ElGamal encryption scheme [26]. In such encryption
schemes, the public key and ciphertext typically live in a group
in which the discrete-log problem is believed to be hard, while
the associated secret key is an integer. By exponentiating a part
of the ciphertext with the secret key, we can obtain the message.
To ensure that we can achieve similar security assumptions for
the keys in ABE, we also place the keys in a group in which the
discrete-log problem is believed to be hard. To recover the mes-
sage, we perform a pairing operation instead of exponentiating,
which can be seen as an exponentiation with a “hidden” integer.

Most ABE implementations rely on open-source li-
braries for the pairing-based arithmetic, e.g., MIRACL [49],
RELIC [4] or our own library, CIRCL [1]. In this way, ABE can
be implemented in a highly optimized fashion without requir-
ing all the details about the inner workings of pairings. Further-
more, using pairings in a black-box way also allows us to ef-
ficiently update the underlying pairing-friendly curves, should
the old ones be broken or more efficient ones be found [18].

3.2.6 The TKN20 Scheme

We are using a fully CCA-secure hybrid encryption scheme
based on the scheme by Tomida, Kawahara and Nishimaki
(TKN20) [54–56]. We have open-sourced this code as part of
our cryptographic library, CIRCL [1]. We chose TKN20 be-
cause it is currently the only ABE scheme that has a full descrip-
tion and satisfies the following properties simultaneously [59]:

1. Expressivity: support for AND, OR and NOT operators.
Many schemes exist that support monotone formulas,
i.e., formulas with AND and OR only. Few of these also
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support NOT operators1.

2. (Almost) completely unbounded: any string can be
used as an attribute, and there are no bounds on the
policy lengths and attribute sets. Note, however, that it is
bounded in the number of label occurrences in the secret
key, i.e., each label may occur only once.

3. Multi-use of attributes: support for repeated use of the
same attribute in a Boolean formula.

4. Strong security guarantees: full security against
chosen-plaintext attacks under standard assumptions2.

3.2.7 Representation of Monotone Access Policies

In the mathematical description of the scheme, the (monotone)
access policies are represented as linear secret-sharing scheme
(LSSS) matrices [28]. In such matrices, the rows of the
matrix are associated with the attributes used in the policy. To
determine whether a set of attributes S satisfies the policy, the
subset of rows associated with the attributes that also occur
in the set can be considered. If the vector (1,0,...,0) is in the
span of those rows, then the set satisfies the policy matrix.

More formally, an access policy can be represented as a
pair A=(A,ρ) such that A∈Zn1×n2

p is an LSSS matrix, where
n1,n2 ∈N, and ρ is a function that maps its rows to attribute
values. Then, for some vector with randomly generated entries
v=(s,v2,...,vn2)∈Z

n2
p , the i-th share of secret s generated by

this matrix is λi =Aiv⊺=Ai,1s+∑ j∈{2,...,n2}Ai, jv j, where Ai
denotes the i-th row of A. In particular, if S satisfies A, then
there exist a set of rows ϒ = {i ∈ {1, ...,n1} | ρ(i) ∈ S} and
coefficients εi∈Zp for all i∈ϒ such that ∑i∈ϒεiAi=(1,0,...,0),
and by extension ∑i∈ϒεiλi=s, holds.

An efficient method to convert a Boolean formula to an
LSSS-matrix representation was proposed by Lewko and
Waters [36]. For example, the policy role: doctor and

region: EU is represented as (A,ρ) where A =

(
1 1
0 −1

)
and ρ maps the first row to doctor and the second row to EU.
The vector (1,0) can only be recovered from both rows, i.e., by
adding them. Note that this algorithm yields the same shares of
the secret s as the secret-sharing algorithm in the TKN20 paper.

3.2.8 Representing NOTs and Labels

To represent NOT operators and labels in the policy,
we define two additional maps, ρ and ρlab. The map
ρ : {1,...,n1}→{0,1}maps the rows of the matrix (which each
correspond to an attribute in the policy) to 0 if the attribute is not
negated, and to 1 if the attribute is negated, e.g., not region:

1NOT operators can be supported in three ways [5]. TKN20 supports the
most efficient variant proposed by Okamoto and Takashima [39]. This variant
requires that the attribute set uses each label at most once.

2We do, however, require the use of the random oracle model [7]

EU. The map ρlab : {1,...,n1}→{0,1}∗ maps the rows of the
matrix to labels (represented as strings), e.g., region.

3.2.9 High-Level Overview of the TKN20 Scheme

Before we give a description of a simplified version of the
TKN20 scheme, we first give an overview of the scheme. By
doing this, we aim to demystify the many components of the
scheme and highlight the techniques used to construct it.

First, we consider the general form of the scheme’s master
public key, the secret keys and the ciphertexts. In general,
the ciphertext consists of one element in GT that hides the
message, i.e., M ·As, where A=e(g1,g2)

α is part of the public
key, and further, elements in G1 and G2. The secret keys
consists of elements in G1 and G2, where at least one contains
α “in the exponent”, e.g., gα+rb

1 . To decrypt, the appropriate
key and ciphertext components need to be paired (with e) to
recover As=e(g1,g2)

αs, and thus, the message M.
To embed the attribute sets and policies in the secret keys

and ciphertexts, we use appropriate representations of these
in G1 and G2. To represent the policies, we use the shares λi
generated with the matrix representation in Section 3.2.7. In
the scheme, these shares occur as Bλi in the ciphertext, where
B is part of the master public key. To represent the attribute
label-value pairs, we use two techniques: the hash-based [28]
and the polynomial-based [10] approaches. The hash-based
approach simply takes as input the attribute string, e.g., role:
doctor, and hashes it directly into G1 or G2. The polynomial-
based approach takes as input the string and first hashes it
to an element x in Zp, and then maps it into G1 or G2 with
an implicit polynomial, e.g., B0 · Bx

1 = gb0+xb1
1 . In TKN20,

these two approaches are combined: a hash is used to map the
attribute-label string directly into the groupG1, and the implicit
polynomial is used to map the attribute-value string into the
group. More specifically, this combination computes H0(lab)·
H1(lab)x, where lab denotes the label, e.g.,role, and x denotes
the representation of the associated value, e.g., doctor, in Zp.

The reason why TKN20 maps the attribute values into
the group using the polynomial-based approach is that it can
support NOT operators. To support these, TKN20 uses the
high-level approach introduced by Ostrovsky et al. [40], which
exploits the structure of the polynomial-based map. Roughly,
this approach uses the fact that two distinct points on a
1-degree polynomial can be used to reconstruct the polynomial
with Lagrange interpolation3. More concretely, this means
that the secret can be reconstructed if the attribute value in the
key does not match the attribute value in the ciphertext, i.e.,
when they represent two distinct points on the polynomial.

3.2.10 Simplified Description of the TKN20 Scheme

We provide a simplified version of the scheme below, and
explain then how the real version of the scheme—which can

3This approach is also used in Shamir’s secret sharing scheme [50].
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be found in the TKN20 paper [55, 56]—can be constructed
from the simplified version.

• Setup(λ) → (MPK, MSK): The setup outputs the
master public-secret key pair (MPK, MSK), where
Hi : {0,1}∗→G1 with i∈{0,1} are two hash functions
(modeled as random oracles), MSK=(α,b), and

MPK=(p,G1,G2,GT ,e,g1,g2,H0,H1,

A=e(g1,g2)
α,B=gb

1).

• KeyGen(MSK, (S,ψlab)) → SKS: On input a set of at-
tribute values S and the associated labeling map ψlab : S→
{0,1}∗, which maps the attributes in the set S to labels
(represented as strings), it outputs the secret key SKS as

SKS=(S,K1=gα+rb
1 ,K2=gr

2,

{K3,att=(H0(ψlab(att))·H1(ψlab(att))xatt)r}att∈S),

where r∈RZp is a randomly generated element in Zp and
xatt denotes the representation of att in Zp.

• Encrypt(MPK,A,M)→CTA: On input a plaintext mes-
sage M∈GT and an access policy A=(A,ρ,ρlab,ρ,τ)—
where τ : {1,...,n1}→{1,...,m} is a function that maps
each row that is associated with the same label to a
different integer in {1,...,m}, with m being the maximum
number of times that a label occurs in the policy—it
outputs a ciphertext CTA as

CTA=(A,C=M ·As,C1=gs
2,
{

C2,l =gsl
2

}
l∈{1,...,m},{

C3, j =Bλ j ·(H0(ρlab( j))·H1(ρlab( j))xρ( j))sτ( j)
}

j∈χ0
,{

C3, j =B−λ j ·H0(ρlab( j))sτ( j) ,

C4, j =Bxρ( j)λ j ·H1(ρlab( j))sτ( j)
}

j∈χ1
),

where s,s1,...,sm,v2,...,vn2 ∈RZp are randomly generated
elements in Zp, λ j = A j,1s + ∑k∈{2,...,n2} A j,kvk, and
χi={ j∈{1,...,n1}|ρ( j)= i} for i∈{0,1}.

• Decrypt(SKS,CTA)→M′: On input the ciphertext CTA,
and a secret key SKS, it checks whether S satisfies A. If
not, then it aborts. Otherwise, it computes the message by
first determining ϒ0 ={ j∈χ0 |ρ( j)∈S}, ϒ1 ={ j∈χ1 |
ρ( j) /∈ S∧ρlab( j) ∈ ψlab(S)}, ϒ = ϒ0∪ϒ1 and {ε j} j∈ϒ

such that ∑ j∈ϒε jA j =(1,0,...,0), then computing

e(g1,g2)
αs=e(K1,C1)

·

(
∏
j∈ϒ0

(
e(K3,ρ( j),C2,τ( j))/e(C3, j,K2)

)
·∏

j∈ϒ1

(
e(K3,ρ( j),C2,τ( j))/e(C

y j
3, j ·C4, j,K2)

1
x
ρ( j)−y j

))
,

where y j =x
ψ
−1
lab(ρlab( j)). Then, M=C/e(g1,g2)

αs.

3.2.11 Description of the Fully Secure Variant

The structure of the actual TKN20 scheme [55] is much more
advanced. This is because the scheme is fully secure under
well-studied assumptions, in particular, a variant of the matrix
decisional Diffie-Hellman assumption [21]. This assumption
is closely related to the decisional Diffie-Hellman assump-
tion [19, 21]. The main technique that is used to achieve this
level of security is the dual-system encryption technique [62].
Currently, the most advanced and efficient techniques [16, 35]
in this paradigm use matrix structures “in the exponent”, e.g.,
mapping the key component K1 = gα+rb

1 to ga+Wr
1 , where a

and r are vectors of length 3 and W is a (3×3)-matrix [35].

3.2.12 Support for Wildcards

To support CCA-security more efficiently than e.g., [64], we
use wildcards in the secret keys (as also proposed in the journal
version of TKN20, i.e., [56]). A wildcard is represented by an
asterisk ∗, e.g., region: *, and means that all values for the as-
sociated label are accepted, e.g.,region: EU. In other words, it
always matches any occurrence of an attribute with the same la-
bel in the policy. The keys for asterisks have the following form:

(K3,1,att,K3,2,att)=(H0(ψlab(att))r,H1(ψlab(att))r).

Tomida et al. [56] show that the variant of the scheme using
wildcards is provably fully secure as well. Note that we use
this functionality only to achieve CCA-security, because this
functionality seems less intuitive to use for other purposes. In
particular, handing out a wildcarded attribute for some label
gives the user much power: it always satisfies any occurrence
of that specific attribute label in the policy, regardless of what
the policy dictates that the user should have.

3.2.13 Key Encapsulation and Symmetric Encryption

We use the TKN20 scheme to encapsulate a symmetric key
to be used to encrypt the data, and use a one-time secure
symmetric encryption scheme to encapsulate the data. More
accurately, we first derive a symmetric key from the ABE
ciphertext. In particular, instead of encrypting some message
M∈GT , we directly derive the symmetric key from e(g1,g2)

αs

by applying a key derivation function [17]. Because e(g1,g2)
αs

is indistinguishable from a random element in GT , the derived
key is also indistinguishable from a random key [31,33]. Then,
we use this random key to symmetrically encrypt the data. For
this, we use a symmetric encryption scheme that is one-time
secure, which means that no attackers can distinguish between
the encryptions of any two messages (see Appendix B for a
more formal definition). This “hybrid encryption” variant—
where we use ABE to encapsulate a key and symmetric
encryption to encapsulate the data—is provably secure against
chosen-plaintext attacks, see e.g., [34, §A]. To encrypt symmet-
rically, we use the same approach as Boneh and Katz [12]. We
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use a pseudo-random generator to generate a key stream that
has the same length as the message, and XOR it to the message.
In Portunus, we use an extendable output function to generate a
sufficiently-long key stream, i.e., BLAKE2b [45], which is be-
lieved to be indistinguishable from pseudo-random generator.

3.2.14 CCA-Security via the BK-Transform

Finally, to achieve CCA-security, we apply the Boneh-Katz
transform [12]. With this transform, we combine the hybrid
encryption scheme with a message authentication code (MAC)
function and a special commitment scheme4, for which formal
definitions and security models can be found in Appendix
B. Informally, the special commitment scheme that we use
consists of two independent hash functions. The first hash
is used to generate a public commitment to a secret random
value, and the second hash uses the secret random value to
derive a key K′. Subsequently, this secret random value is
included in the encryption of the message with the hybrid
encryption scheme. We compute a MAC with the key K′ over
the resulting ciphertext to ensure authenticity of the ciphertext.
Furthermore, the public commitment to the secret random
value is included in the access policy with an AND operator
applied to the original policy, and also in plain in the resulting
ciphertext. To decrypt, one first recovers the message and
secret random value by decrypting the ciphertext. Then, one
verifies whether the public commitment is equal to the hash
over the secret random value, and then if the MAC verifies cor-
rectly given the key derived from the secret random value. We
give a full description of the CCA-secure construction (using
the simplified version of TKN20) in Appendix C. It follows
from [12] and [60] that this construction is CCA-secure.

3.3 Software Implementation
We implemented our scheme as part of the CIRCL library [1] in
Go. The particular instantiation of the pairing-friendly groups
G1,G2 and GT that our implementation uses is the BLS12-381
curve [6, 13]. We generated the code for the arithmetic in Zp
with the Fiat Cryptography tool [20], which formally verifies
the correctness of the produced code. We have also optimized
the arithmetic for the groups G1,G2 and GT through judicious
choice of representation. Our implementation uses the fast
subgroup checks via Bowe’s method [14], which allow us to
check whether any given point is in the group, e.g.,G1. To hash
into groups, we followed the relevant IETF specification [24].
To optimize the decryption algorithm, we use two common
tricks that are often used to speed up computing a product
of pairings, i.e., by reordering the computations [42] and by
sharing the final step of the pairing operations [29]. Figure 1
presents a reproducible program showing the usage of our code.

4Boneh and Katz [12] call this an “encapsulation” scheme, but to
distinguish it more clearly from key and data encapsulation, we call it “special
commitment scheme” in this paper.

4 Design

Armed with the above scheme, we now must construct
services to encrypt customer keys, and make them available
to those who should have them. Cloudflare logically has four
components. The first is a set of edge machines located in
geographically spread and distant data centers. These edge ma-
chines run a homogeneous mixture of services that terminate
TLS and serve HTTP. The actual signing of TLS handshakes
takes place in a system called Gokeyless in all relevant cases.

The second component is a centralized set of services in the
control-plane responsible for the API that customers interact
with to configure their website. One of these services, the
certificate manager, handles all configuration relating to TLS.

The third component is a small number of very tightly
controlled machines that handle certificate issuance for inter-
nal certificates. All machines at Cloudflare have a machine
identity based on RSA keys: our key issuance service uses that
identity to determine the attributes a machine shall have. We
call this service the Key Generation Authority (KGA).

The fourth component is a globally synchronized key-value
store, Quicksilver. This is a global gossip tree for customer
configurations, such as certificates, that is designed to ensure
extremely fast replication, at the cost of constrained bandwidth
and storage. Every edge machine stores a local copy of the
data in Quicksilver.

4.1 Encrypting Customer Keys
When a customer uploads a certificate and the associated
private signing key to Cloudflare, and indicates it is to be
protected under an access policy, the certificate manager in
the control-plane takes the private key and encrypts it with the
required policy. However, the customer’s private key is not
encrypted with the ABE master public key directly. Rather, it is
encrypted with an X25519 key pair, the private key of which is
encrypted under the ABE scheme. These key pairs are indexed
by the policy and the epoch they are under. At any time, there
may be several of these key pairs, called policy keys, present
in the database for a given policy. The certificate manager
will use the most recent one for encryption. This permits
gradual rotation of the key pairs. Note that the only encryption
happening in Portunus is done by the certificate manager.

4.2 Accessing Customer Keys
On receipt of a connection to a site, such as alice.test.com,
Gokeyless carries out a lookup for the certificate in Quicksilver.
If that certificate has a key protected by Portunus, the metadata
for that certificate will have a pointer to the relevant policy
key together with a ciphertext that decrypts to the private key.
Gokeyless then loads the policy key and determines if it is
decryptable by the machine. If not, it consults a table that
maps each policy to a list of satisfying data centers to find a
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Listing 1: Example usage of the ABE library API

masterPubKey , masterSecKey := Setup () // Initialize the master public and master secret key
accessPolicy := new(Policy)
accessPolicy.FromString("country: US or region: EU") // Create new policy from given string
// Encrypt the secret message using the master public key and policy
encryptedMsg := masterPubKey.Encrypt(accessPolicy , [] byte{"long live ABE"})
parisDCAttributes := new(Attributes) // Create attributes for the Paris data center
parisDCAttributes.FromMap(map[string]string{ "country": "FR", "region": "EU"})
// Generate an attribute secret key for the Paris data center using the master secret key
parisDCSecKey := masterSecKey.KeyGen(parisDCAttributes)
// Decrypt the ciphertext using the attribute secret key of the Paris data center
decryptedMsg := parisDCSecKey.Decrypt(encryptedMsg)
assertEquals(decryptedMsg , [] byte{"long live ABE"})

Figure 1: Encryption under a policy

Figure 2: Decryption using Attribute Secret Key

neighboring one, and forwards the request there. Gokeyless on
this machine then decrypts the policy key and uses the result to
decrypt the certificate’s private key, performing the signature
and completing the TLS handshake. The decrypted policy keys
are cached in memory, so the computationally burdensome
ABE decryption only happens once for commonly used
policies. This is an important optimization to avoid excessive
CPU consumption during attack scenarios when many
handshakes are arriving.

4.3 Key Distribution
The key generation authority (KGA) holds the ABE master se-
cret key. It also has access to the unique cryptographic identity
for every machine in the fleet, as well as a map of machines to
attributes. This map is largely synchronized with the machine’s
own view. Key issuance for the machine’s attribute-based se-
cret key is managed by the service configuration management

system, Salt [2]. Salt uses the RSA identity key of the machine
to authenticate to the CA, which generates the machine’s at-
tribute secret key using the master secret key and the attributes
of the machine. The map of machines to attributes is configured
in the same database that drives machine identity for Salt.

4.4 Key Rotation
Over time, it is necessary to change the key material in the
system so that an attacker who has access to old key material
can no longer decrypt newly uploaded customer TLS private
keys. However, the lifetime of a customer certificate can
extend beyond a rotation period and it must be possible to
continue to decrypt the customer TLS key for that duration.

The key generation authority generates a new generation
of the master key pair. To preserve the ability to decrypt old
TLS private keys, the CA re-encrypts the existing policy keys
on behalf of the certificate manager. During this process,
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machines will have both the old and new generation of the
attribute secret key, ensuring that availability is not impacted
as the old key material is phased out.

Newly uploaded certificate private keys are encrypted under
the same policy key. This means that an attacker who has
access to a policy key can continue to to decrypt new TLS
keys, but it is possible to generate new policy keys for a policy.
This does however guard against an attacker who obtains the
attribute secret keys for a machine from being able to access
the TLS keys after rotation.

To detect accidental or malicious usage of expired key
generations and have end-to-end visibility into the status of
key rotation, we have logging and metrics for key generation
held and used in each part of the system.

4.5 Attribute Changes
From time to time, the attributes associated with a set of data
centers may change. Introducing new labels that have not
been used by existing policies is straightforward, since the
set of data centers that can decrypt a given TLS private key
remains unchanged. However, when the attributes of the data
centers that can decrypt a key are changing, certain changes
are needed to maintain system functionality [5, 59]. We split
the act of “changing an attribute” in two steps: removal of the
old label and value, and the re-addition of the label with the
new value. The former results in loss of decryption capabilities
for associated data centers, because they no longer satisfy
the policies that required the presence of this label. Note that
the removal does not increase the decryption capabilities yet,
because to satisfy a negated attribute, the set of attributes of
the data center must have an attribute with the same label,
regardless of the value. Adding a new label can only increase
the number of policies satisfied due to negation semantics.

Carrying out this transition requires three steps. First, the
affected label is removed from the forwarding information of
the involved data center, so that other data centers stop sending
requests that require its presence. Second, the key is re-issued
with the new attribute. Third, the new attribute is re-added
to the forwarding information so requests are handled by the
data center again. Throughout this, the affected data center
handles end-user requests as usual: those requests that cannot
be satisfied locally are forwarded to other data centers that can
satisfy them, whose forwarding information is not affected by
the transition. This process can be difficult to carry out at scale
and requires careful planning and should be done in stages.
Lastly, a key rotation is required to ensure that any retained
copies of the older key are not used.

4.6 Networking and Resiliency
Gokeyless uses an RPC protocol to forward TLS signing
requests to the closest satisfying data center, which on arrival
leverage a network layer load balancer [63] to determine

an appropriate machine to handle the connection. Since
the computational load of handling a request forwarded for
Portunus is merely an X25519 decryption and an RSA/ECDSA
signature, even high levels of request volume have not led to
failures due to load balancing issues.

Because maintaining connections to all other machines
can be expensive, machines within one data center will elect
among themselves a machine to forward requests to specific
close foreign data centers. This reduces the number of TCP
connections being used.

Resiliency is negatively impacted for customers who apply
overly restrictive policies. It is possible for data centers to be
taken offline or become overwhelmed for a variety of reasons.
If all data centers a customer’s key is decryptable in are offline,
then the customer’s website will be rendered inaccessible. To
prevent this, we require customer keys be decryptable in at
least two large-capacity data centers.

We have found that typically customers will store their cer-
tificates in regions where the majority of their users are found.
This unsurprising pattern puts low demands on the remote
execution capabilities. Unfortunately, events such as DDoS
attacks can add significant load. Operation under normal
conditions is not a guide to operation under adverse conditions.
This led us to expend significant effort to integrate distributed
tracing in addition to metrics to track system performance and
quickly diagnose and reproduce scaling issues.

5 Evaluation

While Portunus was launched to customers in 2022, the older
version of the system based on similar principles (Geo Key
Manager) has been in production since 2017. Over the years,
the number of customers and end-users relying on this product
has steadily increased. This section is an evaluation of the
various components of Portunus.

During a sample week in December 2022, we observed
100k requests per second being served between Portunus and
Geo Key Manager. As most customers restrict key access to the
region where they typically have the most users, approximately
80% of these requests are handled locally. The remaining 20%
are forwarded to their closest satisfying neighbor.

5.1 Cryptography
We evaluate our underlying cryptography library against
RSA-2048 and X25519, utilizing Go libraries crypto/rsa
and x/crypto/nacl/box as reference implementations.
These comparative algorithms were chosen because they
are standard public-key cryptography. We conduct our
measurements on an Apple M1 Mac.

We characterize our library’s performance using measures
inspired by ECRYPT [8]. In all comparisons involving ABE,
we set the attribute set size to 50 and consider policy formulas
over 50 attributes. This attribute set size is significantly higher
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Table 2: Space Overheads (bytes)

Secret Public Encrypt Encrypt
Scheme key5 key 23 B 10 KB

RSA-2048 1190 256 233 496
X25519 32 32 48 48
Our scheme 23546 3282 19475 19475

Table 3: Operation times (ms)

Scheme Key Gen. Encrypt 23 B Decrypt 23 B

RSA-2048 180 0.209 1.47
X25519 0.061 0.096 0.046
Our scheme 701 364 30.1

than necessary for any of Portunus’ applications, as most
policies are typically limited to a combination of geographic
properties. Nevertheless, it serves as an extreme worst-case
scenario for benchmarking purposes.

Table 2 shows the space consumed by the various operations.
For our system, the ciphertext overhead is of particular concern
since it is replicated on every machine. Unfortunately, this
overhead is significantly larger than in traditional public-key
cryptography. However, the good news is that this overhead is
constant with respect to message length for a given policy size,
and can be reduced by relying on a small handful of policy keys
(defined in Section 4.1) rather than encrypting every customer
key using ABE. Importantly, the ciphertexts in our system can
be decrypted by multiple decryptors, whereas standard public-
key cryptography benchmarks only consider a ciphertext that
can be decrypted by a single decryptor. The size of the attribute
secret key is less relevant, as a single copy is stored per ma-
chine. The size of the master public key is of even less concern,
as it is only used by the certificate manager in the control plane.

Table 3 shows the average time required to perform different
key operations. Key generation refers to the process of
generating attribute secret keys from the master secret key,
which can be performed out-of-band of user handshakes and
is therefore of marginal relevance in this context. Encryption
latency can also largely be ignored, as it is acceptable for
encryption to take a few extra cycles before a certificate is
considered deployed. But once it is deployed, HTTPS requests
to the website should complete quickly. Since decryption is
in the critical path of every request, it is the most pertinent in
our situation. While session resumption and caching policy
keys can amortize the number of ABE decryptions across TLS
handshakes to a small fraction, improvements to decryption
latency will still affect overall baseline performance. It is
therefore important to further optimize the decryption process.

5For ABE, this is the Attribute-Based Secret Key.

Figure 3: Uptime by policy; this shows that Portunus (v2) has
consistently better uptime than Geo Key Manager (v1)

5.1.1 Request Latency

The overall performance of Portunus includes the impact of
cryptography, networking and geographic location based on
the type of Portunus request: handshakes processed locally, and
those forwarded to a remote data center. The vast majority of lo-
cal requests only perform an X25519 decryption because of pol-
icy keys. The remainder incur the overhead of an ABE decryp-
tion. For remote requests, network latency largely dominates.

5.2 Availability
Figure 3 shows the uptime of our system by policy vs the pre-
vious system. This graph was produced using synthetic probes
spanning every machine across our fleet. It demonstrates that
dynamically selecting all possible machines to decrypt rather
than a pre-determined handful as in our previous release,
produces significant improvements to real-world reliability.

6 Discussion

We want to reiterate why an access-control solution based on
novel cryptography makes the most sense for our system.

The TLS key management system is responsible for
ensuring that edge machines can access customer signing keys
when customers upload their TLS certificates (and associated
signing keys) to Cloudflare. To ensure availability and low
latency, the key manager relies on an internal globally syn-
chronized key-value store, Quicksilver [43] to distribute user
configurations to all edge data centers within seconds. A copy
of the entire Quicksilver data set is replicated on every edge
machine for fault tolerance, allowing requests to be served
even if disconnected from the central synchronizing server.

However, augmenting the key management system to
support policy-based access restrictions required us to
rethink our approach of storing the same data on all edge
machines. Using a central server to enforce access would
reduce fault tolerance and add additional latency, undermining
the advantages of a distributed edge. Alternatively, we could
ensure that only data centers that satisfy a given policy receive
those policy-restricted keys. However, this would require
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modifying Quicksilver’s replication strategy to store only a
subset of the key set, which challenges core design decisions
Cloudflare has made over the years that assume the entire data
set is replicated on every machine.

We considered a third option of issuing unique keys for
each data center: wrapping each TLS signing key with the
key of every authorized data center and adding them all to
Quicksilver. Although this approach would have permitted
access to the key only in certain locations while letting TLS be
terminated where possible, it would also significantly increase
the storage space requirements on every machine proportional
to the number of datacenters.

This encouraged us to explore alternative cryptographic
solutions. Our first attempt, Geo Key Manager, was developed
back in 2016, when there was only one ABE scheme that
supported all properties [59], but in a rather inefficient way. In
particular, at the time, supporting negations led to significant
efficiency penalties in the decryption algorithm [58]. Only
recently, the community started addressing these efficiency
issues [5, 55, 58]. To get around this limitation, we initially
used a combination of identity-based encryption and broadcast
encryption to simulate an ABE-like scheme. Unfortunately,
this scheme was not collusion resistant (Section 3.2.4). As a re-
sult we were eager to switch to a more theoretically satisfying
solution once practical ABE schemes became available.

During the implemention of our ABE scheme, while we per-
formed much optimization (Section 3.3), the implementation
has larger overheads compared to the mature implementations
for traditional cryptographic schemes. We mitigated some of
these costs by using policy keys (Section 4.1). This approach
is similar to hybrid encryption, where public-key cryptography
is used to establish a shared symmetric key used to encrypt
data. Policy keys are public key encryption keys to permit the
central service to encrypt user’s certificates without access
to the key. While not as efficient as symmetric cryptography
this still reduces the overhead.

The performance and reliability improvements of the de-
ployed system are due to side-effects of the new cryptographic
scheme. The original system only supported one kind of at-
tribute, a region. Unfortunately, this did not support customers
who wanted to specify countries, and so a hard-coded list of
cities was used on upload. This list was rarely updated, so new
datacenters were not used. Migration was an extremely diffi-
cult prospect. Switching to the new system meant that country
could be used directly, and additional attributes could be added.
This immediately increased the available set of data centers
for many common policies, and directly improved reliability.

Although ABE employs a highly trusted key generation
authority to issue the secret keys, we argue that this authority
does not need to be more trusted than an authority enforcing
traditional access control. Specifically, in Portunus, the role
of the key generation authority is integrated with a certificate
authority that is used to secure all critical services within
Cloudflare’s internal network. If this authority were to be

corrupted, the consequences would be much worse than
simply breaking the security of ABE. If, however, a similar
setting would require that the trust in the authority is mitigated
by distributing the trust across multiple authorities, one could
also deploy multi-authority ABE [15, 37].

A policy conundrum may also arise in certain situations: the
encrypted data still resides in restricted regions. This can po-
tentially cause concern among those without a comprehensive
understanding of the system. Assuaging these concerns will
vary between organizations, but a big part involves spreading
awareness of how policy-based encryption works.

7 Future Work

Although ABE can support all properties required by our partic-
ular application, it does present minor limitations that may be
critical in other contexts. For instance, our scheme doesn’t sup-
port policies with wildcards of the form country: *, meaning
any country can satisfy this policy. It likewise doesn’t permit
an attribute set with multiple values for a single attribute label,
such as {group: fiddlers, group: percussionists}.

It is unclear what post-quantum ABE schemes will have the
combination of performance, implementation simplicity, and
expressivity required. Likewise, the use of pairing-based cryp-
tography creates some challenges in acceptance, as decision
makers may be unfamiliar with it and it is not standardized,
despite ongoing efforts towards standardization at IETF [47].

8 Lessons Learned

In the course of operating Portunus and its predecessor Geo
Key Manager, we have learnt several lessons.

Even after more practical ABE schemes became available,
the difficulty in translating a scheme from an ABE paper to
practice, as well as in selecting an appropriate scheme, should
not be underestimated. Typically, there are some parameters
that must be chosen, with little indication of the strength of
the various assumptions the parameters create. In addition,
the notation can require a formidable amount of translation,
sometimes concealing significant computational steps.

There persists a prevalent notion in the cryptography
community that ABE is still unreasonably slow to be useful.
We believe this is no longer true. Just like traditional public
key cryptography is not used independently to encrypt
large amounts of data, but rather in concert with symmetric
encryption, we believe many applications can enjoy the
benefits of ABE using it with a hybrid encryption strategy.

Complicated cryptographic schemes in services,particularly
ones as critical as TLS termination, can elicit operational appre-
hensions amongst SREs and other teams that depend on the ser-
vice. Cryptography can end up being scapegoated when issues
arise, despite the problems originating from other system com-
ponents. We believe when designing such a system, it is prudent
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to prioritize simplicity in every other aspect. This makes fail-
ures outside the cryptography straightforward to diagnose and
conserves the complexity budget for the cryptography.

We have certainly faced the consequences of not adhering
to this principle, in the form of delayed rollout due to difficulty
garnering operational confidence. Geo Key Manager’s com-
plexity extended beyond just the cryptographic components,
such as the use of a custom RPC protocol - an artifact of the
parent system’s (which Geo Key Manager was integrated into)
development before the existence of gRPC. This custom pro-
tocol, despite resolving most of its quirks as part of Portunus’s
development, continued to present challenges in specific edge
cases. We are presently transitioning to gRPC to alleviate these
issues and preempt future related issues. Another example
of reducing complexity was replacing a complex thread-pool
architecture based on outdated assumptions, with a simple and
scalable architecture of one goroutine per request, capitalizing
on the lightweight concurrency model offered by Go. Our
ongoing efforts aim to simplify various other components,
with the ultimate goal of improving system maintainability
and fostering enthusiastic buy-in from other stakeholders,
as well as encouraging other teams to consider applying
ABE-based access control for their own use cases, armed with
the reassurance of Portunus’s successful deployment.

9 Related Work

Prior work has considered CP-ABE for enforcing access con-
trol. Oftentimes, the design of new ABE schemes is justified by
their new capabilities based on use in access control [9,44,65],
but without many details on potential system design. However,
as Venema and Alpár demonstrate [57], there have been
various attacks on some of these constructions [44, 65], partic-
ularly those that do not rely on pairings [30, 66]. It is therefore
important that care is taken in choosing an established scheme
that has the necessary properties and is secure.

Although there are many schemes with various proper-
ties [59], our chosen scheme is unique in satisfying our
desired properties 3.2.6, making comparisons with alternative
ABE schemes difficult. Likewise, comparing cryptographic
operation benchmarks with potentially sub-optimized research
implementations of ABE schemes is not in scope and we refer
the reader to more comprehensive analyses [18].

In contrast to most works about systems that use ABE,
Sieve [61] dives deeper into the details of the system. The
authors discuss how key management, ABE overhead, and
key deletion have to be addressed in a deployed system. In this
system, applications can interact with user data stored in the
cloud, while users maintain control over which applications
have access to their data. Because Sieve is built for a different
setting than Portunus, it makes different choices in how ABE is
applied. Most notably, it uses key-policy ABE, where the keys
are associated with policies and the ciphertexts are associated
with attribute sets, to apply a “tag-based” access control like

described in Section 3.2.1. In particular, the encrypted data
objects that are stored in the cloud are associated with attribute
sets. Once an application requests access to the user’s data, the
user can specify a policy stating which data can be accessed.

Excalibur [48] is perhaps the most similar to our work,
because it also uses CP-ABE to enforce access control in
the spirit of attribute-based access control. The authors
designed and implemented a system for customers to make
data accessible on certain machines, and integrated it into a
cloud environment. Because their use case is different, the
challenges that their system overcomes also differ. Importantly,
like Sieve, Excalibur did not progress beyond a lab setting and
was never actually deployed in a large-scale real-world setting.

Finally, most existing access-control applications separate
the cryptographic and access-control aspects. Cryptography is
used to protect sensitive data (in transit, but sometimes, also at
rest), while access control is enforced more traditionally. In tra-
ditional models, a central authority typically enforces policies
by validating an entity’s authorization prior to granting data
access. When access is granted, a decryption key is shared with
the requesting entity, who can then access the data by decrypt-
ing it. However, this approach introduces significant latency
to the access request. Furthermore, a single central authority
makes the system vulnerable to denial-of-service attacks. In
contrast, using ABE allows access control on a cryptographic
level, achieving both protection of the data whilst allowing
the enforcement of access control. By extension, it removes
this extra latency and mitigates the availability issues of the
central authority. It also allows data to be freely transmitted
between nodes, removing the risk of accidental data leakage
as long as the target node’s secret key is not compromised.

10 Conclusion

For several months, Portunus has seen real-world usage
protecting customer keys. It has succeeded in supplanting the
capabilities of the legacy system and setting a foundation for fu-
ture product development. This required multiple person-years
of effort by a small team, as well as accepting a fairly novel
scheme as the foundation of its security. This effort brought
about increases in reliability and enhanced performance.
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A Security Model for CP-ABE

We define the security game IND-CCA(λ) between challenger
and attacker as follows:

• Setup phase: The challenger runs Setup(λ) to obtain
MPK and MSK, and sends the master public key MPK
to the attacker.

• First query phase: The attacker can make two types of
queries:

– Key query: The attacker queries secret
keys for sets of attributes S, and obtains
SKS←KeyGen(MSK,S) in response.

– Decryption query: The attacker sends a ciphertext
CTA for access policy A and some set S that
satisfies A to the challenger, who returns the
message M ← Decrypt(MPK,SKS,CTA) (where
SKS←KeyGen(MSK,S)).

• Challenge phase: The attacker specifies some access
policy A∗ such that none of the sets S in the first key
query phase satisfies A∗, generates two equal-length
messages M0 and M1, and sends these to the challenger.
The challenger flips a coin, i.e., β ∈R {0,1}, encrypts
Mβ under A∗, i.e., CTA∗←Encrypt(MPK,A∗,Mβ), and
sends the resulting ciphertext CT∗A∗ to the attacker.

• Second query phase: This phase is identical to the first
query phase, with the additional restriction that the at-
tacker cannot query keys for sets of attributes S that satisfy
the policy A∗ or make a decryption query for CT∗A∗ .

• Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as

AdvIND-CCA=

∣∣∣∣Pr[β′=β]− 1
2

∣∣∣∣.
A scheme is fully secure against chosen-ciphertext attacks
if all polynomial-time attackers have at most a negligible
advantage in this security game.

In the model for security against chosen-plaintext attacks,
the attacker is not allowed to make decryption queries in the
first and second query phase—only key queries.

B Other Definitions

B.1 Symmetric Encryption

B.1.1 Formal Definition

We define symmetric encryption as follows. Let λ be
the security parameter. A symmetric encryption scheme
SE=(Enc,Dec), with symmetric key K∈{0,1}λ, is defined as

• EncK(M): On input message M ∈ {0,1}∗, encryption
returns a ciphertext CTsym.

• DecK(CTsym): On input ciphertext CTsym, decryption
returns a message M or an error message⊥.

The scheme is correct if for all keys K ∈ {0,1}λ and all
messages M∈{0,1}∗, we have DecK(EncK(M))=M.

B.1.2 Security Model

For symmetric encryption, we use the same security notion
as in [33], i.e., ciphertext indistinguishability. Informally,
ciphertext indistinguishability ensures that an attacker cannot
distinguish between encryptions of any two messages. More
formally, it is defined as follows. Let λ be a security parameter
and let SE = (Enc,Dec) be a symmetric encryption scheme.
Consider the following game between a challenger and
attacker. The challenger first picks a key K ∈ {0,1}λ. Then,
the attacker specifies two messages M0,M1 and gives these
to the challenger, who flips a coin β ∈R {0,1} and returns
CTsym ← EncK(Mβ) to the attacker. The attacker outputs a
guess β′ for β. Then, SE = (Enc,Dec) has indistinguishable
ciphertexts if for all polynomial-time attackers in the game
above holds that the advantage

∣∣Pr[β′=β]− 1
2

∣∣ is negligible

B.2 MAC Function

B.2.1 Formal Definition

We formally define a MAC function as follows. Let λ be the
security parameter. A message authentication code (MAC)
(MACKMAC ,VrfyKMAC

), where KMAC ∈ {0,1}λ is the MAC
key, is defined by

• MACKMAC(M): On input message M ∈ {0, 1}∗, this
algorithm outputs a tag T.

• VrfyKMAC
(M,T): On input message M and tag T, the

algorithm returns 0 (“reject”) or 1 (“accept”).

The MAC is correct if for all keys KMAC ∈ {0,1}λ and all
messages M∈{0,1}∗ it holds that if T←MACKMAC(M), then
VrfyKMAC

(M,T)=1.
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B.2.2 Security Model

For MACs, we use the notion of security against one-time
chosen-message attacks. Let λ be the security parameter, and
let (MACKMAC ,VrfyKMAC

) be a message authentication code.
Consider the following game between challenger and attacker.
The challenger first picks a key KMAC∈{0,1}λ. The attacker
sends a message M to the challenger, who returns a tag T←
MACKMAC(M). Then, the attacker outputs a pair (M′,T′). The
attacker succeeds if (M,T) ̸=(M′,T′) and Vrfy(M′,T′)=1.

B.3 Special Commitment Scheme

B.3.1 Formal Definition

The special commitment scheme that we use is defined as
follows. Let λ be the security parameter.

• ESetup(λ)→pub: Define hashes h1 : {0,1}448→Zp and
h2 : {0,1}448→{0,1}λ, and set pub=(h1,h2).

• ES(λ, pub) → (rand, com, dec): Generate
dec ∈R {0, 1}448, and compute com = h1(dec) and
rand=h2(dec).

• ER(pub,com,dec)→ rand: Generate rand←h2(dec).

The special commitment scheme is correct if
for all (rand, com, dec) ← ES(λ, pub) holds that
ER(pub,com,dec)= rand.

B.3.2 Security Model

A special commitment scheme (ESetup,ES,ER) is secure if
it is hiding and binding.

• Hiding: Consider an attacker and a challenger. Then,
the challenger runs pub ← ESetup(λ) and flips a coin
β ∈R {0, 1}. If β = 0, then C generates a random
rand∈R {0,1}λ, and otherwise, it runs (rand,com,dec)←
ES(λ,pub). It shares (λ,pub,rand,com) with the attacker,
who then outputs a guess β′ for β. The scheme is hiding
if for all such attackers, it holds that the advantage∣∣Pr[β=β′]− 1

2

∣∣ is negligible.

• Binding: Consider an attacker and a challenger. Then,
the challenger runs pub ← ESetup(λ), and shares
(rand,com,dec)← ES(λ,pub) with the attacker. Then,
it is computationally infeasible for the attacker to find
dec′ ̸= dec such that ER(pub,com,dec′) = rand, i.e., for
output dec′ ̸=dec of the attacker, it holds that the success
probability Pr[ER(pub,com,dec′) = rand] is negligible.
The scheme is binding if this holds for all such attackers.

C Description of Our CCA-Secure Scheme

We give a simplified description (using the simplified
description of TKN20 in Section 3.2.10) of our CCA-secure
scheme below.

• Setup(λ) → (MPK, MSK): The setup outputs the
master public-secret key pair (MPK, MSK), where
Hi : {0,1}∗→G1 with i∈{0,1} are two hash functions
(modeled as random oracles), KDF : GT → {0, 1}λ

is a key derivation function [17], SE = (Enc,Dec) is
a symmetric encryption scheme, pub are the public
parameters generated with the setup ESetup of a special
commitment scheme, MSK=(α,b), and

MPK=(SE,pub,p,G1,G2,GT ,e,g1,g2,H0,H1,

A=e(g1,g2)
α,B=gb

1).

• KeyGen(MSK, (S,ψlab)) → SKS: On input a set of at-
tribute values S and the associated labeling map ψlab : S→
{0,1}∗, which maps the attributes in the set S to labels
(represented as strings), it outputs the secret key SKS as

SKS=(S,K1=gα+rb
1 ,K2=gr

2,

{K3,att=(H0(ψlab(att))·H1(ψlab(att))xatt)r}att∈S,

K3,CCA=H0(CCA)r,K4,CCA=H1(CCA)r),

where r∈RZp is a randomly generated element in Zp and
xatt denotes the representation of att in Zp.

• Encrypt(MPK, A, M) → CTA: On input a plain-
text message M ∈ {0, 1}∗ and an access policy
A= (A,ρ,ρlab,ρ,τ)—where τ : {1,...,n1} → {1,...,m}
is a function that maps each row that is associated with
the same label to a different integer in {1,...,m}, with m
being the maximum number of times that a label occurs
in the policy—it first extends the policy A to A′ such
that it applies an AND operator to A and the attribute
label-value pair CCA: com (where com is defined as
below), and outputs a ciphertext CT′A′ as

CT′A′=(A,com←h2(dec),C←EncK(dec∥M),CTA′ ,

T=MACK′(A∥com∥C∥CTA′)),

so that

CTA=(C1=gs
2,
{

C2,l =gsl
2

}
l∈{1,...,m},{

C3, j =Bλ j ·(H0(ρlab( j))·H1(ρlab( j))xρ( j))sτ( j)
}

j∈χ0
,{

C3, j =B−λ j ·H0(ρlab( j))sτ( j) ,

C4, j =Bxρ( j)λ j ·H1(ρlab( j))sτ( j)
}

j∈χ1
),

where s,s1,...,sm,v2,...,vn2+1 ∈R Zp are randomly gen-
erated elements in Zp, λ j =A j,1s+∑k∈{2,...,n2+1}A j,kvk,
χi = { j ∈ {1, ..., n1 + 1} | ρ( j) = i} for i ∈ {0, 1},
K←KDF(As), dec∈R {0,1}448 and K′←h1(dec).
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• Decrypt(SKS, CTA′) → M′: On input the ciphertext
CTA′ (where A′ is an AND-composition of policy A
and CCA: com), and a secret key SKS, it first checks
whether S satisfies the A. If not, then it aborts. Oth-
erwise, it first determines ϒ0 = { j ∈ χ0 | ρ( j) ∈ S},
ϒ1 = { j∈ χ1 | ρ( j) /∈ S∧ρlab( j)∈ψlab(S)}, ϒ=ϒ0∪ϒ1
and {ε j} j∈ϒ such that ∑ j∈ϒ ε jA j = (1, 0, ..., 0), then
computes e(g1, g2)

αs as in the decryption of TKN20
(Section 3.2.10), where a key can be generated for CCA
: com by computing K3,CCA ·Kxcom

4,CCA, then retrieves:

K←KDF(e(g1,g2)
αs)

dec∥M←DecK(C)

K′←h1(dec),

and verifies:

h2(dec) ?
=com

Vrfy(A∥com∥C∥CTA′ ,T)
?
=1.

If both checks pass, then the decryption returns M, and
if not, it returns an error message.
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Abstract

Interactive GPM (iGPM) is becoming increasingly im-
portant, where a series of graph pattern matching (GPM)
queries are created and submitted in an interactive man-
ner based on the insights provided by the prior queries.
To solve the iGPM problem, three key considerations
must be taken into account: performance, usability and
scalability, namely if results can be returned in a timely
manner, if queries can be written in a declarative way
without the need of imperative fine-tune, and if it can
work on large graphs. In this paper, we propose the
GLogS system that allows users to interactively sub-
mit queries using a declarative language. The system
will compile and compute optimal execution plans for
the queries, and execute them on an existing distributed
dataflow engine. In the evaluation, we compare GLogS
with the alternatives systems Neo4j and TigerGraph.
GLogS outperforms Neo4j by 51× on a single machine
due to better execution plans. Additionally, GLogS can
scale to processing large graphs with distributed capabil-
ity. While compared to TigerGraph, GLogS is superior in
usability, featuring an optimizer that can automatically
compute optimal execution plans, eliminating the need
of manual query tuning as required in TigerGraph.

1 Introduction
Graph pattern matching (GPM) aims to compute the
mappings in a data graph that match a given small pat-
tern graph, and it plays an important role in a variety of
applications covering bioinformatics [3, 24, 37], chem-
istry [17, 23], social/web network analysis [20, 26], and
recently in enhancing the expressive power of graph neu-
ral network [15, 53, 55].

Increasingly, interactive GPM (iGPM) is becoming
critical for data scientists to mine relationships, identify
frauds or detect intrusions from a variety of large graphs
in real life. In these scenarios, data scientists create and
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Figure 1: Example of interactive graph pattern match-
ing, where a user will interactively submit graph pattern
matching queries (see Example 2.1) to explore the graph.

submit a series of GPM queries in an interactive man-
ner based on the insights provided by the results of prior
queries. For example, we demonstrate a simplified appli-
cation scenario as follows.

Example 1.1. In Figure 1, a user is exploring recom-
mendation rules in an e-commerce graph, which main-
tains relationships such as “Purchases” between persons
and products. The user is specifically looking at a pat-
tern (Figure 1(a)) of co-purchasing among pairs of peo-
ple who are acquainted. If such co-purchasing occurs
very frequently among these pairs in historical data, a
recommendation rule may be created to recommend the
product that has been purchased by one person to his/her
friends who have not yet purchased it. The user tries dif-
ferent patterns and constraints (using predicates) through
a series of interactive queries. In Figure 1(b), the user
decides to create a rule suggesting that young people
(“age < 30”) tend to co-purchasing the “iPhone 14 Pro”,
rather than an arbitrary product.

In the above scenario of iGPM, it is necessary to con-
sider the requirements of performance, scalability and
usability simultaneously. Performance allows users to
quickly obtain useful insights from the “trial-and-error”
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process. Usability enables users to easily present arbi-
trary GPM queries. Scalability is also crucial as it is
now common to handle large-scale graphs. Due to the
computation-intensiveness of GPM queries [14, 29], it
is already difficult for a graph expert to tune the execu-
tion [13, 25, 54]. The problem becomes even more com-
plex in iGPM, where users may not be experts and the
queries can involve intricate patterns and optional pred-
icates. Therefore, the following features are essential to
meet the above requirements.
Declarative Language. A declarative query language
can provide users convenience and flexibility to express
complex GPM queries.
Automatic Optimization. Automatic optimization al-
lows non-expert users to focus on exploring valuable pat-
terns without having to worry about the challenging task
of performance tuning.
Distributed Execution. With the graph partitioned
across the cluster, distributed execution is expected to
spread the workloads accordingly.

However, the systems that are potentially usable for
iGPM, including Neo4j [33] and TigerGraph [18], all
fall short in providing one or more above features (Sec-
tion 2). In this paper, we propose the GLogS (name after
GLogue, see Section 5.3) system to fill in the gap. Our
goal is to give the users the convenience and flexibility
of presenting GPM queries interactively, and to have the
system deal with the complexities that arise from compi-
lation, query optimization, and distributed execution. We
mainly make the following technical contributions.
(1) A compilation stack that compiles declarative GPM

queries into distributed programs. We adopt Gremlin’s
declarative match step, an industrial-strength query lan-
guage, for expressing GPM queries. The match step,
after compilation and optimization, will be transformed
into a program that can be executed on a distributed
dataflow engine.
(2) An optimizer that can automatically derive optimal

execution plans for GPM queries. While analyzing the
execution plans of Neo4j, we have identified two criti-
cal impact factors of deriving good execution plans for
GPM: worst-case optimal execution plan [4] and high-
order statistics [12]. We take into considerations both
factors to design and implement the optimizer for GLogS.
(3) A system that allows users to interactively submit and
efficiently execute GPM queries at large scale. We build
the GLogS system upon the existing distributed dataflow
engine GAIA [38] to leverage its optimization for graph
queries. In the evaluation based on the LDBC bench-
mark, we compare GLogS with Neo4j and TigerGraph.
GLogS outperforms Neo4j by 51× on a single machine
due to better execution plans. Additionally, GLogS can
scale to handle large graphs with distributed capability.

While compared to TigerGraph, GLogS is superior in
usability, featuring an optimizer that can automatically
compute optimal execution plans, eliminating the need
of manual query tuning as required in TigerGraph.

2 Background and Challenges
2.1 The Problem of iGPM
We adopt the property graph model [6] for usability. A
property graph G(VG,EG) is a directed labelled graph, as
shown in Figure 1, in which each vertex u ∈ VG models
an entity, and each edge (us,ut) ∈ EG models the rela-
tionship from a source vertex us to a target vertex ut . We
call the edge (us,ut) the adjacent edge of us and ut , and
us (resp. ut ) is an in neighbor (resp. out neighbor) of ut
(resp. us). A vertex u (an edge is analogously defined)
is assigned a globally unique identifier (Id) and a label
(Label) to indicate is type. Moreover, it can carry a col-
lection of key-value pairs as the properties. We use u.key
to denote accessing u’s property of given key.

A pattern p(Vp,Ep) is a small connected graph. Given
a pattern p and graph G, the graph pattern matching
(GPM) problem aims to compute all mappings QG(p)
of the pattern in the graph G, where each mapping f ∈
QG(p) matches the pattern vertices1 to a set of non-
duplicate graph vertices one by one, so that if there is
a pattern edge between two pattern vertices, there must
be a graph edge between the two matched graph ver-
tices. For a pattern vertex v, we use f (v) = u to obtain
the matched graph vertex u. The number of mappings is
called the frequency of the pattern in the graph, denoted
as FG(p). When the context is clear, the subscript of G
in above notations may be omitted (i.e. Q(p)). Predi-
cates can be specified, while we mostly omit predicates
to focus on the pattern in the paper. Details of how we
handle predicates are in our open-source page [46].

Example 2.1. In Figure 1, there are two mappings of
the triangle pattern p in the graph as shown, and thus
the frequency of p is 2. Specifically, a mapping f
matches v1 to u2 and v2 to u1, namely f (v1) = u2 and
f (v2) = u1. Obviously, there is a graph edge (u2,u1)
corresponding to the pattern edge (v1,v2). The predi-
cate “v1.age < 30 && v2.age < 30” in Figure 1(b), con-
strains that the vertices matching v1 and v2 must have
“age” smaller than 30.

We target the iGPM scenario to process GPM queries
on large-scale property graphs in an interactive context.

2.2 Solving iGPM using Existing Systems
Graph databases [2, 8, 18, 27, 33] allow users to interac-
tively query the graph using declarative query languages,

1The details of matching edges are not discussed as they are similar
to matching vertices.
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and thus have the most potential to be deployed for
iGPM. However, they often lack support for automatic
optimization or distributed execution, and thus cannot
meet performance, usability and scalability at the same
time. We discuss Neo4j and TigerGraph as representa-
tives. Other related systems are surveyed in Section 8.
Neo4j [33] is one of the most popular graph databases,
but is limited by its single-machine design and insuffi-
cient optimizer, leading to poor scalability and perfor-
mance as reported in previous studies [38, 44, 48]. Tiger-
Graph [18], on the other hand, is a distributed system that
can scale well but lacks an automatic optimizer, requiring
users to manually tune the plan for good performance,
which significantly limits its usability. In addition, users
need to pre-install the queries before they can be exe-
cuted on TigerGraph. The pre-installation involves na-
tive code generation and compilation, which can take 1
to 3 minutes per query in our evaluation and may not be
tolerable in the interactive context.

2.3 Challenges of Solving iGPM
It’s challenging to develop an iGPM system with perfor-
mance, usability and scalability. Here, we discuss the
issues arise from query compilation and optimization.

Compilation. Compiling a declarative query language
itself is non-trivial, and the interactive context introduces
extra difficulties. Due to the timeliness of iGPM, it’s in-
feasible to generate native codes from the queries and
process a time-consuming online compilation like Tiger-
Graph [18]. Preparing store procedurals for a set of
queries offline is not possible, as the useful patterns re-
main unknown in advance.

Optimization. The automatic optimization of GPM lies
at the core of an iGPM system, but it’s difficult to design
such an optimizer for real-life queries. To see this, in
Figure 2, we’ve demonstrated the execution plans PlanG
and PlanN of a benchmark query derived by the optimiz-
ers of GLogS and Neo4j, respectively. For now, one only
needs to know that a better execution plan typically, if
not definitely, produces less intermediate results, which
are a collective of the mappings of all intermediate pat-
terns that must be computed during the execution. We
mark in Figure 2 the corresponding intermediate pattern
frequencies in the benchmark graph G1 (Table 1). Obvi-
ously, PlanN produces much larger intermediate results
than PlanG. We execute the two plans in our system,
and PlanN not only runs orders of magnitude slower, but
also consumes significantly larger memory, than PlanG.
This demonstrates that Neo4j’s optimizer is insufficient
to handle such complex GPM queries.

There are two main reasons for this. Firstly, the exe-
cution plan given by Neo4j cannot guarantee worst-case
optimality. Secondly, it uses only low-order statistics to

Person City
Knows LivesIn

Country
LocatedIn

92,459(a) Query
Pattern (b) The execution plan of GLogS, 𝑃𝑙𝑎𝑛!
9,882

9,882 5,149,644

9,882

49,890

⋈

⋈ 3,650,839

9,882

⋈ 1,614,224

9,882

⋈ 92,459

(c) The execution plan of Neo4j, 𝑃𝑙𝑎𝑛"

𝑝# 𝑝$ 𝑝% 𝑝& 𝑝' 𝑝

𝑝(

𝑝(

𝑝(𝑝#

𝑝$ 𝑝% 𝑝&

𝑝#

𝑝' 𝑝

9,882 𝑝#

⋈

𝑝(

…

…

9,882 180,623 387,573 387,573 387,573 387,573

Figure 2: Execution plans of GPM. Certain trivial steps
in the plans are not shown for clarity.

estimate the cost of a plan, which can cause the resulting
plan to have small estimated cost even though it actually
costs heavily. We elaborate in details.
Worst-case optimality. An execution plan for comput-

ing a pattern p is worst-case optimal, if the frequency
of any intermediate pattern in the plan does not exceed
F (p) in the worst case. Here, an intermediate pattern
in an execution plan refers to a subgraph (or sub-pattern,
interchangeably) of the queried pattern whose mappings
must be computed during the execution. For instance,
the patterns p1-p6 in PlanG (all plans in this section are
referred to Figure 2) are intermediate patterns of p. The
process of solving GPM typically involves operations of
binary join and vertex expansion. Briefly, binary join in-
volves performing a hash join on the mappings of two
input patterns in order to produce the results of the out-
put pattern. For example, in PlanN , p2 is joined with p3
to produce p4. Execution plans that rely solely on bi-
nary joins, such as PlanN , are called binary-join plans.
However, these plans may not guarantee worst-case opti-
mality [29]. Neo4j’s plan actually falls into this category,
which is a dominant factor of its poor performance [48].

Alternatively, Ammar et al.[4] have looked into Ngo’s
algorithm[35] for GPM optimization. The key operation
to this algorithm is vertex expansion, which involves ex-
panding a base pattern by adding one more vertex to it.
In PlanG, for instance, p2 is expanded to p3 in this way.
Begin with a base pattern that is a vertex, the algorithm
processes vertex expansions iteratively until the desired
pattern is obtained. According to Ngo’s algorithm, we
can obtain an execution plan that is worst-case optimal,
such as PlanG for GPM.

Recent research [1, 32, 54] has shown that the best
possible execution plans for GPM must incorporate both
binary joins and vertex expansions. Consequently, our
optimizer must be capable of handling this hybrid strate-
gies. It’s crucial to note that to achieve worst-case opti-
mality, such hybrid plans must carefully consider the use
of binary joins, as will be explained in Section 5.4.
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High-order statistics. An optimal execution plan for a
GPM query is the plan that has the smallest cost. The
pattern frequencies are essential for evaluating the cost
of an execution plan. In large-scale graphs, it is more
feasible to estimate these frequencies, rather than trying
to exactly compute them. Neo4j uses Low-order statis-
tics such as the number of vertices and edges (of each
type) to estimate pattern frequencies by assuming inde-
pendent existence of graph edges [34]. However, this as-
sumption is too idealistic and can lead to inaccurate cost
estimation and poor execution plans in practice. To ad-
dress this issue, we follow Mhedhbi et al. [32] to exploit
the high-order statistics [12] of the graph.

Definition 2.1. The high-order statistics of a graph re-
fer to the frequencies of a series of small patterns (also
known as motifs [3]), from the smallest single-vertex pat-
terns to the largest patterns that are complete graphs of k
vertices. Here, k is called the high-order level, and must
be at least 3 to avoid degrading to low-order.

Mhedhbi et al. [32] and us have both demonstrated the
effectiveness of the high-order statistics. However, their
computation is at least as costly as the widely recog-
nized computation-intensive workload of graph pattern
mining [45]. To reduce the computation cost, Mhedhbi
et al. [32] have proposed using a sampling technique that
matches a randomly selected portion of data vertices and
edges at runtime. Nevertheless, the sampling technique
is difficult to apply to large-scale graphs that are parti-
tioned in the cluster.

3 System Overview

We’ve built the GLogS system for iGPM, as shown in
Figure 3, to address the challenges in Section 2.3. The
system allows users to interactively submit their GPM
queries using Gremlin’s declarative match() step [7].
An example of the Gremlin code for the triangle pat-
tern is presented. Because GPM is computationally
intractable [28], users can optionally specify a timeout
to prevent the query from running for an unreasonable
amount of time. It is worth noting that relational opera-
tions, including projection, ordering and grouping, may
also be applied in iGPM. However, for queries that in-
volve these operations, GLogS processes them only af-
ter the execution of GPM. Therefore, their computation
complexity is dominated by that of GPM, and will not be
further discussed in this paper.
Frontend Module. The frontend machine runs the pro-
cessors of a pattern parser, a plan optimizer and a
GLogue manager for parsing and optimizing the GPM
queries. The pattern parser parses a Gremlin query into
a language-agnostic structure called PatternDesc. The
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Figure 3: System overview. Blue components are the
focus of this paper, with the paper’s sections indicated.

key objective of designing PatternDesc is to decouple
the query language and the optimizer. This enables easy
integration with other query languages such as Neo4j’s
Cypher [16]. For given PatternDesc, the plan op-
timizer aims to produce an execution plan that has the
smallest-possible cost based on a generic cost model.
The cost model considers the high-order statistics of
the graph, which are maintained in a novel graph-based
structure called GLogue. The GLogue manager handles
the construction of the GLogue by computing the fre-
quencies on the sparsified graph for patterns up to k ver-
tices (i.e. with high-order level k) when the system is
initiated. It also buffers the frequently queried patterns
whose frequencies are missing from the GLogue, and
launches a procedural periodically to append these fre-
quencies to the GLogue.

Backend Module. The backend module consists of a
distributed dataflow engine, a graph store and a graph
sparsifier, spreading across a cluster of n computing
nodes. We have built the GLogS system on an existing
dataflow engine, which organizes n executors, each cor-
responding to a computing node in the cluster. A declar-
ative DataflowDesc is constructed from the execution
plan produced by the plan optimizer, which embeds the
computing instructions of GPM in a dataflow that is
a directed acyclic diagram (DAG). The DataflowDesc

is then distributed to all executors via RPC services
to launch the computation in parallel. To make the
DataflowDesc executable, a library of dataflow plugin
is implemented that contains the generated code and a
job assembler to assemble the distributed program. The
dataflow plugin is required to co-compile offline with the
underlying dataflow engine, which bypasses a costly on-
line native-code compilation as TigerGraph [18].

The graph store manages the partitioned graph data in
the cluster. As it is not the main focus of this paper, for
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simplicity, we adopt in-memory and immutable graph
store, where the graph data is partitioned using a hash
partition strategy, namely the vertex u will be placed on
the partition of “u.Id % # partitions”, together with all its
properties and adjacent (both in and out) edges. Such a
simple yet widely used partition strategy[4, 29, 38] may
lead to load skew, which can potentially impact query
performance. Nonetheless, a well-optimized execution
plan is still the key to the efficiency and scalability of
GPM. Therefore, rather than exploring alternative parti-
tion strategies [52], we employ the simple strategy and
focus on query optimization in this work. The i[-th] par-
tition of the graph is co-located with the i[-th] executor of
the dataflow engine. Moreover, The raw graph data are
pre-partitioned, encoded and stored in a distributed file
system such as HDFS. Each dataflow executor loads its
partition into the main memory while starting up the sys-
tem. During system initialization, a graph sparsifier will
be simultaneously launched as loading graph data, which
is responsible for sparsifying the large-scale graph into a
small graph that can fit into the main memory of the fron-
tend machine. The sparsified graph will be serialized to
a persistent store to prevent the need for re-sparsification
when the system is restarted.

4 Compiling Declarative GPM Queries
We demonstrate in Figure 4 the process of compiling the
declarative Gremlin’s match() step for a GPM query
into distributed dataflow program.

4.1 The Pattern Parser
As shown in Figure 4(a), in Gremlin’s match() step,
a pattern is described as a collection of clauses in the
form of “as().[in|out]().as()”, in which the start
and end as() steps identify the two vertices with tags
that are unique in the pattern, and the in() or out()
step in between expresses the edge that connects the
two vertices. In this simplest2 form of a match(),
each clause expresses an edge in the pattern. Given a
Gremlin’s match() step, the pattern parser utilizes the
ANTLR tool [21] (officially provided by Gremlin) to
parse a query into an Abstract Syntax Tree, from which
a PatternDesc is built, as illustrated in Figure 4(b).

We first define two computing primitives called GetV

and GetE for describing GPM queries. A GetV primitive
is a 4-tuple (eTag, tag, label, [Source|Target]) that en-
codes the semantics of matching the vertex with “tag”
as the source or target vertex of an “eTag” edge. A
GetE(vTag, tag, label, [In|Out]) encodes matching the
edge with “tag” as the in or out edge of a “vTag” vertex.

A sentence that is an ordered sequence of GetV and
GetE is then used to encode the semantics of a clause

2The other more complex forms only bring in engineering details.

in match(), and a PatternDesc is composed of a col-
lection of sentences. The semantics are self-explanatory,
and we just discuss some special use cases in the first
sentence of Figure 4(b). Observe that the first GetV has
the “eTag” field unspecified (NA), which means that the
vertex may not be bound to any prior edge and should
match all vertices in the graph. In the GetE, the “tag”
field is specified as an empty String. This tells the
runtime that the matched edge (also applied for GetV)
should not be kept in the results, which is useful when
only a part of the matched instances are needed in prac-
tice. Following the GetE, a GetV has an empty “eTag”,
which means the vertex must be obtained directly from
this “previous” edge.

Observe that we include the label information in GetV

that is not actually given in the Gremlin query. In GLogS,
while loading the graph data, we can meanwhile extract
the meta connections that maintain the possible types of
source and target vertices of each edge type. For exam-
ple, a Purchases edge can only connect a Person to a
Product. Such meta connections not only help us vali-
date user queries, but also reduce the number of patterns
stored in the GLogue (Section 5.3).

4.2 The Dataflow Embedding
In the plan optimizer (Section 5.4), an optimized execu-
tion plan will be computed for the PatternDesc, which
will be further embedded into a DataflowDesc that de-
scribes how to compute the pattern in a dataflow engine.

In a dataflow engine, a dataflow is a directed acyclic
graph (DAG) that abstracts the computation, in which a
vertex stands for an operator that defines the computing
logic, and an edge between two operators o1 and o2 rep-
resents the data channel such that the output of o1 is the
input of o2. In the task of GPM, the input and output
data of each operator in a dataflow are mappings of the
patterns. We introduce five operators in this paper:

• Source(udf): A Source operator specifies the in-
put data of the dataflow program, which are a col-
lection of vertices in the graph.

• Sink(udf): The Sink operator (only one allowed)
writes the results to the output channel (e.g. an RPC
port) that users can access.

• Map(udf): For each input item, a Map operator
computes exactly one data item using the given
user-defined function (udf).

• FlatMap(udf): For each input item, a FlatMap

operator can produce arbitrary (none, single or mul-
tiple) number of data items via the udf.

• Join(key1, key2, udf): A Join operator con-
sumes two input data, extracts the corresponding
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[ GetV(NA, ‘v1’, Person, NA),
GetE(‘v1’, ‘’, Knows, Out),
GetV(‘’, ‘v2’, Person, Target)

],

[ GetV(NA, ‘v1’, Person, NA),
GetE(‘v1’, ‘’,Purchases, Out),
GetV(‘’, ‘v3’, Product, Target)

],

[ GetV(NA, ‘v2’, Person, NA),
GetE(‘v2’, ‘’, Purchases, Out),
GetV(‘’, ‘v3’, Product, Target)

]
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)
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Figure 4: The process of compiling a Gremlin’s match step into a DataflowDesc.

keys, and conducts a join via the joinFunc on the
two input data.

In a nutshell, a DataflowDesc for GPM is a dataflow
that embeds the GPM primitives of such as GetV and
GetE in the above operators as the udfs. Figure 4(d)
illustrates a DataflowDesc for computing the triangle
pattern. We look into the first three operators for now,
which describe the computation of the mappings for v1
and v2. First, v1 is matched in a Source operator that
consumes all Person vertices from the graph. Then for
each vertex that matches v1, a FlatMap operator is as-
signed to traverse its out edges, which is reasonable as
a vertex typically has more than one adjacent edges in
the graph. The last Map operator extracts the target ver-
tex from each edge to match v2. More details of how we
compute the given DataflowDesc will be discussed in
the next section.

5 Automatic Optimization
This section covers the automatic optimization of GPM
queries, which is a collaboration of the system compo-
nents of graph sparsifer, GLogue manager, and plan op-
timizer. For a graph vertex u, we denote Nbr[elabel](u)
as the neighbors3 of u in the graph G subject to the edge
label constraint. Given two graphs G1 and G2, G2 is a
subgraph of G1, denoted as G2 ⊆ G1, if VG2 ⊆ VG1 and
EG2 ⊆ EG1 . Furthermore, G2 is an induced subgraph of
G1, if it contains all edges in G1 among VG2 . For two sets
S1 and S2, we denote S1 \S2 as the set of elements in S1
but not in S2.

5.1 Execution Plan and Cost Model
We first introduce the execution plan for GPM and de-
fine its cost, which allows us to search for the optimal
execution plan as the one with the smallest cost.

3Note that the edges can be in out, in or even both directions, but
we omit the direction in the notation for simplicity.

Execution Plan. To allow the optimizer to derive hybrid
execution plans as mentioned in Section 2.3, we consider
two basic operations: the binary join and vertex expan-
sion that are critical to fulfil the binary joins and worst-
case optimal joins, respectively. A binary join, denoted
as Join({ps1 , ps2} → pt), conducts hash join operation
for Q(ps1) and Q(ps2) on the join key of Vps1

∩Vps2
to

compute the results of Q(pt). The operation of vertex
expansion needs further explanation.

Definition 5.1. Consider two patterns, ps and pt with
Vpt \ Vps = {v}, and Ept \ Eps = {e1 = (v1,v),e2 =
(v2,v), . . . ,ek = (vk,v)} without loss of generality. A
vertex-expansion operation, denoted as Expand(ps →
pt), extends each mapping f of ps by one more graph
vertex corresponding to v. The newly matched graph
vertex must be in the common neighbors of all f (vi) for
1≤ i≤ k, namely

⋂k
i=1Nbr[ei.Label]( f (vi)).

Example 5.1. In Figure 4(c), it’s clear that Vp3 \Vp2 =
{v3}. This allows us to perform a vertex expansion
Expand(p2 → p3). We use the graph in Figure 1 to il-
lustrate the process. For a given mapping f = {u2,u1}
of p2, we can expand it to the mapping {u2,u1,u4} for
p3. Here, v3 is matched to {u4}, which is obtained by in-
tersecting Nbr[Purchases](u2) and Nbr[Purchases](u1).
We can similarly perform this process for the other map-
pings {u1,u3} and {u2,u3}.

Given a queried pattern p, we denote an execution plan
for computing p as Plan(p) = (Φ = {p1, p2, . . . , pn =
p},Γ = [τ1,τ2, . . . ,τm]), where Φ represents a set of in-
termediate patterns and Γ is an ordered sequence of
operations that can be either binary join or vertex ex-
pansion. For example, we have the execution plan in
Figure 4(c) as (Φ = {p1, p2, p3},Γ = [Expand(p1 →
p2),Expand(p2→ p3)]).
Cost Model. With the execution plan Plan(p) = (Φ,Γ),
we propose the cost model as

Cost(Plan(p)) = ∑
p′∈Φ

F (p′)+ ∑
τ∈Γ

Cost(τ). (1)
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The first part refers to the cost of accessing the intermedi-
ate results from the memory, which can be considered as
the commmunication cost, namely, the cost of accessing
remote memory. This is because the intermediate results
are a collection of the output from all executors in the
cluster, and the cost of accessing remote data is much
greater than that of accessing local data. The second part
stands for the cost of the operations, also known as the
computation cost.

As any join algorithm must go through the data of both
participants, the cost of a binary join is computed as

Cost(Join({ps1 , ps2}→ pt)) = α j(F (ps1)+F (ps2)),
(2)

where α j is a normalized factor. We do not consider the
joined results in Equation 2 because it must have been
considered as the communication cost in Equation 1.

Consider a vertex expansion Expand(ps→ pt) in Def-
inition 5.1, and let f be one mapping of ps. The cost of
the vertex expansion of f is dominated by intersecting
the neighbors of f (vi) for 1≤ i≤ k, which has the com-
plexity of ∑

k
i=1 |Nbr[ei.Label]( f (vi))|. Regarding ei, let

σei( f ) = |Nbr[ei.Label]( f (vi))| be the vertex-expansion
factor of the mapping f , and σei the average factor of all
mappings. We have the cost of vertex expansion as

Cost(Expand(ps→ pt)) = αve ∑
f∈Q(ps)

k

∑
i=1

σei( f )

= αveF (ps)
k

∑
i=1

σei ,

(3)

where αve is a normalized factor that, along with α j in
Equation 2, aligns the differences in computation cost of
vertex expansion and binary join, as well as the commu-
nication cost and the computation cost.

5.2 Graph Sparsifier
While it is necessary to compute F (p) of any pattern
p for Equation 1, it’s cost-prohibitive to do so directly.
The sampling technique proposed in [32] cannot be ap-
plied to large-scale graphs (see Section 2.3). Therefore,
we explore the technique of graph sparsification [40, 49].
Specifically, during system initialization, the graph spar-
sifier will conduct sparsification on each partition of the
graph to randomly preserve a subset of edges, and aggre-
gate them at the frontend machine to form the sparsified
graph G∗. It is obviously more feasible to compute the
pattern frequencies on G∗ than on the original graph G.
Thus, we use FG∗(p) (with normalization) as an estima-
tion of FG(p) for cost evaluation.

However, it’s non-trivial to sparsify real-life graphs
that can contain many different types of edges. A naive
uniform sparsification [40, 49] adopts a uniform sparsi-
fication ratio (the probability of keeping an edge) for all

edges during sparsification. Although such a naive ap-
proach can obtain unbiased estimation of FG(p), but it
still works poorly in our evaluation (Section 7). The main
reason is that different types of edges can appear in rather
skewed frequencies in real-life graphs. A less frequent
type of edge, such as the LocatedIn edge in Figure 1 that
appears in thousands compared to the Purchases edge in
billions, is more likely to get eliminated during sparsifi-
cation, causing the estimation to have large variance.

We also notice that there are sparsification [11, 42]
and coarsening [31] algorithms based on spectral graph
theory, aiming to offer a superior approximation via bi-
ased sampling. However, these algorithms emphasize
preserving global statistics such as edge cut, rather than
counting subgraphs that are local information. As a re-
sult, they may not be suitable for our task.

Regarding our task, we adopt the stratified sparsifi-
cation [19] that treats each type of edges as an inde-
pendent stratum, and assign each stratum an individual
sparsification ratio. The stratified sparsification provides
the flexibility in choosing the sparsification ratio, and we
propose an optimization problem that aims to minimize
the estimation variance through tuning the ratio. Before
proposing our optimization problem, we first introduce
the norm factors and discuss its unbiasedness. Let the
sparsification ratios be Ω= {ρ1,ρ2, . . . ,ρl}, where ρi de-
notes the ratio for the stratum of edges with label i with-
out loss of generality. The following lemma holds.

Lemma 5.1. Let F̃ (p)=∏e∈Ep
1

ρe.Label
FG∗(p). We have

E[F̃ (p)] = FG(p), where E[X ] denotes the expected
value of a random variable X.

Proof is in Section A.1.1. In the following, when we
write F (p), we by default mean F̃ (p) if not otherwise
specified.

The next question is how to specify the sparsification
ratios. Given that the sparsified graph must reside in the
frontend machine, we model an optimization problem
subject to the memory constraint M, that minimizes the
variance of the frequency estimation regarding a forged
pattern p∗ formed by all types of edges in the graph, as:

argmin
Ω

Var[F̃ (p∗)]

s.t.
l

∑
i=1

siρi ≤M,

(4)

where si denotes the frequency of the edges that have
label i. The optimization problem achieves its optimum
under the following condition:

ρi = min(1,
M
l
× 1

si
),
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present in the GLogue.

Detailed derivation can be found in Section A.1.2. In-
terestingly, if si �M, ρi must be set to 1, which means
that a very infrequent type of edge, such as the above
LocatedIn edges, must not be ruled out during sparsifi-
cation.

5.3 GLogue Manager
Our system aims to automatically derive the optimal ex-
ecution plan for any arbitrary pattern. To do so, we fol-
low the methodology presented in [32] to calculate the
high-order statistics (Definition 2.1) of the graph. How-
ever, the approach in [32], which employs a table-based
catalogue for retaining the high-order statistics, is not
only expensive to construct but also challenging to apply
when there are numerous complex pattern relationships
in real-world graphs that need to be recorded, thereby
making plan searching a difficult task. Instead, we have
recognized the intrinsic suitability of graph structure for
retaining complex relationships of this sort, and thus, we
have proposed GLogue as a graph-based catalogue.

The GLogue is a hierarchical property graph as shown
in Figure 5, in which each vertex is a pattern p at level
|Vp| with its frequency F (p) as the property. To ease
lookup, the pattern will be encoded as a String using
the technique of canonical labelling [10]. We say that
the GLogue has k levels, if it maintains the high-order
statistics up to level k. There’re two types of edges in
GLogue. The first type connects ps and pt in GLogue,
if ps can be expanded to pt via vertex expansion. Re-
garding Expand(ps → pt), the edge (ps, pt) records the
vertex-expansion factors σe for all e∈ Ept \Eps . The sec-
ond type corresponds to a binary join Join({ps1 , ps2} →
pt), which introduces one edge from ps1 to pt with
(ps2 ,F (ps2)) as the property.

We deploy the GLogue manager in GLogS for the con-
struction and maintenance of GLogue. When the sys-
tem is initiated, with a threshold of level k, GLogue will
be constructed from scratch to include all valid patterns
with up to k vertices that satisfy the meta connections
(see Section 4). While processing queries, the GLogue
manager will buffer the incoming patterns (patterns only
without predicates) from the users, and will launch a pro-

cedure to update the GLogue from the buffered patterns
periodically.

Algorithm 1: The Plan Optimizer.
1 Function PlanOptimizer (GLogue, PatternDesc)
2 Construct a pattern p from the PatternDesc;
3 Let QSet organize all induced subgraphs of p by level;
4 Initialize a PlanMap to record {p : (plan,cost)} with

patterns in level 1 and 2 pre-computed;
5 for 3≤ level ≤ |Vp| do
6 for p ∈ QSet[level] do
7 searchPlan (p,PlanMap,GLogue);

8 return PlanMap.get(p);

9 Function searchPlan (p, PlanMap, GLogue)
10 Initialize Plan(p) and Cost(Plan(p))← ∞;
11 for edge= (ps1 , p) ∈ GLogue.getEdges(p) do
12 (plan1,cost1)← PlanMap.get(ps1 );
13 if edge is a vertex extension then
14 Compute a new plan′ by merging plan1 and

Expand(ps1 → p);

15 else if edge{(ps2 ,F (ps2 ))} is binary join then
16 (plan2,cost2)← PlanMap.get(ps2 );
17 Compute a new plan′ by merging plan1, plan2

and Join({ps1 , ps2}→ p);

18 Compute a new cost ′ of plan′ by Equation 1;
19 if cost ′ < Cost(Plan(p)) then
20 Update Plan(p) as plan′ and the cost as cost ′;

21 PlanMap.insert(p,(Plan(p),Cost(Plan(p))));

5.4 Plan optimizer
Another benefit of the graph-based GLogue is that the
searching of an optimal plan can be reduced to a vari-
ant of shortest path problem: the optimal plan of p is a
shortest “path” that has the smallest cost regarding Equa-
tion 1, from the base pattern (a single vertex) to p. An
example is highlighted in Figure 5. We first assume that
the queried pattern and all its sub-patterns are present in
the GLogue. The process is shown in Algorithm 1.

The optimizer first builds the pattern from the
PatternDesc that is compiled from a Gremlin query
(line 2), and then organizes all induced subgraphs of the
queried pattern by levels (line 3). Note that the use of in-
duced subgraphs is key to ensuring worst-case optimal-
ity of the computed plan [29]. The searchPlan func-
tion is then launched for each pattern (line 7). We now
consider processing a pattern p in the searchPlan func-
tion. Before searching for the plan for p, the optimal
plans for all its subgraphs in the lower level must have
already been computed in the PlanMap (line 12,16). We
use the graph interface of getEdges in line 11 to obtain
all sub-patterns in the lower level that connect to the cur-
rent pattern p. Depending on whether the edge stands
for a vertex expansion or binary join, the new plan will
be accordingly computed in line 14 and 17. As long as
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the new cost (line 18) is smaller than a previous value,
the plan and its cost will be updated. The optimal plan in
the GLogue can be cached to avoid re-computation. For
example, in Figure 5, the cached optimal plan for com-
puting p9 is highlighted in red, which is the worst-case
optimal plan in Figure 4(c).
Handling Pattern Miss. We discuss how to process the
queried pattern p when it has not yet been recorded in the
GLogue. First of all, given two induced subgraphs p1, p2
of p with Ep = Ep1 ∪Ep2 , by assuming the independent
presence of p1 and p2 in the graph, we can compute the
frequency of p as follows

F (p) = Avgp1,p2

F (p1)×F (p2)

F (p1∩ p2)
, (5)

where p1 ∪ p2 denotes a pattern formed by the common
parts of p1 and p2. Equation 5 can be recursively called
in case p1 and p2 are not present. Then in line 11, instead
of calling getEdges of the GLogue, we simply enumer-
ate all ps that can potentially expand to p, either via ver-
tex expansion or binary join. The remaining process nat-
urally follows Algorithm 1. In Figure 5, p11 is a pattern
missing from the GLogue, which can either be expanded
from p10, or joined from p7 and p8. Thus, p7, p8 and p10
can all be ps in line 11.

5.5 Dataflow Embedding
Given the optimal execution plan Plan(p), one last step
is to embed the execution plan into a DataflowDesc.
Following the operations of Plan(p), there must be some
base patterns (single vertex) that are not target pat-
terns in any operation. We encode these base patterns
as GetV and then embed them into Source operators.
For Join({ps1 , ps2} → pt), a Join operator is installed,
which are connected by the operators that computes ps1
and ps2 , and the keys of the Join operator are set to the
vertex tags of Vps1

∩Vps2
.

There are two cases for hanlding a vertex expansion
Expand(ps→ pt). If pt has only one more edge than ps,
the vertex expansion will be transformed into a pair of
FlatMap(GetE) and Map(GetV), which has been dis-
cussed in Section 4.2. Otherwise, suppose pt has k > 1
more edges than ps. The execution will be decomposed
into three phases, namely attachment, intersection and
unwrapping, as shown in Figure 4(c). In the attachment
phase, a Map(GetE) operator is installed, which tells the
runtime to attach the adjacent edges of the given ver-
tex as a set. The intersection phase handles k− 1 con-
secutive intersection operations, while each intersection
is achieved by a Map(GetE) that instructs computing
the common edges between the existing set and the cur-
rent adjacent edges. The last unwrapping phase uses a
FlatMap(GetV) to unwrap the neighbors into discrete
elements.

impl MapFunction for GetE { vtag ,tag ,label ,dir } {
fn map(&self , mut datum: GRecord) -> GRecord {

let v = datum.get(self.vtag )?;
// edge tag already present , do intersection
if let Some(set) = dataum.get_mut(self.tag) {

set.intersect(to_set(
G.get_edges( // G is a graph handle

v.get_id(), self.label , self.dir))
);

} else { // not present , do attachment
dataum.insert(self.tag , to_set(

G.get_edges(
v.get_id(), self.label , self.dir));

);
}
return datum;

}
}

Figure 6: Code generation of Map(GetE).

Example 5.2. In Figure 4(c), let’s consider a mapping f
that matches (v1,v2) before entering the process of ver-
tex expansion. The attachment phase first maps f into
( f | set :=Nbr( f (v1))) by directly attaching the adjacent
edges (we reuse the notation of neighbors) as a set. In
the phase of intersection, the set is updated by intersect-
ing with the current neighbors of f (v2), as ( f | set :=
set∩Nbr( f (v2))). Finally, the set is unwrapped into dis-
crete vertices to match v3.

6 System Implementation
We have implemented the frontend components includ-
ing pattern parser, plan optimizer and GLogue manager
in Java, to easily connect with Tinkerpop’s Java run-
time. The backend components are implemented in Rust
to be compatible with the underlying dataflow engine,
GAIA [38]. The GAIA engine runs n executors in the
cluster, and each executor further forks working threads
for parallel processing. The frontend and backend com-
ponents of the system are bridged via the RPC services.

We implement GRecord to record a mapping of a pat-
tern, which is essentially a Map with the key as pattern’s
tag (Section 4), and the value that is an Object to ei-
ther encode a vertex, an edge, or a set of vertices/edges.
Consequently, a collection of GRecords serve as the in-
put and output data of all operators of the GAIA engine.
Initially, the executors will load corresponding vertices
as GRecords according to the graph partition. In the fol-
lowing computation, we can use the Repartition prim-
itive of GAIA to reshuffle the data as needed. For exam-
ple, a vertex v will be loaded by the executor numbered
as “v.Id % #partitions”. Moreover, in order to get adja-
cent edges from the matched vertices tagged as v, we can
Repartition the GRecords according to the field of v.

6.1 The Dataflow Plugin
The dataflow plugin is key to making the DataflowDesc
executable (Section 4) on the dataflow engine, which is
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a native library consisted of the generated code for oper-
ators in DataflowDesc and a job assembler for assem-
bling the GAIA job.

We perform code generation for all possible operators
in DataflowDesc, and co-compile the generated code
with GAIA. In Figure 6, we show the generated code of
Map(GetE) that fulfils the phases of attachment and in-
tersection for vertex expansion (Section 5.4). Note that
in the Map operator for attachment in Figure 4(c), the sys-
tem assigns a “ t” (as temporary) tag in the GetE, which
will cause the adjacent edges maintaining as a set in the
“ t” field of a GRecord. In the Map operator for intersec-
tion, as the “ t” field must present, it does an intersection
between the existing set and the current adjacent edges.

The job assembler, after receiving the DataflowDesc,
attempts to assemble the GAIA job. Basically, it will in-
stall the corresponding GAIA operator for each operator
in the DataflowDesc. For example, a Map(GetE) will
be installed as a Map operator with the generated code
in Figure 6. The job assembler is also responsible for
installing the Repartition primitive in case that data
shuffling is needed.

7 Evaluation

7.1 Setup
Datasets. We base the evaluation on Linked Data Bench-
mark Council (LDBC)’s social network benchmark [30],
which is the only publicly available resource that pro-
vides the scale we target in this work. As shown in Ta-
ble 1, 5 datasets are generated using LDBC data gen-
erator, where Gs f denotes the graph generated with scale
factor s f . The largest graph G1000 consumes around 2TB
on disk and roughly 6TB aggregated memory in the clus-
ter. The default sparsifying rate γ = 100 |EG∗ |

|EG|
% is given

for each graph. With γ , we set the memory constraint
M = γ|EG| (Section 5.2) for graph sparsification. We by
default construct the GLogue with level = 3 using the cor-
responding sparsified graph.

Table 1: The LDBC datasets.

Graph |V | |E| Size γ

G1 3M 17M 1.5GB 100%
G30 89M 541M 40GB 1%
G100 283M 1,754M 156GB 0.1%
G300 817M 5,269M 597GB 0.1%
G1000 2,687M 17,789M 1,960GB 0.03%

Queries. On the basis of the business intelligence (BI)
workloads from LDBC benchmark, we’ve manually con-
structed 10 queries, denoted as p1 to p10, for evaluation.
Details of the construction of these queries and their ex-
ecution plans are in Section A.2. These queries have suf-
ficient variance, ranging from simple triangle patterns to

complex patterns like p9 that contains 7 vertices and 9
edges. We will specify predicates corresponding to the
BI workloads for p4 to p10 on G100, G300 and G1000, to
prevent the tests from running unnecessarily long. The
LDBC benchmark driver has been modified to run each
queries 5 times from a set of randomly selected parame-
ters. Average query latency is reported.
Systems. We compare GLogS with Neo4j [33] and
TigerGraph [18], two potential systems for iGPM (Sec-
tion 2). We directly use the execution plans of Neo4j.
By default, GLogS runs the optimal execution plan of a
query p, which are derived from the GLogue (on each
sparsified graph) specifically constructed from p. As
TigerGraph does not have an optimizer, on the one hand,
we used the queries generated by its graph studio [47],
on the other hand, we manually wrote the queries ac-
cording to the optimal plans of GLogS. Note that we did
not include the results of our base system, GAIA [38],
as it could not terminate in reasonable time in most of
our large-scale tests. On the one hand, GAIA has opti-
mized graph workloads by utilizing a breadth-first/depth-
first hybrid scheduling and memory-bounded execution
model, enabling it to handle considerable amounts of
data without overflowing the memory. In fact, our GLogS
has benefited from GAIA in handling large-scale data
(Section 7.3). On the other hand, GAIA lacks proficiency
in executing GPM queries efficiently, primarily due to
the fact that GAIA must comply with Gremlin’s impera-
tive traversal which conforms to a sub-optimal EdgeJoin
execution plan [29] that sequentially joins edges.

We use the default system configurations of Neo4j and
TigerGraph. For GLogS, we have measured the differ-
ences in the operations of vertex expansion and binary
join, as well as the communication and computation cost,
which allows us to set α j = 60 and αve = 1 in Equa-
tions 2 and 3, respectively. We deploy a cluster for the
evaluation that contains one frontend server and up to 16
backend servers. Each server configures two 24-core In-
tel(R) Xeon(R) Platinum 8163 CPUs at 2.50GHz and a
512GB RAM. The servers are connected to an EDR 25
Gbps InfiniBand network, which can scale deterministi-
cally and achieve full bisection bandwidth. If not men-
tioned, we will use 32 threads on each server for GLogS
(some threads are reserved for communication and sys-
tem calls) as suggested by GAIA authors [38]. Tiger-
Graph will use all threads as recommended.

7.2 Compare with Alternative Systems
We first compare GLogS with Neo4j on a single machine,
using the smallest graph G1 to allow Neo4j processing all
queries in a reasonable time. The query latencies of both
systems are shown in Figure 7a. GLogS with a single
thread still performs better than Neo4j for most queries,
with 4.4× speedup. After using 32 threads, GLogS out-
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Figure 8: Scalability Experiments

performs Neo4j by an average of 51× for all queries.
The tests against TigerGraph are performed on G300

using 16 machines. While benefiting from the opti-
mal execution plans of GLogS, TigerGraph still performs
59% slower on average. Note that the results obtained
from TigerGraph’s graph studio are not reported as they
exceed the time limit (one hour) in all tests. Addition-
ally, TigerGraph requires the installation of queries via
native-code compilation before they can be run, with in-
stallation times ranging from 1 to 3 minutes. In contrast,
GLogS does not have this overhead because of the design
of dataflow plugin (see Section 6.1). The time required to
compile and optimize all queries in GLogS is less than 1
millisecond, which is insignificant compared to the query
execution time. This demonstrates GLogS’s advantage in
usability for iGPM.

7.3 Scalability
It’s important to test the scalability on GPM workload
given its nature of irregularity [14, 29, 54]. The re-
sults are in Figure 8, where the queries are split into two
groups based on their latency for clear illustration.
Scale-Out. We vary the server number as 1, 2, 4, 8, 16
and run all queries on G100. Note that G100 is the largest

graph that can reside in the main memory of a single
server. The results are reported in Figure 8a and Fig-
ure 8b. Most queries scale well, with up to 15× (average
6×) performance gain from one machine to 16.
Scale-Up We use 16 servers and vary the number of
working threads on each server from 1 to 32. The results
on G300 are shown in Figure 8c and Figure 8d. We see an
improvement in runtime of up to 23× (average of 10×)
when increasing the number of threads from 1 to 32. A
common trend in both scale-out and scale-up tests is that
some queries, such as p2 and p10, scale less significantly
when using more working threads. This phenomenon is
not unique to our system [14, 38] and is mostly due to
the sensitivity of GPM workloads to data skew [14]. It’s
a future work to further address this issue.
Data-Scale Using 16 servers, we run all queries on the
graphs of G30, G100, G300 and G1000. The results are re-
ported in Figure 8e and Figure 8f. As the graphs become
larger, most queries demonstrate an almost linear trend
in performance degradation, except for p6 and p10. As
for p6, its execution time only tripled from G30 to G1000,
because it is a short-running query that visits a small part
of the graph. However, for p10, its performance degrades
by 100× from G30 to G1000. This is likely because the
execution plan for p10 is the only plan that involves a
join operator, which maintains a hashmap for the “build”
component of the join. When processing a large volume
of data, a hashmap lookup can become slower because
many entries may have been mapped to the same bucket.
Despite this, the plan with the join operator still performs
much better than the one without it.

In summary, GLogS exhibits excellent scalability in
the test, which we attribute to both the well-designed op-
timizer and GAIA’s graph-specific optimizations.

7.4 Plan Optimization
In this experiment, we will study the impact of high-
order statistics and graph sparsification on plan optimiza-
tion for all queries. While running a query, we obtain
the time t using the optimal execution plan, and the time
t ′ using the computed execution plan in a certain con-
text. We report the slow-down rate as 100 t ′

t %. For con-
venience, we run all tests in a single server.

Table 2: The effectiveness of high-order statistics.

level=2 level=3 level=4
Slow-down (%) 966 245 243
Generation Time(s) 6 55 1664
Memory Usage(GB) 2 3 105
# Patterns 34 248 4164

High-Order v.s. Low-Order. To study the effectiveness
of high-order statistics, we construct the GLogue of level
2, 3 and 4 for G1, and try to evaluate the average slow-
down rate of all queries while using the execution plans
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Figure 9: Impact of sparsification on plan optimization.

computed from these GLogue. Here, we use the unspar-
sified G1 to rule out potential impact from sparsification.
The results are shown in Table 2. When increasing the
level of GLogue from 2 (low-order statistics only) to 3,
the performance of queries improves by 4× on average.
The shows that high-order statistics can contribute to de-
riving better execution plans for GPM queries. More-
over, the performance of queries remains almost un-
changed when we increase GLogue’s level from 3 to 4,
but the time and memory consumption for constructing
the 4-level GLogue increase significantly. Given that the
GLogue will be further updated from frequently queried
patterns, we suggest that the initial construction of 3-
level GLogue is sufficient.
Uniform v.s. Stratified. This test verifies the advan-
tage of the proposed stratified sparsification over the uni-
form alternative. As shown in Figure 9a, we apply both
methods on G100, and report the average slow-down rate
for all queries using the execution plans computed from
the sparsified graphs of various sparsifying rate ranging
from 0.001% to 100%. Stratified sparsification performs
much better than the uniform alternative, as it has re-
sulted in a better execution plan at a lower sparsifying
rate and, at the same sparsifying rate, it has achieved a
lower slow-down. With statified sparsification, the graph
can be sparsified 10× more edges, on which the opti-
mizer can still derive the optimal execution plans.
Vary Graphs. To verify whether we can use larger spar-
sifying rate on larger graph, we sparsify three graphs G1,
G30 and G100 (G300 and G1000 are too large to process in
a single server) using different rates, and report the av-
erage slow-down of all queries from the resulting plans
in Figure 9b. Clearly, larger graphs can be sparsified at
a lower rate, while still rendering good execution plans.
For example, the performance of queries on G100 and
G30 only notably downgrades when γ < 0.1%. In com-
parison, the downgrading point of G1 are γ < 1%. Fur-
thermore, while sparsified to 0.001%, the resulting plans
from G100 slow down by roughly 50×, but those from
G30 and G1 downgrade by over 500×.

8 Related Work

GPM Algorithms. Ullmann proposed the first back-
tracking algorithm [50] for GPM, based on which many

optimizations have been proposed, such as tree in-
dexing [41], symmetry breaking [25] and compres-
sion [13]. As it’s hard to parallelize the backtracking
algorithm, join-based algorithms, such as binary-join al-
gorithms [28, 29, 43], have been developed in the dis-
tributed context. Aware that binary-join algorithms can-
not guarantee worst-case optimality, [4] implemented
the worst-case-optimal join algorithm [35] for solving
GPM. A hybrid mechanism [1, 32, 54] has been further
explored to combine the advantage of binary join and
worst-case optimal join. The above algorithms all rely
on low-order statistics to devise execution plans. In order
to improve cost estimation, [32] proposed to leverage the
high-order statistics of the graph to compute execution
plans for GPM. These algorithmic approaches are lack-
ing essential system components needed to solve iGPM.
Query Languages and Graph Databases. GPM lies
at the core of the query languages of Gremlin [39],
Cypher [22], G-Core [5], PGQL [51] and GSQL [18].
These languages have been widely adopted in graph
databases and systems. Tinkerpop [7] uses the Gremlin
language to express graph traversal and pattern matching.
Neo4j [33] is one of the most popular graph databases
that uses Cypher as the query language. Gremlin-enabled
JanusGraph [27], Orient DB [36] and Neptune [9] store
graph data in distribution, but they adopt a sequential
computing engine and can still suffer from scalability
issue [38]. Targeting large scale, GAIA [38] has been
developed to compile Gremlin traversal queries into a
distributed dataflow program. However, the imperative
Gremlin traversal cannot guarantee worst-case optimal-
ity, and it requires users to manually tune the execution.
TigerGraph [18] is a distributed graph database, that uses
the GSQL query language. However, the lack of an au-
tomatic optimizer greatly limits its usability for iGPM.

9 Conclusion
We’ve presented the GLogS system in this paper to solve
the iGPM, meeting the requirements of performance, us-
ability and scalability. GLogS allows users to interac-
tively submit declarative GPM queries. With the worst-
case optimality and high-order statistics, we’ve imple-
mented an optimizer in GLogS that can automatically de-
rive optimal execution plans for arbitrary GPM queries.
Furthermore, on top of an existing distributed dataflow
engine, GLogS is capable of being deployed in a large
cluster to handle large-scale real-life graphs.
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[37] PRŽULJ, N., CORNEIL, D. G., AND JURISICA, I. Efficient esti-
mation of graphlet frequency distributions in protein–protein in-
teraction networks. Bioinformatics 22, 8 (2006), 974–980.

[38] QIAN, Z., MIN, C., LAI, L., FANG, Y., LI, G., YAO, Y., LYU,
B., ZHOU, X., CHEN, Z., AND ZHOU, J. GAIA: A system for
interactive analysis on distributed graphs using a High-Level lan-
guage. In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21) (Apr. 2021), USENIX Asso-
ciation, pp. 321–335.

[39] RODRIGUEZ, M. A. The gremlin graph traversal machine and
language (invited talk). In Proceedings of the 15th Symposium on
Database Programming Languages (2015), pp. 1–10.

[40] SANEI-MEHRI, S.-V., SARIYUCE, A. E., AND TIRTHAPURA,
S. Butterfly counting in bipartite networks. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (2018), pp. 2150–2159.

[41] SHANG, H., ZHANG, Y., LIN, X., AND YU, J. X. Taming veri-
fication hardness: An efficient algorithm for testing subgraph iso-
morphism. Proc. VLDB Endow. 1, 1 (aug 2008), 364–375.

[42] SPIELMAN, D. A., AND TENG, S.-H. Spectral sparsification of
graphs. SIAM Journal on Computing 40, 4 (2011), 981–1025.

[43] STEINBRUNN, M., MOERKOTTE, G., AND KEMPER, A.
Heuristic and randomized optimization for the join ordering prob-
lem. The VLDB Journal 6, 3 (1997), 191–208.

[44] SUN, S., SUN, X., CHE, Y., LUO, Q., AND HE, B. Rapidmatch:
a holistic approach to subgraph query processing. Proceedings of
the VLDB Endowment 14, 2 (2020), 176–188.

[45] TEIXEIRA, C. H., FONSECA, A. J., SERAFINI, M., SIGANOS,
G., ZAKI, M. J., AND ABOULNAGA, A. Arabesque: a system
for distributed graph mining. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles (2015), pp. 425–440.

[46] THE OPEN SOURCE PAGE OF GLOGS. https://github.

com/MeloYang05/GLogS-Artifact. [Online; accessed 7-
June-2023].

[47] TIGERGRAPH GRAPHSTUDIO. https:

//docs.tigergraph.com/gui/current/

graphstudio/build-graph-patterns/

visual-query-builder-overview. [Online; accessed
20-October-2022].

[48] TRUTH BEHIND NEO4J’S “TRILLION” RELATIONSHIP
GRAPH. https://www.tigergraph.co.jp/blog/

truth-behind-neo4js-trillion-relationship-graph/.
[Online; accessed 20-October-2022].

[49] TSOURAKAKIS, C. E., DRINEAS, P., MICHELAKIS, E.,
KOUTIS, I., AND FALOUTSOS, C. Spectral counting of trian-
gles via element-wise sparsification and triangle-based link rec-
ommendation. Social Network Analysis and Mining 1, 2 (2011),
75–81.

[50] ULLMANN, J. R. An algorithm for subgraph isomorphism. Jour-
nal of the ACM (JACM) 23, 1 (1976), 31–42.

[51] VAN REST, O., HONG, S., KIM, J., MENG, X., AND CHAFI,
H. Pgql: A property graph query language. In Proceedings of
the Fourth International Workshop on Graph Data Management
Experiences and Systems (New York, NY, USA, 2016), GRADES
’16, Association for Computing Machinery.

[52] VERMA, S., LESLIE, L. M., SHIN, Y., AND GUPTA, I. An
experimental comparison of partitioning strategies in distributed
graph processing. Proc. VLDB Endow. 10, 5 (jan 2017), 493–504.

[53] XU, K., HU, W., LESKOVEC, J., AND JEGELKA, S. How pow-
erful are graph neural networks? In International Conference on
Learning Representations (2019).

[54] YANG, Z., LAI, L., LIN, X., HAO, K., AND ZHANG, W. Huge:
An efficient and scalable subgraph enumeration system. In Pro-
ceedings of the 2021 International Conference on Management
of Data (2021), pp. 2049–2062.

[55] YOU, J., GOMES-SELMAN, J. M., YING, R., AND LESKOVEC,
J. Identity-aware graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence (2021), vol. 35,
pp. 10737–10745.

A Appendix

A.1 Graph Sparsification

In the paper, we adopt the stratified sparsification [19]
that treats each type of edges as an independent stra-
tum, and assign each stratum an individual sparsification
ratio. For clarity, we use v (or e) and u (or ε) to de-
note a vertex (or edge) in the pattern and graph, respec-
tively. Moreover, given an edge e (or ε), we denote its
label as L(e). Let {1,2, . . . , l} ⊂ N+ be the domain of
edge labels without loss of generality, and {s1,s2, . . . ,sl}
be the frequencies of the edges with the given label in
the graph G. Then we define the sparsification ratios as
Ω = {ρ1,ρ2, . . . ,ρl}, where ρi denotes the ratio for the
stratum of edges with label i.

For two random variables X , X ′, we denote
E[X ],Var[X ] as the expected value and variance of X ,
and Cov[X ,X ′] the covariance of X and X ′. Given that
we only eliminate edges in the sparsification process,
we assume that the vertex set retains after sparsification,
namely VG =VG∗ .
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A.1.1 The Proof of Lemma 6.1

Proof. Let EG(u1,u2) = 1 indicate the existence of edge
(u1,u2) in the graph G and 0 otherwise. We formulate
that

FG∗(p) = ∑
(u1,u2,...,u|Vp |)∈V

|Vp |
G∗︸ ︷︷ ︸

For each possible subgraph,

∏
e∈Ep,

e=(v j ,vk)

EG∗(u j,uk)

︸ ︷︷ ︸
verify the existence

,

(6)
and obtain

E[FG∗(p)]

= ∑
(u1,u2,...,u|Vp |)∈V

|Vp |
G∗

∏
e∈Ep,

e=(v j ,vk)

ρL(e)×EG(u j,uk)

= ∏
e∈Ep

ρL(e) ∑
(u1,u2,...,u|Vp |)∈V

|Vp |
G∗

∏
e∈Ep,

e=(v j ,vk)

EG(u j,uk),

Since VG =VG∗ , we have

E[FG∗(p)] = ∏
e∈Ep

ρL(e)FG(p).

Thus, the lemma holds.

A.1.2 The Optimization Problem for the Stratified
Sparsification

Let M denote a memory constraint to ensure that the spar-
sified graph can reside in the frontend machine. We first
consider a specific pattern p, and later generalize to an
arbitrary pattern. We formulate the stratified sparsifica-
tion as an optimization problem as:

argmin
Ω

Var[F̃ (p)]

s.t.
l

∑
i=1

siρi ≤M.

(7)

Given an ordered set of vertices S =
(u1,u2, . . . ,u|Vp|) ∈ V |Vp|

G from the graph G, we denote
1( fG(p)|S) to indicate whether there is a subgraph with
S in G that can match the pattern p. If 1( fG(p)|S) = 1,
in other words, S must be mapping of p in G, we directly
use fG(p)|S to represent the matched subgraph regarding
S. Note that the notations will be applied to both the
eMap and G∗ in the following. For example, given a
vertex set S (same vertex set in both eMap and G∗),
if 1( fG(p)|S) = 1 but 1( fG∗(p)|S) = 0, we know that
some edge in the matched subgraph has been eliminated
during sparsification. With the indicator, we have

FG∗(p) = ∑
S∈V

|Vp |
eMap

1( fG∗(p)|S).

Therefore,

Var[FG∗(p)]

= ∑
S1,S2∈V

|Vp |
G

Cov [1( fG∗(p)|S1),1( fG∗(p)|S2)]

= ∑
S1,S2∈V

|Vp |
G

(E[1( fG∗(p)|S1)1( fG∗(p)|S2]

−E[1( fG∗(p)|S1)]×E[1( fG∗(p)|S2)].

(8)

We observe that the covariance in Equation 8 must be
zero in either of the following case.

• S1 or S2 cannot form a mapping of p in G,
i.e., 1( feMap(p)|S1) = 0 or 1( feMap(p)|S2) = 0. In
this case, the matched subgraph must not ex-
ist in G∗, leading to E[1( fG∗(p)|S1)] = 0 or
E[1( fG∗(p)|S2)] = 0.

• S1∩S2 = /0, namely the two sets are disjoint.

Therefore, we only need to study the two sets S1 and
S2, such that 1( feMap(p)|S1) = 1 and 1( feMap(p)|S2) = 1,
and S1∩S2 6= /0. In this case, feMap(p)|S1 and feMap(p)|S2
may share either none, one, or more than one common
edges. The trivial case of sharing no edge results in zero
variance. For other cases, we empirically studied their
occurrences while matching all benchmark queries on
G1. We found that the case of sharing one single edge
occurs much more frequently than that of sharing mul-
tiple edges. Let the common edge be ε , which must be
matched by a pattern edge e′ ∈ Ep. According to Equa-
tion 8, the covariance becomes

Cov
[
1( feMap(p)|S1),1( feMap(p)|S2)

]
=

(
∏

e∈Ep

ρL(e)

)2

∗
(

ρ
−1
L(e′)−1

)
.

(9)

We then group these pairs by the labels of e′, which
eliminates e′ in Equation 9 and transforms Equation 8
into

Var[FG∗(p)]

≈

(
∏

e∈Ep

ρL(e)

)2

∗ ∑
e∈Ep

(
ρ
−1
L(e)−1

)
λeMap(p|e),

(10)

where λeMap(p|e) denotes the number of pairs of S1 and
S2 in eMap whose common edge is matched by e in pat-
tern p.

Figure 10 demonstrates a pair of S1 and S2 that
matches a triangle pattern, as an example. In addi-
tion, matched subgraphs feMap(p|S1) and feMap(p|S2)
share a common edge in the example. We observe that
feMap(p|S1) and feMap(p|S2) together form a new pattern,
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(a) Pattern 𝑝

(b) Common edge 𝑒 (c) A pair of 𝑆! and 𝑆"

𝑆!

𝑆"

Figure 10: Example of a pair of S1 and S2 with shared
edge e.

which is a mirror symmetric structure with respect to the
common edge. In terms of an edge e ∈ Ep, we denote
such a mirror pattern as p+e . It’s clear that λeMap(p|e)
is equal to the frequency of pattern p+e in eMap, namely
λeMap(p|e) = FG(p+e ). Combining with the Equation 4
in the paper, we have

λeMap(p|e) = FG(p+e )≈
FG(p)×FG(p)

FG(e)
=

FG(p)2

sL(e)
,

(11)
Combining the definition of F̃ (p), Equation 10, and

Equation 11, we obtain

Var[F̃ (p)]≈ ∑
e∈Ep

(
ρ
−1
L(e)−1

)FG(p)2

sL(e)
,

Note that FG(p) can be treated as a constant value
in the optimization problem. Consequently, we can
rephrase the optimization problem in Equation 7 as

argmin
Ω

∑
e∈Ep

(
ρL(e)sL(e)

)−1
,

s.t.
l

∑
i=1

siρi ≤M.

(12)

Till now, the optimization problem only considers a
specific pattern p. For generalizing to an arbitrary pat-
tern, we construct a pattern p that is formed by all types
of edges in the graph, and in Equation 12, we enumer-
ate all labels rather than those in the pattern p, which
becomes

argmin
Ω

l

∑
i=1

(siρi)
−1 ,

s.t.
l

∑
i=1

siρi ≤M.

The minimal variance is achieved when ρi =
M
l ×

1
si

.
Since the sparsification ratio ρi has a upper bound 1,
i.e., all edges with label i are preserved, we have ρi =
min(1, M

l ×
1
si
).

A.2 Queries and Execution Plans
We reported all queries used in the experiments, along
with their execution plans generated by the optimizer of
GLogS, in Figure 11. In the execution plans, we also
marked the corresponding intermediate pattern frequen-
cies in the benchmark graph G1 for the evaluation of their
performance. The table in Figure 11 explains how the
queries are constructed. Specifically, their main struc-
tures of all queries are extracted from LDBC [30] Busi-
ness Intelligence (BI) workloads, and then modified to
cover more test scenarios. Overall, the queries contains
Long-Chain, Triangle, Square, 4-Clique, House that are
commonly used for benchmarking GPM queries [29, 32].
Their execution plans cover both Expand and Join oper-
ators.
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P1

𝑝! 𝑝" 𝑝

P2

𝑝! 𝑝" 𝑝# 𝑝

P3

𝑝"
𝑝#

𝑝

2129882

𝑝!

1003605

41713 19314

4444191011420

98822052168 83558

1011420 P4

𝑝! 𝑝" 𝑝# 𝑝$ 𝑝

𝑝! 𝑝"
𝑝#

𝑝

P5 P6

𝑝! 𝑝"
𝑝# 𝑝

P7

𝑝! 𝑝" 𝑝# 𝑝$ 𝑝

9882

90492

90492

1003605

1003605

2052169

1011420 1011420 139493375

2052169 1040749 22930 176 1613181

2333021484721040749

751677

P8

𝑝! 𝑝" 𝑝# 𝑝$ 𝑝

P9

𝑝! 𝑝" 𝑝#
𝑝$ 𝑝% 𝑝& 𝑝

P10

𝑝! 𝑝" 𝑝# 𝑝$ 𝑝$∗
𝑝

9882

9882

212

2052169

9882

32261

92459

557638

83558 19314 19314

180623 387573 387573 387573 387573

1040749 48472

Person City Country ForumComment PostTag
Knows LivesIn LocatedIn HasInterest HasTag
HasTag Likes HasCreator HasCreator
ReplyOf ContainerOf HasMemberReplyOf

clone

Likes

𝑝$ ⋈ 𝑝$∗

Query Source Explanation
p1 BI-8 p1 is extracted from BI-8

p2 BI-5 Wedge Person→ Comment→ Person is extracted from BI-5. Additionally, a City vertex and
two LivesIn edges are added to form a Square

p3 BI-15 p3 is extracted from BI-15
p4 BI-17 p4 is extracted from BI-17
p5 BI-17 p5 is extracted from BI-17
p6 BI-4, BI-15 Some subgraphs are extracted from BI-4 and BI-15 to form a 4-Clique

p7 BI-19, BI-4 Its right square is extracted from BI-19. In addition, a Forum hat is extracted from BI-4 and
added to the square to form a House

p8 BI-19, BI-17 Its right square is extracted from BI-19. In addition, a Tag hat is extracted from BI-17 and
added to the square to form a House

p9 BI-11 p9 is the main structure of BI-11

p10 BI-5 p10 consists of two p2 by joining on the City vertex. This is designed to verify whether GLogue
can generate a plan with join

Figure 11: Queries and their executions plans generated by GLogS’s Optimizer
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Abstract
Graph pattern mining is an essential task in many fields, which
explores all the instances of user-interested patterns in a data
graph. Pattern-centric mining systems transform the patterns
into a series of set operations to guide the exploration and
substantially outperform the embedding-centric counterparts
that exhaustively enumerate all subgraphs. These systems pro-
vide novel specializations to achieve optimum search space,
but the inherent redundancies caused by recurrent set intersec-
tions on the same or different subgraph instances remain and
are difficult to trace, significantly degrading the performance.

In this paper, we propose a dataflow-based graph pattern
mining framework named Cyclosa to eliminate the above
redundancies by utilizing the concept of computation simi-
larity. Cyclosa is characterized by three features. First, it
reorganizes the set operations for a pattern into a set dataflow
representation which can elegantly indicate the possibility
of redundancies while sustaining the optimal scheduling for
high performance. Second, the dataflow-guided parallel ex-
ecution engine decouples data access and computations to
enable efficient results sharing. Third, the memory-friendly
data management substrate can automatically manage the
computation results with high reuse possibility. Evaluation
of different patterns demonstrates that Cyclosa outperforms
state-of-the-art pattern-centric systems GraphPi and SumPA
by up to 16.28× and 5.52×, respectively.

1 Introduction

Graphs are the de facto paths to explore useful information
in various fields, including social media analysis [1, 2], finan-
cial networks [3, 4], and bioinformatics [5]. Graph pattern
mining aims to explore interesting subgraph structures ac-
cording to the user-given constraints. Typical graph pattern
mining applications include subgraph matching [6, 7], clique
finding [8,9], and motifs counting [10–12]. Despite the preva-
lence of graph pattern mining applications, they have high
computational complexity and usually need hours or even
days to complete [13–15].

Graph pattern mining systems have emerged in recent years
to provide high performance and programmability [16–18]. A
common approach is to enumerate all the subgraphs, usually
under a certain depth, to check whether the subgraphs satisfy
the pattern constraints, which is called the embedding-centric
paradigm [16, 19]. This approach is easy to develop and par-
allelize. However, it results in high memory consumption
and wasted computing resources due to a large number of
intermediate partial instances [17, 20]. Recently, advanced
graph pattern mining systems have adopted a pattern-centric
paradigm to overcome inefficiencies [17]. The main idea is
to use the structure information of graph patterns to filter in-
termediates that will not lead to a correct final match. This is
achieved by transforming the graph patterns into a series of
set operations and executing them in a nested loop following
a matching order of pattern vertices. Each loop computes the
candidates of corresponding pattern vertex, where the compu-
tation is represented as a formula of set intersections on the
neighboring lists of previously matched pattern vertices based
on the structural connectivity, e.g., Cand(v2) = N(v0)∩N(v1)
for a triangle pattern after matching an edge (v0, v1). In this
way, only valid partial instances are produced in each loop.

Prior works propose many novel techniques to reduce the
search space also the number of partial instances to be ex-
plored. AutoMine [17] provides a convenient compiler to
generate optimized matching orders automatically (also the
order of computations), which will significantly influence the
search space. Peregrine [20] and GraphZero [21] introduce a
symmetry-breaking method that filters the partial instances
leading to the same final mapping by comparing vertex IDs of
symmetric vertices. GraphPi [22] further explores an optimal
combination of different symmetry-breaking rules and match-
ing orders to minimize the search space. The above systems
mainly optimize the mining of a single pattern. SumPA [23]
further proposed an abstraction approach to reduce workloads
for mining multiple patterns simultaneously.

However, a large number of intrinsic redundant compu-
tations remain in the execution of set operations even in
an optimized search space, the same set intersection, e.g.,
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N(v0)∩N(v1), repeats throughout the processing. Specifi-
cally, the redundancies can be classified into two categories,
the explicit redundancy and implicit redundancy, based on
whether they rely on the same subgraph instance. In explicit
redundancies, one set intersection can be repeatedly used for
computing different pattern vertices connected to the same
subgraph instances. In implicit redundancies, the same inter-
section appears in computing on different subgraph instances.
The redundant computations usually cost more than 80% of
the runtime and severely degrade the performance. Further-
more, these explicit and implicit redundancies spread over the
runtime when mining a single pattern or multiple patterns,
making it difficult to trace and reuse. Existing systems follow
the principle of structural equality and rewrite the exact same
set formulas of different vertices into a single one to reduce
part of the explicit redundancies [21–23]. However, there are
still more than 60% of the redundancies remaining unsolved.

We observe two kinds of computation similarity in the
set operations providing the opportunity to help identify and
reuse both explicit and implicit redundancies. The first one
is the static similarity which reveals the structural similarity
among the operands of the set operations in a pattern, that
one input operand can be reused in two operators, and the
output results of these operators may have latent redundan-
cies. The static similarity can be analyzed before execution.
We propose to decouple the operands and operators of all set
operations and organize them into a directed flow oriented by
the connections among the inputs and outputs, which is called
a set dataflow, to efficiently exploit the static similarity. Each
node in the set dataflow is a set operand or a set operator. The
explicit redundancies can be removed by keeping only unique
operands in the dataflow, while the implicit redundancies be-
tween different operators can be indicated by the overlapped
input source nodes of the dataflow.

The second one is the dynamic similarity which reveals the
similarity among the inputs of all occurred set intersections
during runtime, which can only be analyzed after execution.
Specifically, we observe that a small number of high-degree
vertices participate in most of the computations, which means
redundant computations are concentrated in these vertices.
This allows us to cache and reuse implicit redundant results
by tracing these high-degree vertices. However, maintaining
correctness and efficiency in the execution of the dataflow is
challenging. How to manage the intermediate computation
results in limited memory space is also a main difficulty.

In this paper, we present Cyclosa, a novel dataflow-based
graph pattern mining system to eliminate both explicit and
implicit redundancies in the pattern-centric paradigm. Specif-
ically, Cyclosa is characterized by the following key features.
First, we propose a novel set dataflow representation and an
efficient constructing approach to generate the set dataflow
for arbitrary patterns. It maintains optimized cost through a
lightweight cost estimation model and introduces the redun-
dancy probability to guide the appropriate reusing of results.

Second, we develop a dataflow-based execution model to ex-
pose the possibility of capturing and reusing redundancies
during runtime. Through the dataflow execution, the data
accesses and computations are decoupled, providing the abi-
lity to maximize data reuse in parallel. Third, we design a
memory-friendly data management substrate to automatically
store the computation results with a high possibility of re-
dundancy. It implements smart cache strategies according to
the reuse probability of results evaluated, thus achieving a
controlled memory consumption. Furthermore, the substrate
can efficiently cooperate with the dataflow execution engine
to provide the results requested by repeated computations. We
implement a prototype of Cyclosa and achieve significant per-
formance improvement over state-of-the-art pattern-centric
graph pattern mining systems.

The key contributions of this paper are as follows:

• It introduces a set dataflow representation to explore the
fine-grained computation similarity in set operations of
pattern-centric graph mining for reducing both explicit and
implicit redundancies.

• It proposes a dataflow-guided execution model and a self-
managed redundancy storage substrate to efficiently share
results among computations, overcoming the challenges of
managing and reusing the results.

• It develops Cyclosa, a high-performance graph pattern min-
ing system that eliminates redundant computations for var-
ious pattern settings. Experimental results show that Cy-
closa outperforms GraphPi and SumPA by up to 16.28×
and 5.52×, respectively.

2 Background and Motivation

2.1 Definition of Graph Pattern Mining
Given a data graph G= ⟨V,E⟩, where V is the vertex set and E
represents the edges, and an input graph pattern p which can
be arbitrary graphs, the basic graph pattern mining problem
aims to find all the subgraphs of G that are isomorphic to
p [20–22]. Each isomorphic subgraph is called an embedding
of p, and the vertices and edges form an one-to-one mapping
between the embedding and p. For example, Figure 1 shows
a data graph and a diamond pattern. The subgraphs connected
by (2, 3, 0, 4) and (2, 3, 1, 4) are two embeddings of the
diamond pattern, and the vertices are mapped correspondingly.
As in prior studies, this work focuses on graph pattern mining
on the undirected graphs.

Graph pattern mining applications have many variants
which may require either a single pattern or multiple patterns
to be mined. For example, subgraph listing outputs all the
instances of a given pattern [24]. The k-clique finding counts
the complete subgraphs with a certain number of vertices [25].
The k-motifs counting counts the number of instances for all
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Figure 1: The example of mining a diamond pattern in a
pattern-centric system

the possible patterns with k vertices in the data graph [26].
Our system supports all these variants and aims to provide a
general solution to solve the common redundancy problem in
graph pattern mining.

2.2 Procedure of Graph Pattern Mining

In pattern-centric systems, the mining procedure is typi-
cally performed as a series of nested set operations in three
steps [17, 22, 27]. Firstly, the graph pattern is analyzed to
generate a matching order of pattern vertices. The vertices
in the data graph will be computed and mapped to the pat-
tern following the order. Secondly, the set operations required
for computing each pattern vertex will be generated based
on its prior neighbors in the matching order. Lastly, the set
operations will be executed in a nested loop that starts from
each data graph vertex. The end of each loop represents that
a subgraph instance is found. Usually, the outer loop is exe-
cuted in parallel. Existing systems focus on minimizing the
branches that need to be accessed in the search tree by generat-
ing optimized matching orders. In order to further reduce the
search space, the symmetry-breaking method is also applied
by adding comparison constraints to filter computed results
that will lead to an automorphic instance.

For instance, Figure 1 shows how to find the subgraphs of
a diamond pattern. In the pattern analysis phase, the matching
order of the diamond is defined as [u0, u1, u2, u3]. There are
comparison constraints between vertex pairs <u1, u0> and
<u2, u3> because they are symmetric. Following the matching
order, we can formulate the set operations for each pattern
vertex. Initially, u0 can be mapped to any of the data graph
vertices while u1 is represented as finding a neighbor of u0.
For vertices u2 and u3, they are common neighbors of u0 and
u1, so that a set intersection is defined respectively. The con-
straints are checked when <u1, u0> and <u2, u3> are involved
in the computations. These set operations are organized into
a nested loop of 4 depths for execution. The first two loops
map edges of the data graph to (u0, u1). Assuming that the
edge (2, 3) has been assigned, the candidates for u2 and u3
will be {0, 1, 4}. Due to the symmetry-breaking constraints,
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Figure 3: The ratio of redundancy as repeated set intersec-
tions for different patterns on Wiki-Vote (WV) and MiCo (MI)
graphs. Solved: the redundancy amount that can be addressed
by SumPA against a naïve nested loop execution. Unsolved:
the number of remaining redundancies in SumPA.

we can safely filter (2, 3, 4, 0) and avoid mapping (2, 3, 0, 4)
twice because they are the same subgraph.

Our work incorporates existing optimizations of reducing
the size of explored search space while enabling high effi-
ciency on computations by eliminating redundancies.

2.3 Problem: Redundant Computations

Despite the pattern-centric mining procedure providing good
optimizations on the search space, time-consuming explicit
and implicit redundancies exist in the procedure of mining
single or multiple patterns. This problem is detailed in Fig-
ure 2. The set operations for each vertex corresponding to the
matching order and constraints of patterns Pa, Pb, and Pc are
given. Following the matching order, consider that a part of
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the substructures of these patterns have been mapped to the
data graph, which is denoted as white vertices. Next, we will
explain the explicit and implicit redundancies in detail.

Explicit Redundancy: A set of intersections that are repeat-
edly operated upon the neighboring lists of the same vertices
from the same subgraph instance. For pattern Pb, (1, 3) is
partially assigned to (u0, u1). In order to compute u2 and u3,
N(1)∩N(3) is performed twice. For pattern Pc, the compu-
tation N(1)∩N(3) must be performed in order to map (1,
3, 4) to u2. To this end, the explicit redundant computation
N(1)∩N(3) is conducted based on the same edge instance
(1, 3) inside single pattern Pb and also in the pattern Pc.

Implicit Redundancy: A set of intersections that are re-
peatedly operated upon the neighboring lists of the same
vertices from the different subgraph instances. In single pat-
tern Pc, consider two subgraph instances (1, 3, 4) and (1, 2,
3) are already mapped to (u0, u1, u2). The repeated set in-
tersections N(1)∩N(3) exist for computing u3 and u4. They
are induced from different subgraph instances. For multiple
patterns, when (0, 1, 3) is partially matched to Pa, the com-
putation of N(1)∩N(3) is induced from different subgraph
instances of all three patterns.

These redundancies can be aggravated in a nested loop
of set operations as in Figure 1, e.g., resulting in more than
twice the number of redundancies for computing u3 of Pb. As
profiled in Figure 3, more than 80% of total computations are
redundant in different patterns. However, existing systems can
only explore parts of the explicit redundancies because they
view each set formula (or a pattern vertex) as a whole in each
loop and all follow the principle of structural equality to merge
equal set formulas. For example, in Figure 4, GraphPi [22] and
GraphZero [21] will merge and rewrite the formulas S3 and
S4 into one loop. SumPA [23] will reduce v2 and v3 into an
abstract pattern vertex and then generate a single set formula
for two vertices. However, the implicit redundancies remain
because they cannot be exposed as structural equality in set
formulas. Besides, in parallel execution, explicit redundancies
on a reverted edge such as N(1)∩N(3) and N(3)∩N(1) will
be omitted. As profiled in Figure 3, existing work can only
solve less than 40% redundancies. Our work aims to eliminate
both explicit and implicit redundancies.

2.4 Insights: Computation Similarity
In order to detect and reuse both the explicit and implicit re-
dundancies, we must explore finer-grained computation simi-
larity rather than the structural equality as in existing work.
If the similarity of computations can be identified before the
execution, then we can use it to guide the reusing of results.
The computation similarity comes from two folds:

• Static Similarity. The static similarity originates from the
operands level of the set operations for a pattern, exposing
the reuse possibility of both inputs and outputs of different
computations. Figure 4 presents the set formulas of Pc in

∩
∩
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Figure 5: The frequency of vertices getting involved in com-
putations for size-4 motifs counting on two graphs

Figure 2, other than the formula equality of S3 and S4, the
input operand N(v0) is also getting involved in S2 and S5.
N(v0) can be shared as inputs for four formulas, and it also
results in the implicit redundancies between S4 and S5.

• Dynamic Similarity. The dynamic similarity lies in the run-
time characteristics of the inputs of occurred computations,
reflecting which vertices are more likely to be requested
for computation. Specifically, we observe most of the com-
putations are concentrated in a small part of high-degree
vertices. We make an analysis of 4-motifs counting on two
graphs as shown in Figure 5. The vertices of the graphs
are reordered by a decreasing degree. More than 85% of
the computations lie in about 15% of the first high-degree
vertices, where the redundancies also concentrate.

In this work, we propose a set dataflow to use the com-
putation similarity for redundancy elimination, as shown in
Figure 4. The set dataflow is a directed graph indicating the
procedure of how sets are transferred and computed. The set
dataflow decouples the set formulas into individual operands
and operators, and the directed edges represent the transfer re-
lation of the input/output data between different operators. It
removes explicit and implicit redundancies as follows: ❶ The
explicit redundancies can be removed by cutting and main-
taining unique operators, e.g., only single N(v0) and N(v1)
exist. Original two N(v0)∩N(v1) are thus reduced to one, and
the set operands are fully shared. ❷ The implicit redundancies
between operators are indicated by overlapped inputs, e.g., the
results of N(v0)∩N(v1) and N(v0)∩N(v2). Based on the dy-
namic similarity, we can heuristically cache the computation
results of high-degree vertices for reusing.
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Figure 6: Overview of Cyclosa

Challenges. However, there are still several challenges
in constructing an efficient redundancy-free graph pattern
mining system. First, maintaining correctness and efficiency
is difficult. The set dataflow is only aware of sets during
execution, and we need to extract the results correctly while
enabling maximum data sharing. Second, managing a large
number of redundant results is challenging. Simply storing all
the redundant results indicated by set dataflow is inefficient
and may consume a large size of memory footprint.

3 System Overview

Cyclosa is architected to solve the above challenges and
achieves a redundancy-free execution for graph pattern min-
ing. Given arbitrary graph patterns, Cyclosa can fast analyze
the computation similarity via the set dataflow and use the set
dataflow to guide the sharing of computations with high paral-
lelisms. Specifically, Cyclosa works with three main modules,
as presented in Figure 6.

Set Dataflow Analysis Module. The set dataflow of input
patterns is constructed in this module. Each pattern is first
analyzed to generate a reuse-aware matching order and con-
straints with data graph properties. Then, based on the match-
ing order, a set operation analyzer generates a redundancy-
reduced set dataflow by keeping unique operands. Through
the analysis, the generated set dataflow will maintain sufficient
information for correct results and indicate the redundancy
probability of different set operators.

Dataflow Execution Engine. The generated set dataflow is
fed to the dataflow execution engine for processing. It keeps
a decoupled view of the data access and computation that
provides the opportunity to manage the results independently.
Each node in the dataflow is assigned to a worker to process.
The inputs and outputs are managed by the graph retriever
communicating with the data management substrate. The set
operators are assigned to redundancy-aware set processors
that will request redundant results before the computation. A
dataflow scheduler controls the processing order by directed

edges of the set dataflow to ensure correctness.
Data Management Substrate. Computed results are au-

tomatically maintained in the substrate. Once received a re-
sult set, a results manager will implement smart cache strate-
gies and maintain results with different reuse possibilities
in a proper place of a multi-level set buffer. In this way, the
memory footprint is under control. Furthermore, the results
management can overlap with the execution engine for high
parallelism. The substrate also provides a fast request to the
data graph and cached results through efficient data layout.

4 Set Dataflow Analysis

This section first introduces the approach to generate a cost-
efficient reuse-aware matching order and then describes the
procedure for efficiently constructing a set dataflow.

4.1 Pattern Analysis
Existing approaches enumerate all possible orders and es-
timate the cost to find the order with the lowest work-
load [17, 20, 22], but they are oblivious to the redundant
computations exposed in runtime characteristics. Besides,
the overhead for enumerating all orders will increase when
patterns get larger. In this work, we propose a degree-guided
two phases analysis, as shown in Figure 7, to solve the above
challenges. The main idea is to match the high-degree vertices
in a Depth-First-Search (DFS) manner to raise the possibility
of reusing the results on these vertices. At the same time,
we design a lightweight and efficient cost model with graph
information for the optimal cost.

DFS Order Enumeration. This phase will generate all
degree-first DFS orders of a pattern. Firstly, the constraints
of symmetric vertices are generated using the permutation
group theory as in GraphPi [22], independent of the order
of vertices. In the example of Figure 7, there are two equal
constraints because each is sufficient to breaking symmetries,
and the u0 < u2 is selected randomly. Secondly, it traverses
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from the pattern vertices with the highest degree and follows
a DFS style to get all valid matching orders, e.g., the order
starting from u1 with a degree by 4 is valid while the one from
u0 with a degree by 3 is discarded. These orders will then be
estimated for the minimum cost.

Graph-Aware Cost Estimation. We estimate the total num-
ber of intermediate subgraph instances as the cost. Given a
matching order, we can get the set formulas for computing
each pattern vertex. Cyclosa then iteratively estimates the
number of instances produced in a nested loop execution of
the set formulas. Existing works typically use a fixed metric
(i.e., average degree) to predicate the number of newly gen-
erated instances from each subgraph [17, 23]. However, this
approach omits the filtering effect of set intersections and is
inaccurate [28]. Cyclosa incorporates more graph information
by combining the vertex degree and triangle-count-per-edge
for estimation, because the triangle count enables capturing
the reduction information on neighboring lists after an inter-
section on two or more vertices.

As shown in Figure 7, initially, |V | vertices can be mapped
to u1 after Loop0. In Loop1, because only one N(u1) operator
is used for matching u0, we use the average degree deg to
estimate the number of newly produced instances from each
instance in the previous loop. The total instances in Loop1
are |V | ∗deg. In Loop2, since the results are produced by an
intersection on N(u0) and N(u1), we use the triangle-count-
per-edge ntri, instead of deg, to estimate the number of newly
generated instances. Note that the constraint u0 < u2 is applied
to Loop2 so that some produced instances will be filtered. We
use a parameter α to reflect the reduction of instances. The
cost estimated for subsequent loops is similar. Finally, the
total cost of this order is calculated by summarizing the costs
of all loops for selection.

Similar to Cyclosa, there is also research [28] considering
the data graph properties and using the number of sub-patterns
in a sampled graph to estimate the cost of the whole graph.
However, it requires the extra sampling and matching phase
to get the cost. Different from existing systems, Cyclosa pre-
computes triangle counts and degrees of the original graph to
preserve accuracy without introducing extra steps. Addition-
ally, Cyclosa also considers the factor of instances filtering
by symmetry-breaking constraints.

4.2 Dataflow Construction

Given the matching order, a pattern can be transformed into
a series of set formulas as in prior work. Based on the set
operation, there are mainly two challenges for generating
the set dataflow. First, the set dataflow must be aware of
existing optimizations on symmetry-breaking. Second, we
need a fast approach to save construction time when facing a
large number of set operations.

We propose a novel abstraction for representing the set
dataflow by introducing three kinds of set operators to provide
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Figure 8: An example of constructing the set dataflow given
four set formulas. The sub-dataflow of each set formula is
first constructed with three operators, and the input/output sets
of each operator are uniquely assigned and identified. The
sub-dataflows are then combined into a final set dataflow by
❶ reducing inputs/outputs and ❷ simplifying set operators.

a uniform view and contain all information of set operations
including the symmetry-breaking: Generator, Combiner,
and Reducer. The Generator consumes a valid candidate
set of a pattern vertex to generate the neighboring sets. The
Combiner receives two sets and outputs a single set. The
Reducer checks a result set and selects valid candidates fol-
lowing filtering rules to produce a new candidate set for cer-
tain pattern vertices. Based on these operators, we adopt
the idea of divide-and-conquer by first generating the sub-
dataflow of each set operation and then combining them to
get the final set dataflow, as shown in Figure 8.

Generating Sub-Dataflows. The sub-dataflow of each for-
mula must contain the Generator, Combiner, and Reducer
at the same time, except of the initial one because there is no
intersection required. In this way, the data required for com-
putation and the operators performed are separated, which
are represented in a unified style. For example, in Figure 8,
the sub-flow of initial v0 ∈V only contains one Reducer. For
v1 ∈ N(v0), the N(v0) is first transformed into a flow with
a Generator, the output of the Generator is then sent to a
Combiner and is finally checked by a Reducer. Similarly, the
sub-dataflow for v2 ∈ N(v0)∩N(v1) is given, and the con-
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Figure 9: Different levels of redundancy probability. NST,
HST, and RST denote operators sharing the same neighboring
sets, sharing the same result set and different neighboring
sets, and sharing only same result sets, respectively. The re-
dundancy probability of each pair of result sets (R(i), R( j)) is
stored in a table where higher values denote higher probability
to be reused in the future.

straints will be recorded in the metadata of the Reducer.
Combining and Simplifying Set Dataflow. Different sub-

flows are first combined by connecting same inputs and out-
puts, e.g., the sub-flows of v1 ∈ N(v0) and initial formula are
combined by the output and input candidate sets denoted with
V0. Only one candidate set of V0 will be maintained after
the combination. After the combination, we then traverse the
combined set dataflow in a BFS style to cut set operators
with the same input nodes. Consider two Combiners used for
computing the results of v2 and v3. They have the same input
nodes so that only one Combiner remains. Thus, the explicit
redundancies of these two operators are eliminated. After the
simplification, the final set dataflow is generated.

4.3 Dataflow Evaluation
This evaluation aims to exploit the latent probability of redun-
dant results among different Combiners in the set dataflow,
which will guide the storing of results. However, providing
an exact prediction of the probability before execution is diffi-
cult. Therefore, we propose to qualitatively analyze the latent
probability of redundancy for different set operators through
their depths and input information in the dataflow.

Generally, the operators with at least one shared input
source and at the same depth have a higher possibility of
producing similar results. Considering the view of pattern
structure, this can be understood as they have similar sub-
structures. In Figure 2, the computations for u3 and u4 have
produced the same results during runtime because these two
vertices have similar triangle structures and share the u0. Fig-
ure 9 summarizes the reuse probability under different situa-
tions of the combinations of depth and shared input sets. The
redundant probabilities of different Combiners are recorded
in a table together with the set dataflow for execution.

5 Redundancy-Free Pattern Mining

This section introduces an efficient set-centric execution en-
gine and a redundancy-aware data management substrate to

enable high performance and optimal results reuse.

5.1 Set-Centric Dataflow Execution

The set formulas are processed in a nested loop in prior works.
Despite of the convenience of parallelizing, it lacks the ability
of fine-grained data management and reuse. In this work, we
present a set-centric dataflow execution engine that decou-
ples data management from computation to maximize results
sharing. The core idea is to put the set instead of a subgraph
as the basic processed element. The set operator in the set
dataflow will start processing whenever the input sets from
directed edges are ready. This discrete view enables sharing
any results to any of the computations.

To realize the goal, we correspondingly design an executor
for each Generator, Combiner, and Reducer together with
a Dataflow Monitor, as shown in Figure 10(a). Each set con-
tains two parts for identification: the set ID and the elements
value, e.g., ID < 3,−1 > for the neighboring set of vertex 3.
Set operators coordinate through flow signals. The monitor
identifies from the flow signals to know where to move the
results and activates the next operator.

Generator Module. It traverses each vertex element from
the input candidate set or the initial set to generate related
neighboring sets. Each input set is assigned a signal consisting
of an operator ID and an instance ID. The output will inherit
the operator ID, and a new instance ID is produced to indicate
a newly generated subgraph instance for correctness. In the
case of Figure 10(a), the signal nei < 3,−1,op,gid∗,value >
is sent to the monitor. The monitor will then transfer the
output set to a Combiner needed.

Combiner Module. In order to support reuse-aware com-
putation, it introduces a check unit and a compute unit. The
check unit first queries whether there are already computed
results with the same ID, req < 3,5,op,gid > in Figure 10(a).
The monitor will transfer the request to the data manager.
If the request hits, then the computation is omitted. Other-
wise, the compute unit is called to generate a new output. The
new result res < 3,5,gid,value > is then transferred to the
monitor for the next operator.

Reducer Module. Each input to this module will be a result
directly computed from the Combiner or fetched from the
cached results. The output is a set with valid candidates for
a pattern vertex. The constraint information is checked by
accessing the metadata of the set dataflow. Once an output set
is generated, the related signal, i.e., ret < op,gid,value >, is
sent to the monitor.

Dataflow Monitor. The monitor coordinates the movement
of sets guided by the set dataflow. It has three components:
1) the Flow Map storing the metadata of a set dataflow by
recording unique IDs for operators, 2) the Activator handling
the signals of operators and scheduling the sets based on the
flow map, and 3) the Retriever communicating with the data
manager for accessing the graph data and cached results.
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5.2 Reuse-Aware Data Management Substrate

The dataflow execution engine will continuously produce new
result sets. However, due to the large search space, maintain-
ing the results in a limited memory space while maintaining
high reuse ratio is challenging. We propose a memory-friendly
data management substrate to solve this challenge. The main
idea is to selectively store result sets with the highest reuse
probability. It also overlaps with the computation phase to
embrace correctness and efficiency. The substrate implements
three main components: the results maintainer, the candidates
updater, and the graph fetcher, as shown in Figure 10(b).

Results Maintainer. The cores of the results maintainer are
three fixed-size result buffers under different caching strate-
gies, i.e., the Least Frequently Used (LFU), the Least Recently
Used (LRU), and the Most Recently Used (MRU) buffers
storing results with high, middle, and low reuse probability,
respectively. High reusable results come from high-degree
vertices, which are more likely to be generated at the upper
levels of the dataflow and are the most frequently requested.
Middle reusable results are from parallel computations at the
same middle level, yielding better time locality. Low reusable

results occurs at the lower levels, which are often infrequently
requested by low-degree vertices that are deferred to be pro-
cessed in Cyclosa. This module dynamically maintains the
computed results and responds to the req and res signals. The
sets in the buffer are stored in a <key, value> manner. When
a req signal arrives, it will search for results by the set ID, up-
date the hit information, and respond to the dataflow monitor.
When a res signal arrives, the maintainer will estimate the
reuse probability with smart caching strategies and store the
result in a proper buffer.

The strategy for identifying the reuse probability of a result
set is demonstrated in Figure 11. It combines the static and
dynamic computation similarities to estimate the reuse proba-
bility during runtime. Higher values in the probability table
of the set dataflow analysis and higher degrees of the vertices
by the result set ID, in particular, will result in a higher reuse
probability evaluated. For instance, in Figure 11, the result
has a low reuse probability. This is because there is a low
degree vertex in the computation, which may not participate
in other computations.

Candidates Updater. It is responsible for maintaining the
candidate sets produced by the Reducer and extracting cor-
rect subgraph instances. Each candidate set is allocated with
independent memory space. When a ret arrives, the op in-
formation is used for indicating the correct candidate sets.
After each update, a Printer will consume the candidate sets
using the gid information once all candidate sets are updated.
The Printer records current pointers in the candidates set and
produces exact subgraph instances. In order to overlap with
the updating process, we use a double buffer for extracting
the subgraph instances in the Printer.

Data Graph Fetcher. It reorganizes the data graph to im-
prove the reuse efficiency and responds to the nei signal by
returning the neighboring list as a set to the execution moni-
tor. Specifically, based on the degree information, the vertices
and edges are reordered so that the vertices with higher de-
grees will be assigned smaller IDs. In addition, the edges
of the high-degree vertices are stored in a contiguous space
to improve the cache efficiency because these edges will be
frequently accessed during computation. It also conducts a
triangle counting process to get the number of triangles of the
data graph for pattern analysis.

Discussions. Through the above designs, Cyclosa enables
efficient results sharing for redundant computations. In the
case of operating intersections upon small sets, directly re-
computing may be faster than reusing the results. However,
this case rarely happens since most cached results are related
to high-degree vertices that have large-size sets. We track the
cached intersection results of size-4 motif counting on MiCo
graph in Cyclosa and find that only 7.3% of results benefit
from recomputations while most prefer the reuse method that
can yield higher speedups against the former.

Currently, Cyclosa focuses on mining unlabeled patterns
because they generally yield higher computation complex-
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ity than the labeled ones. For handling labeled patterns, we
can simply add label information as constraints in Reducers.
During execution, the structural information of a pattern is
first explored for set computation, and the label information
is then used only for filtering elements in a set. The labels
provide more filtering opportunities that help reduce the to-
tal workload amount with fewer redundancies. However, the
proposed set dataflow can still benefit labeled patterns by ex-
ploring the explicit redundancies in the pattern topology. Note
that the dynamic computation similarity may change when
the high-degree vertices have different labels.

6 Implementations

Cyclosa is currently built with C++ as an in-memory system
on a single machine. This section will introduce the parallel
implementations in Cyclosa for mining flexible patterns.

Flexible Pattern Interpretation. Cyclosa provides a conve-
nient interface, PatternGraph(), for users to construct flexi-
ble pattern graphs by providing exact structures or graph prop-
erties, e.g., the edge list of a triangle or clustering coefficient,
through EdgeList and Restriction parameters. The above in-
formation will be automatically interpreted into possible pat-
terns. Users only need to interact with the PatternGraph()
while the underlying runtime is transparent.

Parallel Execution of Set Dataflow. We use OpenMP for
parallel execution in Cyclosa. The set dataflow inherently pro-
vides multi-level parallelisms, as shown in Figure 12. First,
the sub-parts of a dataflow can be replicated and assigned to
different threads to exploit the data parallelism. The starting
point of the replicas is divided by the Generator. Take Fig-
ure 12(a) for example. Two threads handle the neighboring
sets of vertex 1 and 3, respectively. Second, the Combiners
at the same depth can be conducted in parallel because there
are no dependencies, as shown in Figure 12(b). Note that the
thread-local memory maintains an input set and an output
set for every dataflow node which are reused throughout the
execution. Since the number of dataflow nodes is small and
the input/output set size is limited to the maximum degree of
the data graph, the thread-local memory is often small.

Load Balancing. The skewness in Cyclosa relates to dif-
ferent numbers of sets produced by Generators. We ad-

Table 1: Real-World Graphs
Graphs |V| |E| Size

WikiVote (WV) 7.1K 100.8K 0.81MB
MiCo (MI) 96.6K 1.1M 8.24MB

WikiTalk (WT) 2.39M 5.02M 40.16MB
Patents (PA) 3.8M 16.5M 0.12GB

LiveJournal (LJ) 4.0M 34.7M 0.26GB
Orkut (OR) 3.1M 117.2M 0.87GB

Friendster (FR) 65.6M 1.8B 13.46GB

dress it in two folds: 1) Static task assignment. The input of
the first Generator is initialized by assigning the reordered
graph vertices in a round-robin fashion. This makes the up-
per Generators in a dataflow for different threads produce
similar workloads. 2) Dynamic work stealing. This can be
safely realized by managing the independent thread-local set
space. Specifically, Cyclosa identifies the input-set position
in the dataflow of the busy thread and replicates its workloads
and relevant local set states to idle threads, which launch their
corresponding Generators with higher parallelism.

Parallel Data Management. The data management sub-
strate maintains the data graph and computation results. The
data graph is stored in the Compressed Sparse Row (CSR)
format. For cliques, the graph is oriented by enforcing a direc-
tion between each pair of vertices to reduce workloads. The
results buffers are implemented using a concurrent hash map
with a fixed-size space. Each candidate set is independently
allocated with the size of the maximum degree. In this way,
we can keep a controlled memory consumption.

7 Evaluation

In this section, we evaluate the effectiveness of the set
dataflow and present the efficiency of Cyclosa.

7.1 Methodology

Patterns and Graph Datasets. The real-world graph datasets
in our experiments are shown in Table 1, which are from the
Stanford SNAP collection of datasets [29]. They represent
typical graphs from different domains and are widely used in
previous works [21–23]. The graph pattern mining algorithms
evaluated are classified into two categories: 1) single pattern
query that includes mining the single non-clique patterns
(SM) [24] and cliques finding (CF) [25], 2) multiple patterns
query that includes mining all patterns with a certain number
of vertices, i.e., counting k-motifs (k-MC) [30] and multiple
patterns satisfying specific graph property like pseudo cliques
(PC) which are constrained with the given density [31]. These
applications cover different kinds of representatives of graph
pattern mining algorithms in prior works [20–23, 32].
Baseline Systems. Cyclosa is compared with two state-of-the-
art pattern-centric systems, GraphPi [22] and SumPA [23].
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Figure 13: Performance comparison on listing single patterns

Table 2: Execution Time (Seconds) of Clique Finding
Systems App. MiCo Patents LiveJournal
Cyclosa 4-CF 0.23 0.11 2.27

5-CF 21.82 0.29 463.02
SumPA 4-CF 1.21 0.37 5.98

5-CF 50.77 0.45 1182.33
GraphPi 4-CF 1.64 0.44 12.14

5-CF 60.51 0.52 1625.47

Both systems are designed based on the mining procedure
of Figure 1. GraphPi is a single pattern matching system
that preserves the highest efficiency by finding an optimal
combination of matching orders and symmetry constraints for
an arbitrary pattern. SumPA is most related to our work and
achieves higher performance on multiple patterns than prior
works through a novel pattern abstraction.
Hardware Environments. All the experiments are conducted
on a single server which is equipped with two 14-core Intel
Xeon E5-2680v4 processors, 256GB RAM, and 512GB SSD.
It runs a 64-bit Ubuntu 18.04 with kernel 5.4. We use gcc
7.3.0 to compile the applications with optimization under -O3.
We use all the physical cores, and hyper-threading is enabled
when the threads number exceeds 28.

7.2 Performance Comparison
Single Pattern Query. We first compare the performance of
matching single non-clique patterns in Figure 3. These pat-
terns are widely used in prior works [20, 21, 23]. Figure 13
shows the normalized speedups. Compared with GraphPi, Cy-
closa achieves a speedup from 1.19× to 16.28×. The lowest
speedup is for mining q1. Cyclosa can not only eliminate the
explicit redundancies for q1 but also provide an efficient data
graph layout. The highest speedup comes from q5 on Orkut.
There are more implicit redundancies in q5 that cannot be
removed by GraphPi, which can be explored in Cyclosa. Com-
pared with SumPA, Cyclosa achieves a speedup from 1.13×
to 5.52×. The pattern abstraction of SumPA can only ex-
pose parts of the explicit redundancies, while the set dataflow
and smart cache in Cyclosa provide more opportunities for
handling both explicit and implicit redundancies.

Table 2 shows the execution time for counting size-4 and
size-5 cliques on different graphs. Overall, Cyclosa outper-
forms GraphPi by up to 7.13× and SumPA by up to 5.26×
(4-CF on MiCo). GraphPi performs the lowest in all cases
because all vertices in a clique are symmetric to each other,
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Figure 14: Performance on finding pseudo cliques

Table 3: Execution Time (Seconds) of Motifs Counting
Systems App. WikiVote MiCo Patents
Cyclosa 4-MC 1.25 9.56 6.81

5-MC 257.34 1211.7 336.57
SumPA 4-MC 1.67 14.18 9.34

5-MC 492.31 4789.5 662.03
GraphPi 4-MC 2.33 17.83 12.99

5-MC 694.74 5803.97 803.55

and the optimal matching order is unique. SumPA has lim-
ited improvement over GraphPi since the pattern abstraction
will select a large sub-clique and omit opportunities for data
reusing inside. In Cyclosa, the set dataflow can fully exploit
the operands level redundancy for clique vertices, and the
total workloads are reduced by graph orientation.
Multi-Pattern Query. We compare the performance of Cy-
closa with SumPA and GraphPi on motifs counting and
pseudo cliques. To support multiple patterns, we add a merg-
ing phase in GraphPi as in Automine [17]. Table 3 compares
the execution time of counting size-4 and size-5 motifs on
different graphs. With a larger size, the number of patterns
increases (6 in 4-MC and 21 in 5-MC). Cyclosa outperforms
SumPA and GraphPi by up to 3.95× and 4.79× for 5-MC
on MiCo, respectively. The average speedups of Cyclosa on
4-MC and 5-MC of all cases are 1.64× and 2.95×. Note
that Cyclosa achieves higher speedup when the pattern size
and number increase. Existing approaches based on struc-
tural equality will face too many divergent branches when
processing in-equal parts of these patterns. The set dataflow
execution in Cyclosa can explore the computation similarity
of both equal and in-equal parts.

Pseudo cliques (PC-k) algorithm finds patterns with a den-
sity greater than k. Figure 14 shows the results for mining all
pseudo cliques with vertices less than six [23]. Notice that Cy-
closa is superior to GraphPi and SumPA by 4.01×∼ 7.52×
and 1.48×∼ 2.63×, respectively. Pseudo cliques are denser
patterns, where one vertex is usually involved in most compu-
tations for other vertices. The set dataflow of Cyclosa can cap-
ture this similarity and fully reuse these operands as described
in Section 2.4. Besides, the data management substrate can
efficiently share results among different patterns.

Note that different mining algorithms can benefit from Cy-
closa since the redundancies are highly related to the pattern
topology and are independent of algorithm types. For larger
patterns, more static similarity opportunities can be exploited.
Also, an increased number of total computations amplifies the
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Figure 15: Normalized speedups under various settings of the
cache capacity and caching strategy for 4-MC

Table 4: Execution Time (Seconds) on the Large Graph (FR)
App. Cyclosa SumPA GraphPi
3-MC 94.26 143.38 281.42
4-CF 512.97 1491.72 1647.55

reusable computation amount arising from dynamic similarity.
However, the size of set dataflow may increase and require
more local memory space for parallel processing.

7.3 Sensitivity Study
Cache Strategy. The left chart in Figure 15 investigates the
behaviors of different caching strategies for 4-MC. We fix
the buffer capacity as 15% size of corresponding graphs.
Notice that no single strategy can outperform others in all
cases. Among all graphs, the LFU behaves better on Patents
graph (2.36×), and the LRU behaves better on the WikiVote
(2.17×). This is due to the diverse sparsity of the graphs, and
the Patents graph is sparser than WikiVote. The MRU stra-
tegy is slowest in all cases, and this is because the results of
high-degree vertices in the prior phase will be discarded even
though they may be frequently reused. The hybrid strategy
can combine the pattern and graph information to select the
best buffer and thus achieves the highest performance.
Cache Capacity. The right chart in Figure 15 shows the nor-
malized speedups with various buffer sizes. Initial buffer size
is defined as the 5% size of a given data graph. Typically,
larger cache capacity brings higher performance gains, e.g.,
3.1× improvement from 5% to 20% on WikiVote, because
more results can be cached and reused. However, the growth
slows down gradually while increasing the buffer size. The
main reason is that a larger buffer size induces higher latency
in maintaining and querying the results.

7.4 Scalability
Figure 16 compares the performance of different systems by
varying the number of threads. The results are normalized to
GraphPi with a single thread. Hyperthreading is enabled when
the number of threads exceeds 28. For GraphPi and SumPA,
each thread is saturated with computations. More threads offer
more compute parallelism but have to compete for compu-
tation resources. Thus, hyperthreading improves efficiency,
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Figure 16: The normalized speedups with various number of
threads for different applications

Table 5: Memory Consumption on Orkut with 28 Threads
Systems 4-CF 4-MC 5-MC PC-0.8
Cyclosa 2.69GB 2.75GB 2.96GB 2.94GB
GraphPi 3.81GB 3.83GB 4.16GB 3.97GB

but the growth slows down gradually. Cyclosa resolves the
redundant computation bottleneck, therefore offering more
speedups against the above earlier systems. However, memory
access contention becomes important when hyperthreading
is used, incurring the increasingly-saturated performance im-
provement as shown in Figure 16. This is because Cyclosa
has to maintain and query the results cache.

We also test the ability of Cyclosa to scale to large graphs
with billion edges, as shown in Table 4. For size-3 mo-
tifs counting, Cyclosa gains 1.52× and 2.99× speedups
over SumPA and GraphPi. Cyclosa outperforms SumPA and
GraphPi on the Friendster graph for size-4 clique by 2.91×
and 3.21×, respectively. Caching the results for large graphs
is difficult because of the vast amount of intermediates. The
performance improvement proves the efficiency of the set
dataflow and caching strategies on larger graphs.

7.5 Overhead

Memory Consumption. Table 5 compares the memory con-
sumption of Cyclosa and GraphPi on the Orkut graph. Cyclosa
and GraphPi take an average of 2.84GB and 3.94GB of mem-
ory space in these cases. Although Cyclosa needs to maintain
some of the results, the memory footprint is still kept small.
This is because GraphPi maintains intermediate subgraph
instances while Cyclosa shares the same result set for differ-
ent vertices and executes the dataflow in a DFS style. Each
thread in Cyclosa only maintains a local space for each set
dataflow node. Besides, the smart caching strategies explore
the trade-off between the space efficiency and reuse possibil-
ity. The memory space in the data management substrate is
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Table 6: Time for Constructing Set Dataflow
App. WikiVote Patents Orkut
5-CF 1.74ms 1.72ms 1.69ms
5-MC 9.32ms 9.44ms 9.37ms
PC-0.8 3.16ms 3.09ms 3.22ms

pre-allocated by a small fixed size.
Dataflow Construction. Table 6 presents the dataflow con-
structing time for different applications. This includes pattern
analysis to get matching order, building the set dataflow, and
evaluating redundancy probability. The triangle counting time
is excluded because it is only conducted once and can be
reused for different algorithms. Notice that the constructing
time rises when the number of patterns increases. However,
the dataflow construction is only executed once throughout
processing and is negligible compared with the computation
time. For example, it takes over 250s for 5-MC on WikiVote,
while the dataflow construction only takes 9.32ms.

8 Related Work

Early graph pattern mining research focuses on customized
improvements for specific given algorithms. For counting
cliques, kClist [33] designs an efficient algorithm for process-
ing sparse graphs based on the core value. To handle motifs
effectively, G-tries [34] creates a novel tree-like data structure.
PGD [26] counts all size-3 and size-4 motifs using partial
patterns by some combinatorial rules. There have also been
works that use GPUs to speed the subgraph isomorphism
problem in finding network motifs and enumerating sub-
graphs [18,35–37]. Cyclosa, as opposed to algorithm-specific
improvements, focuses on tackling the common redundancy
challenges in a more general situation. Prior optimizations
can also be integrated into Cyclosa.

General-purpose graph pattern mining systems use expres-
sive and efficient programming paradigms to automatically
parallelize a variety of graph mining applications in a con-
sistent manner [16, 38]. Early distributed systems, such as
Arabesque [16] and Fractal [19], adopt the embedding-centric
model to iteratively extend and enumerate all subgraphs size
by size and verify the user-defined constraints for each inter-
mediate embedding. RStream [39] and Kaleido [40] optimize
the embedding-centric model in an out-of-core manner on a
single machine to alleviate the data shuffling and communica-
tion cost. Pangolin [41] and Sandslash [42] provide flexible
interfaces that integrate customized algorithmic optimizations
to enhance the filtering of intermediate embeddings. Despite
the expressiveness and massive parallelisms of these systems,
managing a large number of intermediate embeddings be-
comes the main bottleneck, which suffers from high memory
consumption and heavy I/Os [15].

Compared to the embedding-centric model, Cyclosa works
in a pattern-aware manner, pioneered by AutoMine [17] and

Peregrine [20], to avoid unnecessary storage and process of
embeddings under the guide of pattern constraints. The cores
of these systems are efficient matching engines that execute
fast set operations [27]. AutoMine is a compilation-based sys-
tem that automatically transforms graph patterns into set pro-
grams. GraphZero [21] is an enhanced version of AutoMine
that removes explicit redundancies among multiple patterns
by introducing the symmetry-breaking optimizations that de-
fine a partial order between symmetric vertices. GraphPi [22]
further explores the optimal combination of matching orders
and symmetry-breaking constraints to speed set programs.
Despite the efficiency, the compilation method may induce
non-negligible overhead while generating new set programs
for newly coming patterns. Dryadic [43] proposes a flexi-
ble tree-structured intermediate representation to solve this
problem, which supports both compilation and runtime opti-
mizations. DecoMine [28] decomposes a large pattern into
smaller ones for faster pattern counting. SumPA [23] merges
multiple patterns in a pattern abstraction to minimize work-
loads. Cyclosa aims to eliminate the inherent computation
redundancies, and the data management substrate can also be
integrated into the above systems to reduce redundancies.

9 Conclusion

In this work, we present a redundancy-free framework, Cy-
closa, that eliminates both explicit and implicit redundancies
in pattern-centric graph mining systems. Cyclosa explores
the computation similarity through a novel set dataflow rep-
resentation, which exploits a finer-grained similarity at the
operand level instead of the structural equality as in exist-
ing works, making it possible to indicate both explicit and
implicit redundant computations. Based on the set dataflow,
Cyclosa implements an efficient dataflow-guided execution
model collaborated with a memory-friendly data management
substrate to efficiently reuse computing results, embracing
high performance and correctness. The proposed substrate
may also be incorporated into the runtime of existing systems
to reduce redundancies. Evaluation of a variety of patterns
and real-world graphs shows that Cyclosa can significantly
outperform state-of-the-art systems GraphPi by up to 16.28×
and SumPA by up to 5.52× for various applications.
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Abstract
Random walks serve as a powerful tool for extracting infor-
mation that exists in a wide variety of real-world scenarios.
Different from the traditional first-order random walk, the
second-order random walk considers recent walk history in
selecting the next stop, which facilitates to model higher-
order structures in real-world data. To meet the scalability
of random walks, researchers have developed many out-of-
core graph processing systems based on a single machine.
However, the main focus of out-of-core graph processing sys-
tems is to support first-order random walks, which no longer
perform well for second-order random walks.

In this paper, we propose an I/O-optimized out-of-core
graph processing system for second-order random walks,
called SOWalker. First, we propose a walk matrix to avoid
loading non-updatable walks and eliminate useless walk I/Os.
Second, we develop a benefit-aware I/O model to load multi-
ple blocks with the maximum accumulated updatable walks,
so as to improve the I/O utilization. Finally, we adopt a block
set-oriented walk updating scheme, which allows each walk
to move as many steps as possible in the loaded block set, thus
significantly boosting the walk updating rate. Compared with
two state-of-the-art random walk systems, GraphWalker and
GraSorw, SOWalker yields significant performance speedups
(up to 10.2×).

1 Introduction

Random walks on graphs have received significant attention
for their ability to extract meaningful insights in graph data
analysis and machine learning [10–14]. Most existing random
walk implementations are based on the first-order Markov
model [15, 16], which assumes the transition probability only
depends on the current vertex and is independent of the pre-
vious information. Although many encouraging results have
been obtained under this assumption, the high-order infor-
mation such as second-order properties is ignored, and thus
some recent works have revealed the necessity of second-
order random walks [17, 18]. Node2vec [14], one of the most

popular network embedding methods, uses the second-order
random walk to capture neighborhood information of vertices,
which significantly outperforms the first-order methods like
DeepWalk [13]. Similar findings have been found in graph
proximity measurements. Wu et al. [19] developed the second-
order PageRank and SimRank, and Liao et al. [20] proposed
the second-order CoSimRank, which can explore cluster struc-
tures in the graph and better model real-world applications.
In addition, the random walk has been widely used in social
physics. Rosvall et al. [21] showed how the second-order
random walk model constraints on dynamics influence com-
munity detection, ranking, and information spreading, while it
is difficult for the first-order random walk in these scenarios.

Graphs with billions of edges are becoming more prevalent
in many domains, and performing some tasks often requires
tens of TB to several PB spaces. Although some vendors such
as Amazon (AWS) [6], Oracle [7], and Microsoft [8] provide
graph database services, striking a balance between low cost
and high quality remains challenging. For example, when
processing our largest graph, CrawlWeb (see Section 4.1), on
Amazon Neptune [9], we use an Amazon Elastic Compute
Cloud (EC2) instance, db.r5.4xlarge (8 cores, 16 virtual cores,
128 GB memory), and 3 TB of storage space. The monthly
cost for this instance is up to $3, 000. As the size of the
graph continues to grow, the storage requirements and com-
putational resources needed would also increase. This would
likely lead to higher costs in terms of storage space, comput-
ing resources, and potentially data transfer. In contrast, out-of-
core graph processing systems are cheaper and easier, as they
utilize external storage for processing large graphs [22–25].
These systems divide a large graph into several blocks (i.e.,
subgraphs) and store them on disks. During the graph process-
ing, a block is loaded into memory and application-specific
vertex or edge values in this block can be updated immedi-
ately. As expected, the significant performance bottleneck
of out-of-core graph processing systems is the I/O between
memory and disks, and developers can ill afford to ignore
it. Recently, numerous works have been devoted to design-
ing I/O-efficient graph processing systems for random walks.
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DrunkardMob [26] is the first large-scale out-of-core graph
processing system that allows massive random walks to be
performed in parallel. The states of all walks are represented
compactly in memory to minimize the memory footprint of
each walk. GraphWalker [27] adopts a state-aware I/O model
and an asynchronous walk updating scheme to further im-
prove the I/O performance. Besides, it proposes a lightweight
block-centric indexing scheme to reduce the memory require-
ment for storing walk states. However, these proposed so-
lutions cannot be efficiently compatible with second-order
random walks.

In this paper, we propose an I/O-optimized out-of-core
graph processing system for second-order random walks,
called SOWalker. First, to eliminate useless walk I/Os, we
propose a walk matrix to represent the walks, so as to prevent
loading non-updatable walks whose previous vertices are not
in memory. Along with the proposed walk matrix, we design
a succinct and compact data structure to provide an efficient
representation of a walk. Second, to improve the I/O utiliza-
tion, we develop a benefit-aware I/O model. Specifically, we
load multiple blocks with the maximum accumulated updat-
able walks and only load walks whose previous and current
vertices are both in the loaded blocks. For this purpose, we
map the block scheduling problem into the maximum edge
weight clique problem, and adopt a heuristic algorithm to
provide comparable I/O performance but significantly reduce
the computation time. Finally, to boost the walk updating rate,
we adopt a block set-oriented walk updating scheme, which
allows each walk can be updated as much as possible in the
loaded block set, so as to accelerate the progress of random
walks. To summarize, we make the following contributions.

• We propose a walk matrix, which prevents loading non-
updatable walks, so as to eliminate useless walk I/Os.

• We develop a benefit-aware I/O model, which loads mul-
tiple blocks with the maximum accumulated updatable
walks, so as to maximize the I/O utilization.

• We adopt a block set-oriented walk updating scheme,
which allows each walk to move as many steps as pos-
sible in the loaded block set, so as to boost the walk
updating rate.

• We conduct detailed experiments on a variety of real-
world and synthetic graphs to evaluate SOWalker. Ex-
tensive evaluation results show that SOWalker can sub-
stantially reduce the I/O cost, achieving up to 10.2×
speedup.

The rest of this paper is organized as follows. Section 2
presents the background and motivation. Section 3 describes
the detailed system designs of SOWalker. Section 4 evaluates
the system and compares it with two state-of-the-art systems.
Section 5 gives an overview of related work, and finally, Sec-
tion 6 concludes this paper.

2 Background and Motivation

Given a graph G = (V,E), where V and E are the set of ver-
tices and edges, respectively. Each edge e ∈ E is an ordered
pair e = (u,v) and is associated with a weight wuv. For each
u ∈V , the neighbor set of a vertex u is N(u). For easy refer-
ence, we illustrate the frequently used notations in Table 1.

Notation Description
G= (V,E) graph G with vertex set V and edge set E
e = (u,v) edge from u to v
wuv weight between vertex u and v
N(u) set of neighbor vertices of vertex u
B block set
|B| number of blocks in B
m maximum number of blocks cached in memory
BL loaded block set in a batch
W (i, j) number of walks crossing between block i and j
AUW accumulated updatable walks
CDG complete directed graph
k actual number of blocks to be loaded
β a bitmap to represent whether the block is

cached in memory
T0, Ts initial temperature and end temperature
γ cooling coefficient of temperature
itermax maximum number of iterations

Table 1: Notations.

2.1 Second-order Random Walk
First-order random walk. Suppose a walk is visiting vertex
v, in the next step, the walk will move to a neighbor of v with
transition probability pvz = P(z|v) = wvz/Wv, where Wv =

∑t∈N(v) wvt .
Second-order random walk. Given that the walk is visiting
vertex v at the current step and vertex u at the previous step,
the second-order transition probability that moving to vertex z
at the next step is puvz = p(z|uv). Such transition probability
can be interpreted as the edge-to-edge transition probability:
let α = (u,v) be the edge from vertex u to v, and β = (v,z) be
the edge from vertex v to z, that is, puvz = pαβ.

Below are two representative examples of second-order
random walk-based algorithms.
Node2vec. Node2vec [14] is a popular network embedding
method that introduces the second-order random walk. In
order to combine Depth First Search (DFS) and Breadth
First Search (BFS), two parameters p and q control the ran-
dom walk strategy. Parameter p controls the probability of
repeated access to the just visited vertex. Parameter q con-
trols whether a walk moves inward or outward. Given that
vertex u was visited at the previous step, the unnormalized
transition probability puvz from the current vertex v to the
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Figure 1: The transition probability computation in second-
order random walk algorithms.

next vertex z depends on the edge weight wvz and αpq(u,v,z),
i.e., puvz = αpq(u,v,z) ·wvz. αpq is calculated in the following
formula (shown in Figure 1(a)):

αpq(u,v,z) =


1
p , duz = 0
1, duz = 1
1
q , duz = 2

where duz denotes the shortest path distance between vertices
u and z, and duz ∈ {0,1,2}.
Second-order PageRank. Wu et al. [19] proposed a second-
order PageRank and used an autoregressive model to compute
the second-order influence probability, which is described as
follows:

puvz =
p′uvz

∑t∈N(v) p′uvt

where p′uvz = (1−α)pvz +αpuz (shown in Figure 1(b)). The
parameter α ∈ [0,1) is a constant (e.g., 0.2) to control the
strength of effect from the previous step.

2.2 Motivation
The out-of-core random walk systems divide a graph into sev-
eral blocks and cache some of them in memory, the remainder
blocks reside in disks temporarily. The total number of cached
blocks is limited by the available memory and block size. Dur-
ing the random walk procedure, a block is loaded from disk
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(a) First-order random walks
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Figure 2: Differences in updatable walks between (a) first-
order random walks and (b) second-order random walks. All
three first-order random walks are updatable as opposed to
only two second-order random walks. View in color for opti-
mal visualization.

into memory according to a scheduling model, which is called
the current block. Walks that reside on the current block are
also loaded into memory and can be updated as much as
possible until they reach the boundary of the loaded block.
However, the main focus of out-of-core random walk systems
is to support first-order random walks, which are no longer
effective for second-order random walks. In the following,
we will discuss three major challenges that lead to poor I/O
performance on existing systems.
Non-updatable walks result in useless walk I/Os. The first-
order random walk’s transition probability only depends on
the current vertex. As long as the current vertex is in memory,
the walk can be immediately updated. Unlike the first-order
random walk, the second-order random walk considers re-
cent walk history in selecting the next stop. However, the
previous vertex might belong to other blocks on slow disks.
Consequently, due to the lack of previous vertex information,
some loaded walks cannot be updated directly, resulting in
non-updatable walks. As a result, these non-updatable walks
lead to useless walk I/Os.

As an example, Figure 2 illustrates the differences in up-
datable walks between first-order and second-order random
walks for a specific iteration, where block b0 and b1 are in
memory, and block b0 is the current block. Suppose that there
are three walks residing on vertex 0. For first-order walks
in Figure 2(a), all three walks are updatable. As a result, the
walk utilization of first-order random walks is always 100%,
which is defined as the ratio of updatable walks to the total
loaded walks. For second-order walks in Figure 2(b), the color
of the walk represents its state, with the upper and lower col-
ors indicating the block that the previous and current vertex
belongs to, respectively. Out of the three walks, one has its
upper half-colored yellow, indicating that its previous vertex
belongs to block b2, which is not in memory. As a result,
this walk is non-updatable, resulting in the walk utilization of
only 2/3. In order to further quantitatively evaluate the walk
utilization of node2vec on real-world graphs, we conducted
experiments on three datasets (introduced in Section 4.1). As
shown in Figure 3(a), the walk utilization of node2vec is less
than 30%, and it decreases as the size of the graph increases.

In SOWalker, we propose a walk matrix, which prevents
loading non-updatable walks to eliminate useless walk I/Os.
The non-optimal block scheduling model results in low
I/O utilization. To update non-updatable walks, the existing
block scheduling model [27, 28] iteratively loads ancillary
blocks where previous vertices belong to, resulting in a large
number of additional block I/Os. On the other hand, due to
the irregular structure of graphs and the randomness inherent
in random walks, previously visited vertices are unevenly
scattered in different blocks.

To quantify the effect of the non-optimal block scheduling
model on I/O utilization, we run DeepWalk (i.e., first-order)
and node2vec (i.e., second-order) on a state-of-the-art system,
GraphWalker [27]. The I/O utilization is defined as the num-
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(a) Walk utilization (b) I/O utilization

Figure 3: Walk utilization and I/O utilization.

ber of walk steps divided by the number of edges in a loaded
block. For Deepwalk, we use GraphWalker’s state-aware I/O
model to preferentially load the block with the most walks into
memory. For node2vec, we also load a block with the most
walks as the current block and iteratively load another block
into memory as the ancillary block. Figure 3(b) shows the I/O
utilization of DeepWalk and node2vec. We can see that the
I/O utilization is significantly low in the second-order random
walk application. Besides, running DeepWalk requires fewer
than 400 block I/Os, while running node2vec requires over
2400 block I/O, which severely slows down the processing of
random walks.

In SOWalker, we develop a benefit-aware I/O model, which
loads multiple blocks with the maximum accumulated updat-
able walks to maximize the I/O utilization.
The block-oriented walk updating scheme brings low walk
updating rate. Existing systems [27] manage walks at a block
granularity and restrict walk updating to a block, which is
called block-oriented walk updating. However, this hinders
the walk updating and walks fail to utilize the vertex infor-
mation in other blocks residing in memory, resulting in low
walk updating rate. For example, in Figure 2(b), suppose that
two updatable walks move along the red path toward vertex
3. Under the block-oriented walk updating scheme, block b1,
where vertex 3 belongs to, is not the current block, so the
walks cannot continue to move, which leads to low walk up-
dating rate. In fact, if a walk moves to any vertex belonging
to the block in memory, it can further be updated, since the
previous and current vertex information are both available.

In SOWalker, we adopt a block set-oriented walk updating
scheme, which allows each walk to move as many steps as
possible in the loaded block set to boost the walk updating
rate.

3 Design of SOWalker

In this section, we first present the system overview of
SOWalker. Then, we introduce the detailed designs includ-
ing the walk matrix, benefit-aware I/O model, and block set-
oriented walk updating scheme.
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Figure 4: Overall design of SOWalker. View in color for
optimal visualization.

3.1 System Overview

Figure 4 shows the overall design of SOWalker. To represent
large graphs in the external memory setting, the graph is often
partitioned into several blocks and stored on disks, and each
block is associated with a walk pool storing the temporarily
non-updatable walk states. A semi-circle in the walk pool
is a vertex in a walk, with the color of the upper and lower
semi-circle indicating the block that the previous and current
vertices belong to, respectively. ‘×n’ means there are n walks
of such state. Considering that the previous and current ver-
tices may belong to two blocks, we propose a walk matrix
to intuitively show the number of walks crossing between
blocks. The values in the walk matrix are created and updated
based on the walk states in the walk pool ( 1 ).

During the random walk procedure, we first load m blocks
simultaneously to fit into memory, where m denotes the max-
imum number of blocks cached in memory. Suppose that
m = 3 in Figure 4. We define loading a block as one block
I/O, and scheduling and loading m blocks at the same time
as a batch. To maximize accumulated updatable walks in a
batch, we develop a benefit-aware I/O model. Specifically,
relationships between blocks (i.e., the values in the walk ma-
trix) can be mapped as a directed complete graph ( 2 ), and
the block scheduling can be modeled into the maximum edge
weight clique problem. Nodes in the clique are the blocks to
be loaded. As an example in the figure, there are 23 updat-
able walks in block b0, b1, and b2, which is the maximum
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among all candidate block sets. Therefore, we load the three
blocks into memory ( 3 , shown as red nodes), and only load
the walks whose previous and current vertices are both in the
loaded blocks ( 4 , walks in red box).

During the updating phase, we adopt a block set-oriented
walk updating scheme that allows walks to access vertices
in all loaded blocks since there are some edges connecting
blocks (shown as arrows with dashed lines). That is to say,
if the next vertex is still in memory, the walk can keep mov-
ing until it reaches a termination condition or visits a vertex
belonging to a disk block. Here, 18 walks finish and the re-
maining 5 walks move to block b3. When there are no more
walks in memory, update the walk states in the walk pool ( 5 ).
Repeat the process of block loading and walk updating until
all random walks are finished.

3.2 Walk Matrix Representation

In order to skip loading non-updatable walks and eliminate
useless walk I/Os, we use a walk matrix to represent the walks.
The dimensionality of the matrix is the number of blocks.
Each element (i, j) in this matrix represents the walks whose
previous vertex belongs to block i, and the current vertex
belongs to block j. The sum of all elements is the number
of unfinished walks. The walk matrix is created and updated
according to the walk states in the walk pool. In each batch,
m blocks are selected based on the number of walks in the
walk matrix, which will be discussed in Section 3.3. When
all the walks in memory have been finished or have reached
the boundary of the loaded block set, SOWalker checks the
walk states to obtain the block IDs of the previous and current
vertices. If the IDs are different, it means the walk is crossing
blocks. Count the number of such walks that cross blocks and
update the corresponding element of the walk matrix. Based
on the walk matrix, SOWalker can readily check whether a
walk can be updated, judging that both the previous vertex
and the current vertex are in memory, thus skipping loading
non-updatable walks and eliminating useless walk I/Os.

Figure 5 shows the detail of walk matrix W . The elements
in W represent the number of walks crossing blocks at the
current time. Suppose a graph is divided into 8 blocks, and
the maximum number of blocks cached in memory is 3. If
SOWalker selects blocks b0, b1, and b2 to load into memory,
then only the updatable walks, which are in the red box need
to be loaded. Other walks do not need to be loaded because
the blocks containing the previous or previous vertices are not
in memory. Note that the number of walks in W (i, i) is always
0 because the walk whose previous and current vertices are
in the same block can be updated without additional block
I/Os. Without the walk matrix, walks whose current vertices
are in blocks b0, b1, and b2 will be loaded (in the green box).
However, the walks in the set difference of the green box and
the red box are non-updatable walks.

In order to organize the walk data more compactly, we

adopt a succinct data structure to encode each walk with 128
bits as shown in Figure 5 (on the right). source, previous and
current is encoded in 29 bits, which represents the start vertex,
previous vertex, and current vertex of a walk respectively.
In this way, SOWalker can support starting random walks
from 229 source vertices simultaneously. Commonly, random
walks are fed into downstream tasks, so it is necessary to save
walk paths easily. In order to identify each walk quickly, we
encode walk ID in 34 bits, which supports a maximum of 32
(i.e., 234/229) walks starting from each vertex. Besides, hop
indicates the number of steps the walk has already moved.

0 2 3 2

b0 b1 b2 b7

b0

b1

b2

b7

34 bit
29 bit 7 bit29 bit

29 bit

walk buffer

walk ID source

previous current hop

...

4 0 1 4...

1 2 0 6...

4 3 5 0...

... ... ... ... ...

W

Figure 5: Walk matrix representation.

3.3 Benefit-Aware I/O Model
This section discusses how to efficiently schedule blocks.
Since the previous and current vertices of a second-order
random walk may belong to different blocks, we need to con-
sider dependencies between blocks. Thus, we simultaneously
schedule multiple blocks, instead of one block. Specifically,
to improve the I/O utilization, we propose a benefit-aware
I/O model to load multiple blocks with the maximum ac-
cumulated updatable walks. For this purpose, we formulate
the block scheduling problem as the maximum edge weight
clique problem. We also adopt an efficient heuristic algorithm
to provide comparable I/O performance with a fraction of the
cost.
Problem definition. Suppose the block set is B, |B| is the num-
ber of blocks, and m is the maximum number of blocks cached
in memory. W (i, j) denotes the number of walks crossing be-
tween block i and j, that is, the values in the walk matrix. BL
is the loaded block set in a batch. The goal of block schedul-
ing is to load multiple blocks with the maximum accumulated
updatable walks, so the benefit is measured in terms of the
accumulated updatable walks (AUW), defined as:

AUW (BL) = ∑
i∈BL

∑
j∈BL

W (i, j) (1)

Problem mapping. Here, the relationship between blocks
can be illustrated with a complete directed graph. The edge
weight between two neighborhood blocks denotes the number
of walks crossing between two blocks. For the block set B,
the complete directed graph (CDG) is defined as:
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CDG = (B,E) (2)
E = {ei j =W (i, j)|i, j ∈ B} (3)

To maximize the accumulated updatable walks, we convert
the block scheduling problem into the maximum edge weight
clique problem, i.e., maximizing the sum of edge weights
from all the feasible candidates.

Definition 1 (Maximum Weighted Scheduling, MWS): Given
the complete directed graph CDG = (B,E) along with the
memory capacity requirements, MWS produces the loaded
blocks, which satisfies that (1) the block scheduling problem
is feasible according to the memory capacity requirements,
i.e., the maximum number of blocks cached in memory; (2)
the block scheduling problem produces the maximum sum
of edge weights that maximizes the number of accumulated
updatable walks in a batch.

Taking into account both the memory capacity and maxi-
mizing the sum of edge weights, the MWS is formulated as:

max∑
i

∑
j

ei jyi j (4)

s.t.
|B|−1

∑
i=0

xi = m (5)

yi j ≤ xi (6)
yi j ≤ x j (7)
xi,yi j ∈ {0,1} (8)

where the variable xi equals one if block i is loaded in memory.
Constraint 5 guarantees that only m blocks can be chosen. By
Constraints 6 and 7, for any edge (i, j), a binary variable
yi j = 1 if and only if both xi = 1 and x j = 1.

To maximizes AUW (BL), MWS must select m blocks for
scheduling, but it ignores the contribution to block I/O reduc-
tion. In fact, the candidate block cached in memory does not
yield block I/O but the walks in that block can be updated.
Therefore, we aim to maximize the number of accumulated
updatable walks in a block I/O. The objective function is
redefined as:

max
BL

S =
AUW (BL)

k
(9)

where k is the actual number of blocks to be loaded.
We use a bitmap β to record whether the block is cached

in memory. If block i is in memory, the bit of block i is set
to 1, i.e., βi = 1. Otherwise, the bit is set to 0. By identifying
which blocks are in memory, we can fully utilize the blocks
in memory. Based on this consideration, we try to add the
following constraint to the formulation:

|B|−1

∑
i=0

βi · xi = m− k (10)

where m−k chosen blocks are already in memory. Constraint
10 ensures that the chosen block i does not need to be loaded,

Algorithm 1: SA-based benefit-aware I/O model
Input: CDG = (B,E), B0: initial block set
Output: the loaded block set BL

1 Function SelectBlocks(CDG=(B,E), B0):
2 BL ← B0 // initial block set
3 t ← T0 // initial temperature
4 i← 0 // iteration counter
5 while t≥ Ts and i≤itermax do
6 Bc ← CHOOSENEWBLOCK(CDG,BL)
7 ∆S = S(Bc)-S(BL)
8 if ∆S>0 or e∆S/t>random(0,1) then
9 BL ← Bc

10 t ← γt
11 i← i+1

12 return BL

if and only if βi = 1 and xi = 1. We iterate over all k ∈ [1,m]
to find the optimal solution.

The above linear programming method can guarantee the
optimality of the solution obtained. However, the complexity
of this problem is in order of 2n [29]. As the scale of the
problem is increasing, the complexity also soars. To settle the
problem in a reasonable time, we adopt a heuristic algorithm
to provide sub-optimal solutions, which is possible to solve
large-scale problems within an acceptable time [30].
Solutions via heuristic algorithm. Since the maximum edge
weight clique problem is NP-hard [31], many heuristic algo-
rithms have been proposed to achieve a reasonable trade-off
between computation time and solution quality. Simulated
annealing (SA) is a local search procedure to find an efficient
and feasible solution. In order to escape from local optima, a
worse solution is accepted as the new solution with a proba-
bility that decreases as the computation proceeds. Despite its
simpler structure and fewer parameters, SA has shown com-
petitiveness in searching for optimal or near-optimal solutions
and has been widely used to solve the maximum edge weight
clique problem [32–35].

Inspired by Ernst et al. [35], we also use SA to select a
loaded block set to maximize the number of accumulated
updatable walks in a block I/O. The establishment of the
objective function is described according to Equation 9. The
detailed procedures of the SA-based benefit-aware I/O model
is given as follows. Algorithm 1 illustrates the pseudo-code
of this model.

Step 1: Initialize. Set initial temperature T0, end tempera-
ture Ts, cooling coefficient γ of temperature, and the maximum
number of iterations itermax, where itermax =Cm

|B|. Previous
work has shown that a good initial solution results in faster
convergence and improves the quality of the solution [36, 37].
In order to find a reasonably good initial block set, blocks
appear in descending order of the number of walks in it. We
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choose the top-m block as the initial block set B0, meaning
the block with more walks is more likely to be loaded into
memory.

Step 2: Accept or reject the new solution. SA works it-
eratively by successively replacing the current solution with
a random solution. In each iteration, randomly remove a se-
lected block from the current block set BL. Then, one of the
remaining blocks is chosen randomly, and getting a new can-
didate block set Bc. Compute the difference between the new
candidate block set Bc and the current block set BL, i.e., the
increment of the objective function ∆S = S(Bc)− S(BL). If
Bc is better, i.e., ∆S≥ 0, then it will be accepted. Otherwise,
it will be accepted with probability p = e∆S/t , where t denotes
the current temperature. Generate a random number ζ, where
ζ ∈ [0,1]. If p > ζ, then Bc will be accepted. Otherwise, it
will be rejected.

Step 3: Continue or end. Compute current temperature
t = γt and the number of iterations i = i + 1. If t < Ts or
i > itermax, end the algorithm. Otherwise, go back to step 2.

Compared to the exact but complicated linear programming
method, SA provides an approximate solution but is much
simpler, which yields orders of magnitude speedup and the
computation time is only a small fraction of the total execution
time (see Section 4.4.1).

3.4 Block Set-Oriented Walk Updating

Existing random walk systems partition a graph into several
blocks. The block loading and walk management are at a
block granularity, resulting in the walk updating being limited
to a single block, called block-oriented walk updating. Once a
walk reaches the boundary of the current block, the updating
of a walk will be stopped. However, such a strategy hinders
the walk updating and potentially increases the number of
block I/Os.

To see this problem more concretely, we will consider a
partitioned graph in Figure 4. The graph is partitioned into
four blocks. Suppose two blocks are cached in memory and
all walks start at vertex 0. We use the state-aware I/O model
in GraphWalker [27] to load the block containing the largest
number of walks as the current block, and iteratively load
another block as the ancillary block. We skip loading the
blocks without containing any previous vertex information.
Figure 6(a) shows the process of block-oriented walk updat-
ing. (i, j) means the blocks cached in memory, where i is the
current block, and j is the ancillary block. Only the walk in
the current block can be updated. ‘+’ means the lasted loaded
block. As a result, 10 block I/Os are required and the walk
steps per block I/O is 2.4.

We argue that although a graph is partitioned into sev-
eral blocks, walks can move across blocks via the cut edges
between these blocks. Thus, if a walk moves to any vertex
belonging to the block in memory, it can further be updated,
until it reaches the boundary of the block set in memory and

(i, j) Walk paths

(+b0,+b1)

w0: 0→7
w1: 0→1→2→3
w2: 0→2→3

(b1,b0)
w1: 3→4→0
w2: 3→5→8

(+b2,b0) w0: 7→8→6→4
(b2,+b1) w2: 8→6→0
(+b0,b1) w1: 0→2→3
(b0,+b2) w2: 0→1→2 (end)
(+b1,b0) w1: 3→4 (end)
(b1,+b2) w0: 4→0
(+b0,b1) w0: 0→7
(+b2,b0) w0: 7→8→9 (end)

(a) The process of block-oriented walk updating

(i, j) Walk paths

(+b0,+b1)

w0: 0→7
w1: 0→1→2→3→4→
0→2→3→4 (end)
w2: 0→2→3→5→8

(b0,+b2) w0: 7→8→6→4

(+b1,b2)
w0: 4→0
w2: 8→6→0

(+b0,b1) w0: 0→7

(b0,+b2)
w0: 7→8→9 (end)
w2: 0→1→2 (end)

(b) The process of block set-oriented walk updating

Figure 6: Block- vs. Block set-oriented walk updating.

moves to the block in disk. Such walk updating is called block
set-oriented walk updating, which is illustrated in the example
in Figure 6(b). In the first batch, blocks b0 and b1 are loaded
into memory. Walk w1 can be finished directly without extra
block I/Os. While it needs 4 block I/Os in the block-oriented
walk updating scheme. In the third batch, both walk w0 and
w2 can be updated. In contrast, in the block-oriented walk
updating scheme, only the walk in the current block can be
updated. As a result, the number of block I/Os is reduced to 6
and the walk steps per block I/O increases to 4. The reason
is that the block set-oriented walk updating allows walks to
repeatedly visit the block in memory, which boosts the walk
updating rate and accelerates the random walk process. Re-
cently, GraSorw [28] also allows walks to be updated across
the blocks. However, it limits the number of blocks in mem-
ory to 2, which is less flexible for different-scale graphs and
random walks.
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4 Evaluation

In this section, we evaluate the effectiveness of SOWalker.
First, we introduce our experimental setup. Then, we compare
SOWalker with two state-of-the-art random walk systems,
GraphWalker [27] and GraSorw [28], in terms of overall per-
formance and I/O efficiency. Third, we evaluate the effect of
different block scheduling models. Finally, we analyze the
impact of block size.

4.1 Setup
Environment. The hardware platform used in our experi-
ments is a commodity server equipped with a 32-core 2.10
GHz Intel Xeon CPU E5-2620 with 128GB main memory and
a 3TB HDD, running Ubuntu 20.04 LTS. SOWalker is imple-
mented in around 4, 000 lines of C++ code and compiled by
g++ 9.4.0 with an optimization flag as -O3. We use OpenMP
for parallel random walks, and the number of threads is set
to 32 unless explicitly specified. The reported results were
averaged over 5 runs, and the error bars have been omitted as
the variance was negligible.
Datasets. Table 2 describes the statistics of our evaluated
graphs. RANDOM (RND) is a synthetic graph where each
vertex is connected to five randomly selected neighbors. The
probability of two vertices being connected is inversely pro-
portional to the difference in their IDs. RMAT-27 (RM27),
RMAT-28 (RM28), and Kron30 (K30) are synthetic graphs
generated with the Graph500 generator [5], exhibiting a
power-law degree distribution. Twitter (TW) [1] and Friend-
ster (FR) [2] are social graphs that show the relationship
between users within each online social network. UK-Union
(UK) [3] and CrawlWeb (CW) [4] are web graphs that consist
of hyperlink relationships between web pages. Graph Size
is the amount of data stored in text format as an edge list.
CSR Size is the storage cost to store graphs in CSR format.
Since systems are executed in an out-of-core environment,
the memory limit is set to 2GB (for RND and RM27), 4GB
(for RM28, Twitter, Friendster, and UK-Union), or 32GB (for
Kron30 and CrawlWeb). Block Size is heuristically set to 1/4
of the memory size according to Section 4.4.3. |B| is the num-
ber of blocks that a graph is partitioned into according to the
block size.

Dataset |V | |E| Graph Size CSR Size Block Size |B|
RM27 134.2M 1.1B 18GB 4GB 512MB 9
RND 268.4M 1.4B 24.7GB 5.2GB 512MB 11
TW 61.5M 1.5B 24.4GB 5.5GB 1GB 6

RM28 268.4M 2.1B 34.9GB 8GB 1GB 9
FR 65.6M 3.6B 58GB 13.5GB 1GB 14
UK 133.6M 5.5B 94.6GB 20.4GB 1GB 21
K30 1.1B 33.8B 628.3GB 120GB 8GB 16
CW 3.6B 126B 2.6TB 470GB 8GB 59

Table 2: Statistics of datasets.

Graph algorithms. We evaluate SOWalker with two second-
order random walk-based applications discussed in Section 2,
i.e., node2vec and the second-order PageRank. For node2vec,
we set the parameter p = 0.5, q = 2. Each vertex samples 10
walks with a fixed walk length of 80. For the second-order
PageRank, the maximum walk length is 20, and we simulate
2, 000 random walks starting at each query source vertex.
Systems for comparison. We perform a comprehensive anal-
ysis of SOWalker’s performance and compare it with two
state-of-the-art random walk systems.

• GraphWalker [27], an I/O-efficient system for first-order
random walks. When executing second-order random
walks, we adopt the state-aware I/O model to load a
block with the maximum number of walks as the current
block and iteratively load another block into memory as
the ancillary block. Both GraphWalker and SOWalker
use the same parameter configuration.

• GraSorw [28] is the first out-of-core graph processing
system designed for second-order random walks. It it-
eratively selects a block as the current block and uses
a learning-based block loading model. However, this
model consists of three stages: getting the running logs
under the full-load mode, training, and running with the
trained thresholds. Both the first and third stages involve
second-order random walks, rendering it deficient in real-
world applications. Therefore, we only use the full-load
mode to load the ancillary block. On the other hand, Gra-
Sorw fixes the number of blocks in memory to 2, so we
set the block size to half the memory size.

4.2 Overall Performance
We first compare the execution time of the chosen algorithms
on different graphs and systems. Figure 7 shows the execu-
tion time normalized w.r.t. GraphWalker. We can see that
SOWalker is faster than both GraphWalker and GraSorw
in all cases. Specifically, SOWalker achieves 1.4-8.3× and
2.4-10.2× speedups over GraphWalker on node2vec and
the second-order PageRank, respectively. As for GraSorw,
SoWalker achieves 1.2-5.7× and 1.4-5.4× speedups over it
on node2vec and the second-order PageRank, respectively.
The main reason for the speedup in SOWalker is twofold.
First, SOWalker loads multiple blocks with the maximum
accumulated updatable walks, which improves the I/O utiliza-
tion and the walk updating rate, so it requires much fewer
blocks I/Os to run second-order random walks. GraSorw, on
the other hand, is unaware of the walk states, just iteratively se-
lects a block as the current block and loads an ancillary block
into memory. Although GraphWalker loads a block with the
maximum number of walks as the current block, it is unaware
of the number of walks that can be updated. Therefore, both
of them suffer poor performance. Second, SOWalker adopts
the block set-oriented walk updating scheme, which allows
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(a) Node2vec (b) Second-order PageRank

Figure 7: Execution time comparison.

(a) Node2vec (b) Second-order PageRank

Figure 8: Block I/O comparison.

the loaded walks can be updated as much as possible in the
loaded block set, so as to further accelerate the random walk
process and reduce the block I/O costs.

4.3 I/O-efficiency Evaluation

Block I/O comparison. To justify the above argument, we
compare the block I/O time on SOWalker and the other sys-
tems. Block I/O time is the time cost of loading blocks.
Figure 8 shows the block I/O time normalized w.r.t. Graph-
Walker. In all cases, SOWalker outperforms both GraphWalker
and GraSorw. Specifically, the block I/O time in SOWalker
is only 5.8-41.3% of that in GraphWalker, and 7.5-72.9%
of that in GraSorw, respectively. This is mainly attributed
to SOWalker’s benefit-aware I/O model that loads multiple
blocks with the maximum accumulated updatable walks, so
as to accelerate the random walk process and significantly
reduce the block I/O number. On the other hand, GraphWalker
and GraSorw load blocks iteratively, which incur great I/O
cost.
I/O utilization. To verify that SOWalker can improve the
I/O utilization, Figure 9(a) shows the average I/O utilization
for node2vec on Twitter, Friendster, and UK-Union, normal-
ized w.r.t. GraphWalker. As we can see, for all the graphs,
SOWalker shows the highest average I/O utilization. Com-
pared to GraphWalker and GraSorw, the I/O utilization of
SOWalker is improved by 13.2-34.2× and 2.3-26.4×, respec-
tively. This is mainly attributed to the benefit-aware I/O model,
which maximizes the number of walks that can be updated,
thereby improving I/O utilization. Besides, according to our

(a) I/O utilization (b) Walk updating rate

Figure 9: I/O utilization and walk updating rate.

(a) I/O amount (b) Reused block count

Figure 10: I/O amount and reused block count.

walk matrix, we only loads walks whose previous and current
vertices are both in memory. This guarantees that all walks
can be updated and provides 100% walk utilization. While
GraphWalker and GraSorw are unaware of the number of
walks that can be updated, resulting in low I/O utilization.
Walk updating rate. Figure 9(b) reports the average walk up-
dating rate normalized w.r.t. GraphWalker. The average walk
updating rate in SOWalker significantly outperforms Graph-
Walker by up to 62.7×. Benefiting from our block set-oriented
walk updating scheme, which allows each walk to move as
many steps as possible in the loaded block set, SOWalker
achieves more walk steps. In contrast, in GraphWalker, once
a walk reaches the boundary of the block, the updating of a
walk will stop, so the walk steps are limited. Although Gra-
Sorw also allows walks to be updated across the two blocks
in memory, SOWalker still achieves up to 1.6-15.6× average
walk updating rate stemming from the fact that it maximizes
the I/O utilization based on the benefit-aware I/O model.
I/O amount. As mentioned earlier, the I/O amount can be di-
vided into two parts: edge data on blocks and walk data. Let N
be the total number of block I/Os, M be the block size, and W
be the total number of loaded walks, with each walk encoded
with 128 bits. The total I/O amount A = N ∗M +W ∗ 128.
Since block size is pre-defined, the I/O amount is proportional
to the number of block I/Os and loaded walks. Figure 10(a)
shows the I/O amount that each system runs node2vec on
Twitter, Friendster, and UK-Union. We can see that there is
a significant reduction in I/O amount. Compared to Graph-
Walker, SOWalker achieves an I/O reduction of over 80%
on these graphs. Furthermore, the I/O amount in SOWalker
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is only 23.7-67.9% of that in GraSorw. This reduction can
be attributed to the accelerated random walk process, which
enables the walks to be completed faster and significantly
reduces the number of block I/Os.
Reused block counts. Blocks in memory can be reused as
they do not yield block I/O but walks in these blocks can be
updated. Figure 10(b) shows the reused counts for each block
on UK-Union. The reused block counts in SOWalker are
usually much higher than those in GraphWalker. The reason
is that we consider the contribution of loaded blocks in the
benefit-aware I/O model. In contrast, in GraphWalker, only
a few blocks are highly reused, because many walks stay in
these blocks. This makes them more likely to be selected as
the current block and cached in memory for a long time. On
the other hand, other ancillary blocks are iteratively loaded,
resulting in frequent swapping between memory and disk.
Consequently, the reused counts of these blocks are low.

4.4 Design Choices
In this section, we conduct experiments to validate some of
our critical design choices that are essential to achieve optimal
performance for SOWalker.

4.4.1 Comparisons of Scheduling Models

We now evaluate the effectiveness of the block scheduling
models by comparing the following models:

• Random: randomly chooses m blocks to load into mem-
ory, which is used as the baseline.

• Max-m: chooses top-m blocks based on the number of
walks in a block.

• Exact: the exact benefit-aware I/O model according to
the linear programming method.

• Benefit-aware I/O model (BA): the benefit-aware I/O
model according to the simulated annealing algorithm.

We run node2vec on UK-Union. A similar trend can also
be observed on the other graphs and algorithms; their results
are omitted due to space limitations. Table 3 presents the
execution time, block I/O time, and computation time for the
above models. Note that the computation time of the Random
model and Max-m model is very short by a negligible amount.
There are two observations that can be found. First, both the
Random and Max-m models yield relatively higher execution
times than BA model. This is expected since the Random
model is an arbitrary order without any optimization. The
Max-m model also suffers poor performance as it only focuses
on the maximum number of walks. Some loaded walks cannot
be updated due to the lack of previous vertex information,
which wastes precious disk bandwidth and slows down the
processing of random walks. Second, BA model achieves both

Model Execution
time (s)

Block I/O
time (s)

Block I/O
number

Computation
time (s)

Random 4970 3234 9868 -

Max-m 3871 2162 6391 -

Exact 14311 548 1484 12097

BA 2133 575 1537 10

Table 3: The comparison with different block scheduling
models. ‘-’ means that the computation time is negligible.

the best performance and the near-optimal block scheduling
model. To verify the correctness of BA, we compare it with the
Exact model. The results exhibit that BA gives rise to a similar
but slightly higher block I/O cost over the Exact model. More
importantly, BA provides a speedup of 6.7× of the Exact
model, and the computation time of the simulated annealing
algorithm is only 10 seconds. While the computation time of
the Exact model is nearly 3.5 hours, which constitutes 85%
of the total execution time, and we cannot afford such a level
of slowdown. In summary, our BA model can achieve faster
runtime and better I/O performance.
4.4.2 Comparisons of Walk Updating Schemes

Next, we evaluate the effectiveness of SOWalker’s block set-
oriented walk updating through a comparison experiment with
block-oriented walk updating.

Block-oriented walk updating cannot be directly used in
SOWalker, since our benefit-aware I/O model requires the
help of block set-oriented walk updating. Therefore, we de-
sign a baseline system, which loads a block with the maximum
number of walks as the current block and iteratively loads
another block into memory as the ancillary block. We incre-
mentally add the block set-oriented or block-oriented scheme
to the baseline system and evaluate the performance impact
of our contribution.

Figure 11 exhibits the performance of node2vec running
on Twitter, Friendster, and UK-Union. The block set-oriented
scheme outperforms the block-oriented scheme for all graphs.

Figure 11: Block- vs. Block set-oriented walk updating.
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The performance improvement is especially significant for
Friendster, which yields up to 2.1× speedups. The reason
behind this is that under the block set-oriented scheme, the
walk can move across the entire loaded block set in memory.
This leads to a longer walk steps in a block I/O. In contrast,
the block-oriented scheme restricts walk updating to only one
block, hindering the walk updating process and resulting in a
large number of block I/Os.

4.4.3 Impact of Block Size

We also evaluate the impact on performance with different
block sizes. Memory is limited to 4GB to illustrate the appli-
cability. To demonstrate, we run node2vec on three represen-
tative graphs, Twitter, Friendster, and UK-Union. Figure 12
shows the execution time. The results on GraSorw are omit-
ted since it fixes the number of blocks in memory to 2 and
the block size is fixed to half the memory size. SOWalker
presents superior performance over GraphWalker across all
cases. This improvement is especially significant for small
block sizes. This is because with the block-oriented walk
updating scheme, GraphWalker restricts walk updating to a
block, which severely wastes the vertex information in other
blocks residing in memory. While our block set-oriented walk
updating scheme allows walks to move across blocks in mem-
ory, so as to best utilize resources. Even when the block size is
set to 2GB, i.e., 2 blocks in memory, the block-oriented walk
updating scheme degrades into the block set-oriented walk
updating scheme, the results are still encouraging. The rea-
son is that our benefit-aware I/O model loads multiple blocks
with the maximum accumulated updatable walks, so as to
accelerate the random walk process. Besides, we observe that
the block size should be neither too small nor too large to
achieve a good performance in SOWalker. For the smaller
block size, the walk updating rate is low. While for the larger
block size, the I/O utilization is low. Therefore, according to
our experiences, heuristically setting the block size to 1/4 of
the memory size can produce the best performance.

Figure 12: Impact of block size.

(a) Scalability with memory (b) Scalability with graph size

Figure 13: Scalability with memory and graph size.

4.5 Scalability

We evaluate the scalability of SOWalker by examining the
performance improvements achieved with increased mem-
ory limits. Figure 13(a) illustrates the performance variance
of node2vec on UK-Union as the memory increases. All
three systems demonstrate good scalability when more pow-
erful memory resources can be utilized. Although as mem-
ory increases, the performance disparities between systems
tend to diminish, it is worth noting that SOWalker outper-
forms other systems utilizing 16GB memory, even when it
is equipped with only 2GB memory. When the memory is
increased to 32GB, the whole graph can fit into memory, and
SOWalker still outperforms the other two systems, yielding
1.4× speedups.

We also evaluate the scalability of SOWalker with respect
to graph size. We conduct experiments on random graphs
and vary the number of edges from 1×108 to 9×108, with an
average degree of 10. As shown in Figure 13(b), as the graph
size increases, the implementation exhibits good scalability.
However, due to the variability in the structures of different
random graphs, some noise could be generated.

5 Related Work

Many graph systems have been proposed to process large
graphs. In the past, numerous systems have emphasized the
ability to run in a distributed environment, which use a clus-
ter of machines to process large graphs [43–48]. However,
distributed graph systems are still bugged by load imbalance
problems and significant communication overheads.

Since out-of-core graph processing systems can represent
large graphs in the external memory setting, they serve as a
promising alternative to distributed solutions. GraphChi [22]
is a pioneer in this category, which utilizes the Parallel Slid-
ing Window (PSW) technique to reduce random I/O accesses
from storage. X-Stream [49] provides a two-phase Scatter-
Gather programming model that makes tradeoffs between
random memory access and sequential access from streaming
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data. GridGraph [23] presents a 2-level hierarchical partition-
ing scheme to improve the locality and reduce the number
of I/Os. DynamicShards [24] uses dynamic shards to reduce
disk I/Os. CLIP [25] and LUMOS [50] make full use of the
loaded blocks to reduce disk I/O operations. However, these
existing works were not originally designed for random walks
and thus give sub-optimal performance.

With the increasing interest in the performance optimiza-
tion of random walks, a large number of systems have been
designed to handle random walks. DrunkardMob [26] is the
first random walk system, which enables the simulation of
billions of random walks on massive graphs, on just a sin-
gle computer. However, it adopts the iteration-based model,
which limits the efficiency and scalability of random walks.
GraphWalker [27] develops a state-aware I/O model and an
asynchronous random walk updating schedule to improve the
I/O utilization. As it is designed for first-order random walks,
it still incurs excessive disk I/Os when executing second-
order random walks. GraSorw [28] is designed specifically
for second-order random walks. It develops a bi-block exe-
cution engine and a learning-based block loading model to
improve the I/O efficiency. However, its bi-block execution
engine limits the number of blocks in memory to 2, which
is less flexible for different-scale graphs and random walks.
Moreover, the learning-based block loading model has to
run the second-order random walk task twice to get the run-
time statistics, rendering it deficient in real-world applications.
SOWalker differs from all these systems in the walk represen-
tation, block scheduling model, and walk updating scheme. It
designs a walk matrix to avoid loading non-updatable walks,
proposes a benefit-aware I/O model to improve the I/O utiliza-
tion, and adopts a block set-oriented walk updating scheme
to boost the walk updating rate.

Meanwhile, memory optimizations and the increased num-
ber of cores make it possible to process large graphs more ef-
ficiently on a single machine. For example, ThunderRW [38]
employs the step interleaving technique to hide memory ac-
cess latency by switching the executions of different random
walk queries. FlashMob [39] tries to harvest spatial and tem-
poral locality underneath the apparently random nature of
random walks. Besides, Shao et al. [40] proposed a memory-
aware framework for second-order random walks, which au-
tomatically assigns a suitable sampling method for each node
to minimize the time cost within a memory budget. While
SOWalker focuses on I/O optimizations, some of these tech-
niques can be implemented to further enhance the in-memory
performance.

6 Conclusion

In this paper, we propose an I/O-optimized out-of-core graph
processing system for second-order random walks, called
SOWalker. To eliminate useless walk I/Os, we propose a walk
matrix to prevent loading non-updatable walks. To improve

the I/O utilization, we develop a benefit-aware I/O model
to load multiple blocks with the maximum accumulated up-
datable walks. To boost the walk updating rate, we adopt a
block set-oriented walk updating scheme to allow each walk
to move as many steps as possible in the loaded block set.
Our optimizations yield significant performance benefits com-
pared to the state-of-the-art random walk systems and greatly
reduce the I/O cost.

In the future, we would like to explore promising directions
of second-order random walks. The current graph partitioning
is quite simple, so we plan to design carefully graph partitions
in order that random walkers should be trapped for long times
in good partitions. Besides, we note that cache stall is also
a performance bottleneck. The in-memory optimization of
the second-order random walk is another attractive study to
follow.
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Abstract
Emerging NVM is promising to become the next-generation
storage media. However, its high cost hinders its develop-
ment. Recent deduplication researches in NVM file systems
demonstrate that NVM’s cost can be reduced by eliminat-
ing redundant data blocks, but their design lacks complete
insights into NVM’s I/O mechanisms.

We propose Light-Dedup, a light-weight inline dedupli-
cation framework for NVM file systems that performs fast
block-level deduplication while taking NVM’s I/O mecha-
nisms into consideration. Specifically, Light-Dedup proposes
Light-Redundant-Block-Identifier (LRBI), which combines
non-cryptographic hash with a speculative-prefetch-based
byte-by-byte content-comparison approach. LRBI leverages
the memory interface of NVM to enable asynchronous reads
by speculatively prefetching in-NVM data blocks into the
CPU/NVM buffers. Thus, NVM’s read latency seen by
content-comparison is markedly reduced due to buffer hits.
Moreover, Light-Dedup adopts an in-NVM Light-Meta-Table
(LMT) to store deduplication metadata and collaborate with
LRBI. LMT is organized in the region granularity, which sig-
nificantly reduces metadata I/O amplification and improves
deduplication performance.

Experimental results suggest Light-Dedup achieves 1.01–
8.98× I/O throughput over the state-of-the-art NVM dedupli-
cation file systems. Here, the speculative prefetch technique
used in LRBI improves Light-Dedup by 0.3–118%. In ad-
dition, the region-based layout of LMT reduces metadata
read/write amplification from 19.35×/9.86× to 6.10×/3.43×
in our hand-crafted aging workload.

1 Introduction
Recently, Non-Volatile Memory (NVM) has been becoming
increasingly popular. Its byte-addressability, persistence, and
low latency enable it to be attached to the memory bus, sitting
alongside the DRAM [24, 44, 52, 67]. Optane DC Persistent
Memory Module (DCPMM) is the latest commercially avail-
able NVM. However, it is much more expensive than Hard
Disk Drive (HDD) and Solid State Drive (SSD). Therefore,
reducing the price of NVM is paramount for its future usage.

Deduplication, a system-level data compression approach,
can enlarge the logical space and reduce the amortized cost

∗Jiansheng Qiu and Yanqi Pan are co-first authors of the paper.
§Now working at Tsinghua University.

of storage devices [16, 56, 62, 68]. Deduplication is widely
used in file systems [72], backup systems [18–20, 39, 63],
cloud computing [37, 57], etc. It usually calculates the finger-
prints of data blocks and then identifies duplicates according
to their fingerprints. For the redundant block, deduplication
increments the reference count in the corresponding metadata
to maintain data integrity.

Traditional disk-based deduplication approaches, such as
using the cryptographic hash (e.g., SHA-256 and MD-5) to
identify redundant data blocks, do not fit well with NVM since
fast NVM has shifted the performance bottleneck from I/O to
CPU. Prior works on deduplication for NVM [7, 28, 58, 75]
propose several ways to address the issues. First, some works
use offline deduplication to reduce the overhead of dedupli-
cation on the critical path, such as DeNOVA [28]. However,
such background deduplication can neither enhance the file
systems’ write performance nor improve NVM’s endurance.
Second, many works use the non-cryptographic hash (e.g.,
CRC32 and xxHash [11]) to accelerate the identification of
duplicate blocks. For example, NV-Dedup [58] leverages non-
cryptographic hash to avoid calculating cryptographic hashes
for most unique blocks, while DeWrite [75] shows that comb-
ing the non-cryptographic hash with byte-by-byte comparison
is efficient for deduplication at cache line granularity.

Despite these efforts, existing works still fail to fully ex-
ploit the performance of NVM during deduplication due to a
lack of comprehensive insights into NVM’s I/O mechanisms.
First, NVM’s read/write asymmetry encourages researchers
to combine non-cryptographic hash with byte-by-byte con-
tent-comparison to quickly identify the duplicate data [67,75].
Thus the overheads of cryptographic hash calculation can be
eliminated. Second, we observe other two NVM I/O features
that hinder NVM deduplication performance: (1) Long me-
dia read latency. Despite its read/write asymmetry, NVM’s
read latency is 2–3× higher than the write since the write
buffer inside NVM hides the long media write latency [67].
Therefore, there is still a large room left for the acceleration
of content-comparison by hiding the read latency. (2) Coarse
media access granularity. The mismatch between the size of
deduplication metadata (commonly 16–64 bytes for each data
block) and the coarse media access granularity in NVM (e.g.,
256 bytes XPLine of DCPMM) can lead to severe metadata
I/O amplification if the access to the metadata lacks locality,
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which degrades not only deduplication performance but also
NVM’s endurance, especially when the system is aged.

This paper presents Light-Dedup, a novel light-weight in-
line deduplication framework for NVM file systems. Light-
Dedup is designed with two specific goals in mind: (1) Maxi-
mizing the deduplication performance by considering NVM’s
memory interface, read/write asymmetry, and access granu-
larity, while adding negligible overhead to the critical path.
(2) Retaining low deduplication metadata I/O amplification
even if the file system is severely aged (i.e., many holes).

To achieve the first goal, Light-Dedup proposes Light-
Redundant-Block-Identifier (LRBI) to quickly identify the
duplicate blocks. Unlike the prior works that use both non-
cryptographic and cryptographic hash [58] or that straight-
forwardly combine non-cryptographic hash with byte-by-
byte content-comparison [75], LRBI considers both NVM’s
read/write asymmetry and long media read latency in redun-
dant block identification. Specifically, LRBI uses xxHash,
one of the fastest non-cryptographic hashes [11], to quickly
identify most non-duplicate blocks. For those blocks with the
same fingerprint, LRBI leverages NVM’s memory interface
to enable asynchronous NVM reads and proposes specula-
tive prefetch to minimize the read latency seen by content-
comparison. In particular, speculative prefetch uses In-Block
and Cross-Block Prefetch to exploit the parallelism between
NVM read and CPU computation.

To achieve the second goal, Light-Dedup organizes its in-
NVM deduplication metadata table, Light-Meta-Table (LMT),
as a region-based linked list. Each region contains multi-
ple continuous metadata entries. Each entry stores the criti-
cal information for both basic deduplication and speculative
prefetch used in LRBI. The allocation of metadata entries
is done first by allocating a region and then by allocating
entries in that region almost sequentially, which significantly
reduces the deduplication metadata I/O amplification caused
by NVM’s coarse access granularity, especially in an aged
file system. In addition, LMT trades 1× extra deduplication
metadata space usage for zero garbage collection overheads,
which retains the stabilization of deduplication performance.

In summary, this paper makes the following contributions:
• We perform an in-depth analysis of how deduplication

can be affected by several NVM’s I/O mechanisms and
introduce how to maximize NVM deduplication perfor-
mance with full consideration of them.

• We propose an inline deduplication framework for
NVM file systems, Light-Dedup, with two key tech-
niques: (1) LRBI combines non-cryptographic hash with
speculative-prefetch-based content-comparison to fully
leverage NVM’s I/O asymmetry while hiding its media
read latency by enabling asynchronous NVM reads. (2)
The region-based layout is adopted in LMT to manage
deduplication metadata with a good locality and retain
low metadata I/O amplification.

• We implement Light-Dedup in Linux kernel 5.1.0 based

on NOVA [66], one state-of-the-art NVM file system.
The code is available at https://github.com/Light
-Dedup/Light-Dedup. Furthermore, we make a com-
prehensive evaluation of various synthetic and real-world
workloads. The results show that Light-Dedup adds neg-
ligible overhead while significantly improving the file
system’s write performance under a high duplication
ratio.

2 Background and Related Work
2.1 NVM and NVM File Systems
With its byte-addressability, low latency, persistence, and low
power consumption [3, 21, 26, 35, 40, 41, 46], NVM becomes
a promising candidate for next-generation storage media. In
this work, we focus on high-density storage-type NVM with
the memory-like interface [29] that serves as persistent stor-
age media. For brevity, we denote such storage-type NVM
as NVM. According to the latest research on the commercial
DCPMM [64, 67] and our investigation on existing NVM
devices [6, 34, 50, 51, 65, 71], this paper concludes the follow-
ing five common I/O features of NVM that potentially have
impacts on NVM deduplication performance:

• Asymmetry in Read/Write Bandwith. The read bandwidth
of NVM is up to 3× than its write [67]. The feature
is common for persistent storage media such as Phase
Change Memory (PCM) [50, 71], STT-RAM [6, 34],
memristor [65], 3D-XPoint [67], NAND flash [1], etc.

• I/O with Buffers. For writes, NVM leverages the buffer
to write asynchronously to hide long media write la-
tency. While for uncached reads, NVM fetches data syn-
chronously from the media. The data will be cached
in the internal read buffer for future reads [51, 64, 67].
Figure 1 shows the I/O mechanisms of NVM.

• Coarse Access Granularity. Coarse media access granu-
larity is common for storage-type NVM. For example,
the row buffer size of a PCM is preferred to be larger
than 128 bytes [30]. Coarse access granularity (and the
above I/O buffers) is beneficial for improving storage
bandwidth and bridging the performance gap between
storage and CPU. Since NVM is denser but slower com-
pared to DRAM, it is reasonable that NVM has a larger
access granularity than a cache line.

• Long Media Read Latency. The underlying non-volatile
media generally introduces relatively longer media la-
tency than DRAM [29,30,43,54]. The synchronous data
fetch mechanism fails to hide such latency [64].

• Memory Interface. With the memory interface, NVM can
be accessed by CPU store/load. This feature makes asyn-
chronous CPU prefetch possible, which can be leveraged
to address NVM’s long media read latency.

To well exploit the physical characteristics of NVM de-
vices, several NVM file systems [8, 12, 17, 70] are proposed.
Among these file systems, NOVA [66] is the state-of-the-art
one, which aims to exploit the potential of DRAM and NVM
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Figure 1: NVM I/O buffering mechanisms.

hybrid memory systems while providing strong consistency
guarantees. Specifically, NOVA allocates a separate log for
each inode (i.e., file), appends single inode operations as en-
tries of the inode’s log, and atomically updates the log’s tail
to commit the operations. For operations involving multiple
inodes, NOVA records the log tail’s pointers of the affected in-
odes in the journal to update them atomically. Further, NOVA
accelerates search operations by maintaining radix trees of
directories and files in DRAM.

2.2 Inline Deduplication Techniques for NVM
File system deduplication [62] is a block-level redundancy
elimination technique and has been needed in many applica-
tions [18–20,59,63,72]. This paper focuses on inline dedupli-
cation since the offline approach neither enhances file systems’
write performance nor improves NVM’s endurance. Typically,
an inline deduplication framework consists of several tech-
niques, including redundancy identification, deduplication
metadata management, indexing, etc.

Redundant Block Identification Techniques. Traditional
disk-based deduplication approaches, such as using the cryp-
tographic hash to determine the duplicates [16,56,68], do not
fit well with fast NVM devices due to their heavy software
overhead. Recent works [7,58,75] leverage non-cryptographic
hash functions to reduce the computation cost of fingerprints.
However, non-cryptographic hash suffers from hash collision
(different blocks have the same hash). To address the issue,
existing approaches either apply cryptographic hash (e.g.,
NV-Dedup [58]) or straightforwardly perform byte-by-byte
content-comparison (e.g., DeWrite [75]) to verify if the blocks
are duplicate when their non-cryptographic hashes equal1.
However, (1) cryptographic hash calculation is a bottleneck
when there are many duplicates; (2) the long latency of un-
cached reads hinders the performance of content-comparison,
especially when the concurrency level is low and read/write
asymmetry is not obvious. In contrast, our approach (i.e.,
LRBI) combines non-cryptographic hash with a speculative-
prefetch-based content-comparison technique to exploit I/O
asymmetry and hide long media read latency.

In-Storage Deduplication Metadata Management. To
manage redundant blocks, deduplication approaches must
maintain in-storage structures to store the basic information

1LO-Dedup does not address the hash collision of the non-cryptographic hash
used in their paper. Thus, we omit its redundancy identification technique.

about the deduplicated blocks (e.g., the mappings between fin-
gerprints and physical blocks, reference count, etc.). Besides,
some additional bits are required for the collaboration with
redundancy identification. Existing NVM deduplication ap-
proaches (e.g., NV-Dedup [58], LO-Dedup [7], DeWrite [75])
often reserve a fixed in-NVM table to store the deduplication
metadata and to allocate/free them by the free list. Addi-
tionally, NV-Dedup maintains both non-cryptographic and
cryptographic hash in the table; LO-Dedup organizes the
deduplication metadata as an ordered linked list structure to
accelerate the continuous matching. However, such free-list-
based management is not NVM-friendly since its allocation
strategy can introduce significant fragmentation when the sys-
tem is aged, causing a severe metadata I/O amplification. In
contrast, our proposed LMT manages the deduplication meta-
data as a region-based linked list, provides course-grained
metadata management, and significantly reduces metadata
I/O amplification under aged file systems.

In-NVM Deduplication Metadata Index Techniques.
Searching for in-NVM deduplication metadata based on the
calculated fingerprint is a critical step in deduplication. To
prevent frequent NVM accesses, existing works usually build
an in-DRAM index, such as static hash tables or red-black
tree, to accelerate the search [7, 58]. We use a dynamic hash
table (i.e., rhashtable [13]) for its resizability and efficiency.

3 Observations and Motivations
3.1 Data Redundancy & NVM Deduplication
Data redundancy is a common phenomenon in storage sys-
tems with the exponential growth of data. Prior works [19,
20, 63, 72] have observed a large number of redundancies in
modern primary storage systems. For example, there are 95%
and 47% duplicates (in 4 KiB block granularity) in two real-
world traces collected by FIU: Mails and WebVMs [27, 33].
Thus, the deduplication approach is a promising solution to
enlarge logical storage space and reduce storage costs. As
the next-generation storage media, deduplication for expen-
sive NVM is profitable and urgent. Recently, many research
efforts have designed deduplication schemes specifically for
NVM file systems [7, 58]. However, they fail to fully exploit
the characteristics of NVM’s I/O mechanisms and leave sub-
stantial room for improvement from the performance point
of view. This paper aims to develop a more efficient inline
deduplication framework scheme for NVM file systems that
can fully exploit the I/O characteristics of NVM devices.

3.2 I/O Asymmetry and Read Latency in NVM
Redundant Block Identification

The efficiency of redundant block identification is essential
to NVM deduplication performance. Traditional disk-based
deduplication approaches use the cryptographic hash to iden-
tify the duplicate blocks [16, 32, 56, 68]. However, it does not
suit NVM deduplication well due to its computation over-
head, which wastes much CPU computation and thus starves
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Table 1: The breakdown deduplication time. Light denotes
Light-Dedup, and LD-w/o-P denotes a simple deduplica-
tion file system that incorporates non-cryptographic hash
with content-comparison into the write path and deduplicates
4 KiB blocks. With the introduced speculative prefetch tech-
nique (i.e., Light), content-comparison time is dropped by
62.2%.

System Calc. Lat (ns) I/O Lat (ns) Bandwidth
(MiB/s)fp others write cmp

NOVA 0.0 84.7 2275.6 0.0 1401
LD-w/o-P (1st) 309.9 1072.5 585.3 0.0 1612
LD-w/o-P (2nd) 308.0 571.6 0.0 3263.0 870

Light (1st) 310.0 1131.3 559.8 0.0 1592
Light (2nd) 0.0 343.3 0.0 1234.8 1914

NVM. We observe the problem in NV-Dedup [58]. In a sim-
ple sequential write 4 GiB workload, the write bandwidth of
NV-Dedup drops by 52.5% with the duplication ratio increas-
ing from 0% to 75%. The root cause is that cryptographic
hash calculation (i.e., MD-5) dominates up to 64.9% of the
whole write time since NV-Dedup relies on the cryptographic
hash to handle its non-cryptographic hash collision.

To address the above heavy computation, DeWrite [75]
uses non-cryptographic hash and byte-by-byte comparison
in the combined manner [10]. The method is well aligned
with the characteristic of NVM since it prevents heavy
CPU computation and leverages the large read/write asym-
metry to trade slow duplicate writes for faster reads (i.e.,
content-comparison). However, recent researches about NVM
reads [64, 67] show that they can still be a bottleneck since
uncached reads have to fetch data from media synchronously,
which introduces long media read latency and thus negatively
affects the content-comparison performance.

We examine how exactly NVM I/O affects the deduplica-
tion performance. Table 1 shows the breakdown latency of
orderly writing two 4 GiB files with identical content (2 MiB
per I/O) to NOVA and LD-w/o-P2 under a single thread. Note
that the first write conducts no duplicate blocks, but the sec-
ond write causes 100% duplicates and results in reads (caused
by content-comparison). We observe several interesting phe-
nomena from Table 1. First, LD-w/o-P has a surprisingly
low write time (585.3ms) compared to NOVA (2275.6ms)
because asynchronous write enables the parallelism between
CPU computation and write I/O. Thus, computation hides
part of NVM writes latency (as shown in Figure 1b). Second,
during the second writes, the write bandwidth of LD-w/o-P
drops by 46% compared to the first. We find that the content-
comparison time arises to 3263.0ns, which dominates 78.8%
deduplication latency. The above observations suggest that
non-cryptographic hash-based redundant block identification
adds negligible overheads to the normal non-deduplication

2We build LD-w/o-P based on our proposed Light-Dedup by removing the
speculative prefetch technique. This means that the deduplication metadata
management and indexing are the same as in Light-Dedup, but they have
negligible performance impacts on the experiments of this subsection.

Table 2: The average NVM extra reads/writes of deduplication
metadata for writing each block.

Approaches First Write Second Write
Read (B) Write (B) Read (B) Write (B)

ideal ≈40 40 40 ≈40
All-in-NVM 726.12 293.17 528.65 259.05
Entry-based 126.94 79.56 774.13 394.54

Ours 116.28 75.75 244.19 137.17

write path (i.e., the data blocks to be written are all unique).
However, deduplication performance is significantly limited
by the long read latency and is far from ideal. We believe
there are two reasons: (1) NVM’s read/write asymmetry un-
der low thread count is not large enough [67]. (2) Current
hardware prefetcher of intel 64 bits architecture fails to rem-
edy the drawbacks of NVM’s long media read latency since
it is designed for DRAM and only attempts to prefetch two
cache lines ahead of the prefetch stream [23].

In summary, NVM’s long read latency hinders content-
comparison performance during NVM deduplication. Con-
sidering NVM’s asynchronous writes and the limitations of
hardware prefetcher, we are motivated to think: Can we man-
ually achieve asynchronous reads to hide media read latency?
Memory characteristics of NVM inspire us to obtain our
first motivation: We can leverage memory prefetch instruc-
tions to enable asynchronous NVM reads and thus accelerate
content-comparsion. However, applying prefetch to NVM
deduplication is not straightforward. There are two technical
challenges: (1) The limited number of concurrent prefetch in-
structions that a CPU core can handle. (2) How to incorporate
the prefetch mechanism into deduplication logic.

3.3 Metadata I/O Amplification in NVM Dedu-
plication Metadata Management

During NVM deduplication, deduplication metadata can be
frequently accessed and updated, causing a large amount of
small NVM accesses. Metadata I/O amplification will get
larger if these small NVM accesses exhibit a random pattern
due to NVM’s coarse access granularity. However, existing
NVM deduplication file systems pay little attention to the
issue. In this subsection, we investigate two widely used NVM
deduplication metadata management approaches.

All-in-NVM Management. DeNOVA [28] takes an All-in-
NVM design and constructs an in-NVM hash table to store
and index the deduplication metadata to reduce DRAM con-
sumption. However, hash tables typically exhibit random
access patterns [36, 45, 64, 73, 74], which leads to severe
read/write amplification. To verify this, we implement an in-
line deduplication system with an All-in-NVM design based
on Light-Dedup: Its deduplication metadata are organized as
a static hash table in NVM. We write the same 64 GiB file
twice and measure the extra NVM reads/writes of deduplica-
tion metadata using ipmctl [22]. The experimental results are
shown in Table 2. Ideally, each block write results in about
40 bytes NVM read/write (i.e., 32 bytes for deduplication
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metadata entry, 8 bytes for the mapping from block number to
metadata entry, see §4.2). In this case, read and write amplifi-
cation are 528.65/40 ≈ 13.2× and 293.17/40 ≈ 7.3×. Note
that the reason why read amplification is nearly 2× of theo-
retical upper bound (8×) may be due to the prefetch mech-
anism and buffering strategy of internal Optane DCPMM
hardware [64].

NVM-DRAM Hybrid Entry-Based Management. NV-
Dedup [58] and LO-Dedup [7] store the deduplication meta-
data in NVM and maintain the in-DRAM index to locate them
efficiently, which alleviates the problem of all-in-NVM design.
Their deduplication metadata is managed at the granularity
of cache lines, aligned in a manner favored by CPUs, and
allocated/freed through a free list. We refer to this approach
as entry-based. It is acceptable for a fresh new file system,
but when the file system is aged, the physical location of al-
located free entries can be random, which results in random
access to NVM and causes severe read/write amplification.
To show the problem, we make an extensive evaluation in
§5.5 and present part of the results in the Entry-based row
in Table 2, in which the first write is performed in the fresh
new system and the second write is in the aged system. The
results suggest that such entry-based metadata management
can lead to significant read/write amplification in the aged
system, about 774.13/40 ≈ 19.35× and 394.54/40 ≈ 9.86×,
respectively.

In summary, the severe metadata I/O amplification ob-
served in Table 2 wears out NVMs and leads to performance
degradation under aging file systems. To alleviate the prob-
lem, we focus on redesigning the hybrid deduplication meta-
data management strategy. Inspired by mimalloc [31], which
shards its free list in page granularity, we obtain our second
motivation: managing deduplication metadata in the region
(i.e., 4 KiB block) granularity to maintain access locality,
which elegantly reduces metadata I/O amplification. How-
ever, the issue of how to reclaim stale entries (i.e., garbage
collection) with minimal overhead and design entry fields that
collaborate with LRBI remains unresolved.

4 Design and Implementation
4.1 System Overview
Based on the observations of NVM’s internal I/O mechanisms,
we propose Light-Dedup, a light-weight inline deduplication
framework for NVM file systems, as shown in Figure 2. It
includes two key techniques:

• Light-Redundant-Block-Identifier (LRBI). LRBI is
proposed to quickly identify duplicate blocks by exploit-
ing NVM’s large read/write asymmetry and hiding long
media read latency. It combines non-cryptographic hash
with a speculative-prefetch-based byte-by-byte content-
comparison technique. Specifically, speculative prefetch
leverages NVM’s memory interface and uses In-Block
and Cross-Block Prefetch techniques to asynchronously
load speculated data into CPU/NVM buffers, which ex-

*Async
Prefetch

(c) Search

(b) fingerprint

ent

Applications

VFS and File System Write Interface

Byte-by-byte
Content Comparator

Non-cryptographic
Fingerprinting

LRBI L1/L2/L3 Cache

C
P
U

In-DRAM Index
(rhashtable)

D
R
A
M

LMT dedup metadata

N
V
M

Data
Block

FS
Metadata

Data
Block …

File System (FS) Metadata/Data Blocks

ent

Speculative
Prefetch

Cross-Blk In-Blk

(d) Data from NVM

*S
pe

cu
la

tio
n

(e) ent.ref += 1 (f) update fs metadata

(a) Input data block (d) Input data block

Figure 2: Light-Dedup overview.

ploits the parallelism of NVM I/O and CPU computation
and thus markedly hides read latency.

• Light-Meta-Table (LMT). LMT is an in-NVM table
responsible for (1) storing basic deduplication metadata,
such as the mapping from fingerprints to physical blocks;
(2) maintaining speculation information, such as the hint
of where and whether to prefetch the to-be-compared
block. LMT adopts region-based layout to retain the
locality of deduplication metadata. A region is a 4 KiB
block, and regions are linked by 8 bytes pointers. Each
dedup metadata is allocated in the region almost sequen-
tially, hence reducing metadata I/O amplification. In ad-
dition, to prevent GC overheads brought by sequentiality,
LMT trades 1× more space for zero GC overheads.

In-DRAM Index. Light-Dedup adapts a rhashtable in
DRAM to locate in-NVM deduplication metadata entry,
whose key is the hash value (i.e., fingerprint) and value is
the in-NVM position of the corresponding entry. We use
rhashtable since it is a mature, well-tested, and efficient dy-
namic hash table implementation in the mainline Linux ker-
nel [13], which suits for point-query (i.e., searching for a spe-
cific deduplication metadata entry by the given fingerprint).
Meanwhile, rhashtable leverages efficient Read-Copy-Update
(RCU) Lock [38] to handle the concurrent accesses to LMT.
Note that this paper does not aim to redesign a specific index
structure since in-DRAM hash table indexing is commonly ef-
ficient (e.g., usually achieves constant access time), and there
have been many works dedicated on this [36, 45, 73, 74].

Put NVM I/O Features & Light-Dedup Together. We
summarize Light-Dedup’s insights into the presented NVM
I/O features. First, read/write asymmetry can be leveraged
to improve NVM deduplication performance by combing
non-cryptographic hash with content-comparison, trading the
slow duplicate writes for the faster reads (§4.2). Second, this
paper observes that long media read latency hinders content-
comparison performance dramatically. To address the prob-
lem, we propose LRBI, which follows the non-cryptographic
hash-based infrastructure but leverages NVM’s memory inter-
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face and I/O buffering to enable asynchronous reads, and thus
markedly accelerates content-comparison (§4.3). Third, Light-
Dedup addresses the metadata I/O amplification brought by
NVM’s coarse access granularity by organizing LMT as a
region-based linked list (§4.4).

4.2 Basic Deduplication Logic
This subsection will introduce the basic deduplication flows
of Light-Dedup (without speculative prefetch) to show how
non-cryptographic hash and byte-by-byte comparison can be
integrated into NVM file systems. Notably, we refer to this
version as LD-w/o-P, as mentioned in §3.2.

Write Logic. Assume that the file system is writing a 4 KiB
duplicate block. As shown in Figure 2, during the write, (1)
Light-Dedup first calculates the non-cryptographic hash as
the fingerprint of the input block (see steps (a), (b)), (2) and
then efficiently locates the corresponding deduplication meta-
data entry (refer to as entry for brevity) in LMT by searching
for the given fingerprint in rhashtable (see step (c)). (3) Once
the entry is found (i.e., hash value matches), Light-Dedup
compares the content of the input block and the block corre-
sponding to the found entry byte-by-byte (see step (d)). (4)
Finally, assuming comparison determines that the input block
is duplicate, Light-Dedup increments the reference count of
the duplicate block and records its duplicate block number in
the file system metadata (see steps (e), (f)).

There are two exceptional cases to be handled. Given the
fingerprint of the input block, (1) if no entry with the same
fingerprint is found in LMT, suggesting that the input block
is unique, then it will be written normally by the file system.
After that, both its fingerprint and the block number are stored
in a newly allocated entry with the reference count set to one.
(2) If an entry is found, but the content of the stored block and
the input one are different, then the input block becomes a
non-dedup block, i.e., Light-Dedup does not allocate an entry
for it, which will not affect the correctness of the deduplication
system since only the file system has access to that block.

Deletion Logic. Light-Dedup maintains another in-NVM
table that maps the block number to the offset of the cor-
responding deduplication metadata entry (i.e., similar to an
inverse index). Note that the mapping maintenance introduces
another 8 Byte metadata write in the write path (this is why
the ideal NVM access is 40 bytes instead of 32 bytes). To
delete a block, Light-Dedup first locates its deduplication
metadata entry with the aforementioned table. If the entry is
not found in the table, suggesting that the block number has
not been inserted into the metadata table, then Light-Dedup
frees the block directly. Otherwise, Light-Dedup decreases
the reference count of the block (recorded in the entry) by one.
If the reference count becomes zero, then the block can be
safely freed. Deleting blocks in Light-Dedup does not cause
the garbage collection of deduplication metadata due to the
tradeoff in LMT (see §4.4).

Read Logic. The read path remains the same as the non-
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Figure 3: In-Block Prefetch (IBP) mechanisms. Each square
in the figure indicates one 64 bytes cache line.

dedup file systems. Note that deduplication fragments files’
data, which may lead to random reads. However, Light-Dedup
deduplicates 4 KiB blocks and large random access to NVM
does not cause significant performance degradation [64].

4.3 LRBI: Dedup with Speculative Prefetch
In this subsection, we present the step-by-step design of specu-
lative prefetch used in LRBI, which aims to reduce the read la-
tency seen by content-comparison (§3.2). Its key design prin-
ciple is to enable asynchronous NVM reads and to markedly
improve the parallelism between NVM I/O and CPU compu-
tation. It consists of two prefetch strategies: In-Block Prefetch
and Cross-Block Prefetch.

4.3.1 In-Block Prefetch (IBP)
IBP speculates that the content-comparison always tends to
compare all bytes and leverages memory prefetch instructions,
e.g., prefetcht0 assembly instruction in x86 [23], to en-
hance the parallelism of reading bytes in the same block.

Prefetch-Cmp-64 (P64). The most straightforward prefetch
strategy is issuing 64 prefetch instructions to load 64 cache
lines of the block into CPU caches (i.e., 64×64= 4096 bytes)
before comparing it with the input block (if they have the same
fingerprint value). However, the maximum number of concur-
rent prefetch instructions a CPU core can handle is limited. In
our machine, that number is in the open range (8,16). There-
fore, many prefetch instructions in P64 are executed in a serial
manner, and thus the parallelism is limited.

In-Block Prefetch (IBP). We leverage the large access
granularity of NVM (e.g., 256 bytes XPLine) to address the
problem of P64. As Figure 3 shows, first, we issue 16 prefetch
instructions with stride 256 bytes to touch the first cache line
of XPLine, and the whole block is loaded automatically into
CPU caches or NVM read buffer [64], where most of the
NVM read is in parallel. Second, we issue prefetch instruc-
tions with stride 64 bytes to bring the in-read-buffer data into
CPU caches. Note that In-Block Prefetch is a general optimiza-
tion technique that can be applied to some other block-based
NVM I/O scenarios, but it is beyond the scope of this paper.

4.3.2 Cross-Block Prefetch (CBP)
Unlike IBP, Cross-Block Prefetch exploits the parallelism
among CPU tasks (i.e., fingerprint calculations and content-
comparison, etc.) and NVM I/O tasks (i.e., reading a to-be-
compared data block), and thus hides NVM’s media read
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latency. This subsection introduces the technique with step-
by-step explorations, as shown in Figures 4(b)–(d).

Determining Where and Whether to Prefetch the To-
be-compared Data Block. This is critical for Light-Dedup
to support Cross-Block Prefetch. First, we incorporate a “hint”
field into the deduplication metadata entry. The hint maintains
both the location of the subsequent speculated block’s entry
and the trust degree (range: [0,7]) that indicates if the specula-
tion is correct. Second, to maintain the hint, we keep track of
the entry of the last written block and check the correspond-
ing hint after the deduplication of the current input block
finishes: trust degree is decreased by 2 if the hint is proven to
be wrong, and increased by 1 if correct. The hint is trusted and
followed only if the trust degree reaches the trust threshold
(i.e., 4 for now). Third, since prefetch consumes NVM read
bandwidth, we are conservative about its usage. Thus, we
further introduce per-CPU stream trust degree to indicate the
locality of the workload, which is increased/decreased along
with per-entry trust degrees. Prefetch is enabled only if the
stream trust degree of the current CPU reaches its maximum
value (i.e., 7). Removing trust degree reduces the hit rate of
CBP from 98.6% to 60.0% during WebVMs batch replay (the
details of the workload are presented in §5.3), which shows
the effectiveness of trust degrees.

Prefetch-Current (PC). As Figure 4(b) shows, the simplest
idea is to prefetch the stored block that is possible to be
compared with the current input block (based on the stored
hints) before any deduplication calculations, and then follow
the basic deduplication logic to deduplicate the input block.
In this way, fingerprint calculations and index looking up ( f
in Figure 4) are executed parallelly with NVM reads, and then
part of the NVM read latency can be hidden.

Speculation (SP). Furthermore, as Figure 4(c) shows, we
leverage hints to skip the fingerprint calculations and indexing
by directly locating the deduplication metadata entry (see
*Speculation arrow in Figure 2). If the content-comparison
demonstrates that the compared two blocks are the same, then
the duplicate block is found; otherwise, we fall back to the
basic deduplication logic. SP outperforms PC since SP can
reduce (skip) many deduplication calculations.

Prefetch-Next (PN). More aggressively, as Figure 4(d)
shows, to maximize parallelism, we utilize the stored specula-
tion hints to suggest the block that is likely to be compared
with the subsequent input block, and then we prefetch that
block after loading the current to-be-compared block into
CPU caches ( 2 in Figure 4). Therefore, the NVM read of the
next to-be-compared can be parallel with the following CPU
tasks (e.g., content-comparison). Now, NVM read is almost
fully parallel with the CPU computations.

Cross-Block Prefetch (CBP). From the above explorations,
we take PN as the fundamental of cross-block prefetch. How-
ever, we find that PN significantly degrades the deduplication
performance at a high concurrency level (as shown in Fig-
ure 11 later in §5.4) since the large amount of extra prefetch
I/O exacerbates the contention of NVM read buffer. Thus, we
further introduce Transition technique to mitigate the issue by
dynamically enabling/disabling prefetch according to concur-
rency level. Specifically, we maintain the number of threads
that access NVM concurrently with an atomic variable and do
not prefetch the next block if the number of threads reaches
the specified threshold. Note that the threshold is a kernel
module parameter. It is set to 6 by default (and we use this de-
fault value in our tests) because according to Figure 11, PN’s
throughput drops below SP’s throughput when the number
of threads ≥ 6 due to buffer contentions. Now, we obtain the
final version of CBP (i.e., PN+Transition).

4.3.3 Speculative Prefetch: Put IBP and CBP Together

Generally, speculative prefetch enables the asynchronous
NVM reads for content-comparison at both byte and block
levels. Among them, CBP is frequently triggered when the
workload exhibits good duplication continuousness (i.e., most
hints are trusted according to trust degrees). Otherwise, Light-
Dedup falls back to IBP when the duplication continuous-
ness is poor (since most hints are not trusted). Therefore, the
functionalities of CBP and IBP are complementary and are
combined together to deliver fast content-comparison perfor-
mance in both cases. The performance evaluation shows that
speculative prefetch can achieve up to 118% performance
improvement. More details can be obtained in §5.4.
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Figure 5: Illustration of Light-Meta-Table (LMT).

4.4 LMT: In-NVM Dedup Metadata Layout
In this subsection, we present the design of LMT, as illus-
trated in Figure 5. LMT is used for maintaining the mappings
from fingerprints to physical blocks and providing hints for
speculative prefetch. Furthermore, the deduplication metadata
in LMT are laid out in the region granularity to reduce the
read/write amplification of deduplication metadata access in
NVM (i.e., allocating entries almost sequentially).

Deduplication Metadata Entry. In the LMT, each entry
consists of 8 bytes blocknr (block number), 8 bytes fp (fin-
gerprint), 8 bytes refcnt (reference count), and 8 bytes hint
(used for speculative prefetch). The blocknr field refers to
the corresponding block number in the file system, while the
refcnt field refers to the number of references on a data block.
The fp field stores the 8 bytes xxHash as the block’s finger-
print. And the hint field contains 61 bits for the location of
the subsequent speculated block’s entry and 3 bits for trust
degree.

Region-based Layout. To maintain the locality of dedupli-
cation metadata, we group metadata entries into regions and
allocate entries in the currently used region almost sequen-
tially. We use an in-DRAM variable Cur Region to represent
this in-NVM region. For brevity, we do not distinguish Cur
Region from the currently used in-NVM region. Each region is
4 KiB (aligned to the block size) so that the regions can be al-
located by NVM file systems’ block allocator directly [17,66].
The regions are linked by 8 bytes pointers at the end of each re-
gion, and the first a few regions (Region Header) are reserved
in a fixed place in NVM as the list head. In this way, the dedu-
plication metadata table can grow dynamically. Therefore,
Light-Dedup avoids unnecessary storage consumption and
can scale flexibly when the storage size changes.

We regard a region as allocatable (i.e., we can use the region
to allocate entries) if no more than half of the metadata entries
(i.e., 4KiB/32Byte/2 = 64 entries) are used in that region.
Such design is a tradeoff between maintaining the locality
of metadata entries’ allocation and the space utilization of
the region. To allocate regions in constant time, Light-Dedup
maintains the positions of allocatable regions with the Region
Queue in DRAM and keeps track of the number of valid en-
tries in each region with an XArray [60]. Figure 6 illustrates
the allocation and deletion of metadata entries:

• Entry Allocation. Light-Dedup checks the entries in the
Cur Region one by one (➀) until a free one is found (➁),

⑧
return to caller
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Figure 6: Illustration of region-based entry management. The
cross-mark indicates that the Cur Region is evicted.

and then returns its position to the caller (➂). If there
is no free entry found (➃), Light-Dedup evicts the Cur
Region (➄) and checks if the Region Queue is empty. If
not, Light-Dedup takes out an allocatable region from the
Region Queue as the new Cur Region (➅(1)). Otherwise,
Light-Dedup leverages the file systems’ block allocator
to allocate a new region as the Cur Region, and then
links it into the tail of the in-NVM region list (➅(2)). For
the new Cur Region, Light-Dedup checks the entries in
it one by one until a free entry is found (➆) and returns
its position to the caller (➇).

• Entry Deletion. Light-Dedup first sets the blocknr of the
target entry (➈) to zero. If exactly half of the metadata
entries in that region are free, then we insert this region
back to the Region Queue to make it allocatable again
(➉). For the simplicity of concurrent control, the region
will not be returned to the block allocator.

Reduction of Metadata I/O Amplification. To show this,
we make the following analysis: (1) For unique writes, Light-
Dedup allocates a metadata entry for each write almost se-
quentially in the Cur Region, so that the writes to these entries
usually hit the NVM write buffer, and thus the metadata write
amplification is reduced. (2) For duplicate writes, we as-
sume the redundant data tend to be clustered, such as using cp
or rsync to copy a file multiple times. In that case, since the
file’s deduplication metadata is allocated almost sequentially
in a region, the subsequent accesses/modifications to them are
also almost sequential, and thus the metadata read and write
amplification are both reduced. The extensive study in §5.5
validates our analysis.

Avoidance of Garbage Collection (GC). Maintaining se-
quentiality (e.g., log-structured layout) often requires GC [66].
However, GC is complex and time-consuming. To address
the issue, Light-Dedup does not reclaim allocated regions and
allows to reuse them when half of the entries are free. In other
words, Light-Dedup trades more NVM space for GC-free
design. Such design does not bring significant storage con-
sumption: assuming the capacity of NVM is x, then there are
at most x

4KiB unique blocks to be referenced by Light-Dedup.
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Thus, at most 2x
4KiB entries are needed for GC-free design (i.e.,

all the allocated regions are half-full). Since each entry is 32
bytes, at most 2x

4KiB × 32Byte/x ≈ 1.56% space of NVM is
needed. Note that this is the worst case. The experiment shows
that writing a 128 GiB non-duplicate file allocates 1.008 GiB
of regions, which is only 0.79% of the data size.

4.5 Crash Consistency and Recovery
Light-Dedup maintains crash consistency lazily by collabo-
rating with NVM file systems’ recovery process. The lazy
strategy guarantees crash consistency and avoids eager con-
sistency overheads [9, 47, 68].

Normal Recovery: Storing in-DRAM index, allocator, etc.
to NVM and Reloading them back. During the clean unmount,
Light-Dedup stores in-DRAM rhashtable items and the valid
entry counts in the reserved area in NVM. During the subse-
quent remount, Light-Dedup first initializes an empty index,
and then inserts the saved items into it. Next, the valid entry
counts are loaded into DRAM directly and the Region Queue
is rebuilt accordingly. After this process, Light-Dedup is ready
to accept new I/O requests.

Failure Recovery: Fixing inconsistency of deduplication
metadata in NVM and Reconstructing in-DRAM data struc-
tures. To recover to the normal state, Light-Dedup scans the
deduplication metadata during the file systems’ recovery to
fix two inconsistent cases: (1) A block is only referenced by
the file system. It is a non-dedup block, so Light-Dedup does
not reinsert it into the deduplication metadata table. (2) A
block is only referenced by the deduplication metadata table.
Since Light-Dedup treats the file system’s metadata as the true
source of information, it invalidates the corresponding dedu-
plication metadata entry. After this, Light-Dedup rebuilds its
in-DRAM structures similar to the normal recovery.

4.6 Portability
Port to Future NVM Devices. Although Optane DCPMM
exited the market recently, we are still confident about NVM
technology because it bridges the performance gap between
DRAM and SSDs. Our work focuses on the common features
of storage-type NVMs as discussed in §2.1, e.g., long me-
dia read latency, memory interface, and coarse media access
granularity. Therefore, we believe our work can be applied to
future commercial storage-type NVMs.
Port to Future CXL-based Devices. Compute Express Link
(CXL) [15, 25, 53] is an emerging interconnect standard. We
believe that Light-Dedup can also be applied to the storage
systems using CXL (e.g., NVMs interconnected with CXL)
if the systems exhibit the common features that Light-Dedup
focuses on. We leave this as our future work.
Port to Other Instruction Sets. Although Light-Dedup is
currently implemented on x86, the idea of hiding long NVM
media read latency with speculative prefetch can be applied
to other instruction sets with prefetch instructions, such as
ARM with the PRFM instruction [2].

5 Performance Evaluation
This section seeks to answer the following questions: (i)
How does Light-Dedup perform against state-of-the-art NVM
(deduplication) file systems? (§5.2) (ii) How does Light-
Dedup perform in real-world scenarios? (§5.3) (iii) How does
speculative prefetch in LRBI contribute to final performance?
(§5.4) (iv) How efficient is the design of LMT? (§5.5) (v) How
expensive is the Light-Dedup recovery mechanism? (§5.6)

5.1 Experimental Setup
Testbed. We evaluate Light-Dedup on a server with an Intel
Xeon Gold 5218 CPU clocked at 2.3 GHz, which has 16 cores
(32 hyper-threads) and 22 MiB of L3 cache with clwb support.
The machine is equipped with 512 GiB Optane DCPMM
(2×256 GiB DIMMs) in non-interleaved AppDirect Mode,
and 128 GiB DRAM (4 × 32 GiB DIMMs). The server runs
CentOS with kernel 5.1.0 modified by NOVA [48].
Compared Systems. We compare Light-Dedup with NOVA,
NV-Dedup, DeNOVA, and LD-w/o-P. Among them, the
source code of NV-Dedup is not publicly available, thus we
re-implement it on top of NOVA3, following the same config-
urations in their paper [58]. For DeNOVA, we implement the
Deduplication Daemon (DD) based on the open-source ver-
sion and deduplicate the data in the background aggressively
(i.e., DeNOVA-Immediate [28]).
Methodology. FIO [4] is used to measure extensive I/O per-
formance. We use sync as I/O engine to guarantee the persis-
tence; 0–75% duplication ratio is emulated with parameter
dedupe_percentage. For the 100% duplication ratio, we per-
form the same FIO twice and measure the performance of
the second run. The reason is that 100% dedupe_percentage
results in issuing a few unique blocks, which is quite dif-
ferent from the real scenarios. Moreover, we also measure
four real-world workloads: copying compiled Linux kernel
as code archiving scenario, replaying three realistic traces
as frequent data operations scenarios. Among these traces,
WebVMs and Mails are collected from FIU [27, 33]. Homes
is generated from 50 students’ home directories on our OS
Lab server: we break the files into 4 KiB blocks, generate
each of them md5 digest similar to FIU traces, and use the
files’ creation time as timestamps. Each measurement is re-
peated 5 times, and the average values are presented. All
coefficients of variation are less than 5%, which suggests re-
producibility and stability. The evaluation scripts are available
at https://github.com/Light-Dedup/tests.

5.2 Microbenchmarks
We use FIO to evaluate the write performance of Light-Dedup
under the different duplication ratios, write patterns, and con-
currency levels, i.e., a single thread and 8 threads. Adding
more threads does not contribute to the performance improve-
ment due to the contention on the Optane DCPMM [67]. The
workload data size is set to 128 GiB to observe a more sta-
ble result. Note that under the 100% duplication ratio, each

3https://github.com/Light-Dedup/nv-dedup
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Figure 7: Microbenchmark with FIO under different write patterns (4 KiB/2 MiB per I/O) and concurrency levels.

run performs 64 GiB writes. Further, to better support the
large workload in FIO, we modify NOVA by removing the
threshold of log extending and by making the extension al-
ways double the size of the inode log, which eliminates a
substantial amount of many unnecessary Fast GCs [66]. The
experimental results are shown in Figures 7.

Block-based I/O (4 KiB). Figures 7(a) and (b) represent
the throughput of 4 KiB I/O writes. We find that: (1) Light-
Dedup achieves 1.70–4.58× throughput over NV-Dedup
when the duplication ratio is ≥75% since NV-Dedup suf-
fers from cryptographic hash calculation overheads, while
LRBI enables the efficient deduplication in either concur-
rency levels. (2) Light-Dedup is 3–15% slower than NOVA
for the 0% duplication ratio, but the throughput can be 1.05–
2.28× to the throughput of NOVA when the duplication ratio
is ≥75%. (3) IBP contributes to 1–52% performance improve-
ment under single thread compared to LD-w/o-P. However,
its contribution is reduced with the increasing threads number
due to dramatically enlarged read/write asymmetry; thus, the
improvement of IBP is diluted. Notably, CBP cannot work
ideally across syscalls. A possible reason is that the load
queue [49] is flushed during the context switch.

Continuous Block I/O (2 MiB). Figures 7(c) and (d) rep-
resent the throughput of 2 MiB I/O writes, i.e., writing 512
4 KiB blocks in one syscall. We find that: (1) all the evalu-
ated file systems gain higher write performance due to fewer
syscalls. Among them, DeNOVA benefits the most since the
contention of DD’s dequeue and enqueue decreases signifi-
cantly. (2) Under the single thread, Light-Dedup achieves 72–
118% performance improvement when the duplication ratio is
≥75% compared to LD-w/o-P since Cross-Block Prefetch can
leverage the locality of workloads to speculate the subsequent
block efficiently in a single syscall.

Read-Write Interference. Although Light-Dedup trades
slow duplicate writes for faster asynchronous reads, the mixed
read/write I/O under multi-thread environments can poten-
tially interfere with each other. This is because writing du-
plicate blocks require content comparisons and do not write
redundant data, which can be seen as a reader-like operation.
Conversely, threads that write unique blocks can be seen as
writer-like because they aim to write new blocks. Such inter-
ference has been previously observed in NyxCache [61] and
MT [69]. However, the goal of Light-Dedup is to improve
overall performance by eliminating duplicate data blocks, and
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Figure 8: Cumulative distribution function of duplication
continuousness of evaluated traces.

Table 3: Characteristics of evaluated real-world workloads.
Workload Total I/O Write Prop. Dup Ratio Granularity

Copy 13.85 GiB 100% 100% 2 MiB

Homes 63.52 GiB 100% 84%
4 KiB for Blk

Max 2 MiB for Bat

WebVMs 54.53 GiB 78% 47%
4 KiB for Blk

Max 2 MiB for Bat

Mails 173.27 GiB 91% 95%
4 KiB for Blk

Max 2 MiB for Bat

we argue that even though individual tasks can be negatively
affected, the overall performance can still be improved.

To show this, we run a set of experiments (not shown
in the figure) on the case of 50% duplication ratio and 8
threads. To obtain the separate bandwidth of readers and
writers, we make four threads write the duplicated data (as
readers) while the remaining four write unique data (as writ-
ers). We observe that the bandwidth of Light-Dedup decreases
to 1316 MiB/s for readers and 1052 MiB/s for writers when
compared to the bandwidth of non-interfered systems with 4
readers (3380 MiB/s) and 4 writers (1608 MiB/s), respectively.
However, when compared to the bandwidth of non-interfered
systems with 8 writers (1624 MiB/s), the overall bandwidth of
Light-Dedup with mixed 4 readers and 4 writers is improved
to 2368 MiB/s. Experimental results show that Light-Dedup’s
non-cryptographic-hash-based deduplication approach can
improve overall deduplication performance even in the pres-
ence of read-write interference.

5.3 Real-world Scenarios
In this subsection, we study the performance of Light-Dedup
under real-world scenarios. The characteristics of the four
workloads are summarized in Table 3. Specifically, for Copy,
we copy compiled Linux kernel twice from SSD to NVM, and
the bandwidth of the second copying is measured. Copy can
be considered as a real-world application that uses NVM as
the storage of code repositories. For the other three traces,
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Figure 9: Performance comparison of real-world scenarios.
Here, H, V, M indicate Homes, WebVMs, and Mails, respec-
tively. Suffix “-Blk” (block replay) and “-Bat” (batch replay)
indicate that each I/O processes one block and a batch of no
more than 512 consecutive blocks, respectively.

we implement trace-replayer4 to emulate the behaviors of
a real-world application and replay traces. Unlike previous
block-level trace replay tools [27, 33], trace-replayer can
batch consecutive logical blocks in one syscall, which has the
same rationale as many real-world applications (e.g., batching
the reads/writes using a local buffer). The insights can be re-
flected in Figure 8. Homes and Mails traces show good spatial
locality, which the speculative prefetch can well exploit. For
WebVMs, there are only 30% duplicate blocks whose consec-
utive length is >10 blocks (point (10,0.70)), which shows
relatively poor continuousness.

Figure 9 compares the throughput of Light-Dedup and the
other four approaches under different real-world workloads.
For DeNOVA, we configure trace-replayer to replay the traces
by appending data but ignoring the given data offset due to
its bugs of handling overlapping writes. Light-Dedup shows
the best deduplication performance under all workloads in
most cases. In particular, (1) during Copy, Light-Dedup is
much faster than other approaches since speculative prefetch
markedly hides read latency under a single thread (due to
the continuousness of the workload). (2) During block re-
ply, In-Block Prefetch shows its effectiveness under a single
thread. With the increasing number of threads and the en-
larged read/write asymmetry, the throughput of LD-w/o-P
catches up with that of Light-Dedup. (3) During batch replay,
speculative prefetch contributes a lot to single-thread perfor-
mance with a high duplication ratio. For example, for single-
thread Mails, Light-Dedup achieves 1.28× write throughput
compared to NOVA under a single thread. However, LD-w/o-
P cannot even catch up with NOVA’s throughput.

5.4 Speculative Prefetch Efficiency
In this subsection, we study the efficiency of prefetching and
speculation by using FIO with block size set to 2 MiB, and

4The tool is available at https://github.com/Light-Dedup/nvm_tools

Copy as our benchmarks.
Single-thread Comparison. Figure 10(a) writes the same

64 GiB data twice (using FIO) with a single thread, and the
second writing bandwidth is measured. PN significantly ex-
ceeds other variants by 1.11–2.19×, mainly because prefetch
enables the parallelism of CPU calculation and NVM I/O
and significantly reduces content-comparison time. We fur-
ther measure the deduplication performance of Copy under
a single thread. Figure 10(b) presents the throughput of the
second copy. The result is similar to FIO, except the overall
throughput is lower. This is because there are 44% small files
(less than 4 KiB) in the Linux kernel source code, and these
small files degrade the deduplication performance.

Multi-thread Comparison and Observations. To study
how PN scales with the increasing concurrency level, we use
the same FIO benchmark but with the number of threads set to
1–16. Figure 11 presents the second write performance. The
figure shows that: (1) The throughput of PN is 1.03–1.29×
and 1.51–2.19× that of SP and LD-w/o-P when the threads
number ≤ 5 since PN prefetches NVM data into the CPU
cache, which reduces content-comparison time. (2) When the
threads number ≥ 6, SP shows about 1.11–1.80× throughput
compared to PN. According to the breakdown performance
(not shown in the figure due to space limits), we find that the
content-comparison time of PN rises up to 1.65× to that of
SP under 16 threads, which suggests the large amount of extra
prefetch I/O exacerbates the contention of in-NVM buffers
and thus leads to longer I/O latency. (3) The evaluation shows
that CBP (i.e., PN+Transition, see §4.3) combines the benefits
of SP and PN and scales well with the increment of threads.

5.5 Metadata I/O Amplification in LMT
To study the efficiency of region-based layout in LMT, we
have designed a workload to quickly age the file system.
(1) We first write a 128 GiB file (2 MiB per I/O) to a newly
mounted deduplication file system (Fresh System). (2) Next,
we punch the file randomly by using fallocate() until the
file size is reduced to half. This step creates random holes
in the file system, which emulates the aging process (Aged
System). (3) Finally, we write another 64 GiB file to fill the
holes. In the aged system, the spatial distribution of free en-
tries is random. Inappropriate metadata management (e.g.,
entry-based layout used in NV-Dedup [58]) can cause se-
vere read/write amplification and consequently decline the
system’s I/O performance.

Table 4 shows the comparison between region-based and
entry-based metadata layout in multiple dimensions under the
aging workload. The evaluation shows that region-based con-
sistently outperforms entry-based in all the dimensions and
can resist fragmentation problems. Maintaining the locality of
entries significantly reduces the write amplification under the
aged system (i.e., from entry-based’s 9.86× to region-based’s
3.43×), and improves about 11.6% write throughput relative
to entry-based. The results suggest that region-based meta-
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Figure 10: Performance comparison and breakdowns of different variants. For simplicity, we denote LD-w/o-P as NP (i.e., no
speculative prefetch), and recall that IBP is In-Block Prefetch. Note that Cross-Block Prefetch (CBP) is effectively equivalent to
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Figure 11: Performance comparison between different dedu-
plication strategies under different threads.

Table 4: Comparison of region-based and entry-based meta-
data layout under the aging workload.

Dimension
Fresh System (128 GiB) Aged System (64 GiB)
Region Entry Region Entry

Reads Per
Block (B)

116.28
(2.91×)

126.94
(3.17×)

244.19
(6.1×)

774.13
(19.35×)

Writes Per
Block (B)

75.75
(1.89×)

79.56
(1.99×)

137.17
(3.43×)

394.54
(9.86×)

Throughput
(MiB/s) 1747.5 1690.6 1336.72 1197.76

data layout is more friendly to NVM deduplication, especially
in an aged file system (which is common in the production
environments).

5.6 Recovery Overheads
Table 5 studies the unmount time, normal recovery time, and
failure recovery time of NOVA and Light-Dedup with differ-
ent sizes of files (the total number of files is fixed to 32). The
results show that although Light-Dedup causes overheads dur-
ing recovery, its unmount and failure recovery time remains
the same trend as NOVA (linearly) as the file size grows. We
argue that trading longer unmount/recovery time for more
efficient runtime is reasonable for NVM deduplication.

6 Discussion
Memory Consumption of rhashtable. We observe that the
memory consumption of writing 128 GiB data under 0%,
25%, 50%, and 75% duplication ratio is 1.26 GiB, 1.08 GiB,
658 MiB, and 331 MiB, respectively. The experimental results
indicate that the memory consumption is less than 1% of the
data size (e.g., 1.26GiB/128GiB ≈ 0.98%).
Hardware-based Cryptographic Hash Calculation. There
are several hardware accelerators developed for efficiently cal-

Table 5: Comparison of recovery overheads.

Dimension File system File system utilization (GiB)
32 × 1 32 × 2 32 × 4

Umount Time (s) NOVA 0.385 0.775 1.502
Light-Dedup 0.551 1.095 2.099

Normal Recovery
Time (s)

NOVA 0.015 0.015 0.015
Light-Dedup 0.617 1.223 2.398

Failure Recovery
Time (s)

NOVA 0.315 0.488 0.829
Light-Dedup 1.260 2.372 4.604

culating cryptographic hash [5, 14, 42, 55]. However, they are
not widely deployed and require special hardware. Therefore,
they are not considered in this paper.

Scalability on Multiple Optane DCPMMs. We run a 32 GiB
FIO workload with 75% duplication ratio on two interleaved
256 GiB DCPMMs. The experimental results show that the
throughput of Light-Dedup increases from 952 MiB/s to
6238 MiB/s with 1–16 threads, suggesting Light-Dedup can
scale with increasing threads on multiple Optane DCPMMs.

7 Conclusion and Future Work
In this paper, we propose Light-Dedup, a light-weight inline
deduplication framework for NVM file systems. With the
NVM-aware Light-Redundant-Block-Identifier (LRBI) and
Light-Meta-Table (LMT), Light-Dedup is able to maximize
NVM deduplication performance by fully considering NVM’s
I/O mechanisms (e.g., long media read latency). Evaluation
results show that the deduplication cost is low, and the per-
formance can be enhanced if the duplication ratio is high.
Since memory usage is sensitive to server environment [28],
we plan to incorporate other memory-efficient hash table de-
sign [36, 45, 73, 74] to optimize Light-Dedup’s index further.
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Abstract

This paper presents TiDedup, a new cluster-level dedupli-

cation architecture for Ceph, a widely deployed distributed

storage system. Ceph introduced a cluster-level deduplica-

tion design before; unfortunately, a few shortcomings have

made it hard to use in production: (1) Deduplication of unique

data incurs excessive metadata consumption; (2) Its serial-

ized tiering mechanism has detrimental effects on foreground

I/Os, and by design, only provides fixed-sized chunking al-

gorithms; and (3) The existing reference count mechanism

resorts to inefficient full scan of entire objects, and does not

work with Ceph’s snapshot. TiDedup effectively overcomes

these shortcomings by introducing three novel schemes: Selec-

tive cluster-level crawling, an event-driven tiering mechanism

with content defined chunking, and a reference correction

method using a shared reference back pointer. We have fully

validated TiDedup and integrated it into the Ceph mainline,

ready for evaluation and deployment in various experimental

and production environments. Our evaluation results show

that TiDedup achieves up to 34% data reduction on real-world

workloads, and when compared with the existing dedupli-

cation design, improves foreground I/O throughput by 50%

during deduplication, and significantly reduces the scan time

for reference correction by more than 50%.

1 Introduction

Open source infrastructure management systems [18,30] have

helped cloud providers of different scales deliver services at

low costs [4, 7, 14, 37]. Progresses in corporate digitalization

and new classes of data-intensive applications are fueling fast

growth of data in the cloud and call for scalable and efficient

data storage [17, 34]. For such cloud serving storage, dedupli-

cation is expected to offer a means to mitigate the cost issue.

However, most general-purpose distributed storage systems

in use today do not provide cluster-level deduplication.

Several technical challenges partially explain why that is

the case. First of all, all components in a successful dedu-

plication architecture should be designed with scalability in

mind. Moreover, the architecture should consider various data

types, like file, block, and object, in search for data reduction

opportunities. Last but not least, the architecture must have

compatibility with existing services in the storage system, like

snapshot operation. More comprehensive research is needed

to make deduplication generally available in distributed stor-

age systems (see Section 8 for further discussions).

The situation is no different in Ceph [42]. It has become

a dominant open source distributed storage system in cloud

environments thanks to its design that takes reliability and

scalability as the first priority [7, 31]. However, capacity opti-

mizations like deduplication were not seriously considered in

early designs, and thus, Ceph has failed to meet growing data

demands in various installed configurations.

Recently, a cluster-level deduplication design was proposed

for Ceph [29]. While the work presents worthy efforts (and

is a baseline in our evaluation in Section 5), it contains criti-

cal technical issues that we believe will hold back its use in

production environments. We capture three of them here.

First, the prior design blindly performs deduplication re-

gardless of the amount of unique contents in a target object.

Deduplicating a unique object brings no benefit and only in-

creases computation and storage overheads. Since the amount

of unique contents in objects depends highly on the work-

load, this approach might undermine deduplication efficiency,

even more so in Ceph because it is a general purpose storage

system for diverse data sets.

Second, the prior design relies on a limited tiering architec-

ture that depends on coarse-grained processing and fixed size

chunking (FSC). A single background thread of Object Stor-

age Daemon (OSD) is responsible for all tasks required for

deduplication. This architecture suffers performance degrada-

tion due to time-consuming object enumeration with a lock

and a limitation on on-demand deduplication by external

agents. Moreover, FSC is not always the most effective way

to find duplicate chunks in real-world workloads [28, 47].

Lastly, the prior design approach has drawbacks in its ref-

erence management method. Specifically, it does not work

hand in hand with Ceph’s snapshot feature because it lacks

chunk reference management on an object snapshot. In addi-

tion, the reference counting method in the prior work takes a

significant amount of time to identify reference mismatches

on deduplicated chunks, because it requires full object search

in the storage pool to count references.

In this work, we propose a new cluster-level deduplication
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architecture, called TiDedup, which does not have the afore-

mentioned issues while respecting the core design principles

of Ceph. Thanks to its design choices and implementation

strategies, TiDedup effectively targets a general purpose dis-

tributed storage system for both primary and backup stor-

age [10, 11], by providing file, object, and block services.

TiDedup incorporates three key design schemes:

1. Selective cluster-level crawling. TiDedup implements

a crawler process that incrementally searches and identifies

redundant chunks to selectively trigger deduplication. By do-

ing so, TiDedup successfully removes only redundant chunks

with minimum overheads.

2. Event-driven tiering mechanism with content defined

chunking (CDC). TiDedup eliminates background work in

OSD and is designed to execute reactions upon an event to

handle multiple requests concurrently. On top of that, new tier-

ing APIs (set_chunk, tier_flush, tier_evict, and tier_promote),

as well as control and data path with CDC, are introduced.

3. Object ID (OID) shared reference scheme. We propose

an efficient reference management method using OID. By

sharing OID reference information between adjacent snap-

shots, TiDedup not only makes deduplicated objects compat-

ible with snapshot, but also minimizes messages between

OSDs at snapshot creation time. In addition, by using OID

as a backpointer, scrub—a job to identify and fix inconsisten-

cies (e.g., reference mismatch)—is able to check whether the

reference is valid without performing a full object search.

Our evaluation results show that TiDedup effectively saves

storage space by up to 34% on real-world workloads includ-

ing industrial manufacture data and corporate cloud services.

Moreover, TiDedup outperforms the prior approach by 50% in

throughput during deduplication. Importantly, our implemen-

tation passes the teuthology test [38], Ceph’s quality test suite,

demonstrating the robustness and readiness of TiDedup for

real-world evaluation and production uses. This paper makes

the following contributions:

• We demonstrate the challenges in modern distributed stor-

age system when applying deduplication and overcome the

challenges by introducing TiDedup (Section 3 and 4). Com-

pared to the previous approach [29], TiDedup is scalable and

compatible with Ceph’s existing design philosophy and fea-

tures. TiDedup allows the use of various chunking algorithms

with extensibility, different from other tiering-based architec-

tures [9, 49]. Our cluster-level reference management design

is more efficient than existing reference count techniques [6].

• We propose a pluggable design that is applicable to Ceph

and show how the design works in detail (Section 4). Since

our proposal is based on a hash algorithm to locate objects, it

can be applied to other systems that build on a similar hash

algorithm, like GlusterFS [15], Swift [36] and Cassandra [19].

• We perform comprehensive evaluation using a realistic

experimental setup (Section 5). Our evaluation shows that

TiDedup effectively performs deduplication while having little

impact on foreground I/O, and achieves more than 50% scrub

time reduction, compared to the existing approach. We discuss

design trade-offs based on evaluation results (Section 6).

• TiDedup has been merged into the Ceph main branch and is

the default deduplication engine for Ceph. TiDedup is avail-

able to anyone for evaluation and production.

2 Background

This section provides a brief overview of Ceph and explains

several key terms that will be used throughout this paper.

2.1 Ceph

Ceph [42] is an industry-leading open-source distributed stor-

age system. It provides file, object, and block services to

clients on a unified distributed object store called a Reliable

Autonomic Distributed Object Store (RADOS), comprised

of multiple OSDs. Ceph exploits a decentralized hash algo-

rithm, known as CRUSH [43], to determine the object location

within RADOS. An OSD is responsible for serving, replica-

tion, and recovery of objects on top of a block device. In this

paper, we mainly deal with RADOS because it is the primary

component involved with all three services.

Ceph uses three terms—POOL (tier), Placement Group

(PG), and object name—to represent the object location. The

tier is a global namespace that consists of PGs, and PG indi-

cates a logical group of objects. In addition, every PG links a

replication group, which maps a set of OSDs. By using Ceph’s

OID format—this includes the tier and object name—as an

input argument of CRUSH calculation, Ceph can find out PG

ID. Therefore, if an OID is given, Ceph is able to look up

the OSD where the object is located. Note that objects that

belong to different PGs can co-exist in the same OSD.

2.2 Deduplication

Deduplication is a well-known data reduction technique to

eliminate redundancy in data [24, 44]. Its typical process is

composed of the following three steps: chunking (e.g., fixed

size chunking [33] and content-defined chunking [26, 46]),

fingerprinting (e.g., sha256), and comparison with existing

fingerprints [29,46]. However, performing deduplication does

not always lead to space savings because datasets have dif-

ferent amount of redundancy; for example, datasets of web

and mail servers [25] may have lower duplicate data than

backup [39] and registry workloads [16, 49].

2.3 How deduplication works with Ceph

Previously, Ceph proposed selective post processing dedupli-

cation based on a tiering mechanism [29]. In this design, Ceph

divides a logical storage space into two groups: a base tier

and a chunk tier. They manage metadata objects and chunk

objects, respectively.

Upon a write request, every object is written to the base

tier first as a metadata object; at this time, it is considered
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Figure 1: Ceph deduplication in prior work [29].

hot and is not eligible for deduplication. When the metadata

object becomes cold (by LRU), OSD divides its content into

several chunks using FSC, and generates a fingerprint from

the corresponding chunk (e.g., Fp A and Fp B of Metadata

Object 1 in Figure 1). Next, OSD stores the generated finger-

prints in a chunk map of the metadata object. Then, using the

fingerprint as OID, OSD stores the chunk as a chunk object

in the chunk tier (Chunk Object A and B). If the chunk object

already exists, OSD just increments the reference count by

one. If not, OSD writes the chunk object, and sets the number

of references to one.

To serve a read request, OSD searches metadata objects

using the original OID. If the cached data resides in an object

like Metadata Object 1 in Figure 1, the cached data is returned

to Client 2. Otherwise, like Metadata Object 2, OSD retrieves

the fingerprints from the chunk map, then it reads Chunk

Object B by using the fingerprint (Fp B) as an OID. Finally,

the OSD relays the data of Chunk Object B to Client 3.

Note that Ceph utilizes the CRUSH algorithm once again

to calculate the chunk object location instead of maintaining

a separate fingerprint index store. This technique is called

double hashing [29].

2.4 Snapshot in Ceph

Ceph handles object snapshots via explicit APIs such as cre-

ation and deletion. OSD creates a new snapshot when a user

makes a change on an object, at which point the version of

the modified object is increased while keeping existing OID.

3 Motivation

3.1 Deduplication on unique chunks

In the prior approach, OSD decides whether an object needs to

be deduplicated or not depending on which state the object is

in between hot and cold instead of its redundancy; if the object

is cold, OSD forces it to be deduplicated without checking its
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Figure 2: Metadata space overhead when deduplicating on unique

objects. The total size of objects is 2 GB with 4 MB objects. Meta-

data size includes deduplication metadata (e.g., chunk information

and fingerprint) and object (chunk and metadata) metadata.

redundancy. Therefore, the deduplication procedure inevitably

generates unnecessary metadata even though the object has no

redundant chunks. In the worst case, the amount of metadata

could account for more than 30% of the total writes as shown

in Figure 2. To eliminate the space overheads of the metadata,

the best way is to remove only duplicate copies of chunks. To

do so, however, we face the following two challenges:

Lack of knowledge of duplicate chunks. Ceph does not

keep track of redundant objects. Moreover, to learn such in-

formation, each OSD would have to periodically check re-

dundancy of all the objects in other OSDs, resulting in high

overheads, interfering with foreground I/Os.

Object state and chunk-level management. The prior ob-

ject management approach is unable to handle the cold ob-

ject that has only unique chunks; when the object becomes

cold, OSD deduplicates the cold object implicitly, degrading

deduplication efficiency. To avoid this problem and maintain

compatibility with the existing Ceph implementation, an ad-

ditional state is needed to distinguish between unique and

duplicate during the state transition from hot to cold. More-

over, there is a chance that an object has too few duplicate

chunks to benefit from the reduced footprint of metadata. In

this case, it’s better not to deduplicate the object because the

majority of the chunks are not redundant.

3.2 Structural limitations

Coarse-grained tiering mechanism. Ceph uses a coarse-

grained tiering approach for deduplication; a background

thread in each OSD updates the object state (hot or cold)

and performs deduplication. However, it places a negative

impact on the OSD foreground performance. In fact, to en-

sure consistency, Ceph holds a lock on PG even within an

iterative loop for object enumeration to protect live objects in

PG. Note that this PG lock is required when OSD handles a

write operation to append a PG-level log for recovery. This is

not a problem when the number of objects is small. However,

if OSD contains a large number of objects, it is non-negligible

because even simple object enumeration is very costly.

Moreover, the proposed tiering method does not expose

the interfaces that allow other external modules to gather

chunk information and trigger deduplication on demand. This

strategy limits the effectiveness of deduplication.
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No support for CDC. As an initial step, deduplication in

Ceph was proposed based on FSC. FSC has the benefit of

the low overhead calculation to determine chunk boundaries

because it uses a predefined chunk size. However, it is well

known that there is a boundary-shift problem [26] in some

workloads. To avoid the problem, many studies have exploited

CDC [10, 23, 24, 32]. We have tried complementing the fixed

chunking’s limitation using CDC. Unfortunately, applying

CDC to the existing system leads to another challenge.

In the FSC approach, the user should configure the size

of the chunk manually, then a background thread in OSD

deduplicates the content of the chunk. This method is quite

straightforward—there are only three operations: (1) set a

chunk range (e.g., 8 KB chunk), (2) generate a fingerprint

from the chunk, and 3) perform the content migration from

the base tier to the chunk tier. In other words, once a range is

set, the range remains valid until the range setting is changed.

However, it does not seem well suited in terms of CDC be-

cause CDC generates different chunk sizes depending on the

content; CDC may end up triggering multiple range changes

even when a single chunk is mutated, so that the chunk ranges

need to be recalculated.

Also, the prior approach uses three chunk states for dedu-

plication: MISSING, DIRTY, and CLEAN. MISSING means

that the content of the chunks does not exist in the base tier

(not cached). DIRTY represents that the object was updated

after the chunk was deduplicated, while CLEAN indicates

that nothing has changed since the last deduplication opera-

tion. However, in CDC, there is no DIRTY state. If the chunk

becomes dirty, its state becomes invalid as chunk range recal-

culation is required.

3.3 Inefficient reference management

The prior approach uses a false-positive based reference count-

ing design [29]—while a chunk object is allowed to have a

reference of deleted metadata object, the metadata object is

guaranteed to always point to a valid chunk object—to prevent

the failures. Nevertheless, it has other limitations, as follows:

Limitation of using the reference count. Reference mis-

matches may occur if OSD crashes and fails to successfully

complete operations to update reference counts. To check

reference mismatches in Ceph, the scrub process selects a

chunk object, then scans all metadata objects to examine how

many metadata objects have the reference of the chunk ob-

ject; the expected reference count should be less than or equal

to the reference count the chunk object holds. Note that the

chunk object holds its own reference count, as explained in

Section 2.3. Moreover, this behavior is repeated for all chunk

objects, which in turn causes a scalability problem as the

number of objects grows. The time complexity of the scrub

process is O(#chunk objects×#metadata objects).

Snapshot compatibility. In the previous approach, most of

the features work with deduplicated metadata objects, but the
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Figure 3: Ceph reference management (1. Send reference increment

message, 2. ACK, 3. Update chunk information). SNAP represents a

snapshot.

T 1 32 64 128 256 512

Latency (sec.) 0.13 0.32 0.72 1.8 3.96 9.37

Table 1: Snapshot creation time (T: the number of chunks on 4MB

object, ten objects are used)

snapshot feature does not, because reference management is

missing for snapshot.

One straightforward yet naïve approach to supporting snap-

shot would be to increase (or decrease) the reference counts

of all chunks of a deduplicated object whenever its snapshot

is created (or deleted). However, this would generate an exces-

sive number of messages among OSDs. Figure 3 describes the

overhead. There is a HEAD that is the latest object version.

For an incoming write to update the HEAD, OSD creates a

snapshot (SNAP 10) in ascending order, excluding the new

write. At this time, all chunk information within unmodified

regions (chunks A and C) in the HEAD should be copied to

the new HEAD’s metadata ❸, after the reference increment

(❶ and ❷) is done. Therefore, the snapshot creation will be

delayed until OSD receives all ACKs for the reference in-

crement. Note that an operation to increase reference count

is synchronously done due to false-positive characteristics.

Table 1 shows the snapshot creation time depending on the

number of chunks. If there are 512 chunks on objects, the

latency dramatically increases up to 9.37 seconds.

Aside from the delay, there is a redundant increase in the

chunk’s reference count if every snapshot has its own refer-

ence. For example, the reference count of chunks A and C will

be three because new HEAD, SNAP 8 and SNAP 10 have the

same chunks A and C in Figure 3. What is important is that

even if the new HEAD, SNAP 8 and SNAP 10 are deleted,

the reference count may not decrease due to the false-positive

based reference counting strategy used. Although this ref-

erence leak can be fixed via the scrub process, it consumes

additional space, until the scrub process is complete.

4 Design and Implementation of TiDedup

Figure 4 describes the overall structure of TiDedup. Basi-

cally, clients are not aware of the existence of the chunk tier

and issue I/Os to the metadata objects in the same way as

normal objects. For instance, the OSD stores content to the

metadata object (W1) on a write request. In addition, upon a

read request, OSD either returns the metadata object to the

client immediately if it is cached (R1) or reads the content
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Figure 4: TiDedup architecture.

from the chunk object (R2-1 and R2-2). The crawler, which is

responsible for triggering deduplication, scans objects—the

scanning range is evenly divided and distributed to multiple

threads in the crawler—on the base tier in either an incre-

mental or full manner to look for redundant chunks. Then,

the crawler checks the state of the metadata object using stat;

stat retrieves the metadata object’s information about hot-

ness, deduplicated, and dirty. Depending on the state of the

metadata object, the crawler works as follows.

• If the metadata object is hot, the crawler skips performing

deduplication.

• If the metadata object is cold and contains more duplicate

chunks than the threshold, the crawler performs deduplication

if the object was not deduplicated before.

• If the metadata object is cold and has a few duplicate chunks,

the crawler makes sure that the cached data is moved to the

chunk tier (FC).

The crawler performs deduplication on the target object by

using either tier_flush (DO1 and DO2 in Figure 4)—triggering

CDC and moving chunks to chunk objects—or set_chunk—

copying a target chunk to a chunk object in chunk tier (DC1)

and setting a reference between metadata object and chunk

object (DC2). Then, the crawler calls tier_evict to trim a range

of the chunk in the metadata object, if necessary (DC3). These

APIs will be described fully in Section 4.2.1.

4.1 Selective cluster-level crawling

To reduce the overhead as described in Section 3.1, we

propose Selective cluster-level crawling, which crawls and

carefully deduplicates objects on a base tier. The crawler

is designed to run as a stand-alone application by decou-

pling a controller scheme—finding live objects and triggering

deduplication—from OSD. Furthermore, we adopt incremen-

tal and full modes of crawling; both modes are introduced

to figure out dedup-able objects on the base tier, but their

crawling costs are different. In incremental mode, by choos-

ing a small number of metadata objects gradually, the crawler

reduces the chances of overutilizing system resources; dur-

ing the daytime, it runs not to disturb user I/Os and unex-

pected high-priority I/Os, such as recovery and consistency

checks. However, the incremental mode can not determine all

dedup-able objects at once due to the limited range of search.

To complement this weak point, full mode applies the full

search without idle time. The drawback of the scheme is that

it consumes more resources than the incremental mode does.

Therefore, the crawler in full mode is scheduled to run once

a week or at a longer interval, mostly during the nighttime

when the system anticipates lower user I/O traffic.

In incremental mode, at first, the crawler gets a list of live

objects sorted by OID on the base tier, then chooses a small

group of objects from the list. Next, the crawler looks for

redundant chunks among the selected objects—the crawler

reads the objects, then runs CDC on the objects to calcu-

late the fingerprint from the chunk, checking if the finger-

print is identical to other fingerprints collected before. The

crawler considers the chunk a duplicate chunk if the chunk

meets the condition; we define chunk duplicate count,

which is the number of redundant chunks among the ob-

jects. If chunk duplicate count is higher than the thresh-

old value K, the crawler regards the chunk as a good can-

didate for deduplication. Once duplicate chunks are found,

the crawler has two tasks to do as follows. First, the crawler

performs chunk-level deduplication (DC1, DC2, and DC3

in Figure 4). Second, the crawler checks information about

how many duplicate chunks there are in an object. We call it

intra-object deduplication ratio. The object, which

has higher intra-object deduplication ratio than the

threshold value L, is deduplicated via tier_flush, which is ex-

plained in the next section, by the crawler. The crawler pauses

incremental mode when the tasks for the small group of ob-

jects are done, and resumes incremental mode, choosing the

next small group of objects after the user-configured time T,

30 seconds by default. If there are no remaining objects in

the list, the crawler refreshes a list of live objects. Then, it

repeats the procedure in reversed direction while clearing the

collected fingerprint list. In full mode, the differences from

the incremental mode are the time interval and the search

scope—it scans all objects in the base tier with a large time

interval.

The crawler manages an in-memory fingerprint store to

keep track of duplicate chunks; a key-value pair is used:

⟨fingerprint : redundant count⟩. The crawler updates the pair

value when a fingerprint is calculated in either incremental
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Figure 5: Base data structure and two API procedures (set_chunk and tier_flush).

or full mode. If memory usage exceeds a given threshold

value configured at startup, the crawler deletes all entries

in the fingerprint store, except for duplicate fingerprints—

the number of redundancies is higher than the threshold—

information. This strategy might lose deduplication opportu-

nities; the crawler is likely to drop fingerprints that appear

once in a while under memory pressure. However, the crawler

can become stateless, which overcomes practical issues via

simple re-execution.

Object Management. A metadata object in a base tier can

be in one of the following states: hot, cold, or deduped. When

an object is newly created, its initial state is set to hot by

default; the hot object is not deduplicated because it is more

likely to be mutated in the near future. The transition from

hot to cold takes place over time when TiDedup determines

that a certain hot object needs to be evicted based on LRU.

Then, the cold object is deduplicated if the corresponding

object contains more duplicate chunks than intra-object

deduplication ratio by the crawler. Otherwise, the cold

object is migrated to the chunk tier without deduplication

process (no chunking and fingerprinting).

TiDedup promotes chunk objects to the base tier if they are

either updated or frequently accessed by read operations to

avoid decoding overhead of deduplication; the object state is

changed to a hot state at this time. Since we decide not to use

the background thread at all, as explained in the following

section, OSD keeps the object state using existing in-memory

object metadata (object_info_t) and updates its state when the

object is accessed.

4.2 Event-driven tiering mechanism with CDC

We design event-driven tiering to process multiple requests

concurrently and minimize interference to foreground I/Os.

Event-driven tiering does not perform any background works

that can affect incoming I/O requests. Instead, it exposes

APIs to the crawler to perform deduplication on demand. In

addition, we redesign the overall I/O path to support CDC.

Basic read and write. Upon a read request, OSD looks

up the metadata of the corresponding metadata object (ob-

ject_info_t) where manifest_info_t—metadata related to

deduplication—is stored. As shown in Figure 5 (A), man-

ifest_info_t has chunk_map, which is a map data structure

including source offset and chunk_info_t, to maintain map-

ping information between the source and destination chunk.

Plus, each chunk_info_t has a state variable that indicates

either MISSING or CLEAN. If the chunk state is MISSING,

OSD calls tier_promote to move the chunk object from the

chunk tier to the base tier in advance of responding to the user.

If the chunk state is CLEAN, OSD replies to the user with the

existing content the metadata object has.

For a write request, before storing content to the metadata

object, OSD clears the chunk information (chunk_info_t in

chunk_map) within modified range, while sending delete mes-

sages; if the write request overwrites a whole range of the

object, no chunk_info_t exists. This is because modifying

content means that the corresponding chunks are no longer

meaningful—all chunk boundaries should be recalculated by

CDC.

4.2.1 APIs with CDC

Set_chunk. The purpose of set_chunk is to set a chunk bound-

ary within a metadata object for deduplication to support

a case that only a specific range of the metadata object is

redundant. To do so, set_chunk stores the given input argu-

ment—<source OID, destination OID, source version, source

offset, length, and destination offset>—to the corresponding

chunk_info_t in chunk_map. Set_chunk has two main roles:

(1) to increase the target chunk’ reference count, and (2) to

update the chunk information.

As soon as OSD receives a set_chunk message from the

crawler (❶ in Figure 5 (B)), it sends a message to add the

reference of the source object ❷. Since calling set_chunk

implies that the source object takes a reference of the tar-

get chunk object, reference increment should be conducted

before the chunk information is stored. We will describe ref-

erence management in more detail in the next section. After

the reference increment is completed ❸, TiDedup updates

chunk_info_t. For example, when a user calls set_chunk with

<source OID, fingerprint OID, v2, 4096, 8192, and 4096>,

the OSD adds chunk_info_t (CLEAN, 4096, fingerprint OID,

8192) to chunk_map at offset 4096 if the object’s version is

v2; note that OID includes tier information where the object

is located and OSD increases the object’s version number

whenever the object is changed. The crawler is required to

maintain the target version to deduplicate objects correctly.
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Set_chunk presumes that the target chunk is already copied

to the destination OID before calling set_chunk, so the initial

state of chunk_info_t is CLEAN.

Tier_flush. The crawler invokes tier_flush to remove redun-

dancy on a metadata object, not a chunk; tier_flush dedupli-

cates all contents on a metadata object explicitly if the object

is not hot. Once tier_flush is called (❶ in Figure 5 (C)), OSD

reads all contents from the metadata object, then executes

CDC to generate chunks. After that, OSD generates a finger-

print value from each chunk ❷. Using given the fingerprint

values as OID (B and C), OSD sends other OSDs in the chunk

tier a compound operation, called chunk_create_or_get_ref

❸—this operation either increases the reference count if the

target object is present or creates a new object with setting

the reference count to one through transaction if the ob-

ject does not exist. Once OSD receives all completion re-

sponses of the chunk_create_or_get_ref, it stores the meta-

data changes (e.g., chunk_info_t), and set the metadata ob-

ject to deduped ❹. Although a failure can occur on rare

occasions during tier_flush, TiDedup maintains consistency,

because the metadata changes caused by tier_flush are not

persistent until all the chunk_create_or_get_ref operations

are completed. Note that tier_flush only updates metadata in

terms of the metadata object. For example, if two out of ten

chunk_create_or_get_ref are only successfully completed,

TiDedup never updates the corresponding chunk_info_t. In-

stead, the crawler will retry to deduplicate the metadata object

because it is not marked as deduped.

Tier_evict. Tier_evict removes the object’s content using the

punch-hole technique [20,22]. Figure 6 (A) demonstrates how

tier_evict works. There is chunk B on the metadata object A.

Once tier_evict is called, chunk B is marked as MISSING ❶,

and then chunk B is trimmed from the metadata object A ❷,

thereby resulting in a transition from a normal file to a sparse

file. Note that the remaining parts of the metadata object A,

which are not used as a chunk, remain on the metadata object

A without removal. If a user tries to access the trimmed chunk,

OSD in the base tier retrieves the original content from the

chunk tier, before handling the user request.

Tier_promote. Tier_promote performs chunk migration from

the chunk tier to the base tier even if a single chunk of meta-

data object is MISSING. Upon tier_promote, TiDedup finds

chunks that have MISSING state in the metadata object ❶,

as shown in Figure 6 (B), then sends read requests to corre-

sponding chunk objects ❷. After the read requests are com-

pleted, TiDedup stores the given chunks in the base tier ❸.

Unlike tier_flush, tier_promote updates chunk’s content, and

changes the chunk state from MISSING to CLEAN as soon

as each read is succeeded ❹. For instance, although two out

of ten reads are completed, TiDedup keeps the two completed

chunks up-to-date.

4.3 OID shared reference management

To minimize scrub overhead and provide snapshot compati-

bility, we propose OID shared reference management design

based on false-positive reference counting.

Data format for reference management. As described in

the previous section, reference management using the number

of references causes the scrub process to take a significant

time to complete. To reduce the execution time for the scrub

process, TiDedup makes use of Ceph’s OID format to repre-

sent the reference instead of using a simple number. Since

Ceph’s OID contains location information, as described in

Section 2.1, TiDedup can efficiently retrieve objects by their

OID. In other words, if OID is used as a reference, TiDedup

is able to recognize which metadata object refers to chunk

objects like a back pointer and vice versa.

Scrub worker. TiDedup deploys a scrub worker as a separate

thread in the crawler. Scrub worker wakes up periodically (the

default value of wake-up period is equal to that in the full

mode), then it begins to get a list of stored chunk objects on

chunk tier and read their extended attributes one by one, each

of which storing the reference information. Since the chunk

object has its source OIDs, scrub worker does not need to

read all metadata objects on the base tier to find reference

mismatch. Instead, it just reads the metadata object whose

OID is the source OID of the chunk object, then examines that

the object has a reference to the chunk object. If the metadata

object has a corresponding chunk object’s OID, scrub worker

repeats this until no more source OIDs that have not been

checked present in the chunk object. If not, scrub process

corrects the metadata object by removing the destination OID

which is identical to the chunk object’s OID.

Snapshot. To overcome snapshot-related limitations as de-

scribed in Section 3.3, we introduce OID shared reference

within an object. The key idea is that TiDedup does not gener-

ate an add/delete reference message if a chunk is identical—

same offset, length, and destination OID—to a chunk in the

adjacent snapshot. For instance, the reference count of BBB

in Figure 7 is one; this means that only one add reference

message is sent to chunk object BBB, because the chunk

BBB in SNAP 7 is identical to chunk BBB in the new HEAD

and SNAP 5, respectively. Note that we use the number of

references here for the explanation.

USENIX Association 2023 USENIX Annual Technical Conference    123



CCCSNAP 5

DDDNew HEAD

0 2 4 6 8 10

AAA BBB

BBBAAA

Offset

DDD
SNAP 7

AAA BBB

➔ Create a snapshot

➟

HEAD

Figure 7: Snapshot reference management on snap creation.
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Figure 8: Snapshot reference management on overwrite (chunk

DDD at offset 8 is changed to chunk CCC).

Figure 8 shows another example of a write operation. There

is a modified region and clean regions in HEAD. TiDedup

performs an add reference operation for chunk CCC—sending

an add reference message then updating the corresponding

chunk_info_t after the add reference message is done—, but

does not generate a delete reference message for chunk DDD

because SNAP 7 includes chunk DDD at offset 8. In addition,

TiDedup does not do anything regarding all chunks in the

clean region because each of the chunks is the same as the

one in the previous snapshot.

However, a simple OID shared reference, as mentioned

above, is insufficient to maintain consistency in reference man-

agement when the snapshot is removed. In Figure 8, SNAP

7 has a different chunk DDD compared to both SNAP 5 and

HEAD at offset 8, so the reference count of chunk CCC is

two, not one. At this point, if SNAP 7 is then removed, the ref-

erence count of chunk CCC will still remain two, even though

it should be adjusted to one. To prevent this inconsistency,

TiDedup checks both the prior snapshot and the next snapshot

(SNAP 5 and HEAD in Figure 8) when the deletion occurs. If

both chunks are identical, TiDedup sends a delete reference

message.

As such, with OID shared reference, TiDedup generates

only a limited number of add reference messages, regardless

of many snapshot creations. Although TiDedup requires an

additional search operation to identify the same chunks on the

adjacent snapshots, this operation is relatively cheaper than

handling the add reference operation.

OID shared reference can also work with proposed APIs,

such as set_chunk (described in Section 4.2.1). In the

set_chunk case; TiDedup exploits set_chunk to make a dedu-

plicated chunk at any position in snapshots, as shown in Fig-

ure 9 (A), TiDedup performs an add operation for chunk AAA

because there is no same chunk on the two snapshots (HEAD

and SNAP 30), but nothing occurs in Figure 9 (B) because

the HEAD includes chunk CCC. On the other hand, TiDedup

generates a delete reference message for chunk CCC in Fig-

AAASNAP 20

ABCSNAP 30

CCCHEAD

0 2 4

(A)

CCC

ABC

CCC

0 2 4

(B)

CCC

CCC

CCC

0 2 4

(C)

Configured by set_chunk

Offset

Figure 9: set_chunk (gray are new chunks by set_chunk).

DDD CCCHEAD

BBBSNAP 20

AAA EEEHEAD

BBBSNAP 20

0 2 4 6 8 10

(A) Before rollback

Offset

AAA EEESNAP 30

AAA EEESNAP 30

(B) After rollback

0 2 4 6 8 10Offset

Figure 10: Rollback (HEAD is rollbacked to SNAP 30).

ure 9 (C) because both HEAD and SNAP 30 have the same

chunk CCC.

Rollback. Rollback replaces the HEAD with a given snap-

shot version. Upon rollback, TiDedup promotes all MISSING

chunks both the HEAD and a given snapshot have from the

chunk tier to the base tier. Then, the current HEAD is removed

to make a correct clone into the HEAD. Figure 10 shows

how shared reference count works with rollback. SNAP 30’s

chunks (chunks AAA and EEE) are copied to the HEAD

(in Figure 10 (A)). Then, add operations for both AAA and

EEE are needed because SNAP 20 has no identical chunks

compared to the updated HEAD.

Crash consistency. OID shared reference management can

maintain consistency after the crash because it is based on

false-positive design. TiDedup guarantees the chunk object

must exist if its metadata object has a reference. For this, the

add operation for deduplicated chunks and update operation

for relevant metadata are performed atomically. Moreover,

TiDedup does not generate a delete reference message unless

all shared chunk references in the object are unreferenced. Al-

though TiDedup deletes chunk_info_t on sending a delete ref-

erence message without checking the completion of a delete

operation—removing the metadata OID from the chunk ob-

ject’s extent attribute, this potential mismatch (a chunk object

has a reference to a metadata object, but not vice versa) can

be fixed by the scrub worker.

Reference set/get APIs. To set/get the reference, TiDedup

adds four APIs that can be called by external clients and

internal OSDs. chunk_create_or_get_ref creates a chunk ob-

ject if the chunk object is not present, then adds a reference,

which is the metadata OID. There are reference_get and ref-

erence_put to add/delete the reference of the chunk object.

read_reference returns the list of references either the meta-
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Figure 12: YCSB throughput (Workload a, record count is 500K, operation count is 20M).

data or the chunk object has. One important thing here is that

the metadata object must return a reference list according to

OID shared reference design; for example, in Figure 8, the

reference list is {chunk AAA, BBB, CCC, CCC, and DDD}.

On the other hand, the chunk object returns all references

without considering OID shared reference.

5 Evaluation

5.1 Environmental setup

We use 10 machines in total, each of which is equipped with

a 2-way AMD EPYC 7543 32-cores (80 threads) per NUMA

node and 512 GB of DRAM. All nodes are connected with

a 100 GbE network. Six nodes are used as storage nodes.

Four nodes are clients to issue I/Os for evaluation. The latest

version (Reef) of the Ceph storage cluster is configured by

default parameters, except that the replication factor is two.

Each machine has six BM1733 QLC SSDs (4 TB) and runs

an OSD daemon on a single SSD. Note that we use high-

performance equipments for evaluation to eliminate other

performance factors. We use FastCDC [46] with the average

chunk size set to 16KB. SHA1 is used to generate finger-

print value among the available fingerprint algorithm options

(e.g., SHA1, SHA128, and SHA256). We set Intra-object

deduplication ratio as 30% and chunk duplication

count as four empirically. NoDedup represents default Ceph

[42] without deduplication. Fixed means a prior deduplica-

tion approach for Ceph [29].

5.2 Deduplication ratio and throughput

5.2.1 Space saving

Internal cloud dataset. As shown in Table 2, Fixed shows

limited data reduction compared to TiDedup. In Logs dataset,

the data, which is partially mutated without data alignment,

continues to be appended to Ceph cluster—the system mon-

itor records similar logs from the cluster every 30 seconds,

so that CDC is more effective than Fixed. In addition, CDC

can save more space on Virtual disks dataset even if the

dataset includes not only OS partitions but also user data. The

reason is that the dataset is gathered from the internal devel-

oper cloud service, so user data includes duplicate data, such

as mail, source code, and large images.

Virtual disks Logs

Chunk size 8K 16K 32K 8K 16K 32K

Fixed 21% 12% 10% 5.7% 5.4% 5.3%

TiDedup 45% 36% 27% 18.5% 16% 12.6%

Table 2: Space saving on real-world datasets depends on the chunk-

ing algorithm and average chunk size. Virtual disks represents

VMware vSphere images (10.1 TB) from a developer cloud service

(67 users). Logs represents service logs (560 GB) for cloud infras-

tructure including monitoring and device state.

Factory dataset. We replay factory dataset generated during

the semiconductor manufacturing on Ceph’s object service

(RGW). The factory dataset is normally used to detect or pre-

dict malfunctions of semiconductor products. We collect four

types of data in total on a daily basis. As shown in Figure 11,

TiDedup can achieve a high deduplication ratio (up to 30%)

on Workload 2 (chip information during manufacturing). This

is because Workload 2 has time-series monitoring logs having

periodic values—the similar structured data is consistently

appended. Unlike Workload 2, Workload 1 (equipment sta-

tus) also includes time-series logs but has a smaller entry

size—small tables with timestamps. This leads to less data

reduction. Workload 3 (logs for photo lithography) has daily

archive files stored in an incremental manner. It contains a

large amount of redundant data and shows a high deduplica-

tion ratio. Workload 4 consists of metrology and inspection

image files which are already compressed and contain little

redundancy. Thus, it is not affected by deduplication at all.

5.2.2 Throughput

YCSB. We use YCSB workload a (read/write ratio is 50:50)

to generate foreground I/Os. YCSB runs on four clients with

sixteen threads using Ceph’s block device service (RBD). As

shown in Figure 12, the crawler is launched with incremental

(at 180 seconds) and full mode (at 720 seconds), respectively—

each of which runs for 300 seconds. Note that the elapsed

time for incremental mode includes user idle time.

Figure 12 (A), (B), and (C) shows throughput and aver-

age latency. With TiDedup, throughput is not degraded sig-

nificantly compared to NoDedup because TiDedup does not

trigger the deduplication aggressively until the object is cold.

TiDedup also achieves near-constant throughput unlike Fixed,

which suffers a significant performance drop because a back-

ground thread blocks foreground OSD I/Os. Moreover, TiD-
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Figure 14: Recovery performance (Average IOPS of four clients).

edup with incremental mode has nearly no effect on both

throughput and average latency due to a limited search scope.

However, TiDedup with full mode badly affects performance,

due to two reasons: (1) cold or deduped objects are accessed

frequently in full mode, and, (2) YCSB’s request can be

blocked during tier-flush.

5.3 The impact of average chunk size

Figure 13 shows how much storage space can be saved de-

pending on the average chunk size [46]. We generate 50%

of redundant contents by fio with varying chunk sizes, then

launch the crawler to perform deduplication. In the case of

a large chunk (>16K), the amount of reduced data increases

rapidly because the number of generated chunks is less than

the small chunk’s size, so the deduplication job can be done

early. Also, we observe that the deduplication ratio does not

reach 50% due to additional metadata for deduplication, as

shown in Figure 13 (B). Interestingly, CDC generates non-

aligned data, unlike FSC; for instance, a 8,200 byte chunk—

not aligned by block size (4,096 byte)—can be generated by

CDC, causing non-aligned data allocation. As a result, 12 KB

is allocated even though the requested object size is 8,200

byte. This aggravates metadata consumption.

5.4 Worst-case recovery performance

We run fio with 8KB random read/write workload—the ratio

between reads and writes is 8:2. During the mixed workload,

the crawler issues bursty traffic—64 threads submit object

reads and tier_flush concurrently—to the base tier, and trig-

gers scrub using 16 threads. On top of that, 4 out of 36 OSDs

are suddenly down during the test, resulting in generating

recovery I/Os for data rebalance. Figure 14 (A) and (B) show

TiDedup’s read and write IOPS over time. Overall, we observe

performance fluctuation due to the bursty traffic from the

1

10
100

1000

10000

100000

1000000

10000000

10000000
1E+09

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5

#
 C

h
u

n
k

 o
b

je
ct

s

S
cr

u
b

 t
im

e 
(s

ec
)

# Metadata objects

TiDedup (SS) Fixed (SS) TiDedup (SR) Fixed (SR) # chunk objects

103

104

105

106

107

108

100 1,000 10,000 100,000 1,000,000

109

10⁶

103

10⁴
10⁵

10⁷

102

102

Figure 15: Scrub time comparison (SS: Scrub-search, SR:

Scrub-repair). SR time includes SS time.

crawler. At around 50 seconds, two OSDs are pulled out from

the storage cluster and the performance decreases rapidly due

to the recovery I/Os. After 50 seconds, two more OSDs are

out and the fluctuation gets worse. However, at around 350

seconds, all four OSDs rejoin the cluster and the performance

of foreground I/Os are recovered eventually. Compared to

NoDedup, even in the worst case, TiDedup only reduces the

performance by 25% on average. It is noteworthy that we can

further mitigate foreground performance drop if the crawler

employs a flow control technique in the event of congestion.

5.5 Scrub time

To compare scrub time between Fixed and TiDedup, we run

a crawler, which spawns sixteen scrub threads (each thread

issues six scrub requests asynchronously), with varying the

number of metadata objects as shown in Figure 15. Each

Scrub thread searches objects in the chunk tier and reads

chunk information as described in Section 4. If the chunk

object has a reference to the metadata object, the scrub thread

reads either all metadata objects (Fixed) or a corresponding

metadata object (TiDedup) in the base tier to check if the ref-

erence for chunk object is valid (Scrub-search). If the refer-

ence is invalid, TiDedup fixes the mismatch (Scrub-repair).

In Fixed, scrub time increases considerably due to a full scan

for metadata objects. TiDedup also takes considerable time for

scrub, but the execution time is significantly reduced because

TiDedup needs only a single read to check if the referenced

metadata object is valid. In the case of one million metadata

objects, TiDedup takes about four hours to complete, while

we could not measure the Fixed scrub time because even

after five days, the job had not been done.

5.6 Snapshot creation and deletion

Figure 16 (A) shows snapshot creation time (ten objects) as

the number of deduplicated chunks grows. To measure snap-

shot creation time, we create deduplicated chunks on a meta-

data object and issue snapshot creation requests to the meta-

data object. In Fixed, the execution time to create a snapshot

increases linearly because the more deduplicated chunks the

snapshot has, the more operations (chunk_create_or_get_ref )

OSD needs to handle. On the other hand, TiDedup takes a

constant time even thanks to the OID shared reference count.
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YAML Description

dedup-io-mixed read, write, set_chunk, tier_promote, tier_evict,

tier_flush

dedup-io-snap read, write, set_chunk, tier_promote, tier_evict,

tier_flush, snap_create, snap_remove, rollback

Table 3: Integration test description.

Figure 16 (B) shows the number of generated messages

from an OSD during snapshot deletion. TiDedup-best is the

best-case scenario where no chunk differs from adjacent snap-

shots (e.g., chunk AAA at offset 0 in Figure 8). On the other

hand, TiDedup-worst represents the extreme case where all

chunks are different from adjacent snapshots and both the

prior and next snapshots are identical (e.g., chunk DDD at

offset 8 in Figure 8). In TiDedup-best, no messages are gener-

ated. However, compared to Fixed, TiDedup-worst generates

a higher number of messages because TiDedup needs to re-

duce the references due to the same adjacent snapshots. But,

these additional messages are proactively generated. Unlike

TiDedup, Fixed would eventually generate the messages if

further deletion occurs on either the prior or the next snapshot.

5.7 Integration test

We improve existing stress test coverage in Ceph to make TiD-

edup stable. With yaml as shown in Table 3 and the test code

we added, Ceph’s integration test framework, called teuthol-

ogy [38], can perform the tests with/-without other tests (e.g.,

network disconnection and OSD fail) for reliability. More-

over, to ensure reference reliability, the workload generator

also checks if the live chunk object’s source reference is valid

after all operations are done. TiDedup passes the combination

tests conducted by teuthology.

6 Discussions

Small chunk vs. large chunk. Small chunk sizes (< 8KB)

would result in numerous small chunk objects and potentially

large space overheads. On the other hand, the use of a large

chunk size may lead to a lower deduplication ratio. In order to

hit a desirable trade-off point, TiDedup provides an estimate

CLI, which shows how much storage space can be saved

depending on options, to users. TiDedup allows the users to

select suitable options (e.g., FSC, CDC, and chunk size) or

even decide not to use deduplication at all.

How scalable is crawler? We did not fully address how our

crawler design works at scale. In Section 5, we deploy a single

application that has multiple threads for crawling. However,

if the cluster has a large number of objects, this application

may not be able to cover all objects properly. To solve this

problem, the system administrator can deploy many crawlers

on demand where each crawler is in charge of a sub-dataset

of the storage cluster depending on the workload. This task is

easily done by using container-based deployment because the

crawler is stateless.

Additional space overhead for OID reference. Since the

OID-shared reference scheme uses OID to represent a ref-

erence, chunk objects should maintain all metadata object’s

OIDs referring to the chunk objects, requiring more storage

space than the reference count method. We limit the number

of chunk object’s references to a threshold value. TiDedup

forces OSD to stop performing deduplication on the chunk

objects in case their number of references is over the threshold

value.

Applicability of TiDedup. TiDedup relies on two schemes

that are prerequisites for integration with other distributed

storage systems: (1) two separate address spaces (base and

chunk tier), and (2) chunk object lookup by using a hash-based

mapping between those two tiers. While the two address

spaces scheme is easily applicable to other storage systems,

the lookup method is tightly coupled with the hash-based

object placement scheme [15, 19, 36, 43].

7 Lessons Learned

Rethinking a tiering mechanism in a distributed storage

system with strong consistency. Ceph originally imple-

mented the tiering structure where a background thread reads

and migrates objects between tiers for cache tiering, so we

anticipated that adding a deduplication feature on top of the

existing architecture would be straightforward. However, we

needed to consider recovery scenarios against a variety of

failure types. Also, the deduplication jobs not only required

holding a PG lock for an extended period, especially as the

number of objects grew, but also introduced a new lock do-

main. Note that a strong consistency storage system, such as

Ceph, handles I/O operations in strict order while holding

locks. Unfortunately, this approach eventually led to an imbal-

ance in I/O loads across different PGs, resulting in significant

degradation of user-perceived performance and tail latency.

Considering these challenges, we made the decision to dep-

recate the existing tiering mechanism. Instead, we opted to

delegate the responsibility of the tiering mechanism within

OSD to other components, such as the crawler.

Deduplication is promising only when data is dedup-able.

In a distributed storage system, storing data entails duplicate

copies to ensure availability through replication or erasure

coding. However, this increases storage space overheads more

than we expected due to the following two reasons: (1) ad-

ditional metadata space for deduplication, and (2) unaligned

existing metadata caused by the small size of the new meta-
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Table 4: Comparison of previous deduplication architectures and this work.

TiDedup CephDedup [29] Data Domain [9] DupHunter [49] Nitro [21] idedup [35]

Processing post post post post in-line in-line

Selective dedup O X X O X O

Chunking CDC, FSC FSC CDC unknown FSC FSC

Scale global global local global local local

Interface file/object/block file file block block

Storage type general general backup docker image general primary

Implementation Ceph mainline research only proprietary research only research only proprietary

data added for deduplication. Moreover, a general purpose

storage system cannot predict in advance whether incoming

data is always dedup-able or not. As a result, based on the

observation, we decided to perform deduplication only if the

storage system is able to secure enough free space after dedu-

plication is done.

Flexible namespace architecture for TiDedup. A single

global namespace (tier) is not optimal for efficiently han-

dling different types of data streams, as each stream may have

its own unique access pattern. Considering that a general-

purpose storage system must cater to diverse workloads, we

have designed a flexible namespace architecture that allows

users to create custom namespaces tailored to their specific

workloads. With this architecture, users are able to create one

or more custom namespaces, enabling them to handle multi-

ple data streams while maintaining isolation between them.

For example, users can align their custom namespaces (base

tiers) with the corresponding services, such as object, file, and

block, while utilizing a shared chunk tier.

8 Related Work

Although there is rich literature on deduplication [1,2,5,8,13,

27,40,41,48,50,51], few studies evaluate their architecture in

terms of scalability in real distributed storage systems and/or

open their code for third party reproduction of results. In

the next, we touch on the most relevant studies to our work.

Table 4 gives a quick summary of their key properties.

Data Domain Cloud Tier [9] proposes a deduplication ar-

chitecture based on two tiers, where it performs deduplication

in the local tier first, and then backs up data in the remote

tier. Unlike our work, Data Domain Cloud Tier targets a lo-

cal storage and does not selectively performs deduplication

according to redundancy. TiDedup is a cluster-level solution

with scalability as key design consideration. To that end, TiD-

edup reduces the fingerprint index lookup overheads by using

double hashing [29] and pursues selective deduplication.

DupHunter [49] builds on a multi-layer tier and employs

a cache algorithm utilizing domain-specific knowledge (con-

tainer image registry). Also, it takes a selective deduplication

approach. We note that DupHunter targets a specific environ-

ment where container images are stored and distributed by

docker registry. On the other hand, TiDedup is designed for

more general environments where file, object, and block ser-

vices are needed. It is unclear how DupHunter addresses the

fingerprint index problem [12,45] and whether the design can

coexist with other existing features in a real storage system.

Deduplication could hurt read performance when an object

is scattered throughout the cluster. Several studies suggest

techniques (e.g., prefetching and rewriting) [3, 11] to over-

come degraded read performance. Among them, we believe

that caching is the most efficient way to resolve the read per-

formance problem. TiDedup exploits a caching technique and

migrates chunk objects from chunk tier to base tier if the

chunk object is frequently accessed. As a result, hot data will

be served quickly with no overhead whereas serving cold data

entails forwarding overheads between base and chunk tier.

Inline deduplication [13,21,35] eliminates data redundancy

immediately. However, TiDedup adopts a post-processing

technique along with caching. By doing so, TiDedup employs

on-demand deduplication, allowing for minimizing perfor-

mance degradation. We believe that it is more suitable for a

general purpose distributed storage system.

9 Conclusion

This paper presents TiDedup towards efficient cluster-level

deduplication for a general-purpose distributed storage sys-

tem. TiDedup incorporates three new design schemes to over-

come the scalability issues found in a prior proposal. We have

a complete, fully validated implementation of the design and

have integrated TiDedup into the Ceph main branch. Our com-

prehensive evaluation study reveals that TiDedup achieves

storage space savings without hurting the scalability of Ceph.

We hope that our work will become a foundation on which

further research and development are undertaken.
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A Artifact Appendix

Abstract

We provide the artifact that includes the source code and

instructions to explain how to run TiDedup on Ceph. The

artifact also includes a document to describe how TiDedup is

applied to Ceph.

Scope

TiDedup is a cluster-level deduplication architecture for Ceph,

so the goal of the artifact is to describe how to perform dedu-

plication on Ceph cluster using either the artifact or mainline

Ceph. As explained in README.md, we provide instructions

to build, deploy, and run TiDedup on Ceph. In addition, the

README.md also provides an explanation of how to run

TiDedup using the latest Ceph without the artifact.

Contents

The artifact contains TiDedup’s source code integrated into

Ceph and a README.md file to build source code and run

Ceph while enabling deduplication.

Hosting

TiDedup is available at https://github.com/ssdohammer-

sl/ceph/tree/tidedup with detailed instructions. Since TiDedup

has been merged to Ceph mainline, the source code is also

available at https://github.com/ceph/ceph.
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Abstract
As a complement to data deduplication, delta compression fur-
ther reduces the data volume by compressing non-duplicate
data chunks relative to their similar chunks (base chunks).
However, existing post-deduplication delta compression ap-
proaches for backup storage either suffer from the low sim-
ilarity between many detected chunks or miss some poten-
tial similar chunks, or suffer from low (backup and restore)
throughput due to extra I/Os for reading base chunks or add
additional service-disruptive operations to backup systems.

In this paper, we propose LoopDelta to address the above-
mentioned problems by an enhanced embedding delta comp-
ression scheme in deduplication in a non-intrusive way. The
enhanced delta compression scheme combines four key tech-
niques: (1) dual-locality-based similarity tracking to detect
potential similar chunks by exploiting both logical and phy-
sical locality, (2) locality-aware prefetching to prefetch base
chunks to avoid extra I/Os for reading base chunks on the
write path, (3) cache-aware filter to avoid extra I/Os for base
chunks on the read path, and (4) inversed delta compression to
perform delta compression for data chunks that are otherwise
forbidden to serve as base chunks by rewriting techniques
designed to improve restore performance.

Experimental results indicate that LoopDelta increases the
compression ratio by 1.24∼10.97 times on top of deduplica-
tion, without notably affecting the backup throughput, and it
improves the restore performance by 1.2∼3.57 times.

1 Introduction
Data deduplication has been widely used in computer systems
to improve storage space and network bandwidth efficien-
cy [26, 29, 36, 53]. Typically, it removes duplicate data at the
chunk granularity (e.g., 8KB size) but fails to eliminate redun-
dancy among (highly) similar but non-duplicate data chunks.
Delta compression has been employed to further remove re-
dundant data from post-deduplication non-duplicate but simi-
lar chunks, by compressing non-duplicate data chunks relative
to their similar chunks (base chunks) [18,19,21,37,47,48,55].

In this paper, we focus on adding delta compression to in-

line backup storage which usually adopts only deduplication
for data reduction. Some efforts have been made to achieve
this. Shilane et al. [38] suggested that delta compression
achieves more than 2× additional compression on top of
deduplication, but it incurs extra I/Os for reading base chunks
from storage, which significantly reduce backup throughput.
One solution to this problem is to replace the hard disk drive
(HDD) with other media with higher random I/O performance,
such as solid state drive (SSD). However, this method is not
cost-effective because HDD remains significantly cheaper
than SSD. So, this paper focuses on HDD-based backup sys-
tems.

Zou et al. [55] proposed MeGA to perform delta comp-
ression for data chunks whose base chunks can be detected
in the last and the current backups on top of deduplication.
MeGA is developed based on the assumption that, after each
backup, the system will reorganize both the data chunks and
the base chunks of the delta-compressed chunks of this back-
up into a delta-friendly data layout. However, this assumption
has a nontrivial impact on both the users and the backup sys-
tems, i.e., the backup operations for users are suspended in the
reorganization process, and the backup system must perform
service-disruptive reorganizations frequently and completes
them promptly after each user’s backup. This paper focus-
es on adding delta compression seamlessly to deduplication
systems in a non-intrusive and non-service-disruptive manner.

Existing schemes that add delta compression to deduplica-
tion systems face many challenges. The first challenge is a low
compression ratio. The base chunks required for delta comp-
ression are detected by indexing the sketches of chunks, and
the compression ratio mainly relies on the strategies adopted
to index the sketches [6, 11, 24, 32, 37]. Usually, sketches are
weak hashes of the chunk data and can be used to detect simi-
lar chunks [4, 6, 11, 21]. Full indexing (indexing the sketches
of all data chunks in storage) is the simplest indexing strategy.
Our study in Section 3.1 suggests that when similar chunks
appear within the same backup, this technique may decrease
the compression ratio due to the selection of suboptimal base
chunks.
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Besides full indexing, the existing sketch indexing tech-
niques can be classified into two categories: the logical-
locality-based indexing [42, 55] and the physical-locality-
based indexing [37, 38], which have complementary capabili-
ties of detecting similar chunks. The former can detect most
of the highly similar chunks by leveraging the logical locality
between two adjacent backups but may miss some potential
similar chunks; the latter can detect most of the potentially
similar chunks by exploiting the physical locality preserved
in storage units called containers but suffers from the low
similarity of detected chunks. Our analyses in Section 3.1
indicate that the desirable properties of the two techniques
can be combined by exploiting both the logical and physical
locality.

The second challenge of adding delta compression to de-
duplication systems is extra I/Os for reading base chunks
during backup, which prevent delta compression from being
used in high-performance inline backup systems [37, 38]. A
typical deduplication-based backup system organizes data
chunks into containers each of which consists of hundreds
or thousands of data chunks as the storage units [17, 53]. For
such a system, a routine operation during deduplication is to
prefetch metadata from containers being deduplicated against
to accelerate duplicate detection. Our study in Section 3.2
demonstrates that containers holding potential similar chunks
detected by using both the logical and physical locality can be
prefetched by piggybacking on the routine operations without
extra I/Os.

The third challenge is extra I/Os for reading base chunks
during restore, which reduce restore performance significant-
ly. More specifically, when delta compression is applied, data
chunks may refer to previously written deltas, and the base
chunks of these deltas may require extra I/Os during restore.
To address this issue, it is necessary to identify such previous-
ly written deltas and avoid referring to them. Our analyses in
Section 3.2 suggest that existing approaches to identify such
deltas either are vulnerable to garbage collection (GC) or re-
quire extra I/Os. Our analyses also suggest that the previously
written deltas whose base chunks require extra I/Os during
restore can be predicted during backup by using the metadata
prefetched by the routine operations during deduplication.

The fourth challenge is the potential to miss base chunks
when rewriting techniques are applied. Backup systems often
adopt rewriting techniques to identify infrequently reused
containers and give up deduplicating against them to alleviate
chunk fragmentation [14, 16]. To cooperate with rewriting
techniques, data chunks in infrequently reused containers
cannot serve as base chunks for delta compression, resulting
in a compression loss. Our analyses in Section 3.3 suggest
that if the target of delta compression is changed to previously
written chunks, rather than data chunks in the ongoing backup
as in the traditional delta compression method, to generate
additional encoded copies of the previously written chunks,
the un-encoded copies of previously written chunks can be

eliminated during GC to achieve data reduction, which is
equivalent to the effect of delta compression.

With the above observations, we propose LoopDelta based
on the deduplication strategy that groups data chunks into
containers and prefetches metadata from them for duplicate
detection during deduplication [17, 53]. By combining the
following four key techniques, LoopDelta embeds delta comp-
ression in inline deduplication non-intrusively.

• Dual-locality Similarity Tracking. LoopDelta tracks
data chunks and base chunks of delta-compressed chunks
of the immediate predecessor backup to capture high-
ly similar chunks by leveraging the logical locality and
tracks the containers holding the aforementioned da-
ta chunks to capture similar chunks stored in these
containers by exploiting the physical locality.
• Locality-aware Prefetching. LoopDelta prefetches

base chunks by piggybacking on routine operations to
prefetch metadata during deduplication, thereby avoid-
ing extra I/Os for reading base chunks on the write path.
• Cache-aware Filter. LoopDelta identifies the previous-

ly written deltas whose base chunks require extra I/Os du-
ring restore with the assistance of the recently prefetched
metadata during deduplication and avoids referring to
such deltas, thereby eliminating extra I/Os for reading
base chunks on the read path.
• Inversed Delta Compression. For data chunks whose

detected similar chunks are forbidden to serve as
base chunks by rewriting techniques, LoopDelta delta-
encodes the detected similar chunks relative to these data
chunks while deferring the removal of the data of these
delta encoded chunks to the GC process.

Experimental results based on real-world datasets indicate
that LoopDelta significantly increases both the compression
ratio and restore performance on top of deduplication, without
notably affecting backup throughput.

2 Background
2.1 Data Deduplication
Deduplication and Restore Processes. Typically, a backup
stream is divided into data chunks, which are fingerprint-
ed with a secure hash (e.g., SHA1) [12, 31, 33, 35, 46, 49].
Each fingerprint is queried in a fingerprint index to determine
whether the system already stores a copy of the fingerprinted
data chunk. If true, the system does not store the data chunk
but refers it to the previously written copy. Meanwhile, con-
secutive unique data chunks are grouped into a large I/O unit,
called a container, and written to HDDs.

When a backup completes, a recipe recording the finger-
print sequence of the backup stream is stored for the future
restoration [16]. When a stored backup is requested, the re-
store process accesses data chunks one by one according to
their order in the recipe to reconstruct the original data. In this
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process, a restore cache is maintained in memory [7]. The
read unit in this process is a container.
Redundancy Locality in Backup Workloads. Backup
workloads typically consist of a series of copies of primary da-
ta [3,28,41,43]. Redundancy locality in the backup workloads
refers to the repeating patterns of the redundant data among
consecutive backups [16]. The repeating pattern before de-
duplication is called logical locality, which is preserved in the
recipe and sequence of consecutive data chunks before dedup-
lication. That repeating pattern after deduplication is called
physical locality (also called spatial locality [53]), which is
preserved in containers.

Both categories of the locality have been widely exploited
to improve deduplication performance [9, 17, 23, 27, 44, 53].
For example, a fingerprint index mapping fingerprints to the
physical locations of the chunks is required for detecting
duplicates. However, storing the index in HDDs would re-
sult in low backup throughput, while putting it in memory
would limit system scalability. Zhu et al. [53] put the in-
dex in HDDs and alleviate the indexing bottleneck by using
physical-locality-based caching. Lillibridge et al. [23] and
Guo et al. [17] put the index in memory and reduced its mem-
ory footprint by using logical-locality-based sampling and
physical-locality-based sampling.
Chunk Fragmentation and Rewriting. Deduplication ren-
ders data chunks of a backup stream to be physically scattered,
and this is known as chunk fragmentation [14, 22, 30, 56].
Chunk fragmentation decreases the locality and efficiency
of the techniques exploiting this locality. For example, it
decreases restore performance and backup throughput of
container-based backup systems [2, 22]. Backup systems of-
ten adopt rewriting approaches to identify infrequently reused
containers and give up deduplicating against them to allevi-
ate fragmentation [7, 8, 15, 20, 22, 39]. Here, the infrequently
reused containers are previously written containers that con-
tain only a few data chunks referenced by the current backup.
The data chunks that refer to previously written data chunks
stored in infrequently reused containers are called fragmented
chunks, which will be stored (rewritten) along with unique
data chunks to improve the locality of the current backup.

Among rewriting approaches, Capping [22] processes the
backup stream in non-overlapping segments, each of which
contains a sequence of consecutive data chunks. Within a
segment, data chunks can refer to at most T old (previously
written) containers. If the number of old containers exceeds
T , only the most referenced T containers can be referenced,
and data chunks referring to other old containers are rewritten
to reduce fragmentation. The value T , also called capping
level, is a configurable parameter that trades deduplication for
restore performance.

2.2 Post-deduplication Delta Compression
Post-deduplication delta compression consists of three stages:
(1) resemblance detection (finding similar candidates), (2)

reading the base chunks, and (3) delta encoding.
Resemblance Detection. For data chunks not removed by de-
duplication, a sketch calculation approach calculates sketches
for data chunks [32,51,54]. Sketches are usually weak hashes
of the chunk data [4, 6, 11, 21]. Two chunks are considered
similar if they have the same sketches. The sketch indexing
strategy has a critical impact on resemblance detection effi-
ciency, which will be discussed in Section 3.1.
Reading the Base Chunks. Reading the base chunks for an
HDD-based system is the performance bottleneck. Shilane
et al. [37, 38] indicated that I/O overheads required to read
back the base chunks decrease the backup throughput to an
unacceptable level. MeGA [55] monitors the containers hold-
ing the base chunks and does not perform delta compression
for the data chunks whose base chunks are stored in rarely
referenced containers to reduce I/Os for reading base chunks.
Besides, PFC-delta [52] prefetches base chunks by piggyback-
ing on the routine I/Os during deduplication.
Delta Encoding. Xdelta [25] is a popular delta encoding
technique that employs hashing and indexing to identify and
eliminate repeated strings between the target and base chunks.
Edelta [45] simplifies this process by replacing some of the
hashing and indexing operations with fast byte-wise compar-
isons through exploiting fine-grained locality between similar
chunks.

2.3 Garbage Collection
Garbage collection (GC) removes invalid chunks (chunks not
referenced by any unexpired backups) from the system to
consolidate free space [5, 14, 17, 40, 56]. Duplicate chunks
will be removed in the GC process [2, 10]. To improve write
performance, a deduplication-based backup system might
choose to write (rewrite) occasional duplicate chunks while
deferring deduplication to a GC process [2].

GC first traverses live backups and marks the live chunks.
For a data chunk with multiple physical instances, GC marks
one (often the most recently written one) of them as the live
chunk [10]. Then, it copies live chunks from partially-invalid
containers to form new containers. Then, previous containers
whose live chunks are copied out of are reclaimed.

3 Observations and Motivations
3.1 Analysis of Sketch Indexing Efficiency
Besides the full indexing technique, existing sketch indexing
techniques can be divided into two categories: logical-locality-
based indexing techniques and physical-locality-based index-
ing techniques. This section analyzes the efficiency of these
two categories of indexing techniques as well as the full in-
dexing technique.

3.1.1 Logical-locality-based Sketch Indexing
Substantial similar chunks for delta-compressing a backup
can be detected from data chunks of its immediate predeces-
sor backup and similar chunks of this backup. This is because
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Figure 1: Chunks B′, C′, and D′ are respectively similar to
chunks B, C, and D. For backup 3, A and B′ inherit from
backup 1, while C′ and D′ inherit from backup 2. When dete-
cting similar chunks for data chunks of backup 3, the logical-
locality-based indexing techniques will miss B in backup 1,
which is actually similar to B′.

each backup is often a modified copy of the last backup. Based
on similar observations, MeGA [55] and HARD [42] index
sketches of the data chunks and base chunks of the delta-
compressed chunks of the last backup for resemblance detec-
tion. These sketch indexing techniques essentially exploit the
logical locality between two adjacent backups.

An advantage of these indexing techniques is the high sim-
ilarity of base chunks. In most cases, the best base chunk for
the delta compression of a data chunk is its previous copy in
the last backup because similar chunks are usually stemming
from small edits to the last backup. A disadvantage of these
indexing techniques is that they may miss some potential
similar chunks. We observe that data chunks of a backup can
inherit from multiple previous backup versions, for example,
when data rollback occurs. This means that similar chunks
may exist across backup versions. These similar chunks do
not have a direct relationship to the immediate predecessor
backup and thus cannot be detected by logical-locality-based
indexing techniques. Figure 1 gives an example to illustrate
how this problem may arise.

3.1.2 Physical-locality-based Sketch Indexing

Stream-Informed delta compression (SIDC) [38] is a physical-
locality-based sketch technique that detects similar chunks
by exploiting the physical locality among backups. Since
physical locality is preserved in containers, SIDC is built
on container-based deduplication systems. When a duplicate
chunk is detected, the container holding the most recently
written instance of this duplicate is selected for deduplicating
against, and sketches of all data chunks in this container are
indexed for matching similar chunks.

An advantage of this indexing technique is that it can detect
most similar chunks including the ones missed by logical-
locality-based indexing techniques. For data chunks that are
inherited from versions older than the immediate predecessor
backup, their sketches would be indexed if they are stored in
the containers that would be deduplicated against, even if they
do not have a direct relationship to the last backup. As shown
in Figure 1, when the system deduplicates chunks in backup
3, container 1 is selected for deduplicating against because it
holds the previously written copy of chunk A. Therefore, the
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Figure 2: A in backup N is a self-referenced duplicate chunk,
and the rest are self-referenced similar chunks. B1, C1, and D1
are similar to B2, C2, and D2, respectively. The first four data
chunks are stored in container X . When deduplicating the
second A, the system will select container X for deduplicating
against because this container holds the previous-written copy
of A. Then, sketches of data chunks in container X are indexed
and B1, C1, and D1 are detected as the base chunks for delta-
compressing B2, C2, and D2.

sketches of B in this container will be indexed and detected
as a similar chunk of B′.

A backup may contain duplicates and similar chunks in
itself, where the former are referred to as self-referenced du-
plicate chunks and the latter as self-referenced similar chunks.
Compared with self-referenced similar chunks, similar chunks
detected from the previous backups tend to share more re-
dundancy with unique chunks of the on-going backup. This
is because the latter are much more likely to result from
the former after they are slightly modified. Consequently,
the physical-locality-based sketch indexing technique can
be suboptimal for datasets containing self-referenced dupli-
cate and self-referenced similar chunks. This is because self-
referenced duplicate chunks may cause the newly-written
containers holding data chunks of the on-going backup to
be selected for deduplicating against, which further causes
the self-referenced similar chunks to be matched as the base
chunks for delta compression. Figure 2 presents a simplified
example to illustrate how the problem may arise.

3.1.3 Full Sketch Index

The full sketch indexing technique indexes sketches of all
data chunks in the backup system and it is often serves as
an upper bound for compression ratio evaluations when delta
compression is involved [42, 52, 55]. Since the size of sketch
indexes grows with the number of backup versions, it is chal-
lenging to organize the sketch indexes. Maintaining them in
memory would limit system scalability, while putting them in
HDDs would greatly reduce query throughput.

Another problem facing this technique is that it can be sub-
optimal for datasets containing self-referenced similar chunks.
This technique indexes sketches of all data chunks in the sys-
tem, including self-referenced similar chunks. Thus, when
self-referenced similar chunks are ingested, the sketches of
the best base chunk candidates for delta compression in pre-
vious backups may be replaced by those of self-referenced
similar chunks, causing self-referenced similar chunks to be
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Figure 3: Percentage of potential similar chunks detected
by MeGA, SIDC, Greedy, and the approach exploiting both
logical and physical locality on four datasets.
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Figure 4: Average DCE of MeGA, SIDC, Greedy, and the
approach exploiting both logical and physical locality on the
RDB and WEB datasets.

matched as base chunks for delta compression.

3.1.4 Combining the Best of Both Worlds
Figures 3 and 4 respectively show the percentage and the av-
erage delta compression efficiency (DCE) [51,54] of detected
similar chunks of existing sketch indexing techniques includ-
ing MeGA, SIDC, and the full indexing (Greedy) for datasets
whose characteristics are detailed in Table 1 in Section 5.1.
Multi-version inheritance is common in RDB and SYN data-
sets, and the WEB dataset contains substantial self-referenced
duplicates and similar chunks. DCE, which is calculated as
1− chunk size a f ter delta compression

chunk size be f ore delta compression , measures the similarity of
the detected similar chunks. A larger value of DCE indicates
higher similarity.

The results in the two figures agree with the earlier analysis
in this section, i.e., the logical-locality-based technique can
detect most highly similar chunks but may miss potential
similar chunks, while the physical-locality-based technique
can detect most potential similar chunks but suffers from low
similarity. We found that the two categories of techniques
have complementary capabilities for detecting similar chunks.
This motivates us to propose a dual-locality-based sketch
indexing approach to combine the advantages of both logical
and physical locality. The dual-locality-based approach can
not only detect most potentially similar chunks but also ensure
high similarity between detected chunks, as shown in Figures
3 and 4. Since the full indexing technique can be suboptimal
for datasets containing self-referenced similar chunks, the
dual-locality-based approach can achieve higher DCE than
the full indexing on such datasets.

3.2 Avoiding I/Os for Reading Base Chunks
Extra I/O overheads for reading base chunks on both the write
and read paths prevent delta compression from being used

in high-performance backup systems. In this subsection, we
discuss and analyze the possible approaches to reducing or
eliminating I/O overheads for reading base chunks to make
delta compression feasible and practical for backup systems.

3.2.1 On the Write Path
For container-based deduplication systems, such as Data Do-
main backup systems [53], a routine operation during dedup-
lication is to access containers for prefetching metadata to
accelerate duplicate detection, which provides an opportunity
to eliminate I/Os for reading base chunks. If the containers
holding similar chunks will be accessed for prefetching meta-
data during deduplication, base chunks can be prefetched by
piggybacking on the routine operations during deduplication
without requiring extra I/Os.

Fortunately, if similar data chunks are detected by exploit-
ing both logical and physical locality, as suggested in Sec-
tion 3.1.4, due to redundancy locality, most of the containers
holding potential similar data chunks would be prefetched
during the metadata prefetching process in data deduplication.
As a result, potential similar chunks can be prefetched, i.e.,
piggybacked on the retrieval of the metadata to serve as po-
tential base chunks, thereby avoiding extra I/Os for reading
base chunks on the write path. Zhang et al. [50] employed
a similar base-chunk prefetching technique based on differ-
ent observations, but their approach can only be applied to
specific backup datasets (i.e., packed datasets containing sub-
stantial small files) and detects similar chunks only when
rewriting is applied. In contrast, our approach can be applied
to all backup datasets and can work without rewriting.

3.2.2 On the Read Path
During restore, base chunks of deltas also need to be read from
storage for delta decoding. If base chunks are prefetched along
with metadata during deduplication, they would be prefetched
along with other chunks (or deltas) during restore, without
requiring extra I/Os. However, when a data chunk refers to
an old (previously written) delta, the base chunk of this delta
may require extra I/Os during restore and decrease restore
performance. Data chunks that refer to old deltas whose base
chunks trigger read operations during restore are referred to
as base-fragmented chunks, which should be rewritten for
improved restore performance.

Existing approaches either are vulnerable to GC or require
extra I/Os. SDC [52] can identify base-fragmented chunks
by simulating the data restore process using container IDs
during backup. However, it requires knowledge of the con-
tainer IDs of the base chunks of referenced old deltas, which
is difficult to obtain. Storing container IDs of base chunks
along with deltas in containers is vulnerable to GC because
base chunks can move around due to GC. Storing fingerprints
of base chunks and obtaining their container IDs through the
fingerprint index and cache may incur a large number of extra
I/Os. Rewriting techniques, which are employed to identify
fragmented chunks for deduplication systems, face the same
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problem in identifying base-fragmented chunks because they
also need the container IDs of base chunks for calculating the
containers’ reuse ratios.

When excluding base chunks, the order in which data
chunks are processed during backup is the same as that during
restore. Thus, if the base chunk of a referenced old delta can
be directly found in the restore cache during restore and thus
does not require extra I/O, its fingerprint would also be di-
rectly found in the prefetched metadata during deduplication.
That is, base-fragmented chunks can be identified with the
assistance of the prefetched metadata during deduplication.

3.3 Fine-grained Redundancy Prohibited by
Rewriting

The rewriting technique declares infrequently reused
containers, which should not “share” redundant data with the
current backup to alleviate chunk fragmentation. To this end,
fragmented chunks need to be rewritten. To cooperate with
rewriting, data chunks in the infrequently reused containers
also cannot serve as base chunks for delta compression. How-
ever, existing rewriting techniques only consider duplicate
chunks when identifying infrequently reused containers, with-
out the consideration of similar chunks. In practice, infre-
quently reused containers may contain many similar chunks.
This will lead to a significant compression loss if these similar
chunks cannot serve as base chunks for delta compression.

Actually, delta compression can be considered a process
involving two steps. Specifically, the first step is to generate
a delta for the target chunk, which leads to two versions of
the target chunk: an encoded delta and an un-encoded one.
The second step is to remove the un-encoded target chunk.
If the target of delta compression is changed to previously
written chunks, rather than data chunks in the ongoing backup
as in the traditional delta compression method, there will be
two versions of a previously written chunk. If the un-encoded
one can be removed during GC, delta compression benefits
will be obtained from the data chunks in infrequently reused
containers without affecting the efficiency of rewriting.

4 Design and Implementation
4.1 LoopDelta Overview
LoopDelta is built on a typical deduplication strategy that
groups data chunks into containers and accesses containers
to prefetch metadata during deduplication to accelerate dupli-
cate detection. It aims to embed delta compression in inline
deduplication for highly efficient data reduction. The key idea
behind LoopDelta is the combined use of the following four
key techniques:

• Dual-locality-based Similarity Tracking. By exploit-
ing both the logical and physical locality based on the
observations in Section 3.1, dual-locality-based similari-
ty tracking identifies the containers that hold potential
similar chunks, as detailed in Section 4.2.

Figure 5: An overview of LoopDelta. The dashed arrows
point to key data structures residing in DRAM required for
the corresponding LoopDelta stages.

• Locality-aware Prefetching. For containers holding po-
tential similar chunks declared by the dual-locality-based
similarity tracking, when they are accessed during de-
duplication to prefetch metadata, data chunks are also
prefetched, i.e., piggybacked on the retrieval of the meta-
data to serve as potential base chunks, thereby avoiding
extra I/Os for reading base chunks during backup, as
detailed in Section 4.3.
• Cache-aware Filter. LoopDelta identifies base-

fragmented chunks with the assistance of recently
prefetched metadata during deduplication and rewrites
them to prevent extra I/Os for base chunks during
restore, as detailed in Section 4.4.
• Inversed Delta Compression. For data chunks whose

similar chunks are prefetched from infrequently reused
containers, LoopDelta delta-encodes the prefetched simi-
lar chunks relative to these data chunks while deferring
the removal of the data of these delta encoded chunks to
GC, as detailed in Section 4.5.

The overall workflow of the LoopDelta is illustrated in
Figure 5, which includes four key stages. In stage (1), the
backup stream is chunked and fingerprinted. Then, duplicate
chunks are identified by indexing fingerprints in stage (2). In
stage (2), potential base chunks and their sketches are loaded
into the potential base chunk cache.

In stage (3), a rewriting approach is adopted to identify
infrequently reused containers and fragmented chunks. This
stage can be skipped to disable rewriting. Note that base-
fragmented chunks are also identified in stages (2) and (3),
as detailed in Section 4.4. In stage (4), for all unique, frag-
mented, and base-fragmented chunks, LoopDelta detects their
similar chunks from the potential base chunk cache and per-
forms delta compression for them if their base chunks exist.
Finally, unremoved unique chunks and deltas are appended
to a container.

In LoopDelta, a container consists of a metadata section and
a data section, the same as that in [17, 53]. Data chunks and
deltas are stored in the data section, while their metadata such
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as fingerprints, chunk length, and positions in the container
are stored in the metadata section. We use a bitmap to specify
which ones in the container are stored as deltas. For deltas, the
metadata of their base chunks is also stored in the metadata
section. For data chunks, their sketches are stored along with
data chunks in the data section.

4.2 Dual-locality-based Similarity Tracking
The dual-locality-based similarity tracking is designed to i-
dentify similar chunks for delta-compressing the next backup.
To capture similar chunks with logical locality, it tracks da-
ta chunks and base chunks of delta-compressed chunks of
the ongoing backup. Meanwhile, to capture similar chunks
with physical locality, it tracks data chunks stored in the same
containers as the aforementioned data chunks.

Specifically, we define the reuse ratio of a container for
a backup as the fraction of data chunks in this container
referenced by this backup, the recorded chunk size

the container size , and use a con-
tainer reuse ratio monitor to keep track of the reuse ratio
of containers referenced by data chunks and base chunks of
delta-compressed chunks of the on-going backup. When the
backup completes, all containers holding potential similar
chunks are recorded in the container reuse ratio monitor and
are stored in a dense container list. Containers in this list
will be prefetched to provide potential similar chunks for
resemblance detection in the next backup.

Our approach for prefetching base chunks requires extra
transfer time, thereby decreasing backup throughput, as de-
tailed in the next subsection. To reduce this transfer time, only
containers holding a large number of potential similar chunks
can be recorded in the dense container list. Since containers
with a larger reuse ratio are likely to contain more potential
similar chunks for the next backup, we define a dense contain-
er threshold and only dense containers whose reuse ratios are
greater than this threshold are included in the dense container
list.

4.3 Locality-aware Prefetching
Locality-aware prefetching is designed to prefetch poten-
tial base chunks by piggybacking on routine operations for
prefetching metadata during deduplication. LoopDelta adopts
the duplicate detection strategy proposed by Zhu et al. [53],
which employs an on-disk fingerprint index combined with
an in-memory fingerprint cache and a Bloom filter for du-
plicate detection. Specifically, for each data chunk presented
for storage, its fingerprint is compared against a fingerprint
cache, and on a miss, a Bloom filter is checked to determine
whether the data chunk is likely to exist in the system. If true,
the on-disk fingerprint index is checked, and the metadata in
the corresponding container is prefetched into the fingerprint
cache. The fingerprints of the subsequent data chunks are like-
ly to be matched in the fingerprint cache due to redundancy
locality.

To prefetch potential base chunks by piggybacking on read

operations for prefetching metadata, the dense container list
of the last backup is loaded into memory to build a lookup
table at the beginning of a backup. For each container to be
accessed during deduplication, we check whether it exists in
the dense container list generated by the last backup. If true,
the whole container, including metadata and data chunks, is
prefetched for both deduplication and delta compression; oth-
erwise, only metadata are prefetched for deduplication. If the
whole container is prefetched, all data chunks in the container
as well as their sketches are inserted into the potential base
chunk cache for resemblance detection. In LoopDelta, only
non-delta-compressed chunks can serve as base chunks, as
suggested by [37]. Thus, deltas are not loaded into the poten-
tial base chunk cache. When eviction occurs, based on the
Least Recently Used (LRU) policy, data chunks and sketches
from a container are evicted from the potential base chunk
cache as a group.

Though locality-aware prefetching eliminates the seek and
rotational delays of I/Os for reading base chunks, it increa-
ses the transfer time for prefetching data chunks in dense
containers. The proposed dual-locality-based similarity track-
ing reduces this overhead by defining a dense container thres-
hold, as detailed in the last subsection. Prefetching potential
similar chunks according to a dense container list may be inef-
ficient as containers in the list might have been reclaimed by
GC, for which how to update the dense container list judicious-
ly to minimize the problem will be discussed in Section 4.6.
The previous technique for caching metadata on an SSD [1]
is orthogonal to LoopDelta and could be used in LoopDelta
to increase backup throughput.

4.4 Cache-aware Filter
Cache-aware filter is designed to identify base-fragmented
chunks, which will be rewritten to achieve better restore per-
formance. As introduced in Section 3.2.2, base-fragmented
chunks can be identified with the assistance of the prefetched
metadata during deduplication. Since the metadata prefetched
by the routine operations during deduplication are loaded
into the fingerprint cache, if the base chunk of a referenced
previously written delta can be directly found in the restore
cache during restore and thus does not require extra I/O, its
fingerprint would also be directly found in the fingerprint
cache in the fingerprint indexing stage.

When rewriting is applied, even if a base chunk’s finger-
print can be directly found in the fingerprint cache, this base
chunk can still trigger I/Os during restore. This is because a
container whose metadata are prefetched into the fingerprint
cache might be identified as an infrequently reused container
by the rewriting approach in the next stage, i.e., stage (3) in
Figure 5, so the data chunks it containers cannot serve as
base chunks. Accordingly, the cache-aware filter adopts a
two-step approach to identify base-fragmented chunks. First,
it identifies the base-fragmented chunks referring to deltas
whose base chunks do not exist in the fingerprint cache during
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fingerprint indexing. Then, it identifies the base-fragmented
chunks referencing to deltas whose base chunks exist in the
infrequently reused containers.

Specifically, in the fingerprint indexing stage, if a data
chunk (say, CK) refers to a previously-written delta (say,
Delta_old), the fingerprint of the delta’s base chunk is fetched
from the fingerprint cache and compared against the finger-
print cache. If the fingerprint does not exist in the fingerprint
cache,CK is identified as a base-fragmented chunk; otherwise,
the detected container ID (say, CID_base) of the base chunk
is associated with CK. In the stage of identifying infrequently
reused containers, if CK is identified as a fragmented chunk
by the rewriting approach, there is no need to identify whether
it is a base-fragmented chunk because it will be rewritten; oth-
erwise, if CK is not a fragmented chunk, we further check
whether the container whose ID is CID_base is selected to
avoid being deduplicated against by the rewriting approach. If
true, CK is identified as a base-fragmented chunk; otherwise,
CK is identified as a duplicate chunk.

4.5 Post-deduplication Delta Compression
Inversed Delta Compression. The data chunks in the infre-
quently reused containers cannot serve as base chunks for
delta compression; otherwise, the efficiency of the rewriting
technique would be reduced. Inversed delta compression is
designed to exploit the benefits of delta compression pro-
hibited by rewriting. For a new chunk (say, N) that has a
similar chunk (say, S) detected from the potential base chunk
cache, the traditional direct delta compression approach delta-
encodes N relative to S and generates a delta (say, Deltan,s).
Then, Deltan,s is stored instead of N to achieve data reduction.

On the contrary, inversed delta compression delta-encodes
S relative to N and generates a delta (say, Deltas,n), and then
stores Deltas,n along with N. Since inversed delta compre-
ssion generates an additional encoded S, the un-encoded S in
the infrequently reused container will be removed during the
next GC. It should be noted that delta-decoding a delta gene-
rated by inversed delta compression usually does not require
extra I/Os for reading the base chunk because the delta (e.g.,
Deltas,n) is stored together with the base chunk (e.g., N) in
the same container, except that GC may occasionally disperse
them to different containers.

Inversed delta compression increases the size of the data
to be stored because it needs to store additional deltas, there-
by increasing the I/O overheads for writing data relative to
direct delta compression. Since LoopDelta is I/O-intensive,
it only performs inversed delta compression for data chunks
whose base chunks are prefetched from infrequently reused
containers. Besides, inversed delta compression also causes
more duplicate chunks to be removed during GC, which will
be discussed in Section 4.6.
Delta Compression Workflow. For each unique, fragment-
ed, and base-fragmented chunk, LoopDelta detects its base
chunk from the potential base chunk cache and performs ei-

Table 1: Workload characteristics of the tested datasets.
Name Size Workload descriptions Key property

RDB 1080GB
200 backups of the redis key-value
store database.

Multi-version
inheritance

WEB 330GB
120 days’ snapshots of the website:
news.sina.com. Snapshots of each
day are combined into a tar file.

Self-reference
duplicate and
similar chunks

CHM 284GB

100 versions of source codes of
Chromium project from v84.0.4110
to v86.0.4215. Each version is
combined into a tar file.

SYN 335GB
180 versions of synthetic datasets
generated by simulating file create
/delete/modify operations.

Multi-version
inheritance

ther direct or inversed delta compression according to whether
rewriting is disabled or not. If it is disabled, LoopDelta only
performs direct delta compression; otherwise, data chunks in
the potential base chunk cache are divided into two categories:
the ones prefetched from frequently reused containers and
those prefetched from infrequently reused containers. When
detecting base chunks, LoopDelta prefers the data chunks
prefetched from frequently reused containers. Only if no such
data chunk is detected, can data chunks prefetched from infre-
quently reused containers, if any, be selected as base chunks.

4.6 Garbage Collection
In the GC process, for a data chunk with multiple physical
instances, the system marks the most recently written one as
the live chunk. The delta-encoded chunks for inversed delta
compression are removed in this process. GC may reduce the
efficiency of locality-aware prefetching because containers
in the dense container list generated by the proposed dual-
locality-based similarity tracking in the last backup might
have been reclaimed. To solve the problem, we update the
dense container list to track potential base chunks after GC.
Note that each backup stream has only one list to be updated.
Thus, compared with GC, overheads for updating the dense
container lists are negligible.

Moreover, inversed delta compression causes more dupli-
cate chunks to be removed during GC, and the extra over-
head introduced by inversed delta compression are negligible.
This is because GC is time-consuming as it involves a large
number of I/Os and the deduplication phase is not the bottle-
neck [10, 14, 17, 40].

5 Performance Evaluation
5.1 Evaluation Setup
Experimental Platform. We perform our evaluation experi-
ments on a workstation running Ubuntu 18.04 with an Intel
Xeon(R) Silver 4215R CPU @ 3.20GHz, 32GB memory,
Samsung 860 PRO SSDs, and Seagate 7200RPM SATA III
HDDs.
System Configurations. For all approaches under evaluation,
deduplication is configured to use the Rabin-based chunking
algorithm [33,34] with the minimum, average, and maximum
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(a) LoopDelta without Capping
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(b) LoopDelta with Capping

Figure 6: Percentage of missed similar chunks as the dense
container threshold varies from 0 through 0.9 on the four
datasets. The Capping’s capping level in this test is 15, namely,
a 20MB segment (a sequence of consecutive data chunks)
refers to at most 15 containers [22].

chunk sizes of 2KB, 8KB, and 64KB respectively for chunk-
ing and the SHA1 hash function for fingerprinting. The finger-
print cache has 256 slots to hold prefetched metadata. During
restore, the restore cache is configured as a 512-container-
sized (2GB) LRU cache.

For delta compression, we use Odess [54] for finding simi-
lar chunks and Xdelta [25] for delta encoding. For data chunks
neither deduplicated nor delta-compressed, we compress them
with a local compressor called ZSTD [13] before writing them
into a container, the same as in [32]. The the container size
is set to 4MB. To simulate backup and restore scenarios, an
HDD is used as the backup space to store ingested data, and
an SSD is used as the user space to store the original datasets.
Performance Metrics. We use three metrics to evaluate the
performance of LoopDelta. The compression ratio is used to
measure the total data reduction achieved by any compression
technologies, including deduplication, delta compression, and
local compression. It is calculated as original_bytes

post_compression_bytes , so
a compression ratio of greater than 1 means data reduction.

The speed factor (MB/container-read) is defined as the
mean data size restored per container read [7, 8, 22], which is
used to measure the restore performance. A larger speed fac-
tors indicates better restore performance. The backup through-
put is measured by the throughput at which the input data
are deduplicated, delta compressed, and written to the disk.
We run each experiment five times to obtain a stable and
average value of the backup throughput. Additionally, the
shown speed factor is the average of the last 20 backups and
the shown backup throughput is the average of the last 10
backups.
Evaluated Datasets. Four datasets, shown in Table 1 with
their key characteristics, are used for performance evaluation.
These datasets represent various typical workloads, including
database snapshots, website snapshots, an open-source code
project, and a synthetic dataset.

5.2 A Performance Study of LoopDelta
5.2.1 Dense Container Threshold
The dense container threshold can affect the number of de-
tected similar chunks because it prevents containers whose
reused ratios are smaller than it from being prefetched to

supply potential similar chunks. Figure 6(a) suggests that,
without rewriting, the percentage of similar chunks missed by
LoopDelta increases quickly with the dense container thres-
hold. One exception is the WEB dataset, where the percent-
age of missed similar chunks is low when the dense container
threshold is small than 0.6. This is because this dataset con-
tains substantial self-referenced duplicate chunks and most of
the containers’ reuse ratios are greater than 0.5.

Figure 6(b) suggests that Capping [22], a state-of-the-art
rewriting approach introduced in Section 2.1, significantly
decreases the percentage of missed similar chunks, especially
when the dense container threshold is smaller than 0.4. By in-
creasing the sequential layout of the current backup, rewriting
improves both the logical and physical locality for the current
and subsequent backups. This is why the percentage is low
when the dense container threshold is small than 0.4. As the
threshold increases beyond this, some containers holding data
chunks that are inherited from the last backup are prevented
from being prefetched for resemblance detection and thus the
percentage of missed similar chunks grows quickly. When
the dense container threshold is 0.3, LoopDelta only misses
1%-5% of similar chunks on the four datasets.

The dense container threshold can also affect backup
throughput because it is related to two categories of I/O
overheads: (1) transfer time for prefetching dense containers,
which decreases as the threshold increases because fewer
containers will be prefetched, and (2) container-writeback
time saved by delta compression, which decreases as the
threshold increases because fewer chunks will be delta com-
pressed.

Figure 7 suggests that, except for the SYN dataset, the back-
up throughput hits a maximum and then either decreases or
flattens out. This is because when the dense container thres-
hold is very low, almost all containers holding potential simi-
lar chunks will be prefetched, leading to significant extra trans-
fer time that exceeds the amount of container-writeback time
saved by delta compression and resulting in very low through-
put. This trend continues with the increase in dense container
threshold until the decrease in extra transfer time for prefetch-
ing is offset by the decrease in the container-writeback time
saved by delta compression. Beyond this point, the extra trans-
fer time for prefetching becomes either greater than or equal
to the decrease in container-writeback time saved by delta
compression, causing the throughput to decrease or remain
unchanged.

The SYN dataset contains only a few similar chunks that
can be delta-compressed, and thus the container-writeback
time saved by delta compression has a limited impact on
backup throughput. Consequently, the backup throughput in-
creases with the dense container threshold. Considering the
two metrics (backup throughput and compression ratio) as a
whole, in what follows, when rewriting (Capping) is applied,
the dense container threshold is set to 0.3 as suggested by
Figure 6(b) and discussed earlier.
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Figure 7: Backup throughput as the dense container threshold varies from 0 through 0.9 on the four datasets. LD refers to
LoopDelta without rewriting and LD-Cap15 refers to LoopDelta with Capping of a capping level of 15.

Table 2: Compression ratio and speed factor for LoopDelta
(LD), with and without the cache-aware filter (CAF), and with
and without rewriting (Capping), for the four datasets.

Dataset Approach
Compression
ratio w/o GC Speed factor

RDB

LD w/o CAF 142.6 2.73
LD 139.2 (-2.4%) 2.81 (+2.9%)
LD-Cap15 w/o CAF 68.4 3.1
LD-Cap15 60.9 (-11%) 4.67 (+50.6%)

WEB

LD w/o CAF 112.2 2.81
LD 105.7 (-5.8%) 2.96 (+5.3%)
LD-Cap15 w/o CAF 51.2 6.84
LD-Cap15 46.9 (-8.4%) 7.64 (+11.7%)

CHRO

LD w/o CAF 70.7 2.66
LD 70.3 (-0.6%) 2.73 (2.6%)
LD-Cap15 w/o CAF 20.8 6.09
LD-Cap15 20.4 (-1.9%) 8.12 (+33.3%)

SYN

LD w/o CAF 33.9 0.84
LD 33.8 (-0.3%) 0.85 (+1.2%)
LD-Cap15 w/o CAF 17.1 1.38
LD-Cap15 15.4 (-9.9%) 2.04 (+47.8%)

5.2.2 Cache-aware Filter (CAF)

This subsection investigates the efficiency of the cache-aware
filter (CAF). Since base-fragmented chunks identified by CAF
will be rewritten, and rewritten data will be removed during
GC. We do not run GC to show the trade-off between the
decrease of compression ratio and the increase of speed factor
caused by CAF.

Table 2 suggests that CAF slightly increases the speed
factor (1.2%-5.3%, average of 3%) when rewriting is not
applied, and it significantly increases the speed factor when
rewriting is applied (by up to 50.6%, average of 35.9%), at
the expense of a modest decrease (0.3%-11%, average of
4.8%) in compression ratio. CAF reduces the compression
ratio because base-fragmented chunks are rewritten and not
removed from storage as GC is not run. The decrease in
compression ratio caused by CAF on the WEB and CHRO
datasets is relatively small compared to the other two datasets.
This is because these two datasets are tar-type files containing
substantial small files, so most of their rewritten chunks can
be delta-compressed.

A larger fingerprint cache can help to identify more base-
fragmented chunks at the cost of increased computational
overheads. Since the bottleneck of LoopDelta lies in I/O
overheads, the computational overhead of CAF has almost
no impact on backup throughput. We found that, most base-
fragmented chunks can be identified by the first few slots at

0%
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SYNCHROWEBRDB
Dataset

 Inversed delta compression

 Direct delta compression

Figure 8: Proportion of compression ratio achieved by direct
and inversed delta compression with different capping level
on the four datasets. The three bars on each dataset from left
to right represent the three capping levels of 10, 15, and 20,
respectively.
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Figure 9: Time cost of GC for LD-Cap10 with and without
inversed delta compression on the RDB and WEB datasets.

the front of the fingerprint cache due to locality, especially
when rewriting is applied. To reduce the computational over-
head, we suggest using the first 20 slots of the fingerprint
cache to identify base-fragmented chunks when rewriting is
applied and using the first 64 slots when rewriting is not ap-
plied. This strategy does not compromise restore performance
because base-fragmented chunks that are not identified will
still be recognized due to their container IDs not being found
in the fingerprint cache.

5.2.3 Inversed Delta Compression
This subsection investigates the efficiency of inversed delta
compression. Figure 8 suggests that the compression gains
achieved by inversed delta compression account for 2.2%-
16.4% of the combined compression gains by direct and in-
versed delta compression. For example, for LD-Cap10, the
compression ratio achieved by inversed delta compression
accounts for 15.3%, 5%, 16.4%, and 5.3% respectively of that
achieved jointly by direct and inversed delta compression on
the four datasets.

Inversed delta compression causes more data to be stored
because it needs to store the deltas of data chunks being delta-
encoded. For LD-Cap10, extra stored data caused by inversed
delta compression account for 2.1%, 0.8%, 2.7%, and 0.1% of
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Figure 10: Comparison of compression ratio achieved by the eleven approaches on the four datasets.

the total stored data on the four datasets respectively, which
are marginal. This is because the size of a delta is often much
smaller than that of a data chunk compressed with the local
compressor, e.g., the former is 1/26-1/10 of the latter in size
in our test.

Inversed delta compression also causes more data chunks
to be removed during GC. Figure 9 compares the time cost
of LD-Cap10 with and without inversed delta compression
on the RDB and WEB datasets. To accumulate more deltas
generated by inversed delta compression, we run GC after
every 5 backups from the 20th backup. The results in Figure
9 suggest that inversed delta compression has a negligible
impact on the time cost of GC because the bottleneck of GC
lies in marking and moving forward the live chunks, which
requires a large number of I/Os.

5.3 Comprehensive Evaluation of LoopDelta
In this section, we comprehensively evaluate the performance
of LoopDelta in terms of three key metrics: compression
ratio, speed factor, and backup throughput. Five data reduc-
tion approaches are also tested: Dedup, Dedup-Cap, MeGA,
SIDC, and Greedy. Specifically, Dedup is a deduplication
approach proposed by Zhu et al. [53] without rewriting, and
Dedup-Cap refers to Dedup with Capping. MeGA, SIDC, and
Greedy have been discussed in Section 3.1. Dedup-Cap# and
LD-Cap# represent Dedup-Cap and LD-Cap with a different
capping level of #.

MeGA’s restore performance and backup throughput are
not evaluated because it requires additional offline and service-
disruptive operations. In contrast, LoopDelta focuses on
adding delta compression to inline deduplication systems in a
non-service-disruptive manner. In evaluations of this section,
we use a 20-container-sized base-chunk cache for LD-Cap#,
and a 150-container-sized base-chunk cache for MeGA, SIDC,
Greedy, and LD. With rewriting (Capping), a 20-container-
sized cache can capture almost all similar chunks (not shown
due to space limit).
Compression Ratio. In this test, we run GC after each back-
up from the 20th backup. Figure 10 suggests that LD achieves
a compression ratio comparable to SIDC and Greedy and
higher than MeGA on the RDB, CHRO, and SYN datasets.
This means that LD can detect most potential similar chunks
by exploiting both logical and physical locality. On the WEB
dataset, LD achieves the highest compression ratio because it
can detect more highly similar chunks than the other approach-
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Figure 11: Comparison of speed factor achieved by the ten
approaches on the four datasets.

es on the datasets containing self-referenced similar chunks.
Specifically, LD outperforms MeGA, SIDC, and Greedy by
1.55×, 1.56×, and 1.5×, respectively, on the WEB dataset.
Furthermore, LD achieves significantly higher compression
ratios than Dedup, with improvements of 3.81× (RDB), 8.9×
(WEB), 10.97× (CHRO), and 1.27× (SYN).

Additionally, LD-Cap15 achieves 4.68× (RDB), 7.42×
(WEB), 10.51× (CHRO), and 1.24×(SYN) higher compre-
ssion ratio than Dedup-Cap15, respectively. Rewriting de-
creases the compression ratio of LD because a small number
of similar chunks are missed, as analyzed in Section 5.2.1.
One exception is the RDB dataset, where rewriting increases
the compression ratio. This is because rewriting causes the
rewritten chunks to be detected as base chunks. Compared
to the data chunks written much earlier, rewritten chunks are
more similar to the data chunks in the current backup. In
our tests, the average DCE of LD and LD-Cap15 are 0.9398
and 0.9591, respectively. Note that while the total amount of
redundancy eliminated by LD-Cap15 may not be significantly
more than that eliminated by LD, compressing even a small
amount of additional data can lead to a significant increase in
compression ratio when the compression ratio is very high.

Note that LD-Cap# may achieve smaller deduplication gain-
s and more delta compression gains than the other approaches.
This is because LD-Cap# rewrite fragmented chunks and
perform delta compression for them, which reduces dedup-
lication gains but increases delta compression gains.
Speed Factor. Figure 11 suggests that LD achieves the high-
est speed factor among all approaches without rewriting and
LD-Cap# also achieve a higher speed factor than Dedup-
Cap#. Specifically, LD achieves 3.48× (RDB), 3.47× (WEB),
3.57× (CHRO), and 1.24× (SYN) higher speed factor than
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Figure 12: Comparison of backup throughput achieved by the
ten approaches on the four datasets.

Dedup respectively, and LD-Cap15 achieves 1.68× (RDB),
2.65× (WEB), 3.17× (CHRO), and 1.2× (SYN) higher speed
factor than Dedup-Cap15 respectively.

Generally, approaches combining deduplication and delta
compression, i.e., SIDC, Greedy, and LD, achieve a higher
speed factor than Dedup, which only performs deduplication.
This is because delta compression has the potential to increase
restore performance, which mainly depends on the number of
read-in containers during restore. Delta compression decrea-
ses the number of written containers during backup and the
number of read-in containers during restore. However, if base
chunks require extra I/Os during restore, the improvement in
speed factor resulting from delta compression will decrease.
In LD, base chunks do not require extra I/Os during restore,
and this is ensured by CAF.

Greedy detects similar chunks without considering the po-
sitions of base chunks. Thus, base chunks in it may require
substantial I/Os during restore and this will lead to a lower
speed factor, e.g., on the WEB dataset. SIDC detects similar
chunks stored along with duplicate chunks, and thus, the base
chunks of the delta-compressed chunks in it do not require
extra I/Os during restore. However, SIDC fails to identify
base-fragmented chunks. This is why LD achieves a slightly
higher speed factor than SIDC on the RDB, CHRO, and SYN
datasets. LD also achieves a higher speed factor than SIDC
on the WEB dataset because it achieves higher compression
ratio than SIDC, which means fewer read-in containers during
restore.
Backup Throughput. Figure 12 suggests that LD and LD-
Cap# achieve lower backup throughput than Dedup and
Dedup-Cap# respectively on the RDB and SYN datasets and
higher backup throughput than them on the WEB and CHRO
datasets. Specifically, LD achieves 3.6% and 27.1% lower
backup throughput than Dedup on the RDB and SYN datasets,
and 24% and 10.5% higher backup throughput than Dedup
on the WEB and CHRO datasets. Meanwhile, LD-Cap15
achieves 16.5% and 16.3% lower backup throughput than
Dedup-Cap15 on the RDB and SYN datasets, and 13.9%
and 13.5% higher backup throughput than Dedup-Cap15 on
the WEB and CHRO datasets. Additionally, LD (LD-Cap15)
achieves 1.3×∼3.7× (2.3×∼9.9×) higher backup through-
put than SIDC and Greedy on the four datasets. This is be-

cause LoopDelta eliminates the seek and rotational delays of
I/Os for reading base chunks.

Compared with deduplication-based backup systems, post-
deduplication delta compression adds additional computation-
al overheads, but the backup throughput is mainly decided
by I/O overheads. In LoopDelta, multiple tasks in its work-
flow involve I/Os, including (1) looking up the fingerprint
index, (2) prefetching metadata, (3) prefetching potential base
chunks, (4) updating the fingerprint index, and (5) writing
back containers. For datasets with low redundancy, such as
the WEB and CHRO datasets, there are more unique chunks
that lead to more I/Os in tasks (4) and (5), making them
the performance bottleneck. Delta compression increases the
backup throughput on such datasets because it alleviates the
performance bottleneck by reducing I/Os in tasks (5). For
datasets with high redundancy, such as the RDB and SYN
datasets, there are more duplicate chunks that result in more
I/Os in tasks (1), (2), and (3), making them the performance
bottleneck. Delta compression decreases backup throughput
because it aggravates the performance bottleneck by increas-
ing I/Os in task (3).

To sum up, LoopDelta achieves a comparable or higher
compression ratio, higher restore performance, and higher
backup throughput than the other post-deduplication delta
compression approaches. It also increases the compression
ratio by 1.24∼10.97 times on top of deduplication, without
notably affecting backup throughput, and improves the restore
performance by 1.2∼3.57 times.

6 Conclusion
In this paper, we present LoopDelta to embed delta compre-
ssion in inline deduplication. The key idea of LoopDelta is
the combined use of four key techniques, i.e., dual-locality-
based similarity tracking to detect similar chunks, locality-
aware base prefetching to avoid extra I/Os for reading base
chunks on the write path, cache-aware filter to avoid extra
I/Os for reading base chunks on the read path, and inversed
delta compression to perform delta compression for similar
chunks prefetched from infrequently reused containers. The
experimental results indicate that LoopDelta significantly in-
creases compression ratio and improves restore speed over
deduplication, without notably affecting backup throughput.
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TC-GNN: Bridging Sparse GNN Computation and Dense Tensor Cores on GPUs

Yuke Wang, Boyuan Feng, Zheng Wang, Guyue Huang, and Yufei Ding
University of California, Santa Barbara

Abstract
Recently, graph neural networks (GNNs), as the backbone
of graph-based machine learning, demonstrate great success
in various domains (e.g., e-commerce). However, the perfor-
mance of GNNs is usually unsatisfactory due to the highly
sparse and irregular graph-based operations. To this end, we
propose TC-GNN, the first GNN acceleration framework
based on GPU Tensor Core Units (TCUs). The core idea is
to reconcile the “Sparse” GNN computation with the high-
performance “Dense” TCUs. Specifically, we conduct an in-
depth analysis of the sparse operations in mainstream GNN
computing frameworks. We introduce a novel sparse graph
translation technique to facilitate TCU processing of the
sparse GNN workload. We implement an effective CUDA
core and TCU collaboration design to fully utilize GPU re-
sources. We integrate TC-GNN with the PyTorch framework
for high programmability. Rigorous experiments show an av-
erage of 1.70× speedup over the state-of-the-art DGL frame-
work across various models and datasets.

1 Introduction

Over the recent years, with the increasing popularity of graph-
based learning, graph neural networks (GNNs) [27, 51, 59]
become dominant in the computing of essential tasks across
a wide range of domains, like e-commerce, financial ser-
vices, and etc. Compared with standard methods for graph
analytics, such as random walk [18, 22, 50] and graph lapla-
cians [8, 32, 33], GNNs highlight themselves with signifi-
cantly higher accuracy [27, 54, 59] and better generality [19].
From the computation perspective, GNNs feature an inter-
leaved execution phase of both graph operations (scatter-and-
gather [17]) at the Aggregation phase and Neural Network
(NN) operations (matrix multiplication) at the Update phase.
Our experimental studies further show that the aggregation
phase which involves highly sparse computation on irregular
input graphs generally takes more than 80% of the running
time for both GNN training and inference. Existing GNN

frameworks, e.g., Deep Graph Library [55] and PyTorch Geo-
metric [13], are mostly built upon the popular NN frameworks
that are originally optimized for dense operations, such as gen-
eral matrix-matrix multiplication (GEMM). To support sparse
computations in GNNs, their common strategy is to incor-
porate sparse primitives (such as cuSPARSE [38]) for their
backend implementations. However, cuSPARSE leverages
the sparse linear algebra (LA) algorithm which involves lots
of high-cost indirect memory accesses on non-zero elements
of a sparse matrix. Therefore, cuSPARSE cannot enjoy the
same level of optimizations (e.g., data reuse) as its dense
counterpart, such as cuBLAS [40]. Moreover, cuSPARSE is
designed to only utilize CUDA cores. Therefore, It cannot
benefit from advancements in GPU hardware features, like
Tensor Core Units (TCUs) on the recent NVIDIA Ampere and
Hopper GPUs. Such a design is also the trend of many other
AI-tailored accelerators/units (e.g., Google TPU [24] and Ma-
trix Core [2] on AMD GPUs) and can significantly boost
the performance of dense LA algorithms (e.g., GEMM and
Convolution) in most conventional deep-learning applications
(e.g., CV [20] and NLP [10]).

This work focuses on exploring the potential of TCUs
for accelerating such GNN-based graph learning and our de-
sign/optimization principles will also benefit other similar AI
hardware [2, 24] for sparse deep-learning workloads. We re-
mark that making TCUs effective for general GNN computing
is a non-trivial task. Our initial study shows that naively apply-
ing the TCU to sparse GNN computation would even result
in inferior performance compared with the existing sparse im-
plementations on CUDA cores. There are several challenges.
First, directly resolving the sparse GNN computing problem
with the pure dense GEMM solution is impractical due to the
extremely large memory cost (O(N2), where N is the number
of nodes). Besides, traversing the matrix tiles already known
to be filled with all-zero elements would cause excessive un-
necessary computations and memory access. Second, simply
employing TCUs to process non-zero matrix tiles of the sparse
graph adjacency matrix would still waste most of the TCU
computation and memory access efforts. This is because TCU
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input matrix tiles are defined with fixed dimension settings
(e.g., height(16)×width(8)), whereas the non-zero elements
of a sparse graph adjacency matrix are distributed irregularly.
Thus, it requires intensive zero-value padding to satisfy such
a rigid input constraint. Third, although the recent CUDA
release update enables TCUs to exploit the benefit of cer-
tain types of sparsity [37], it only supports blocked SpMM,
where non-zero elements must first fit into well-shaped blocks
and the number of blocks must be the same across different
rows. Such an input restriction makes it hard to handle highly
irregular sparse graphs in real-world GNN applications.

To this end, we introduce, TC-GNN1, the first TCU-based
GNN acceleration design on GPUs. Our key insight is to let
the sparse input graph fit the dense computation of TCUs. At
the input level, instead of exhaustively traversing all sparse
matrix tiles and determining whether to process each tile, we
develop a new sparse graph translation (SGT) technique that
can effectively identify those non-zero tiles and condense non-
zero elements from these tiles into fewer number of “dense”
tiles. Our major observation is that neighbor sharing is very
common among nodes in real-world graphs. Therefore, apply-
ing SGT can effectively merge the unnecessary data loading
of the shared neighbors among different nodes to avoid high-
cost memory access. SGT is generic to any kind of sparse
pattern of input graphs and can always yield the correct results
as the original sparse algorithm. At the GPU kernel level, for
efficiently processing GNN sparse workloads, TC-GNN ex-
ploits the benefits of CUDA core and TCU collaboration.
The major design idea is that the CUDA core, which is more
powerful at fine-grained thread-level execution, would be a
good candidate for managing memory-intensive data access.
While TCU, which is more powerful in handling simple arith-
metic operations (e.g., multiplication and addition), would
be well-suited for compute-intensive GEMM on dense tiles
generated from SGT. At the framework level, we integrate
TC-GNN with the popular PyTorch [49] framework. Thereby,
users only need to interact with their familiar PyTorch pro-
gramming environment by using TC-GNN APIs. This can
significantly reduce extra learning efforts, and improve user
productivity and code portability.

To sum up, we summarize our contributions as follows:

• We conduct a detailed analysis (§3) of existing solutions
(e.g., SpMM on CUDA cores) and identify the potentials
of TCUs for accelerating sparse GNN workloads.

• We introduce a sparse graph translation technique (§4.1).
It can make the sparse and irregular GNN input graphs
easily fit the dense computing of TCUs for acceleration.

• We build a TCU-tailored algorithm (§4.2) and GPU ker-
nel design (§4.3) for CUDA core and TCU collaboration
on GPUs to handle different sparse GNN computation.

1https://github.com/YukeWang96/TC-GNN_ATC23.git
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Figure 1: GNN General Computation Flow.

• Extensive experiments show TC-GNN achieves 1.70×
speedup on average over the state-of-the-art GNN com-
puting framework, Deep Graph Library, across various
mainstream GNN models and dataset settings.

2 Background

2.1 Graph Neural Networks
Graph neural networks (GNNs) are an effective tool for graph-
based machine learning. The detailed computing flow of
GNNs is illustrated in Figure 1. GNNs basically compute
the node feature vector (embedding) for node v at layer k+1
based on the embedding information at layer k (k ≥ 0), as
shown in Equation 1,

a(k+1)
v = Aggregate(k+1)(h(k)u |u ∈ N(v)∪h(k)v )

h(k+1)
v = Update(k+1)(a(k+1)

v )
(1)

where h(k)v is the embedding vector for node v at layer k; a(k+1)
v

is the aggregation results through collecting neighbors’ in-
formation (e.g., node embeddings); N(v) is the neighbor set
of node v. The aggregation method and the order of aggre-
gation and update could vary across different GNNs. Some
methods [19, 27] just rely on the neighboring nodes while
others [54] also leverage the edge properties that are com-
puted by applying vector dot-product between source and
destination node embeddings. The update function is gen-
erally composed of standard NN operations, such as a fully
connected layer or a multi-layer perceptron (MLP) in the form
of w ·a(k+1)

v +b, where w and b are the weight and bias param-
eters, respectively. The common choices for node embedding
dimensions are 16, 64, and 128, and the embedding dimension
may change across different layers. After several iterations
of aggregation and update (i.e., several GNN layers), we will
get the output feature embedding of each node, which can be
used for various downstream graph learning tasks, such as
node classification [11, 16, 25] and link prediction [6, 28, 53].

The sparse computing in the aggregation phase is generally
formalized as the sparse-matrix dense-matrix multiplication
(SpMM), as illustrated in Figure 2a, and is handled by many
sparse libraries (e.g., cuSPARSE [38]) in many state-of-the-art
GNN frameworks [55, 57]. These designs only count on GPU
CUDA cores for computing, which waste the modern GPUs
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with diverse computing units, such as the Tensor Core Unit
(TCU). Specifically, we formalized the neighbor aggregation
as SpMM-like operations (Equation 2)

X̂ = (FN×N ⊙AN×N) ·XN×D) (2)

where A is the graph adjacency matrix stored in CSR format.
X is a node feature embedding matrix stored in dense format.
N is the number of nodes in the graph, and D is the size of
node feature embedding dimension; ⊙ is the elementwise
multiplication and · is the standard matrix-matrix multiplica-
tion; F is the edge feature matrix in CSR format and can be
computed by Sampled Dense-Dense Matrix Multiplication
(SDDMM)-like operations (Equation 3 and Figure 2b).

F = (XN×D ·XT
N×D)⊙AN×N (3)

Note that the computation of F is optional in GNNs, which is
generally adopted by the Attention-based Graph Neural Net-
work in PyTorch [51] for identifying more complicated graph
structural information. Other GNNs, such as the Graph Convo-
lutional Network [27] and Graph Isomorphism Network [59],
only use the adjacency matrix for neighbor aggregation.

2.2 GPU Tensor Core
In the most recent GPU architectures (since Volta [43]),
NVIDIA announced a new type of computing unit, Tensor
Core Unit (TCU), for accelerating dense deep-learning opera-
tions (e.g., Dense GEMM). A GPU Streaming-Multiprocessor
(w/ TCU) is illustrated in Figure 3. Note that FP64, FP32, INT,
and SFU are for double-precision, single-precision, integer,
and special function units, respectively. Different from scalar
computation on CUDA cores, TCU provides tile-based matrix-
matrix computation primitives on register fragments, which
can deliver more than 10× throughput improvement. In par-
ticular, TCU supports the compute primitive of D = A ·B+C,
where A and B are required to be a certain type of precision
(e.g., half, TF-32), while C and D are stored in FP32. De-
pending on the data precision and GPU architecture version,
the matrix size (MMA shape) of A(M×K), B(K ×N), and
C(M ×N) should follow some principles [41]. For exam-
ple, TF-32 TCU computing requires M = N = 16 and K = 8.
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Figure 3: A Subcore of GPU SM with TCUs.

Listing 1: WMMA APIs for TCUs in CUDA C.
1 wmma::fragment<matrix_a, M, N, K, tf32, row_major> a_frag;
2 // Load tiles (global/shared mem. -> register fragments).
3 wmma::load_matrix_sync(a_frag, A, M);
4 // Execute GEMM on loaded tiles on register fragments.
5 wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
6 // Move results (register fragments -> global/shared mem).
7 wmma::store_matrix_sync(C, c_frag, N, mem_row_major);

In the recent CUDA release (>=11.0) on Ampere (sm>=80),
TF-32 serves as a good alternative to float/double on TCU-
based GPU computing for modern deep-learning applications,
according to NVIDIA’s in-depth studies [45].

Different from the CUDA cores that operate at the thread
level (e.g., allowing the “if” branch among threads), TCU
supports only the operation at the warp level (e.g., forbidding
the “if” branch among threads within a warp). Before calling
TCUs, all registers in a warp need to collaboratively store ma-
trix tiles into a new memory hierarchy Fragment [48], which
allows data sharing across registers. This intra-warp sharing
provides opportunities for fragment-based memory optimiza-
tions. TCU can be utilized in several ways. The simplest way
is to call cuBLAS [40] by using the cublasSgemmEX API. The
second way is to call the Warp Matrix Multiply-Accumulate
(WMMA) (nvcuda::wmma) API [47] in CUDA C to operate
TCUs directly with four major operations (Listing 1).

Since the appearance of the TCU, research efforts have
been devoted to accelerating deep-learning (DL) workloads
with TCUs. Ang and Simon [31] leverage 1-bit GEMM ca-
pability on Turing TCUs for accelerating binary Neural Net-
work inference. Boyuan et al. [12] introduce GEMM-based
scientific computing on TCUs with extended precision and
high performance. Yuke et al. [56] treat batched quantized
GNNs (partitioning large graphs into small graphs as batches)
as batched dense GEMM computation and accelerate it on
TCUs for inference. These prior efforts use TCUs in the dense
DL applications that TCU is initially designed for, while TC-
GNN jumps out of the scope defined by TCU designers and
accelerates the sparse full-graph GNNs using TCUs.

3 Motivation

In this section, we will discuss the major technical thrust for us
to leverage TCUs for accelerating sparse GNN computation.
We use the optimization of SpMM as the major example in
this discussion, and the acceleration of SDDMM would also
benefit from similar optimization principles.
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Table 1: Profiling of GCN Sparse Operations.

Dataset Aggr. (%) Update (%) Cache(%) Occ.(%)
Cora 88.56 11.44 37.22 15.06
Citeseer 86.52 13.47 38.18 15.19
Pubmed 94.39 5.55 37.22 16.24

3.1 SpMM on CUDA cores

As the major component of sparse linear algebra opera-
tion, SpMM has been incorporated in many off-the-shelf li-
braries [1, 3, 5, 21, 38]. The close-sourced cuSPARSE [38]
library developed by NVIDIA is the most popular solution
and it can deliver state-of-the-art performance for most GPU-
based SpMM computation. cuSPARSE has also been widely
adopted by many GNN frameworks, such as Deep Graph Li-
brary (DGL) [55], as the backend for sparse operations. To
understand its characters, we profile DGL on one layer of a
GCN [27] model (neighbor aggregation + node update) on
NVIDIA RTX3090. We report two key kernel matrices for
only neighbor aggregation kernel, including L1/texture cache
hit rate (Cache) and the achieved Streaming-Multiprocessor
(SM) occupancy (Occ.). We select three representative GNN
datasets: Cora with 3,327 nodes, 9,464 edges, and 3,703 node
embedding dimensions; Citeseer with 2,708 nodes, 10,858
edges, and 1,433 dimensions; Pubmed with 19,717 nodes,
88,676 edges, and 500 dimensions.

From Table 1, we have several observations: First, the ag-
gregation phase usually dominates the overall execution of
the GNN execution. From these three commonly used GNN
datasets, we can see that the aggregation phase usually takes
more than 80% of the overall execution time, which demon-
strates the key performance bottleneck of the GNNs is to
improve the performance of the sparse neighbor aggregation.
Second, sparse operations in GNNs show very low memory
performance. The column Cache of Table 1 shows GNN
sparse operations could not well benefit from the GPU cache
system, thus, showing a low cache-hit ratio (around 37%) and
frequent global memory access. Third, sparse operations of
GNNs show very inefficient computation. As described in
the column Occupancy of Table 1, the sparse operation of
GNNs could hardly keep the GPU busy because 1) its low
computation intensity (the number of non-zero elements in
the sparse matrix is generally small); 2) its highly irregular
memory access for fetching rows of the dense matrix during
the computation, resulting in memory-bound computation;
3) it currently can only leverage CUDA cores for compu-
tation, which naturally has limited throughput performance.
On the other side, this study also points out several potential
directions for improving the SpMM performance on GPUs,
such as improving the computation intensity (e.g., assigning
more workload to each thread/warp/block), boosting memory
access efficiency (e.g., crafting specialized memory layout
for coalesced memory access), and breaking the computation
performance ceiling (e.g., using TCUs).

Table 2: Medium-size Graphs in GNNs.

Dataset # Nodes # Edges Memory Eff.Comp
OVCR-8H 1,890,931 3,946,402 14302.48 GB 0.36%
Yeast 1,714,644 3,636,546 11760.02 GB 0.32%
DD 334,925 1,686,092 448.70 GB 0.03%

3.2 Dense GEMM on CUDA Cores/TCUs

While the dense GEMM is mainly utilized for dense NN com-
putation (e.g., linear transformation and convolution), it can
also be leveraged for GNN aggregation under some circum-
stances. For example, when an input graph has a very limited
number of nodes, we can directly use the dense adjacency
matrix of the graph and accelerate the intrinsically sparse
neighbor aggregation computation on CUDA cores/TCUs by
calling cuBLAS [40]. However, such an assumption may not
hold even for medium-size graphs in real-world GNNs.

As shown in Table 2, for these selected datasets, the mem-
ory consumption of their dense graph adjacent matrix (as a
2D float array) would easily exceed the device memory con-
straint of today’s GPU (less than 100GB). Even if we assume
the dense adjacent matrix can fit into the GPU memory, the
extremely low effective computation (the last column of Ta-
ble 2) would also be a major obstacle for us to achieve high
performance. We measure the effective computation as nnz

N×N ,
where nnz is the number of the non-zero elements (indicating
edges) in the graph adjacent matrix and N is the number of
nodes in the graph. The number of nnz is tiny in comparison
with the N ×N. Therefore, computation and memory access
on zero elements are wasted.

3.3 Hybrid Sparse-Dense Solution

Another type of work [29, 37] takes the path of mixing the
sparse control (tile-based iteration) with Dense GEMM com-
putation. They first apply a convolution-like (2D sliding win-
dow) operation on the adjacent matrix and traverse all pos-
sible dense tiles that contain non-zero elements. Then, for
all identified non-zero tiles, they invoke GEMM on CUDA
cores/TCUs for computation. However, this strategy has two
shortcomings. First, the sparse control itself would cause a
high overhead. Based on our empirical study, the non-zero el-
ements are highly scattered on the adjacent matrix of a sparse
graph. Therefore, traversing all blocks in a super large adja-
cent matrix would be time-consuming. Second, the identified
sparse tiles would still waste lots of computation. The irreg-
ular edge connections of the real-world graphs could hardly
fit into these fixed-shape tile frames. Therefore, most of the
dense tiles would still have very few non-zero elements.

Inspired by the above studies, we make several design
choices in order to achieve high-performance sparse GNN
operations. First, we choose the hybrid sparse-dense solution
as the starting point. This can give us more flexibility for op-
timizations at the sparse control (e.g., traversing fewer tiles)
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Table 3: Comparison among Sparse GEMM, Dense GEMM,
Hybrid Sparse-Dense, and TC-GNN. Note that MC: Memory
Consumption, EM: Effective Memory Access, CI: Computa-
tion Intensity, EC: Effective Computation.

Solution MC EM CI EC
Sparse GEMM (§3.1) Low Low Low High
Dense GEMM (§3.2) High High High Low
Hybrid Sparse-Dense (§3.3) High Low Low High
TC-GNN (This work) Low High High High

and dense computation (e.g., increasing the effective compu-
tation/memory access when processing each tile). Second, we
employ shared memory as the key space for GPU kernel-level
data management. It can help us to re-organize the irregular
GNN input data in a more “regularized” way such that both
the memory access efficiency and computing performance
can be well improved. Third, we choose TCUs as our major
computing unit since they can bring significantly higher com-
puting throughput performance in comparison with CUDA
cores. This also indicates the great potential of using TCUs
for harvesting more performance gains.

Finally, we crystallize all of our ideas and insights into
TC-GNN that effectively coordinates the execution of GNN
sparse operations on dense TCU. We show a brief qualitative
comparison among TC-GNN and the above three solutions
in Table 3. Note that Memory Consumption is the size of
memory used by the sparse/dense graph adjacency matrix;
The Effective Memory Access is the ratio between the size of
the accessed data that is actually involved in the later com-
putation and the total data being accessed; The Computation
Intensity is the ratio of computing operations versus the data
being accessed; The Effective Computation is the operations
for generating the final result versus the total operations.

4 TC-GNN Design

In this section, we will first give an overview of TC-
GNN through its high-level programming interface and then
detail the TCU-aware GNN algorithm design. As detailed in
Listing 2, TC-GNN consists of several key components to
facilitate the programming of GNN models on GPU TCUs.
TC-GNN introduces a set of pre-built popular GNN layers
(e.g., TCGNN.GCNConv) that can be easily connected with
some other existing neural network layers (e.g., ReLU and
softmax), to help users define their own GNN model quickly.
For those non-conventional GNN layers, users can directly use
our low-level APIs (e.g., TCGNN.spmm and TCGNN.sddmm) to
express the GNN computation easily. TC-GNN introduces an
input Loader to load the GNN input graph as a rawGraph and
capture the key input information for system-level optimiza-
tions. TC-GNN incorporates a Preprocessor to build tiles
from rawGraph and generate TCU-aware tiledGraph (§4.1),
and optimize runtime configuration (e.g., warps per block) for

Listing 2: Example of a 2-layer GCN in TC-GNN.
1 import TCGNN, torch
2 # include other packages ...
3 class GCN(torch.nn.Module):
4 def __init__(self, inDim, hiDim, outDim):
5 self.layer1 = TCGNN.GCNConv(inDim, hiDim)
6 self.layer2 = TCGNN.GCNConv(hiDim, outDim)
7 self.softmax = torch.nn.Softmax()
8

9 def forward(self, tiledGraph, param):
10 tiled_adj, X = tiledGraph.adj, tiledGraph.X
11 X = self.layer1(X, tiledAdj, param)
12 X = self.ReLU(X)
13 X = self.layer2(X, tiledAdj, param)
14 X = self.softmax(X)
15 return X
16 # Define a two-layer GCN model in TC-GNN.
17 model = GCN(inDim=100, hiDim=16, outDim=10)
18 # Load graph and extract input information.
19 rawGraph, info = TCGNN.Loader(graphFilePath)
20 # Generate TCU tile and runtime configuration.
21 tiledGraph, config = TCGNN.Preprocessor(rawGraph, info)
22 # Run model through forward computation.
23 predict_y = model(tiledGraph, config)
24 # Compute loss and accuracy.
25 # Gradient backpropagation for training.

our TCU-tailored GPU kernel (§4.2 and §4.3) based on input.
Finally, we train the initialized GNN model defined in TC-
GNN as the regular GNN models defined in other frameworks
through forward and backward computation.

4.1 TCU-aware Sparse Graph Translation

As the major component of TC-GNN, we introduce a novel
Sparse Graph Translation (SGT) technique to facilitate the
TCU acceleration of GNNs. Our core idea is that the pattern
of the graph sparsity can be well-tuned for TCU computation
through effective graph structural manipulation meanwhile
guaranteeing output correctness. Our key observation is that
neighbor sharing is common in real-world graphs and has
been exploited for various tasks like link prediction [63]. Our
evaluated datasets (Section 5) have 18% to 47% (averaged
29%) neighbor similarity. Specifically, we condense (remap)
the highly-scattered neighbor ids into highly-condensed new
neighbor ids that can facilitate the dense TCU computation
paradigm. Also, such condensing should not compromise any
original information (e.g., edge connections) and can generate
the exact output as the conventional design.

As exemplified in Figure 4a and Figure 4b, we take the
regular graph in CSR format as the input and condense the
columns of each row window (in the red-colored rectangu-
lar box) to build TCU blocks (TC_block) (a.k.a., the input
operand shape of a single MMA instruction), in the orange-
colored rectangular box. nodePointer is the row pointer array
edgeList is the edges of each node stored continuously. In this
paper, we demonstrate the use of standard MMA shape for
TF-32 of TCU on Ampere GPU architecture, and other MMA
shapes [41] can also be used under different precision (e.g.,
half and int8) and GPU architecture (e.g., Turing).

USENIX Association 2023 USENIX Annual Technical Conference    153



Condensed  
Sparse Matrix 

 TC-aware 
Sparse Graph

Translation

TC_BLK_H

2 8 14 17 0 7 15 2 717 5 10 17

0 4 5 7 8 10nodePointer

edgeList

Sort Edges

2 8 14 170 7 152 7 175 10 17sorted
edgeList

Deduplication

2 8 14 170 1575 10
eArrClean

1 4 6 80 732 5 Column IDs 
in TC block

TC_BLK_W TC_BLK_W

Illustration of translation process
 for one Row WindowSparse Matrix 

Row Window

(a) (b) (c)
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Algorithm 1: TCU-aware Sparse Graph Translation.
input :Graph adjacent matrix A (nodePointer, edgeList).
output :Result of winPartition and edgeToCol.
/* Compute the total number of row windows. */

1 numRowWin = ceil(numNodes/winSize);
2 for winId in numRowWin do

/* EdgeIndex range of the current rowWindow. */

3 winStart = nodePointer[winId ∗winSize];
4 winEnd = nodePointer[(winId +1)∗winSize];

/* Sort the edges of the current rowWindow. */

5 eArray = Sort(winStart, winEnd, edgeList);
/* Deduplicate edges of the current rowWindow. */

6 eArrClean = Deduplication(eArray);
/* #TC blocks in the current rowWindow. */

7 winPartition[winId] =
ceil(eArrClean.size/TC_BLK_w);

/* Edges-to-columnID mapping in TC Blocks. */

8 for eIndex in [winStart, winEnd] do
9 eid = edgeList[eIndex];

10 edgeToCol[eIndex] = eArrClean[eid];
11 end
12 end

SGT takes several steps for processing each row window,
as detailed in Algorithm 1 and visualized in Figure 4c. win-
Partition is an array for maintaining the number of TC blocks
in each row window. edgeToCol is an array for maintain-
ing the mapping between the edges and their corresponding
position in the graph after SGT. Note that edgeToCol has
the same length as edgeList but with column-id from eAr-
rClean. colToRow maps column-id of adjacency matrices to
the row-id of embedding matrices. We choose the size of
the row window (winSize=TC_BLK_H) and column width
(TC_BLK_W) according to TCU MMA specification (e.g.,
TC_BLK_H=16, TC_BLK_W=8 in TF-32). After condens-
ing the graph within each row window, the time complexity
of sliding the TC_block can be reduced from O( N

TC_BLK_W )

to only O(
nnzunique

TC_BLK_W ), where N is the total number of nodes
in the graph and nnzunique is the size of the unique neighbor
within the current row window, which equals eArrClean.size

Algorithm 2: TC-GNN Neighbor Aggregation.
input :Condensed graph structure (nodePointer, edgeList,

edgeToCol, winPartition) and node embedding matrix (X).
output :Updated node embedding matrix (X̂).
/* Traverse through all row windows. */

1 for winId in numRowWindows do
/* #TC blocks of the row window. */

2 numTCblocks = winPartition[winId] ;
/* Edge range of TC blocks of the row window. */

3 edgeRan = GetEdgeRange(nodePointer, winId);
4 for TCblkId in numTCblocks do

/* The edgeList chunk in current TC block. */
5 edgeChunk = GetChunk(edgeList, edgeRan, TCblkId);

/* Neighbor node Ids in current TC block. */
6 colToNId = GetNeighbors(edgeChunk, edgeToCol);

/* Initiate a dense tile (ATile). */
7 ATile = InitSparse(edgeChunk, winId);

/* Initiate a dense tile (XTile). */
8 XTile, colId = FetchDense(colToNId, X);

/* Compute XnewTile via TCU GEMM. */
9 XnewTile = TCcompute(ATile, XTile);

/* Store XnewTile of X̂. */

10 X̂ = StoreDense(XNewTile, winId, colId);
11 end
12 end

in Algorithm 1. The density (computation intensity) of each
identified TCU block can be largely improved. Considering
the case in Figure 4, after the sparse graph translation, we
can achieve 2× higher density on individual TCU blocks
(Figure 4b) compared with the original one (Figure 4a).

Compared to existing sparse matrix formats (e.g., Blocked-
Ellpack [37]) which use the regular matrix tiles to cover the
irregularly scattered non-zero elements, SGT reduces the ir-
regularity of non-zero-elements layout to fit them into fewer
number TCU blocks, thus, reducing the unnecessary com-
putation and memory overhead. SGT is applicable for both
the SpMM and SDDMM in GNN sparse operations and can
be easily parallelized because the processing of individual
row windows is independent. In most cases, SGT only needs
to execute once and its result can be reused across many
epochs/rounds of GNN training/inference.

Additionally, SGT can be generally used with other ac-
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celerators (e.g., AMD-GPUs with matrixCore and TPUs)
that offer similar dense MM primitives. CPUs have no di-
rect alternative to TensorCore-like MM primitives. However,
with AVX-vectorized instructions, CPUs can benefit from
SGT by setting BLK_H=1 and BLK_W=(#elements-per-AVX-
instruction). TC-GNN currently targets GNN training. SGT
is conducted once before training. SGT cost can be offset by
training iterations (averaged 2% for 200 iterations as DGL).

4.2 TCU-tailored GNN Computation

Besides the effective way to condense the sparse tiles, the next
major challenge is how to tailor the computation schedule of
GNN algorithms so that we can capitalize on the performance
of condensed sparse graphs and the powerful TCUs. We focus
on two major types of computation in GNNs.

Neighbor Aggregation The major part of GNN sparse
computing is neighbor aggregation, which can generally be
formalized as SpMM operations by many state-of-the-art
frameworks [55]. And they employ the cuSPARSE [38] on
CUDA cores as a black-box technique for supporting sparse
GNN computation. In contrast, our TC-GNN design targets at
TCU for the major neighbor aggregation computation which
demands a specialized algorithmic design. TC-GNN focuses
on maximizing the net performance gains by gracefully batch-
ing the originally highly irregular SpMM as dense GEMM
computation and solving it on TCU effectively. As illustrated
in Algorithm 2, the node aggregation processes all TC blocks
from each row window. nodePointer and edgeList are directly
from graph CSR, while edgeToCol and winPartition are gen-
erated from SGT discussed in the previous section. Note that
InitSparse is to initialize a sparse tile in dense format accord-
ing to the translated graph structure of the current TC block.
Meanwhile, FetchDense returns a dense node embedding ma-
trix tile XTile for TCU computation, and the corresponding
column range colId (embedding dimension range) of matrix
X. This is to handle the case that the width of one XTile could
not cover the full-width (all dimensions) of X. Therefore, the
colId will be used to put the current TCU computation output
to the correct location in the updated embedding matrix X̂.

Edge Feature Computing Previous research [51, 54] has
demonstrated the great importance of incorporating the edge
feature for a better GNN model algorithmic performance (e.g.,
accuracy, and F1-score). The underlying building block to
generate edge features is the Sampled Dense-Dense Matrix
Multiplication (SDDMM)-like operation. In TC-GNN, we
support SDDMM with the collaboration of the above sparse
graph translation and TCU-tailored algorithm design, as de-
scribed in Algorithm 3. The overall algorithm structure and
inputs are similar to the above neighbor aggregation. The
major difference is the output. In the case of neighbor ag-
gregation, our output is the updated dense node embedding
matrix (X̂), where edge feature computing will generate a
sparse output with the same shape as the graph edge lists.

Algorithm 3: TC-GNN Edge Feature Computation.
input :Condensed graph data (nodePointer, edgeList, edgeToCol,

winPartition) and node embedding matrix (X).
output :Edge Feature List (edgeValList).
/* Traverse through all row windows. */

1 for winId in numRowWin do
/* #TC blocks in the row window. */

2 numTCblocks = winPartition[winId] ;
/* Edge range of TC blocks of the row window. */

3 edgeRan = GetEdgeRange(nodePointer, winId);
4 for TCblkId in numTCblocks do

/* EdgeList chunk in current TC block. */
5 edgeChunk = GetChunk(edgeList, edgeRan, TCblkId);

/* Neighbor node Ids in current TC block. */
6 colToNId = GetNeighbors(edgeChunk, edgeToCol);

/* Fetch a dense tile (XTileA). */
7 XTileA = FetchDenseRow(winId, TCblkId, X);

/* Fetch a dense tile (XTileB). */
8 XTileB = FetchDenseCol(colToNId, edgeToCol, X);

/* Compute edgeValTile via TCU GEMM. */
9 edgeValTile = TCcompute(XTileA, XTileB);

/* Store edgeValTile to edgeValList. */
10 StoreSparse(edgeValList, edgeValTile,
11 edgeList, edgeToCol);
12 end
13 end

Note that fetching the XTileA only needs to consecutively
access the node embedding matrix A by rows while fetching
the XTileB requires first computing the TCU block column-id
to node-id (colToNId) to fetch the corresponding neighbor
node embeddings from the same node embedding matrix X.

Despite the dataflow similarity with dense-GEMM compu-
tation (e.g., CUTLASS [39]), TC-GNN has to overcome the
limited parallelism (imbalance workload) and sparse/irregu-
lar access with novel algorithmic and kernel designs. While
these challenges are absent in dense-GEMM computation
with naturally high parallelism and data-access locality.

4.3 TCU-centric Workload Mapping

In collaborating with our TCU-tailored algorithm design, an
effective mapping of our algorithmic design to low-level GPU
primitives is indispensable for high-performance delivery. We
discuss two key techniques: GPU-aware Workload Decompo-
sition and TCU-optimized dataflow design.

4.3.1 GPU-aware Workload Decomposition

Different from previous work [13, 55] focusing on CUDA
cores only, TC-GNN highlights itself with CUDA core and
TCU collaboration through effective two-level workload map-
ping. The idea is based on the fact that CUDA cores work in
SIMT fashion and are operated by individual threads, while
TCU designated for GEMM computation requires collabo-
ration from a warp of threads (32 threads). Our key design
principle is to mix these two types of computing units as a sin-
gle GPU kernel, which can efficiently coordinate the kernel
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Figure 5: TCU-optimized Dataflow Design for (a) Neighbor Aggregation and (b) Edge Feature Computing in GNNs.

execution at different levels of execution granularity.
In TC-GNN, we operate CUDA cores by thread blocks and

manage TCU by thread warps. Specifically, threads running
CUDA cores from the same thread block will load data (e.g.,
edges) from the global memory to shared memory. Note that
in our design we assign each row window (discussed in §4.1)
to one thread block. The number of threads in each block
should be divisible by the number of threads in each warp
(32) for better performance. Once threads running on CUDA
cores (CUDA-core threads) finish the data loading, threads
from each warp (TCU threads) will operate TCU for GEMM
computation (including loading the data from the shared mem-
ory to thread-local registers (fragments), applying GEMM
computation on data in registers, accumulating results on reg-
isters, and storing the final results back to global memory).
Note that there would be a large overlap of the CUDA-core
threads and TCU threads, both of which are threads from the
same blocks but running at a different time frames. In general,
we use more CUDA-core threads than TCU threads consider-
ing that global memory access demands more parallelization.

There are two major benefits of such two-level workload
decomposition. First, threads from the same block can work
together to improve the memory access parallelization to bet-
ter utilize memory bandwidth. Second, warps from the same
block can reuse the loaded data, including the information
(e.g., column index mapping) of the translated graph and the
tiles from the dense node embedding matrix. Therefore, we
can avoid redundant high-cost global memory operations.

4.3.2 TCU-optimized Dataflow Design

As the major technique to improve the GPU performance,
shared memory is customized for our TCU-based sparse ker-
nel design for re-organizing data layout for dense TCU com-
putation and reducing the redundant global memory traffic.
Our design takes the TCU specialty into careful consideration
from two aspects, 1) the input matrix tile size of the TCU,
which is M(16)×N(16)×K(8) in the case of TF-32, and 2)
the tile fragment layout for fast computation. The common

practice of the loaded tile A and B are stored in row-major
and column-major for better performance. Next, we will de-
tail our TCU-optimized dataflow design for both neighbor
aggregation and edge feature computation.

Neighbor Aggregation In Figure 5a, shared memory is
mainly used for caching several most frequently used infor-
mation, including the tile of sparse matrix A (sparse_A), the
column-id of the sparse matrix A to row-id of node embed-
ding matrix X (sparse_AToX_index), and the dense tile of
X (dense_X). When handling each TCU block, we assign all
threads from the same block of threads for loading the sparse
tile while allowing several warps to concurrently load the
dense row tile from the matrix X . The reasons for enforcing
such caching are two-fold. First, it can bridge the gap between
the sparse graph data and the dense GEMM computing that
requires continuous data layout. For example, the adjacent
matrix A is input as CSR format that cannot be directed feed
to TCU GEMM computation, therefore, we use a shared mem-
ory sparse_A to initialize its equivalent dense tile. Similarly,
we cache rows of X according to the columns of A to the row
of X mapping after our sparse graph translation, where origi-
nally scattered columns of A (the rows of X) are condensed.
Second, it can enable data reuse on sparse_AToX_index and
sparse_A. This is because in general, the BLK_H (16) cannot
cover all dimensions of a node embedding (e.g., 64), multiple
warps will be initiated of the same block to operate TCU in
parallel to work on non-overlapped dense tiles while sharing
the same sparse adjacency matrix tile.

Edge Feature Computation Similar to the shared memory
design in neighbor aggregation, for edge feature computing,
as visualized in Figure 5b, the shared memory is utilized
for sparse_A, sparse_AToX_index, and dense_X. We as-
sign all threads from the same block of threads for loading
the sparse tile while allowing several warps to concurrently
load the dense row tile from the matrix X. Compared with
dataflow design in neighbor aggregation, edge feature com-
puting demonstrates several differences.

First, the sizes of sparse_A are different. In the neigh-
bor aggregation computation, the sparse matrix A is used as
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Table 4: Datasets for evaluation.

Type Dataset Abbr. #Vertex #Edge Dim. #Class

I

Citeseer CR 3,327 9,464 3703 6
Cora CO 2,708 10,858 1433 7
Pubmed PB 19,717 88,676 500 3
PPI PI 56,944 818,716 50 121

II

PROTEINS_full PR 43,471 162,088 29 2
OVCAR-8H OV 1,890,931 3,946,402 66 2
Yeast YT 1,714,644 3,636,546 74 2
DD DD 334,925 1,686,092 89 2
YeastH YH 3,139,988 6,487,230 75 2

III

amazon0505 AZ 410,236 4,878,875 96 22
artist AT 50,515 1,638,396 100 12
com-amazon CA 334,863 1,851,744 96 22
soc-BlogCatalog SC 88,784 2,093,195 128 39
amazon0601 AO 403,394 3,387,388 96 22

one operand in the SpMM-like computation, therefore, the
minimal processing granularity is 16×8, while in edge fea-
ture computing by following SDDMM-like operation, the
sparse matrix A serves as the output matrix, thus, maintaining
the minimum processing granularity is 16×16. To reuse the
same translated sparse graph as SpMM, we need to recalcu-
late the total number of TC blocks. Second, iterations along
the embedding dimension would be different. Compared with
neighbor aggregation, edge feature computing requires the re-
sult accumulation along the embedding dimension. The result
will only be output until all iterations have finished. In neigh-
bor aggregation, the node embedding vector is divided among
several warps, each of which will output their aggregation
result to non-overlapped embedding dimension ranges in par-
allel. Third, the output format has changed. Compared with
SpMM-like neighbor aggregation which directly output com-
puting results as an updated dense matrix X̂, SDDMM-like
edge feature computing requires a sparse format (the same
shape as edgeList) output for compatibility with neighbor
aggregation and memory space. Therefore, one more step of
dense-to-sparse translation is employed.

5 Evaluation

Benchmarks: We choose two representative GNN models
widely used by previous work [13, 34, 55] on node classifi-
cation tasks. Specifically, 1) Graph Convolutional Network
(GCN) [27] is one of the most popular GNN model architec-
tures. It is also the key backbone for many other GNNs (e.g.,
GraphSAGE [19] and differentiable pooling (Diffpool) [61]).
Therefore, improving the performance of GCN will also ben-
efit a broad range of GNNs. For GCN evaluation, we use the
setting: 2 layers with 16 hidden dimensions per layer, which
is also the setting from the original paper [27]. 2) Attention-
based Graph Neural Network (AGNN) [51]. AGNN differs
from GCN in its aggregation function, which computes edge
features (via embedding vector dot-product between source
and destination vertices) before the node aggregation. AGNN
is also the reference architecture for many other recent GNNs
for better model algorithmic performance. For AGNN, we

use: 4 layers with 32 hidden dimensions per layer.
Baselines: 1) Deep Graph Library (DGL) [55] is the state-

of-the-art GNN framework on GPUs, which is built with the
high-performance CUDA-core-based cuSPARSE [38] library
as the backend and uses PyTorch [49] as its front-end pro-
gramming interface. DGL significantly outperforms other
existing GNN frameworks [13] over various datasets on many
mainstream GNN model architectures. Therefore, we make
an in-depth comparison with DGL. 2) PyTorch Geometric
(PyG) [13] is another GNN framework. PyG leverages torch-
scatter [14] library (highly-engineered CUDA-core kernel)
as the backend support, which highlights its performance
on batched small graph settings; 3) Blocked-SpMM [37]
(bSpMM) accelerates SpMM on TCU. It is included in the
recent update on the cuSPARSE library. bSpMM requires the
sparse matrix with Blocked-Ellpack format for computation.
Its computation on non-zero blocks can be seen as the hybrid
sparse-dense solution (§3.3). Note that the bSpMM has not
been incorporated into any existing GNN frameworks. We
also compare TC-GNN with tSparse [62] and Triton [52]
for non-vendor-developed highly optimized kernels on TCUs.

Datasets, Platforms, and Metrics: We cover three types
of datasets (Table 4), which have been used in previous GNN-
related work [13, 34, 55]. Specifically, Type I graphs are
the typical datasets used by previous GNN algorithm pa-
pers [19, 27, 59]. They are usually small in the number of
nodes and edges, but rich in node embedding information
with high dimensionality. Type II graphs [26] are the pop-
ular benchmark datasets for graph kernels and are selected
as the built-in datasets for PyG [13]. Each dataset consists
of a set of small graphs, which only have intra-graph edge
connections without inter-graph edge connections. Type III
graphs [27, 30] are large in terms of the number of nodes and
edges. These graphs demonstrate high irregularity in its struc-
tures, which are challenging for most of the existing GNN
frameworks. The core design of TC-GNN consists of around
2.5K lines of code. TC-GNN backend is implemented with
C++ and CUDA C, and its front end is implemented in Python.
Our major evaluation platform is a server with an 8-core 16-
thread Intel Xeon Silver 4110 CPU and an NVIDIA RTX3090
GPU. To measure the performance speedup, we calculate the
average latency of 200 end-to-end runs.

5.1 Compared with DGL

Figure 6a shows that TC-GNN achieves 1.70× speedup on
average compared to DGL over three types of datasets across
GCN and AGNN models on end-to-end training. Our kernel
profiling via Nsight Compute shows that TC-GNN achieves
high SM occupancy (averaged 85.28%), which is on average
21.05% higher compared to DGL across all datasets.

Type I Graphs: The performance improvements against
DGL are significantly higher for GCN (on average 2.23×)
compared to AGNN (on average 1.93×). The major reason
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Figure 6: Speedup over (a) DGL and (b) PyG on GCN and AGNN; (c) Speedup over cuSPARSE bSpMM on TCUs.

is their different GNN computation patterns. GCN only con-
sists of a neighbor aggregation phase (SpMM-like operation)
and a node update phase (GEMM operation). Whereas in the
AGNN, the aggregation phase would also require an addi-
tional edge attention value (feature) computation based on
SDDMM-like operations. Compared with SpMM-like op-
erations, edge attention computation in SDDMM is more
sensitive to the irregular sparse graph structure because of
much more intensive computations and memory access. Thus,
the performance improvement is relatively lower.

Type II Graphs: TC-GNN achieves averaged 1.38×
speedup on GCN and 1.70× speedup on AGNN for the Type
II graphs. Speedup on Type II graphs is relatively lower com-
pared with Type I, since Type II datasets consist of a set of
small graphs with very dense intra-graph connections but
no inter-graph edges. This leads to a lower benefit from
the sparse graph translation that would show more effec-
tiveness on highly irregular and sparse graphs. Such a clus-
tered graph structure would also benefit cuSPARSE due to
more efficient memory access, i.e., less irregular data fetching
from the sparse matrix. In addition, for AGNN, TC-GNN can
still demonstrate evident performance benefits over the DGL
(CUDA core only) that can mainly contribute to TCU-based
SDDMM-like designs that can fully exploit the power of GPU
through an effective TCU and CUDA core collaboration.

Type III Graphs: The speedup is also evident (on average
1.59× for GCN and average 1.51× for AGNN) on graphs
with a large number of nodes and edges and irregular graph
structures. The reason is the high overhead global memory ac-
cess can be well reduced through our spare graph translation.
Besides, our dimension-split strategy further facilitates effi-
cient workload sharing among warps by improving the data
spatial/temporal locality. On the dataset AT and SC, which
have a higher average degree within Type III datasets, we no-
tice a better speedup performance for both GCN and AGNN.
This is because 1) more neighbors per node can lead to a
higher density of non-zero elements within each tile/fragment.
Thus, it can fully exploit the computation benefits of each
TCU GEMM operation; 2) it can also facilitate more efficient
memory access. For example, in AGNN, fetching one dense
embedding x from the dense matrix X can be reused more
times by applying a dot-product between x and many columns
of the dense matrix XT (neighbors embeddings).

Table 5: Compare TC-GNN with tSparse and Triton.

Dataset tSparse (ms) Triton (ms) TC-GNN (ms)
AZ 18.60 31.64 4.09
AT 9.15 12.86 3.06
CA 13.84 15.50 3.26
SC 9.74 14.38 3.59
AO 11.93 21.78 3.41

Additionally, our performance breakdown analysis shows
that for graphs with highly scattered and irregular edge distri-
bution, such as Type I and III graphs, SGT would contribute
more (averaged 64%) to the overall performance improve-
ments since it helps significantly reduce the unnecessary
workload. For graphs with highly dense and more regular
edge connections, such as Type II datasets, SGT contributes
relatively minor (averaged 23%) to the overall performance
since it could not squeeze out more redundant computations
from already condensed edge tiles.

5.2 Compared with other baselines
Compared with PyG Figure 6b shows TC-GNN can out-
perform PyG with an average of 1.76× speedup on GCN
and an average of 2.82× speedup on AGNN. For GCN, TC-
GNN achieves significant speedup on datasets with high-
dimensional node embedding, such as Yeast (YT), through ef-
fective TCU acceleration through a TCU-aware sparse graph
translation while reducing the synchronization overhead by
employing our highly parallelized TCU-tailored algorithm
design. PyG, however, achieves inferior performance because
its underlying GPU kernel can only leverage CUDA cores,
thus, intrinsically bounded by CUDA core performance.

Compared with cuSPARSE bSpMM Figure 6c shows
that TC-GNN outperforms bSpMM with on average 1.76×
speedup on neighbor aggregation and improves effective com-
putation by 75.8% on average. Our SGT technique can max-
imize the non-zero density of each non-zero tile and signif-
icantly reduce the number of non-zero tiles to be processed.
However, bSpMM in cuSPARSE has to comply with the strict
input sparse pattern (indicated in official API documenta-
tion [42]). For example, all rows in the arrays must have
the same number of non-zero blocks. Thus, more redundant
computations (on padding non-structural non-zero blocks) in
bSpMM lead to inferior performance. We also notice that for
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Figure 7: SGT Effectiveness on SpMM and SDDMM.

SC datasets with a high average node degree and clustered
node distribution, bSpMM would benefit more due to its us-
age of a larger block size of 32×32 (fewer TCU invocations)
compared to 16×8 in TC-GNN ( more TCU invocations).

Compared with tSparse and Triton From Table 5, TC-
GNN can outperform tSparse with on average 3.60× speedup
on SpMM. The major reason behind this is that TC-GNN can
well reduce the graph structural-level irregularity through our
novel SGT strategy to benefit the dense TCU-based computa-
tion. In contrast, tSparse only considers partitioning the input
sparse matrix into dense/sparse tiles based on their non-zero
elements but ignores the potential of compressing non-zero el-
ements into fewer tiles to reduce the workload. TC-GNN also
outperforms Triton with on average 5.42× speedup on SpMM.
Triton’s block-sparse GEMM for TCU acceleration is de-
signed for dense neural networks (focusing on feature maps’
sparsity), which is quite different from GNNs (focusing on the
graph adjacency matrix’s sparsity) with significantly larger
sparse matrix size and more irregular pattern.

5.3 Additional Studies
SGT Effectiveness & Overhead We conduct a quantitive
analysis of SGT in terms of the total number of TCU blocks
between graphs w/o SGT and the graphs w/ SGT applied.
Note that in the SpMM-based aggregation, the size of TCU
blocks is 16×8 since it serves as one of the operands in TCU
GEMM. While in SDDMM-based edge feature computation,
the size of TCU blocks is 16×16 since it serves as the result-
ing matrix of TCU GEMM. Figure 7 shows that across all
types of datasets, our SGT technique can significantly reduce
the number of traversed TCU blocks (on average 67.47%).
The major reason is that SGT can largely improve the density
of non-zero elements within each TCU block. In contrast, the
graphs w/o SGT would demonstrate a large number of highly
sparse TCU blocks. What is also worth noticing is that on
Type II graphs, such a reduction benefit is lower. The reason
is that Type II graphs consist of a set of small subgraphs that
only maintain the intra-subgraph connections, which already
maintain dense columns. We evaluate the overhead of SGT
(Figure 8), we find that its overhead is consistently low (on
average 4.43%) compared with the overall training time (200
epoches as DGL [55]).

Sparsity Analysis We compare with bSpMM on synthetic
matrix data with different sparsity (zero-element ratio). Note

0% 20% 40% 60% 80% 100%

AZ
AT
CA
SC
AO

SGT Training

Figure 8: The overhead analysis of SGT.

Table 6: Sparsity Analysis. Numbers for bSpMM/TC-GNN
are in GFLOPs. “DB/W”: dense blocks per row window.

DB/W Sparsity (%) bSpMM TC-GNN
1 99.61 773.86 12,686.02
2 99.22 1,597.83 11,010.75
4 98.44 3,348.75 18,164.08
8 96.88 6,528.10 25,883.10
16 93.75 12,955.40 23,865.99
32 87.50 26,061.70 16,629.28

that we change the sparsity by varying the number of dense
non-zero blocks (16×16) within each row window, the input
adjacent matrix size is fixed to 4096×4096 while the dense
embedding matrix dimension is fixed to 16. Table 6 shows that
when sparsity increases from 93.75% to 99.61%, TC-GNN
design demonstrates more throughput performance strength
(averaged 6.9×) and this is also the common sparsity range
(more than 95%) for most input graphs of GNNs. When the
sparsity drops to around 87.50% the sparse would demonstrate
more advantage due to more dense blocks for computation.

Warps per Block: Figure 9 shows that with the increase
of the number of warps, the overall performance for training
per epoch would first decrease due to the better parallelism
for loading the graph data. However, the number of warps per
block would decrease the overall performance under certain
circumstances (e.g., 32). All three settings suffer from evident
performance degradation. Because the global memory access
contention will become severe, leading to lower execution
performance. Different datasets would have different “opti-
mal” choices of the warp-per-block parameter. For example,
on the CA dataset, 2 warps per block can deliver the best
performance, while AZ requires 8 warps per block. Based
on our profiling and empirical study, the selection of this pa-
rameter should consider the average #edges per row window
(avg.edges), which can be easily get during the preprocessing.
Our preprocessor will generate warpPerBlock = ⌊ avg.edge

32 ⌋
to approach the “optimal” performance. For instance, the av-
erage edges per row window are 88 for CA, it reaches the best
performance at 2 warps per block.

Throughput Analysis: For sparse matrix computations in
GNNs, we measure the throughput performance of SpMM in
TC-GNN when the dimension of node embedding increases
for a roofline analysis. Because sparse matrix computation
is largely limited by its memory access performance, which
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Figure 10: Analysis of TC-GNN kernel throughput when
increasing the node embedding dimension from 16 to 256.

is quite different from the dense GEMM computation that is
largely bounded by the computing performance. Figure 10
shows that the throughput of TC-GNN can scale proportion-
ally with the growing number of node embedding dimensions.
This also indicates that TC-GNN can effectively handle the
graphs with high-dimensional node embeddings and well uti-
lize GPU resources.

6 Related Work and Discussion

Other GPUs TC-GNN can easily generalize to other GPUs
(e.g., A6000, H100, and RTX4090) with TCUs via recom-
pilation (python setup.py install). TC-GNN also sup-
ports different TCU configurations (e.g., precision) by mod-
ifying (BLK_H, BLK_W in TCGNN_conv/config.h) and
four parameters (M, N, K, dataType) in wmma::fragment,
then recompile. For future GPUs with more TCUs, our TC-
GNN can also be adapted to accommodate such changes and
maintain its performance advantage. There are two future
GPU designs that we anticipate. The first direction is to place
more TCUs per SM while keeping the total number of SMs
unchanged. There will be more active warps per thread block
(This is mainly because TCUs are operated by warps) and
each warp will process fewer neighbors. The cost of decompo-
sition and mapping can be offset by parallelism among more
warps. The second direction is to place more SMs on GPUs
while keeping TCUs per GPU unchanged. In this scenario,
there will be more thread blocks and each thread block will
process neighbors from fewer nodes. The cost can be offset
by parallelism among more thread blocks.

Other GNN Frameworks Besides DGL and PyG, other
single-GPU GNN frameworks like GNNAdvisor [57], GE-
SpMM [21], and fuseGNN [7], tailor their own GNN layers
manually with low-level GPU kernel optimizations. Unfortu-
nately, these designs limit their kernel optimizations to CUDA
cores, thus, missing the golden opportunities to exploit the full
potential of widely deployed AI-tailored GPUs with TCUs.

Graph Partitioning/Reordering ROC [23] introduces a
learning-based graph partitioning to reduce the data move-
ment between CPU and GPU when processing large graphs.
Rabbit Order [4] and Reverse Cuthill Mckee Algorithm [9] are
focusing on row reordering/clustering to improve node/row-
wise computation locality. Our sparse-graph translation (SGT)
technique is orthogonal and complementary to these graph
partitioning and reordering techniques since our SGT focuses
on column (neighbor) re-indexing to improve neighbor-wise
locality for TCU computation.

Distributed GNN Computation There are two major
ways of scaling-up GNN computing: 1) Distributed sam-
pled graphs [13, 35, 55, 60] (where graph nodes and their
embeddings are on the same GPU): TC-GNN can be incorpo-
rated directly since all sampled graphs along with their node
embeddings are presented at the same GPU. 2) Distributed
full-graph [15, 23, 34, 58] (where graph nodes and their em-
beddings may be on different GPUs): TC-GNN needs to be
modified slightly by incorporating inter-GPU communication
techniques (e.g., Unified Virtual Memory [46] and NVSH-
MEM [44]) to support the remote neighbor embedding access.
We leave such exploration for our future work.

7 Conclusion

In this paper, we introduce TC-GNN, the first GNN accelera-
tion framework on TCU of GPUs. We design a novel sparse
graph translation technique to gracefully fit the sparse GNN
workload on dense TCUs. Our TCU-tailored GPU kernel
design maximizes the TCU performance gains for GNN com-
puting through effective CUDA core and TCU collaboration
and a set of memory/data flow optimizations. Our seamless
integration with the PyTorch framework further facilitates
end-to-end GNN computing with high programmability. Ex-
tensive experiments demonstrate the performance advantage
of TC-GNN over the state-of-the-art frameworks. across di-
verse GNN models and datasets.

Furthermore, our TC-GNN design could also inspire poten-
tial TCU-like hardware features that can support (i) the dy-
namic shape of TCU input tiles and (ii) the dynamic structural
sparsity of input tiles to yield higher performance benefits
at the runtime. These proposed hardware features will help
reduce more unnecessary computation in a more fine-grained
and precise manner.
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A Artifact Appendix

TC-GNN is the first TCU-based GNN acceleration design
on GPUs. At the input level, TC-GNN is equipped with a
new sparse graph translation (SGT) technique that can ef-
fectively identify those non-zero tiles and condense non-zero
elements from these tiles into fewer number of “dense” tiles.
At the GPU kernel level, TC-GNN exploits the benefits of
CUDA core and TCU collaboration. The major design idea is
that the CUDA core, which is more powerful at fine-grained
thread-level execution, would be a good candidate for manag-
ing memory-intensive data access. While TCU, which is more
powerful in handling simple arithmetic operations (e.g., mul-
tiplication and addition), would be well-suited for compute-
intensive GEMM on dense tiles generated from SGT. At the
framework level, TC-GNN is integrated with the popular Py-
Torch framework to reduce extra learning efforts and improve
user productivity and code portability.

• Code repository: Github2 and Zenodo3.

• Hardware, OS & Compiler:

– Intel Xeon Sliver 4110 CPU (8-core 16-threads)
with 64GB host memory, NVIDIA RTX3090 GPU
with 24 GB device memory.

– Operating systems and versions: Ubuntu 16.04+.
– Compilers and versions: NVCC-11.1+, GCC-

7.5.0+ Libraries and versions: CUDA-11.1+,
Pytorch-1.8.0, DGL-v0.6.0, PyG-1.6.3 Input
datasets and versions: SNAP network datasets.

Step-1: Environment Setup
- 1.1a. [Method-1] Install via Docker (Recommended).

1 cd docker/
2 ./launch.sh

- 1.1b. [Method-2] Install via Conda.

1 curl -O https://repo.anaconda.com/archive/Anaconda3
-2021.05-Linux-x86_64.sh

2 bash Anaconda3-2019.03-Linux-x86_64.sh
3 source ~/.bashrc
4 conda create -n env_name python=3.6
5 conda install pytorch torchvision torchaudio cudatoolkit

=11.1 -c pytorch -c conda-forge
6 conda install -c dglteam dgl-cuda11.0
7 pip install torch requests tqdm
8 pip install torch-scatter -f https://pytorch-geometric.

com/whl/torch-1.8.0+cu111.html
9 pip install torch-sparse -f https://pytorch-geometric.

com/whl/torch-1.8.0+cu111.html
10 pip install torch-cluster -f https://pytorch-geometric.

com/whl/torch-1.8.0+cu111.html
11 pip install torch-spline-conv -f https://pytorch-

geometric.com/whl/torch-1.8.0+cu111.html
12 pip install torch-geometric

2https://github.com/YukeWang96/TC-GNN_ATC23.git
3https://doi.org/10.5281/zenodo.7893174

- 1.2. Install TC-GNN.

1 cd TCGNN_conv/
2 ./0_build_tcgnn.sh

- 1.3. Download Datasets.

1 wget https://storage.googleapis.com/graph_dataset/tcgnn-
ae-graphs.tar.gz

2 tar -zxvf tcgnn-ae-graphs.tar.gz
3 rm -rf tcgnn-ae-graphs.tar.gz

Step-2. Run Major Experiments.

- 2.1. TC-GNN model End-to-End.

1 ./0_run_tcgnn_model.sh

Results: 1_bench_gcn.csv
and 1_bench_agnn.csv.

- 2.2. DGL baseline (Fig-6a).

1 cd dgl_baseline/
2 ./0_run_dgl.sh

Results: Fig_6a_dgl_gcn.csv
and Fig_6a_dgl_agnn.csv.

- 2.3. TC-GNN single kernel.

1 ./0_run_tcgnn_single_kernel.sh

Results: 1_bench_gcn.csv and 1_bench_agnn.csv.

- 2.4. cuSPARSE-bSpMM Baseline (Fig-6c).

1 cd TCGNN-bSpmm/cusparse
2 ./0_run_bSpMM.sh

Results: Fig_6c_cuSPARSE_bSpMM.csv.

- 2.5. Dense Tile Reduction (Fig-7).

1 python 3_cnt_TC_blk_SDDMM.py
2 python 3_cnt_TC_blk_SpMM.py

Results: 3_cnt_TC_blk_SDDMM.csv
and 3_cnt_TC_blk_SDDMM.csv.

- 2.6. tSparse Baseline (Table-5, column-2).

1 cd TCGNN-tsparse/
2 ./0_run_tSparse.sh

Result: Table_5_tSparse.csv.

- 2.7. Triton Baseline (Table-5, column-3).

1 cd TCGNN-trition/python/bench
2 ./0_run_triton.sh

Result: 1_run_triton.csv.
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Abstract
Graph neural network(GNN) has been widely applied in

real-world applications, such as product recommendation in
e-commerce platforms and risk control in financial manage-
ment systems. Several cache-based GNN systems have been
built to accelerate GNN training in a single machine with
multiple GPUs. However, these systems fail to train billion-
scale graphs efficiently, which is a common challenge in the
industry. In this work, we propose Legion, a system that au-
tomatically pushes the envelope of multi-GPU systems for
accelerating billion-scale GNN training. First, we design a hi-
erarchical graph partitioning mechanism that significantly im-
proves the multi-GPU cache performance. Second, we build a
unified multi-GPU cache that helps to minimize the PCIe traf-
fic incurred by caching both graph topology and features with
the highest hotness. Third, we develop an automatic cache
management mechanism that adapts the multi-GPU cache
plan according to the hardware specifications and various
graphs to maximize the overall training throughput. Evalu-
ations on various GNN models and multiple datasets show
that Legion supports training billion-scale GNNs in a sin-
gle machine and significantly outperforms the state-of-the-art
cache-based systems on small graphs.

1 Introduction

Graph neural networks (GNNs), such as [8, 10, 16, 22, 40, 50],
are a class of deep learning algorithms that learn the low-
dimensional embedding using the structure and attribute in-
formation of graphs. The learned embedding can be further
used in machine-learning tasks including node classification
and link prediction. GNNs have been successfully applied
in many real-world applications, such as recommendation
systems in e-commerce platforms, fraud detection and risk
control in financial management, and molecular property pre-
diction in drug development [13,25,37,48,49]. Systems such
as DGL [42], PyG [31], and Graph-Learn [55] are proposed
to ease the development and training of GNN models.

It is common to apply GNNs over large-scale graphs in
industrial scenarios. For example, in Alibaba’s Taobao rec-
ommendation system, the user behavior graph contains more
than one billion vertices and tens of billions of edges [55].
In addition, as graphs are often skewed, it is infeasible to
aggregate all neighboring vertices when training a specific
vertex. Sampling-based mini-batch training, such as Graph-
SAGE [16], is proposed to extend GNN training to very large
graphs. In the sampling-based GNN training, there are two
key steps of data preparations before training a batch: (1) sam-
pling the multi-hop sub-graph for each vertex in the batch, and
(2) extracting the features of vertices in sampled sub-graphs.
Systems such as DGL [42] and PyG [31] store the graph data
in the CPU memory, prepare the training data of mini-batches
using CPUs, and utilize GPUs for model training. As this
approach requires transferring the sampled sub-graphs and
high-dimension feature data to the GPU for every batch, the
end-to-end training throughput is severely limited by the CPU-
GPU data transferring bandwidth [23, 47]. In addition, the
throughput of graph sampling using CPU is often insufficient
to keep up with the throughput of GPU training, especially in
multi-GPU machines.

Several cache-based approaches have been proposed to
speed up GNN training [23, 29, 33, 47]. As it is the feature
data that accounts for a majority of the CPU-GPU data trans-
ferring, caching the features of frequently accessed vertices in
GPU can significantly reduce the amount of transferred data.
To improve the throughput of graph sampling, GPU-based
sampling has also been adopted in GNN systems [33, 42, 47].

We identify that existing approaches face severe limitations
or performance issues in multi-GPU training, particularly
when the graph is large. First, the multi-GPU cache scalabil-
ity of existing cache-based systems is poor. Some cache-based
GNN systems [33,47] shuffle the training set across all GPUs
and replicate an identical feature cache across all GPUs or
NVLink cliques1 to facilitate data parallel training. The cache
capacity is constrained by the memory of a single GPU or

1NVLink clique denotes a group of GPUs where each pair of GPUs are
connected with NVLink.
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NVLink clique (an NVLink clique only consists of two GPUs
in some multi-GPU architectures), resulting in poor cache
performance when scaling up the number of GPUs (see the
experiment in Figure 2). PaGraph [23] partitions the graph us-
ing a self-reliant algorithm and caches nodes with the highest
in-degree for different partitions in different GPUs, trying to
make use of data locality inside each partition. As partitions
in PaGraph include the complete L-hop neighbors of their
training vertices, there is a significant overlap between the
caches of different partitions, resulting in the same duplica-
tion issue as the aforementioned cache-based GNN systems.
Second, when adopting GPU-based graph sampling, existing
systems manage the graph topology in a very coarse-grained
manner: the topology has to be completely stored in a single
GPU [33, 42, 47] or in the CPU memory [33, 42]. The former
approach puts a hard limit on the graph scale, and further
squeezes the cache capacity for features. The latter storing the
topology in the CPU and accessing it from GPU would result
in very low utilization of the PCIe bandwidth, as the data
access of graph sampling is usually random and fine-grained.

This paper presents Legion, a GNN system that fully ex-
plores the hardware capabilities of modern multi-GPU servers
for training large-scale graphs in a single machine. Legion
proposes two key designs to fully exploit the memory space
of multi-GPUs for feature and topology cache. First, to avoid
cache replication, we propose NVLink-aware hierarchical
graph partitioning technique that helps scale the cache on
multi-GPU memory efficiently according to the specific hard-
ware structure. Legion first partitions the graph with minimal
edge-cut and assigns each partition exclusively to an NVLink
clique, and then uses hash partition to further map the training
vertices to GPUs inside each NVLink clique. Second, we pro-
pose a hotness-aware unified cache that manages both the
feature and topology cache in a vertex-centric data structure.
We enable an NVLink-enhanced cache space for the unified
cache and prioritize the topology and features with the high-
est hotness to fill the cache, so as to improve the multi-GPU
memory utilization.

The above designs pose a new challenge to Legion. Given
a fixed size of GPU memory, it is hard to manually decide
the optimal fractions of topology and feature cache such that
the overall training throughput is maximized. To solve the
challenge, we propose an automatic cache management
mechanism. Specifically, we build a cost model in the mecha-
nism to evaluate the key factor to the overall throughput, i.e.,
PCIe traffic, of both graph sampling and feature extraction in
the training phase, which is used to guide the allocations of
cache spaces for graph topology and feature. Overall, the three
key designs in Legion enable automatic caching optimization
and full utilization of hardware capability of various modern
GPU servers. Experiments show that Legion can outperform
state-of-the-art cache-based GNN systems up to 4.32×.

In summary, the contributions of this paper include:
1. We propose an NVLink-aware hierarchical graph parti-

Figure 1: The workflow of 2-hop GraphSAGE training.

tioning technique that helps minimize cache replication
between NVLink cliques and extends the threshold of
cache capacity beyond the limit of an NVLink clique.

2. We propose a hotness-aware unified cache to store topol-
ogy and features with the highest hotness in GPU memory,
so as to improve the GPU memory utilization.

3. We present an automatic cache management mechanism
that searches for the optimal cache plan without requir-
ing extra knowledge of hardware specifications and GNN
performance details from users.

4. We implement Legion that fully explores the hardware
capabilities of multi-GPU systems targeting billion-scale
GNN training, not supported by existing cache-based GNN
systems, in a single server.

2 Preliminaries

In this section, we introduce the basic concept of GNN and
the workflow of mini-batch GNN training.

2.1 Graph Neural Networks
Given a graph G = (V,E), where each vertex is associated
with a vector of data as its features Xv,v ∈V , Graph Neural
Networks(GNNs) learn a low-dimensional embedding for
each target vertex by stacking multiple GNNs layers L. For
each layer l, l ∈ L, vertex v updates its activation by aggregat-
ing features or hidden activations of its neighbors N(v),v ∈V :

al
v = AGGREGAT E l(hl−1

u |u ∈ N(v))

hl
v =UPDAT E l(al

v,h
l−1
v )

(1)

2.2 Mini-batch GNNs Training
Mini-batch training is a practical solution for scaling GNN
training on very large graphs. Neighbor sampling is used to
generate mini-batches, allowing sampling-based GNN mod-
els to handle unseen vertices. For example, GraphSAGE [16]
samples multiple hops of neighbors for training as shown in
Figure 1. The workflow of GraphSAGE training follows a
vertex-centric computation paradigm including the follow-
ing steps: 1, selecting a mini-batch of training vertices from
the training set. 2, uniformly sampling the multiple hops of
fixed-size neighbors for each training vertex. 3, extracting the
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features of the sub-graph consisting of the training vertices
and their neighbors to generate the mini-batch training data.
Finally, performing AGGREGATE and UPDATE according to
Equations 1, as well as executing the forward and backward
propagation to update the model parameters.

3 Observation and Motivation

When training large-scale graphs whose size exceeds the ca-
pacity of GPU memory on a multi-GPU server, the major
performance bottleneck becomes the data movement from
CPU to GPUs under the constraint of PCIe bandwidth. To
this end, existing works [33, 42, 47] intend to relieve the PCIe
bandwidth bottleneck by caching the hottest graph features on
GPU memory. Though these cache-based approaches signifi-
cantly reduce PCIe traffic, we still identify two issues of these
existing cache-based GNN systems when training large-scale
graphs: 1) poor multi-GPU cache scalability, and 2) coarse-
grained GPU memory management for graph topology. In
the following, we discuss each issue and the corresponding
observation that motivates the design of Legion.

3.1 Multi-GPU Cache Scalability

As feature extraction occupies most of the data transferring
from CPU to GPU, cache-based systems like GNNLab [47]
maintain a global feature cache for vertices which are more
frequently accessed via a pre-sampling phase. As training ver-
tices are globally shuffled among all training GPUs, GNNLab
replicates this cache across all GPUs involved in model train-
ing. Since a single GPU’s memory space is quite limited, the
fraction of cached features would inevitably become lower
when the graph size grows, resulting in a lower cache hit
ratio even on multi-GPU servers. To increase the cache ca-
pacity, the cache mechanism in Quiver [33] leverages high-
speed NVLinks to support inter-GPU cache between NVLink-
connected GPUs. Different from GNNLab, Quiver replicates
feature cache between NVLink cliques and averagely hashes
the features among GPUs in the same NVLink clique. How-
ever, this mechanism could still lead to poor cache scalability,
especially when the NVLink clique is relatively small. E.g.,
the Siton server used in Table 1 has 4 NVLink cliques, each
of which contains only 2 GPUs. Figure 2 illustrates that, in
systems like Quiver, the PCIe transactions incurred by CPU-
GPU data transferring stop decreasing when the number of
GPUs is larger than the size of NVLink clique. This result
shows that the cache performance in the above GNN systems
cannot scale well with the increasing number of GPUs in
modern servers.

To solve the scalability issue incurred by cache replication,
PaGraph [23] partitions the graph in a self-reliance approach
and maintains an independent cache for each partition using
an in-degree-based metric on different GPUs. To train an
L-layer GNN model, PaGraph extends every partition with re-

(a) 2 GPUs per NVLink clique (b) 4 GPUs per NVLink clique

Figure 2: Comparing the cache scalability of cache-based
GNN systems using the Products [17] dataset and 2-hop
GraphSAGE [16] model in terms of normalized CPU-GPU
PCIe transactions. The cache ratio is set to 5% |V | on every
GPU. The tested platforms are Siton (a) and DGX-V100 (b)
servers, as shown in Table 1.

dundant vertices and edges to include all the L-hop neighbor
vertices for each train vertex in this partition. Each GPU only
trains its own partition and synchronizes its local gradients
periodically to update the model. However, the inclusion of
the L-hop neighbor vertices leads to heavily duplicated cache
contents on all GPUs. Figure 2 shows that the PaGraph ex-
hibits a similar cache performance as GNNLab which adopts
the cache replication mechanism. We further implement a
PaGraph-plus design to alleviate the cache duplication issue
in PaGraph. Specifically, we replace the graph partitioning
algorithm in PaGraph with the XtraPulp [35] algorithm that
minimizes edge-cuts between partitions and adopts a pre-
sampling-based hotness metric to select the vertex features to
be cached. Although PaGraph-plus achieves higher cache hit
rates compared to PaGraph, the cache hit rates on different
GPUs are very unbalanced as different partitions have various
graph distributions. Figure 3 illustrates the load imbalance
issue of PaGraph-plus by measuring the cache hit rates of
eight GPUs. We observe that the hit rate varies by up to 17%.

To sum up, for systems that globally shuffle the training
vertices among GPUs in every iteration, such as GNNLab and
Quiver, cache replication cannot be completely eliminated
as each GPU may randomly access any vertex in the entire
graph. Whereas the high-speed NVLinks between GPUs can
be used to reduce the replication factor and expand the cache
capacity. For systems that locally shuffle training vertices in
each partition to produce mini-batches for different GPUs,
such as PaGraph, the cache replication problem could be
alleviated only when the model layer is small (e.g., less than 2).
PaGraph-plus can further reduce cache duplication but faces
another issue of unbalanced cache hit rates among GPUs.
Observation O1: Graph partitioning can be suitably
guided by hardware structure. Different from Quiver,
GNNLab, PaGraph, and PaGraph-plus do not take advantage
of the NVLink between GPUs, which is a common capabil-
ity in modern multi-GPU servers. As GPUs inside the same
NVLink clique can access each other’s memory via the low-
latency high-throughput NVLink, an NVLink clique can hold
the entire cache of a partition, which can be randomly sliced
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Figure 3: Cache hit rates of different systems in a server with
8 GPUs. The cache ratio is set to 5% |V | on every GPU. The
graph sampling follows the 2-hop GraphSAGE [16] model’s
setting using the Products [17] dataset. “NVx" means utilizing
NVLink clique with x GPUs.

(a) PCIe throughput vs. payload size (b)

Figure 4: (a) The PCIe 3.0 throughput under different payload
sizes of PCIe requests. (b) The PCIe traffic reduction rate for
Paper100M with the growth of the cache capacity. The cache
is on a single GPU and selected after pre-sampling.

and averagely allocated among GPUs inside a clique. This
hardware-coherent design can balance the cache hit ratios
between intra-clique GPUs. As the number of partitions is
reduced to the number of NVLink cliques, it is more likely
that the partitions follow a similar distribution (see the cache
hit rate distribution of Legion in Figure 3). Inspired by O1,
we propose an NVLink-aware hierarchical partitioning to pre-
serve multi-GPU cache scalability in Legion (Section 4.1).

3.2 Coarse-grained GPU Memory Manage-
ment for Graph Topology

In multi-GPU servers, the throughput of CPU-based graph
sampling may not catch up with the throughput of GPU-based
training. To improve the end-to-end training throughput, re-
cent GNN systems [33,42,47] adopt GPUs to accelerate graph
sampling. We observe that all these systems apply a very
coarse-grained memory management mechanism for graph
topology. In particular, they store the entire graph topology
either in CPU memory or in a single GPU, depending on the
size of graph topology: the graph topology is stored in CPU
memory when it is too large or exceeds the capacity of a sin-
gle GPU. The approach of storing the entire graph topology
in a single GPU sets a hard limit on the scale of the graph.
For example, a V100 GPU with 16GB memory can store
at most 4 billion edges [16] without considering any other
memory usage of feature cache and model training. When
storing the graph topology in CPU memory, GPUs can di-
rectly access the graph topology via a unified virtual memory

address (UVA [27]) technique. While the data access pattern
of graph sampling is usually random and fine-grained. E.g.,
Figure 4a shows that the PCIe throughput of graph sampling
is much lower than feature extraction. A large number of sam-
pling PCIe transactions with small payload sizes will increase
the CPU-GPU PCIe contention and lead to low bandwidth
utilization.
Observation O2: The access of graph topology is skewed
as graph features. Existing cache-based GNN systems [23,
33, 47] only maintain feature cache in GPU to reduce the
CPU-GPU communication costs. However, we observe that
the performance gain of the per-unit feature cache decreases
once the cache capacity exceeds a threshold (see Figure 4b).
We observe that the access of graph topology during graph
sampling is also skewed as the access of features. Instead of
allocating all the available GPU memory (except for the reser-
vation for model training) for feature cache, it is reasonable
to cache a subset of graph topology, i.e., edges of vertices that
are frequently accessed during sampling, in the GPU memory
to accelerate GPU sampling. Figure 4b shows that a rela-
tively small topology cache can obviously reduce the number
of PCIe transactions incurred by GPU sampling. Motivated
by O2, we propose a hotness-aware unified cache in Legion.
Specifically, Legion caches both graph topology and graph
features with the goal of minimizing CPU-GPU communica-
tion overhead (see Section 4.2). Under the capacity limit of
GPU memory, it is difficult to manually decide the optimal
fractions of topology and feature cache. Legion solves this
challenge with an automatic cache management mechanism,
which can generate the optimal cache plan without requiring
knowledge of hardware specifications from users.

4 Design of Legion

In order to address the aforementioned performance issues
of existing cache-based GNN systems, we propose Legion,
a cache-optimal GNN system that can push the envelope of
the multi-GPU system automatically for billion-scale GNN
training. The overall design of Legion is presented in Fig-
ure 5. We propose an NVLink-aware hierarchical partitioning
technique (Section 4.1) in Legion that facilitates scaling up
the cache capacity and reducing cache duplication in multi-
GPU servers. To utilize GPU cache for both graph sampling
and feature extraction, we present a hotness-aware unified
cache (Section 4.2) that maintains both the topology and fea-
ture caches to optimize the overhead of PCIe traffic. We also
develop an automatic cache management mechanism (Sec-
tion 4.3) to automatically decide the memory allocations for
both topology and feature caches.

4.1 NVLink-aware Hierarchical Partitioning
Motivated by observation O1, we propose a simple yet effec-
tive graph partitioning mechanism, referred to as hierarchical
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Figure 5: Design overview of Legion. Legion consists of three main contributions C1, C2, and C3.

partitioning, to facilitate cache scalability in Legion. Differ-
ent from conventional graph partitioning algorithms which
partition all edges/vertices of a graph into multiple tablets,
hierarchical partitioning in Legion aims to divide the training
vertices/edges into multiple disjoint tablets. The inputs of hi-
erarchical partitioning are an NVLink topology matrix MT of
the underlying multi-GPU server and a graph G. The output
is an assignment plan disseminating training vertices/edges
among GPUs. Specifically, the process of hierarchical parti-
tioning mainly consists of four steps:
S1: NVLink Clique Detection. With the topology matrix
MT of the server, Legion employs a MaxCliqueDyn algo-
rithm [45] to identify the NVLink clique sets in MT , and
outputs the number of NVLink cliques Kc and the number of
GPUs in each clique Kg.
S2: Inter-clique Graph Partitioning. To reduce the cache
duplication between NVLink cliques, Legion uses an edge-
cut minimizing partitioning algorithm, e.g., METIS [21] and
XtraPulp [35], to split the input graph G into Kc partitions, i.e.,
P1, P2, ..., PKc, such that nodes are balanced among partitions
and inter-partition edge-cuts are minimized. The training ver-
tex set in Pi is denoted as V Pi. As the training vertices are
randomly selected from G, the training vertex sets of different
partitions are almost of the equal size. The number of parti-
tions is equal to the number of detected NVLink cliques, and
each NVLink clique hosts the cache for a dedicated partition.
This way, Legion can reduce the cache duplication between
NVLink cliques and take advantage of cache locality within
an NVLink clique.
S3: Intra-clique Training Vertex Partitioning. As GPUs
within an NVLink clique can access each other’s memory via
low-latency high-throughput NVLink interconnect, hierarchi-
cal partitioning further hashes the training vertex set of each
partition into Kg tablets, where Kg is the GPU number in a
clique. E.g., V Pi is split into V Pi[1] and V Pi[2] if Kg equals 2.
Each tablet is exclusively mapped to a GPU in the correspond-
ing NVLink clique. We explain how to generate the cache for
each training vertex tablet in Section 4.2.
S4: Training Vertex Assignment. Finally, Legion assigns
training vertices of each tablet to a corresponding GPU as the
batch seeds, which will then be shuffled locally to generate

mini-batches for graph sampling and training.
As such, Legion provides better cache scalability and load

balancing compared to existing systems. Figure 2 shows the
cache performance of Legion improves with the increase
of GPUs almost linearly. Figure 3 illustrates that Legion
has smaller fluctuations in the cache hit rates on multi-GPU
servers with NVLink cliques of various sizes.

4.2 Hotness-aware Unified Cache

Motivated by the observation O2, we propose a hotness-
aware unified cache to cache both graph topology and graph
features. In this Section, we introduce the detailed mechanism
of the unified cache.

4.2.1 Cache Structure

The unified cache consists of two parts: the topology cache
and the feature cache. In particular, the topology cache main-
tains out-edge neighbor IDs for each selected hot vertex in
the format of a compressed sparse row (CSR). As for the
feature cache, Legion stores the feature vectors of selected
hot vertices in the format of a 2D array, where each row is the
feature vector of a selected hot vertex. Note that, the selected
vertices in the topology and feature caches could be different.

4.2.2 Cache Construction

The construction of the unified cache is divided into three
steps: (1) pre-sampling, (2) cache candidate selection, and (3)
cache initialization. All the GPUs/NVLink cliques perform
these steps concurrently to construct their own unified cache.
S1: Pre-sampling. Similar to GNNLab [47], Legion adopts
a pre-sampling phase2 to estimate the hotness metrics of
graph topology and feature data during the training phase.
Once the process of hierarchical partitioning is completed,
the training vertex tablet assigned to each GPU is determined,
which is used as the input for pre-sampling. The output of
pre-sampling includes two hotness matrices: topology hot-
ness matrix HT and feature hotness matrix HF . Each matrix’s
row represents the GPU IDs within an NVLink clique, the

2During pre-sampling, graph topology is stored in the CPU memory.
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Figure 6: Update the hotness matrices of graph topology and
features by pre-sampling. For simplicity, we only show the
result for GPU 1.

column represents the vertex IDs, and the element Hi j of ei-
ther matrix represents the hotness of the j-th vertex in the i-th
GPU. During the pre-sampling, each GPU conducts a local
shuffle on its own training vertex tablet to generate seeds for
mini-batches, performs graph sampling for each mini-batch,
and updates the corresponding row in HT and HF . Figure 6
shows a pre-sampling example. For HT , whenever an edge
is traversed during sampling, the hotness of its source vertex
is incremented by 1. For HF , the hotness for each vertex that
appears in the sample results of the mini-batch is incremented
by 1. Additionally, Legion uses Intel® Performance Counter
Monitor (PCM) [18] to collect the summation of PCIe trans-
actions number, NT SUM , generated by all GPUs in an NVLink
clique during pre-sampling.3

S2: Cache Candidate Selection. The objective of cache
candidate selection is to select and disseminate the hot topol-
ogy sub-structures and features among GPUs within the same
NVLink clique based on pre-sampled hotness matrices. Thus
this phase is conducted in the unit of NVLink clique, and
each clique requires one GPU to perform the computation.
The detailed process of cache candidate selection is presented
in Algorithm 1. In brief, this algorithm computes the global
topology/feature hotness of all vertices, i.e., AT and AF , in
the NVLink clique by conducting a column-wise sum on HT
and HF , respectively (Line 1). AT and AF are then sorted in
descending order to generate QT and QF (Line 2). Next, We
iterate QT and QF in order and assign every visited vertex to
the GPU with the highest local hotness in HT and HF . For
each GPU, we maintain two queues, i.e., GT , GF , whose order
represents the priority of vertices to be included in this GPU
cache. The outputs of Algorithm 1 are further used by the cost
model (see Section 4.3) to generate the physical cache plan.
S3: Cache Initialization and Fill-up. Legion’s cache man-
agement automatically decides the cache ratio for topology
and feature so that the overall throughput is maximized (see
Section 4.3). Guided by this mechanism, Legion allocates
memory for both the topology and feature cache (TC and FC)
of each GPU, and fetches the corresponding topology and
feature data from CPU memory to fill up each GPU cache
according to the corresponding cache orders in GT and GF .

3NT SUM is further used by cost model’s evaluation.

Algorithm 1 COMPLETE SHARING WITH LOCAL PREFER-
ENCE (CSLP)
Input : Kg: number of GPUs per NVLink clique

HF : feature hotness matrix
HT : topology hotness matrix

Output : AF : accumulated vertex-wise feature hotness vector
AT : accumulated vertex-wise topology hotness vector
QT : vertex ID queue representing clique-level topology order,
QF : vertex ID queue representing clique-level feature order
GT : vertex ID queue representing GPU-level topology order
GF : vertex ID queue representing GPU-level feature order

/* Step 1: Accumulate each vertex’s hotness from Kg GPUs. */
1 AF = HF .columnWiseSum(); AT = HT .columnWiseSum();

/* Step 2: Sort vertices in AF and AT */
2 QF <- SortbyKeyDescend(AF ); QT <- SortbyKeyDescend(AT );

/* Step 3: Assign each vertex to the GPU with the highest local hotness. */
3 for v_id in QT do
4 gpu_id = max(HT [1 : Kg][v_id]).index;

GT [gpu_id].push(v_id);
5 end
6 for v_id in QF do
7 gpu_id = max(HF [1 : Kg][v_id]).index;

GF [gpu_id].push(v_id);
8 end

4.3 Automatic Cache Management
The design of the unified cache poses a new challenge: how
to properly specify the cache size for graph topology and
features under the constraint of GPU memory such that the
overall training throughput is maximized.

The general idea is to predict the overall throughput under
different cache plans and search for the best cache plan that
maximizes overall throughput. We define the cache plan as
a cache memory management setting (B, α) at the NVLink
clique granularity, where B is the multi-GPU cache memory
size in an NVLink clique and α is the memory ratio for topol-
ogy cache. B is identical among NVLink cliques and is by
default set as the total multi-GPU memory minus the size
of GPU memory reserved for GNN models and intermediate
buffers in an NVLink clique. We need three steps to deter-
mine the optimal cache memory management setting (B, α),
as discussed in Sections 4.3.1, 4.3.2, and 4.3.3.

4.3.1 Estimating Overall Throughput

The key goal of this Section is to build the relationship be-
tween the overall throughput and a cache plan. We build the
relationship by estimating a key factor: the total PCIe traffic
Ntotal , due to two reasons. First, the PCIe traffic is the ma-
jor bottleneck of the overall system throughput, and lower
PCIe traffic leads to higher overall system throughput. Sec-
ond, varying cache plans major results in the variance of PCIe
traffic.4 Because each NVLink clique maintains caches for its
own partition, we independently select the optimal cache plan
for each NVLink clique so as to minimize the PCIe traffic of

4Though NVLink traffic is also influenced by the cache plan, we neglect
it since NVLink has a much higher bandwidth than PCIe.
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each NVLink clique. Thus, the overall system’s PCIe traffic
is minimized.

4.3.2 Cost Model to Estimate Ntotal

The key goal of this Section is to present a cost model to
estimate Ntotal under a specific cache plan (B, α). First, given
a specific cache plan (B, α), we can calculate the topology
cache size mT and the feature cache size mF . Second, we
find which vertices’ topology/features should be stored in the
topology/feature cache. Third, we estimate the PCIe traffic for
graph sampling (NT ) and for feature extraction (NF ) with the
current topology/feature cache utilization. At last, we estimate
Ntotal by adding up NT and NF , as shown in Equation 2.

Ntotal = NT +NF (2)

To estimate NT and NF , we need to collect other informa-
tion apart from a given cache plan: the hotness vectors AT
and AF , the summation of PCIe transaction number NT SUM
incurred by graph sampling, and the order queues of topol-
ogy/feature cache candidates, QT and QF .
Estimating NT . We estimate NT when the memory size of a
topology cache under one specific cache plan (B, α) is mT ,
where mT = B×α. The estimation consists of three steps.

First, with mT , we decide which vertices’ topology should
be cached. We define V as the set of all vertices in the graph.
And we define VT cache as the set of all vertices whose topol-
ogy is cached under current topology cache size mT . To get
VT cache, we increase vertices and their topology into the cache
with the growth of occupied topology cache memory by the
order QT . Until the overall occupied topology cache mem-
ory size reaches mT , we record VT cache. Equation 3 illustrates
the relation between mT and VT cache, where nc(v) means the
neighbor count of the vertex v. Here we assume the data types
are Uint64 and Uint32 for the row and the column indices of
the compressed sparse row format (CSR), respectively. We
use suint64 and suint32 to denote the number of bytes to store a
single Uint64 and Uint32 data accordingly.

∑
v∈VT cache

(nc(v)× suint32 + suint64) = mT (3)

Second, once we get VT cache, we can calculate the ratio
of the PCIe transaction reduced by the topology cache by
Equation 4. Let aT (v) mean the topology hotness of a specific
vertex v (aT (v) ∈ AT ).

RT =
∑v∈VT cache

aT (v)

∑v∈V aT (v)
) (4)

Third, we get NT by multiplying the entire PCIe transaction
NT SUM with the ratio of PCIe transactions that can not be
reduced by the topology cache. We can get NT by Equation 5.

NT = NT SUM × (1−RT ) (5)

Estimating NF . We explain how to calculate NF when the
feature cache memory size is mF , where mF = B× (1−α).
There are also three steps in estimation.

First, given mF , we decide which vertices’ features should
be cached. We define VFcache as the set of vertices whose
feature data is cached. Then we increase the vertices with their
feature into cache by the order QF until the occupied feature
cache memory size reaches mF , as defined in Equation 6. D
represents the dimension of a feature vector and the feature
data is the Float32 type each of which needs s f loat32 bytes to
store.

∑
v∈VFcache

D× s f loat32 = mF (6)

Second, as shown in Equation 7, we calculate the total
number of features UF that still needs transferring through
PCIe with a feature cache.

UF = ∑
v∈V

(aF(v))− ∑
v∈VFcache

(aF(v)) (7)

Third, we get NF by multiplying the transaction number
needed by transferring one vertex’s feature with the total num-
ber of features to be transferred, UF , as shown in Equation 8.
Here CLS means the transferred cache line size. CLS might
be different for various CPUs and GPUs. We can get the CLS
from PCM. E.g., CLS equals 64 in our machine settings. And
aF(v) means the hotness of a specific vertex v (aF(v) ∈ AF ).

NF = (⌈
D× s f loat32

CLS
⌉)×UF (8)

4.3.3 Searching for Optimal Cache Plan in Parallel

The key goal of this Section is to efficiently determine the opti-
mal cache plan for each clique. As discussed in Section 4.3.1,
we search for the optimal cache plan independently with one
GPU for each NVLink clique. In each NVLink clique, we first
need to traverse α from 0 to 1 by an interval ∆α 5 to generate
the candidate cache plans, and the calculate Ntotal accordingly.
Then we need to search Ntotal sequences and find the smallest
one with the dedicated α. To minimize overhead, the process
is well parallelized, including four steps:

First, we generate all the candidate cache plans in parallel
and get sequences of mT and mF in each setting.

Second, we get the boundaries of cached vertices set VT cache
and VFcache using Equations 3 and 6, where the boundaries
are the largest cached vertices’ indexes in QT and QF . To
do so, we get the topology and feature memory size of every
single vertex in parallel and store them in two arrays, ST single
and SFsingle, following the vertices order, QT and QF . Next,
we calculate the cumulative sum of ST single and SFsingle by
a parallel inclusive scan and get ST sum and SFsum. Then for
each cache plan with mT and mF , we use a parallel binary

5∆α is set to be 0.01 by default.
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Figure 7: An example of fine-grained GNN training pipeline
for 2-hop GraphSAGE model.

search towards ST sum and SFsum to get the boundary indexes
of vertices, respectively.

Third, we get the RT and UF according to Equations 4 and 7.
To do so, we calculate the cumulative sum of AT and AF by a
parallel inclusive scan and get AT sum and AFsum. Then for each
cache plan, we lookup AT sum and AFsum with the boundary in-
dexes of vertices set VT cache, VFcache, and get ∑v∈VT cache

aT (v)
and ∑v∈VFcache

aF(v), respectively. Similarly, after lookup the
largest indexes in AT sum and AFsum, we get ∑v∈V aF(v) and
∑v∈V aF(v). As such, we can get the corresponding RT and
UF .

At last, we calculate NT and NF for each cache plan accord-
ing to Equation 5 and 8. Then we get Ntotal by Equation 2 and
search in parallel for the smallest Ntotal with the correspond-
ing α.

After getting the optimal cache plans (B, α), Legion can
automatically allocate the cache space and fill up the cache.

5 Implementation of Legion
Legion mainly consists of two components, which are the sam-
pling server and the training backend. The sampling server is
implemented from scratch and the training backend is built
on top of Pytorch [31]. The sampling server is responsible
for generating sampled results, and the training backend takes
the sampled results as input to train the GNN models.

In Legion, every GPU executes the graph sampling, feature
extraction, and model training stages, and all these stages are
scheduled in a fine-grained pipeline to fully utilize the GPU
computation cycles. Figure 7 illustrates how the training pro-
cess is pipelined for a 2-hop GraphSAGE [16] model. In order
to improve the overall throughput, we design an inter-batch
pipeline overlapping the tasks of the sampling server and the
training backend for different batches. E.g., the training of
batch Bi can be overlapped with the sampling and feature
extraction of batch Bi+1. To further improve the throughput
of sampling and feature extraction, we design an intra-batch
pipeline inside the sampling server. Specifically, we break
down the workloads of the sampling server into four types,
each of which corresponds to a type of operator: (1) Batch
generator shuffles the local training vertices to generate seeds
for mini batches; (2) Neighbor sampler executes the L-hop
neighbor sampling; (4) Feature extractor extracts the feature
of the batch seeds and vertices in the sampled results; (4)
Graph constructor is used to generating the subgraph based

Table 1: GPU Server Statistics.

Server DGX-V100 Siton DGX-A100

GPU Type 16GB-V100x8 40GB-A100x8 80GB-A100x8

NVLink Topo. Kc = 2, Kg = 4 Kc = 4, Kg = 2 Kc = 1, Kg = 8

PCIe Gen. 3.0x16 4.0x16 4.0x16

PCIe Topo. 4 switches,
2 GPUs/switch

2 switches,
4 GPUs/switch

4 switches,
2 GPUs/switch

CPU Mem. 384GB 1TB 1TB

CPU Core Num. 96 104 128

Sockets, NUMA Num. 2, 1 2, 2 2, 1

Table 2: Dataset Statistics.

Dataset PR PA CO UKS UKL CL

Vertices 2.4M 111M 65M 133M 0.79B 1B

Edges 120M 1.6B 1.8B 5.5B 47.2B 42.5B

Topology Storage 640M 6.4GB 7.2GB 22GB 189GB 170GB

Feature Size 100 128 256 256 128 128

Feature Storage 960M 56GB 65GB 136GB 400GB 512GB

on the sampled results. For the same batch, graph sampling
and graph construction can be overlapped with feature extrac-
tion.

6 Evaluation

6.1 Experimental Setting

Experimental Platform. The experiments are conducted us-
ing three different GPU servers: DGX-V100, Siton, and DGX-
A100, as shown in Table 1. For DGX-A100, we set the upper
limit of GPU memory to 40 GB.
GNN Models. We use two sampling-based GNN models:
GraphSAGE [16] and GCN [22], which both adopt a 2-hop
random neighbor sampling. The sampling fan-outs are 25 and
10. The dimension of the hidden layers in both models is set
to 256. Similar to existing work [47], the batch size is set to
8000. Unless explicitly explained, node classification is used
as the GNN task.
Datasets. We conduct our experiments on multiple real-
world graph datasets with various scales. Table 2 shows the
dataset characteristics. The Products (PR) and Paper100M
(PA) are available in Open Graph Benchmark [17]. The Com-
Friendster (CO) graph is an online gaming network [46]. And
the Uk-Union (UKS), UK-2014 (UKL), and Clue-web (CL)
are from WebGraph [2–5]. As CO, UKS, UKL, and CL have
no feature, we manually generate the features with the di-
mension specified as 128 or 256. Following PR’s setting, we
choose 10% of vertices from each graph as training vertices.
Baselines. We use DGL [42], PaGraph [23] and
GNNLab [47] as the baseline systems. The DGL version is
v0.9.1, which supports accessing graph topology and features
via the UVA technique. We don’t compare with Quiver [33] in
the overall performance experiment as its open-sourced ver-
sion cannot support training on servers with 8 GPUs. Instead,
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(a) DGX-V100, GraphSAGE (b) DGX-V100, GraphSAGE (c) DGX-A100, GraphSAGE (d) DGX-A100, GraphSAGE

(e) DGX-V100, GCN (f) DGX-V100, GCN (g) DGX-A100, GCN (h) DGX-A100, GCN

Figure 8: Overall performance of Legion comparing with state-of-the-art systems. “×” denotes OOM (out of memory).

we implement a Quiver-like multi-GPU cache mechanism in
Legion for comparison in Section 6.3.

6.2 End-to-end Performance
We compare the end-to-end performance of Legion with base-
line systems on the DGX-V100 and DGX-A100 servers. On
the DGX-V100 server, we evaluate PR, PA, CO, and UKS
graphs whose graph topology and features can fit into 384
GB CPU memory. On the DGX-A100 server, we evaluate all
six graphs. As PaGraph and GNNLab are implemented using
CUDA 10 which cannot support A100 GPU, we exclude them
from the experiments using DGX-A100.
Baseline Configuration. For all the baselines, we manually
adjust their configurations to achieve optimal performance.
DGL uses the UVA mode, where sampling is performed in
GPU, and the topology and features are all stored in CPU
memory. The number of worker threads in PaGraph is set to be
64 to maximize the CPU sampling throughput. For GNNLab,
we adjust the numbers of sampling and training GPUs such
that the overall throughput is maximized. In contrast, Legion
relies on its automatic cache management mechanism to gen-
erate the unified cache plan.
Evaluation Metrics. We record the average epoch time for
all systems. We also use PCM [18] to measure the maximum
PCIe counter value across different sockets and report the
normalized values based on the result of DGL for all systems.
Support training on large graphs. As shown in Figures 8a,
8e, 8c and 8g, Legion outperform all the baseline systems
in every setting. Specifically, Legion achieves 3.78-5.69×
speedup for GraphSAGE (3.5-5.19× for GCN) on DGX-
V100 and 2.89-4.77× speedup for GraphSAGE (2.34-4.45×
for GCN) on DGX-A100 over DGL(UVA). Figures 8b, 8f, 8d
and 8h show that, compared with the baselines, Legion can
sufficiently utilize the multi-GPU cache to minimize PCIe
traffic incurred by CPU-GPU data transferring. GNNLab runs
out of GPU memory for UKS on DGX-V100 as the size of
graph topology exceeds the capacity of single GPU mem-

ory. PaGraph runs out of the CPU memory for most graphs
except for PR on DGX-V100, as the memory management
in PaGraph incurs extra memory overheads, including dupli-
cated multi-hop neighbors in CPU memory and redundant
intermediate buffers generated during computation.
Speedup over SOTA system on small graphs. Legion
achieves 1.39-4.18× speedup for GraphSAGE (1.29-4.32×
speedup for GCN) over GNNLab on the small graphs (PR, PA,
CO). The performance gain mainly comes from two aspects.
First, Figure 8b and 8f show that Legion significantly reduces
the PCIe traffic for PA and CO, as it has a scalable multi-GPU
cache design compared with GNNLab. The reduction of PCIe
traffic relieves the CPU-GPU communication bottleneck such
that the overall performance is improved. Second, Legion can
use all GPUs for model training, while GNNLab needs to
allocate several GPUs for sampling exclusively due to its fac-
tored design. In Legion, the graph sampling is overlapped by
model training due to the fine-grained pipeline (see Section 5).
E.g., when training GraphSAGE using the PR dataset, all the
topology and feature data can be stored in GPU memory in
both Legion and GNNLab. However, Legion can use 8 GPUs
for training while GNNLab only uses 4 GPUs for training
(see Figures 8a).

6.3 Effect of Hierarchical Partitioning
In this experiment, we examine the effect of hierarchical par-
titioning in Legion. We report the cache hit rates under differ-
ent partition strategies in all three GPU servers: DGX-V100
(NV4: Kc = 2 and Kg = 4), Siton (NV2: Kc = 4 and Kg = 2)
and DGX-A100 (NV8: Kc = 1 and Kg = 8).

6.3.1 Cache Performance

Baselines. For a fair comparison, we implement the cache
designs of GNNLab, PaGraph-plus (described in Section 3.1),
and Quiver-plus in Legion and compare their cache hit rates.
Specifically, GNNLab maintains a globally replicated cache
among all GPUs without using NVLinks (noPart+noNV).
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Figure 9: Effect of graph partition strategies (NoPart: no partitioning; Edge-cut: partitioning minimizing edge-cut; Hierarchical:
hierarchical partitioning) to multi-GPU cache in terms of cache hit rate, with different NVLink infrastructures. (noNV: disable
NVLinks; NV2: Kc = 4 and Kg = 2; NV4: Kc = 2 and Kg = 4; NV8: Kc = 1 and Kg = 8; ).

.

Figure 10: Data transferring in feature extraction of PA dataset
on DGX-V100 (NV4). The rows and columns of each matrix
denote the destination and source of data transferring. The
right-most (red) column records the data transferring volume
from CPU to GPU via PCIe. The middle (green) columns rep-
resent the GPU-GPU data transferring volume. We normalize
the recorded values based on the CPU-GPU data transferring
volumes in GNNLab.

Quiver-plus enables NVLink and maintains replicated cache
among NVLink cliques (noPart+NV2 / noPart+NV4 /
noPart+NV8). PaGraph-plus takes the XtraPulp [35] partition-
ing which minimizes across-partition edge-cuts and disables
NVLinks (Edge-cut+noNV). Legion uses hierarchical par-
titioning (inter-NVLink-clique partitioning: XtraPulp) and
enables NVLink (Hierarchical+NV2 / Hierarchical+NV4 /
Hierarchical+NV8). We use the pre-sampling hotness metric
for all these cache designs. The in-degree-based hotness met-
ric in the original PaGraph and Quiver design are replaced
with the pre-sampling hotness metric in Pagraph-plus and
Quiver-plus, which has a better performance on cache hit
rates [47].

The datasets used in this experiment are PR, CO, UKL, and
CL. We vary the cache ratio from 1.25% |V | to 10% |V | for
PR and CO. For UKL and CL whose sizes are relatively large,
the cache ratio varies from 1.25% |V | to 5% |V |. Figure 9
shows that, for almost all the experiment settings, Legion has
the highest cache hit rate. Specifically, Legion obviously out-
performs Quiver-plus in the cases of NV2 and NV4, since
Legion can reduce the inter-NVLink-clique cache duplication
and achieves higher multi-GPU memory utilization compared

with Quiver-plus. For the case of NV8, as all GPUs are in
the same NVLink clique, the inter-clique graph partitioning
in Legion can be skipped, and hierarchical partitioning turns
into hash partitioning among all the GPUs, which is identi-
cal to Quiver-plus in the case of NV8. Legion outperforms
PaGraph-plus because it has much less cache duplication.
Specifically, PaGraph-plus’s cache mechanism may replicate
vertices with high global hotness on multiple GPUs. Com-
pared with GNNLab, Legion has higher cache hit rates as it
can scale up the cache capacity with the increase of GPUs,
while GNNLab replicates the same feature cache across all
GPUs. These results demonstrate that Legion can effectively
adapt the cache plan to optimize the cache performance for
multi-GPU servers with various NVLink topologies.

6.3.2 Data Transferring in Feature Extraction

In this experiment, we demonstrate the GPU-GPU and CPU-
GPU data transferring volume during feature extraction using
the PA dataset. Specifically, we perform the graph sampling
and feature extraction stages using the PA graph on DGX-
V100 (NV4) and record the data transferring volumes of fea-
ture extraction on each GPU in the format of a traffic matrix.
We use GNNLab, PaGraph-plus, and Quiver-plus as the base-
lines, and set the feature cache ratio on each GPU to 2.5%
|V |. The results are presented in Figure 10. We can see that
Legion’s data transferring volume from CPU to GPU is the
smallest, indicating the best cache performance among the
compared systems. As it is the GPU with the largest CPU-
GPU data transferring volume that dominates the overall per-
formance, although Legion’s CPU-GPU volumes on some
GPUs are higher than PaGraph-plus, Legion can still outper-
form PaGraph-plus because its largest CPU-GPU volume is
lower than that of PaGraph-plus.

6.3.3 Model Convergence

Compared with global shuffling (randomly generating batch
seeds from the vertex set of the entire graph), recent stud-
ies [23, 28] show that local shuffling (generating batch seeds
within partitions) brings negligible impact on the rate of
model convergence. Legion adopts local shuffling, and we
conduct an experiment on the Siton server (NV2) to compare
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(a) GraphSAGE (b) GCN

Figure 11: Comparing local shuffling and global shuffling
on model convergence (NoPart: no partitioning; Hierarchical:
hierarchical partitioning).

Figure 12: The impact of topology cache. “×” means OOM
(out of memory).

its convergence speed with global shuffling on both Graph-
SAGE and GCN using the PR dataset. The results in Figure 11
show that the local shuffling of Legion could catch up with
the convergence speed of global shuffling.

6.4 Effect of Unified Cache
Different from existing cache-based systems, Legion’s uni-
fied cache also takes graph topology into account. In this
experiment, we demonstrate the benefits of topology cache.

We compare the training epoch time of unified cache in
Legion with two baselines: (1) storing all topology in the
CPU (denoted as TopoCPU) and (2) replicating the entire
topology in every single GPU (denoted as TopoGPU). For a
fair comparison, we implement both TopoCPU and TopoGPU
in Legion and use the same GPU memory volume for the
three settings. Among the three settings, TopoCPU has the
most GPU memory available for the feature cache, and the
TopoGPU has the least GPU memory for the feature cache or
even runs out of GPU memory. We evaluate PA, CO, and UKS
on DGX-V100 and evaluate UKL and CL on DGX-A100.

As shown in Figure 12, the unified cache outperforms the
other two baselines for all graphs. This result demonstrates
that, when the size of the feature cache exceeds a threshold,
the increase of cache hit rate slows down. In this case, caching
some hot topology data in GPU memory will save the system
from severe PCIe contention incurred by graph sampling and
benefit the overall GNN training throughput.

6.5 Evaluation of Cost Model
Legion proposes the cost model to guide allocating GPU
memory for both graph topology and feature cache. In this
experiment, we evaluate the effectiveness of this mechanism.

(a) PA, Single GPU (b) UKS, DGX-V100 (NV4)

Figure 13: Evaluation of cost model. The left y-axis means
the PCIe transaction number predicted by the cost model.
The right y-axis represents the experimental per-epoch graph
sampling and feature extraction time.

Table 3: Evaluation of Partitioning Cost.

Dataset PA (DGX-V100) UKL (Siton)

Graph Partition(min) 7.2 75

Data Loading From Disk To Memory(min) 0.32 3.5

Node Classification Epoch(s) 1.98 15.6

Link Prediction Epoch(min) 49.8 402

Specifically, we compare the predicted PCIe traffic with the
experimental per-epoch execution time of graph sampling and
feature extraction. In the experiment using the PA dataset,
the GPU memory allocated for the cache is 10 GB. And in
the experiment using the UKS dataset, the GPU memory al-
located for the cache is 8 GB. When varying the size of the
topology cache, the size of the feature cache is adjusted ac-
cordingly. Figure 13 shows that our cost model can precisely
predict the trend of per-epoch execution time without manual
interference.

6.6 Partitioning Cost
In this experiment, we study the partitioning cost in Legion.
We run our experiment on the UKL dataset that has the largest
number of edges among all the datasets, resulting in the high-
est cost of edge-cut partitioning. We also present the results
of the PA data (medium size) to show the partitioning costs
of different graph scales. We partition PA on DGX-V100
and UKL on Siton using the XtraPulp algorithm. For node
classification, we set the training set to be 10% of the total
edges for both graphs. For link prediction, we set the training
set to be 80% of total edges. When the graph is too large to
be partitioned in memory, like UKL, we randomly sample a
fraction of edges (25% for UKL) and keep all vertices in the
graph such that the subgraph can be partitioned in memory.
This technique can obviously speedup graph partitioning and
preserves a low edge-cut ratio.

Table 3 shows the preprocessing cost of Legion’s hierar-
chical partitioning. We observe that the partitioning cost is
tolerable, because 1) we only partition the graph once but
can use the partitioning results for multiple GNN training
jobs, and 2) the GNN task like link prediction needs multiple
epochs to converge while a single epoch often costs a long
time to finish.
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7 Related Work
To our knowledge, Legion is the first work that automatically
pushes the envelope of multi-GPU systems for billion-scale
GNN training. In the following, we contrast Legion and exist-
ing works in the following aspects.
GNN Frameworks. Several GNN systems [11,12,20,23,26,
33,38,42,43,47,51,53,55] have emerged in recent years. Most
of these GNN systems are built on top of deep learning frame-
works like Pytorch [31], TensorFlow [1] and MXNet [9].
GPU Sampling. NextDoor [19] and C-SAW [30] focus on
accelerating GPU sampling kernel. DGL [42] also supports
GPU sampling in its recent release. Quiver [33] can support
GPU sampling with the entire topology either stored in the
single GPU or in the CPU memory. GNNLab [47] adopts a
factored design where each GPU is dedicated to graph sam-
pling or model training exclusively. In contrast, Legion uses
all GPUs for end-to-end GNN acceleration.
Graph Partitioning. Graph partitioning such as [6, 14, 15,
21, 32, 35, 36, 39], has been widely adopted in GNN systems.
DGL [42] adopts METIS [21] to partition the graph. Pa-
Graph [23] adopts a self-reliant partitioning strategy with the
goal of achieving balanced training vertex allocation across
GPUs and improving data locality on every GPU. DGCL [7]
adopts a partitioning algorithm to partition the graph’s phys-
ical edges and features and store them among distributed
machines. In contrast, Legion adopts hierarchical partitioning
to automatically partition graphs to each GPU in a single
multi-GPU server accordingly to GPU interconnections.
GPU Feature Cache. PaGraph [23], BGL [24],
GNNLab [47], Quiver [33] and [29] explore feature
caching on GPU to accelerate GNN training. PaGraph [23]
and Quiver [33] use the in-degree of vertexes as the hotness
metric. BGL [24] applies a FIFO dynamic cache policy
and selects training vertices in a BFS order for a higher
cache hit rate, but hinders model convergence and incurs
cache replacement overheads. [29] uses a weighted reverse
PageRank algorithm as a hotness metric. GNNLab [47] uses
vertices’ access frequencies in the pre-sampling epoch as
a hotness metric. In contrast, Legion automatically caches
both features and topology with the highest hotness. And
Legion statically partitions the graph with minimal edge-cut
to preserve intra-partition data locality. Figures 9 and 11
show that Legion can achieve a high cache hit rate even
with small cache ratios without compromising the model
convergence rate.
Large Graph Systems. SSD-based GNN systems [41] and
distributed GNN systems [12, 24, 52, 54] also aim at large-
graph training and propose distinct approaches to solve I/O
problems at various levels. MariusGNN [41] minimizes I/O
between SSD and CPU by including valid graph data in a
single swap as much as possible. Systems like BGL [24],
DistDGLv2 [54], and P3 [12] optimize network I/O between
distributed machines, whose network performance can be
improved when introducing GPU-centric SmartNIC [44]. In

contrast, Legion focuses on utilizing GPU caches to minimize
PCIe traffic from CPU memory to multiple GPUs, which is
orthogonal to the above systems.

8 Conclusion
We present Legion, a system that automatically pushes the
envelope of multi-GPU systems for billion-scale GNN train-
ing. Legion has three key innovations. First, we propose an
NVLink-aware hierarchical partitioning technique that helps
minimize cache replication and extends the threshold of cache
capacity beyond the limit of a single GPU or NVLink clique.
Second, we propose a novel hotness-aware unified cache
mechanism that helps accelerate both graph sampling and fea-
ture extraction. Third, we present an automatic cache manage-
ment mechanism enabling optimal cache planning without re-
quiring extra knowledge of hardware specifications and GNN
performance details from users. Experiments show Legion
outperforms SOTA cache-based GNN systems up to 4.32×
and supports training on billion-scale graphs. And Legion is
open-sourced at https://github.com/RC4ML/Legion.
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A Appendices

A.1 Generalization of Legion
Generalizing Legion to SSDs. Legion is primarily designed
for in-memory graph training, but it can also be extended to
SSD-based systems. First, Legion can still use GPU to exe-
cute end-to-end GNN training while storing graph topology
and features in SSDs. The data path between GPU and SSDs
could be enabled by BaM [34], which is a GPU-initiated on-
demand high-throughput storage access technique. Second,
the throughput of reading data from SSDs could be much
lower than that in memory, leading to more severe I/O prob-
lems. Legion’s hierarchical partitioning and unified cache
design could still help reduce I/O and benefit overall through-
put in this situation. Finally, due to the limited GPU memory,
there still exists a trade-off between topology cache and fea-
ture cache in SSD-based systems. Thus automatic cache man-
agement could still be important and should be extended with
more considerations of the specific hardware characteristics.
We leave Legion’s generalization to SSDs as our future work.
Generalizing Legion to none-NVLink systems. Legion can
still bring performance benefits in multi-GPU systems with-
out NVLink. To achieve this, Legion splits the graph into N
partitions and each GPU maintains a cache for a partition.
This approach can have a higher cache hit rate compared to
replicating a global cache, as shown in Figure 9. We can also
apply Legion on other GPU platforms, e.g., on AMD GPUs
by leveraging the AMD Infinity inter-GPU bus.
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ABSTRACT

Recently, many applications have required the ability to per-
form dynamic graph analytical processing (GAP) tasks on
the datasets generated by relational OLTP in real time. To
meet the two key requirements of performance and fresh-
ness, this paper presents GART, an in-memory system that
extends hybrid transactional/analytical processing (HTAP)
systems to support GAP, resulting in hybrid transactional
and graph analytical processing (HTGAP). GART fulfills two
unique goals that are not encountered by HTAP systems.
First, to adapt to rich workloads flexibility, GART proposes
transparent data model conversion by graph extraction inter-
faces, which define rules for relational-graph mapping. Sec-
ond, to ensure GAP performance, GART proposes an effi-
cient dynamic graph storage with good locality that stems
from key insights into HTGAP workloads, including (1) an
efficient and mutable compressed sparse row (CSR) repre-
sentation to guarantee the locality of edge scan, (2) a coarse-
grained multi-version concurrency control (MVCC) scheme
to reduce the temporal and spatial overhead of versioning,
and (3) a flexible property storage to efficiently run differ-
ent GAP workloads. Evaluations show that GART performs
several orders of magnitude better than existing solutions
in terms of freshness or performance. Meanwhile, for GAP
workloads on the LDBC SNB dataset, GART outperforms the
state-of-the-art general-purpose dynamic graph storage (i.e.,
LiveGraph) by up to 4.4×.

1 INTRODUCTION

Graphs, due to their natural ability to model intricate rela-
tions among entities [12, 61], have been intensively adopted
to model business data. Correspondingly, graph analytical

processing (GAP) techniques are being developed to better
understand graph data and are widely applied in many fields,
such as recommendation systems [70, 74], supply-chain anal-
ysis [46], and fraud detection [29, 56]. As business data
is constantly generated and updated, there calls for an ur-
gent need for dynamic GAP workloads on real-time datasets.
In many traditional business scenarios, data is usually up-
dated by online transaction processing (OLTP) in relational
databases [26, 47, 82].
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Fig. 1. A comparison of solutions for dynamic graph analytical

processing (GAP) on transactional datasets and their limitations.

Solutions: graph processing on offline data (!) or online data (").

Real-world Example. In Fig. 1, we demonstrate a simpli-
fied online credit card fraud detection task in e-commerce
platforms [56], in which a suspect attempts to obtain short-
term credit from a credit card via illegal transactions. To
achieve this, the suspect (802) makes sham purchases paid
by a credit card from a conspired merchant (803). The mer-
chant, after receiving the money from the bank (101), trans-
fers the money through a series of middlemen (804, . . . , 807)
with other fraudulent transactions back to the suspect (802).
In this scenario, the OLTP system maintains four tables
(PERSON, TRANSACTION, CLIENT, and BANK), from which
one can create a graph showing relationships of transactions
among normal users, suspects, merchants, and middlemen.
Whenever a new tuple occurs in the TRANSACTION table, the
graph should be updated correspondingly. As soon as an up-
coming transaction generates a cycle in the graph, an alarm
should be triggered instantly to block the transaction for fur-
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ther investigation. Therefore, an underlying detection system
for such frauds should meet two key requirements simultane-
ously.

Performance. The performance degradation of both rela-
tional transaction and graph analytical workloads should be
minimal compared to running them separately on specific
systems. Thereby, both the transaction and detection should
be completed before the user perceives any lag.
Freshness. The time gap between transactions committed on
OLTP systems and their accessibility on detection systems
should be minimal to prevent fraud on time. Recent stud-
ies [10, 56] show extreme requirements of 20-millisecond
freshness for fraud detection or system monitoring.

In response, several solutions have been proposed to sup-
port such workloads. Unfortunately, none of them can simul-
taneously meet the requirements, as shown in Fig. 1.

Solution !: graph processing on offline data. To achieve
better GAP performance, this solution utilizes existing graph-
specific systems (particularly for static graphs in many cases)
[22, 31, 67, 76, 86], such as GraphScope [29], to handle GAP
workloads efficiently. Since data is separately maintained in
OLTP and graph-specific systems, an offline data migration
with an ETL (Extract-Transform-Load) process is required.
However, such a process is often expensive and slow, and re-
sults in a high lag between the transactional data in OLTP
systems and the extracted graph data in graph-specific sys-
tems [82], which deteriorates the freshness guarantee.

Solution ": graph processing on online data. Some OLTP
systems [34, 37, 55, 84] attempt to translate graph-related op-
erations into relational operations. However, prior work [21,
73] has found this solution causes performance degradation
of GAP up to several orders of magnitude due to costly join
operations and huge redundant intermediate data. On the
other hand, graph databases [6, 7, 27] use a native graph rep-
resentation to ensure the efficiency of GAP workloads and
directly commit transactions on graphs. However, due to the
more complicated management (e.g., maintaining adjacency
lists instead of inserting a row) in graph databases to fulfill
transactions [87], the performance of transactions in graph
databases is significantly slower than the relational counter-
parts, which is also demonstrated in our experimental study
(§6.2). Further, legacy business logic was usually designed
and implemented on relational OLTP systems, and it is in-
evitable to process a costly migration to the graph databases.

The tradeoff between performance and freshness is still
an open problem for dynamic GAP workloads. Fortu-
nately, hybrid transactional/analytical processing (HTAP) is
a new trend that processes OLTP and online analytical pro-
cessing (OLAP) simultaneously in the same system. The
state-of-the-art HTAP systems usually leverage a loosely-
coupled design to guarantee both performance and fresh-
ness [19, 38, 45, 50, 65, 82], which gives an opportunity
for dynamic GAP workloads. Analogously, we term dy-

namic GAP workloads on transactional datasets as hybrid

transactional/graph-analytical processing (HTGAP).

Our approach. This paper presents GART, an in-memory
HTGAP system extended from HTAP systems that can be
deployed to bridge an existing relational OLTP system with
a graph-specific system for requirements of performance and
freshness. GART performs GAP workloads over the graph-
specific system with little performance degradation. It reuses
transaction logs to replay graph data online for freshness in-
stead of offline data migration. Unlike the prior HTAP sys-
tems with only the relational model, GART also has to sup-
port the graph data model for GAP. Therefore, there are two
unique goals not encountered by HTAP systems.

First, to adapt to rich workloads flexibly, GART needs
to convert relational data to graph data transparently. Thus,
some concise yet expressive interfaces should be proposed to
the database administrator (DBA) for data conversion from
the relational model to the graph model. To fulfill this goal,
we propose a collection of graph extraction interfaces to de-
fine rules of relational-graph mapping in a newly designed
component called RGMapping. We demonstrate that the in-
terfaces are expressive enough to help GART automatically
extract property graphs from relational data sources such as
transactions.

Second, to guarantee performance, the dynamic graph stor-
age should support both read and write operations efficiently.
Existing general-purpose dynamic graph storages [26, 33,
87] support complex updates from transactions but provide
sub-optimal GAP performance due to poor data locality and
expensive concurrency control. Thus, based on observed
characteristics of HTGAP workloads, we propose a new effi-
cient dynamic graph storage for HTGAP with three key com-
ponents: 1) an efficient and mutable CSR representation that
guarantees the locality of edge scan when updating graph
topology data; 2) a coarse-grained MVCC scheme that re-
duces the temporal and spatial overhead of versioning; 3) a
flexible property storage that allows running different GAP
workloads on snapshots generated based on their access pat-
terns.

We implement GART by extending VEGITO [65], a state-
of-the-art in-memory HTAP system. The extensions include
graph extraction interfaces, the dynamic property graph stor-
age, and integrating a unified graph computation system
(GraphScope [29]). To demonstrate the efficacy of GART,
we have conducted a set of experiments using two popular
benchmarks (i.e., LDBC SNB [4] and TPC-C [71]), as well
as diverse graph datasets. Our experimental results show that
GART outperforms Solution ! and Solution " by several or-
ders of magnitude in freshness and performance, respectively.
Meanwhile, GART outperforms the state-of-the-art general-
purpose dynamic graph storage (i.e., LiveGraph [87]) by up
to 4.4× for GAP workloads on the LDBC SNB dataset.

Contributions. We extend HTAP systems to support
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(v), operation type (op), and timestamp (ts).

HTGAP by incorporating relational-graph mapping and a
dynamic graph storage into existing computation engines. In
summary, the contributions of this paper are:
◦ The first to extend HTAP architecture for HTGAP work-

loads with guarantees of performance and freshness (§3)
that proposes expressive interfaces of relational-graph
mapping for transparent data model conversion (§4).

◦ A new dynamic graph storage for efficient HTGAP work-
loads, which is optimized for data locality and concur-
rency control based on our key insights into HTGAP (§5).

◦ A prototype implementation (GART) that integrates exist-
ing HTAP and GAP systems, as well as a set of evaluations
that confirm the efficacy of GART for HTGAP workloads
with diverse applications and datasets (§6).

2 OPPORTUNITY: HTAP

Hybrid transactional/analytical processing (HTAP) is a new
trend that bridges the gap between OLTP and OLAP for real-
time analytics on datasets updated by transactions and is al-
ready being used in many scenarios [17, 53, 85].

The loosely-coupled design is a common choice of state-
of-the-art HTAP systems, which dedicate OLTP and OLAP
to different physical resources with specific storage types
(see Fig. 2). Thereby, it is comparable in performance to spe-
cific execution engines and can synchronize data with trans-
action logs to guarantee freshness [38, 45, 50, 65, 82]. Specif-
ically, logs of the OLTP node are used to update the extra
column store on the backup (OLAP node), which is more ap-
propriate for OLAP workloads; the log replayer applies logs
in real time on the OLAP node. The log from the OLTP sys-
tem (Txn log in Fig. 2) contains the necessary information
for data replaying, such as the identifier of data updates (ta-
ble ID and primary key), the after-image or delta of the tu-
ple (value), and the temporal meta-data (version number or
timestamp) [23, 52, 63, 66, 78]. Reusing logs for HTAP can
avoid costly operations for change data capture (CDC).

HTAP systems usually utilize batch-based log replaying
for freshness and consistency on the OLAP storage [45, 50,
65]. An efficient design [65] divides time into consecutive
and non-overlapping epochs. The epoch is automatically in-
creased in a fixed interval, such as several milliseconds, that
can trade off between freshness and performance. During
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Txn log

Log Queue

TX GAP

Relational Graph

Topology Property
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R-G 
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Fig. 3. The architecture of GART. The components in the dashed

box are newly designed for HTGAP.

each epoch, logs can be replayed in parallel. When an epoch
ends, it guarantees all the logs within the epoch have been re-
played. Each epoch is specified by an epoch number, which
is incremented when entering a new epoch. The system main-
tains a write epoch number (i.e., wepoch) to represent the
epoch when the logs are being replayed. The latest stable
epoch number that OLAP users can read is latest_repoch.

Opportunity. We observe that the guarantees of HTAP sys-
tems on both performance and freshness can benefit the dy-
namic GAP workloads. HTAP systems can be extended to
process transactions and GAP workloads simultaneously on
different storages. Specifically, for performance, HTAP sys-
tems provide specific storages and execution engines for hy-
brid workloads, which can fully reuse the effort on specific
systems for OLTP and GAP. For freshness, logs in HTAP
systems contain the updates of relational data, which can be
synchronously applied to the graph data in real time without
costly operations such as bulk loading, CDC and ETL.

However, to the best of our knowledge, none of the HTAP
systems enable native GAP workloads on a dynamic graph
storage. To achieve this, HTAP systems need to support con-
version between the relational model and graph data model
and an efficient dynamic graph storage for HTGAP.

3 OVERVIEW OF GART

Inspired by the loosely-coupled design of HTAP systems [38,
65, 82], we propose GART, an in-memory HTGAP system
that extends HTAP systems by retrofitting the log replayer
and the storage for GAP workloads, as shown in Fig. 3. It
should be noted that GART can reuse the execution engines
of existing OLTP and graph-specific systems.

Architecture and workflow. In GART, transactions are com-
mitted in the OLTP nodes and generate logs, like prior HTAP
systems [38, 65, 82]. To support rich workloads flexibly
and efficiently, GART conducts data model conversion. Re-
lational data in logs need to be converted to graph data and
stored in a dynamic graph storage (GStore) of OLAP nodes.
GART allows the DBA, who is responsible for defining
the database schema, to define the relational-graph mapping
through the RGMapping component. RGMapping guides the
log replayer to convert the relational data in logs to the up-
dates on graph data.
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GART devises a new dynamic graph storage for real-time
graph updates and different GAP workloads. Graph data con-
sists of a topology and properties. The topology contains ver-
tices and edges (i.e., an ordered pair of vertices), and the
properties are a set of attributes for each vertex or edge. The
storage always provides consistent snapshots of graph data
(identified by an epoch) derived from relational data. Similar
to HTAP systems (§2), the log replayer updates the storage
with the epoch number wepoch. GAP workloads can read a
fresh snapshot or earlier using an epoch number that does
not exceed latest_repoch.

GART follows a loosely-coupled design, which can be de-
ployed as a single-machine system or a distributed system
that separates OLTP and GAP components (the dashed box
in Fig. 3) on different machines for better performance isola-
tion. For the distributed deployment, a crash of the GAP com-
ponent will not stall the execution of the OLTP component.
The graph data can be recovered from the relational data ac-
cording to persistent RGMapping data. When the OLTP com-
ponent fails, the existing fault-tolerance mechanism in HTAP
systems still works [65], which is orthogonal to our work. In
addition, we focus on in-memory processing that can buffer
hot data in real-time GAP tasks and meet the freshness and
performance requirements. GART is independent of whether
the OLTP system is in-memory or not.

To support HTGAP workloads, GART should fulfill two
unique design goals never encountered in prior work.
Goal 1: Transparent data model conversion (§4). In HTAP
systems, the conversion does not change the data model and
only depends on the schema of relational data (e.g., from row
store to column store [38, 65]). However, the conversion be-
tween different data models for HTGAP workloads requires
more semantic information. For example, it needs the map-
ping between relational tables and vertex/edge types, and the
mapping between relational attributes and vertex/edge prop-
erties. Prior work [37, 55, 72] uses interface extension rather
than data conversion, such as graph extensions on relational
databases, which demands users to manually rewrite transac-
tions or change log formats.

Goal 2: Efficient dynamic graph storage (§5). For the HT-
GAP system, write operations (from the log replayer) and
read operations (from the GAP worker) are executed con-
currently on the graph storage. The performance of both is
important. Although many general-purpose dynamic graph
storage systems [30, 32, 54, 87] have existed, their read per-
formance for GAP workloads is sub-optimal due to neglect
of HTGAP characteristics. The locality of read operations
is sacrificed to guarantee the write performance and transac-
tion semantics. First, adjacency-list-based topology storages
ignore the locality of edge scan. Second, fine-grained ver-
sioning is expensive and breaks both the spatial and tempo-
ral locality. Third, property storages based on a column store
cannot guarantee the locality of access patterns among differ-
ent GAP workloads.

def_vertex(Person,PERSON)
def_edge(Trans,Person,Person,P_ID1,P_ID2)
add_eprop(Trans,how,HOW)

Relational
OLTP

Graph-based
OLAP

E-R ModelRelational 
Model

Models for Relational Data
Property Graph 

Model

TRANSFER(P_ID1,P_ID2,HOW,..):
  INSERT INTO `TRANSACTION`
  VALUES (P_ID1,P_ID2,HOW,..)

FRAUDDETECTION:
  g.V().has(‘Person’)
   .findCycle(‘Trans’)

User User

DBA

RGMapping

Fig. 4. An example of data manipulation and graph extraction in-

terfaces provided by GART using the dataset in Fig. 1.

4 RELATIONAL-GRAPH MAPPING

To convert relational data to graph data automatically, it is
necessary to provide a relational-graph mapping mechanism.
GART uses the property graph model and provides the in-
terfaces with the intuition from the entity-relationship (E-

R) model. The property graph model [11] has been widely
adopted to model graph-structured data. As shown in the
lower left corner of Fig. 1, a property graph model defines
a directed graph topology in which a vertex represents an
entity and an edge from a source vertex to a target vertex
represents a relationship. Each vertex (resp. edge) belongs to
a vertex (resp. edge) type and has a property with attributes
(Attr-Value pairs).

4.1 System Interfaces

The conversion from relational data to graph data needs ad-
ditional semantic information. An intuitive solution is to di-
rectly add graph information to the transactions, such as
graph extensions for relational databases [48, 55, 69], so that
additional information can be added to the log. However, this
solution has to extend the interface of the OLTP engine and
change the log format; it implies that transactions must also
be rewritten manually. Instead, GART decouples the interface
into two groups, which are exposed to the user and the DBA,
as shown in Fig. 4.

Data manipulation interfaces. GART integrates specific
execution engines for OLTP and GAP workloads and re-
tains their user interfaces. Therefore, existing transactions
and graph queries can run directly on GART. As the exam-
ple in Fig. 4 shows, users can execute a transaction called
TRANSFER to transfer money. Meanwhile, users can run a
query called FRAUDDETECTION to find all cycles on the graph
consisting of Person vertices and Trans edges.

Graph extraction interfaces. The interfaces of the RGMap-

ping component define the relational-graph mapping, which
guides the log replayer to perform data conversion automati-
cally. Fig. 5 lists two kinds of graph extraction interfaces.

Interfaces for adding vertices. In GART, each vertex type
corresponds to one table in the relational model, and each
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def_vertex(vtype,table)
add_vprop(vtype,vprop,attr)

# Definition for vertices

def_edge(etype,src_vtype,dst_vtype,pk) # 1-to-m
def_edge(etype,src_vtype,dst_vtype,src_pk,dst_pk) # m-to-m
add_eprop(etype,eprop,attr)

# Definition for edges

Fig. 5. The graph extraction interfaces provided by GART. Argu-

ments from the graph model and the relational model are shown in

red and blue, respectively.

property of vertices corresponds to one attribute in the table.
The interfaces def_vertex and def_vprop are used to add new en-
tities and construct the corresponding vertices. Specifically,
def_vertex defines a type of vertices (vtype) according to the
corresponding table (table). The attributes (attr) of the table
can be further mapped to the properties (vprop) of vertices
through the interface add_vprop.
Interfaces for adding edges. A relationship in the relational
model can be added as a directed edge through the interface
def_edge, where etype, src_vtype and dst_vtype correspond to
the edge type, the type of source and destination vertices of
this type of edges, respectively. To distinguish between dif-
ferent relationship types, RGMapping provides two def_edge

for 1-to-m relationships (also 1-to-1 relationships) and m-to-
m relationships, respectively. The difference between them
lies in whether the interface requires the primary keys (pk) of
one table or both tables as inputs. Furthermore, add_eprop is
used to add the edge property (eprop).

The graph extraction interfaces make the OLTP engine
and log formats unchanged. Moreover, unlike data manipu-
lation interfaces, graph extraction interfaces are used only
when defining the graph schema instead of used in each re-
quest. DBAs can define the RGMapping for a fixed data
model just once according to workloads. For complex data
models, DBAs can use automatic E-R model generation
tools [1, 5] as a guide according to the relational schema,
even if they have less knowledge about the workloads.

4.2 Expressiveness of RGMapping

We next show that graph extraction interfaces are expressive
enough to map relational data to a property graph modeled
by the same E-R model.

The E-R model has shown its powerful expressive capabil-
ity in describing relationships and has been widely adopted
in defining relational data [20, 28]. Generally speaking, the
E-R model contains a set of entities with attributes, which
usually represent objects in the physical world, and describes
the relationships between entities. Intuitively, for any E-R

model, there exists a unique property graph schema that rep-

resents the E-R model [59]. Entities and relationships can be
mapped to vertex types and edge types of the property graph
model, respectively, and use properties to store attributes.
The interfaces also help DBAs extract a subgraph from the
property graph. Note that edges in graphs are binary (2-ary)
relations. An n-ary relationship of order greater than two can
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Fig. 6. Two typical representations of an example dynamic graph

topology, namely (a) CSR and (b) adjacency list.

be mapped as a type of vertices with n associated edges.
Back to the example in Fig. 1 and Fig. 4, assume that

a mapping scheme between the E-R model and the rela-
tional model has been defined (lower left dashed rectangles
in Fig. 4). There is an entity called Person and a relationship
called Trans that exists between instances of the Person entity
in the E-R model. The DBA can utilize the interfaces (the
middle part in Fig. 4) to define a property graph model that
contains one type of vertices (Person) and one type of edges
(Trans), which are derived by the entity Person and relation-
ship Trans, respectively. Meanwhile, there is a property (How)
on Trans derived from the HOW attribute.

RGMapping can map changes to relational data to prop-
erty graphs on-the-fly. Depending on whether the data in-
volves entity tables or relationship tables, the log replayer
converts them to vertices or edges, respectively. Users can
customize the extracted graphs partially so that the graphs
extracted do not have to exactly match the E-R model.

5 DYNAMIC GRAPH STORAGE

The graph storage of GART stores the graph topology and
properties and provides two kinds of operations: read for
GAP workloads (e.g., edge scan) and write for the log re-
player (e.g., insert and delete). For the graph topology, com-
pressed sparse row (CSR), a compact graph representation,
is widely adopted by (static) graph systems [29, 43, 73, 77],
as shown in Fig. 6(a). However, CSR is also notoriously
inefficient for dynamic workloads on the graph (e.g., edge
insertion and deletions). Therefore, dynamic graph storage
systems [30, 32, 33, 41, 54, 87] commonly use adjacency
lists (based on linked lists or vectors) to store the graph
topology (see Fig. 6(b)). For vertex (resp. edge) properties,
a columnar storage is usually employed to efficiently read
the same property for all vertices (resp. edges) with the same
type [29, 55]. In addition, the dynamic graph storage also
needs to record the version of vertex/edge/property updates
for MVCC [30, 87].

The above traditional design has several performance is-
sues for HTGAP workloads. First, using adjacency lists suf-
fers from poor locality when sequentially scanning edges of
all vertices, which is a common yet costly operation in GAP.
A cache miss may occur when scanning the edges of an ad-
jacent vertex. For example, transactions may insert edges
randomly, resulting in unordered memory allocation for new
edges of different vertices. Second, using fine-grained ver-
sioning for each vertex or edge update imposes a significant
performance penalty for GAP workloads, since checking the
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version for each read operation breaks both spatial and tem-
poral locality and introduces additional overhead. Third, the
existing property storages cannot guarantee locality flexibly
for different access patterns among GAP workloads.

Key insights. Some unique characteristics of HTGAP work-
loads open opportunities to exploit the locality of a dynamic
graph storage. Note that we term the time gap as the inter-
val between a transaction committing an update and a graph
query reading it. First, the time gap in HTGAP (typically a

dozen milliseconds, which is equal to the freshness of GART

shown in Table 2) is sufficient to update a compact structure

like CSR. Thus, GART can still use a CSR-like storage for
the graph topology instead of adjacency lists to improve the
locality of edge scan. Second, the GAP latency is almost

always much longer than the time gap. It implies that as-
signing versions to each update (fine-grained MVCC) is not
necessary for GAP workloads. Thus, GART can use coarse-
grained MVCC (i.e., at epoch granularity) to reduce memory
and computation overhead, even though the committed up-
dates cannot be read immediately. Third, the access pattern

of each GAP workload is usually fixed and easily detectable.
Given an HTGAP workload, fixed correlations between dif-
ferent attributes can be found by parsing the requests. For
example, some attributes (e.g., balance and payment) may
always be updated or read together. Therefore, GART can al-
low users to decide how to store different properties.

General idea. Based on the insights, we devise a new dy-
namic graph storage for HTGAP workloads. Fig. 7 illustrates
the main structure of the dynamic graph storage for one type
of vertex and edge. For the graph topology, a variant of CSR
is proposed to exploit locality of edge scan, where the edge
array is divided into multiple edge segments for dynamic up-
dates. Using edge segments offers a tradeoff between read
and write performance and allows the structure to be updated
in batches. The vertex array is indexed by vertex ID (VID)
and contains the links to the edges (neighbors) of each vertex.
To reduce the overhead of edge insertion, the edges of each
vertex are further divided into multiple edge blocks. Each ver-
tex stores a pointer (tail) to the last edge block in the vertex
array (not shown in Fig. 7 due to space constraints). To en-
able MVCC at epoch granularity, each vertex maintains an
epoch table, which links to the edges inserted in the same
epoch. It avoids attaching versions to each edge as in fine-
grained MVCC. Similar to CSR, the epoch table stores the
logical offset of the first edge for each (read) epoch num-
ber. In addition, vertex (resp. edge) properties are stored in
property blocks within the vertex array (resp. edge segment).
Each property block is a column store for one property or a
group of correlative properties (column-family), which is in-
dexed by the corresponding vertex (resp. edge) offset in the
vertex array (resp. edge segment). Finally, a new interface is
provided for combining correlative properties into a column
family following access patterns of HTGAP workloads.
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Fig. 7. The key structure of the dynamic graph storage in GART for

one type of vertex and edge.

5.1 Efficient and Mutable CSR

GART devises an efficient and mutable CSR that guarantees
high performance in both scans and updates on the graph
topology, providing data locality similar to an immutable
CSR. Each edge segment has a fixed initial size (e.g., 16KB)
and stores edges (i.e., neighboring vertex IDs) of a fixed num-
ber of vertices (e.g., 4,096). The free slots are reserved for
new edge blocks. Each vertex has a group of edge blocks,
and new edges will be inserted into the tail edge block.

Fig. 7 shows an example where each segment stores the
edges of two vertices (e.g., vertex 0 and 1). Initially, edges of
the same vertex are stored consecutively in an edge block, so
there is no overlap between edges of different vertices in an
edge segment. As edges are continuously inserted, a vertex
will allocate new edge blocks, which form a linked list (e.g.,
vertex 0). Each edge block has a header block (hdr) to store
the meta-data of edges, such as the block size, the number of
valid edges, and the pointer (prev) to the previous edge block
of the same vertex.

Edge scan. Given a read epoch number, GART first uses the
tail pointer and the epoch table of the vertex to find edges
of that epoch within its edge blocks, and then scans edges
forward based on the prev pointer stored in the header block
(hdr). Note that each edge block only needs to be addressed
once, which has little performance impact. In the beginning,
GART can provide data locality comparable to vanilla CSR.
However, after inserting numerous edges for different ver-
tices, the edge blocks of a vertex will form a long linked list,
leading to performance degradation in edge scan. To mitigate
this issue, GART compacts an edge segment periodically or
when the segment is close to full. After compaction, all edge
blocks of the same vertex will be merged into one edge block
(e.g., the first edge block of vertex 0).

Insertion. For a new vertex, GART atomically inserts it into
a free slot of the vertex array and initializes an empty epoch
table for it. When inserting an edge (e.g., from vertex 1 to
vertex 4), the destination vertex ID will be directly inserted
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into the tail edge block of the source vertex, if the edge block
is not full (e.g., vertex 1 in Fig. 7). Otherwise, a new tail
edge block of double the size is first allocated from the free
slot of the edge segment, and then the edge is inserted into
it. To reduce fragmentation, when the size of the tail edge
block is smaller than a threshold, all edges will be moved
to the newly allocated edge block to further improve data
locality; the original edge block will be skipped. When an
edge segment is full, a new segment of double the size is
allocated, and all edges in the original segment are moved to
the new one.

The write conflicts when concurrently inserting edges to
the same vertex are resolved by per-vertex locks. Moreover,
to resolve the conflicts when allocating edge blocks for dif-
ferent vertices on a full segment, the log replayer should lock
the segment after checking for free space. Specifically, if the
segment still has free space, the segment is locked in a shared
manner; if the segment is full, the log replayer should exclu-
sively lock the segment first and then allocates a new one.

Deletion. When deleting a vertex (resp. edge), a delete flag
is appended to the vertex array (resp. edge block), which
records the offset of the deleted vertex (resp. edge). When
encountering the delete flag, the deleted vertex (resp. edge)
will be skipped during scanning the graph topology. Further-
more, garbage collection (GC) will physically delete the ver-
tices and edges and free up space in the background.

Discussion: structure parameters. We have tuned parame-
ters including: (1) the number of vertices managed by each
segment, (2) the initial size of edge blocks and segments, and
(3) the resize factor of edge blocks (or segments) when they
are full. Increasing (1) results in higher latencies for inserts,
but it improves read performance. To balance read and write
performance, we set (1) to 4096. The default values of (2)
and (3) have minimal impact on read performance. We have
adjusted these values to minimize the allocation of edge seg-
ments and optimize memory usage.

5.2 Coarse-grained MVCC

GART employs a coarse-grained MVCC scheme to reduce
the temporal and spatial overhead of fine-grained MVCC.
The scheme is based on the key observation that GAP work-
loads usually run longer at low concurrency than transac-
tions. Thus, GART can enable MVCC at epoch granularity.
In particular, the edge storage needs to adapt to the epoch in-
stead of a fine-grained version for each edge. For each vertex,
the epoch number of edges increases with the logical offsets.
Since edges are append-only in edge blocks, edges with the
same epoch number are consecutive. Therefore, GART can
use an epoch number for a batch of edges.

Specifically, each vertex maintains an epoch table to store
the offset in the edge segment for each epoch. As the exam-
ple shown in Fig. 7, the 3rd to 5th edges of vertex 0 (offsets
2–4) are all inserted at epoch 3. At epoch 4, the GAP worker
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Fig. 8. An example of the flexible property storage.

will read all edges with the logical offset less than 5 at vertex
0. Since the logical offset of each epoch is immutable, GART

can scan edges sequentially as if on a static graph. This de-
sign avoids checking versions for each edge and maintains
the compact edge storage like in CSR.

When the log replayer inserts an edge with the epoch num-
ber, it will check whether the epoch number exists in the
epoch table of the source vertex. The transaction protocol
guarantees that the new epoch number must be greater than
all existing epoch numbers [65]. If the epoch number does
not exist, a new epoch number and the offset will be ap-
pended to the epoch table atomically.

The epoch table is stored as a ring buffer, since older snap-
shots are more likely to never be read again. For the corner
cases where the oldest epoch number is still in use, GART

uses a classical allocation amortization technique, similar to
the C++ STL vector, to extend the ring buffer.

5.3 Flexible Property Storage

The storage model of properties influences the performance
of read operations over properties. However, there exists no
efficient property storage model for all GAP workloads. To
support different GAP workloads in a more efficient way,
GART presents a flexible property storage that allows sys-
tem users to define the storage model according to applica-
tion memory access patterns. Initially, GART utilizes a col-
umn store to store property data, which stores the same prop-
erty (attribute) of the same type of vertices/edges continu-
ously and is friendly to workloads that scan one or several
attributes sequentially and independently.

To improve the property scan performance under different
scenarios, users can combine several high-related attributes
into a column family with the attr_merge interface ahead of

time, as shown in Fig. 8. The Person vertex consists of three
attributes: Bal, Pay, and Age. The meta-data of each attribute
maintains the column family index (f_id) and the column in-
dex in the column family (c_id). The initial f_ids are different
due to the pure column store.

As time goes on, the access patterns to some attributes may
have certain correlations. Users can use the attr_merge inter-
face to merge some attributes into the same column family
on-the-fly, and generate a snapshot with a read epoch num-
ber. For example, if the attributes Bal and Pay are accessed to-
gether in a long-term GAP workload, users can merge them
into a column family with read epoch 5. GART needs to gen-
erate a new version of the meta-data of these two attributes
with epoch number 5, and copy them into a column family in
the background. Then, the workload is processed on the new
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Table 1: Datasets used in evaluation, including TPC-C (ware-

house=20) [71] (CH), SNB-SF-10 [4] (SB), Wiki [36] (WK), R-

MAT [18] (RM), UK-2005 [16] (UK), and Twitter-2010 [42] (TT).

Graphs CH SB WK RM UK TT

|V | 700K 7.5M 5.7M 5.0M 39.5M 41.7M
|E| 6.0M 8.8M 130M 300M 936M 1.47B

snapshot, which can also avoid some pre-processing tasks
(e.g., the projection phase of GNN workloads to obtain re-
quired properties). We leave the automatic plan generation
and attribute merging as future work.

6 EVALUATION

We have implemented GART by extending VEGITO [65], a
state-of-the-art in-memory HTAP system. VEGITO adopts
DrTM+H [79] as the OLTP engine and supports tens-of-
millisecond freshness with millions of transactions per sec-
ond. This makes the HTGAP system design more challeng-
ing than in the case of low OLTP throughput. The extensions
include the log replayer with relational-graph mapping and a
new dynamic graph storage. We further integrated an open-
sourced one-stop graph processing engine GraphScope [29]
into GART, in order to support diverse GAP workloads.

6.1 Experimental Setup

Testbed. All evaluations are conducted on two dual-socket
machines. Each machine has two 12-core Intel Xeon E5-
2650 CPUs, 256 GB DRAM, and two 56 Gbps InfiniBand
(IB) NICs via PCIe 3.0 connected to a Mellanox 40 Gbps IB
Switch. Since the latency of GAP tasks is much higher than
that of OLTP tasks, we end the execution of OLTP tasks af-
ter several rounds of GAP tasks to ensure the time of OLTP
and GAP is similar in HTGAP workloads. Unless otherwise
noted, we dedicate one machine for OLTP requests (OLTP
server) and the other for GAP requests (GAP server). On the
OLTP server, we pin 20 cores for OLTP worker threads and
1 core for the OLTP client thread. On the GAP server, we
pin 12 cores for GAP worker threads, 10 cores for log re-
player threads, and 1 core for the GAP client thread. The sin-
gle core for clients is sufficient for request generation. We set
the epoch interval to 15 milliseconds. For edge segment com-
paction (§5.1), we choose a strategy of compaction at edge
insertion instead of periodic compaction, which can reduce
repeated compaction when the OLTP throughput is high.

Benchmarks. Considering that there is no standard HTGAP
benchmark, we first retrofit LDBC Social Network Bench-
mark (SNB) [4] and TPC-C [71] as two new HTGAP bench-
marks and further select several typical graph datasets as our
micro-benchmarks. The graphs are summarized in Table 1.

LDBC SNB is a GAP benchmark that contains a social net-
work graph and different types of GAP workloads. We select
to load 50% of edges and insert another 50% of edges for

transactions. We set the scale factor (SF) of the dataset to 10
(about 8.4 GB) on each server.

TPC-C is a standard OLTP benchmark that contains rela-
tional datasets and five kinds of transactions. We extract two
bipartite graphs (ORDER-ORDERLINE and CUSTOMER-ITEM

graphs) from relational tables by mapping rows in entity ta-
bles as vertices and adding edges based on relationship tables.
We deploy 20 warehouses on each server.

On the graphs of LDBC SNB and TPC-C, we choose three
types of GAP workloads as prior work [29]:

◦ Graph analytics (GA): three representative graph algo-
rithms from LDBC Graphalytics Benchmark [3], includ-
ing PageRank (PR), Connected Components (CC), and
Single Source Shortest Path (SSSP).

◦ Graph traversal (GT) [81]: three scan-dominated queries
from LDBC SNB [4], including one interactive query (IS-
3) and two business intelligence (BI) queries (BI-2 and
BI-3). These queries access both the graph topology and
properties.

◦ Graph neural network (GNN) [75, 83]: inference on three
popular models, including Graph Convolution Network
(GCN) [40], GraphSage (GSG) [35], and Simple Graph
Convolution (SGC) [62].1

Comparing targets. To show the efficacy of the loosely-
coupled design for HTGAP, we mainly focus on the perfor-
mance of OLTP and GAP, and the freshness in GART against
two different solutions (see §1). For Solution !, we connect
DrTM+H with GraphScope [29] (DH+GS), where transac-
tions are served by DrTM+H (the same OLTP engine of
GART), and transactional data are periodically loaded into
GraphScope, a state-of-the-art GAP engine. For Solution ",
we evaluate Neo4j [6], a popular graph database that supports
both transactions and GAP.2

To study the efficiency of our dynamic graph storage, we
integrated LiveGraph [87], a state-of-the-art transactional
graph storage, into GART (G/LG). LiveGraph uses a highly
optimized adjacency list format (similar to Fig. 6(b)) to store
the graph topology and a row store with fine-grained MVCC
to store properties. GART’s graph storage and LiveGraph
provide the same interfaces. Therefore, GART outperforms
G/LG solely due to three design choices of our graph stor-
age. Note that all systems, except Neo4j, use the same OLTP
and GAP engines, namely DrTM+H and GraphScope, with
the same configurations (e.g., the number of worker threads)
for fairness. Although we try our best to run HTGAP work-
loads on Neo4j and DH+GS, they still cannot support TPC-

1We run graph analytics and graph neural network workloads directly on
the CUSTOMER-ITEM graph in the TPC-C dataset and PERSON-POST graph
in the LDBC SNB dataset. Graph traversal queries from LDBC SNB are
tightly coupled with its dataset. We rewrite queries on the TPC-C dataset
and ensure that they have the same computation patterns as LDBC SNB.

2We also evaluated TigerGraph [24] as an alternative solution. However,
TigerGraph’s timestamp only provides second-level accuracy, which lim-
its its ability to evaluate freshness with sub-second precision.
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Table 2: A comparison of OLTP throughput (in transactions per

second), GAP latency (in milliseconds), and freshness (in millisec-

onds) using different workloads among GART, a combination of

DrTM+H and GraphScope for offline data processing (DH+GS),
Neo4j (not support GNN workloads), and GART w/ LiveGraph
(G/LG). Note that ↓ (resp. ↑) indicates low (resp. high) is better.

Workloads
LDBC SNB TPC-C

GART DH+GS Neo4j G/LG GART G/LG

OLTP ↑ 1837 K 1929 K 3.5 K 1836 K 245 K 212 K

GA ↓
PR 377 309 5323 1276 204 329
CC 362 312 4726 1137 210 300
SSSP 513 433 4668 1381 315 410

GT ↓
IS-3 17.9 16.9 2.0 18.0 14.2 14.6
BI-2 235 201 568 828 1884 2806
BI-3 292 266 573 1278 266 586

GNN ↓
GCN 1097 940 × 1834 623 636
GSG 1774 1443 × 2502 386 418
SGC 779 717 × 1237 184 257

Freshness ↓ 18 15683 5 25 18 25

C due to costly code transcription and graph extraction from
complex logs, respectively.

Coding effort. To extract graph data from relational data, we
only write about 10 LoCs for each benchmark (LDBC SNB
and TPC-C), thanks to graph extraction interfaces in GART

(§4.1). This is far less code than OLTP and GAP programs,
which can be inherited directly from existing specific sys-
tems. In contrast, we write 584 LoCs in DH+GS for loading
graph data and 70 LoCs in Neo4j for rewriting transactions.

6.2 Overall Performance

We first show the overall performance of all baselines for HT-
GAP workloads in Table 2. We use transaction throughput
as the evaluation metric for OLTP workloads, and computa-
tion latency (execution time) for GAP workloads. We also
evaluate the freshness of each system, namely, the maximum
time delay between an update was committed in OLTP and
this update is visible in GAP workloads [65]. In a nutshell,
among all baselines, only GART can simultaneously satisfy
the requirements of performance and freshness.

OLTP performance. For systems based on the loosely-
coupled design (GART, G/LG) and DH+GS, OLTP through-
put is not impacted by GAP workloads. The peak throughput
of GART can reach over 1,837,000 and 245,000 transactions
per second on datasets LDBC SNB and TPC-C, respectively.
GART performs 2-3 orders of magnitude better than Neo4j
(Solution "). Neo4j has the lowest OLTP performance as the
graph data model is less efficient than the relation model for
OLTP workloads. GART and G/LG show an OLTP through-
put reduction of only 5% compared to DrTM+H with offline
data processing (DH+GS). This result demonstrates that the

loosely-coupled design can support HTGAP without neces-
sarily sacrificing OLTP performance.

GAP performance. Among all baselines, DH+GS achieves
the best GAP performance, as its graph data is stored as
a static graph, which uses compact graph representation
without concurrency control (e.g., MVCC). However, its
freshness is extremely high. Neo4j performs much worse
than GART and G/LG due to its adjacency-list-based stor-
age [68, 87]. GART greatly outperforms G/LG except for the
IS-3 query, thanks to our dynamic graph storage which takes
the characteristic of HTGAP workloads into consideration
(breakdown details in §6.3). The IS-3 query only involves a
very limited graph data size, thus the overall execution time
is dominated by cross-language invocation overheads. The
backend and frontend engines of GraphScope are developed
with Rust and C++, respectively.

Freshness. The freshness of GART is about 18 ms, which
is much lower than most GAP latencies and is indepen-
dent of datasets. It is three orders of magnitude better than
DH+GS (Solution !). Similar to VEGITO [65], the freshness
of GART is only determined by the epoch interval (15 ms).
DH+GS has the worst freshness (more than 15 seconds),
which is unaffected by the ETL frequency and depends on
the graph data size. This is because the immutable graph
storage requires the entire graph to be reloaded whenever
changes are made. The freshness of G/LG is 25 ms due to the
lower write performance of the graph storage. The freshness
of Neo4j is only about 5 ms, as data is committed in place.

6.3 Breakdown Analysis on GAP Performance

From Table 2, we observe that GART achieves a large perfor-
mance improvement over other systems on graph analytics
and traversal workloads and a relatively small improvement
on GNN workloads. To gain a deeper understanding of the
dynamic graph storage in GART, we perform a detailed com-
parison with G/LG.

We split a single execution of a GAP query into three
parts: (P1) accessing the graph topology; (P2) getting prop-
erties from visited vertices or edges; and (P3) computation
over the graph topology and properties obtained from (P1)
and (P2) parts. Meanwhile, the performance gain of GART

mainly comes from three aspects: (A1) the efficient and mu-
table CSR with good locality of edge scan; (A2) the coarse-
grained MVCC that alleviates the costly versioning; and (A3)
the flexible property storage that adapts to access patterns.
Table 3 shows the results of a breakdown analysis of three
GAP workloads for the LDBC SNB dataset. Since G/LG

and GART have the same backend GAP engine, their perfor-
mance in part (P3) is nearly identical. Meanwhile, the design
differences between (A1) and (A2) affect the performance
of the (P1) part, while the performance of the (P2) part is
influenced by (A3).

Graph analytics. Table 2 shows the execution time of dif-
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Table 3: Breakdown analysis of G/ LG and GART over three GAP

workloads (in milliseconds) using the LDBC dataset.

Storage Topo (S1) Prop (S2) Comp (S3) Total

PR
GART 107 (28%) 163 (44%) 107 (28%) 377
G/LG 658 (52%) 486 (38%) 132 (10%) 1276

BI-3
GART 10 (3%) 178 (61%) 104 (36%) 292
G/LG 40 (3%) 1115 (87%) 123 (10%) 1278

SGC
GART 36 (5%) 477 (61%) 266 (34%) 779
G/LG 236 (19%) 732 (59%) 269 (22%) 1237

ferent algorithms and excludes the time of storing outputs.
The latency of PageRank, CC, and SSSP on G/LG is 2.5×,
2.3×, and 2.0× higher than GART, respectively. The perfor-
mance gain of GART on graph analytics workloads is mainly
from the better performance of accessing the dynamic graph
topology due to (A1) and (A2), and the higher efficiency of
obtaining required properties thanks to (A3). For example, as
shown in Table 3, the end-to-end execution time of PageRank
is dominated by the graph traversal (edge scan) operations
(P1) and getting required properties (P2). GART’s graph stor-
age outperforms G/LG by 6.2× in (P1), with 82% of the im-
provement attributed to (A1). GART also outperforms G/LG

by 3.0× in (P2) due to (A3). Note that PageRank uses only
one property, so GART does not group it with others.

Graph traversal. For graph traversal workloads, GART’s la-
tency is 3.5× and 4.4× lower than G/LG’s for two BI queries
(BI-2 and BI-3) on the LDBC SNB dataset, while GART

performs almost as well as its competitor on the interactive
query (IS-3). The reason is that compared with BI queries,
the interactive query only involves a very limited graph data
size (vertices and edges as well as their properties), and our
optimized storage design cannot contribute much in such a
circumstance. Instead, the computations of two BI queries
rely on scanning one or several properties of a large num-
ber of vertices or edges, and (A1) to (A3) can benefit a lot.
Observe that given a BI query (BI-3), compared with G/LG,
GART performs 4.0× and 6.3× faster on accessing the graph
topology (P1) and obtaining required properties (P2) parts,
respectively (see Table 3).

Graph neural networks. On three GNN workloads, GART

outperforms G/LG by 1.3× on average. GNN workloads
need several/all properties of vertices/edges as raw features
to conduct GNN computation, and (A3) allows users to store
and get required properties in a more efficient way. As we
can see from Table 3, on SGC, GART is 1.5× faster than
G/LG in obtaining the required properties in (P2). Mean-
while, (A1) and (A2) make GART 6.6× faster than G/LG

in (P1). The performance improvements over the TPC-C
dataset are relatively small, because the CUSTOMER-ITEM

graph in dataset TPC-C is very dense, and the end-to-end
execution time of GNN workloads is dominated by the com-
plex computations over properties of vertices or edges (P3).
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Fig. 9. Performance isolation on GART with the increase of (a)

GAP workloads and (b) OLTP clients, respectively.

6.4 Performance Isolation

To demonstrate the performance isolation in the HTGAP
workloads, we evaluate the OLTP and GAP performance
with the increase of GAP and OLTP clients. We use the TPC-
C benchmark as the OLTP workloads and execute PageR-
ank on the CUSTOMER-ITEM graph derived from the TPC-C
schema. We use the number of OLTP clients and the number
of worker threads for a single GAP request to control the
workloads.

In general, GART provides strong performance isolation
between OLTP and GAP workloads. Fig. 9(a) shows the per-
formance of OLTP and GAP workloads when we gradually
increase the number of GAP worker threads. The OLTP per-
formance degradation is trivial (1%), even if the GAP work-
loads are saturated. This is due to the physical isolation in
GART, as GAP workloads do not interfere with transactions.
On the other hand, when we increase the number of OLTP
clients, as shown in Fig. 9(b), the performance degradation
of GAP workloads is about 12%. This is because the number
of edge versions also increases, causing additional overhead
to check versions. At 5 clients, the OLTP server’s maximum
capacity is reached due to a fixed number of cores being al-
located for its use.

6.5 Graph Topology Storage

Edge scan is a common and costly operation in GAP work-
loads, such as PageRank and LPA. To study how the perfor-
mance of edge scan is affected by different graph topology
storages, we compare the following typical graph storages.

◦ CSR is a compact structure without the support of updates,
which is widely used by the static graph topology storages.

◦ LiveGraph [87] is a state-of-the-art dynamic graph stor-
age that uses adjacency lists and fine-grained MVCC.

◦ SegCSR is a CSR-like topology storage proposed by
GART, which uses segment-based design and coarse-
grained MVCC. Note that each edge segment has a 1 MB
initial size and manages 4,096 vertices.

◦ SegCSR/TS is similar to SegCSR, except that it uses fine-
grained MVCC as LiveGraph.

To simulate diverse workloads, we load graphs in two pat-
terns: (1) bulk load, i.e., edges are sorted by their source ver-
tices and loaded sequentially, and (2) random insertion, i.e.,
edges are loaded randomly to simulate the behavior in trans-
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topology storages using (a) bulk load and (b) random insertion.
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Fig. 11. Comparison of memory usage (in log scale) for different

topology storages using (a) bulk load and (b) random insertion.

actions. We scan edges of each vertex and evaluate edges
read per second as scan throughput.

Read-only workloads. We first evaluate the performance of
the single-version edge scan without version checking. As
shown in Fig. 10(a), with the bulk load, SegCSR exhibits
consistent performance behavior across various datasets. For
example, SegCSR only incurs a 35% slowdown compared
to CSR for WK, while LiveGraph incurs more than an 80%
slowdown. Compared with adjacency lists for each vertex
in LiveGraph, SegCSR has a better locality and fully ex-
ploits CPU prefetching as it associates the edges of many
vertices in a segment. Moreover, the edge scan through-
put of SegCSR is more than 2× that of SegCSR/TS since
SegCSR adopts a simpler data structure for edges. With ran-
dom insertion, the locality of LiveGraph suffers from mem-
ory allocation. As shown in Fig. 10(b), SegCSR outperforms
LiveGraph by up to 12.5× (from 4.7×) and only incurs about
a 30% slowdown compared to CSR.

The memory usage is shown in Fig. 11. Compared with
CSR, SegCSR requires about 3× memory of CSR for up-
dates, which is significantly less than that of LiveGraph
(8.8× of CSR). The coarse-grained MVCC helps SegCSR
reduce memory largely by using the epoch table for each
vertex instead of timestamps for each edge. Compared to
SegCSR/TS, SegCSR reduces memory usage by up to 3.8×.
The memory usage of SegCSR/TS is higher than that of
LiveGraph (typically less than 18%) due to the free slots in
the edge segments.

Read-write workloads. We further evaluate the perfor-
mance of the write and the multi-version edge scan. We scan
the edges in latest stable version via latest_repoch (§2) when
a dedicated number of edges have been inserted. For the bulk
load setting, we use the ORDER-ORDERLINE graph in TPC-C
and PERSON-POST graph in LDBC SNB. With the random in-
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sertion setting, we utilize a shuffled CUSTOMER-ORDER graph
in TPC-C and PERSON-POST graph in LDBC SNB.

As shown in Fig. 12, the write throughput of SegCSR is
about 2.2× and 2× of LiveGraph with the bulk load and ran-
dom insertion, respectively. According to the performance
of SegCSR/TS, about 70% of the performance improvement
is due to the fact that the coarse-grained MVCC of GART

writes the newly generated version (epoch) number to the
epoch table only once, instead of writing the version number
on every update. Moreover, writes of SegCSR do not per-
form costly GC-related operations, unlike with LiveGraph.
SegCSR will copy edges from an old segment with insuffi-
cient space to a new segment with a larger space. It intro-
duces high tail latency (more than 7,000× of ordinary edge
insertion latency on average) in edge insertion, but the fre-
quency of it being triggered is less than 0.01%.

As shown in Fig. 13(a), with the bulk load setting, read per-
formance of SegCSR outperforms LiveGraph by 2.5× due
to better locality and coarse-grained MVCC. It is very close
to the upper bound (single-version read performance, SegC-
SR/1V), while LiveGraph is about 37% of SegCSR/1V. To
show the efficiency of coarse-grained MVCC, SegCSR/TS
outperforms LiveGraph only by 1.7×. With the random in-
sertion setting shown in Fig. 13(b), SegCSR and SegCSR/TS
outperform LiveGraph by 3.1× and 2.3×, respectively. It in-
dicates that the coarse-grained MVCC in GART can largely
increase read performance for dynamic workloads.

6.6 Flexible Property Storage

To study the performance of the flexible property storage, we
compared it with two typical property storages: row store
(row) and column store (col). For the read (resp. write) per-
formance, we scan (resp.update) the properties of each ver-
tex using CUSTOMER vertices derived from TPC-C. We con-
trol the number of columns scanned and updated, and evalu-
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put for different property storages with different numbers of

columns read and written, respectively.

ate the number of processed vertices per second as read and
write throughput, respectively.

Fig. 14(a) reports the read throughput. The performance
of the row-based property storage is fixed as the number of
scanned columns increases since it needs to fetch at least one
cache line. However, the performance of column-based prop-
erty storage significantly drops due to cross-column access.
Compared with the row-based storage, the flexible property
storage achieves better performance, especially when scan-
ning a few columns. For example, the flexible property stor-
age achieves 5.9× read throughput when scanning only one
column. The write operations of the flexible property stor-
age also outperform existing storage models, as shown in
Fig. 14(b). It achieves a speedup of 1.2× and 4.4× compared
to row-based and column-based storages, respectively, when
writing four columns of properties.

Row-based storages and column-based storages have dif-
ferent performance behaviors for reads and writes. We find
that the read operation is light and dominated by the mem-
ory footprint, while the write operation is dominated by the
number of writes due to the overhead of memory copy and
atomic operations. The flexible property storage allows users
to combine attributes into a column family on-the-fly with
some overhead. In our experiments, it takes about 1.1 sec-
onds to create a property snapshot with 4 columns as a col-
umn family for 229 MB properties.

7 RELATED WORK

HTAP systems. HTAP systems have three main typical de-
sign choices. Dual systems [51, 57, 58, 82] combine two
specialized systems for OLTP and OLAP scenarios, while
single-layout systems [39, 60, 64] support HTAP workloads
from either an OLTP or an OLAP system. Dual-layout sys-
tems [9, 14, 15, 19, 44, 50] aim to build a single system with
different data layouts for the two scenarios. VEGITO [65] is
proposed to retrofit fault-tolerant backups to support hybrid
workloads, which arrives at a sweet spot for the performance-
freshness tradeoff. These works are developed for relational
data, while GART extends VEGITO to constantly maintain a
graph layout for transactional data from an OLTP system to
support dynamic graph analytical processing.

Graph databases. Graph databases [2, 6, 8, 27] support both
OLTP and GAP in a single system. In order to conduct effi-

cient graph updates, they typically adopt linked lists to store
adjacency lists, which downgrades the performance of edge
scan and the whole GAP workloads. LiveGraph [87] devises
the Transactional Edge Logs (TELs) based on adjacency lists
to support both efficient sequential scan and edge insertion.
Adding a CSR-based in-memory property graph representa-
tion in a relational database has been investigated by Oracle,
but without support for updates [13]. GART decouples OLTP
and GAP execution to make both workloads more efficient.

Dynamic graph systems. Prior work presents many general-
purpose dynamic graph systems [24, 30, 41]. Terrace [54]
uses PMA [25, 80], a dynamic memory array based on
tree-based index structures, to store edges of streaming
graphs. CSR++ [32] combines segmented vertex arrays and
vector-based adjacency lists for each vertex, which does not
guarantee the locality of edge scan from adjacent vertices
(see Fig. 6(b)). Moreover, CSR++ does not support multi-
versioning. Sortledton [33] provides a general-purpose and
transactional graph data structure based on adjacency lists.
Teseo [26] and LLAMA [49] are also CSR-like and guaran-
tee the locality of edge scan. While general-purpose dynamic
graph storages can replace GART’s storage in functions, they
may face performance issues. For example, GART could use
LLAMA [49] as the graph storage, but it would have to copy
data pages for each snapshot, which would be inefficient for
scenarios with high data generation rates or extreme fresh-
ness. Based on insights from HTGAP, the graph storage of
GART does not need to support full transactional semantics,
allowing for new designs and optimizations in the topology
storage. In addition, GART also provides the flexible prop-
erty storage for diverse GAP workloads.

8 CONCLUSION

This paper presents GART, the first hybrid transactional and
graph analytical processing (HTGAP) system based on a
loosely-coupled design. It proposes expressive interfaces for
transparent data conversion and an efficient dynamic graph
storage with good locality. Evaluations confirm its efficacy
and efficiency. The source code of GART, including all
benchmarks, is available at https://github.com/SJTU-
IPADS/vegito/tree/gart.
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Abstract
This work is an experience with a deployed networked system
for digital agriculture (or DA). DA is the use of data-driven
techniques toward a sustainable increase in farm productivity
and efficiency. DA systems are expected to be overlaid on ex-
isting rural infrastructures, which are known to be less robust
than urban infrastructures. While existing DA approaches
partially address several infrastructure issues, challenges re-
lated to data aggregation, data analytics, and fault tolerance
remain open. In this work, we present the design of Comosum,
an extensible, reconfigurable, and fault-tolerant architecture
of hardware, software, and distributed cloud abstractions to
sense, analyze, and actuate on different farm types. We also
present FarmBIOS, an implementation of the Comosum ar-
chitecture. We analyze FarmBIOS by leveraging various ap-
plications, deployment experiences, and network differences
between urban and rural farms. This includes, for instance, an
edge analytics application achieving 86% accuracy in vine-
yard disease detection. An eighteen-month deployment of
FarmBIOS highlights Comosum’s tolerance to intermittent
network outages that lasted for several days during many pe-
riods of the deployment. We offer practical insights on how
FarmBIOS adapts to new DA vendors, reconfigurability chal-
lenges in the cloud, persistent failures that are unique to the
DA context, and the system’s current limitations.

1 Introduction

Digital agriculture (DA) is the use of data-driven techniques
towards a “sustainable intensification” [65] in farm productiv-
ity and efficiency. DA is the next generation stemming from
precision agriculture, which is local, offline, precise applica-
tion of farm inputs (e.g., water, fertilizer, etc.) [44, 57, 58]. In
contrast, DA systems involve more complex data processing
and communication, both on and off rural farms [79]. DA sys-
tems are expected to be overlaid on existing rural infrastruc-
tures. However, rural infrastructures (e.g., Internet, power) are
known to be less robust than urban infrastructure [17]. This is

due, in part, to sparse populations [41], urban-centered tech-
nology design and standards [17], frequent outages [42], and
limited maintenance [27]. These challenges make networked
data aggregation and analytics on rural farms difficult [88].

While state-of-the-art approaches address several of these
DA issues [26, 38, 85, 88], a lot of challenges related to
data aggregation, data analytics, and fault tolerance remain
open. First, although the diversity of sensor providers is grow-
ing [4, 5, 80, 83, 84, 87], data aggregation is difficult because
of distributed data sources, incompatible sensors and data
formats, and software dependencies. Second, the set of data
analysis methods are increasingly leveraging advanced tech-
niques such as machine-learning (ML) [45, 53, 68]; however,
existing data analysis platforms rarely account for the vari-
ety of sensing mechanisms and crop types (e.g., row crop
vs specialty farms). Third, state-of-the-art platforms [78, 88]
partially address rural Internet and power challenges. How-
ever, fault tolerance is difficult to achieve across heteroge-
neous devices, networks, and cloud services. Overcoming
these challenges requires extensibility, reconfigurability, and
fault tolerance in the (1) underlying sensors and networking,
(2) overlaying software, and (3) supporting cloud services.

In this paper, we present Comosum,1 a cloud-based hard-
ware/software architecture that takes a significant step to-
ward this goal. Comosum is designed for researchers inte-
grating heterogeneous DA platforms. To address the hetero-
geneity, Comosum relies on prior strong systems concepts
such as separation of devices and device drivers [73], mod-
ularity [28, 43, 61], and reconfigurability of closed-source
software/hardware [18]. Our general approach to DA-enabled
farms is modular with abstractions for hardware (i.e., sensors
and networking devices), software, and the distributed cloud
(i.e., a cloud that combines the edge cloud at the farm, the
public cloud, and sensor vendor clouds).

Specifically, the Comosum design presents three principles:

• Extensible modules: Comosum modules (§§ 3.2) pro-

1Named after Chlorophytum comosum, also known as spider plants, for
their extensible leaves and adaptability to many conditions [67].
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vide an abstraction on the acts of sensing, storing, com-
puting, and actuating farm data. This abstraction is de-
rived from the object-oriented programming idea of in-
heritable instances, which can be customized for dif-
ferent DA applications. Note that these modules are
oblivious to the underlying hardware. This design con-
sideration follows from the principle of dumb switches
and smart control planes in Software-Defined Network-
ing (SDN) [18]. In this manner, given a uniform API,
the hardware (i.e., sensing and networking devices) and
software modules can evolve independently.

• Fault-tolerant distributed cloud: The Comosum dis-
tributed cloud (§§ 3.3) addresses challenges in support-
ing elastic, vendor-neutral, and fault-tolerant data ag-
gregation/analytics. Specifically, we highlight the com-
plex data path where some data must be pulled directly
from the sensor vendor, despite farm networking chal-
lenges. This need for networked data aggregation across
the farm (or “edge”) cloud, public (or “core”) clouds,
and private (or “vendor”) clouds distinguishes the con-
sequential fault tolerance trade-offs that are unique to
DA environments (e.g., plants might die if not irrigated
on time). Ultimately, by reimagining prior approaches
such as CloneCloud [19], the Comosum design enables
offline data collection and edge analytics during network
outages.

• Reconfigurable control plane: Given software abstrac-
tions and distributed cloud deployment environments,
the Comosum control plane (§§ 3.4) coordinates inter-
module communication. To maintain reconfigurability
and extensibility to heterogeneous devices, this com-
ponent draws from the separation of devices and de-
vice drivers, inter-process communication (IPC), and
SDN. Specifically, Comosum modules rely on a message-
passing [89,92] protocol to abstract away the distributed
deployment environments.

We implemented a version of Comosum that we call Farm-
BIOS. We deployed multiple FarmBIOS instances in the
Azure, AWS, and Google clouds. Further, we deployed these
instances on one commercial farm and two research farms.
Commercial farms are for-profit; in contrast, research farms
are associated with land-grant universities [1, 9]. As a re-
sult, we operate multiple deployments (both in open fields
and greenhouses) throughout the year with different Como-
sum module, cloud, and control plane configurations. The
configurations differ such that they can meet the needs of ani-
mal (§§ 5.1), row crop (§§ 5.3), and specialty farms (§§ 5.2).

The results based on deployments and evaluation show
that Comosum supports extensible, reconfigurable, and fault-
tolerant DA systems. First, we applied FarmBIOS instances
to a plant water stress application, as well as two ML-based
applications that yielded 86% and 97% training accuracy in

vineyard and dairy cow disease detection, respectively (§ 5).
Second, we present an 18-month deployment with a million
sensor readings from 80 sensors networked over cutting-edge
hardware in two farm edge clouds (§§ 5.3). We further an-
alyze Comosum’s reconfigurability trade-offs based on our
extensive deployment experience, application requirements,
and comparative spectrum measurements of a 55-acre urban
farm and a 615-acre rural farm (Appendix B). Third, we show
Comosum’s adaptability to faulty sensors in the field (§§ 6.2),
its tolerance to a network outage over multiple days (§§ 6.1)
at the edge, and the edge analytics’ resilience to network out-
ages (§§ 5.2). Deploying Comosum yielded several surprising
architectural insights. First, failures at the edge (i.e., in the sen-
sors and networking) vary differently from failure towards the
core of the cloud (i.e., Internet and cloud module failures), and
the differences in failure scope had to be identified, escalated,
and optionally tolerated or repaired. Intermittent network fail-
ures were tolerated through offline data collection at the edge,
or by directly performing analytics at the edge. Long-term sen-
sor failures were escalated by digital twins. A digital twin is a
digital representative of a physical object that behaves like its
real-world counterpart. That is, we expanded the failure scope
to cloud-based digital twins of sensors and notified human
operators. We call this an active digital twin. A key takeaway
was that the time to detect and tolerate a system component
failure varied from seconds to weeks. Second, frequent unan-
nounced API or data format changes by vendors led to many
errors. Comosum evolved to shield DA application developers
from this complexity by providing a uniform API; specifically,
a unstructured platform layer and structured application layer.
Third, Comosum was made cloud provider-agnostic by pro-
viding a cloud-independent layer (i.e., through cloud-agnostic
abstractions such as tables/functions) and a separate cloud-
dependent layer (through cloud-dependent services such as
Azure Table and AWS Simple Notification Service).

We present an experience with a deployed networked sys-
tem for DA, our contributions are as follows:

• Three case studies to demonstrate DA research chal-
lenges, and how they motivate our design goals

• An integrative approach that applies and advances the
state-of-the-art to a portfolio of system challenges associ-
ated with building Comosum effectively across multiple
subsystems and contexts (Table 3)

• The design and implementation of Comosum, a cloud-
based architecture that unifies state-of-the-art DA ap-
proaches under a single interface by distilling largely
complex black-box technologies down to classical ideas

• Evidence that Comosum supports various applications,
tolerates intermittent network failures, and can be de-
ployed across different farm types and cloud providers

Paper outline: § 2 describes three DA case studies to mo-
tivate design goals. § 3 delves into the Comosum system
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software architecture. § 4 instantiates FarmBIOS, a Como-
sum implementation that unifies otherwise incompatible DA
systems. § 5 describes three FarmBIOS applications and de-
ployment contexts. § 6 describes system adaptations to ensure
long-term maintenance. § 8 puts Comosum in the context
of prior work before concluding in § 9. Appendix B demon-
strates Comosum’s reconfigurability trade-offs.

2 Challenges: Why DA is Hard
Comosum is borne out of four years of collaborative research
building state-of-the-art systems to support DA. We describe
the main challenges in building on existing technologies to
motivate the architecture developed in § 3.

2.1 Challenge 1: Data Aggregation
Data aggregation involves pulling and processing data from
a variety of sources. Consider, for example, DA researchers
in animal science who need real-time monitoring of dairy
cows to facilitate early disease detection [33, 34, 54, 72]. This
requires integrating data from wearable and non-wearable
cow sensors, herd management software, and manual data
collection on site.

Existing wearable sensors capture behavioral, physiolog-
ical, and performance parameters such as physical activity,
rumination and eating time, estrous behavior, and internal tem-
perature (e.g., [2, 3]). Non-wearable sensors include cameras,
weather stations, milk meters and near-infrared spectrome-
ters, and weight scales that deliver milk yield and body weight
from a static location as cows pass through with every milking
session (e.g., [4, 80, 84]). The data monitoring is possible via
systems from various sensor providers running on the farm
computer (e.g., [5, 83, 87]). The providers control and avail
the data for download either as raw files (via FTP dumps) or
JSON (through scripted API calls to the providers’ servers).

However, data aggregation efforts face five major hurdles.
First, the sensor data are siloed in monolithic platforms with
incompatible APIs. Second, the datasets are delivered in vari-
ous incompatible formats (e.g., Excel, JSON, or DIF). Third,
the data is distributed between the farm computer and numer-
ous sensor providers’ servers. Fourth, the patchy data integra-
tion programs are dependent on the farm computer’s operating
system (e.g., to run PowerShell scripts) and disk storage lay-
out (e.g., hardcoded, per-provider directories). Fifth, any ad
hoc integration protocol is likely to introduce data sparsity
as new sensors are incorporated and old sensors are retired.
These hurdles highlight the need to aggregate sensor data from
heterogeneous devices and platforms. The system should en-
able data aggregation from arbitrary sensor vendor platforms,
data formats, and data locations.

2.2 Challenge 2: Data Analytics
Data analytics involves extracting actionable insights from big
data. It is important in managing and predicting farm inputs
and expected outputs, respectively. Consider, for example,
DA researchers in plant pathology who need fast methods to

detect vineyard diseases affecting grape and wine quality [7,
22,68,93]. This requires detecting symptoms typically visible
on the leaves.

Existing grapevine disease detection methods include
molecular tests, remote sensing, and digital models. Molecular
tests involve plucking diseased leaves to be analyzed in labo-
ratories. Remote sensing and digital models combine aerial
imagery from Unmanned Aerial Vehicles (UAV), vegetation
indices, and machine learning (ML) techniques [45,52,53,68].

However, these existing data analytics approaches face
three challenges. First, current remote sensor data cleaning
and pooling processes, which are often manual, do not enable
cross-farm analytics. Secondly, ML models have been shown
to produce contradictory analyses depending on the choice of
hyperparameters [15, 20, 81]. Lastly, molecular tests are slow
(i.e., on the order of days) to yield actionable results in a set-
ting where every second implies further disease spread. These
challenges highlight the need for a reconfigurable approach
for data storage and model training to enable fast iterations
in any environment. The system should enable fast plug-and-
play of different analytics modules and sensing mechanisms.

2.3 Challenge 3: Fault Detection/Tolerance
Fault tolerance involves detecting, recovering from, and op-
tionally repairing system faults. It is important in providing
timely manual or automated interventions when farm monitor-
ing assets such as sensors have failed. Consider, for example,
DA researchers in plant breeding who need to understand wa-
ter status effects on plant growth by controlling for variables
such as temperature, soil moisture, and CO2 levels [49,71,86].
This requires reliable sensor data collection with both short-
term and long-term storage, processing, and actuation.

Existing systems (e.g., [78, 88]) generally comprise sens-
ing hubs, an Internet gateway device, and optional cloud
storage and processing. The sensor hubs communicate to
the gateway over various protocols such as unlicensed TV
White Spaces (TVWS) [88] or ZigBee [40]. The gateway
relays the sensor data over various media (e.g., 4G/3G [40],
WiFi [85]) to diverse cloud-based routing hubs (e.g., Azure
IoT Hub [88], AWS IoT Core [46]) for long-term storage.
With a few exceptions [26, 46], prototype deployments are
often outdoors [85, 88].

However, fault detection and tolerance are difficult due, in
part, to three challenges related to cascading failures. First,
faulty sensors affect data collection. Second, network outages
affect data storage and data processing both locally at the
farm and in the cloud. Third, the complexity and heterogene-
ity of existing hardware/software systems pose significant
troubleshooting issues in the field. Individually, these fail-
ures can present real consequences in farms (e.g., plants are
not irrigated, animals are not fed, etc.). This highlights the
importance of fault tolerance and detection in DA environ-
ments. The system should detect, localize, tolerate and/or
repair failures in sensor, network, and software components.
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2.4 Summary and Design Goals
These case studies highlight interoperability challenges within
state-of-the-art systems. These challenges map to three core
system design goals:

• Extensibility: In addressing data aggregation (§§ 2.1),
we aim to provide an extensible interface that can gen-
eralize sensing, analytics, and actuation across APIs,
clouds, hardware, and platforms.

• Reconfigurability: In addressing data analytics (§§ 2.2),
we aim to allow different points in the configuration
space towards data models that can be trained and used
across different networking and cloud deployment sce-
narios.

• Fault Tolerance: In addressing fault detec-
tion/tolerance (§§ 2.3), we aim to detect and/or
tolerate intermittent failures despite the heterogeneity
of hardware, farm types, and cloud services.

3 Comosum Architecture

3.1 Overview
In this section, we describe Comosum’s hardware, software
and distributed cloud - the main components in the quest to
sense, analyze, and actuate on rural farms (see Figure 1).

Hardware encompasses sensing, networking, and control
devices. Sensing devices produce updates based on changes
in real-world conditions such as temperature, soil moisture,
vegetation density, etc. Networking devices provide infras-
tructure support via data routing and transfer between other
devices, of which routers, switches, and antennas are typi-
cal representatives. Control devices offer digital interfaces
with programmable logic control (PLC) functions. While pro-
grammable, control devices are limited to firmware running
on a few kilobytes of memory.

Software encompasses possible manipulations of data gen-
erated by the hardware entities. The software modules, which
we describe from left to right as shown in Figure 1, offer
abstractions on the acts of sensing, storing, computing, and
intervening based on real-world changes. The changes are
communicated via interrupt and poll mechanisms (see Ta-
ble 1). The telemetry module serves as an interface to capture
and reflect physical and virtual state changes. Whereas phys-
ical updates read directly from sensing devices (e.g., GPIO
pins), virtual updates are third-party reports (e.g., Excel files)
from vendors on proprietary sensors (see §§ 3.3). The stor-
age module is a logical abstraction over storage structures
(databases, files, etc.) and formats (Excel, CSV, etc.). The
compute module captures the various networked, temporal,
and spatial arrangements of compute devices (see Cloud be-
low) to produce actionable results. Together, the storage and
compute modules form the analytics module. Henceforth, the

analytics module is used interchangeably with the storage and
compute modules. Lastly, the actuation module bridges the
analytics module to control devices and farm operators.

Distributed cloud encompasses ubiquitous, convenient, on-
demand network access [60] to storage media and compute
devices at the farm edge, the public cloud, and the private
cloud (i.e., sensor vendor servers, university servers, etc.).
Storage media vary from low-end USB sticks to a pool of
hard disk drives in the cloud. Compute devices span low-end
Raspberry Pis at the edge to high-end virtual machines (VMs).

To achieve reconfigurability and extensibility, Como-
sum draws inspiration from Software Defined Networks
(SDNs) [18]. Here, the data plane spans the hardware and
software. The control plane then is the custom configuration
process of hardware components and software modules to
solve individually unique DA problems (e.g., Case 1-3 in § 2).
Borrowing from the object-oriented design paradigm (OOP),
the fundamental Comosum unit is the instance.

Comosum instance modules operate in an event-driven
approach with per-module processes [89]. Independent,
message-passing [92] modules have two advantages. First,
this enables modules to be deployed anywhere in the dis-
tributed cloud. Secondly, it simplifies reasoning about appli-
cation correctness for multi-threaded modules. For instance,
irrigation should be triggered in the actuation module only
after a dry forecast is observed in the compute module.

To summarize, each Comosum instance is a configuration
of sensor, compute, storage, and actuation modules to map and
solve different sets of real-world agricultural challenges. In
the following subsections, we describe in depth the extensible
Comosum modules, the Comosum distributed cloud architec-
ture and its vendor neutrality goal (§§ 3.3), and the Comosum
control plane’s reconfiguration capabilities (§§ 3.4).
3.2 Comosum Modules
Telemetry Module. The telemetry module is the entry point
into a Comosum instance’s data plane. The telemetry module
requires that any interested parties (observers) are notified of
new sensor readings. To that end, we design the module as an
abstract class following the observer design pattern [61]. The
interface comprises register, notify, read, and run operations.
In managing observers, the observer argument is an abstract
data type (ADT). Upon being notified, observers receive a
message indicating the state change. The message is similarly
an ADT, and it is used to receive new updates through an
invocation of the telemetry module’s read method. By using
an ADT, the module enables chained updates where down-
stream modules may serve as observables (other telemetry
modules) and observers (any abstraction implementing the
observer pattern). In practice, sensor updates are consumed
by the analytics module.

Storage Module. The storage module is inspired by the
classic UNIX [73] file system interface with simple read
and write operations. To align with another prevalent storage
model, the change feed, the module additionally supports
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Figure 1: The Comosum distributed cloud partitions modules between the farm (“edge"), remote (“core"), and sensor vendor clouds.

change_feed and next methods that operate on iterators of
new data (inserts, updates). Besides mimicking UNIX and
database semantics, we strive for transparent access of stored
objects [76]. In other words, similar to the observer argument
in the telemetry module, the path argument in reads and writes
is an ADT. This makes the storage module extensible to
storage calls of various structures and data formats. Finally,
to accommodate modules operating with topic-based storage
services, the storage module supports the publish/subscribe
paradigm. The pub-sub interface enables other modules to
push data in addition to subscribing to updates based on topics
of interest. Thus, the storage module exposes subscribe, push,
pull, and notify operations.

Compute Module. The compute module operates on
state changes from the telemetry and storage modules.
Therefore, the module similarly follows the observer design
paradigm. Acting as an observer, the compute interface sup-
ports four operations, namely notification_sensor_rcv, notifi-
cation_storage_rcv, analytics, and run. The first two can be
invoked to receive data based on previous compute module
registrations and subscriptions to the telemetry and storage
modules, respectively. The analytics method receives new
procedure calls off the wire, and it uses the metadata and
data to execute local/remote application logic. Optionally, the
compute module invokes the storage module’s write or push
methods to store intermediary results.

Actuation Module. The actuation module is the final end-
point in the data plane. Like the sensor module, the actuation
module provides an interface to physical operation of and
virtual notification to real-world entities. That is, the actua-
tion is either automated or mediated. For automated actuation,
devices between the farmhouse and the field issue command
messages. In this context, the module issues activate calls to
the appropriate control devices. The command argument op-
tionally identifies the device to execute the command. Upon
an activate invocation in a mediated actuation scenario, the
actuation module effectively is a wrapper for push notification
services such as text messages and email.

3.3 The Comosum Distributed Cloud
The motivating case studies (§ 2) demonstrated that the
sources of data consumed by DA applications greatly varies.
While the sensor data is mostly generated locally, the initial
storage and compute operations are executed on-demand by
remote servers which are often owned by the sensor providers.
Thus, another challenge for Comosum is achieving vendor
neutrality. That is, hardware/software innovations must not
be tied to a particular cloud-based service vendor.

To that end, we introduce the Comosum distributed cloud
abstraction to support elastic, vendor-neutral sensing, stor-
age, compute, and actuation capabilities. The Comosum dis-
tributed cloud (Figure 1) consists of the farm (or “edge”), pub-
lic (or “core”), and private (or “vendor”) clouds. The vendor
cloud maps the more complex data path where some data must
be pulled from sensor vendor servers instead of directly from
the sensor abstracted away by Comosum. Unlike the “edge”
and “core” clouds, Comosum modules cannot be deployed in
the vendor clouds. Further, the Comosum distributed cloud de-
sign is similar in motivation to CloneCloud [19]. CloneCloud,
which offloads computation from remote devices to the cloud,
assumes an always-available, more powerful compute pool
in the cloud. In contrast, Comosum enables computation and
fault tolerance at the edge (remote device) when the (core)
cloud is unavailable or too expensive to use.

While the edge cloud, core cloud and vendor cloud separa-
tion meets the resource elasticity and vendor neutrality goals,
it also collides with limited bandwidth at farms.

On one hand, the edge cloud provides storage and computa-
tion closer to the data source. For applications with ephemeral
storage and computation needs, this eliminates core cloud con-
nectivity and latency challenges. Specifically, by leveraging
networking advances such as LoRa [8] and TVWS [12], the
edge cloud is capable of completely disconnected operation
in deployments with large variations in area and granularity.
Conversely, the edge cloud is generally unsuitable for storage-
and compute-intensive Comosum applications (e.g. §§ 2.2).

On the other hand, the core and vendor clouds offer sig-
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Module Interface Method In/Out? Int/Poll? Description

register(observer) Input Int Add sensor update observer
telemetry notify(update) Output Int Notify observers of a new update

read(update) Output Poll Read latest update
run() Input Int Run the sensor module

write(path, data) Input Int Write to storage medium
read(path) Output Poll Read from a storage medium
change_feed() Input Poll Offer an iterator to new data

storage next(iterator) Output Poll Get the next record from an iterator
subscribe(subscriber, topics) Input Int Register a new subscriber
push(topic, data) Input Int Publish new updates to storage
notify(subscriber, data) Output Int Push new updates to subscribers
pull(topic) Output Poll Pull recent updates, if any
run() Input Int Run the storage module

notification_sensor_rcv(context) Input Int Receive data from sensor update
compute notification_storage_rcv(new_data) Input Int Receive data from storage subscription

analytics(arg) Input Int Execute application business logic
run() Input Int Run the compute module

actuation activate(cmd) Output Int Execute a command on a control device
run() Input Int Run the actuation module

Table 1: The unified Comosum API is inspired by classic system design approaches (e.g., design patterns [61], UNIX file system [73]).

nificantly more storage and computation capacity, albeit at
a higher network latency cost. Therefore, faced with ‘reli-
ably unreliable’ [42] Internet at remote locales, an application
whose progress relies on a consistent connection to the core
and vendor clouds is bound to fail. Losing connection to
cloud-based time critical decisions risks real consequences
for farmers; plants may perish from water stress; cows may
die from preventable diseases or difficult births; and vast vine-
yard swaths may succumb to virus infection.

In summary, the edge cloud, core cloud, and vendor cloud
separation meets Comosum’s resource elasticity and ven-
dor neutrality goals. Note, however, that it also reveals dif-
ficult system trade-offs; for instance, latency in the context
grapevine disease detection (§§ 5.3).

3.4 The Comosum Control Plane
An important Comosum goal is that initial design allows for
the integration of devices and software modules. This is the
guiding principle of the Comosum control plane. The control
plane draws inspiration from device drivers, IPC, and SDNs.
Comosum leverages a diverse array of networking and storage
primitives. These primitives in turn define extensible libraries
and configuration templates that accommodate communica-
tion between devices and software modules from current and
future DA systems.

On the hardware front, sensing devices require wrappers
for new serial device drivers or wrappers to existing standard
interfaces (e.g., RS485 [69]). Networking devices necessitate
new packet processing interfaces. Finally, control devices
typically expose wrappers for their PLCs.

On the software and cloud components, the control plane
specifies inter-module communication. Due to the distributed

nature of Comosum modules, we use message passing [89,92]
where modules communicate as follows.

Modules call a dispatcher with a message specifying the
peer module to contact. The dispatcher in turn maps message
queues to socket connections to the peer modules. In this
scheme, the modules remain oblivious to the underlying net-
working. Further, this simplifies part of the control plane to IP
address tuples which can be edited as the underlying network
changes. While communication between Comosum modules
is sockets-based, any module calls to other systems (e.g sen-
sor vendor clouds) uses whatever higher-level abstraction that
the external systems expose (e.g., REST APIs).

As discussed in the overview (§§ 3.1), a key Comosum goal
is to easily reconfigure devices and software modules to fit
different applications. Therefore, Comosum implementations
must remain as close to a set of reusable configuration and
compilation templates as possible. Configuration templates
include cloud connection strings, sensor SKUs, IP addresses,
etc. Compilation templates include Docker files [24], remote
procedure call (RPC) definition files, package dependencies,
etc. Thus, the hardware and software components are recon-
figurable to solve various DA challenges.

4 FarmBIOS: A Comosum Implementation

The particular instantiation of the Comosum architecture pre-
sented here is the Farm Basic Input Output System (Farm-
BIOS), drawing inspiration from its unification of routinely
incompatible hardware and software systems. Henceforth, we
use FarmBIOS and Comosum interchangeably. FarmBIOS
code and research datasets are open source (Appendix A).
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We built FarmBIOS in Python, atop Google’s protocol
buffers (also known as protobufs) [35]. Protobufs provide
a language-independent, efficient serialization protocol that
allows not only the construction of Comosum modules in
numerous languages, but also extensibility of RPC templates
to enable integration with arbitrary DA systems. Figure 2
shows the FarmBIOS stack. Next, we briefly describe the
most salient components of FarmBIOS instances.

Software

FarmBIOS Lib

Analytics

Storage

FarmBIOS Lib

FarmBIOS Message Format

Network (TCP Sockets)
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Figure 2: FarmBIOS - an implementation of Comosum

4.1 FarmBIOS Control Plane
At the top of the FarmBIOS stack, applications specify soft-
ware configurations to the FarmBIOS control plane, which
(1) provisions the appropriates edge and core cloud compute
and storage resources (e.g., VMs, databases), (2) instantiates
the required modules, and (3) builds any required Docker con-
tainers. Based on the application specific requirements, the
modules are deployed and started in the edge or core cloud.
Note, however, that not all modules in the middle layer are
required by every application. These à la carte application con-
figurations are at the heart of Comosum’s vendor neutrality
(e.g., pairing Azure compute and AWS storage).

4.2 FarmBIOS Library
The FarmBIOS library (FarmBIOS Lib) is the implemen-
tation of the Comosum module abstraction. That is, the li-
brary allows the customization of base telemetry, storage,
compute, and actuation module classes to fit the purposes
and configurations of different applications. Practically the li-
brary deals with challenges related to perpetual deprecation of
hardware in the field and software libraries. The FarmBIOS
Lib addresses this data processing challenge by providing
wrappers to an array of services such as tables, databases,
CSV readers, and email clients. In the current implementa-
tion, we provide wrappers around the Azure Table [62], Azure

CosmosDB SQL [63], Azure Machine Learning Workspace
(Azure ML) [64], Twilio [48], and OpenWeather [47] ser-
vices in addition openpyxl [32] and CSV readers - with more
templates to be added as our array of supported applications
expands. Therefore, FarmBIOS Lib is a structured, cloud-
independent application layer.

4.3 FarmBIOS RPC Protocol
FarmBIOS is built in a network-agnostic manner. This im-
plementation choice is important for extensibility to arbitrary
DA platforms. Specifically, the modules are unaware of dif-
ferences between local and remote peer modules. By local
we mean modules operating within the same host. Local and
remote operations entail modules passing and receiving mes-
sages to/from their dispatcher. The dispatcher is tasked with
routing the procedure call to the appropriate peer module
based on the control plane configuration. The RPCs rely on a
client-server architecture built on TCP sockets wrapped by a
selector operating per-connection queues, and each connec-
tion tunnels to a peer module. In both scenarios, any data
communication occurs over the common FarmBIOS RPC
protocol. Note that the underlying (TCP) communication pro-
tocol is known only to the dispatcher, but not the modules.
Further, the RPC protocol makes no assumptions on the data
formats, thereby maintaining data introspection/formatting
flexibility for applications through FarmBIOS Lib.

4.4 FarmBIOS Message Format
The Comosum modules exploit OOP, UNIX, IPC, and other
intuitive semantics. In practice, however, the underlying im-
plementations address two major obstacles. First, the number
of data formats, which represent technical compatibility ne-
gotiations between research farms and sensor providers, are
both unwieldy and subject to unexpected changes [23]. There-
fore, similar to the Linux file abstraction, Comosum offers a
uniform, byte-addressable format for inter-module data com-
munication - the FarmBIOS Message Format. This format
is an unstructured platform layer. Secondly, host operating
systems eventually get upgraded or lose long term support.
Comosum achieves independence from the host OS by lever-
aging application orchestration tools such as Docker [24] and
Kubernetes [29].

5 Applications & Deployment Experiences

In this section, we describe the hardware contexts, FarmBIOS
usage (§ 4), and deployment contexts of the motivating chal-
lenges ( § 2) to showcase Comosum’s range of applications.
Specifically, the applications are different Comosum configu-
rations that meet the needs of animal farms ( §§ 5.1), specialty
farms ( §§ 5.2), and row crop farms ( §§ 5.3).

5.1 CowsOnFitbits
Building on Challenge 1 (§§ 2.1), CowsOnFitbits is a data
aggregation component supporting early disease prediction
models which achieve 97% training accuracy [59]. The edge
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Training Data Location Data Size Compute Storage Runtime Accuracy

Edge Local 4MB 8 CPUs 256GB 27.1s 84%
Edge Cloud - 8 CPUs 256GB 35.6s 86%

Azure ML Cloud - 2 vCPUs 100GB 86.5s 86%

Table 2: Grapevine disease detection: model training runtime and accuracy for various WineGuard configurations

cloud is a farm PC (16GB RAM, 500GB storage) running the
Windows 10 Enterprise OS. The OS features a Docker engine
deployed on its Windows Subsystem for Linux (WSL). The
edge is connected to vendor clouds and a university cloud via
a 1Gbps Ethernet connection.

CowsOnFitbits leverages FarmBIOS modules (packaged as
Linux containers) as follows. Sensor reports are made avail-
able by the providers via FTP dumps to the edge cloud. The
telemetry module continuously polls the local disk, awaiting
the FTP dumps. New reports trigger the telemetry module’s
notify function call which, in turn, notifies its local compute
module. The telemetry module’s read method is called by the
compute module. The compute module aggregates sensor data
from multiple streams to be stored in the private university
cloud, where a module exposes a REST API for data access
and queries by ML applications. In the cloud, cows are iden-
tifiable across data streams through farm-unique cow ID’s.
The storage calls are made to an intermediate, non-FarmBIOS
module operating a Cassandra database [70].

CowsOnFitbits has been actively tracking approximately
1,500 cows in a commercial farm for nearly three years;
having collected 23GB of datasets at the time of writing.
The testing/deployment experience with CowsOnFitbits of-
fers two observations. First, the unstructured platform layer
(§§ 4.4) is more stable than the structured application layer
(§§ 4.2). Specifically, unannounced API/format changes on
the vendor side, which routinely occur every few weeks, intro-
duce breaking changes in FarmBIOS Lib. The API breaking
changes affected the API to the vendor-specific application
layer changes (i.e., breaks). FarmBIOS tolerates these API
changes by insulating itself with vendor-independent layers
that use unstructured files to store data from the vendor along
with methods that can interpret the unstructured data accord-
ing to the latest vendor interface definition. The CowsOnFit-
bits system adapted to a recent change in approximately one
day. This required minor application changes and deploying a
new Docker container. Subsequent versions may benefit from
Kubernetes [29], especially its rollbacks and canary deploy-
ments. Second, we observed missing/duplicate data in the
core cloud due to mismatched interpretation of floating points
in protobufs vs Python, missing vendor reports, unexpected
signal interference between RFID tags and electrical engines
for manure systems, or farm workers tripping over wires. The
floating point issue was resolved through meticulous end-to-
end testing of FarmBIOS modules over the course of a year.
The missing report and power outage issues remain as open
issues, though we propose a potential fix (see § 6, § 7).

5.2 WineGuard
Building on Challenge 2 (§§ 2.2), WineGuard is a data ana-
lytics platform for grapevine disease detection; achieving up
to 86% training accuracy. WineGuard’s sensor data originates
from plane flights over California vineyards in September
2020 using NASA’s Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) [36]. The spectroscopic sensor data is
publicly accessible from the NASA cloud [66]. The AVIRIS
data is merged with disease ground truth data from molecular
tests on select leaves from the same period. The merged data
are uploaded to the Azure Cloud for experimental retrieval.

WineGuard employs FarmBIOS modules as follows. We
built a wrapper for Azure ML [64] to kickstart a reconfig-
urable model training pipeline. Note that the application can
similarly be built using equivalent tools from other cloud
providers such as Amazon SageMaker [77]. The model train-
ing configuration includes Azure subscription ID strings, the
name of a pre-provisioned workspace, the location of the
training data, and a text file with required Python packages.
Upon issuing the compute module’s analytics command, the
configuration is deployed for training.

We deployed the WineGuard training pipeline in an edge
cloud and in the Azure Cloud (see Table 2) 2. This deploy-
ment presents several insights. First, the model accuracy is
relatively stable regardless of training location, and, as ex-
pected, training at the edge with local data incurs the least
runtime. Second, there is a 31% runtime overhead when fix-
ing the location at the edge. We observed that this is due to
an initial "warm-up" of the training data download from the
cloud. In the best case, cloud-based training and inference
are instantaneous. Otherwise, during disconnected periods,
inference can be done faster and locally at the edge. Third, the
satellite coordinate data were occasionally off by a few meters
compared to the ground truth disease data. Without requiring
manual intervention, analytics on sparse data in near real-time
was necessary to correct the errors. In particular, FarmBIOS
enabled the rectification of the divergence by selecting only
spectroscopic bands with reliable data while still enabling the
training/inference to proceed.

5.3 WaterGuard
Building on Challenge 3 (§§ 2.3), WaterGuard is a plant
water stress alert system for research farms. WaterGuard is
prototyped with research software and hardware provided by

2We tried to use a Raspberry Pi 4B (4 CPUs, 32GB storage) as the edge
cloud. However, the ARM processor could not execute Docker containers
built on an x86-64 architecture (the alternative edge used here) [14]. Building
on an armv7 base image also failed due to end of support for distro updates.
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Figure 3: The Comosum hardware repertoire deployed for 18 months. Edge Cloud 1 (active since October 2020) serves an apple orchard
water stress study. Edge Cloud 2 (active since March 2021) serves high-throughput corn, hemp, and strawberry breeding experiments.

Microsoft Research [88] ( Figure 3). The hardware features
sensor hubs from Seeed Studio operating on eight D-size bat-
teries and supporting up to 13 analog and digital sensors. The
sensor readings are networked over LoRa [8] to a base station
comprised of an edge device, a LoRa module, and LoRa an-
tenna (5dBi, 900MHz). The edge device is a general purpose
UpBoard (4GB RAM, 32GB storage) running the Windows
10 IoT Core OS. In addition to the LoRa components, the de-
vice is connected to a TVWS Client (6Harmonics Inc), which
provides physical and data link connectivity over a single
TV channel (18, 497MHz) to a TVWS Base Station (TVBS)
located at a research barn approximately a quarter of a mile
away. Finally, the TVBS is wired to the university’s 1Gbps
fiber-optic Internet as a gateway for sensor data to Azure.

WaterGuard relies on FarmBIOS modules as follows. Sen-
sor readings are relayed to Azure. Note that Azure table stor-
age offers no change feed for observer notifications. Thus, the
telemetry module relies on periodic reads (i.e., polling the
storage module) to detect inserts that, in turn, should trigger
its notify method. The analytics unit is notified via a notifi-
cation_sensor_rcv call to the compute module. Next, based
on the configuration received from the new update, the com-
pute module reads from the shared storage module to get
data on the appropriate sensor hub and start the analytics.
Finally, upon reaching an irrigation decision, the compute
module calls activate on the actuation module which notifies
the researchers over text message using the Twilio API [48].

WaterGuard has been deployed for 18 months in two edge
clouds with nine sensor hubs (Figure 3). Each sensor hub av-
erages eight sensors and 223 days of data collection. Together,
the hubs have collected over a million sensor readings. The
biggest insight from this deployment was the unexpected mun-
dane work required to adapt experimental DA systems ( [88])
to new settings where failures can happen anywhere in the
sensor-to-cloud continuum (see § 6).

6 Adapting to the Wild

The previous section described the hardware configurations,
API usage, and deployment experiences/insights from three
FarmBIOS instances. Here, we present the successes and
system adaptations necessary for long-term Comosum main-
tenance. Though the adaptations are specific to WaterGuard,
the key idea of active digital twins is broadly applicable.

6.1 Offline Data Collection Is Not Enough
WaterGuard is capable of tolerating days-long network out-
ages by relying on offline data collection and standard hard-
ware redundancy. As shown in 4a, the pilot sensor hub (Sen-
sor Hub 1) achieved disconnected operation during a snow
storm and heat wave in February 2021 and May 2021, respec-
tively. Until the 4G hotspot connectivity was restored, the
sensor data was simply stored at the edge device.

However, data aggregation and analytics are still affected
by faulty sensors and human error. Concretely, faulty CO2
sensors drained the batteries faster than expected ( 4b) and/or
slight misconfigurations place data in incorrect columns. Both
faults effectively result in data discontinuities ( 4c).

6.2 The Fix: Active Digital Twins
To streamline fault detection, Comosum evolved to include
reactive monitoring [90]. That is, detecting, escalating, and op-
tionally repairing system faults at different failure scopes. The
Comosum design easily lends itself to this task by introducing
active digital twins. A digital twin is a digital representation
of a physical object, process, or environment that behaves
like its real-world counterpart. In contrast, active digital twins
combine the traditional digital twin concept with Comosum’s
actuation design.

The active digital twins were an emergent concept as we
iterated over FarmBIOS to make it more fault-tolerant, espe-
cially in outdoor research farm deployments where a delayed
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Figure 4: Adapting FarmBIOS to (a) network outages, (b) faulty sensors, and (c) data discontinuities

detection could imply troubleshooting sensor hubs in two
feet of hardened snow (Figure 4a, [75]). When the digital
twin diverges from its physical twin beyond a reconfigurable
margin (e.g., five minutes), an action is taken by the system
such as sending notifications to human operators. In Como-
sum, only the sensor hubs are twinned. We modeled timely
data collection, and divergence from the physical system is
characterized by missing telemetry over a 30 minute period.

Concretely, we implemented a web-based, reconfigurable
notification system with three key functions. The Status page
leverages the WaterGuard sensor hubs’ digital twins to display
their connection state and last activity. The Configuration page
provides an interface for retrieving and editing each sensor
hub’s port configurations. Lastly, the Notifications page pro-
vides a reconfigurable set of functions including (1) whether
the notification system is enabled, (2) an editable threshold
(in minutes) for triggering outage notifications, (3) an editable
frequency for outage checks, and (4) the set of emails to be
notified during outages. Note that the notification system
relies on data aggregation and analytics across multiple, sepa-
rate cloud services (i.e., Azure IoT Hub, Azure Table, AWS
Simple Notification Service), and the implementation simply
plugs Comosum module implementations of these services
with minimal or no change to other modules. Therefore, it is
broadly applicable to detect failures at different stages from
the sensors at the farm to the modules in the cloud.

7 Practical Insights and Limitations

The motivating challenges (§ 2) highlighted major interop-
erability issues within state-of-the-art DA platforms (see Ta-
ble 3 for a summary). We mapped these challenges to three
core system design goals: extensibility, reconfigurability, and
fault tolerance. We summarize below both persistent and new
lessons from our experiences, and, more importantly, how
FarmBIOS practically addressed the challenges. We also state
the system’s current limitations.

• Extensibility to new DA vendors comes with (minor)
costs: Table 3 details the challenges in DA data aggre-
gation. Our design goal was to provide an extensible

interface that can generalize across APIs, clouds, hard-
ware, and platforms. FarmBIOS provides a unified inter-
face to merge/analyze/actuate datasets spread across the
distributed cloud. For instance, CowsOnFitbits (§§ 5.1)
enables the merging of datasets from four different ven-
dors. The tradeoff is that, for each new vendor, a new
script (less than 50 lines of code) must be written to
move vendor reports to the appropriate directories for
FarmBIOS module triggers.

• The cloud surprisingly complicates reconfigurabil-
ity: Table 3 details difficulties in system reconfigura-
tions to support different farm networking and analyt-
ics pipelines. Our design goal was to allow different
points in the configuration space towards data mod-
els that can be trained and used across different net-
working and cloud deployment scenarios. Indeed, we ex-
plored numerous hardware/software configuration pos-
sibilities (see Appendix B). However, as observed in
WineGuard (§§ 5.2), the interface between the cloud
and the long-lived deployed systems was not stable. In
particular, the Azure ML APIs were subject to parame-
ter deprecations which affect the WineGuard compute
configurations. FarmBIOS evolved around these exter-
nalities by treating incoming parameters in telemetry and
analytics modules as abstract data types. The result is a
stable platform that shields users from these volatilities.

• Failure in DA systems is the norm, not the excep-
tion: Table 3 details the heterogeneity and failure cases
that complicate DA system deployments and mainte-
nance. Our design goal was to detect and/or tolerate
intermittent failures despite the heterogeneity of hard-
ware, farm types, and cloud services. In CowsOnFit-
bits (§§ 5.1) for instance, we observed missing data due
to sensing/networking failures (frequency interference
between sensors and manure systems), human factors
(tripping over wires), etc. In another instance (Wine-
Guard, (§§ 5.2)), analytics on sparse data is a necessity
for deployed DA systems. We demonstrate how Farm-
BIOS copes with the unreliability of the underlying sys-
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Why It Is Hard System Challenge Design/Implement Decisions Supporting Results & Contributions

Incompatible platforms Reuse classic ideas (§§ 3.1, §§ 3.2) Unified platform API (§ 5)
Incompatible formats Byte-addressable payloads (§§ 4.4) Extensible libraries (§§ 4.2)

Data Aggregation Distributed data Mask data path/sources (§§ 3.3) Merged across clouds (§§ 5.1)
Host dependence Containerization (§§ 4.4) Cross-architecture transfer (§§ 5.1)

RPC dispatcher (§§ 4.3) Cross-platform transfer (§§ 5.1)

Manual processing Comosum design (§ 3) Automated processing (§§ 5.2)
Data Analytics Unreproducible models Reconfig. models (§§ 3.3, §§ 3.4) Distributed training (§§ 5.2)

Data sparsity Active digital twins (§§ 6.2) Divergence detection (§§ 5.2)
Slow actuation Comosum design (§ 3) Sub-minute inference (§§ 5.2)

Faulty sensors Standard hardware redundancy (§§ 6.1) 18-month deployment (§§ 5.3)
Active digital twins (§§ 6.2) Reconfig. notification system (§§ 6.2)
Reconfig. control plane (§§ 3.4) Reconfig. networks (§§ 5.2, Appendix B)

Fault tolerance Network outages Edge analytics design (§§ 3.3) Edge inference (§§ 5.2)
Offline data collection (§§ 3.3) Tolerate 7-day outage (§§ 6.1)

Complexity/heterogeneity Modularity (§§ 3.2) Comosum design (§ 3)

Table 3: A summary mapping of systems challenges to Comosum design decisions and their supporting results

tems through the broadly applicable idea of active digital
twins. In the case of frequency interference, for exam-
ple, the RFID sensors could be twinned. In the vineyard
context, the error message indicating mismatch between
ground truth and satellite data could be used as input for
a digital twin model.

• FarmBIOS evolution and limitations: As emphasized
above, failure is the rule and not the exception. Farm-
BIOS was designed to tolerate failure, and as stated in
§§ 2.3, plant and livestock depend on a robust system.
Therefore, the system was improved over time. For in-
stance, the active digital twin implementation relied on
the telemetry module abstraction to increase fault toler-
ance. One limitation is the lack of support for automated
movement of computations between the edge and core
clouds during permanent power/network outages. Re-
call, however, that the edge side of the architecture is, in
fact, capable of operating autonomously, at a minimum
to retrieve and store sensor data (§§ 5.3) and, if so con-
figured, perform local computation (§§ 5.2). We leave
this limitation for future endeavors.

8 Related work

8.1 Programming Frameworks
To streamline application development and partitioning for
resource-constrained environments, recent community efforts
leverage the cloud for mobile and IoT applications. By rewrit-
ing application executables, the CloneCloud [19] architecture
intelligently partitions program portions for dynamic exe-
cution between mobile devices and their cloud twins. The
partitioner identifies expensive application portions through
static and dynamic code analysis that informs an optimizer to
solve the execution partitioning challenge. Along with Edge-
Prog [55] and like CloneCloud, the TinyLink [26,39] systems

form a set of cloud-native, generative systems of hardware
configurations and software executables for IoT applications.
TinyLink and EdgeProg expose high-level APIs and If-This-
Then-That (IFTTT) languages to abstract away the low-level
knowledge for developers, respectively.

In line with the prior work, Comosum exposes high-level
APIs for interfacing with IoT platforms without deep knowl-
edge of the underlying networking and hardware. Unlike
CloneCloud, Comosum partitions applications at the module
level, not the instruction level. Departing from EdgeProg’s
use of IFTTT and TinyLink’s exclusive support of applica-
tion development in C-like languages, Comosum supports
module development with any language compatible with the
(de)-serialization protocol shared by the modules.

8.2 Agricultural Sensor Networks
The rise of low-cost IoT sensor networks has led to an explo-
sion of new communication standards and protocols being
ported to industrial and consumer applications. For example,
like WaterGuard, Gutiérrez et al. [40], Ahmad et al. [6], and
Vasisht et al. [88] showcase the application of GPRS, XBEE,
and TVWS technologies to agricultural monitoring systems,
respectively. Further, Ayoub et al. [11] and Jawad et al. [50]
present detailed overviews of both power-hungry (e.g., WiFi,
Bluetooth, etc.) and low power wide area network (LPWAN)
technologies (e.g., LoRa, NB-IoT, etc.) and their recent appli-
cations to, among others, dairy health care, automation, and
greenhouse monitoring. Comosum demystifies these novel
networking technologies’ potential and limitations to interdis-
ciplinary audiences interested in similar applications.

Besides IoT networking standards, the literature identi-
fies open challenges in IoT networking, hardware, and soft-
ware (co)design. The most salient include extensibility [82],
durability [13], reliability [37, 82], modularity [82], scalabil-
ity [37], energy efficiency [39, 82, 88], and interoperability
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among heterogeneous devices [82]. The Comosum design ad-
dresses extensibility, durability, reliability, modularity, config-
urability, and interoperability. Further, scalability is indirectly
addressed through decoupling and thin APIs that allows inde-
pendent evolution of the software modules and the underlying
networking hardware, protocols, and devices.

Perhaps closest to our agricultural application of edge com-
puting is Taneja et al.’s SmartHerd management system [85].
Like SmartHerd, Comosum co-opts a microservice approach,
wherein the sensing, compute, storage, and actuation mod-
ules can seamlessly be placed in bandwidth rich as well as
constrained environments. Further in line with SmartHerd,
Comosum easily aggregates data from incompatible sensor
vendors’ private web servers to avoid vendor lock-in. Still, § 5
shows FarmBIOS’s extensibility beyond dairy applications.

8.3 IoT Architecture Abstractions
Sisinni et al. [82] define a reference IoT architecture as a
“higher level of abstraction description that helps identify is-
sues and challenges for different application scenarios". This
definition reflects the three years of exploration that resulted in
the Comosum architecture. Previous architectural approaches
identify sensing or perception [10, 25, 51, 91], physical [56],
interface [91], networking [10,25,51,91], transport [56], mid-
dleware [56], and service or application [10, 25, 51, 56, 91]
layers as essential to an IoT application.

Although the architectures fundamentally serve applica-
tions with different business and technical needs, their essen-
tial layers are modules in the Comosum design. Thus, the
benefit of Comosum is its partition of the physical hardware
from the software that manipulates the networked data. That
is, the software, by acting as a collection of byte-passing
modules, is extensible because it is agnostic to the evolution,
intricacies, protocols, or any other factors of the hardware.

9 Conclusion
In this paper, we present Comosum, a system software ar-
chitecture to support digital agriculture (DA) applications in
research and commercial farms. The architecture comprises
hardware, software, and distributed cloud abstractions to build
extensible, reconfigurable, and fault-tolerant sensor networks
for farms. By supporting diverse DA applications in multiple
clouds, we show that FarmBIOS, a Comosum implementa-
tion, meets these design goals. Eighteen months of Comosum
instance deployments and adaptations reveal new insights
on fault-tolerant sensor networks for DA. We introduce ac-
tive digital twins to streamline fault detection, escalation, and
optional repair from sensors to cloud-based modules. In en-
suring that systems approaches employed in urban research
farms readily map to rural farm realities, a thorough analysis
highlights practical insights, limitations, and trade-offs (see
Appendix) that are unique to DA applications as a starting
point for community discussions of DA’s potential contribu-
tions to networked system design and implementation beyond
the current state-of-the-art.
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A Artifact Appendix

Abstract
The artifact documents our deployment experience and
open-source efforts to build a Software-Defined Farm (or
SDF) [75], also known as the Comosum or FarmBIOS
system in the present paper. Comosum is intended to provide
an extensible, reconfigurable, and fault-tolerant platform for
IoT data collection, processing, and actuation. On one hand,
the paper covers the architecture (Comosum), the
implementation (FarmBIOS), and our deployment
experiences over 18 months. On the other hand, the artifact
provides a standalone Docker image and a pointer to the
open-source code that, together, can be used to demonstrate
the instantiation of the telemetry, analytics, and actuation
concepts. In particular, the artifact demonstrates the
repeatability of these ideas through three applications:
CowsOnFitbits, WineGuard, and WaterGuard.

Scope
In addition to inspecting the code and research datasets, the
artifact can be used as a starting point for extending the
FarmBIOS/Comosum platform with new cloud services and
sensor vendors. The current release of the artifact is intended
to validate the listed claims about the applications:

• The CowsOnFitbits application (§§ 5.1) can use the
Comosum sensor module (aka telemetry module) and
compute modules to aggregate data from three
(anonymous) IoT vendors and six data sources.

• The WineGuard application (§§ 5.2) can use can use the
Comosum compute module abstraction to train machine
learning models and perform local inference with at
least 75% accuracy in approximately 30 seconds.

• The WaterGuard application (§§ 5.3) demonstrates the
potential of active digital twins in increasing the
platform’s fault-tolerance to failures in the path from the
sensors to the cloud.

Contents

The artifact includes a Docker image named
comosum-atc-artifact-eval and a zipped archive of the code
base built from the usenix-atc23-artifact-eval branch and the
b313d7e commit in the SDF GitHub repository.

Hosting

The artifact is hosted on the publicly-funded archival
platform Zenodo under this unique DOI.

Requirements

• The Docker image was primarily built and tested on an
X86-based system (Windows 10 Education OS, Version
22H2, OS Build 19045.2846 with WSL 2 installed to
emulate a Linux-like environment, and Docker Desktop
Version 20.10.10). Therefore, the image should be
loadable on most Unix-like environments with Docker
installed.

• In addition to the primary development environment
listed above, we reproduced the results on a X86-based
system (Ubuntu Linux OS 22.04.1, Docker Version
23.0.6) and an arm64-based Macbook Pro (macOS
Ventura 13.3, Docker Version 23.0.5)

• Although we have successfully reproduced the results
on a Mac with an Apple Silicon (M2) chip, we cannot
guarantee reproducibility if the evaluation is conducted
on macOS, especially the M chips which are known to
have issues with Docker Desktop filesystem change
notifications and port mapping/forward issues. The
Comosum system extensively relies on change
notifications and port forwarding.

B Understanding the Trade-offs
This section presents an exploration of network
configurations for Comosum applications with two goals in
mind. First, we showcase Comosum’s potential
reconfigurability from a 55-acre urban farm to a 615-acre
rural farm. Secondly, we offer a way for interdisciplinary DA
researchers to quickly establish their networking needs by
assessing three factors: expected application payload
frequencies (§§ B.1), network availability and throughput in
urban versus rural locations (§§ B.2), and desired system
latency (§§ B.3). The key observation is that the DA context
has the potential for new lessons and challenges to
well-established networking, storage, and application
management assumptions. The Comosum experiences serve
a crucial starting point for the community conversation.
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Application Payload Frequency LoRa (SF:12) DSL Satellite 4G LTE TVWS (1x6) TVWS (4x6) Fiber-optic
WaterGuard 65B 6 min 0.44 sec 5.20e-4 sec 1.73e-4 sec 9.60e-5 sec 5.20e-5 sec 2.80e-6 sec 5.20e-7 sec
WineGuard 4MB Daily 7.60 hr 32.00 sec 10.67 sec 5.93 sec 3.20 sec 0.17 sec 0.03 sec

CowsOnFitbits 17MB Daily 1.39 days 2.30 min 45.87 sec 25.48 sec 13.76 sec 0.74 sec 0.14 sec

Table 4: Estimated cloud backup time for FarmBIOS applications under various network bottleneck scenarios.

B.1 Application Data Rates
Table 5 illustrates the significant range of data generation
rates for the three Comosum applications; from a few bytes
every six minutes to hundreds of MBs weekly. The
WaterGuard total is based on a sensor hub deployment with
seven sensors (see §§ 5.3). The WineGuard dataset is based
on spectrometer values from a 500m*300m vineyard field.
The CowsOnFitbits total is an estimation based on data from
four sensor providers tracking approximately 1,500 cows on
a commercial farm. The CowsOnFitbits sensor data
generation varies from every 10 minutes to once daily.

Application Payload Frequency
WaterGuard 65B 6 minutes
WineGuard 4MB Daily
CowsOnFitbits 17MB Varies

Table 5: FarmBIOS application data rates and formats.

B.2 Achievable Network Throughputs
We consider five networking media for data transfers at a
farm, namely LoRa, DSL, Satellite, 4G LTE, and TVWS.
Table 6 shows the achievable data transfer rates for the
different media. The LoRa settings reflect current settings
from the WaterGuard sensor hubs.
The DSL throughput is included because DSL holds the
largest footprint in rural housing units’ Internet access [30].
The TVWS settings reflect observed throughputs in the
literature [31], measured TV channel occupations (as of Sept.
2020) at a campus research farm and a more rural farm 25
miles away, and tower height-based channel availability
estimations [21] for the two farms. Based on their GPS
coordinates, the campus farm offers only separate, single
channels while the more remote farm offers four contiguous
channels.

Medium Throughput Internet? Deployed?
LoRa (SF:12) 1.17 kbps No Yes
DSL 1 Mbps [30] Yes No
Satellite 3 Mbps [16] Yes No
4G LTE 5.4 Mbps [74] Yes Yes
TVWS (1x6MHz) 10 Mbps [31] No Yes
TVWS (4x6MHz) 186 Mbps [31] No No
Fiber-optic 1Gbps Yes Yes

Table 6: Rural uplink throughputs. SF = Spreading Factor.

B.3 Cloud Backup Bottleneck Analysis
The Comosum distributed cloud affords elastic compute and
storage power. Practically, we transfer data not only to

leverage more abundant compute resources for
compute-intensive tasks in the cloud, but also to store the
datasets for future retrospective analysis. Assuming each
networking media (whether routing in the field or at the
gateway) as an unreliable bottleneck in the data transfer, we
compare the networking media/latency trade-offs in
uploading each application’s data.
Table 4 illustrates the expected latencies of different media
for a given application. For instance, while a fiber-optic link
in an urban farm would transmit CowsOnFitbits’ 17MB of
data in less than a second, the most popular Internet service
in rural locations (DSL) would require three minutes. In
another instance, while a research farm with one TVWS
channel would route the data within 14 seconds at the edge,
the four channels in the rural farm would transmit the same
dataset in sub-second time.
In sum, by comparing urban and rural settings, this analysis
shows the nuanced networking and storage strategies for DA
applications in a distributed cloud setting. This motivates
future research avenues in Comosum application migrations
either as the network fails or edge resources deplete.
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Abstract
Edge computing seeks to enable applications with strict la-
tency requirements by utilizing resources deployed in diverse,
dynamic, and possibly constrained environments closer to
the users. Existing state-of-the-art orchestration frameworks
(e.g. Kubernetes) perform poorly at the edge since they were
designed for reliable, low latency, high bandwidth cloud envi-
ronments. We present Oakestra, a hierarchical, lightweight,
flexible, and scalable orchestration framework for edge com-
puting. Through its novel federated three-tier resource man-
agement, delegated task scheduling, and semantic overlay
networking, Oakestra can flexibly consolidate multiple in-
frastructure providers and support applications over dynamic
variations at the edge. Our comprehensive evaluation against
the state-of-the-art demonstrates the significant benefits of
Oakestra as it achieves approximately tenfold reduction in
resource usage through reduced management overhead and
10% application performance improvement due to lightweight
operation over constrained hardware.

1 Introduction

Within almost a decade since its inception, edge comput-
ing has found a wide range of use cases in industry and re-
search, especially for supporting latency-critical services like
AR/VR [24], live video analytics [14], etc. [46]. However,
despite significant interest, there have only been a handful of
real-world demonstrations of edge so far [49]. Reasons for this
are manifold and may include, on the technical side, the fol-
lowing. Firstly, resources at the edge are far less capable and
more heterogeneous than datacenters [61] – usually of smaller
form factor with specialized hardware, e.g., Intel NUCs [36],
Coral AI board [20]), Jetson Xavier [50], Raspberry Pis, etc.
Many such devices are designed to be deployed in proximity
to the users utilizing unreliable (wireless) networks with lim-
ited bandwidth and high latency as primary communication
mediums [64]. Moreover, the benefits of edge [47,68] are only
apparent with the dense availability of computing resources –
requiring significant investment and planning [21, 46].

Secondly, the majority of popularly used orchestration
frameworks, e.g., Kubernetes [34], K3s [29], KubeFed [35],
etc., are off-shoot branches of solutions that were inherently
designed to perform well in managed datacenter networks.
Such frameworks make strong assumptions about the underly-
ing infrastructure’s (especially the network’s) consistent relia-
bility and reachability, which does not necessarily hold at the
edge where resources are more dispersed. For example, recent
investigations into Kubernetes’ operations uncovered that its
reliance on maintaining strong consistency in the datastore via
etcd along with its limited scalability results in severe avail-
ability and efficiency issues in edge-like environments [37].
Moreover, the core components of such frameworks incor-
porate many heavyweight operations – limiting their use on
constrained hardware. Furthermore, almost none of the exist-
ing solutions can currently support the edge’s heterogeneity
in hardware, networking, and resource availability.

In this work, we present Oakestra, a flexible, hierarchical
orchestration framework that overcomes the many challenges
just mentioned. Conceptually, Oakestra allows multiple op-
erators over vast geographical regions to contribute their re-
sources to a federated infrastructure – reducing the investment
to achieve a dense computing fabric at the edge. Furthermore,
Oakestra’s implementation is lightweight and extensible, al-
lowing it to manage effectively constrained and heterogeneous
edge infrastructures. Specifically, our contributions are:
(1) We consolidate edge infrastructures in a logical three-tier
hierarchy. With a root orchestrator managing many resource
clusters, each controlled by a cluster orchestrator, we enable
infrastructure federation. The cluster orchestrator exercises
local fine-grained control but only sends aggregated cluster
usage statistics to the root (§3). By design, Oakestra hides
the internal infrastructure details within each cluster, allow-
ing many providers to participate without exposing internal
configurations. Application providers can deploy services
at the edge by specifying high-level constraints (hardware,
latency, geography) at the root. Oakestra uses a delegated
scheduling mechanism that decouples the task placement by
only making coarse-grained cluster choices at the root and
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leaving fine-grained resource placement to the clusters.

(2) We design a novel semantic overlay network that trans-
parently enables edge-oriented load balancing policies (e.g.,
connect to the closest instance), directly addressable using
semantically-capable IPv4 addresses and hostnames (§3.4).
This supports the portability of cloud-native applications, en-
suring flexibility for application developers to optimize the
service-to-service interactions at the edge. The overlay also
allows Oakestra to dynamically adjust communication end-
points in response to infrastructure changes, e.g., migrations,
failures, etc., ensuring uninterrupted service interactions.

(3) Oakestra’s lightweight and modular implementation is
compatible with most popular cloud technologies and allows
developers to extend internal components, e.g., schedulers,
without much development overhead (§5). Our extensive eval-
uation in both high-performance computing and edge infras-
tructures demonstrates Oakestra’s capabilities as it consis-
tently (and significantly) outperforms the popular produc-
tion frameworks (e.g., Kubernetes and its derivatives). Our
results show up to 10× lower CPU overhead, 60% reduc-
tion in service deployment time, and 10% application per-
formance improvement. Under heavy loads, Oakestra re-
duces resource utilization by ≈ 20% compared to its clos-
est competitor, K3s. Oakestra is an open-source project
(https://www.oakestra.io/), and all its components are
available at https://github.com/oakestra.

2 Background and Related Work

Kubernetes [34] has emerged as the most popular orchestra-
tion system in production, used by ≈ 59% of all respondents
in a recent survey [23], and has been touted by many as the
primary solution for edge computing. It decouples the exe-
cution runtime of the applications (nodes) from the global
cluster decisions (control plane). Its smallest deployable units
of computing are the Pods, which are a group of containerized
services. The nodes embed the execution runtime of the pods,
as well as the networking e monitoring components of the
platform. The control plane exposes the APIs for developers
and external tools, monitors and synchronizes the nodes, and
reacts to cluster events, such as deployments, scaling, and
failures. Kubernetes is designed for datacenter environments,
and it assumes the nodes to be high-end managed resources
interconnected by reliable low-latency networks. The plat-
form guarantees strong consistency of the cluster status and
resources in replicated control plane setup via the distributed
key-value store called etcd. Recent studies have found that the
strong consistency requirements of etcd are its primary limi-
tation when ported to heterogeneous and diverse edge infras-
tructures. This has a noticeable impact on scalability when it
comes to constrained resources that can slow down the entire
infrastructure [37]. Network partitioning and multi-clustering
still remain critical even in Kubernetes federation [35] as

shown in [45]. In particular, distributed geographical areas
lack cooperation and awareness of the remaining infrastruc-
ture. The inter-cluster communication then requires additional
tools like Submariner [9] that requires global state transfer
synchronization and prevents scalability. Lightweight distri-
butions of Kubernetes such as KubeEdge [19], K3s [29], and
Microk8s [43] either inherit the strong assumptions of ku-
bernetes [15] or are meant to perform better on small scale
clusters as later shown in our evaluation. In general, while
extending Kubernetes or rearchitecting its components is a
viable option, we argue that the effort for largely redesigning
numerous of the core components would be substantial and
instead re-formulate some of its base assumptions. Therefore,
Oakestra pursues a different approach, built ground-up with
the edge requirements in mind, it offers a familiar environment
for current Kubernetes developers while providing flexibility
to exploit the proximity to their clients and geo-distributed
multi-owner infrastructure deployment. Oakestra does not
aim at superseding the feature set of Kubernetes but rather
fills the gap identified in those contexts where Kubernetes
does not fit. Our ongoing work explores the integration of
Kubernetes-based cloud clusters.

In the literature, we can also find other systems that have
explored effective edge orchestration natively. CloudPath [48]
envisions multi-tier on-path computing for deploying state-
less functions closer to the clients. HeteroEdge [69] or
SpanEdge [58] cater specifically towards streaming appli-
cations, FogLamp [65] focuses on data management and Vir-
tualEdge [42] only considers edge servers within cellular
networks. From the task scheduling perspective, we might
relate to different hierarchical scheduler approaches that dis-
tribute tasks on a cloud-edge continuum [12,18,28,38]. How-
ever, while these solutions focus on service scheduling, in
our work, we must integrate the scheduling problem in a
comprehensive orchestration framework offering both ser-
vice and resource management. The work closest to ours is
OneEdge [60], as it offers a hybrid two-tier control plane for
managing geo-distributed edge infrastructures. However, we
consider Oakestra to be a superset of OneEdge as the former
is a general-purpose modular framework that allows develop-
ers to express geographic (and other) management constraints
as scheduler plugins. We demonstrate such extensibility of
Oakestra through an LDP scheduler plugin (§3.2) that op-
timizes on geographical and latency constraints – similar to
OneEdge. Therefore, integration remains a possibility which
we leave out for future work.

3 Oakestra Overview

Previous research has shown that both service deployment
and resource management in distributed edge infrastructures
are non-trivial problems, primarily due to the heterogeneity
and dynamicity of the environment [16, 41, 66]. Simultane-
ously, the application providers are likely to deploy multiple
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Figure 1: Oakestra Architecture and Workflow.

instances of their services across different edge clusters to
have them close to their clients, both in terms of geographic
distance and network latency [59]. Additionally, solutions
at the edge must remain logically compatible with prevalent
cloud techniques such that both existing and novel applica-
tions can coexist in edge and cloud realms, thereby providing
scalability and flexibility. These and other unique operational
viewpoints at the edge impose several design challenges for
Oakestra, which we enlist below.

(1) Oakestra must support the infrastructure-at-scale – al-
lowing scaling from thousands to millions of distributed nodes
without management overheads. The framework should sup-
port a federated heterogeneous infrastructure deployed across
geography and controlled by one or more administrative enti-
ties and topologies. Furthermore, the framework should allow
(a) developers to utilize edge resources regardless of owner-
ship and (b) infrastructure providers to retain management
control over their resources.

(2) Extending the infrastructure to the edge of the network
requires applications to be able to exploit the proximity with
clients. The platform must envision a way for inter-connected
microservices to seamlessly communicate and balance the
traffic with nearby instances. Therefore, the framework must
allow developers to describe the application’s requirements
with fine-grained SLA primitives (such as specialized hard-
ware requirements, geographical placement, etc.), which must
be respected throughout the application lifecycle.

(3) The orchestrator must consider the most up-to-date
constraints of edge servers and must adapt to changes in con-
ditions without impacting the applications. Each edge device
can contribute with diversified hypervisors, drivers, hardware
availability, network, and capacity. The system must abstract
the management complexity and autonomously find a com-
patible node for the deployment issued by the developer.

3.1 System Architecture

Oakestra is a hierarchical orchestration framework for en-
abling running edge computing applications on heterogeneous
resources (Figure 1). Instead of the flat management (inherent
to most orchestration solutions [10,19,29,31,35]), Oakestra
organizes the infrastructure into distinct clusters (see clusters
1 and 2). We leave the definition of “cluster” purposefully
abstract and up to the liking of operators since Oakestra
allows multiple edge operators (e.g., ISPs, cloud operators,
etc.) to contribute their local deployments towards a shared
infrastructure as separate clusters with independent admin-
istrative control. Each individual provider then deploys sev-
eral clusters to segregate its resources, e.g., geographically.
The fine-grained control of resources (workers) within a clus-
ter is administered by the cluster orchestrator (operated by
the provider), while root orchestrator coarsely controls the
global infrastructure. Oakestra can also mimic the single
master frameworks (like Kubernetes) with both root and clus-
ter orchestrators deployed on the same machine, albeit with
significant performance benefits to the state-of-the-art (§5).
The resource and service management responsibilities are
separated into independent components, system manager
and service manager (§3.2). We carefully design and im-
plement Oakestra as a modular and extensible framework –
allowing the possibility to swap technologies and/or add new
features as the requirements of edge computing evolve in the
future (§5). Oakestra comprises of three main entities – root
orchestrator, cluster orchestrator, and worker.

The Root Orchestrator is Oakestra’s centralized control
plane (analogous to Kubernetes’s “control-plane” [10]) and
is responsible for managing resource clusters. However, as
we explain in §3.2, the root only provides (i) coarse high-
level control and (ii) interactions across multiple clusters, as
fine-grained control is retained within the cluster boundary.
Regardless, we envision the root to be deployed on a machine
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reachable from all clusters (in a widescale deployment, e.g.,
in the cloud). While the root orchestrator may appear to be
a central point-of-failure initially, the context separation into
fine- and coarse-grained management responsibilities across
hierarchy allows Oakestra to continue its operations if the
root fails and restarts (see Fault Tolerance in §3.5).

To deploy applications, developers submit the code along
with an SLA descriptor to the system manager. The SLA
includes high-level operational requirements and constraints
for service execution at the edge, e.g., virtualization, required
hardware, geolocation, etc. (see §3.2). The system manager
notifies the service manager of the new deployment re-
quest (step 1 ), and contacts the root scheduler (step 2 )
to calculate a priority list of clusters (based on aggregate
information) to deploy the application. As such, Oakestra
follows a multi-step delegated service scheduling approach
as the root offloads the fine-grained scheduling operation to
selected clusters schedulers (details in §3.2). The system
manager is also responsible for registering new clusters and
coordinating the control information.

The Cluster Orchestrator is a logical twin of the root but
with management responsibility restricted to resources within
the local cluster. An infrastructure provider registering its
resources as a cluster with the root assigns the orchestrator
role to a machine that is ideally reachable by all workers. The
cluster manager periodically updates the root with aggre-
gated statistics of overall cluster utilization and health/QoS
of the deployed services (step 5 , and 6 ) via HTTPS-based
inter-cluster control link in a push-based manner (implemen-
tation details in §5). Note that the cluster orchestrator with-
holds minute information and retains majority administrative
control of its member workers. For example, if the cluster
orchestrator receives a delegated scheduling request from the
root (step 3 and 4 ), it calculates the optimal resource selec-
tion considering the up-to-date availability, utilization, and
capability reported by the attached workers. The Oakestra
scheduler is designed to be modular and supports several
different scheduling algorithms as language-agnostic plugins.

Worker Nodes are edge servers in clusters responsible for
executing services. Each worker has a distinct capacity and
capability, e.g., CPU, GPU, disk, RAM, etc., which it reports
to the local cluster orchestrator at registration. If a worker’s
capacity and capability match the service’s SLA constraints,
the cluster orchestrator instructs the worker’s NodeEngine to
deploy the service 7 , triggering a runtime (and network)
instantiation 8 and service execution 9 . Each worker peri-
odically reports its utilization, health of operational services,
and (potential) SLA default alarms to its cluster orchestra-
tor via an MQTT-based intra-cluster control link. Note that
for interconnecting microservices deployed across clusters,
Oakestra does not require workers to have public IP ad-
dresses as the net manager natively supports both direct 11

and tunneled 12 communication (see §3.4 for details).

1-45 3-15 5-9 9-5 15-3 45-1
Cluster-Worker ratio

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

S
ch

ed
ul

in
g

(m
s)

root cluster

Figure 2: Scheduling time for different cluster sizes.

Why hierarchical orchestration? To understand if a hierarchi-
cal management design is inherently better for scalability at
the edge, We created an experimental setup with 45 worker
node VMs in a compute cluster and configured the orchestra-
tion with increasingly different cluster sizes. Starting from
a single cluster with 45 nodes, we gradually increased the
number of clusters up to 45 with only one worker. For each
split, we performed 100 deployments and recorded the time
the root and cluster scheduler took for the scheduling decision
(see fig. 2). Note that the corner cases of the configuration, i.e.,
one cluster with 45 workers (1−45) and 45 clusters with one
worker each (45−1), represent the flat orchestration design
used in majority state-of-the-art, e.g., in Kubernetes-based
solutions. The results indicate that decoupled orchestration
reduces scheduling time, primarily since the infrastructure
search space is a smaller subset. Optimal performance is
achieved when the workers are somewhat balanced across
multiple clusters in the hierarchy, and the minimum is around
nine clusters with five workers. It is apparent (from the 3−15
split) that using a two-layer hierarchy can be advantageous,
especially for wide-scale infrastructure.

3.2 Resource and Service Management

Resource Management. As discussed in §3.1, edge resources
in Oakestra are deployed in distinct clusters, with Ri = {Ri

1,
Ri

2, . . . , Ri
n, Ri

CO} resources in the ith cluster. Here, Ri
CO is

the cluster orchestrator of i-th cluster. Each resource Ri
n peri-

odically pushes its current utilization (U i
n) and other charac-

teristics (e.g. location) to Ri
CO with update frequency λ(Ri

n)
over the intra-cluster communication channel. At each update,
Ri

CO calculates the available capacity of Ri
n by correlating U i

n
to the maximum capacity Ci

n reported at registration. λ(Ri
n)

can be dynamically tuned for each Ri
n to balance between

network overhead and the freshness of the information. We
leave the exploration and impact of λ(Ri

n) algorithms and the
use of techniques such as AoI [62] to future work. Similar to
intra-cluster, the update messages over inter-cluster links are
also push-based. Each cluster orchestrator periodically sends
the aggregate distribution of available current capacity, i.e.
∪(Ai) = ⟨∑(Ai), µ(Ai), σ(Ai)⟩ where Ai = {Ai

1, Ai
2, . . ., Ai

n}
to the root. The aggregation allows different operators to (i)
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c o n s t r a i n t s : [ {
m i c r o s e r v i c e _ i d : { t ype : number } ,
p r o p e r t i e s : [ {

memory : { t ype : i n t e g e r } ,
vcpus : { t ype : i n t e g e r } ,
vgpus : { t ype : i n t e g e r } ,
v t p u s : { t ype : i n t e g e r } ,
b a n d w i d t h _ i n : { t ype : i n t e g e r } ,
l a t e n c y : { t ype : number } ,
a r e a : { t ype : s t r i n g } ,
l o c a t i o n : { t ype : s t r i n g } ,
t h r e s h o l d : { t ype : number } ,
r i g i d n e s s : { t ype : number } ,
c o n v e r g e n c e _ t i m e : { t ype : i n t e g e r } ,
v i r t u a l i z a t i o n : { t ype : s t r i n g } ,
. . . } ] ,

. . . } ]

Schema 1: Service Requirement Descriptor.

participate in the federated infrastructure while obscuring the
minute details of their resources and (ii) freely scale up/down
their cluster density without involving the root.
Service Deployment & Scheduling. Developers can deploy
their (standalone or multi-microservice) applications by spec-
ifying high-level QoS requirements within the SLA descrip-
tion. The deployment descriptor used for submitting applica-
tions to Oakestra is composed of (i) a description of each
microservice of the application (name, namespace, image,
etc.) along with communication interlinks, and (ii) a service
level agreement (SLA) describing the constraints that the plat-
form must respect for each one of them. Schema 1 shows
a fragment of the high-level SLA description supported by
our framework. In addition to operational requirements al-
ready prevalent in cloud environments, such as processing
performance, networking requirements, virtualization needs,
etc., the schema allows developers to specify edge-specific
restrictions, e.g., geographical location, specialized hardware,
etc. Additionally, developers can fine-tune the precision of
scheduling heuristics by enforcing convergence time and deci-
sion rigidness metrics. Convergence time specifies the maxi-
mum allowed time within which the scheduler should find the
suitable edge server that supports the SLA requirements of the
service, and rigidness defines the sensitivity for re-triggering
service scheduling in case the selected resource violates the
SLA (due to environment/infrastructure changes).

As described earlier, Oakestra follows a two-step dele-
gated scheduling mechanism. Specifically, upon receiving
a service deployment request from the developer, the root
scheduler matches the SLA constraints to the current ca-
pacity of each cluster and calculates a priority list of best-fit
clusters based on the latest aggregate cluster usage distribu-
tion. The root then offloads the deployment request (including
SLA and the service) iteratively to cluster orchestrator(s) with
decreasing priority. Upon receiving the request, the cluster
scheduler calculates the optimal service placement within
its cluster, leveraging the available schedulers (see §3.2.1).
Note that we design Oakestra’s scheduling logic to be
language-agnostic – allowing developers/researchers to im-
plement custom algorithms as plugins.

Algorithm 1: Resource-Only Match
Input: An : Information about worker n.

Qτp,i : Requirements of i-th task of p-th service.
f (An,Qτp,i ): Resource selection strategy.

Output: Best worker W to run τp,i.

// Resource selection strategy examples:

// f (An,Qτp,i ) = ∗argmaxn
[
(Acpu

n −Qcpu
τp,i )+(Amem

n −Qmem
τp,i

)

// ∧Qvirt
τp,i
∈ Avirt

n
]

// f (An,Qτp,i ) = ∗ f irstn
[
Qcpu

τp,i ≤ Acpu
n ∧ Qmem

τp,i
≤ Amem

n

// ∧Qvirt
τp,i
∈ Avirt

n
]

1 W ← f (An,Qτp,i )

2 return W

Oakestra’s delegated scheduling significantly reduces the
search space of the multi-objective task placement problem by
considering a subset of resources at each step. In case all mi-
croservices of an application cannot be placed within the same
cluster, the root scheduler iteratively requests other clusters in
the priority list for pending deployment(s). The worker node
engine also keeps track of the deployed services through
their lifecycle (see §3.3). In case of failures (resource – if the
last update from a worker exceeds a threshold; service – if
a worker raises an alarm), the cluster orchestrator marks all
affected services as failed and attempts to re-deploy them on
another suitable resource within the same cluster. If unsuc-
cessful, the rescheduling request is propagated to the root for
system-wide scheduling. Similarly, the cluster orchestrator
can trigger re-deployments if it observes any SLA violations
(exceeding specified rigidity).

3.2.1 Service Schedulers in Oakestra

Let S = {s1,s2, . . . ,s|S|} denote the set of services requested
to be deployed by the developers at the root. Each service
sp ∈ S can be composed of n individual microservices or tasks,
i.e. sp = {τp,1,τp,2, . . . ,τp,n} where τp,i denotes i-th task of
p-th service. Each task τp,i requires a certain capacity (CPU,
GPU, memory), denoted by Qτp,i . Other considerations like
geographical location or virtualization technology, specified
by the developer in the SLA, are also part of Qτp,i . The task of
the scheduling components (in both root and cluster) is to find
a suitable resource in the infrastructure that supports the re-
quirements in Qτp,i . In this work, we propose and incorporate
two different scheduling approaches.

(1) Resource-Only Match (ROM): As the name suggests, in
ROM, the cluster scheduler finds a suitable resource that satis-
fies the service’s capacity requirements (see Algorithm 1).
The scheduling approach is analogous to greedy-fit and
knapsack-based solutions popularly used for placing VMs
on cloud servers in datacenters [63].

(2) Latency & Distance Aware Placement (LDP): LDP
(shown in Algorithm 2) builds on the ROM scheduler but
additionally considers latency and geographical distance con-
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Algorithm 2: Latency & Distance Aware Placement
Input: An : Information about worker n.

Qτp,i : Requirements of i-th task of p-th service.
Output: Best workers W to run τp,i.

1 W ←{n ∈ [1, |A|] |Acpu
n ≥ Qcpu

τp,i ∧Amem
n ≥ Qmem

τp,i
∧ Qvirt

τp,i
∈ Avirt

n }
2 if |Qs2s

τp,i
| ≥ 1 then

3 for Q j in Qs2s
τp,i

do
4 t← Qtrg

j

5 W ←{n ∈W |distgc(A
geo
n ,Ageo

t )≤ Qgeo_thr
j ∧

disteuc(Aviv
n ,Aviv

t )≤ Qviv_thr
j }

6 end
7 end
8 if |Qs2u

τp,i
| ≥ 1 then

9 for Qk in Qs2u
τp,i

do
10 u← Qlat_trg

k
11 rtts←{rtti,u | i ∈ rnd(W ),rtti,u = ping(i,u)}
12 vivaldiNet←{Aviv

n |n ∈ [1, |A|]}
13 U ← trilateration(rtts,vivaldiNet)

14 W ←{n ∈W |distgc(A
geo
n ,Qgeo_trg

k )≤ Qgeo_thr
k ∧

disteuc(Aviv
n ,U)≤ Qlat_thr

k }
15 end
16 end
17 return W

straints for service placement. Since edge applications can be
composed of multiple microservices that can either interact
with each other (in a chain-like fashion) or directly with end
users/devices, we allow the application provider to specify
constraints for both service-to-service (S2S) and service-to-
user (S2U) links. The root scheduler first filters unsuitable
clusters by comparing their resource constraints along with
approximate geographical operation zones to the SLA require-
ments. Within each cluster, the algorithm first creates a list of
candidate workers that satisfy the resource constraints. Then,
for all S2S constraints Qs2s

τp,i
, the algorithm filters out work-

ers that exceed the specified distance Qgeo_thr
j and latency

thresholds Qviv_thr
j to the target service t = Qtrg

j . LDP esti-
mates geographic distance as the great circle distance (distgc)
between the geographic location of worker n (Ageo

n ) and the
location of the target service Ageo

t . The approximated latency
is the Euclidean distance (disteuc) between the location of
worker n (Aviv

n ) and the location of the target service Aviv
t in

the Vivaldi network [25]. Vivaldi is a network coordinate
system embedding networked nodes into a d-dimensional
coordinate system such that the Euclidean distance of two
nodes approximates their round-trip time. If the developer has
specified any S2U constraints Qs2u

τp,i
, LDP measures the round-

trip times (rtts) to the target as Qlat_trg
k from a set of random

workers in the cluster (i ∈ rnd(W )). The measurements ap-
proximate the user’s position within the Vivaldi network via
trilateration. Following that, LDP filters out workers that ex-
ceed the distance threshold Qgeo_thr

k to Qgeo_trg
k or the latency

threshold Qlat_thr
k to the approximated user position U .

Registered Requested Cluster
Scheduled

Worker
Scheduled

Running

Terminated

Failed

Figure 3: Lifecycle of a service’s instance.

3.3 Application Lifecycle
In Oakestra an application is composed of multiple ser-
vices. Each service, in turn, is composed of multiple instances.
Oakestra keeps track of the instances deployed in the plat-
form through a lifecycle state machine (fig. 3). At any point
in time, an instance can have one of the following states.
Registered: The developer has submitted an application and
its SLA (shown in fig. 1). The service manager in the root
saved the service SLA and generated the instance metadata.
Requested: After receiving the deployment command, the
instance is sent to the root scheduler, and the system manager
awaits a suitable cluster. When there is no cluster able to
guarantee the SLA, the deployment cannot be carried out.
Cluster Scheduled: The root scheduler designated a suit-
able cluster. The instance SLA is sent to the corresponding
cluster orchestrator. The cluster orchestrator is now waiting
for the cluster’s scheduler decision. If no worker node is ca-
pable of hosting the instance, the request is sent back to the
root in Requested status.
Worker Scheduled: The cluster scheduler finds a suitable
worker node. The instance binaries (or image download de-
tails) are fetched from the root and transferred to the selected
worker node while the ports for networking are allocated.
Running: The instance is operational as it satisfies the SLA
constraints. The worker periodically tracks the current QoS
and relays it to the cluster orchestrator along with current
utilization in periodic heartbeat update messages.
Terminated: The service is no longer operational due to an
explicit terminate command from the cluster orchestrator
(issued by the developer at the root). Alternatively, the service
gracefully finishes its execution and terminates.
Failed: The service execution has stopped with unexpected
exit status. A service “fails” if the worker node explicitly
reports this state to the cluster orchestrator as a failure alarm
or if the node fails. A resource is considered “failed” if it has
not sent a heartbeat for longer than a pre-defined threshold.

3.4 Service Communication
Supporting intra-service (and service-to-user) networking at
the edge can be challenging since (i) infrastructures are sus-
ceptible to dynamic changes, (ii) application deployment is
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Figure 4: Service communication across edge servers.

fluid to remain close to clients [67], and (iii) several service
instances can coexist simultaneously to achieve broader cov-
erage, therefore addressing and balancing must dynamically
adapt to the service placement. Moreover, it is impractical
to presume that edge servers from multiple participating in-
frastructure operators can interact over a common/public net-
work – an assumption implicit in the majority of existing
solutions [29, 34, 43]. Oakestra includes a component called
NetManager that enables: (a) dynamic routing policies trans-
parently enforced via semantic service addressing to support
load balancing catering to edge environments (§3.4.1) and
(b) transport layer packet tunneling to interconnect services
operating on resources with limited accessibility (§3.4.2).
Oakestra separates the bulk of data-plane complexity from

the control-plane operations at the worker level. Particularly,
the framework utilizes the branches in the multi-tier edge
hierarchy only for core control-plane information propaga-
tion (e.g., routing updates, service/hardware utilization, and
failures, etc.) and designates data-plane communication man-
agement to leaf workers using the NetManager component.
Figure 4 shows the cross-section of NetManager with com-
munication between services A and B deployed on workers
1 and 2, respectively. The proxyTUN actively maintains and
dynamically adjusts endpoints of the tunneled connections
to adapt to infrastructure changes, ensuring uninterrupted
communication between services. Arguably, the proposed ap-
proach resembles some sidecar proxy solutions like Istio [3].
While the set of proposed functionalities might be similar,
the NetManager does not need to deploy a sidecar along with
each deployed application. While the design of solutions like
Istio fits the abundance of resources in the cloud context, we
propose a lightweight approach with a worker-level proxy
used by all the applications, like the native Kubernetes net-
work but featuring additional balancing flexibility and site-to-
site tunneling out-of-the-box.

3.4.1 Service Naming and Addressing

Drawing inspiration from semantic routing [39], a serviceIP
addresses all the instances of the service according to different

balancing policies (e.g. round-robin, closest, etc.). For exam-
ple, in fig. 4, worker 1 maintains the ServiceA’s closest and
round-robin serviceIPs – allowing services to select bal-
anced instances through IP addresses. Note that the serviceIP
is different from the host IP address as the former is ephemeral
and addresses service instances (similar to ClusterIP in Kuber-
netes [34]). When receiving a packet to an address belonging
to the load-balanced serviceIP, the ProxyTUN uses the con-
version table to get the corresponding Instance IP. If no
conversion entry is found, the NetManager registers an in-
terest in that route and enquires the cluster component (see
10 in fig. 1). If the cluster orchestrator does not contain the
information, the interest registration is propagated to the root.
The root either knows the service route or the service does
not exist at all, and no route can be propagated. The interest
registration also allows the worker to receive future updates
regarding the route. When a route is not used, the conversion
entry is erased, and the interest is deregistered.

If properly configured, services can use DNS-based naming
schemes which resolve to a serviceIP using a mDNS [57]. We
envision a service naming schema that reflects the hierarchy
<instance_number>.<routing_policy>.<service_
name>.<service_namespace>.<app_name>.<app_
namespace>. The app name and namespace portion of the
domain is provided by the developer to uniquely address the
application (e.g. videoAnalytics.org). The service name and
namespace address different microservices in the application
(e.g. ServiceA.default, ServiceB.default, etc.) while the
instance number uniquely distinguishes individual service
replicas. In case the developer does not care about connecting
to a specific instance of the service, <instance_number>
can be set to “any”. The unique aspect of the proposed service
naming is the routing_policy, as it allows developers
to offload connection endpoint selection to Oakestra
based on the current deployment state. For example, the
“closest” policy resolves to serviceIP address representing
the nearest service instance while “round-robin” balances
connection load across multiple instances. Following the
example of fig. 4, suppose ServiceA must send a request to
the closest instance of ServiceB. The request can either be
addressed using the semantic IPv4 address representing the
closest routing policy, therefore 172.30.0.3, or the name
any.closest.ServiceB.default.videoAnalytics.org.
The ProxyTUN component will convert the given semantic
address to and instance address that represents the chosen
instance accordingly to the balancing policy. It will then
proceed tunneling the packet towards the destination.

The reachability of the services managed by Oakestra
from external users can be achieved with standard DNS and
API getaway solutions. For future extensions of this work, we
are investigating techniques that can support client mobility
and dynamicity of the endpoints for first-mile computation
and fast handovers. In fact, traditional cloud solutions in edge
contexts lead to frequent DNS resolutions and a lack of sup-
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port for the discovery of services in close user proximity.

3.4.2 Connection proxying and tunneling

Oakestra enables inter-service communication across work-
ers in different clusters with limited available ports (e.g. be-
hind firewalls) through UDP tunneling. We can again refer
to the example shown in fig. 4, where ServiceA on worker
1 needs to communicate with ServiceB on worker 2. Every
packet sent from ServiceA to ServiceB is handled by the prox-
yTun attached to a virtual bridge in worker 1. The proxyTUN
component resolves the serviceIP of the destination ServiceB,
selecting the Instance IP accordingly to the balancing policy
enforced. If no resolution entry is found, the worker node
subscribes to the updates regarding this route to the cluster
orchestrator. The resolution entries for a service include a list
of the available service instances, their respective IP addresses
assigned from each local worker’s subnetwork (Instance IPs),
and each one of the destination worker’s address and port that
should be used for the tunneling. The tunneling is performed
at L4 using UDP. The L4 implementation allows to transpar-
ently support all transport protocols (TCP/UDP/QUIC) out
of the box. The only requirement in order to support nodes
behind NATs and firewalls is to provide a port for the site-
to-site tunneling. An open tunnel (i, j) connecting node i to
node j for performance reasons is recycled for all the traffic
of all the services communicating with instances belonging
to those workers. Therefore, each node only has one ingress
tunnel and k egress tunnels, one for each of the workers it’s
currently exchanging traffic with. To support router configu-
rations without any open incoming ports we envision, in the
future, allowing service’s connections to transit via the cluster
orchestrator. In this case, the service manager acts as a VPN
server that tunnels the traffic between worker nodes.

If the NetManager cannot forward a message (e.g., due to
out-of-date information), the route is immediately deleted,
and a route refresh is performed. This mechanism avoids
imposing a strong consistency requirement on the worker’s
caches. While this approach might miss the best balancing op-
tion when a route update is still propagating asynchronously,
it reduces the synchronization effort and, thus, overhead.

We note that by assigning the majority of networking com-
plexity to the worker node, Oakestra dramatically reduces
the overhead of orchestration machines. The service manager
sends only the most relevant routes for each service (accord-
ing to an internal worker-wise priority list) to increase the
scalability and avoid further congestion on the workers. The
inherent decentralized networking design of Oakestra is also
tolerant towards infrastructure failures. For instance, coupled
microservices will continue to communicate with each other
even if the cluster (and root) orchestrator becomes unavail-
able – as long as the host worker node is operational and the
endpoints do not migrate (to a different cluster).

3.5 Fault Tolerance.

We now explore the different possible failure cases and how
Oakestra manages them. While Oakestra decouples the
two-tier master-worker orchestration design, prevalent in pop-
ular frameworks, in a hierarchical three-tier infrastructure, it
is still dependent on the root, which may appear as a central
point of failure. In case the root orchestrator fails, the plat-
form is unable to register new applications as well as schedule
new instances to new clusters. Applications that are already
part of a cluster can locally replicate, scale, and migrate. The
networking is partially affected by root failure since existing
tunnels and communication will continue to work, but new
inter-cluster links require the root network component for the
setup process. Each cluster’s aggregated information cannot
be propagated, but it will be stored until the root is back online.
Since the root is likely to be deployed in the cloud to maxi-
mize reachability, it is less frequently affected by failures due
to hardware issues. Moreover, in such contexts, traditional
redundancy and failover mechanisms can potentially be im-
plemented with redundant replicas, synchronized key-value
stores, and L7 load balancing to properly route the cluster’s
traffic to the active root instance.

A cluster orchestrator failure does not affect other clus-
ters’ activities. As soon as a cluster stops responding, the
root marks the applications deployed within that cluster as
failed and attempts to replicate the existing workload to new
suitable clusters. The worker nodes will not be able to update
their status on the failed cluster orchestrator, but the appli-
cations will remain operational. The root will then schedule
new backup application replicas in the remaining clusters, and
the network routes will reactively change toward the newly
managed instances. Worker node failures may be frequent and
expected at the edge; for this reason, the workloads deployed
on a failed node are immediately rescheduled. The network
automatically adjusts and balances the traffic to the active
instances disregarding the unreachable ones. The cluster or-
chestrator discontinues aggregating failed node’s resources
from the cluster’s pool in further updates.

In addition to the current fault tolerance strategies and as-
sumptions, in future extensions, we envision having multiple
replicas of the orchestrator components that coarsely stay
in sync with the primary (similar to the multi-master setup
in Kubernetes) and/or a leader election strategy to react to
control plane failures. Moreover, we intend to explore the
orchestration problem in contexts where byzantine behaviors
can be expected at both worker and cluster levels.

4 Implementation

We implement Oakestra and its components (fig. 1) with
constraints of heterogeneous edge infrastructures in mind.
The implementation, spanning 18000 LOC, is modular, ex-
tensible, lightweight and open-source [52]. As we show later,
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Oakestra can support production-ready applications at the
edge much more effectively than the state-of-the-art.

Root and cluster orchestrators are implemented using
Python in a similar structure owing to their architectural simi-
larities. The schedulers, system/cluster manager and service
manager are implemented as independent micro-services. The
database is implemented as two separate instances of mon-
goDB [5], one for the service manager and one for the system/-
cluster manager. The implementation does not force strong
consistency in cluster’s or root’s data structures. They update
asynchronously, improving the overall system’s scalability –
at the cost of occasionally dealing with application reschedul-
ing. The scheduler microservice uses a celery task queue [1]
to pull the incoming tasks and find the best placement asyn-
chronously. Scheduling policies are described in Python but
are designed to be language-agnostic. The system and cluster
managers communicate with the database services and the
service manager via REST APIs. The external root APIs for
the infrastructure providers and application developers are
implemented according to the Open API Specification [7]
and authenticated using JWT tokens [4]. Inter-cluster links
are RESTful APIs as well while the intra-cluster control links
are implemented using MQTT. With a Mosquitto broker [6]
hosted at each cluster orchestrator, a worker can subscribe
to network routes updates, and publish internal resource con-
sumption and task status. We also provide an Angular web-
based frontend attached to the root that can be used by the
developers to facilitate (i) creation of applications and de-
scribing the services graphically, (ii) monitor each service
instance’s status and position (fig. 13b), and (iii) scale the
services up and down (see Appendix A).

The NodeEngine component as well as the NetManager
are implemented as independent services using GoLang to
ensure low footprint and maximum support to many exe-
cution run-times SDKs. The container’s execution runtime
is supported with the integration of containerd [2]. Uniker-
nel [40, 44] support is currently under development with
QEMU [8] virtualization. The runtime selector is designed
to be extended to support even more virtualization technolo-
gies in the future, e.g. microVM [11]. The NetManager com-
ponent uses native Linux virtual network interfaces to cre-
ate a bridge connected via veth pairs with the TUN inter-
face (namely proxyTUN) and the service’s network names-
pace. The NetManager minimizes system context changes
and makes extensive use of Goroutines pools to resolve
the incoming traffic with high parallelism. The semantic ad-
dresses are reserved from a pre-defined 10.30.0.0/16 sub-
network. The traffic belonging to the semantic sub-network
is forwarded to proxyTUN.

5 Evaluation

This section focuses on evaluating Oakestra as compared to
the state-of-the-art on edge infrastructures and constrained

devices. We use two different testbeds for our evaluation. The
High-Performance Computing (HPC) testbed is a large, con-
trolled, x86 processor-based cluster, in which we use S, M,
L, XL VMs with <1,1>, <2,2>, <4,4> and <8,8> <CPU
core,RAM (GB)> configurations, respectively. We use this
cluster to flexibly spawn resources and emulate a hetero-
geneous infrastructure. Our Heterogeneous (HET) testbed
is a local cluster composed of Raspberry Pis [33], Intel
NUCs [36], mini-desktops, and Jetson Xavier [50] – rep-
resenting different edge computing flavors [68]. The HPC
cluster is interconnected by 1 Gbps Ethernet, while HET ma-
chines connect over Wi-Fi 802.11ac and 1 Gbps Ethernet links.
We attempted to compare Oakestra against popular orches-
tration frameworks. However, despite careful management,
KubeFed [35], KubeEdge [19], ioFog [31] and Fog05 [30]
experience frequent failures, possibly because they are (i) in
early development stages or (ii) not optimized for constrained
hardware. Moreover, we could not locate OneEdge’s source
code [60], which is the only framework architecturally simi-
lar to Oakestra. As a result, we compare Oakestra against
Kubernetes (K8s) [34] and its two lightweight derivatives, Mi-
croK8s [43] and K3s [29]. All selected frameworks are widely
used and have been considered for use with the edge [15,37].
We use two application workloads, (i) an Nginx web server
allowing us to control the operational load dynamically, and
(ii) a video analytics application from [13]. The latter is com-
posed of four microservices. The source sends a pre-recorded
RTP stream [17], aggregation stitches and pre-processes each
frame, detection uses YOLOv3 to detect objects, and track-
ing tracks objects across frames. To remain comparable with
the “kube” frameworks, we operate Oakestra in standalone
mode, i.e., all workers are deployed within the same cluster.
We perform 10 runs for each experiment and clean intermedi-
ary files between runs.

5.1 Service Deployment

Figure 5a compares the time taken by each framework to
deploy a containerized application on the infrastructure. For
this experiment, we configure an XL VM as root, an L VM
as cluster orchestrator in Oakestra (and master for others),
and S VMs as workers. Oakestra uses the ROM scheduler,
which is comparable to the default scheduling policy of the
competitors [32]. We increase the cluster size from 2 to 10
workers and measure scheduling overheads by toggling its
operation, shown with s (with scheduler) and ns (no sched-
uler). MicroK8s performs significantly worse (≈ 10× slower)
than Oakestra, degrading further with increasing infrastruc-
ture size. As also noticed in [15], microK8s might easily lead
to higher resource usage and generally slower performance.
We attribute it to (i) snap, which brings extra virtualization
overhead, and (ii) microk8s being optimized for single-node
deployments. Kubernetes is 2–3× slower than Oakestra. Its
scheduling operation adds almost negligible overhead – this

USENIX Association 2023 USENIX Annual Technical Conference    223



2-workers 6-workers 10-workers
0

20

40

60

T
im

e
(s

)

Oakestra-[ns]
Oakestra-[s]
K3s-[ns]
K3s-[s]

K8s-[ns]
K8s-[s]
MicroK8s-[ns]
MicroK8s-[s]

(a) Deployment time

worker
0
8

16
24
32
40
48
56

C
P

U
(%

)

2-workers 6-workers 10-workers
master

0
4
8

12
16
20
24

Oakestra K3s K8s MicroK8s

(b) CPU utilization

Figure 5: Performance comparison for different infrastructure sizes.

0 25 50 75 100
# Services Worker

0

25

50

75

100

C
P

U
(%

)

0 250 500 750 1000
# Services Cluster

K3s
Oakestra

Figure 6: CPU usage of worker & cluster
orch. in stress (line=median).

10 50 100 250
Network Delay (ms)

0.00

0.25

0.50

0.75

1.00

1.25

D
ep

lo
ym

en
t

T
im

e
∆

(s
) K3s

Oakestra

Figure 7: Deployment time
with network delay.

Oakestra K3s K8s MicroK8s
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

R
T

T
(m

s)

2 worker 10 worker

Figure 8: End-to-end latency

result is in line with other recent explorations [15]. One of the
reasons why K3s has been generally considered lightweight
is its single binary executable that also reduces the internal
overhead and synchronization time. This approach, used by
Oakestra as well, resulted in a comparable deployment time.

Repeating the experiment in our HET testbed, we intro-
duced increasing networking delay using tc on the network
interface to highlight the overhead due to master-worker syn-
chronization. In fig. 7, we observe that Oakestra’s deploy-
ment times improve over K3s by a ≈ 20% margin in high de-
lay networks (common for wireless last-mile [22,26,46]). The
behavior is similar for lossy networks as Oakestra achieved
≈ 50% and 60% deployment time reduction with 20% and
50% losses, respectively (not shown for brevity). The even-
tual consistent store of Oakestra allows the platform to asyn-
chronously manage the deployment with reduced network
traffic. As shown later in §5.5, “kube” orchestrators send ≈
2× more control messages (from both worker and master) on
average – hinting at the cause of their degradation to aggra-
vating network conditions. Experiments on the HET cluster
typically yielded better results than those on HPC. This is
because a more powerful (yet still limited) Raspberry Pi 4
was used as the target device in HET, as opposed to the size S
worker nodes utilized in HPC.

5.2 Scalability

First, we analyze the idle resource consumption of each frame-
work to estimate the baseline overhead. Lower overhead at
the worker indicates a platform’s capability to operate on

constrained devices. In comparison, lower overhead at the
master (at different infrastructure sizes) highlights its ability
to handle scale (fig. 5b). We observe that within the cho-
sen competitors, K8s is the one that better handles cluster
scalability at the masters, showing no noticeable increase in
CPU usage. Meanwhile, K3s and MicroK8s masters show a
lower average CPU usage than k8s in two-worker setup but
much worse degradation in 6 and 10 workers clusters. At the
worker level, k3s is almost 50% faster than K8s. MicroK8s
exhibits, again, a higher footprint. We attribute this to the
same motivations expressed in §5.1. Due to its asynchronous
pub-sub communication and its cluster resource aggregation
mechanism, Oakestra achieves ≈ 6× and 11× reduction in
CPU on the workers and master, respectively. Particularly, an
Oakestra worker only maintains an MQTT connection to
the cluster’s broker to periodically report the device resource
usage. The orchestrator, subscribed to worker resource topics,
only updates the internal database with the latest worker uti-
lization information. Compared to k8s, Oakestra maintains
a considerably reduced duty cycle while idling.

Since K3s comes closest to Oakestra at the worker’s level,
we perform a stress test comparing both for increasing ser-
vice deployments. Figure 6 compares the CPU consumption
as we increasingly schedule up to 100 Nginx containers on
each worker in a 10 node cluster (totaling 1000 containers in
the cluster). The left and the right half show the worker and
cluster orchestrator (or K3s master) utilization, respectively.
Oakestra sees negligible overhead performing ≈ 10–20%
better than K3s – demonstrating its efficacy to support large
service volumes. Oakestra’s average cluster CPU usage in-
creases by less than 1% during the experiment since each
node piggybacks the service status onto the internal resource
consumption updates, lowering network usage and processing
cycles at the orchestrator. Similarly, Oakestra shows signif-
icant operational advantages for constrained worker nodes.
While K3s exhausted the worker’s CPU at ≈ 40 services,
Oakestra deployed the 100 services with a 30% average
CPU surplus. Memory utilization showed a similar trend as
Oakestra achieved ≈ 18% and ≈ 33% reduction to K3s in
worker and master, respectively (not shown).
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5.3 Networking

We evaluate the round-robin balancing policy of the network-
ing scheme presented in §3.4 against the native balanced
cluster IP of K3s, K8s, and MicroK8s. First, in a 2-worker
setup, we deploy a Python client on the first worker and an Ng-
inx server on the second worker. We then scale the number of
workers to 10 and deploy one client and 9 Nginx servers, one
on each worker node. The client performs continuous GET
requests using a round robin service IP on Oakestra and
a cluster IP on the kube family with a statically configured
round robin policy. Figure 8 shows the average round-trip
latency between the client and the closest server. On average,
K3s performs better in a 1-to-1 (2 workers) setting (10–20%
improvement), while Kubernetes and MicroK8s perform 17%
and 30% slower. All competitors’ load balancing is signifi-
cantly worse than Oakestra in multiple replica settings, re-
sulting in ≈ 15 up to 35% RTT inflation. The results show
the benefits and overhead of the proposed addressing scheme.
Oakestra performs proxying and site-to-site tunneling for ev-
ery packet, even in a simple setup with just one client and one
server, slightly increasing the overhead even in LAN setups,
like the experiment above. On the other hand, this abstrac-
tion brings benefits when scaling up the system, introducing
minimal additional overhead while balancing with more repli-
cas and outperforming the other systems. In the future, we
plan to optimize the 1-to-1 scenario by temporarily disabling
the proxy and utilizing VXLAN-based solutions for nodes
belonging to the same network.

We evaluated the impact of Oakestra’s tunneling on the
bandwidth. While the proposed network component is mainly
designed to implement semantic addressing, it can also tunnel
the traffic between nodes on different networks. For this rea-
son, we test the impact on the bandwidth by comparing it with
WireGuard [27] – an open-source tunneling solution used by
most frameworks. We emulate the network inconsistencies
at the edge [46] by gradually increasing the delay between
the client and the servers from 10 to 250 ms. Figure 12 com-
pares the time to download a 100 MB file over HTTP using
both approaches. We find that, even in high-delay networks,
Oakestra is always within the competitive range (2-10%) of
WireGuard. We consider this a promising result given that
the proposed networking component performs proxying on
top of the “simple” tunneling operations of WireGuard.

5.4 Scheduler Performance

This section shows a preliminary evaluation of ROM and LDP
schedulers. Figure 10 depicts both schedulers’ performance
in a simulated infrastructure with up to 500 edge servers (vir-
tually configured in HPC). We use network latencies between
edge servers within 10–250 ms, a typical latency range be-
tween users and datacenters globally [21]. We instruct the
schedulers (via the SLA) to find workers that satisfy 1 CPU,
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100 MB memory, ≈ 20 ms latency (usual for immersive edge
applications [46]), and 120 km operational distance. Since
ROM only performs a best-fit match for computational re-
quirements, its calculation time does not increase significantly
while increasing the number of workers. LDP’s calculation
time grows increasingly with infrastructure size. However,
LDP can effectively support latency-based constraints since it
usually satisfies the RTT thresholds even in large edge infras-
tructures, which implies that the search space increases with
the number of nodes. We leave a detailed comparison of differ-
ent scheduling algorithms to future work as their performance
is not the focal point of this paper.

5.5 Control Communication Overhead

Figure 11 shows a comparison between the number of ex-
changed control messages of Oakestra and K3s. First, we
compare the K3s master and Oakestra’s cluster orchestrator
for an apples-to-apples comparison. Then, we compare the
control messages exchanged at the worker level. We record the
network messages using the strace. Since K3s is a derivative
of Kubernetes, they both use similar control communication.
Both Oakestra and K3s workers send periodic updates to
the master and receive control commands in return. However,
the number of control messages ingress/egress on K3s far
exceeds Oakestra (≈ 2×). These results help explain the
observations presented in fig. 7. Moreover, a larger amount of
control traffic also influences the time needed to synchronize
the infrastructure and perform a deployment. Specifically,
the master of “kube” based frameworks sends frequent mes-
sages to the workers, including specification of the pods to
be attached to the workers, liveness checks, etc., requiring
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information/acknowledgment in return. The control commu-
nication of Oakestra, on the other hand, is simplified to send
periodical aggregated service information from the worker
over MQTT messages and keep a minimal footprint. It must
be considered that Oakestra still does not provide the guar-
antees of a production-ready platform. Increasing the mon-
itoring capacity and the update frequency will result in an
increase of control traffic. We, therefore, plan on improving
the control message communication channel in the future
by dynamically tuning the update frequency depending on
network conditions.

5.6 Video Analytics Application
We deploy the four microservices composing the video ana-
lytics pipeline described earlier on four S VMs in the HPC
testbed. The provisioned resources do not support GPU accel-
eration and are single-core machines; therefore, the resulting
FPS output is expected to be low. This setup is supposed to
stress the platforms into executing this relatively heavy work-
load on extremely constrained resources. Both K8s and Mi-
croK8s could not support the application since their orchestra-
tion components consumed most of the hardware capacity. As
a result, we compare application performance over Oakestra,
K3s, and without orchestration (native), with native acting as
baseline (see fig. 9). Oakestra and K3s exhibit similar per-
formance for object tracking, taking ≈ 300-400 ms. However,
due to its minimal footprint Oakestra significantly outper-
forms K3s for supporting the more resource-demanding ob-
ject detection service, achieving results closer to the baseline.
Overall, application performance over Oakestra exceeded
K3s by almost 10%. We omit our HET testbed results since
they performed similarly to HPC.

6 Conclusion

We presented Oakestra, a flexible hierarchical orchestration
framework designed for heterogeneous and constrained edge
computing infrastructures. With its logical management hier-
archy, Oakestra can sustain a high degree of context separa-
tion at scale. The delegated service scheduling of Oakestra

reduces the task placement complexity and allows the frame-
work to dynamically adjust to infrastructure changes irre-
spective of the scale. Furthermore, the proposed networking
component enables developers to seamlessly and dynamically
adjust the balancing policy with minimal overhead while na-
tively being able to cross different networking boundaries.
The lightweight implementation of Oakestra allows it to eas-
ily manage constrained resources likely to operate as “edge
servers”. In such contexts Oakestra superseded the perfor-
mance of popular production frameworks (Kubernetes and its
derivatives), achieving ≈ 10× resource usage reduction and
10% application performance improvement.

We plan to add several feature extensions to Oakestra. For
example, we aim to dynamically assign the cluster orches-
trator role upon failovers via distributed leader election. We
also intend to extend the scheduling and networking capabili-
ties of Oakestra with recent research solutions for the edge,
e.g. deadline-aware scheduling, multi-level tunneling, etc. To
provide better QoS guarantees, we also aim to support and
compare more recent application runtimes such as unikernels,
demikernels, or Akka. Finally, we also seek to explore the pos-
sibility to incorporate Kubernetes deployments as Oakestra’s
clusters to achieve integration for existing cloud deployments.
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A Oakestra Frontend

Oakestra also provides a front-end application that can be
used by the developers to create applications and describe
the services composing them graphically. A developer can
generate the SLA of each microservice through a form. Then,
the services connections can be specified using the connection
graph (fig. 13a). This graph allows developers to interconnect
the services and specify their latency requirements. Once
the connection graph is complete, the developer can ask the
infrastructure to schedule the desired application. Via the
interface, the developer can check each service instance’s
status and position (fig. 13b); they can also scale the services
up, down, or terminate them.

B Artifact Appendix

Abstract
Oakestra is an open-source project with all components
publicly available on GitHub at https://github.com/
oakestra. To ensure the reproducibility of the experiments
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(a) Service connection graph

(b) Deployment monitoring interface

Figure 13: Oakestra web-based front-end application

conducted within this paper, we fork our project repositories
at [54] and [55]. Additionally, we also provide a comprehen-
sive README, which includes a get-started guide, that can
be used for recreating our setup, experiments and familiariz-
ing with the Oakestra platform [53].

Scope
The proposed artifacts represents a snapshot of the project that
aligns with the paper. The proposed artifacts enable replicat-
ing the performance results of Oakestra as shown in section
§5. However, if the reader is planning to use the latest version
of the platform and utilize Oakestra’s latest functionalities,
we recommend exploring the official website and repository
instead.

Contents
Figure 14 shows how the components introduced in §3 can
be related to the github repositories. Specifically, the source
code, the release binaries and container images are split into
the repositories as follows:

• oakestra/oakestra [54]: This repository contains
the Root & Cluster orchestrators folders, as well

Root Scheduler
System
Manager

Root Database

Root Orchestrator

Cluster
Manager

Cluster Scheduler

Cluster Database

Node
Engine

amd64

Worker 1

Service
Manager

Service
Manager

Web Frontend

Net
Manager

Execution
Runtime

Cluster Orchestrator

Cluster 1

oakestra/oakestra-net oakestra/oakestra oakestra/dashboard
(optional)

Figure 14: Summary of how the components are split across
the repositories

as the Node Engine source code for the worker
node. Inside the root orchestrator folder, the folders
system-manager-python/ and cloud_scheduler/
contain the System Manager and the Cloud Sched-
uler source code, respectively. Similarly, the Clus-
ter Orchestrator folder includes the source of the
cluster-manager/ and the cluster-scheduler/. Fi-
nally, go-node-engine/ contains the implementation
of the Node Engine.

• oakestra/oakestra-net [55]: This repository con-
tains the Root, Cluster, and Worker network compo-
nents. Note that the networking stack is not mandatory in
Oakestra. Without oakestra-net, the developer can
deploy applications on the infrastructure, but the appli-
cations will not be able able to carry out network-related
tasks. Since our experiments utilize network-capable ap-
plications, our experiment’s README provides detailed
instructions regarding the installation of these compo-
nents.

• experiments [53]: To replicate the experiments, we
provide an Experiments/ folder that includes the setup
instructions to create your first Oakestra infrastructure
and a set of scripts to automate the results collection
procedure once the infrastructure is set up as shown in
Table 1.

Requirements

We recommend the following minimum requirements for each
Oakestra component.

1. Root Orchestrator: 2GB of RAM, 2 Core CPU, ARM64
or AMD64 architecture, 10GB disk, docker compose in-
stalled. Tested OS: Ubuntu 20.20, Windows 10, MacOS
Monterey.
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Folder Description

Test 1 Deployment overhead calculation (figs. 5 and 7)
Test 2 Network overhead measurements (fig. 8)
Test 3 Bandwidth measurements (fig. 12)
Test 4 Control message measurements (fig. 11)
Test 5 Scalability stress test experiments (fig. 6)
Test 6 AR pipeline experiments (fig. 9)

Table 1: Experiments test folders

2. Cluster Orchestrator: 2GB of RAM, 2 Core CPU,
ARM64 or AMD64 architecture, 5GB disk. Tested OS:
Ubuntu 20.20, Windows 10, MacOS Monterey.

3. Worker Node: Linux Machine, 1 Core CPU, ARM64 or
AMD64 architecture, 2GB disk, iptables utility.

Beyond the Paper
The AE repository only contains the performance evaluation
of Oakestra. In addition to this appendix and the repo, the
Oakestra project provides extensive documentation [56] on
how to use Oakestra in a variety of infrastructure configu-
rations and applications. In addition, interested researchers
are welcome to join the community via GitHub [52] or Dis-
cord [51].
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Abstract
In distributed storage systems, the ability to recover from
failures is critical for ensuring reliability. To improve recovery
speed, these systems often distribute the recovery task across
multiple disks and recover data units in parallel. However, the
use of fine-grained data units for better load balancing can
increase the risk of data loss.

This paper systematically analyzes the recovery load dis-
tribution problem and proposes a new data placement algo-
rithm that can achieve load balancing without employing fine-
grained data units. The problem of finding an optimal data
placement for recovery load balancing is formally defined and
shown to be NP-hard. A greedy data placement algorithm is
presented, and experimental results demonstrate its superior
performance compared to conventional techniques, with up to
2.4 times faster recovery. Furthermore, the algorithm supports
low-overhead system expansion.

1 Introduction
In distributed storage systems, data is divided into smaller
units called data units, which are grouped together in a place-
ment group for reliability. For example, Google File System
(GFS) [6] uses 64MB chunks as data units and replicates each
chunk three times to form a placement group. The technique
of erasure coding [7, 14, 18] can be utilized to calculate the
parity of data units that have been grouped together to form a
placement group, thereby providing another method for data
reliability. If a single node fails in the storage system, the lost
data units on that node must be repaired and distributed to
other nodes, a process known as recovery. In this context, the
term node is used to refer to an entity within the distributed
system, which can be either a whole server or a single disk.
Since there are many data units on a single node and different
data units on the same node may belong to different place-
ment groups, these storage systems can perform recovery in
parallel, improving recovery speed [12, 13, 21]. Parallelized
recovery has the potential to increase recovery speed so that
it is limited by the cluster’s bandwidth rather than the band-
width of an individual node, improving the overall reliability
of the storage system.

However, parallelized recovery does not necessarily imply
faster recovery. An imbalance in the distribution of recovery
load among various nodes can lead to congestion in certain
nodes and prolonged recovery times. Imbalanced recovery

loads can also negatively impact the performance of certain
nodes, as they may have to devote a significant amount of
their bandwidth to recovery.

To address these issues, distributed storage systems of-
ten employ fine-grained data units to balance the recovery
load [6, 20]. By distributing a sufficient number of data units
across various nodes, the recovery load can be evenly dis-
tributed through randomization [13]. However, this approach
to fine-grained recovery, while effective in load balancing,
also increases the risk that any placement group in the cluster
fails [1–4, 9, 22]. Furthermore, the utilization of fine-grained
data units can result in an uptick in overhead for the manage-
ment of metadata.

This paper presents a novel data placement algorithm de-
signed to achieve a more balanced recovery performance
without the need for fine-grained data units. Data placement,
which refers to the mapping of data units to disks, is chal-
lenging to design as it impacts data distribution and system
scaling. Therefore, an effective data placement algorithm that
can balance the recovery load should not have any negative
impact on these perspectives.

To create a data placement algorithm for balancing the
recovery load, this paper begins by formally defining the opti-
mal recovery load distribution problem as selecting a set of
nodes to minimize the weight of the edge with the highest
weight in the recovery load graph. We then prove that this
problem is NP-hard by showing that it can be transformed
into a maximum independent set problem in polynomial time.

The paper then proposes a data placement algorithm based
on a greedy strategy that is able to compute a more balanced
data placement for recovery load distribution. The algorithm
also supports low-overhead system expansion. Experiments
demonstrate that the use of this data placement algorithm can
improve the storage system’s recovery performance by 1.7-2.4
times compared to the original data placement algorithm.

The contributions of this paper include:

• We formally define the optimal recovery load distribu-
tion problem. Following this, the paper proves that the
problem is NP-hard.

• We propose a greedy data placement algorithm for ef-
ficient recovery. It is experimentally demonstrated that
the algorithm is able to provide a more balanced recov-
ery load distribution. The algorithm can support low-
overhead system expansion.
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2 Problem Definition and Analysis

2.1 Repair Load Matrix
The utilization of both replication and erasure coding tech-
niques serves as a means to guarantee reliability in data stor-
age systems. Various erasure codes exist, each having dis-
tinct read patterns. For instance, LRC (Local Reconstruction
Codes) [7] utilize a minimal number of nodes for repair, while
regenerating codes [5, 18] necessitate the read of data from a
larger number of nodes but only a fraction of the information
from each node. To harmonize these techniques, the repair
load matrix is employed as a means to describe the repair
process for both replication and erasure coding.

The repair load matrix is a matrix that represents the cost
required to repair a failed node. In scenarios where I/O is
the system bottleneck, the cost typically refers to I/O ex-
penses, and nodes are often interpreted as individual disks.
Conversely, when network bandwidth is the system’s bottle-
neck, the cost usually denotes network expenditures, with
nodes commonly referring to whole servers.

Let us denote the cardinality of a placement group as n.
Correspondingly, the repair load matrix is represented by an
n×n matrix W . The element Wi, j within this matrix signifies
the cost incurred to retrieve data from the jth node in the
placement group when the ith node within the same group
encounters a failure. For example, the repair load matrix for a
(k = 3,r = 1) Reed-Solomon (RS) code [14] is given below,
and it shows that when any node fails, data needs to be read
from all other nodes, and the cost of reading data from any
other node is 1.

W =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


In the context of an RS code where the redundancy param-

eter r is greater than 1, there exists a multitude of plausible
options for the repair load matrix W . This is contingent upon
which nodes are selected for data reading during the recovery
process. Any such selection can appropriately serve as the
repair load matrix for the system.

For a (k = 4,r = 2, l = 2) LRC code, the repair load matrix
can be written as

W =



0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 1 0 1 0 0
0 0 0 1 1 0 0 0
1 1 0 1 1 0 0 0
1 1 0 1 1 0 0 0


In this matrix, when repairing a data node or local parity

node, the LRC needs to read data from k
l nodes in the same

group in order to reconstruct the original data. When a global
parity node requires repair, the LRC must read all data nodes’
contents.

2.2 Recovery Load Graph
The repair load matrix defines the repair process for a sin-
gle placement group within a distributed storage system. In
contrast, the recovery load graph (or recovery load matrix)
characterizes the recovery load on each node in the event of
a failure within the system. This is achieved by summing
the repair load for each placement group. The recovery load
graph is defined mathematically as follows:

Definition 1 (Recovery Load Graph). Let W be the repair
load matrix defined above. Suppose there are N nodes in
the storage system, and the storage system has S placement
groups, denoted P1,P2, . . . ,PS. Each placement group Pi is
an array with length n, where each value, denoted by Pi,k,
represents a node id. If Pt,k = i, then we define Index(Pt , i)= k.
The recovery load graph corresponding to this storage system
is G = (V,E), where V is the set of points in the graph with
cardinality N, representing the nodes in the system, and E is
the set of edges in the graph. Let Ei, j denote the edge weight
between node i and node j, representing the load of reading
data from node j when node i fails. Let [i ∈ P] return 1 if i ∈ P
and 0 otherwise. The edge weight is calculated as follows:

Ei, j =
S

∑
t=1

[i ∈ Pt ] · [ j ∈ Pt ] ·WIndex(Pt ,i),Index(Pt , j) (1)

……

Figure 1: Recover Load Graph

2.3 Optimal Recovery Load Distribution
In this paper, we consider a system in which each placement
group comprises an equal quantity of data. Placement groups
that are not at capacity, as they consume a minimal amount of
storage space, are disregarded. Upon the arrival of new data,
the system must determine an appropriate placement group to
accommodate it. The objective is to minimize the imbalanced
recovery load upon the addition of a new placement group to
the system. An alternative approach to this problem would be
to determine the optimal recovery load distribution by con-
sidering all placement groups simultaneously, as opposed to
incrementally identifying a single placement group. However,
such an approach may significantly restrict the system’s abil-
ity to add or remove a node, as it is hard to predict these events
in advance.

234    2023 USENIX Annual Technical Conference USENIX Association



An optimal distribution of recovery loads should strive to
minimize the maximum recovery load after the integration of
a new placement group. The definition of the optimal recovery
load distribution problem is given below:

Definition 2 (Optimal Recovery Load Distribution Problem).
Given a recovery load graph G = (V,E), the optimal recov-
ery load distribution problem is to construct an array P of
length n such that all its elements belong to V , and the cor-
responding set of edges E ′, where E ′

i, j = Ei, j +[i ∈ P] · [ j ∈
P] ·WIndex(P,i),Index(P, j), such that the maximum value in the
edge set E ′ is minimized. The optimal recovery load corre-
sponding to graph G is:

min
P

max
i, j∈V

E ′
i, j (2)

As shown in Figure 1, when node i and node j have a
common placement group, the edge weight between them
needs to be added to the repair cost corresponding to the
repair load matrix. The optimal recovery load distribution
problem then becomes a problem of selecting n nodes from
the N nodes in graph G, such that the highest edge weight in
the graph is minimized after the weights are added.

2.4 Complexity Analysis and Proof
In this section, we prove that the optimal recovery load distri-
bution problem is NP-hard by reducing a known NP-complete
problem, the maximum independent set problem [8], to it
within polynomial complexity.

Definition 3 (Maximum Independent Set Problem). Given
a graph G = (V,E) and an integer n, let N(i) represent the
set of neighbor nodes of node i. The decision form of the
maximum independent set problem is to determine whether
there exists a set P ⊆V with cardinality not less than n such
that ∀i ∈ P, N(i)∩P = /0.

As shown in Figure 2, an independent set of a graph is a
set of nodes such that no two nodes in the set have an edge
between them. The red nodes in Figure 2 form an independent
set of the graph because there are no edges between any two
colored nodes. The maximum independent set problem is to
find an independent set of cardinality not less than n in the
graph.

Figure 2: Maximum independent set problem

Lemma 1. The maximum independent set problem can be
reduced to the optimal recovery load distribution problem in
polynomial time.

Proof. We consider the following problem for an arbitrary
graph G = (V,E): Given the recovery load graph G′ = G =
(V,E), where W is a repair load matrix with all entries equal
to 1 except for the diagonal entries. The recovery load edge
weight Ei, j = 1 when there is an edge in G from node i to node
j. The goal is to find a placement group P that minimizes the
maximum value in the updated edge set E ′ of graph G′ after
the integration of a new placement group.

We prove that the problem of finding the maximum inde-
pendent set of graph G can be reduced to solving the optimal
recovery load problem. Specifically, we show that the cardi-
nality of the independent set of graph G is not less than n if
and only if there exists a placement group P with cardinality
n such that the optimal recovery load of graph G′ is 1.

If there exists an independent set of cardinality not less
than n in graph G, we can simply select n nodes from the
independent set and place the new placement group on these
n nodes in G′. Denote this set of n nodes as p. Since these n
nodes are not adjacent to each other, Ei, j = 0 and E ′

i, j = 1 for
any node i and node j that belongs to p. Any other edges in E ′

remain the same as in E, which are no larger than 1. Therefore,
the edge with the largest weight in E ′ will not exceed 1. As a
result, the optimal recovery load corresponding to graph G′ is
1.

Conversely, if the optimal recovery load corresponding to
graph G′ is 1, we assume that there is no independent set of
cardinality not less than n in graph G. This means that we can
arbitrarily select n nodes from the graph G, and at least two
of these n nodes are adjacent. Then, if we select the same set
from the graph G′, the maximum edge weight of the edge Ei, j
in this set is 1. After the integration of the new placement, the
edge weight of the edge E ′

i, j is at least 2 because W is a repair
load matrix with all entries equal to 1 except for the diagonal
entries, which suggests that the optimal recovery load for this
graph is at least 2. This contradicts the premise, so it follows
that there must exist an independent set of cardinality not less
than n in the graph G = (V,E).

Additionally, the reduction of the problem has a complexity
of O(|E|), as each edge of the graph G can be transformed
into an edge in the recovery load graph by visiting it once.
Thus, the problem of finding the maximum independent set
can be efficiently reduced to the problem of determining the
optimal recovery load distribution in polynomial time.

Since the maximum independent set problem is an NP-
complete problem [8], it follows from Lemma 1 that the
optimal recovery load distribution problem is an NP-hard
problem.

3 Algorithm Design
3.1 Data Placement Algorithm
This section presents a data placement algorithm based on a
greedy strategy for the NP-hard problem of optimal recovery
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load distribution. The algorithm aims to select nodes for a
placement group of size n from a set of N nodes by choosing,
at each step, the node whose sum of recovery costs to other
nodes in the current group is smallest. While this method may
not necessarily result in the optimal recovery load distribution,
it can help to balance the recovery load.

The pseudocode for the algorithm is provided in Algo-
rithm 1. This algorithm is responsible for mapping placement
groups to nodes, and it is called to obtain the placement group
P whenever a new placement group needs to be added to the
storage system. The input to the algorithm is the current re-
covery load graph G(V,E). The weight WV (v) of a vertex v is
defined as the sum of the weights of its adjacent edges, that is,
WV (v) = ∑e∈neighbor(v) E(e). D(v) is the number of data units
on the node. Capital letters, such as V0, represent sets, while
lowercase letters, such as v1, represent members of a set. For
example, V0 is a set of vertices and v0 is a vertex within that
set. The function Pick is used to randomly select a member
from a set. The output of the algorithm is a placement group
P.

Algorithm 1: Greedy Data Placement Algorithm
Input :G(V,E)
Output :P

1 v0 = Pick({v |WV (v) = minv′∈V (WV (v′))});
2 P = {v0};
3 while |P|< n do
4 Vcandidates = V −P;
5 V0 = Vcandidates −{v | violates criteria};
6 V1 =

{v | D(v)≤ (minv0∈V0D(v0)) · (1+ ε)∧ v ∈V0} ;
7 V2 =

{v | ∑v′∈P Ev,v′ = minv1∈V1(∑v′∈P Ev1,v′)∧v ∈V1};

8 vnext = Pick(V2);
9 P = P∪{vnext};

10 Update weight in G;

The proposed data placement algorithm based on the
greedy strategy must exclude certain nodes from being placed
in the same placement group. For example, nodes in the same
placement group should not be on the same server or cabinet
in order to reduce the risk of data loss due to systemic failures.
Line 5 of the algorithm demonstrates how the candidate set
V0 is constructed based on this rule.

Heuristic rules are used to find the most suitable next node
for the current placement group. This algorithm first selects
the node with the smallest edge weight sum as the initial
node. This process is shown by lines 1 to 2 of the algorithm.
In order to achieve a uniform distribution of data, in line 6,
V1 is defined as a vertex whose number of data units does
not exceed (1+ ε) times the minimum number of data units
in the current storage system. Since the data is difficult to
achieve absolute uniform distribution, this algorithm uses

an adjustable parameter ε to limit the uniformity of the data
placement.

To distribute the recovery load more evenly among nodes,
V2 is defined as the set of nodes with the smallest sum of
recovery costs to other nodes in the current replacement group
in the event of a failure, as shown in line 7 of the algorithm.
Finally, a vertex vnext is chosen from V2 as the next candidate
for the placement group and added to the set P. This process
continues until n members have been added to the set P, after
which the corresponding weights in G can be updated.

When a node represents a server instead of a disk, data units
for each node in the group require assignment to a specific
disk. This assignment can be efficiently achieved through a
round-robin strategy.

3.2 Target Node Selection
When a single node fails and requires recovery, the data stored
on it must be redistributed to other nodes in order to maintain
the reliability of the system. During this process, it is crucial
to select nodes to receive the data units from the failed node in
a manner that ensures even distribution of recovered data and
maintains balance in the recovery load. The algorithm in Al-
gorithm 2 can be used to select the location of data units to be
redistributed to other nodes during the recovery process. This

Algorithm 2: Target Node Selection for Recovey
Input :G(V,E), placement group P, failure node F
Output :v

1 V0 = V −{v | violates criteria};
2 V1 = {v | D(v)≤ (minv0∈V0D(v0)) · (1+ ε)∧ v ∈V0} ;
3 V2 = {v | ∑v′∈P Ev,v′ = minv1∈V1(∑v′∈P Ev1,v′)∧v ∈V1};
4 V3 = {v | Ev,F = minv2∈V2Ev2,F ∧ v ∈V2};
5 v = Pick(V3);
6 Update weight in G;

algorithm first excludes nodes that do not meet certain criteria
as in Algorithm 1. Next, the algorithm looks for nodes with
used storage space within a certain range in order to achieve
a balanced distribution of data, as described in line 2. The
algorithm then selects nodes that will help maintain recovery
load balance after the faulty node is removed, as shown in
line 3. Finally, the algorithm aims to evenly distribute the load
during recovery; therefore, if the previous conditions are met,
it will select the node with the least connection weight to the
failed node, as shown in line 4.

Since each node may store multiple data units, Algorithm 2
must be run for each placement group to determine the target
nodes.

3.3 System Expansion
When adding new nodes to the system, the graph G must
be updated to include the nodes corresponding to these new
devices. The system can then continue to call the algorithm
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in Algorithms 1 to automatically add new placement groups
containing the new nodes to the storage system, ensuring
that the recovery load remains as small as possible without
requiring any data migration.

However, when adding multiple nodes at once, using the
algorithm in Algorithms 1 directly can result in all the new
placement groups being placed on the same batch of newly
added nodes. This can lead to an imbalanced recovery load,
with a concentration of recovery load and writing load on
the newly added devices, even as more placement groups are
added. To address this issue, the algorithm should control the
rate at which data is placed on the new nodes during system
expansion.

To do this, the new nodes can be placed in a separate collec-
tion. Each time the system is expanded, the user can specify
a parameter c to control the placement rate of data on the new
devices. When calculating data placement, at most c nodes
will be selected from this collection, with the remaining n− c
devices being selected from other devices according to the
algorithm in Algorithm 1. Once the number of data units
on a node within the collection matches the number of data
units on the node with the least amount of data outside of this
collection, the node can be removed from the collection.

4 Evaluation
4.1 Evaluation Setup
In the context of our evaluation, we designate each individ-
ual disk as a node within the system. We carry out both
micro-benchmark experiments and overall performance test-
ing to assess performance. The micro-benchmark experi-
ments, performed outside of an actual storage system, specifi-
cally evaluate the variability in recovery load distribution and
data distribution. Instead of executing actual recovery, micro-
benchmark experiments provide an analysis of the recovery
load distribution, which are complementary to our overall
performance evaluation.

For the overall performance test, we employ a cluster of 16
servers, with each server boasting dual Intel Xeon E5 2643 v4
CPUs, 128GB of 2133 MHz DDR4 memory, a 512GB SATA3
SSD, and six 8TB 7200rpm SAS HDDs. The six HDDs are
independent and not grouped by a RAID. All servers run on
the CentOS 7.8 operating system. The servers are networked
via a 56Gbps Infiniband connection, with an MTU size of
65520, enabling us to better utilize the high-bandwidth net-
work in our evaluation. We set the value of ε to 0.02 for all
experiments to maintain a consistent testing environment.

4.2 Micro Benchmark
We conduct micro-benchmark experiments to see how our
algorithms can help to improve recovery load balance. In all
experiments, N is set to 100, and RS(10,4) code is employed
for each placement group.

Data Distribution. Figure 3a measures the uniformity of
data distribution for different data placement algorithms by

(a) Data Distribution (b) Recovery Load Distribution

Figure 3: The variance of data distribution and recovery load
distribution.

calculating the variance of the number of data units. It can
be seen that the greedy data placement algorithm is far more
uniform than the random data placement algorithm.

Recovery Load Distribution Figure 3b presents the recov-
ery load distribution of the system when utilizing different
data placement algorithms. The data depicted in the figure
demonstrates that the recovery load is more evenly distributed
when using a greedy data placement algorithm as compared
to random data placement.

(a) Add a disk (b) Add two disks

Figure 4: The variance of the recovery load after system ex-
pansion.

Recovery Load Distribution for System Expansion We
evaluate the effects of system expansion on recovery load
distribution. In this experiment, the variable c is set to 1. The
results are illustrated in Figure 4a and Figure 4b. Specifically,
Figure 4a represents the scenario where an additional disk is
added to the system when there are 500 placement groups
stored, while Figure 4b illustrates the situation where two
additional disks are added simultaneously.

The data illustrated in Figure 4a demonstrates that while
the greedy algorithm may initially create a temporary imbal-
ance in recovery load after system expansion, the recovery
load returns to a normal state as more placement groups are
integrated. This phenomenon arises due to the recovery load
on newly introduced disks being zero initially, resulting in a
sharp uptick in the variability of the recovery load distribution.
However, as these new disks become populated with data, the
recovery load re-establishes its balance.

Conversely, Figure 4b illustrates that simultaneous addition
of multiple disks leads to a more pronounced imbalance in the
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Table 1: The average recovery time of different data placement
algorithms.

Codes Random Greedy Improvement

RS code 554s 273s 2.1x
LRC 460s 192s 2.4x

Clay code 240s 141s 1.7x

recovery load of the storage system and that it takes longer
for the system to return to normal.

4.3 Overall Performance
This experiment measures the recovery performance using dif-
ferent data placement algorithms and different erasure codes,
including RS code, LRC, and Clay Code [18]. To achieve
this, 96 hard disks were distributed across 16 machines, with
each data unit set at a size of 10GB and a total of 175 place-
ment groups in the system. The algorithms are integrated into
the RCStor storage system [16], as it provides high recovery
performance and various erasure codes. Prior to measuring
recovery, data of approximately 256GB was placed on each
disk, resulting in a total data size of 24.4TB. The recovery
process was initiated manually by shutting down a disk, and
the time required for recovery completion was recorded. To
gauge the maximum recovery bandwidth, we initiated the
recovery of all failed placement groups simultaneously. It
should be noted that during recovery, the data from the failed
disks was reconstructed on other functioning disks. We en-
sured there was no bandwidth cap for the recovery process.
Additionally, the recovery was carried out at a time when the
system was not in use, to avoid any operational interruptions.
We conducted 10 trials to ascertain the average recovery time.
The experimental results are presented in Table 1.

The data in Table 1 illustrates that the use of a greedy data
placement algorithm can significantly enhance the recovery
performance for various erasure codes. Specifically, the re-
covery performance is found to be 1.7-2.4 times greater than
that of the random data distribution algorithm.

We have also evaluated the influence of randomness on
recovery time. Our findings suggest that when utilizing the
greedy data placement algorithm, the impact of randomness
fluctuates within a range of ±10%. However, with the random
data placement algorithm, this variability increases to ±20%.

5 Related Work
Copyset [4] proposes to reduce the probability of data loss by
reducing the number of distinct placement groups, which are
referred to as copysets. In contrast, the focus of our paper is
to ensure recovery load balance given a predetermined small
number of placement groups. This number is approximately
the same as the number of copysets, contingent upon parame-
ter configurations. In essence, we tackle the issue of data loss

by balancing the recovery load given a fixed number of place-
ment groups. This aspect marks a departure from the Copyset
paper, which does not focus on recovery load balancing.

PDL [23] is a data placement algorithm that reduces im-
balances in inter-cabinet network communication. Selec-
tiveEC [24] maintains load balance during recovery by dy-
namically selecting nodes for reading and writing through
bipartite graph matching. However, they only reduce recov-
ery load imbalance for the network and cannot guarantee the
balance of load when accessing disks.

RAID-based data placement algorithms [11, 15, 17, 19, 26]
are designed for use with disk arrays, which are not appropri-
ate for use in distributed storage systems. RAID+ [25] and
D3 [10] use orthogonal Latin squares to distribute data and
ensure load balance for disk array recovery, but they lack scal-
ability and can only be applied to arrays with tens or hundreds
of disks. They also do not support dynamic system expansion.

Overall, existing data placement algorithms struggle to si-
multaneously provide load balancing for recovery, scalability
and low migration overhead.

6 Discussion
In a storage system capable of tolerating multiple failures,
resulting in numerous potential repair load matrices, a practi-
cal advantage may arise from dynamically selecting recovery
sources, taking into account observed loads and stragglers.
This dynamic selection aligns with our algorithm and could
involve dynamically choosing k nodes from each placement
group for data recovery, excluding stragglers, to minimize the
maximal recovery load. The future challenge lies in develop-
ing an efficient algorithm for this process or devising other
methods to account for the impacts of such dynamism.

7 Conclusion
This paper proposes a data placement algorithm based on a
greedy strategy that can provide a more balanced recovery
load distribution. Experiments show that using the data place-
ment algorithm can improve the recovery performance of the
storage system to 1.7-2.4 times compared to the random data
placement algorithm.
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Abstract
Shared libraries indisputably facilitate software development
but also significantly increase the attack surface, and when
using multiple libraries, frequent patches for vulnerabilities
are to be expected. However, such a bugfix commonly requires
restarting all services depending on the compromised library,
which causes downtimes and unavailability of services. This
can be prevented by dynamic software updating, but existing
approaches are often costly and incur additional maintenance
due to necessary source or infrastructure modifications.

With LUCI, we present a lightweight linker/loader tech-
nique to unobtrusively and automatically update shared li-
braries during runtime by exploiting the indirection mecha-
nisms of position-independent code, hence avoiding severe
runtime overhead. LUCI further adds no additional require-
ments, such as adjusting the source or interfering with the
build chain, as it fully adapts to today’s build and package-
update mechanisms of common Linux distributions. We
demonstrate our approach on popular libraries (like Expat
and libxcrypt) using off-the-shelf (i.e., unmodified) binaries
from Debian and Ubuntu packages, being able to update the
majority of releases without the necessity of a process restart.

1 Introduction

Third-party libraries are, without doubt, an important part of
software development, allowing a programmer to use func-
tionality beyond their domain (or at least to save some time).
To prevent outdated source-code copies [49], it is common
to dynamically link against libraries distributed in binary for-
mat [50] – on system-level so-called shared objects, enabling
independent updates. A popular example is OpenSSL, provid-
ing cryptographic capabilities to numerous projects. However,
its infamous Heartbleed-vulnerability demonstrated the down-
side: All of a sudden, millions of systems (yet alone 24 – 55%
of all HTTPS-enabled servers [13]) ran the risk of leaking
highly sensitive information when the buffer over-read bug
was discovered. Even though distributors quickly published

fixed versions of the library, all applications directly or indi-
rectly depending on this library had to be restarted, not only
requiring immediate manual action but also causing costly
downtimes of services [12, 22].

Generally, having a new library version to be responsible
for the need for a service restart is all but seldom: Default
server software in many popular Linux distributions like De-
bian is dynamically linked and depends on several shared
libraries, which are usually the main reason for a service
being exposed to known vulnerabilities:

For example, the currently most widely used web
server [23], nginx, had 11 (out of 34 CVEs1) vulnerabilities
with high severity2 since 2010, while its basic (static) depen-
dencies glibc, OpenSSL, PCRE, libxcrypt, and zlib had at the
same time 70 such critical vulnerabilities (of 335 CVEs total).

It is worth noting that these numbers do not take any mod-
ules into account: the default configuration of nginx includes
six core modules, which depend on a total of over 30 external
shared libraries themselves – and have at least 98 additional
critical vulnerabilities (of 474 CVEs) in the observed period.

A similar picture emerges for the second place: 14 critical
vulnerabilities were found in Apache HTTP Server including
its core modules. In contrast, its required shared libraries in
basic configuration (without modules) had 81 such issues due
to an additional dependency on Expat compared to nginx.

Especially for stateful software systems (e.g., database
management systems) or systems with active client connec-
tions, restarting the service in case of a vulnerability is unde-
sired [36,37]. To address the challenges of avoiding unwanted
downtimes and expensive startup costs, dynamic software up-
date (DSU) mechanisms have been developed over the last
decades [8, 11, 15, 28, 29, 42].

Although many interesting DSU techniques are available,
and even Linux introduced kernel live-patching in version 4.0
more than seven years ago [20], the requirement for restarting
services utilizing updated libraries has not changed since

1Common Vulnerabilities and Exposures: www.cve.org.
2CVSS (Common Vulnerability Scoring System) score with 7.0 or higher.
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then. Unfortunately, common user-space live-patching has
not become a reality yet.

This raises the question regarding the reasons for this short-
coming. Most approaches for DSU require modifications in
the source [15, 17, 28, 29] or build system [11, 18, 42, 47],
programmer-guided patch creation [34, 43, 45], and/or a vir-
tual machine [5, 7, 35] for execution. While the modification
of a single project can be rather easy, it would have to be
applied to almost every software package in a system for prac-
tical usage of dynamic updates – and yet the vast amount of
different software prevents any broad application.

That is why we believe that system-wide automatic live
updates in user space will only succeed if the requirements are
limited to the bare minimum: We argue that unmodified (i.e.,
off-the-shelf) binary files already built and deployed by distrib-
utors have to be sufficient input for base and updated versions.

In addition, imposed runtime overhead and stability con-
cerns due to the complexity of existing approaches further
hinder any attempts to establish general live-patching in user
space. Nevertheless, these penalties are inevitable fallout of
the effort to provide a general approach allowing to transform
almost any program state – which is usually not required for
security fixes: Since the vast majority of system-level soft-
ware is still written in programming languages not ensuring
memory safety (like C and C++) [6], patches for critical vul-
nerabilities commonly introduce small local code changes
like bounds checking (e.g., the fix for the mentioned Heart-
bleed bug). Such patches usually do not alter any function
output for valid inputs [24].

The situation for logic errors is similar: Most common bug-
fix patterns affect only the function scope [32] without side
effects beyond its borders. Especially system-level shared ob-
jects have to maintain the application binary interface (ABI)
to which other software binaries are dynamically linked, mak-
ing structural changes rather seldom. New feature improve-
ments altering the library’s application programming inter-
face (API) can usually only be used in depending software af-
ter modifying its source code as well. Since adjusting projects
to the libraries’ updated semantics may take time [21], dis-
tributors tend to backport bugfix patches while retaining API
& ABI compatibility [39].

These insights help us to define the necessary scope re-
quired for dynamic software updates based on binary files
under practical conditions: First, we focus on supporting the
mentioned changes required for error correction instead of
enabling updates to introduce arbitrary modifications. Second,
we argue that a practical DSU solution has to update off-the-
shelf binaries without requiring access to or modifications of
the source code or build process.

With LUCI, we present a DSU approach for unmodified
shared libraries utilizing features already enabled by default
in today’s build chains without inducing runtime overhead. In
this sense, the paper makes the following contributions:

• A lightweight loader-based DSU mechanism targeting
security fixes that is based on relinking dynamic ELF
binaries by leveraging its metadata

• Design and implementation of an open-source, dynamic
linker/loader with glibc compatibility for the x86_64 ar-
chitecture supporting automatic and transparent updates
of off-the-shelf shared libraries

• Evaluation of popular, binary-distributed shared libraries
of recent Debian and Ubuntu releases to assess the live-
patching approach’s practicality

The remainder of the paper is organized as follows: After
giving an overview of DSU techniques in Section 2, Section 3
describes the details of ELF binaries that we utilize for our
approach in Section 4. To verify the results, we back-test LUCI
with popular shared libraries in Section 5 while classifying
the results in Section 6. Section 7 concludes the paper.

2 Related Work

Research of dynamic software updates in user-space dates
back four decades, with DYMOS [11] presenting the first no-
table approach beyond manually live-patching machine code.
The approach allows updates of programs written in a Modula
dialect while using a custom compiler and runtime system.
Thereby, this approach involves restrictions with respect to
the source-code development and its build system, which
correspond to A and C in Figure 1. Many sophisticated
approaches that evolved since then share these restrictions:

Ginseng [28, 29] allows changes in function prototypes
and data representation but is limited to source code writ-
ten in C while also requiring code adjustments A . Patches
are generated by comparing the source files B in conjunc-
tion with analysis information emitted by a custom compiler
C and loaded with a custom runtime system. The approach

involves significant performance overhead of up to 30% in
updated functions. Although being a powerful approach, Gin-
seng illustrates the massive adjustments required to support
generic dynamic updates. LUCI avoids these requirements as
it hot-swaps code while not supporting data modification.

With Kitsune [15] (successor of Ekiden [17]), developers
have to manually specify update points, add control-flow and
data-migration code to their C source A , and use a custom
compiler C . After waiting for all threads to reach the update
point, it replaces the whole program and performs all migra-
tions. The approach causes a service disruption on update
time but reduces overhead costs during normal execution.

POLUS [8] constructs a patch for a successive version us-
ing a source-to-source compiler B . This patch can be applied
at any time by employing ptrace, with old and new versions
residing in memory. POLUS places redirection instructions
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bar.c
#define SZ 128
char buf[SZ];

int bar(char* tmp) {
int n = 0;
while (*tmp != 0) {
buf[n++] = *tmp++;

}
return n;

}

bar.o
7f454c460201010000000000
0000000001003e0001000000
000000000000000000000000
00000000d002000000000000
000000004000000000004000
0d000c00f30f1efa554889e5
48897de8c745fc00000000eb
25488b45e8488d5001488955
e88b55fc8d4a01894dfc0fb6
084863c2488d150000000088
0c10488b45e80fb60084c075
d08b45fc5dc3004743433a20
285562756e747520392e342e

x.elf
v1.0.2

bar.c
#define SZ 128
char buf[SZ];

int bar(char* tmp){
int n = 0;
if (tmp != 0x0)
while (*tmp != 0) {
buf[n++] = *tmp++;
if (n >= SZ)
break;

}
return n;

}

bar.o
7f454c460201010000000000
0000000001003e0001000000
000000000000000000000000
00000000e002000000000000
000000004000000000004000
0d000c00f30f1efa554889e5
48897de8c745fc0000000048
837de800743beb2b488b45e8
488d5001488955e88b55fc8d
4a01894dfc0fb6084863c248
8d1500000000880c10837dfc
7f7f0d488b45e80fb60084c0
75caeb01908b45fc5dc30047

x.elf
v1.0.3

x.po
v1.0.2 : v1.0.3
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Figure 1: Common DSU approaches require either certain (higher-level) programming languages [11], modification of the
code [29], or the changes in the build toolchain [42] (unless the patch is handcrafted from the resulting binaries [5]), as highlighted
by the gray area on the left side. Due to the sheer amount of different software projects, it is not feasible to adjust each of them –
hence preventing live-patching in user-space for today’s real-world software. A generic automatic update mechanism must not
interfere with these steps but merely use the resulting binaries, usually built by distributors.

into the old functions and keeps track of global-state modifi-
cations. LUCI adapts the idea of having multiple versions of
a binary in the virtual memory and extends it by shared data.

In contrast to previous approaches, Katana [42] is language-
agnostic and works on object-file level D . While improving
applicability, it still requires interfering with the build chain.

For LUCI, the feature of coping with off-the-shelf shared
libraries is essential – a feature also provided by a few other
approaches: Using dynamic binary translation, DynSec [34]
can patch code of unmodified binaries while having a signif-
icant runtime overhead (11% in benchmarks) and requiring
programmer-guided patch generation E . Piston [43] is trying
to exploit vulnerabilities in order to fix them. It works on a
binary level and can automatically generate repair routines for
stack-based buffer overflows, but such routines must be man-
ually provided E for other vulnerabilities. With the process
virtual machine DynamoRIO [5], binary-level code modifica-
tion E is possible at the cost of runtime overhead. Based on
this tool, ClearView [35] is able to learn normal application
behavior and automatically generate patches for certain types
of bugs, however, causing massive overheads (depending on
the configuration 47% – 303% baseline overhead, and up to
30 000% while learning).

Different methods to update active functions have been
proposed: UpStare [26] C and StrongUpdate [51] B using
stack reconstruction and ISLUS [9] B with checkpoint-based
rollback, all require C source A . For LUCI, this is not needed
since we expect shared library functions to return eventually.

While live updates for Linux [7, 27] and other operat-
ing systems [1, 3] were already an important research topic,
kSplice [2], kPatch [38], and kGraft [33] C D initiated kernel
live-patching in Linux [20]. The latter two can only perform
changes on functions, not on data, similar to LUCI. In contrast,
kSplice is not only able to support data changes but can also be
used for certain specially prepared user-space libraries [31].

A few other approaches focus on live-patching of shared
libraries as well: LibCare [47] generates patches from assem-

bly emitted by a compiler wrapper script C and applies them
using ptrace: After acquiring storage for changed code (and
new data, if required), relocations in the existing code are up-
dated while using stack unwinding to prevent modifications
of currently executed functions.

A rather less-intrusive approach is used by libpulp [45],
requiring specially prepared/compiled libraries with an addi-
tional nop-prologue at each function C to be able to dynami-
cally insert trampoline code. A manually created description
file E guides the updater (using ptrace in conjunction with
a preloaded library) through the symbols to be replaced.

The libDSU [30] concept also targets unmodified shared
libraries. However, libDSU would require an actual imple-
mentation of the approach to find and update all locations
of pointers in the process’ memory – including heap chunks,
which is quite complex and error-prone to identify. LUCI
avoids this requirement by keeping memory locations valid.

All existing approaches either require modifications during
building, for both base and updated version, or programmer-
guided patch generation. To the best of our knowledge, no
approach yet exists that can provide an update on shared
libraries without interfering in the build process (gray area in
Figure 1). With LUCI, we close this gap.

3 Background

On Unix-based systems, a machine-code–generating compiler
produces relocatable objects from the source code, nowadays
in the executable and linkable format (ELF). With ELF being
the fulcrum for executables, LUCI exploits this format.

The ELF meta information lists available and required sym-
bols (e.g., functions and static variables) accompanied by
relocation information, enabling the linker to fix destination-
address parameters of memory-access and branching instruc-
tions in the machine code. For static (position-dependent)
executables, the target addresses of all symbols can and must
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Figure 2: Shared library loaded and relocated in process’
virtual memory by the dynamic linker/loader (ld.so).

be resolved during static linking, hence, the executable ELF
contains a complete image of the process’s virtual memory.
However, for shared objects and dynamic executables, some
symbols may remain undefined in the resulting dynamic ELF
binary. Therefore, the dynamic section references their meta
information, so symbols can be resolved during execution by
the dynamic linker/loader (also referred to as runtime link-
editor, RTLD) – allowing the use of other shared libraries.

To simplify the execution of such binaries, the com-
piler (e.g., with -fPIC for position-independent code) refer-
ences local symbols using relative addressing, while emitting
instructions and function stubs (like the procedure linkage
table, PLT) for indirect addressing to access external symbols.
The PLT itself is closely tied to a global offset table (GOT)
section introduced by the static linker, which stores the actual
target addresses during runtime. Therefore, the dynamic link-
er/loader is not required to modify the machine code in the
text section itself but only the GOT and, if required, data sec-
tions. This strategy improves load performance and security
since no executable pages are mapped with write permission
in the process’ virtual memory, while also maintaining a low
memory footprint. Additional techniques like relocation read-
only (data.rel.ro) further contribute to security by remov-
ing the write permission after the initial linking steps where
applicable (e.g., constants referencing external symbols).

The dynamic linker/loader is responsible for finding all
required shared libraries of an application on the file system.
The tool places libraries in the process’ virtual memory, re-

solves and fixes undefined symbols while retaining a defined
search order (to deterministically handle symbols having the
same name). Eventually, the dynamic linker/loader performs
initialization and passes control to the application’s entry
point. For lazy binding (i.e., resolving undefined function
symbols on the first call), the dynamic linker/loader has to
reside in memory during the entire lifetime of the process.
The same holds for the dynamic metadata of each shared li-
brary (for symbol lookup and relocation). Figure 2 visualizes
a mapping of an ELF file into the virtual memory of a process.

Since a POSIX-conform dynamic linker/loader also pro-
vides an interface allowing the process to load additional
shared objects at runtime, it is itself an executable, self-
contained shared object (ld.so) with a tight connection to
the C standard library (libc) used on the target system. In fact,
the dynamic linker/loader is usually an integral part of the
standard library (e.g., glibc, musl libc).

4 Approach

When a modification of a shared object used in a process is
detected, we first compare the old and new version. A crucial
requirement for our approach is having identical writeable
sections: The same symbols have to be stored at the same
position having the same size and the same initial content, for
both initialized and uninitialized data (data and bss section).
Only then the new version can safely be loaded and linked into
the process. We found in practical applications (see Section 5)
that this requirement is not a major restriction as modifications
on writable sections are rare, as detailed in the following.

While analyzing typical bugfixes for common weaknesses
in dominating system programming languages3, we noticed
that newly introduced static variables are rare. Further, mod-
ern compilers and linkers work in a deterministic manner (in-
cluding reordering of variable allocations in an optimization
step) and most distributors have optimized their build chains
for reproducible builds4. Therefore, the probability is high
that code changes do not affect the data section of the binary.
Consequently, our DSU mechanism checks for alterations
in sections containing writeable data, including the thread-
local storage (TLS), which would prevent an update. While
modifications of the writable sections are rare, changes to the
read-only data section are more likely, for example, due to
introduced strings for error messages. However, these rodata
updates do not hinder the update process but are inherently
supported by our approach, as well as newly introduced auto-
matic variables, which are stored in the stack memory.

3The common weakness enumeration (CWE) list at cwe.mitre.org main-
tains a good overview, including views explicitly focusing on C/C++.

4For reproducible builds any indeterminism in the build process is re-
moved, allowing to reproduce a binary-identical file on every build with same
source code revision as input. Further information at reproducible-builds.org.
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Figure 3: LUCI’s core principle is to map the updated shared
library to unused space of the processes’ virtual memory.
Thereby, it exploits memory aliasing in order to map the
newly introduced data section to the physical memory of
the previously active data section.

Segment Layout Requirements In both the old and new
version, our approach additionally requires the data section to
have identical page alignment. However, due to the page-level
granularity of permissions in memory-management units, it is
already standard in linker scripts to place the writable segment
at a page border. The GOT dedicated to the PLT for lazy
runtime linking is put at the beginning, followed by the data
section. The writeable segment is usually preceded by the
segment containing the relocation-read-only section, which
also includes the standard GOT (for external variables) and is
only writeable during the initial dynamic linking stage – but
neither its alignment nor its content affects the updateability.

After the updater has ensured the availability of all cur-
rently required symbols in the new shared object, it loads all
non-writeable data sections into the process’ virtual memory,
placing it at some previously unused address range. Instead of
loading the data section from the ELF file, a memory alias of
the old version’s data section is created (see Figure 3): Both
old and new versions’ data sections use the same page frames,
allowing changes to a variable in the old data section to be
immediately visible in the new one and vice versa. Since
Linux currently lacks a direct way to create such an alias,
we have to use an anonymous in-memory file created by the
memfd_create system call for the data.

Relinking using GOT Then, all executables and other
shared objects utilizing the changed library are updated: The
dynamic software updater relocates the affected entries in
every GOT to the corresponding symbols in the new library.
In addition, it is possible that data sections need relocation
as well, for example, when function pointers are used. In this
case, the LUCI updater must first ensure that the target mem-
ory still contains its original value and is compatible before
replacing it with the new value.

Since function calls are performed indirectly (using sin-
gle instruction reads of the GOT PLT) and both old and new
functions coexist in the process, there is no need to alter the
text section. Hence, the update can be initiated at any time
without requiring quiescence [8], reaching a certain update
point in code, or modifying the process stack. Furthermore,
there are no limitations regarding updates of multithreading
applications as there are basically no other runtime modifi-
cations than the default RTLD performs when lazy binding.
Having the code of an old library function be executed at the
time of update is not a problem; it continues accordingly until
completed (return instruction) with the old code, but future
calls will be redirected to the new library function, thus lead-
ing to a gradual update. Since shared libraries should provide
a collection of subroutines and, therefore, frequently return
to the caller, proper software engineering prohibits remaining
in an endless loop inside the old version.

In order to apply changes, the dynamic software updater
needs access to the process’ virtual memory. Since the dy-
namic linker/loader resides in the process, it is a comfortable
target to house the update mechanism, not only avoiding the
need for additional permissions but also providing easy access
to a list of all loaded objects and their relocation information.

RTLD with DSU Capabilities In order to assess the appli-
cability of the approach to real-world libraries, we have imple-
mented our own dynamic linker/loader LUCI for the x86_64
architecture with the ability to perform the described update
procedure while maintaining binary compatibility (to some ex-
tent) to the glibc equivalent ld-linux.so, allowing loading
and live-patching of unmodified binaries from a distributor:
LUCI can run common executables when passed as a param-
eter or transparently if LUCI is set as the interpreter in the
corresponding ELF section of the executable. This fully cir-
cumvents ld-linux.so but still supports most glibc libraries
(including libc.so and libpthread.so) while providing
compatible interfaces for RTLD-specific functionality (e.g.,
libdl.so and tunables).

If dynamic updates are enabled (e.g., by the corresponding
environment variable), LUCI creates an observer thread on
start and uses the inotify API to detect modifications of all
loaded shared objects (or their symbolic links, respectively).
In case of a fork, LUCI intercepts it in order to decouple
the data memory alias and create a new observer thread in
the child process. Besides the fork and thread creation, our
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live-updating mechanism introduces no runtime overhead.
On detected changes, the observer thread autonomously

compares the update compatibility of both versions and, on
success, initiates the update process. In addition, LUCI can
output status information, for example, notifying about re-
quired restarts due to incompatible changes.

A successful update currently does not necessarily prevent
the execution of old versions: If the library dynamically stores
a pointer to local functions during runtime (e.g., in heap-
allocated memory), these could result in reusing old code after
an update. LUCI cannot statically identify (and fix) them since
there is no relocation information. Nevertheless, it provides
an optional method to detect such access at runtime: After a
user-defined time following an update, LUCI hides all pages
containing executable sections in old libraries and installs a
user-space page-fault handler (using userfaultfd). If the
non-present page is accessed, LUCI makes it available again
while using the status output to inform about the failed update
and the requirement for a manual restart.

The virtual memory layout of the updated shared object
is as intended by the linker and described inside the ELF
file, hence not limiting debugging capabilities with standard
tools like GDB. Furthermore, C++ exception handling (and
unwinding in general) works as expected, even in updated
libraries, since LUCI provides a version-agnostic interface
for dynamic linker introspection: Therefore, requests from
exception/unwinding routines will be passed to the exception
handling frame (eh_frame) of the corresponding library.

Checking Basic Compatibility To safely create a memory
alias of the old writeable data section in an updated shared
library, the section must match in alignment, layout, and con-
tent. The meta information of the ELF file (data section
address and size, its initial values plus the dynamic symbol
table) can be sufficient – unless the writeable data has local
relocations: For each static variable pointing to a local symbol,
LUCI ensures the target’s equivalency in the old and new ver-
sion. Otherwise, an update could lead to undesirable behavior,
for example, because of changed variable semantics.

The dynamic update is straightforward as long as the target
is located in the data section, because LUCI simply compares
the contents and follows the relocations. However, when con-
sidering the executable section, we cannot just compare the
machine code since changed offsets (e.g., due to added code)
likely result in a different byte stream. With the help of the
capstone engine [41], LUCI disassembles the code and (using
relocation information, instruction-pointer–relative address-
ing, and branch instructions) creates a dependency graph. This
graph is similar to a call graph but also contains references in
the data section. To enable fast comparisons, LUCI calculates
a fingerprint for each function: Similar to techniques used
in malware analysis [10], LUCI creates a hash based on the
machine instructions while excluding relocated immediate
operands and %rip-displacements – they are replaced instead

with corresponding symbolic equivalents. This allows LUCI
to find identical functions independently from their location.

For dynamic updates, LUCI considers a target symbol to be
compatible if the fingerprint (for symbols in the executable
section) or contents (for data) in old and new versions match,
as do the targets of all references.

After ensuring the update compatibility in principle, LUCI
further checks if the process has not altered the memory tar-
geted by the relocation entry. Consequently, LUCI keeps track
of previous values used for fixing relocations and aborts the
update process on detected changes while notifying the user
about the requirement for a manual restart.

Improving Compatibility Detection So far, stripped bina-
ries – containing only essential parts – are sufficient. However,
access to binaries’ full symbol table and debug information
can contribute to detecting whether an updated version can
be applied: While its full symbol table contains storage in-
formation for local variables, the DWARF debug sections
allow an even deeper inspection. Not only type information
for all variables can be gathered here, but also the fields of
records (struct) and enumerated values can be compared.

For debug purposes, many distributors like Debian and
Ubuntu offer additional debug information for the binaries,
due to size considerations usually distributed in separate pack-
ages. With libdebuginfod, there is even a web service for
easy retrieval of debug symbols, using the unique BuildID of
the binary located in the note section.

Although modification of records (e.g., unions) and addi-
tional enum values do usually not interfere with a successful
update, they are still quite rare in non-feature-updates. Thus,
we prefer a pessimistic approach for the sake of stability: If
either variable location or type, any internal record field, or
enumerated value has changed, the update is not applied. This
limitation has the ability to simplify the version comparison
drastically: By suitably hashing the information about the
internal structure, the hash value is sufficient to determine
compatibility. We have implemented a service (similar to
libdebuginfod) that LUCI queries. An alternative to LUCI’s
approach is to include the value directly in the ELF file, for
example, in an additional note section inserted by the post-
processing steps of the packaging toolchain.

Dynamically Loaded Libraries The POSIX function
dlopen enables one to load libraries during runtime. By de-
fault, both functions and global symbols are retrieved as point-
ers using dlsym. To effectively support dynamic updates for
such runtime-loaded files, LUCI creates an indirection for
function types: Similar to the PLT, the address of a helper
function is returned, which redirects the call to the latest ver-
sion of the symbol – introducing the overhead of an additional
jmp instruction. Using this trampoline technique, LUCI can
even update dynamically loaded libraries.
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5 Evaluation

We successfully validate the previously described functional-
ity of our implementation with a custom test suite written in
C/C++ consisting of small examples (targeting especially the
corner cases) using different compilers and versions (GCC v6
– v12, LLVM/Clang v11 – v15) on several distributions (in-
cluding RHEL/AlmaLinux, Fedora, and openSUSE Leap).
Other tests demonstrate the ability to update code changes
in libraries written in Ada (GNAT), Fortran (GNU Fortran),
Go (c-shared using the GNU Go Compiler), Rust (Rust com-
piler with prefer-dynamic flag), and, with some limitations,
Pascal (Free Pascal Compiler).

However, to demonstrate the practicability of our approach,
as well as its limitations, this evaluation focuses on popular
shared libraries without any custom modifications. To provide
a realistic scenario [44], we do not perform updates of indi-
vidual patches/commits but on the level of full official release
versions, which usually contain multiple changes.

For each library, we independently build (without using
any artifacts of a previous compilation) each version of a
reasonable range having a compatible API. As far as possible,
we use the suggested toolchains and default configuration for
each library according to the corresponding documentation.
Neither changes to the source nor custom tools are used during
the build process. In order to evaluate their impact on LUCI’s
compatibility detection, we manually enable debug symbols.

Then, a program – preferably a test suite with high code
coverage – linked against this library interface is executed,
while a supervisor script subsequently, with a certain delay,
exchanges the library version on the file system in the back-
ground. Moreover, this supervisor listens to the status inter-
face of LUCI in order to be notified about incompatible or
failed updates (the communication is strictly uni-directional)
– which will cause a restart of the test program, enabling it to
use the latest library version in the traditional way.

In addition to self-compiled vanilla versions, we also test
the corresponding binary releases in popular distributions the
same way. We choose Debian and Ubuntu as they are consid-
ered to be the most widely used Linux distributions (at least
for web servers [48]). Additionally, we are able to retrieve
outdated packages from previous releases5. We focus on their
two most recent versions: Focal Fossa (20.04) and Jammy
Jellyfish (22.04) in the case of Ubuntu (LTS) and Buster (10)
and Bullseye (11) for Debian. However, as debug symbols for
some versions are missing in the archives, LUCI solely relies
on the (stripped) ELF files when evaluating external builds.

It is worth noting that Debian carefully tries to prevent any
breaking changes in their stable package releases, often back-
porting security fixes to the library version used initially in a
particular Debian version. Therefore, its library versions may
differ from custom builds having the same version number.

Suitable libraries must meet the following criteria:

5Using launchpad.net for Ubuntu and snapshot.debian.org for Debian.

• Enough recent development to compare different ver-
sion releases – especially different binary releases in the
mentioned distribution versions.

• Independent libraries providing distinct functionality
rather than just an interface to a service. To simplify
testing, it should not be tightly entangled with system
components.

• Availability of a test tool or suite with reasonable cover-
age of the library interface and its code. It must not use
internals beyond the public/official interface since this
might prevent it from running with other releases. To
demonstrate the dynamic update, we further need a long-
running process (ideally executing the tests in an endless
loop) – scripts executing individual tests in subprocesses
are unsuitable.

• High popularity in both local installations and software
depending on it. The Debian popularity contest [40]
tracks the installations of their users and can act as an
indicator.

Taking those requirements into account, we have selected
the libraries Expat, libxcrypt, OpenSSL, and zlib for evalua-
tion, all of them within the top 150 packages (out of 70 000)
in the Debian popularity contest. This also covers main de-
pendencies of the nginx and Apache HTTP server.

Environment
We perform all tasks in container environments with a min-
imal base system installed, running on an x86_64 architec-
ture (Intel Core i5-8400 with four cores and 16 GiB of RAM).

For all tests, LUCI is configured to automatically detect
changes in library files or their symbolic links on the file sys-
tem, check compatibility, and, if applicable, update libraries
during runtime. A few seconds after applying an update, the
executable section of older library versions is unmapped. Any
subsequent access to the old library would trigger the user-
space page-fault handler, which marks the update as failed
and results in a restart by the supervisor script several seconds
later. The delay before a restart allows us to ensure that the
program correctly continues even after a failed update, not
producing unexpected results or aborting. Incorrect results
or abnormal program terminations, regardless of whether the
library release or the update causes them, are explicitly noted.

5.1 Expat
Since the Expat XML parser is used in numerous applica-
tions [46] and hence part of all popular Linux distributions,
its dozen critical vulnerabilities discovered within the last
decade make it a good target and test candidate for LUCI. We
focus on major version 2, having 27 version releases since
2006 – with 29 CVEs (including 11 critical vulnerabilities).
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external API – ● ● ● ● ● ● ●

dynamic update – ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

restart

L
U

C
I

re
su

lts start 1 2 3 4 5 6 7 8 9 10
# test cases 326 326 329 333 333 340 340 341 341 341 341 341 341 341 341 341 342 342 342 342 342 342 342 342 342 342 343
# failed (max) 14 14 14 13 13 13 13 13 13 12 11 11 8 8 8 7 7 7 7 7 6 5 4 3 3 2 0
time (ms) 390 338 371 532 498 578 577 576 577 532 518 535 532 533 532 530 531 530 531 578 578 521 522 660 659 542 522
time SD (ms) 7 6 6 3 3 4 3 0 3 4 3 4 3 5 3 9 3 1 4 3 9 3 17 3 10 3 4

start 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# test cases 326 326 329 333 333 340 340 341 341 341 341 341 341 341 341 341 342 342 342 342 342 342 342 342 342 342 343
# failed (max) 14 14 14 13 13 13 13 13 13 12 11 11 8 8 8 7 7 7 7 7 6 5 4 3 3 2 0
time (ms) 382 331 362 523 489 569 572 566 568 523 507 528 526 523 525 519 523 521 522 568 568 513 510 648 648 534 513ba

se
lin

e

time SD (ms) 5 4 1 6 6 14 1 5 13 4 2 17 3 6 13 5 7 6 13 6 6 7 2 7 7 15 6

Table 1: Successively (every 25s) replacing the Expat library on the filesystem with all vanilla version 2 releases in chronological
order while running the test suite (in an endless loop). The upper part of the table shows LUCI’s internal analysis of each
changed library binary compared to the previously loaded version. ● denotes detected changes of symbols in the corresponding
segment, while ❍ marks identical segments having symbols with modifications in their dependencies (at other segments). When
non-updatable changes (highlighted with red color) are detected, the library version is incompatible (✖) and the test suite gets
restarted (marked by a vertical bar: | ). Compared to the baseline (using the default RTLD, shown on the bottom), LUCI can
prevent two thirds of restarts while providing the same results (as shown in the middle row).

The developers maintain a good and regularly updated test
suite in a single program, which we have to slightly modify:
Tests causing segmentation faults and double-frees in older
releases are dynamically omitted in those vulnerable versions.
Further, due to a slight API change (new symbols in 2.1.0 and
2.4.0), the corresponding tests are only enabled if those sym-
bols are available in the currently active library release (using
weak linkage). The LUCI-loaded program now executes all
eligible tests sequentially in an endless loop while measuring
the duration and the number of executed and failed tests6.

Vanilla The results in Table 1 show that LUCI is able to
perform 17 dynamic updates (67%) during runtime – with 11
subsequent updates (starting with version 2.4.0) without re-
quiring any restart. During those patches, we observe a steady
decrease in failed test cases due to the bugs fixed in newer
releases, identically to manually executing the test suite with
the corresponding library version using the default RTLD.

6A use-after-free bug (CVE-2022-40674) causes jitter in the results for
versions prior to 2.4.9, as the corresponding test only sometimes fails.

The average duration of a test iteration in LUCI is slightly
worse (about 2%), but this is caused by our RTLD implemen-
tation itself since it is not as optimized as the glibc counterpart
and needs to use some workarounds/indirections for compati-
bility with standard libc.so.6: The timings with LUCI are
consistent regardless of whether the DSU functionality is en-
abled or disabled. Furthermore, the raw data does not show
any notable increase while updating a library to a new version.

Most failed updates have obvious reasons, like changes in
the writeable data section, which LUCI automatically detects
in both binary and DWARF debug information. However,
LUCI rejects the updates to 2.0.1 and 2.3.0 only due to debug
information. A detailed look reveals that in both cases only a
single enumeration value was added. This causes a different
hash of the datatype (and, in the latter case, the API as well)
even though an update would be possible – which we validate
in additional tests. However, the currently strict setting safely
allows certain update directions: It is not only possible to skip
several releases (e.g., 2.4.4 → 2.4.9), but rolling back to an
earlier release is also possible – as long as the hashes are
identical and the requirements of the binary are met.
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note – ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
init – ● ● ❍

code – ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
rodata – ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
relro – ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
data – ● ● ●
bss – ● ●
dynsym – ● ●

updatable – ✖ ✔ ✔ ✔ – ✖ ✖ ✖ ✔ – ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

L
U

C
I # tests 333 340 340 340 340 340 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341 341

# failed 13 13 13 13 13 13 13 13 12 12 12 11 11 11 10 9 7 6 5 11 10 8 8 8 7 5 4 3 3

Table 2: Expat test suite running with binaries retrieved from the official Debian repository – including development builds.

Backtesting Additionally, we back-test the approach using
prebuilt packages from distributors. For Debian, we can re-
trieve the binaries from the snapshot archive, which is not
limited to updates for stable releases but includes all devel-
opment builds as well. The implications become apparent
when considering the Debian workflow: Whereas during the
development phase latest library versions are maintained –
having the same update incompatibilities as our vanilla builds
above – the versions are frozen after the Debian release gets
stable. However, that does not mean a standstill at all: The
Debian team puts effort into backporting fixes for issues, like
the decreasing number of failed test cases in Table 2 shows:
While Debian Buster uses Expat 2.2.6 in its stable release
2019, their latest package 2.2.6-2+deb10u6 fixes several
vulnerabilities found in 2022. Since they usually do not in-
clude feature changes but only minor changes in the code
section, the stable phase is an ideal situation for LUCI: all
package releases are eligible for dynamic updates. When also
considering development builds, LUCI can prevent 72% of
restarts in Buster and 90% in Bullseye.

Although the stable phase used in productive environments
is our main focus for LUCI, the development builds offer
interesting insights about the applicability of our approach:
Several different versions of the build utils were used during
that time; however, this does not necessarily cause incompati-
bilities. For example, package 2.2.9-1 was built with GCC 9.2,
while 2.2.10-1 used GCC 10.2, but a dynamic update is still
possible. It can also happen that a newer release build results
in identical code and data segments, which may or may not
produce a different BuildID stored in the note section. For
example, the unequal BuildID between 2.2.5-1 and 2.2.5-2
requires LUCI to analyze the file, while the subsequent update
to 2.2.5-3 is binary identical, allowing LUCI to safely skip
any further processing quite early.

Ubuntu is similar regarding the version freeze after stable
release, as shown in Table 3: Even with development libraries,
83% of restarts can be omitted with LUCI in Jammy. Library
updates published for the stable release can all be dynamically
applied; the same is true for all library releases in Focal. In
both versions, there is only one update each, simply differing
in the BuildID compared to its predecessor; all other updates
have actual code changes.

These results highlight the effectiveness of LUCI in a real-
world scenario, as it can update the majority of all Expat
versions, even off-the-shelf libraries built with different com-
pilers and without access to debug information.

Build Expat updatable

custom (vanilla) 2.0.0 – 2.5.0 17 / 26 (65%)

Debian
Buster

all 2.2.0 – 2.2.6 13 / 18 (72%)
stable 2.2.6 6 / 6 (100%)

Debian
Bullseye

all 2.2.7 – 2.2.10 9 / 10 (90%)
stable 2.2.10 5 / 5 (100%)

Ubuntu
Focal

all 2.2.7 – 2.2.9 6 / 6 (100%)
stable 2.2.9 4 / 4 (100%)

Ubuntu
Jammy

all 2.4.1 – 2.4.7 10 / 12 (83%)
stable 2.4.7 2 / 2 (100%)

Table 3: Summary of LUCI executing the Expat test suite us-
ing different library builds (including off-the-shelf binaries).

5.2 libxcrypt

The extended crypt library [14] is a modern replacement for
glibc libcrypt.so.1, providing various one-way hashing
methods that are frequently used for user authentication. Sev-
eral test cases are included in the source. Most of them solely
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Build libxcrypt updatable

custom
(vanilla) 4.0.0 – 4.4.33

all 35 / 47 (74%)
unqiue 19 / 31 (61%)

Debian
Bullseye 4.4.10 – 4.4.18

all 7 / 7 (100%)
unqiue 3 / 3 (100%)

Ubuntu
Focal 4.4.10

all 8 / 8 (100%)
unqiue 0 –

Ubuntu
Jammy 4.4.18 – 4.4.27

all 4 / 4 (100%)
unqiue 4 / 4 (100%)

Table 4: Program running all libxcrypt tests in parallel (using
multithreading) on LUCI while exchanging library builds.

use the shared library interface without any knowledge about
the internal structure and are therefore suited for our evalua-
tion. However, we have to exclude three test cases because of
severe memory leaks and division-by-zero bugs in conjunc-
tion with older releases. Our test program endlessly repeats
each eligible test case in a distinct thread without any syn-
chronization whatsoever, requiring LUCI to apply updates to
a process with several active threads.

When building and testing all 48 releases of version 4,
LUCI is able to dynamically update 74% of them. However,
11 builds are binary identical to the previous one (e.g., 4.4.28),
and 5 builds only differed in their BuildID – still enabling
LUCI to update 19 out of 32 unique builds with actual code
changes during runtime.

During updates, we also observe a steady decrease in failing
tests: While 9 (out of 25) test cases report errors when running
with the first release of the library (version 4.0.0), there are
no more unsuccessful tests after the latest update.

While Debian Buster still retains the glibc crypt library,
Bullseye moved to this replacement library (package name
libcrypt1), which can be fully dynamically updated as
stated in Table 4. In Ubuntu Focal, one can find 9 different
packages, but their code and data are all identical (having 5
different BuildIDs). In contrast, Jammy has 5 actual different
builds that are all compatible. Due to the fact that Bullseye
and Jammy only have a single stable release, we consider all
releases, including development.

The approach of LUCI does not restrict the update of a
library concurrently employed by several dozen active threads
in a multithreaded application, as these results show.

5.3 OpenSSL
Because of its broad application – and several severe vul-
nerabilities in recent years – the secure communication li-
brary OpenSSL has achieved a certain degree of brand aware-
ness. We focus on its two main libraries libssl.so and
libcrypto.so and set up a client-server environment using
the openssl utility for testing.

Of 20 releases in OpenSSL 1.1.1, only 6 versions
of libssl.so seem to be updatable and none of

libcrypto.so. Further investigation showed that the
ssl3_undef_enc_method-structure could be blamed: Its
members point to functions that can reach ERR_raise us-
ing an array containing error messages, which are frequently
edited in the source. This would not be a problem if the struc-
ture in question, which is – to the best of our knowledge –
never modified, were marked as constant. However, since it
is currently writeable and hence placed in the .data section,
LUCI requires all of its references recursively to be identi-
cal to the previously loaded library for updates. Although
LUCI’s decision to reject such changes works just as intended,
when temporarily relaxing this constraint, 9 releases in both
libraries meet the requirements for an update.

However, after every update during testing, LUCI detects
code usage in superseded libraries and hence reports it as
failed. Again, the reasons for this shortcoming are function
pointers in writable data: Instead of statically initializing a
variable, OpenSSL does this during runtime7 – taking over
the work originally intended for the RTLD and hence leaving
LUCI with no clue about those relocations, unable to correct
them to the updated version.

Using uprobes, we can verify that only old code referring
to unchanged functions was executed and the updates are
effectively applied. However, LUCI is currently not meant to
handle such code as further discussed in Section 6.

5.4 zlib

The library zlib is used in many software dealing with data
compression and was not exempted from serious vulnerabili-
ties. We are testing version 1.2 – since the version numbering
switches between three and four places, there are 49 releases
from 1.2.0 to 1.2.13 (the latest at the time of writing). Since
the full code coverage test of the inflate algorithm cannot be
used due to its interference with internal structures, we run
the various de- and inflation tests of the zlib example file in
an endless loop while updating the libraries.

Of all releases in the past two decades, only half are suited
for dynamic updates, as the results in Table 5 show. The main
reasons preventing an update are the 19 interface extensions
during that time, which are often accompanied by additional
data structures – both creating different debug hashes. The
binary builds show an ambivalent picture as well: due to the
interface changes and the fix for CVE-2018-25032 modifying
internal structures, none of Debian Buster’s builds can be up-
dated. The same CVE applies to Debian Bullseye and Ubuntu
Focal, which have around half their packages eligible for dy-
namic updates. Only for Ubuntu Jammy (whose development
began after discovering this CVE), all releases can be applied
dynamically.

7For example, names_lh in crypto/objects/o_names.c is initialized
with NULL and assigned once with a fixed value in a custom RUN_ONCE
function during start.
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Build zlib updatable

custom
(vanilla) 1.2.0 – 1.2.13

all 24 / 48 (50%)
unqiue 24 / 48 (50%)

Debian
Buster 1.2.8 – 1.2.11

all 1 / 3 (33%)
unqiue 1 / 3 (33%)

Debian
Bullseye 1.2.11

all 4 / 5 80%)
unqiue 3 / 4 (75%)

Ubuntu
Focal 1.2.11

all 5 / 7 (71%)
unqiue 2 / 4 (50%)

Ubuntu
Jammy 1.2.11

all 4 / 4 (100%)
unqiue 2 / 2 (100%)

Table 5: zlib de- and inflations tests using LUCI while ex-
changing library builds.

6 Discussion

Unlike several other DSU approaches, LUCI does not aim
for general updateability and deliberately sacrifices some fea-
tures: Most notably, the requirement for identical writeable
data segments, which allows multiple library versions to co-
exist concurrently in memory, prevents changes of static vari-
ables. In case the library maintains some sort of state, it must
not differ between the old and new versions for the same
reason. Hence, changes to the initialization functions are pro-
hibited. Consequently, record types have to be equal as well
since they might be used in a shared state during the update
transition (e.g., structs in heap or stack memory). If the life-
time of a pointer to an internal function outlasts the execution
time of the function in which it was assigned, old code may
be executed after an update. Furthermore, a related case can
occur when a library function resides for a long time on the
call stack, possibly because of an endless loop.

Accordingly, LUCI statically verifies the compatibility of
data and interface before starting the update, while afterward
dynamically detecting the execution of old code: To prevent
abnormal terminations, LUCI takes a strict course, favoring
false positives over false negatives. If a new version of a
library does not meet all requirements and therefore is not
eligible for dynamic updates, the process remains running in a
valid state while LUCI notifies users about the non-updatable
version, so they can manually restart the service. However,
in case any subsequent update is again compatible with the
currently active library, the update will be applied.

For many libraries, this pessimistic approach is sufficient
to update most library versions, especially when it comes
to minor (patch-level) changes like stable release branches
of distributions: The approach’s restrictions rarely apply to
bugfixes, which most frequently require a timely deployment.
The decreasing number of failures in the Expat test suite
in Section 5.1 demonstrates the immediate effect of bugfix
updates. However, extensive bugfixes and feature changes
with cross-cutting changes cannot be applied, as seen in major
version updates (e.g., Expat 2.3.0 → 2.4.0).

A notable exemption is OpenSSL: Although it is an interest-
ing target for DSU due to its wide distribution, it is notorious
for its code quality [4, 19], and hence the failing results are
not surprising. While a first examination suggests that a few
changes in its code (which we rather categorize as coding-
standard fixes) would considerably improve its updateability,
there are possibilities for LUCI to handle such libraries: By us-
ing a fine-grained code-access–detection method like uprobe
and ptrace, further conclusions about the actually executed
symbols in old libraries can be drawn. Accordingly, LUCI
can ignore accessed symbols that are identical to their corre-
sponding newer version. However, in contrast to the currently
employed coarse-grained user-space page-fault mechanism,
this would require additional permissions and induces over-
head. Nevertheless, if a function pointer actually refers to a
symbol that has been modified in the updated library, coun-
termeasures are possible: LUCI could alter the old library’s
code in such a way that it redirects the control flow to the
corresponding new version of the symbol (e.g., by using a nop
slide) – but at the same time losing the advantage of simplicity
and safety while not having to modify the text section.

It is worth mentioning that function pointers to symbols in
other shared libraries do not point directly to the target but to
the corresponding PLT entry – which LUCI fixes on update.
Moreover, the use of virtual inheritance in C++ is not affected
as well: Such objects are internally extended by an additional
vpointer attribute, which references the vtable stored in
the (relocation-)read-only section and is updatable.

A crucial limitation that LUCI shares with other automatic
DSU approaches is the application of structural changes,
which can become arbitrarily complex due to the semantic
gap between (the intentions at) the source code level and the
information available at the binary level after compilation.
They are generally unrecognizable on a binary level without
further context.

Listing 1 shows a contrived example of a change in a spin-
lock implementation: The semantic change of the value sig-
naling the holding of a lock from 1 to 0 is only reflected in

1 typedef int lock_t ;
2

3 void lock( volatile lock_t * var) {
4 - while (! CAS(var , 0, 1)) {}
5 + while (! CAS(var , 1, 0)) {}
6 }
7

8 void unlock ( volatile lock_t * var) {
9 - *var = 0;

10 + *var = 1;
11 }

Listing 1: A contrived example of a code modification that
LUCI cannot automatically reject, due to changes at a higher
semantic level.
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the functions’ machine code. It is indistinguishable from a
valid (i.e., bugfix) code change, and it does not change the in-
terface. Consequently, LUCI cannot automatically detect this
as an incompatible update. Even restrictions such as active-
ness safety [16], which prevents active functions (on the call
stack) from updating, would allow an update point inside the
critical section: For example, if one thread can hold the lock
and the incorrect update is applied, then another thread can
incorrectly acquire the lock a second time. However, proper
software-engineering techniques requiring lock_t to be an
enum with constants LOCKED and UNLOCKED would enable
LUCI to detect the incompatibility using DWARF information
and reject the update.

Data structures can pose similar issues regarding the de-
tection of incompatible changes: While changes in structs
are reflected in the debug information, a semantic modifica-
tion of the access using only pointer arithmetic and casting
is not detectable by LUCI. This lack of further information
about the data layout is especially true for dynamically allo-
cated memory. Further problems may arise if the modification
of function parameters can have an impact on the process
environment (e.g., adding a write-protection flag in mmap).

The problems described can be tackled with carefully cho-
sen manual update points and hand-crafted (or test-cases–
assisted [25]) state transformations. However, this would in-
volve a significant amount of work for each library. For LUCI,
we instead propose a more pragmatic solution by analyzing
the change set at the source code level and explicitly marking
a binary as compatible or incompatible with the previous ver-
sion. Maintainers or distributors usually have the knowledge
to perform this compatibility review. The resulting informa-
tion can be included in the metadata of the binary (note
section) or the package. Alternatively, the compatibility check
can be carried out independently by third parties (e.g., by
providing the information along with the debug hash).

To facilitate the compatibility review, LUCI has tooling
support to automatically identify obviously incompatible ver-
sions (e.g., different writeable section). A further LUCI tool
for simplifying the review shows the associated source-code
lines that belong to the modified code in the resulting bi-
nary (using the DWARF symbols). With LUCI, we argue that
less knowledge is required to decide on the update compat-
ibility compared to manually writing update routines (e.g.,
introducing update points or writing state transformers).

In summary, Listing 1 illustrates that corner cases exist that
circumvent LUCI’s automatic compatibility check. Therefore,
as mentioned, LUCI’s tooling infrastructure assists the user
in performing manual compatibility checks. However, all the
libraries we have analyzed so far have well-structured code
that does not require manual intervention. From this practical
observation, we argue that LUCI’s approach solves numerous
real-world code-patching problems.

Regarding the aspect of LUCI’s memory demand, we ar-
gue that having multiple coexisting versions of the library in

memory is rather unproblematic: Non-writable segments are
file mappings and, therefore, do not permanently reside in
memory. The data segments exist only once due to LUCI’s
memory-aliasing technique.

7 Conclusion

Even though dynamic software updates are a well-received
research topic and the benefit due to security concerns is
undisputed, they barely made their way to user space on our
everyday systems due to the required effort for software de-
velopers. In this paper, we propose a concept addressing the
existing obstacles, hereby focusing on the most frequently
reused kind of software: shared libraries.

Analysis of common bugfix patterns, including their effect
on the resulting ELF files, allows the conclusion that the meta-
data is sufficient to enable a dynamic linker/loader to update
today’s binary-distributed shared libraries without requiring
any changes or inducing additional runtime overhead.

To validate this claim, we have implemented our own dy-
namic linker/loader LUCI, which acts as an evaluation plat-
form for live-patching common binaries: LUCI dynamically
updates many versions of popular shared libraries like Expat,
libxcrypt, and zlib. But even in the case of incompatibilities,
normal execution is maintained: In no case does an update,
neither successful nor failed, lead to an abnormal program
termination or incorrect behavior during our evaluation.

The presented results suggest that the proposed approach
is practicable and can play a part in paving the way for the
common use of live-patching of user-space applications.

Although binary-compatible and supporting several of its
interfaces, LUCI is not deemed a replacement for the existing
default dynamic linker/loader (e.g., from the glibc project)
but is intended to support further investigation and research
for loader-based dynamic software updates. We hope that
LUCI will help DSU become a reality in user space – and, for
example, be supported by the standard RTLD some day.
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A Artifact Appendix

Abstract
Our artifact includes the source of the dynamic linker/loader
LUCI itself, alongside with a script to evaluate its live-update
capabilities on the libraries Expat, libxcrypt, OpenSSL, and
zlib using suitable tests. For building and testing, container en-
vironments (based on Docker) are employed. The artifact con-
tains scripts to support automatically building these libraries
from their official source and tools to download the corre-
sponding Debian and Ubuntu packages. LUCI is intended for
a recent Linux environment on an x86_64 architecture.

Scope
We aim to achieve two main goals with the artifact: Firstly,
we want to encourage reproducing the results presented in
this paper, the artifact therefore supports

• building the dynamic linker/loader LUCI, which is im-
plemented according to Section 4,

• building several release versions of the libraries Expat,
libxcrypt, OpenSSL, and zlib using the source from offi-
cial repositories,

• validating the changes of the test suites, and

• running all experiments described in Section 5. This
enables one to reproduce the results referred to in text
and listed in further detail in Table 1, Table 2 and Table 3
for Expat, Table 4 for libxcrypt, and Table 5 for zlib.

Secondly, since we are aware that there is a lack of “hack-
able” dynamic linker/loaders (especially when it comes to
glibc-compatibility), we provide LUCI for academic purposes,
mainly but not limited to research on loader-based DSUs.

Contents
The dynamic linker/loader consists of the following internal
sub-projects (each distributed in a separate repository):

dlh provides basic functionality similar to libc/STL for cre-
ating static freestanding applications (without glibc).

elfo is a lightweight parser for the Executable and Linking
Format, supporting common GNU/Linux extensions.

bean binary explorer/analyzer to compare shared libraries
and detect changes, which uses the Capstone Engine.

luci dynamic linker/loader with DSU capabilities and glibc
compatibility (ld-linux-x86-64).

To build LUCI, it is sufficient to recursively clone the repos-
itory with its submodules and run make in the main folder.
Further details are provided in the README.md.

For each shared library used in Section 5, there is a
corresponding subfolder in the evaluation repository. With
gen-lib.sh, the desired version(s) are built, gen-test.sh
compiles the test program (located in src-test), and
run-test.sh runs the experiments with automatic library
exchanging in a containerized environment.

Hosting
Both LUCI’s source code and the evaluation environment are
available at github.com/luci-project/eval-atc23.

The utilities for building the shared libraries retrieve the
source code from the following official repositories:

• github.com/libexpat/libexpat
• github.com/besser82/libxcrypt
• git.openssl.org
• github.com/madler/zlib

To acquire the Debian and Ubuntu packages released for
each library, the utilities use the web services launchpad.net,
metasnap.debian.net, and snapshot.debian.org.

Requirements
We have written all parts of the dynamic linker/loader in
C/C++. A standard GCC (version 9 & 10) is sufficient to
compile the project. While LUCI has no further restrictions
on its build environment, its execution is currently limited
to distinct versions of certain distributions, since LUCI must
conform to the corresponding glibc interface (see Table 6).

To enable all features of LUCI, a Linux kernel 4.11 or newer
with a default configuration is required. We recommend a
Debian Bullseye installation using its standard kernel image.

We use Python 3, GNU make, and Bash for helper scripts.
The tests are executed in a Docker container using the official
Debian and Ubuntu images. The hardware platform should
be an x86_64 architecture with at least 16 GiB of RAM and
6 GiB of storage.

Distribution Release glibc

Debian
Stretch (9) 2.24
Buster (10) 2.31
Bullseye (11) 2.31
Bookworm (12) 2.36

Ubuntu
Focal Fossa (20.04) 2.31
Jammy Jellyfish (22.04) 2.35

AlmaLinux
9 2.28Oracle Linux

RedHat Enterprise Linux

Fedora
36 2.35
37 2.36

openSUSE Leap 15 2.31

Table 6: Distributions currently supported by LUCI.
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Abstract
Compilers today provide a plethora of options to optimize
and instrument the code for specific processor extensions,
safety features and compatibility settings. Application pro-
grammers often provide further instrumented variants of
their code for similar purposes, controlled again at compile-
time by means of preprocessor macros and dead-code elim-
ination. However, the global once-for-all character of
compile-time decisions regarding performance-, debugging-,
and safety/security-critical features limits their usefulness in
heterogeneous execution settings, where available processor
features or security requirements may evolve over time or
even differ on a per-client level.

Our Multivariant ELF (MELF) approach makes it possi-
ble to provide multiple per-function compile-time variants
within the same binary and flexibly switch between them at
run-time, optionally on a per-thread granularity. As MELFs
are implemented on binary level (linker, loader), they do not
depend on specific language features or compilers and can be
easily applied to existing projects. In our case studies with
SQLite, memcached, MariaDB and a benchmark for hetero-
geneous architectures with overlapping ISAs, we show how
MELFs can be employed to provide per-client performance
isolation of expensive compile-time security or debugging
features and adapt to extended instruction sets, when they
are actually available.

1 Introduction

Modern compilers provide a plethora of options to statically
optimize and instrument the code. Natural examples for
such at-compile-time tailoring include support for hardware-
specific processor extensions, but also compiler-specific de-
bugging, program instrumentation, and sanitizing aid. These
options commonly do not alter the semantics of the code, but
influence its nonfunctional properties with respect to perfor-
mance, safety, security, and compatibility. They are put un-
der the control of the developer, because they reflect impor-
tant tradeoffs: Exploiting special instruction-set extensions

can greatly improve performance [1], but at the cost of los-
ing compatibility to smaller or older processors. Letting the
compiler instrument the code with extra sanity checks in-
creases safety and security [2]–[6], but comes at a signifi-
cant performance cost. This also holds for many higher-level
instrumentations that are inserted manually by the develop-
ers, often by means of the preprocessor: Typical examples
are executable asserts [7], [8], tracing, and logging support,
which have been shown to actively increase safety [9] and
security [10], but are commonly disabled at compile time in
production builds due to their performance overhead.

However, in a world of increasing dynamic hardware and
use-case heterogeneity, the global once-for-all character of
compile-time decisions regarding performance-, debugging-
, and safety/security-critical features limits their usefulness:
In heterogeneous cloud environments or on machines with
heterogeneous ISAs, the availability of processor features
may change over time, even for individual threads. The per-
formance costs of the extra sanity checks might be accept-
able while processing input from external users, but not in
general. In a DevOps setting, it would be useful to temporar-
ily enable tracing and logging, but only for that specific client
who is having troubles.

In short: It would be useful to decide at run time, depend-
ing on the dynamic context, on features that are technically
bound at the compile time of the code. We call this flexibility
semi-dynamic variability, which conceptually lays between
static and dynamic variability in that the code of all variants
is still generated at the compile-time of the project (thus, fa-
cilitating whole-program optimization), but the actually used
variants can be decided on at run time.

While there are special-purpose solutions for semi-
dynamic variability in some domains (e.g, math libraries [11]
or the Linux kernel [12]) that adapt at load or initialization
time to the actually available hardware features, these solu-
tions are limited in scope, require manual intervention, and
typically involve costly extra indirections via proxies [13] or
inherently fragile means of fine-grained run-time code patch-
ing [12]; often they have to prevent inlining.
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Figure 1: Overview about the MELF approach. At compile time (1), parts of the program are compiled into multiple variants
(A and B), which are captured and organized in the linker script in the variant overlay foo (2). In the linker, the matched input
sections are aligned (3) and the resulting output sections (4) are placed in the virtual- and load-address space. At run time
(5), the variants are loaded into different MMViews, which share everything but the decoupled regions; common symbols and
pointers are stable across views.

About this Paper
We present multivariant ELF (MELF) as an easy-to-apply
approach for the inclusion of multiple compile-time variants
within the same binary and flexible switching between them
at run time on function/section granularity. MELFs are im-
plemented solely on binary level, hence mostly independent
of the employed languages and compilers (as long as they
produce ELF-compatible objects), which also makes them
easy to apply to existing software projects. Function vari-
ants are aligned by the MELF linker to the same virtual ad-
dress, so that existing pointers or relocations remain valid
even in case of a variant switch at run time. They can option-
ally be loaded by the MELF loader into additional in-process
address spaces (with the MMViews kernel extension, taken
from [14]), where multiple variants can coexist at the same
time to be applied on a per-thread level.

In particular, we claim the following contributions:

• We provide the MELF concept, as an end-to-end solution
for semi-dynamic variability.

• We describe our MELF linker (an extension to LLVM’s
LLD linker) and the MELF loader.

• We demonstrate the MELF benefits and costs in four case
studies from different domains.

2 The MELF Approach

The MELF approach (see Fig. 1) provides semi-dynamic
variability on function granularity for compiled functions by
aligning functions (and data) with a modified LLD at link
time. At run time, either one of variants is loaded into the

process’s address space or, with the help of the MMViews,
multiple variants can coexist simultaneously. We describe
our approach for executable and linking file format (ELF)
and Linux processes, but are confident that our approach is
generalizable to other binary formats (e.g., COFF, Mach-O)
and process models.

2.1 System Model

We target programs written in compiled languages (e.g., C,
C++, Rust, . . . ) that organize their binary code in regular,
hierarchically-called functions (e.g., unlike Haskell, Forth).
For a subset of all functions (i.e., not main()), it is intended
to include multiple function variants in the final binary. For
these functions, the signature (including the mangled symbol
name) must be equal and their side effects on the program’s
object space must be compatible. The compiler must be able
to put functions into their individual binary section.

2.2 Compile-Time: Static Variant Generation

First (Fig. 1, step 1), we have to statically generate multiple
variants of our functions at compile time. These static vari-
ants can, for example, originate from translating the same
translation unit multiple times with different compiler flags
or CPP configurations. But also, manual variant encoding
(e.g., directly in assembler) or programmatically in the com-
piler via guided-function specialization [15] is possible.

In Lst. 1, we show that this variant generation is simple
with modern build systems, like CMake [16]. In the exam-
ple, which is taken from our SQLite3 case study (Sec. 3.1),
we compile the SQLite source files twice into two static
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libraries.1 Both libraries are compiled with different pre-
defined CPP macros and linked into the main executable.

# Collect SQLite 3 Source files
file(GLOB SRCS sqlite3/*.c)

# The Non-Debug Version
add_library(sql-ndebug STATIC ${SRC})
target_compile_options(sql-ndebug -DNDEBUG=1)

# The Debug Version
add_library(sql-debug STATIC ${SRC})
target_compile_options(sql-debug -DSQLITE_DEBUG=1)

# Case-Study Executable: main
add_executable(main main.cc melf_loader.c)
target_link_libraries(main sql-ndebug sql-debug ..)

Listing 1: Multi-Variant compilation with CMake

Besides the multi-variant compilation, the ELF [17] stan-
dard forces us to put each function and each data object into
their own section. In order to understand this requirement,
we now take a quick detour into the ELF standard, which is
also necessary to understand the MELF linker.

Excursus: ELF Sections vs. Functions The executable
and linking file format (ELF) is a format that is used for link-
ing and for loading programs. An ELF contains multiple
byte streams (code, data, debug info, . . . ) that are arranged in
two views: In the link view, those byte streams are called sec-
tions, while they are called program headers (or segments)
in the load view. Additionally, the link view makes use of
symbols as named offsets into a section. Further, relocations
specify how to edit a byte stream while linking it to a vir-
tual address. In a nutshell, the linker arranges the link-time
sections into load-time segments while resolving (most) re-
locations.

The basic unit of linking is the section and not a (language-
level) function or (global) data object. In fact, the linker
has no idea about those, and it cannot (due to compile-time
resolved relocations) break up a section back into smaller
pieces. Therefore, as we want to align the function’s start
address, we have to instruct the compiler2 to put each func-
tion (and data-object) into its own section, named like the
(mangled) function name. For example, the C++ function
void foo(int) will end up in the section .text._Z3fooi.

For data objects (i.e., global variables and read-only data),
we require that all variants share the same (data-) object
space. For this, the linker has to throw away all but one in-
stance, which requires each variable to be located in its own
section3. Furthermore, we restrict the program’s interpreta-
tion of the shared data objects: As objects can be accessed
from different variants, we require that the interpretation of

1Static libraries are fundamentally different from dynamic libraries.
They are only collections of object files, (nearly) transparent for the link-
ing process, and induce no run-time overhead.

2GCC/Clang: -ffunction-sections, MSVC: /Gy
3GCC/Clang: -fdata-sections, MSVC: /Gw

objects, statically and heap allocated, must be compatible
across all variants. This means that matching struct fields
have to be aligned, that language-level types have to be of
equal size, and that variants must have a common under-
standing of the object state. Nevertheless, this restriction
holds for many automatically-applied program transforma-
tions as they are nonfunctional by design. In Sec. 4, we will
discuss this topic further.

After the multi-variant compilation, we end up with a set
of ELF object files whose sections s can be categorized as
follows: A variant v = {sv,1 . . . sv,n} is a collection of sec-
tions that should be visible together; all sections of one vari-
ant have to have the same section type (e.g., code, read-only
data, . . . ), which becomes the variant type. A variant over-
lay (overlay, o) is a collection of |o| equally-typed variants
and a variant-overlay group (group) is a set of overlays that
are semantically connected. For a program, multiple inde-
pendent overlays and groups can exist. For example, besides
a math-code overlay (non-AVX vs. AVX2), there can another
overlay group (code and read-only data) for the SQLite li-
brary that allows to en/disable executable assertions. We call
all sections that are not covered by a variant the remaining
sections.

2.3 Link-Time: Virtual-Address Alignment

After the compile-time preparation, the linker generates the
multi-variant ELF (Fig. 1, steps 2-4), for which it must match
and align sections from the different variants within an over-
lay such that they end up with the same virtual address. For
our implementation, we modified LLD [18], the linker of the
LLVM project that is a drop-in replacement for the GNU ld
and gold. We will describe the required linker modifications
on base of this implementation. However, they should be
easily generalizable to other linkers as well.

First (Fig. 1, step 2), the developer must be able to ex-
press the relationship between sections, variants, and over-
lays. For this, we add a VARIANT_OVERLAY statement to the
linker-script language, which is the command language of
ld (and gold/lld). The statement contains multiple variant
statements, which define, similar to other commands, pat-
terns that are matched against the input sections, which the
linker extracts from the object files. The lexically first variant
of an overlay is its primary variant. In the overview exam-
ple, we see a linker-script fragment that defines an overlay
foo with two variants (A, B), which collect the code (text)
sections from the respective foo_{A,B}.o.

Thereafter (Fig. 1, step 3), we align the input sections
within an overlay: For this, we first match sections from
the different variants and identify those sections that occur
only in one variant: Starting with all sections captured by the
overlay, we group the sections by the key (variant, section
name) and select a single section as representative for that
key. While there is usually only one candidate section, ELF
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v\n f g h X J
A sA,f sA,g sA,X sA,J

B sB,f sB,g sA,h sB,X sB,J

C sC ,f sC ,g sC ,J

Figure 2: Input-Section Table (extended running example)

section groups4 and weakly-defined functions5 can result in
multiple candidates. In the former case, we can choose any
section as the group representative, in the latter case we ap-
ply the usual override semantic for weakly-defined functions,
but only within the group. With the representatives, we end
up with one section sv,n per (variant, name)–pair and form the
overlay’s input-section table, which tabularizes the results.
In the table (Fig. 2) for the (extended) running example, we
see that f and g are present in all variants and h is private to
variant B. For partially-filled columns (e.g., X) that contain
more than one entry, we report an error.

With the table in place, we validate and manipulate the
symbol table. With multivariant compilation, the linker will
encounter the same symbol, which is a named pointer into
a section, multiple times. Instead of reporting an error, we
collect duplicate symbols and delete all but the symbol that
points to the primary variant. In this process, we verify that
each variant’s symbol points to the same column and has the
same offset.

While we usually report an error if this check fails, some
compiler optimizations (e.g., function-body deduplication)
can result in two aliased symbols pointing to the same sec-
tion in one variant but not in the other. However, as we can-
not align this section to two different sections in the other
variant, we have to solve this rare situation differently: We
equip each variant with a jump table (e.g., sA,J in Fig. 2) and
insert a jmp instruction for one of the aliased symbols. In
each variant’s jump table, the instruction jumps to the cor-
rect section and offset, while we globally redirect the original
symbol to the jump-table entry in the primary variant.

With all symbols being aligned within their column, we
align the columns by padding each sv,n to maxvi∈o svi,n. As
this can induce large padding gaps, we use variant-local sec-
tions as gap-filler sections. Currently, we perform the filling
greedy as we did not encounter a situation where a (more)
optimal algorithm would be required. In the example (Fig. 1,
step 3), the gray areas are padding and sB,h is used for filling
the gap in B that sA,g provokes.

After column alignment, we place the variants in the
ELF’s virtual address space (Fig. 1, step 4). For this, we uti-
lize the fact that the load address (where the loader will copy
the section to) and the virtual address (where the section
“thinks” it is) can disagree. We combine all sections for a
variant (table row) in an output section; an established linker-

4e.g., used for deduplicating functions from C++ template expansions.
5Weak functions are only used if no non-weak counterpart is defined

internal concept that acts as an intermediate step between
input sections and segments. Each output section is linked
(i.e., relocated) to the virtual address of the primary variant,
while we load them, by default, sequentially. Thereby, load
and virtual address only match for the primary variant. All
remaining sections can be linked as usual.

The result of MELF is a regular ELF binary, which is
only special with regard for the non-primary output sections,
whose load and virtual addresses do not match.

2.4 Run-Time: Multivariant Loading

With the MELF binary constructed, it is time to bring our
multi-variant program to execution. As this depends on the
indented usage scenario, this section will only provide the
necessary primitives from which different use cases can be
constructed (see Sec. 3).

First, we have to decide which variant(s) will execute and
initialize the program state. As primary variants are loaded
to their virtual address, the program automatically starts ex-
ecuting in those variants, and it also loads their data-segment
contents. This also requires us to only run the constructors
for global variables of the primary variant, which is done by
discarding the initialization-array entries of the other vari-
ants.

For the usage of MELF’s, we provide two operation modes
by the MELF run-time loader library: With the base mode,
only one variant per overlay is active at the same time, which
the developer can replace with an explicit call into the run-
time library. For this, we use the mprotect() system call
to make the respective overlay region writable and copy the
contents of the desired variant to the primary virtual address.
To make overlay and variant regions known to the MELF
loader, the linker places symbols with virtual and the load
addresses before and after each output section; with these,
the program can reference all variants in the program. Usu-
ally, the developer will only replace text and other read-only
sections, as switching data variants would reinitialize the
global variables. Also, for this mode to work, we demand
that no thread currently executes or has a call frame for a
function from the replaced overlay. This program state is
called global quiescence [14].

As the base mode is of limited use for multithreaded
programs, we also provide the MMView mode, based on
MMViews [14]. Thereby, multiple variants can be active si-
multaneously and threads can switch their variants for which
they only have to be locally quiescent (i.e., they do not
execute a replaced function). As this mode requires the
MMView kernel extension, we give a brief overview of its
semantic.

Excursus: MMViews With MMViews, a process can
have multiple, closely-synchronized, concurrently-active ad-
dress spaces, which have the same structure: all mappings
are equally placed and address-space modifications work si-
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multaneously on all MMViews. Also, the contents of most
mappings are synchronized by sharing the physical page
frames. Only for mappings that the user explicitly marked
as decoupled, the kernel will establish a copy-on-write map-
ping, whereby those mappings contain MMView-local mem-
ory. Also, threads can switch between MMViews and can
create a new MMView by cloning their current view.

The existing [14] MMView Linux extension implements
MMViews as separate page-table trees. So, since an
MMView is technically a separate address space, they induce
higher memory overhead (for the page tables) and increase
the TLB pressure if two MMViews are active on the same
core. Also, page-table modifications, although the extension
synchronizes them lazily, have a higher run-time overhead.
However, switching views is rather cheap as the kernel only
exchanges a single CPU register.

Coming back to MELF, we use the described extension to
execute multiple variants in one process concurrently: We
decouple all primary-variant regions, allowing the user to
create one MMView for each desired variant combination.
With the described base-mode primitives, the user can load
different variants into the MMViews. Thereby, an MMView
can combine these variants from the variant-overlay groups.

In Fig. 1, step 5, we see two MMViews α and β, which
currently have loaded variant A resp. B. We see that the non-
multivariant text and data remain shared and only in the over-
lay region (0x2000-0x3000) is decoupled. Since MMViews
have a synchronized structure and the MELF linker aligned
the start address of the multivariant functions, all common
symbols (e.g., call f) and function pointers (e.g., gptr)
are globally valid and threads in different views can easily
co-operate.

With MMViews in place, a thread can switch variants
on function-call granularity, for which call and return edges
have to perform inverse MMView switches. For this, the
run-time library provides a trampoline function (Lst. 2) that
switches to the desired MMView, forwards arguments, re-
stores the previous MMView and returns the return value. As
the trampoline is not part of an overlay, it can also transfer
the control flow between two multi-variant functions. The
call protocol for MELFs defines the following call-chain:

1. Call call_with_helper with a variant index, function
pointer and its arguments

2. Switch to the variant, save old return pointer and replace
it by call_return

3. Jump to provided function pointer

4. Return from provided function pointer (now returns to
call_return)

5. Switch back to the variant before the call-chain started

6. Jump to saved, original return pointer, ending the call-
chain

_threadlocal variant_id_previous = 0;
_threadlocal variant_return = nullptr;
variant_id = 1;
func_pointer = &do_work;
func_arg = 10;
// 1. Call trampoline.
call_with_helper(variant_id , func_pointer , func_arg){

asm {
// 2. Switch view
push variant_id
syscall_variant_switch
// Syscall result is old variant id. Save it.
xchg %rax, variant_id_previous@threadlocal
// Load new return pointer "call_return".
leaq call_return(%rip), %r10
// Exchange return pointer with "call_return".
xchgq %r10, (%rsp)
// Save old return pointer.
xchgq %r10, variant_return@threadlocal
// 3. Jump to function pointer.
jmp func_pointer

}
}

// 4. "func_pointer" will return to this function.
call_return(){

asm {
// 5. Load old variant id and switch back.
mov variant_id_previous@threadlocal , %rax
push %rax
syscall_variant_switch
// 6. Return to original return pointer.
jmp variant_return@threadlocal

}
}

Listing 2: Trampoline function call_with_helper ensures
to call call_return at the end of the call chain to switch
back to the caller’s original application variant.

Since the protocol always requires jumping back to the origi-
nal application variant, we only demand local quiescence per
thread.

3 Case Studies

As the MELF approach is a general semi-dynamic–
variability method for compiled languages, we now provide
multiple case studies to demonstrate the potential of our ap-
proach. We will justify, for each case study, its relevance,
describe the usage of MELF, and show its benefits with a
quantitative evaluation. Thereby, we will only focus on the
MMView mode as we consider it the more interesting appli-
cation mode for MELF.

Benchmark Setup

We cover the server-centric scenarios with a dual-socket
system (Intel Xeon Gold 6252, 2.10GHz, 2×24 physical
cores, 2 NUMA nodes, 384 GiB DRAM, hyperthreading dis-
abled). Additionally, we use a smaller machine with more
restricted hardware (Intel i5-6400, 4 cores, 32 GiB DRAM,
no hyperthreading). On the software side, we used Debian
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SQLite 3.39.4 (a29f994989) (both views)
-O3 Required for scalability
DEFAULT_MEMSTATUS=0 Required for scalability
PAGE_CACHE_OVERFLOW_STATS=0 Required for scalability
ENABLE_RTREE=1 Required for workload
Unify struct sqlite3_mutex Required for MELF compatibility
Perf. View NDEBUG=1 Debug View SQLITE_DEBUG=1
Functions: 1432 Functions: 1726
.text=1008.5 K .rodata=27.4 K
.data=2.6 K .bss=1.2 K

.text=1294 K .rodata=51.6 K

.data=2.6 K .bss=2.3 K
MELF Overlay
Aligned Functions: 1310 Padding: 372.3 K (13.48 %)
VM Size: .text=1314.3 K .rodata=61.8 K .data=2.7 K .bss=2.5 K

Table 1: Overview over the SQLite case-study binary

GNU/Linux 11 with an MMView-enabled Linux 5.15 kernel
with Spectre and Meltdown mitigations enabled.

3.1 Case-Study: SQLite Asserts

With this case study, we demonstrate that MELF is able to
overlay multiple handwritten code variants and that we can
performance-isolate both variants for thread-contextualized
execution (with MMViews). More concretely, we build a
MELF binary that contains two variants of the SQLite li-
brary: (1) the debug view, where assert() statements and
additional sanity checks are enabled, and (2) the perfor-
mance view, where these are disabled. Within the same pro-
cess, multiple threads execute read-only SQL queries, either
with the debug view or the performance view. We vary the
total number of threads and the number of threads in the de-
bug view, as well as the benchmark machine.

Scenario Justification Unlike compiler-based security
measures, executable asserts [7], [8] are inserted manually
by the developers to test high-level invariants at run time.
They are an intrinsic part of debug builds, which often in-
clude extended data structures and code paths to check ap-
plication behavior. Thereby, assertions not only assist the
development of safer programs [9], but they are also an ac-
tive security measure [10]. However, due to their complex-
ity, size and performance impact, they are usually disabled
in production in favor of a performance/release build. With
MELF, we can provide a more restricted debug view with
enabled assertions, for example, for SQL queries that han-
dle user input. Technically, this case-study is of interest as
it shows how to manage multiple variants that interpret data
differently.

Workload We use a geospatial proximity search, since
handling two-dimensional data requires complex algorithms
and data structures. On the list of 2856 UK postcodes, we
issue SQL queries that find the geographically closest code
that is not further away than 25 km for randomly chosen
coordinates in the UK. For handling coordinates, we use
SQLite’s R-Tree plugin.
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Figure 3: SQLite Performance Measurements

Benchmark In Tab. 1, we provide a comprehensive
overview about the used benchmark binary. Since SQLite’s
default configuration did not scale beyond a single core,
we had to disable some statistic features to limit con-
tention. While running both views concurrently worked
out-of-the-box for most parts, we had to unify the struct
sqlite_mutex as the debug view requires additional fields
to track mutex ownership. Without a unified data type, the
address calculation for array elements differed and provoked
a crash. In total, we had to change 30 lines of code.

For a seamless interoperability, MELF aligns 1310 func-
tions by inserting a total of 372.3 KiB of padding, which
is 13.48 percent of the combined size in the virtual address
space. MELF already optimized the required padding by us-
ing 109/202 view-private functions in the performance/de-
bug view as gap fillers. For the mutable global data in (.data,
.bss), we align both variants but only use the debug view’s
data.

Performance Isolation In order show that the MELF
approach is able to isolate the impact of the debug view on
threads in the performance view, we run the benchmark with
1 to 16 threads, whereby 0 to 16 threads execute permanently
in the debug view, while the others execute in the perfor-
mance view. We also execute the benchmarks on our 4-core
and on our 48-core machine in order to determine if core
contention has a significant impact. We execute each bench-
mark for 60 seconds, record the number of completed SQL
queries

In Fig. 3, we show the per-thread SQL-query rate and
normalize it to the results where all threads execute in the
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performance view (y-axis = 0), which we consider the base-
line for this experiment. For the baseline case, we also show
the speedup to confirm that contention within SQLite itself
is not the cause of performance degradation but only the
usage of MMViews and MELF. As expected, we see near
perfect speedup on the 48-core machine, while the speedup
caps around 4 on the 4-core machine. Please note the highly
asymmetric color scale in this figure.

In the debug view, we see a significant impact of the ad-
ditional assertions and sanity checks on the query rate. As
the slowdown on the 48-core machine (-39 % to -72 %) is
significantly worse for more threads in the debug view than
on the 4-core machine (-38 % to -43 %), we conclude that
the additional sanity checks provoke more contention due to
additional state locking.

In the performance view, we see that the number of threads
in the debug view has no consistent impact on the other
threads, and some results even indicate better indicate a
higher performance with using MMViews. Therefore, we
take a look at the relative standard deviations for the baseline
case to determine if these results stem from SQLite itself.
While we cannot derive any conclusions from the relative
standard deviation for the 4-core machine (0.3 %–12.4 %),
the 48-core machine (rel. stdev.: 0.3 %–1.7 %) suggests that
the MELF approach also has a small impact on the perfor-
mance view. If compared to the observed relative query
rates (-4 % to 3.4 %), we conclude that MELF has a negative
performance impact of around 1 percent and adds around 2
percent of jitter. Nevertheless, in relation to the impact of
globally-enabled assertions, the MELF approach isolates the
impact of additional sanity checks in SQLite successfully.

3.2 Case-Study: Thread Pools on
Heterogeneous Instruction-Set Machines

With this case study, we show that MELF eases the program-
ming of non-homogeneous multicore machines where cores
share a common subset instruction-set architecture (ISA) but
have additional heterogeneous ISA extensions. More con-
cretely, we provide a thread-pool abstraction (see Fig. 4) that
accepts jobs together with a hint on which core type the
job will run best. Depending on the current load, the pool
schedules the job (preferably) on a hinted core where it uses
a MELF-prepared code view that exploits the core-specific
ISA extensions or on another core with a different code view
that is optimized for that core. Thereby, the thread-pool user
fully utilizes her heterogeneous architecture without the need
for adapting her code paths for the specific architecture.

Scenario Justification While the first non-uniform mul-
ticores (e.g., , ARM big.LITTLE [19]) came with a uni-
fied ISA, recent work [20]–[22] investigates on the perfor-
mance and energy benefits of heterogeneous ISAs. How-
ever, ISA diversity poses a programmability challenge as
programmer are not keen to distribute their program/data
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Figure 4: Heterogeneous-ISA Thread Pool

flow manually over different ISAs. Therefore, researchers
proposed fault-and-migrate [23], cross-core invocation [24],
and multi-kernel [25] methods to manage this variability.
With MELF, we take a step towards the seamless integration
of heterogeneous ISAs into our programs. Technically, this
case-study is of interest as we make use of different cross-
cutting compiler options on instruction level, something that
is not easily expressible on a language or ifdef level.

System Model As we have no heterogeneous-ISA ma-
chine at hand, we simulate one by virtually dividing one
NUMA node of our 48-core machine into two partitions (see
Fig. 4): On the 12 AVX2 cores, modern AVX/AVX2 vector
instructions are available, while the other 12 cores lack this
ISA extension.

Work Load For our benchmark, we choose two job
types that benefit differently from the AVX2 instructions:
While jobs with a recursive Fibonacci (n=36, Base/AVX:
57.9 ms) do not benefit at all, the duration of a Matrix-
multiplication (565× 565) job drops from 58.3 ms to 38 ms
on the AVX2 core. For the matrix multiplication, we use the
Eigen C++ library (v3.4), which uses explicit ISA special-
ization according to the given compiler flags. Please note,
that we have chosen the parameters such that the base-core
execution time match. As work load, we submit 1000 jobs
with 0 to 100 percent of the jobs being matrix multiplications
(see Fig. 5) and record the end-to-end latency of those 1000
jobs as well as the accumulated job execution time.

Thread-Pool Variants Based on Eigen’s non-blocking
thread pool, which already implements thread-local queues
and work stealing, we build three thread-pool abstractions
that all take a function pointer and a scheduling hint as a
job description: The 1 Pool, Base only variant executes all
jobs on a single 24-worker thread pool and only uses code
without AVX2 instructions; the scheduling hint is ignored.
The 2 Pool variant uses two 12-worker thread pools, one for
the base cores and one for the AVX2 cores; each core ex-
ecutes code specialized for its ISA and workers are pinned
to its core; no stealing happens between the pools; and the
scheduling hint selects the thread pool. The 1 Pool, MELF
variant uses a single 24-worker pool that utilizes MELF:
Each worker thread is pinned to its core and executes in a
MELF code view that is specialized for its ISA. If a worker
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Figure 5: Latency and accumulated processing time for a
mixed work load on a 24-core heterogeneous-ISA machine
with different thread-pool configurations. To scale latency
and processing time, the processing time was divided by 24.

queue runs empty, the worker first tries to steal from workers
with the same ISA (see Fig. 4, 1. local steal) before steal-
ing from other ISAs (2. global steal). Please note that steal-
ing from a foreign ISA queue works seamlessly as the local
MMView exposes the same functions but implemented with
different instructions.

Results In Fig. 5, we show the evaluation results on one
NUMA node of our 48-core machine, where we compare
the three pool variants with respect to required processing
time. Please note, that we divided the accumulated process-
ing time by 24 to match its scale to the end-to-end latency.
The remaining difference between latency and processing
time stems from pool overheads and execution phases where
not all workers execute jobs.

For the Base only variant, processing time is, as expected,
only spent in the base code view (less bright colors). The
slight increase in both curves stems from the increased cache
pressure if 24 cores execute matrix multiplications in paral-
lel compared to executing recursive Fibonacci calls on the
(cached) stack. Although the 2 Pool variant spends the least
amount of processing time, its end-to-end latency for 1000
jobs is significant at both ends as it only utilizes 12 cores at 0
and 100 percent matrix-multiplication jobs. Also, it achieves
its best latency at 60 percent multiplications, which is ex-
pected from the ratio between a Fibonacci job (57.9 ms) and
an AVX2-Matrix multiplication (38 ms).

Finally, the MELF-enhanced 1 Pool variant, performs bet-
ter in both dimensions: Compared to Base only, it uses less
processing time as it actually utilizes the AVX2 instructions,
whereby also its latency is better. Compared to the 2 Pool
variant, it always utilizes all cores resulting in a consistently
low latency and only when more than 60 percent of the sub-

mitted jobs are Matrix-multiplications requires more pro-
cessing time.

3.3 Case-Study: Profiling in memcached

In this case study, we dynamically en-/disable compiler-
introduced function-level profiling on a per-thread basis with
MELF and MMViews in memcached (v1.6.10). Similar to
the SQLite study, we combine two memcached variants in
one binary:(1) In the profiling view, the compiler (with the
-pg flag) introduced mcount() calls into function prologues
that record the invocation, while (2) the performance view
contains the same functions but without profiling code. On a
per-connection basis, worker threads either select the profil-
ing or the performance view. For our benchmark, we gradu-
ally change the number of profiled connections and measure
the request handling time within memcached.

Scenario Justification As developers cannot emulate
complex production environments, it is often up to the De-
vOps team to detect and explain performance anomalies af-
ter deployment. For this function-level profiling, as provided
by gprof [26], would provide precise insights about call fre-
quencies and caller–callee relationships, but its cost prohibits
us to have it permanently enabled. Also, in a multi-tiered en-
vironment, where only some clients incur a certain anomaly,
it is desirable to enable profiling only selectively for cer-
tain threads and requests. Because gprof consists of both, a
compiler instrumentation to modify function translation and
a statically-linked profiling library, developers are unable to
define exclusive code paths they want to profile. They can ei-
ther profile the whole application or nothing at all. Thanks to
MELF, the DevOps team can enable gprof-profiling dynam-
ically and selectively, thus limiting the impact to a minimum.

Technically, this case-study is of interest as we reduce
contention on cross-cutting features.

Work Load As a work load for our multi-variant
memcached server, we use the memtier benchmark, which
is a specialized benchmark for key-value databases [27]. On
the client side, we use its default SET–GET ratio of 1:10 and
start 16 threads with 50 clients each, resulting in 800 clients
with 800 active connections to memcached. We execute the
benchmark on the same machine, but pin memcached to one
NUMA node, while pinning memtier onto the other. We
record data request latencies until each view has serviced 100
million requests.

Benchmark Unlike other servers, memcached has an
event-based design and the worker threads execute a state
machine for each connection. Thereby, connections can
be easily rebalanced between workers and one worker rou-
tinely handles many connections. To match the 16 memtier
threads, we start memcached with 16 worker threads that, to-
gether, service all client requests.

For new connections, we decide whether it will execute
in the performance or the profiling view, mimicking scenar-
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ios where certain IP ranges or customers are profiled. In
our benchmark, we use enable profiling for the first N (0 %-
100 %) connections to demonstrate the impact of profiling.
As long as the profiling percentage threshold is not met, each
connection will be profiled. Because memcached distributes
connections round-robin across workers, each worker thread
will serve both, profiling and performance connections. Con-
sequently, every worker thread switches between perfor-
mance and profiling view continuously across the whole
benchmark, which increases TLB pressure since they live
in distinct address spaces. Nevertheless, as we will show,
this penalty is still better than to enable profiling globally
and could even be improved by a profiling-aware connection
scheduling.

For our measurement, we record the execution time of the
drive_machine() function, which is responsible for exe-
cuting the per-connection state machine, making the func-
tion crucial for the request latency. For each benchmark run,
we record request latencies until we reach 100M data points
for each view. Therefore, for the mixed-mode benchmarks
(25 %-75%), we will end up with 200M data points.

Results In Fig. 6, we show violin plots for the
drive_machine() execution times separated by requests
serviced that were serviced in the profiling or the perfor-
mance view. Please note, that the 25% performance violin
on the left matches the 25% profiling violin on the right as
both stem from the same benchmark run. Also, we include
the base variants, which show the results for a memcached
server with statically enabled or disabled profiling without
MELF or MMViews. For preparing the violin plots, we limit
each data set (100M data points) to the [0.01%, 99.99%]-
interval to remove outliers and randomly sample 1 million
representative data points.

By comparing the base variants, we see that profiling has a
significant impact on memcached’s most important function
and increases its execution time by 175 percent. Further,

for both views, the violin with the maximum number per-
formance/profiling connections match the results of the base
variant (i.e., performance base ↔ 0% performance). From
this, we can conclude that MELF enables us to enable and
disable profiling dynamically at run-time without having a
continued run-time impact.

For the profiling view, we see that the impact of profil-
ing per request increases if more connections use the pro-
filing path. This behavior can be explained by looking at
the gprof-induced into the code: For each function, gprof
allocates a counter variable that the compiler-introduced
mcount() function uses to keep track of the number of in-
vocations. As the activated memcached logic is rather small
and executed by 16 threads in parallel, all workers in a profil-
ing view access the same small set of per-function counters.
Together with the fact that gprof does not even cache-align
these counters, profiling results in many cross-core cache in-
validations. Further, this effect scales with the percentage of
threads working in the profiling view as more cache conflicts
happen.

For the performance view, we see a slight increase in the
median and tail latencies if more connections are shifted to
the profiling view. Since workers need to switch views if
the currently active MMView does not match the next pro-
cesses connection, MELF increases the TLB pressure, im-
pacting also workers in the performance view. Also, the fre-
quent cache invalidations in the neighboring profiling view
increases the cache-coherence traffic and puts a burden on
the memory bandwidth. Nevertheless, even with 75 percent
of all connections being profiled, the median over the base
variant only increases by 7.6 percent for performance con-
nections, which is far less than activating profiling globally.
Inspired by these results, one could restrict profiling to a sin-
gle worker thread or a small set of connections to get a statis-
tic picture of the whole memcached process without inflicting
the described cache conflicts from invocation counters.

In total, the MELF approach was able to make the static
gprof method dynamically and selectively applicable with-
out requiring a restart of the process and without touching
the compiler.

3.4 Case-Study: ASAN in MariaDB

With this case study, we demonstrate that MELF is able
to handle multiple variants in complex C++ projects.
We compile MariaDB (> 20000 functions) once with
(-fsanitize-address) and once without address sani-
tizer [5] and use the MELF linker to overlay both variants in
the same binary. At run-time, we decide on a per-user basis
whether a client’s SQL queries are executed with sanitized
or unsanitized MMView.

Scenario Justification Sanitizers [28], like Address-
Sanitizer [5] and UBSan [29], are often implemented as
compiler transformations and they are usually used at de-
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MariaDB (10.11)
ASAN View Normal View
Functions: 21448 Functions: 20986
.text=16777.4 K .text=4661.6 K
.rodata=1082.2 K .rodata=1079.2 K
.data=173.9 K .data=173.9 K
.bss=218.3 K .bss=218 K
MELF Overlay
Aligned Functions: 20615 Padding: 12487 K (33.87 %)
VM Size: .text=16934 K .rodata=1099 K .data=180 K .bss=224 K

Table 2: Overview of the MariaDB case-study binary

Clients Normal View ASAN View

Normal / ASAN Median 99% Median 99%

24 / 0 63 us 73 us – –
18 / 6 63 us 74 us 90 us 104 us
12 / 12 63 us 74 us 89 us 102 us
6 / 18 64 us 74 us 90 us 102 us
0 / 24 – – 89 us 102 us

Base w/o MELF 47 us 55 us 89 us 100 us

Table 3: Query Latency for Sysbench oltp_point_select
benchmark on MariaDB with and without AddressSanitizer
(ASAN).

velopment time to find bugs. However, due to their high
overheads, they are then disabled in production, although
they could provide an additional level of sanity checking
for code that handles user input. With MELF, we enable
AddressSanitizer, which was found to be the most common
sanitizer [28], for individual database users in MariaDB,
whereby we mimic a trusted–untrusted customer model.
Technically, this case-study is of interest as MariaDB is a
multi-threaded, large server application. With ASAN being
strongly invasive on the code and data path, it helps to un-
derstand how MELF scales for large code bases.

Work Load As a work load, we use the sysbench [30]
oltp_point_select benchmark. On our 48-core machine,
we execute and pin MariaDB to NUMA node 1, while sys-
bench runs on NUMA node 2. We start MariaDB in the
one-thread-per-connection mode, and always have 24 con-
current sysbench connections. To satisfy the mentioned
trusted–untrusted customer model, we execute two sysbench
instances, each of which connects as different database user.
To vary the load between the ASAN/no-ASAN view, we
vary the distribution of the 24 connections between both in-
stances. We use the output of sysbench, which records the
end-to-end latencies per transaction, as our result data.

Results In Tab. 2, we see an overview of the MariaDB
binary produced by the MELF linker. First, we see that the
application of ASAN increases the number of functions, as
the compiler cannot inline and eradicate some of the smaller
functions. We also see that the ASAN variant’s text section is

2.6 times larger than the normal text section. Together with
the fact that 98 percent of the normal view’s functions had to
be aligned and, therefore, could not be used for gap filling,
explains the larger percentage of padding bytes (33.87 %).

In Tab. 3, we show the end-to-end latency results for
the oltp_point_select benchmark. First of all, we see
that AddressSanitizer has a significant impact on the per-
formance of MariaDB as it increases the median latency by
89 percent. This latency penalty is also inflicted on clients
whose queries are processed in the ASAN view. However,
also clients in the normal view have a 36 percent increased
query latency. This increase can be explained by the fact that
the ASAN run-time library still has to intercept and wrap
heap allocations, which are known to have a major impact on
query performance[31], in order to keep its shadow-memory
map up to date. However, in the normal view, MELF only
removes the additional checks from the query processing and
the additional overhead from the run-time library remains.

4 Discussion

In the following, we discuss limitations and benefits of the
MELF approach.

Multi-Variant Data As we have discussed in Sec. 2.3,
the MELF approach is currently limited to a strict data-object
sharing semantic, where all variants share the data sections
of the primary variant. For this, the data and its interpretation
have to be compatible in all variants, which can, as we have
seen with SQLite (Sec. 3.1), require some manual program
modifications.

The following program demonstrates this limitation as it
is incompatible in three different dimensions: (1) If a lock is
allocated in A, the object would be too small to usage in B,
(2) the field L has different offsets, and (3) both variants have
a different idea about the lock state (1 vs. -1).

// Variant A
struct lock { int L; }
#define LOCKED 1

// Variant B
struct lock {int O; int L;}
#define LOCKED (-1)

Supporting these cases in general is impossible, as it would
require complete program understanding on the language
level. However, for many cases, one could use semi-
automated transformer functions [13], [32], [33], known
from dynamic software updates, to synchronize two copies
of the data.

For data initialization, we use the variant that is active at
the initialization time. Therefore, we use the global data seg-
ment and invoke all global constructors in the primary vari-
ant. Function-local static variables are, in line with C/C++
semantics, initialized at the first call of the respective func-
tion and, thus, in the context of the then active variant.

Besides strict data sharing, the MELF linker also supports
a strict data-object partitioning. For this, the linker has to
keep all data sections, let each variant only reference its own
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data sections, and we would run the constructor of all vari-
ants at program start. In this use case, the developer has
to ensure that objects do not flow (i.e., across the univariant
parts of the program) across variant boundaries. This mode
could be useful for using multiple incompatible versions of
libraries that make heavy use of global state.

MMView Dependency We acknowledge that MELF
plays out its benefits particularly in combination with
MMViews, which we use to back the same virtual-address
range with different contents depending on the active thread
of a process. The MMView approach has disadvantages,
such as memory overhead and increased TLB pressure [14].
Because the exact runtime overhead of MMViews highly de-
pends on the size of virtual memory and its physical data
(plain data in RAM, file-backed mappings), a general over-
head cannot be quantified. Furthermore, the measurable ef-
fect on the TLB directly correlates to a thread’s view switch
frequency and memory access patterns, which is individ-
ual to every application. For view creation and switch-
ing, a mean runtime penalty of 7µs with a standard devi-
ation of 6µs has been measured on earlier benchmarks for
memcached and MariaDB [14]. In another recent study of
memcached, the cost of MMViews were only measurable
for context-switches between different views. In general,
however, a transition from one view to another is compa-
rable to a context-switch between two threads of two dif-
ferent processes. As an alternative, multithreaded MELFs
could be facilitated through CPU-assisted segmentation [34],
such as supported by the IA-32 architecture [35]. With seg-
mentation, we would load every variant into its own seg-
ment and each thread could select its variant by setting its
code-segment selector register accordingly. On the IA-32
platform, where call and jump instructions implicitly use the
code segment, this would be equivalent to MMViews. With-
out the separate address-space clones, the memory and TLB
overheads would be replaced by a minor offset calculation
overhead that segmentation entails.

Although segmentation contradicts Linux’s flat memory
model, MELF binaries could easily be supported if (a) the
kernel provides means to initialize and switch hardware
segments and (b) if the code-segment register is preserved
between thread switches. Unfortunately, segmentation as
a virtual memory primitive is currently not in fashion on
modern platforms. Particularly, it has been removed from
AMD64 [35] and was never available on RISC architec-
tures. Given that segmentation has other advantages, such
as safety benefits, we would applaud a renaissance of this
virtual memory primitive. However, even without segmenta-
tion, we could theoretically implement text variants, using
position-independent code coupled with the segmentation
remnants in AMD64 (FS/GS register) to facilitate variant-
adherence for indirect jumps. However, this would require
intrusive linker and compiler modifications.

Switching For both modes (base and MMView), we de-
mand that switching the variant takes only place at func-
tion boundaries. This limitation stems from the fact that
MELF only aligns function start addresses, but all other
intra-function addresses could be unaligned. For example,
saved return addresses may not be valid in the other vari-
ant. However, with additional compiler support, this qui-
escence requirement could be weakened: For example, if
the compiler would also align call sites and would make
the call frames at those call sites compatible across variants,
we could switch variants flexibly at every call and return
edge. Such an extension could be beneficial for supporting
workloads on heterogeneous ISA as it would, for example,
ease thread migration between different ISAs without stack
rewriting [36].

Applicability and Benefits With our case studies, we
have shown that the MELF approach is applicable to a
wide range of programs. By covering not only C but also
C++ projects, which result in more complex object files
(e.g., C++templates are a main user for COMDAT), we have
demonstrated that MELF works on multiple programming
languages. Further, as our approach only requires a com-
piler to produce “sectioned” object files, we are in principle
language agnostic and widely applicable.

Also, MELF is agnostic to the source of the code
modification. As shown, we support automatically-
introduced compiler transformations (e.g., profiling) as well
as manually-encoded variants (e.g., SQLite). Thereby,
MELF covers more scenarios than pure language-based
methods, like aspect-oriented programming (AOP) [37].
Further, as MELF prepares everything at link time, static
binary validation could make MELF safer than dynamic-
binary instrumentation (e.g., Intel Pin [38]), which was crit-
icized to ease an exploiter’s life [39].

Further, we have shown that MELF’s semi-dynamic ap-
proach to variability is able to cover a wide range of use
cases that are security-related (assertions, ASAN), provide
DevOps with deeper insights (profiling), and ease the support
of coming hardware generations (heterogeneous ISAs). We
believe that especially the DevOps and the heterogeneous-
ISA scenario will require semi-dynamic variability, since:
(1) We need more dynamically-observed metrics to under-
stand our complex systems down to the individual hot path.
(2) Extensible architectures, such as RISC-V platform [40],
with its many ISA compatibility levels, will boost the spread-
ing of heterogeneous-ISA machines. (3) In many settings,
we simply have not the choice to drop existing applications
in favor of from-scratch developed software.

Although three of our four case-studies do not dynami-
cally switch views during runtime, we were able to gain rea-
sonable performance isolation in each application scenario:
For profiling in memcached we achieved performance iso-
lation of profiling connections and do dynamically switch
a thread’s view based on the connection currently being
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served. In the other case-studies, we were able to obtain:
(a) Performance isoliation and improved robustness for dy-
namic assertions in SQLite. (b) Performance maximization
via ISA-specialized function variants with thread-pools. (c)
Performance isolation and improved security for ASAN in
MariaDB. Additionally, function pointers work “out-of-the-
box” for MELF, which eases a programmer’s life.

We also imagine that MELF can be used in an em-
bedded setting, where no MMU is available to implement
MMViews: For these machines, MELF can prepare variant
overlays of in-flash text segments, which then can be ex-
changed at run-time by partially rewriting the flash memory.
Thereby, multiple software variants can be supported in one
device without inducing indirection overhead.

Also, we have seen that MELF’s function alignment only
induces moderate memory overheads (see Tab. 1), while
the run-time overhead in combination with MMViews de-
pends on the concrete case study. Nevertheless, even in the
memcached case study, where threads switch on a regular ba-
sis between views, the run-time overhead was limited to less
than 8 percent. Furthermore, Fig. 6 shows that the median
runtime latency in the performance view is equal for the base
and 0% variant.

Summarized, MELF is a cheap, language-agnostic
method to lift static code variability to the semi-dynamic
level. MELF is widely applicable and provides us with a
framework for further explorations of semi-dynamic vari-
ability.

5 Related Work

Technically, text overlays [41], [42] are a closely related
topic: They were used to reduce a program’s primary-storage
requirement by loading only the currently used subset of
functions into the memory. While overlays have a renais-
sance [43], [44] for managing complex memory hierarchies,
they are fundamentally different as they partition one pro-
gram to fit it into a smaller memory. In contrast, MELF
overlays multiple but similar programs in one binary and,
with MMViews, execute those variants concurrently.

On the language level, aspect-oriented programming [45]
if applied dynamically [46], [47] is similar to MELF. How-
ever, as aspects only add code before, after, or around func-
tion (calls), it does not support variants that stem from
generic and cross-cutting code transformations.

Function Multiversioning [48] is a GCC extension to gen-
erate multiple versions per function, each of which special-
ized for the availability of different instruction-set exten-
sions. The loader selects one variant on function granularity,
which, unlike with MELFs, cannot be changed later on.

Fat binaries support multiple processor architectures by
embedding program versions for the different processor
types into one executable or library [49]–[54]. The variant
to execute can be either selected directly by the operating

system [54] or through a polyglot opcode string that is in-
terpretable by both architectures [52]. Nextstep’s Mach-O
format, which was later adopted by Mac OS X, even sup-
ports “multifat” binaries that allow more than two different
architectures (68K, x86, HP PA-RISC, SPARC) [50], [53],
[54]. Going one step further, Cha et al. propose a system for
generating multi-architecture binaries that, in contrast to fat
binaries, use the same program string which is transformed
in a way to be correctly interpretable by multiple processor
types [55]. Similarly to the architecture heterogeneity of fat
binaries, the Windows Portable Executable format has sup-
port for multiple platforms as it contains a DOS and Win-
dows program in parallel [56]. Whereas the DOS part is
usually just a small stub nowadays, it has been used to ship
binaries that work under DOS and Windows in the past. In
contrast to MELF, in all these approaches the variant selec-
tion covers the whole program, that means it is determined
at process start, and cannot be changed later.

6 Conclusion

Multivariant ELF (MELF) is as a binary-level approach for
the inclusion of multiple compile-time variants within the
same binary and flexible switching between them at run
time on function/section granularity. This facilitates the im-
plementation of semi-dynamic variability, that is, dynamic
switching between feature-variants at run time that are never-
theless generated and known at compile time, whereby even
highly cross-cutting compiler features become configurable
at run time. In combination with a kernel extension for in-
process address spaces, this even works on the level of indi-
vidual threads.

MELFs are implemented solely on binary level and mostly
independent of the employed languages and compilers.
Function variants are aligned by the MELF linker to the
same virtual address, so that existing pointers or reloca-
tions remain valid even in case of a variant switch at run
time. Thereby, MELFs are relatively easy to apply to exist-
ing projects. We demonstrated this on the example of four
case studies, ranging over a wide range of multithreaded C
and C++ projects. In all cases, MELF was able to isolate the
costs and benefits of the compiler/developer-induced code
variants to those threads, that use it at run time.
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A Artifact Appendix

Abstract

This artifact includes all tools and a documentation to run the evaluation for
multivariant ELFs, a binary-level, language-agnostic approach to semi-dynamic
variability. It details how to run and modify four case studies using the provided
artifact package, which includes benchmark scripts, a virtual disk file and the
MMView kernel and its initrd. Users run the virtual machine via QEMU and
execute scripts, which allow to generate and display benchmark data for each
case-study. The four case studies are: (a) MariaDB ASan, (b) SQLite assertions,
(c) Heterogeneous-ISA thread-pool, and (d) memcached profiling to prove the
wide applicability of MELFs. Each case study includes instructions on running,
exporting results, and modifying the benchmark. Next to the case-studies, users
can also modify the provided MELF linker, the crucial component in creating
MELFs, to examine the generation and placement of variant generation.

Scope

Users investigating the MELF benchmarks are able to verify that the only de-
pendencies and changes to-be-made to make use of MELFs in applications are:
(1) Express the existence of multiple application variants inside an application-
specific linker script file (2) Extend existing application code to declare and
load variants. (3) Use the llvm-based MELF linker to link application modules
(object files) to the final MELF executable.

For each individual case-study, users can reconstruct the claimed benefits of
MELFs described within the paper, which is mainly performance isolation and
increased binary size depending on the workload. All evaluators, however, need
to keep in mind that running those benchmarks in a virtualized environment
will not provide the same results we were able to get for our paper. Your final
result highly depends on the hardware your host machines use. But the main
concept of performance isolation shall be visible in each benchmark executed.

Contents

This archive provides the user with every evaluation resource needed to run our
evaluation setup. Namely, this archive consists of:

• run.sh. A script that starts a virtual machine via QEMU.

• hda.qcow2. The virtual disk file of the virtual machine which includes the
whole artifact evaluation, based on debian 11.7.

• linux-mmview-vmlinuz-5.15. A Linux kernel fork of version 5.15 which
includes the operating system abstractions for MMViews.

• initrd-linux-mmview-vmlinuz-5.15. The corresponding initrd of the MMView
kernel fork.
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• README.txt. A documentation file giving a detailed explanation of every
benchmark setup and how to build, modify and draw benchmark data.

To start artifact evaluation, the user has to have QEMU installed onto their
execution environment and to start run.sh. After the VM booted, the user can
get access to the system by logging in either as the user ”user” or as ”root”. The
user has a Makefile inside his home directory which contains a target for each
benchmark to generate the data and export that data into different formats.

Hosting

The artifact evaluation archive is hosted on the domain of our institution and can
be downloaded from there: https://sra.uni-hannover.de/Publications/

2023/melf-usenix-atc23/

Requirements

Most of our artifacts do not require specialized hardware. For the heterogeneous-
ISA artifact, we execute code making use of AVX512 instructions. In order to
run this artifact your host machine has to support AVX512, but most of modern
hardware does that by default. Otherwise, the list of requirements is:

• Modern CPU with at least 16 cores. If you have less you have to adjust
the run.sh script and the benchmarks inside the VM.

• At least 8GB RAM, the more the better.

For software requirements, you need to have installed:

• KVM module installed and loaded on your host machine.

• QEMU virtualization software stack.

Users can deviate from the given requirements, but doing so requires manual
modification of run.sh and the benchmark inside the virtual machine.
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APRON: Authenticated and Progressive System Image Renovation

Sangho Lee
Microsoft Research

Abstract
The integrity and availability of an operating system are im-
portant to securely use a computing device. Conventional
schemes focus on how to prevent adversaries from corrupt-
ing the operating system or how to detect such corruption.
However, how to recover the device from such corruption
securely and efficiently is overlooked, resulting in lengthy
system downtime with integrity violation and unavailability.

In this paper, we propose APRON, a novel scheme to reno-
vate a corrupt or outdated operating system image securely
and progressively. APRON concurrently and selectively re-
pairs any invalid blocks on demand during and after the sys-
tem boot, effectively minimizing the system downtime needed
for a recovery. APRON verifies whether requested blocks are
valid in the kernel using a signed Merkle hash tree computed
over the valid, up-to-date system image. If they are invalid,
it fetches corresponding blocks from a reliable source, veri-
fies them, and replaces the requested blocks with the fetched
ones. Once the system boots up, APRON runs a background
thread to eventually renovate any other non-requested invalid
blocks. Our evaluation shows that APRON has short down-
time: it outperforms conventional recovery mechanisms by
up to 28×. It runs real-world applications with an average
runtime overhead of 9% during the renovation and with negli-
gible overhead (0.01%) once the renovation is completed.

1 Introduction
Ensuring the integrity and availability of an operating sys-
tem is crucial to the security of a computing device which is
repeatedly threatened by adversaries. Specifically, the adver-
saries might compromise the operating system by exploiting
unpatched vulnerabilities contained in its kernel, system ap-
plications, or shared libraries and, if exists, underlying sys-
tems software like a hypervisor. Then, they would perma-
nently tamper with the system image (or files) stored in local
storage to persist their control over the device (i.e., persis-
tent malware [24, 29, 81]) or destroy it (i.e., destructive mal-
ware [53,77,82]). The computing device is no longer available
in a valid form and demands a recovery as soon as the corrup-

tion is recognized [51, 98, 125].
Secure boot is a mechanism to boot a system while check-

ing its integrity [8, 13, 52, 104, 124]. A trusted bootloader—
whose authenticity is ensured by cryptography and hardware-
based mechanisms [9, 102, 122]—measures (i.e., calculates a
cryptographic hash over) the operating system and compares
the measured value with an expected value before loading
and passing control to the operating system. Any mismatch
between them means that the operating system is in an invalid
state. Specifically, the operating system might be (a) manip-
ulated to embed a persistent backdoor, (b) destroyed to no
longer work, or (c) downgraded to run a vulnerable old ver-
sion. All these invalid states require an urgent fix.

Secure boot is suitable for securing devices with image-
based management. They consistently deploy and update de-
vices with read-only immutable system images built on the
server-side and maintain their integrity on devices. However,
such write protection is typically enforced within the kernel
and adversaries can bypass it if they compromise the ker-
nel [46,58,87]. Thus, operating systems require secure boot to
verify the system image integrity, which is straightforward as
expected measurement values are consistent or updated with
coordination in image-based operating systems. Many mod-
ern operating systems for containers [36,39,45,61,86,96,105],
Internet of Things (IoT) and edge devices [25, 37], mobile
phones [6], mixed reality headsets [74], and personal comput-
ers [1, 10, 83, 117] adopt both.

System recovery is a logical next step when secure boot
has found any corruption from a system image. Numerous se-
curity systems [3,4,17,26,51,79,98,108,125] even frequently
reboot and recover (or reprovision) devices to protect them
against persistent security and privacy threats and failures.
However, to the best of our knowledge, all existing recovery
mechanisms suffer from the following problems:

• Downtime. If a system recovery is necessary, a computing
device enters a recovery environment [18,75,94,120]. The
recovery environment does not support any other regular
tasks. That is, the system is unavailable during recovery,
which is especially unacceptable to reboot-based security
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systems [3, 4, 17, 26, 51, 79, 98, 108, 125] and mission-
critical tasks like edge computing [12, 84].

• Inefficiency. A recovery is inefficient because it does not
know which files or blocks it must fix in advance. Existing
mechanisms either (a) overwrite the entire system image
to the local storage [40, 50, 51, 98, 125], which not only
takes long but also is bad for storage lifetime [73, 103],
or (b) verify each file or block to selectively fix corrupt
one [54, 91], which is slower than the former.

• Staleness. A recovery typically relies on a system image
backup stored in the local storage [50] which can be out-
dated or corrupt. To avoid this problem, it might fetch
the latest system image from a reliable source, but this
downloading prolongs the overall recovery time.

In this paper, we propose APRON, a novel approach to se-
curely and progressively renovate an operating system image
on a device. Unlike existing recovery mechanisms that fully
repair a corrupt system image in a recovery environment and
then boot into the recovered system, APRON securely boots
into the system while repairing it, minimizing the downtime.
It runs in the fresh kernel context to concurrently and selec-
tively renovate any corrupt blocks which are requested during
the system boot and after the startup of the operating system.

APRON intervenes between applications or kernel threads
and the local storage containing a system image to verify and
renovate invalid blocks on demand. To verify a requested
block, APRON uses a Merkle hash tree [72] which is com-
puted against an up-to-date system image and certified by
an authorized entity (i.e., an administrator or an operating
system vendor). Any hash verification error implies that a
requested block is invalid (i.e., corrupt or outdated). Then,
APRON renovates it by retrieving a corresponding block from
a reliable source such as a remote server, verifying it, and
overwriting it at the correct storage location. Once the system
boots up, APRON additionally runs a background thread to
renovate any other non-requested invalid blocks in the end.
Also, it deduplicates any redundant network transfers.

We prototype APRON for Linux. We use device map-
per [95] for intervening storage access and dm-verity [112]
for hash tree verification. We also use Network Block De-
vice (NBD) [22] as our remote storage protocol and its client,
nbdkit [60], for userspace operations including HTTPS.

APRON ensures short system downtime and low runtime
overhead. For a recovery with a 10 GiB system image in the
servers with fast (local 1 Gbit/s) and slow (remote 100 Mbit/s)
networks, APRON adds at most 5 s and 32 s to the downtime,
respectively. It outperforms the full recovery by up to 28×
and 12× and the delta recovery by up to 120× and 23×.
APRON incurs an average runtime overhead of 9% on diverse
real-world application tests from the Phoronix Test Suite [89]
during renovation. Once the renovation is completed, the
runtime overhead becomes negligible (0.01%).

In summary, this paper makes the following contributions:
• APRON is the first system that securely and progressively
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Figure 1: Secure boot with a normal recovery.

renovates a device’s system image. It effectively mini-
mizes the downtime due to recovery or update.

• APRON suggests a unified way to fix various types of
invalid blocks including corrupt and outdated blocks.

• APRON shows its effectiveness (i.e., short downtime and
low runtime overhead) in various configurations.

The source code of our prototype is publicly available at
https://github.com/microsoft/APRON.

2 Background and Motivation
We will explain the background and motivation of APRON.

2.1 Secure Boot and Recovery
Secure boot ensures that a valid operating system will start
to run on a device when it is powered on or reset. It has
various synonyms, such as authenticated, measured, trusted,
and verified boot, depending on security policies enforced or
emphasized. Trusted or verified boot typically stops the boot
procedure if it recognizes any verification failures, and initi-
ates a recovery procedure. Authenticated or measured boot
proceeds with the boot procedure while extending measure-
ment values to a hardware component like Trusted Platform
Module (TPM) [119] to report them to a system administrator
for a later decision. In this paper, secure boot denotes trusted
boot.

Figure 1 shows a procedure of secure boot with a recov-
ery. When a device is powered on or reset, its CPU starts
to execute the first-stage bootloader or boot firmware (e.g.,
Unified Extensible Firmware Interface (UEFI) [121], core-
boot [30]) typically stored in a boot ROM. The first-stage
bootloader verifies and loads the second-stage bootloader
(e.g., GRUB [41], BOOTMGR [38]) stored in a specific loca-
tion of local storage (e.g., EFI System Partition (ESP)). The
second-stage bootloader verifies an operating system image
stored in local storage. If the verification fails or a recovery
has been requested, it boots into a recovery environment.

The recovery environment runs an agent program for re-
covery. The agent either downloads the latest system image
from a known source and validates it or uses a local backup
image to re-image the device [4, 18, 40, 50, 51, 98, 108, 125].
Finally, the agent reboots the device or directly loads the re-
covered kernel (using kexec in Linux [47] or Kernel Soft
Reboot (KSR) in Windows [76]) and lets the kernel proceed
the remaining boot procedure.
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2.2 Image-based System Management
Modern operating systems for specific use cases or casual
end-users, such as container, IoT, edge, mobile phone, and
personal computers [1, 6, 10, 25, 36, 37, 39, 45, 61, 74, 83, 86,
96, 105, 117] adopt image-based management to confine and
simplify their deployment and update procedures. They split
device storage into at least two different partitions including
read-only system partition and read-writable user partition.

The system partition contains security-critical data which
must not be modified, including kernel, drivers, and shared
libraries. The kernel prevents any processes from modifying
the partition [11, 112]. Administrators or operating system
vendors generate or update a golden image for the system
partition, sign it, and deploy it to devices. Instead of deploy-
ing the entire image, they can calculate and deploy the delta
between the new and old images [34,70,91]. The device either
fully overwrites the received image into its system partition
or selectively updates it based on the delta. Later, a trusted
bootloader verifies whether the system partition contains a
valid, up-to-date system image before loading it.

The user partition contains casual applications and data
populated by a user, which are not related to the device’s
critical operations. These user applications and data can be
backed up by cloud storage, which is out of this paper’s scope.

2.3 Motivation and Goal
Secure boot and image-based operating systems are widely
deployed to real-world computing devices. However, their
recovery mechanisms suffer from three important problems,
motivating us to design a new approach that progressively
recovers the device not only during its secure boot but also
after the startup of its operating system (Figure 2).
Downtime for recovery. While the recovery environment
repairs the system image, a computing device cannot conduct
any regular operations that it is expected to do. That is, it
cannot ensure a critical requirement, availability, for a long
time. It is critical especially if the device leverages frequent
reboots and recoveries to mitigate attacks and failures [3,4,17,
26, 51, 79, 98, 108, 125] or is deployed for mission-critical or
time-sensitive tasks like edge computing [12, 84]. We cannot
simply get rid of the recovery environment because we need a
separate environment to securely trigger a recovery procedure

at least. Instead, what we aim to achieve is
G1. Two-stage progressive recovery
Our approach progressively recovers the system image dur-
ing and after the system boot. Its validity is ensured by a
separate recovery environment.

Inefficient recovery due to unknown state. Existing re-
covery approaches are inefficient as they do not know which
portions of the system image are corrupt in advance. Inspect-
ing the entire image to identify invalid blocks and calculate
delta takes long (§6.2). Instead, what we aim to achieve is
G2. State-aware on-demand recovery
Our approach identifies whether certain portions of the sys-
tem image are corrupt and recover them on demand.

Insecure recovery due to stale image. Existing recovery
approaches rely on a system image backup stored in local
storage to recover the system image, which might be outdated
or corrupted by adversaries. Fetching the latest image from a
reliable source is a viable solution, but it is slow even if the
image is compressed. Instead, what we aim to achieve is
G3. External up-to-date recovery
Our approach fetches authenticated portions of the system
image on demand from a reliable external source.

3 Threat Model and Assumption
We consider how to recover a computing device from a re-
mote adversary who can compromise the device’s operating
system including its kernel and system binaries as well as
the underlying systems software (e.g., hypervisor and host
operating system) if exists. The adversary can bypass the at-
tack detection or prevention mechanisms for the device using
unknown attack vectors, enabling initial compromise. After
they compromise the system, they tamper with its storage to
persist their control over it or corrupt it [24, 29, 53, 77, 81, 82].

We assume that the adversary cannot tamper with the
boot firmware like other bare-metal recovery or reprovision
systems [17, 51, 79, 108, 125]. Existing hardware compo-
nents (e.g., boot ROM [66], TPM [119], and security co-
processors [9, 102, 122]) protect the boot firmware and its
configuration data including the public key certificate of the
authorized entity (i.e., administrator or operating system ven-
dor) and a signed system version number for rollback pre-
vention. We assume that a user or an administrator can rec-
ognize system compromise (e.g., by monitoring its external
behaviors) and recover the system by forcefully rebooting
it [14,40,118,125] to let the boot firmware initiate a recovery
procedure. In addition, the authorized entity generates and
signs system images and metadata as well as operates servers
for device management.

4 Design
In this section, we explain the design of APRON. It consists of
(a) storage layer to authentically and progressively renovate
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the system partition during the system boot and after the
startup of the operating system, (b) server to maintain and
deploy valid, up-to-date system images, (c) client to fetch
specific portions of the system image and deliver them to the
storage layer for renovation, and (d) recovery environment to
initiate APRON.
Storage layer. The APRON storage layer is responsible for
on-demand renovation of invalid blocks (§4.2), background
prefetching (§4.3), and deduplication (§4.4). All these tasks
are securely performed based on a Merkle hash tree computed
over a valid, up-to-date system image.
Server and client. The APRON server manages and updates
operating system images, generates metadata for them (e.g.,
a Merkle hash tree), signs them, and deploys them to clients.
The APRON client establishes a secure session with the de-
ployment server to fetch data blocks based on the APRON
storage layer’s requests and deliver them to it (§4.5).
Recovery environment. The APRON-aware recovery envi-
ronment prepares a minimal environment to initiate an oper-
ating system with APRON including operating system kernel
and APRON metadata (§4.6).

4.1 Initialization
APRON is integrated into the operating system kernel and
can be configured via boot parameters and APRON metadata.
The APRON metadata includes a root hash value concatenated
with a version number and Merkle hash tree calculated over
the system partition. This metadata is prepared and signed
by the APRON server (§4.5). APRON stores critical system
files (e.g., kernel and device drivers) in the system partition
and APRON metadata in a separate partition (to avoid circular
dependency when calculating a hash tree). The APRON-aware
recovery environment verifies this setting (§4.6).

During the system boot, APRON updates and verifies the
APRON metadata. In particular, APRON attempts to download
the latest APRON metadata from the APRON server. Then, it
verifies the metadata’s signature using the authorized entity’s
public key and checks whether the metadata’s version number
is greater than or equal to the reference version number. Both
public key and reference version number are secured along
with the boot firmware (§3). If the downloaded metadata is
new and valid, APRON replaces the locally stored one with it
and proceeds the system boot. If the version number in the
new metadata is greater than the reference version number
in the secure storage, APRON monotonically increases the
reference version number accordingly as it means there is a le-
gitimate update. Otherwise, APRON discards the downloaded
one and proceeds the system boot with the local metadata.

When the operating system sets up a root filesystem,
APRON prevents it from directly using the system partition.
Instead, APRON places a layer (i.e., a virtual storage device or
partition) over the system partition and makes the operating
system use the storage layer as a read-only root filesystem.
This layer allows APRON to intercept any accesses to the sys-
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Figure 3: On-demand renovation. Access to a valid block is verified
and served using local storage ( 1 – 3 ). Access to an invalid block is
served with the help of a remote server ( 1 – 5 ).

tem partition, verify the individual accesses, and selectively
fix the corresponding blocks using the Merkle hash tree.

4.2 On-Demand Renovation
If any process or thread (except for APRON itself) requests
a portion of the system partition, APRON transparently pro-
vides valid data either as they are or after renovating them.
Figure 3 shows the overall on-demand renovation procedure.
When a userspace application or kernel thread attempts to
read data contained in the system partition via a filesystem or
block device interface ( 1 ), APRON retrieves a corresponding
disk block expected to contain the requested data and verifies
it using the Merkle hash tree ( 2 ). If the retrieved block is
valid (Figure 3a), APRON provides it to the requester ( 3 ).
To avoid repetitive storage retrieval and validation (i.e., to
skip 2 ), APRON maintains retrieved read-only blocks in an
in-kernel cache and serves them to requesters later without
re-validation until the blocks are evicted from the cache. Also,
APRON identifies whether a requested block is a zero block
(i.e., a data block filled with zeros) by checking the hash
tree (i.e., a corresponding leaf node). In that case, it quickly
provides a zero buffer to the requester without accessing the
storage device at all. These two performance optimization
methods are motivated by dm-verity [112].

If the retrieved block is invalid (Figure 3b), APRON fetches
a corresponding block from the deployment server via the
client and then verifies it ( 3 ). If the fetched block is valid,
APRON provides it to the requester ( 4 ) to proceed with its
execution immediately. Then, APRON overwrites the content
of the fetched block into the corresponding location at the
local storage device ( 5 ). If the fetched block is invalid due
to network error, server error, or some other reason, APRON
retries the block fetching up to a predefined number of times.
If APRON fails to obtain the block eventually, it reboots the
device to re-initiate the renovation.

In addition, APRON concurrently retrieves the same block
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from the local and remote storage (i.e., conduct 2 and 3
in parallel) to effectively hide network overhead. APRON
activates this concurrent fetching only if it confirms that the
storage device is corrupt (i.e., it finds at least one invalid block
during previous storage accesses) to avoid sending meaning-
less network requests.

4.3 Background Prefetcher
The on-demand renovation might fail if the network connec-
tion between a device and the deployment server becomes
unreliable or slow during execution. To avoid such failures,
APRON has background prefetcher that is a kernel thread to
detect and renovate invalid blocks of the system partition
in advance. Background prefetcher only inspects unidenti-
fied blocks which exclude verified or renovated blocks and
zero blocks according to the hash tree. To support the former,
APRON maintains a verified block bitmap and updates its bits
when certain blocks are verified or renovated by either the
on-demand renovation or background prefetcher.

Background prefetcher inspects unidentified blocks if it
does not interfere with storage accesses from other applica-
tions or kernel threads. Specifically, it wakes up if there is
no in-flight access to the local storage device, checks and
renovates a limited number of unidentified blocks, and sleeps.

Background prefetcher detects consecutive invalid blocks
and renovates them together (i.e., a batch renovation) to im-
prove the renovation throughput. It is different from the on-
demand renovation which repairs each urgently required block
with low latency. When background prefetcher wakes up, it
inspects the system partition from the first unidentified block
according to the verified block bitmap to detect the first in-
valid block. Next, it inspects the following blocks until it
encounters a valid block or the number of inspected blocks
exceeds a threshold, resulting in a sequence of consecutive
invalid blocks. Then, it fetches corresponding blocks from
the remote storage together, verifies them, overwrites them
to the local storage device for batch renovation, and updates
the verified block bitmap accordingly. It uses an exponential
backoff algorithm to dynamically adjust the threshold.
Disconnection. If background prefetcher has fully inspected
the entire system partition, APRON can be completely discon-
nected from the deployment server until the device gets reset
or it needs to renovate or update the system image (§4.6).

4.4 Deduplication
APRON might repetitively fetch equivalent blocks from the de-
ployment server for renovation, which meaninglessly stresses
both server and network. APRON avoids it using a data dedu-
plication technique. APRON fetches a corresponding block
from the server to renovate an invalid block only if it is unique
or no other equivalent block of it has been fetched. If not,
APRON uses the fetched equivalent block (in the local stor-
age) for renovation. The APRON server creates deduplication
metadata representing equivalent block sets in the system

image. Specifically, the APRON server analyzes the system
image (or the leaf nodes of its hash tree) to find equivalent
blocks with the same content, forms sets by grouping equiva-
lent blocks, assigns a unique identifier to each set, and adds
this information to the deduplication metadata. The APRON
server deploys and maintains the deduplication metadata to-
gether with the hash tree. To minimize the metadata size,
APRON excludes unique blocks and zero blocks from it.

On the device, APRON maintains deduplication informa-
tion consisting of two data structures for maintaining equiv-
alent block sets and tracking whether and which block be-
longing to each set has been fetched, respectively. During
initialization, APRON retrieves equivalent block set informa-
tion from the deduplication metadata and constructs a static
block map which associates each non-unique block (member)
with its set identifier (member 7→ setID). Later, APRON con-
firms whether a block is unique by looking up the static block
map. If APRON fetches any non-unique block belonging to an
equivalent block set for the first time (during the on-demand
or background renovation), it adds this information to a dy-
namic block map to reversely associate the fetched block’s set
identifier with the fetched block (setID 7→ f etched). This dy-
namic block map allows APRON to serve a duplicated block
request using an equivalent block stored in the local storage.

Figure 4 shows the on-demand renovation with dedupli-
cation. The deduplication neither affects access to any valid
blocks nor any invalid but unique blocks. Thus, we do not
re-explain them (refer to §4.2). Instead, we focus on access
to an invalid non-unique block that might have an equiva-
lent block fetched and stored in the local storage device. If
APRON confirms that a requested invalid block is not unique
and its equivalent block is stored in the local storage device
according to the deduplication information (i.e., the dynamic
block map) (Figure 4a 3 ), APRON retrieves the equivalent
block from the local storage device and verifies it ( 4 ). If
the retrieved equivalent block is valid, APRON provides it to
the requester ( 5 ) and fixes the invalid local block ( 6 ). In
addition, it skips 4 if the equivalent block is in the cache.

If the requested invalid block has no fetched equivalent
block or the retrieved equivalent block is invalid (Figure 4b),
APRON fetches a corresponding block from the deployment
server and verifies it ( 4 ), provides it to the requester ( 5 ),
and renovates the invalid local block ( 6 ). APRON updates
the deduplication information ( 7 ) by adding the requested
block as a fetched one to the dynamic block map.

Figure 4c depicts how deduplication works. In the begin-
ning, APRON constructs a static block map using equivalent
block sets and an empty dynamic block map. At time t, a
thread requests an invalid and non-unique block bk with the
set ID of s0. APRON fetches a corresponding block from the
deployment server since the dynamic block map has no entry
for s0 and adds s0 7→ bk to the dynamic map. At time t +1, a
thread requests b j with the set ID of s1. Again, APRON fetches
a corresponding block from the server and adds s1 7→ b j to
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renovating the requested block and updating the deduplication information ( 1 – 7 ).

the dynamic map. At time t +2, a thread requests bi with the
set ID of s0. This time, APRON retrieves bk from the local
storage to renovate bi because the dynamic map has s0 7→ bk.

Background prefetcher with deduplication. Background
prefetcher prioritizes unique or never-fetched invalid blocks
which must be remotely renovated over other invalid blocks
which can be locally fixed. To this end, it treats invalid non-
unique blocks as semi-valid if their equivalent blocks have
been fetched and does not renovate them urgently. At the
end of storage inspection, it spawns another kernel thread,
duplicator, to renovate all semi-valid blocks using their lo-
cal equivalent blocks. Like background prefetcher, duplicator
wakes up if there is no in-flight access to the local storage de-
vice, renovates a single set of consecutive blocks, and sleeps.

4.5 Server and Client
The APRON servers are responsible for two major tasks: gen-
erating and maintaining operating system images as well as
their associated metadata; and deploying them to the APRON
client running in computing devices via a secure channel.

Management server. The management server is a trusted
server operated by administrators or operating system ven-
dors. It generates APRON metadata when a system image
is newly generated or updated. First, it analyzes the system
image to zero out unallocated data blocks—to handle sparse
images—and then calculates a hash tree over the image. Next,
it generates deduplication metadata (i.e., figures out equiv-
alent block sets) using the hash tree’s leaf nodes. Then, it
monotonically increases the hash tree version number, and
signs a concatenation of the root hash value and version num-
ber. Lastly, it stores the system image and APRON metadata
in a dedicated place to be accessible to the deployment server.

Deployment server. The deployment server provides system
images and APRON metadata to APRON devices. It interacts

with devices via secure channels (i.e., TLS) to prevent external
entities from manipulating or eavesdropping on communica-
tion. To handle data block requests, it uses a remote storage
protocol (e.g., iSCSI, NBD) or a regular data transfer protocol
(e.g., HTTP, FTP). The former lets it efficiently and trans-
parently handle requests but is bad for portability. The latter
introduces overhead including bloated packet headers and
extra translation but ensures portability and proximity (e.g.,
with Content Delivery Network (CDN)). They respectively
have pros and cons, and which one we are expected to choose
one of them according to system configurations.
Client. The APRON client is a userspace service that interacts
with the deployment server. It establishes a secure channel
with the server and uses either a remote storage protocol or a
regular data transfer protocol to receive data blocks.

Unlike the management server, APRON does not trust both
the deployment server, which could be operated by a third
party like a CDN, and the userspace client, which might
be compromised by an attacker. The in-kernel APRON stor-
age layer always verifies received blocks with the versioned
APRON metadata signed by the management server. Even
if the deployment server or the userspace client arbitrarily
tampers with or downgrades the system image or metadata,
the in-kernel APRON layer identifies such attempts based on
signature and version mismatch.

4.6 First-Stage Recovery and Update
APRON can start to work only if a device has critical system
files (i.e., kernel and device drivers for storage and network)
and APRON metadata in valid forms. APRON relies on a first-
stage recovery environment to ensure it. If any of them are
invalid, the trusted bootloader enters the recovery environment
to obtain their latest versions from the deployment server. A
conventional APRON-unaware recovery environment would
fully download both critical system files and APRON meta-
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data from the deployment server via HTTPS. In contrast, an
APRON-aware recovery environment only needs to download
the metadata via HTTPS while selectively renovating invalid
portions of the critical system files via APRON. It is possible
because a recovery environment typically shares the same
(or minimized) kernel with the main operating system, so we
modify its kernel to incorporate APRON.
Scheduled update. APRON works as an update mechanism
for non-compromised operating systems. If APRON recog-
nizes an update during system execution, it stages updated
APRON metadata on the APRON partition. Through a reset,
the recovery environment replaces APRON metadata with
the staged one. Finally, APRON progressively updates the
system during its execution. Unlike existing update mecha-
nisms [5,7,16], APRON does not need to reserve extra storage
to temporarily store a (potentially large) update file and apply
multiple update files in a proper order.

5 Implementation
In this section, we explain how we develop APRON for Linux.
Initialization. We use initramfs to configure and initial-
ize the APRON storage layer as the root filesystem. Our
initramfs checks whether the signature and version number
of a given root hash value are valid using the public portion of
our signing key and reference version number we provision
to TPM NVRAM indexes. If they are valid, it initializes the
APRON storage layer and mounts it at a specific point. Further,
it creates a tmpfs filesystem to use it as a writable overlay
for the storage layer using overlayfs [23] to support applica-
tions that only work with a writable root filesystem. Lastly, it
sets up the overlaid storage layer as the root filesystem. We
store the initramfs in the system partition, so it is secured
by APRON as well.
Storage layer. We implement the APRON storage layer as a
loadable kernel module written in approximately 1,200 lines
of C code on Linux kernel version 5.11. The storage layer
prototype consists of two virtual block devices representing
local and remote block devices, respectively.

The local virtual block device intervenes with any access to
the system partition and is exposed as a regular block device
to the outside (to work as the root filesystem). It is based on
the device mapper framework [95]. The storage layer verifies
all accesses to the local block device using a Merkle hash
tree based on dm-verity [112]. It also spawns background
prefetcher as a kernel thread to inspect the local block device
while maintaining and using the deduplication information. If
the storage layer finds any corrupt blocks from the local block
device, it renovates them by copying corresponding blocks
from the remote virtual block device to the local virtual block
device while verifying them using the hash tree. That is, it
securely makes the content of the local block device equiv-
alent to that of the remote block device. This approach also
allows APRON to use a local backup device for renovation
instead of a remote device if the network condition is bad or

a new system image is buggy. Background prefetcher uses
kcopyd [114] to efficiently copy a sequence of data blocks
between block devices. In addition, APRON’s every storage
access is cached by the dm-bufio interface.

The remote virtual block device interacts with the deploy-
ment server via the APRON client based on NBD [22]. We use
NBD because it is easy to configure (both in client and server)
and has a small code base. If needed, APRON can work with
other advanced remote block storage such as Ceph [123] for
better efficiency, reliability, and scalability.

Server. The APRON server has a program to identify equiva-
lent block sets written in 170 lines of Rust code, Bash scripts
to automate the creation, management, and deployment of
system images and APRON metadata, and other server appli-
cations. It uses zerofree [126] to zero out the unallocated
blocks of system images, veritysetup [112] to calculate
Merkle hash trees over them, and openssl [115] to sign the
root hash value concatenated with a version number. Also,
it uses nbdkit [60] and lighttpd [65] to operate an NBD
server with TLS and an HTTPS server, respectively.

Client. We prototype the APRON client using
nbd-client [32] and nbdkit [60]. It uses nbd-client
to connect to the APRON server via NBD over TLS and
configure this session as the storage layer’s remote block
device. Also, to interact with the APRON server via HTTPS,
it uses nbdkit to spawn a device-local NBD server backed by
the HTTPS server and lets nbd-client connect to this local
NBD server (via a Unix domain socket). nbdkit relies on its
curl plugin to fetch specific portions of system image files
from the HTTPS server using HTTP range requests.

Recovery environment. The APRON recovery environment
is based on the Linux kernel with APRON and initramfs. It
includes curl [107] to download APRON metadata from the
APRON server, and both nbd-client and nbdkit to renovate
essential system files (i.e., kernel and initramfs) in the sys-
tem partition on-demand. Unlike the main operating system,
we decide not to spawn background prefetcher in the recov-
ery environment because it only runs for a short amount of
time. In addition, it contains kexec [47] to directly load the
renovated operating system’s kernel.

Bootloading. We decide not to manipulate the first-stage
bootloader (UEFI [121]) of our computing device (e.g., re-
place it with coreboot [30] or replace its platform key with our
own key [52]) because it is too intrusive and does not affect
the core functionalities of APRON. Instead, we rely on the
current UEFI-based Linux boot procedure that securely loads
the second-stage bootloader, GRUB [41], signed by Linux
vendors (i.e., Canonical in our case) through Shim [68] signed
by Microsoft. We modify GRUB’s configuration to make it
load either the operating system with APRON or the APRON
recovery environment.
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6 Evaluation
We evaluate APRON by answering the following questions:

• RQ1. Does APRON ensure short system downtime when
it needs to renovate the system during boot? (§6.2)

• RQ2. How much overhead does APRON add to other
workloads during renovation? (§6.3)

• RQ3. What is the network usage of APRON for renova-
tion? (§6.4)

• RQ4. Does APRON complete renovation within a reason-
able time? (§6.5)

6.1 Setup
Device. We use a desktop computer featuring an Intel Core
i5-8500 CPU (six cores) at 3 GHz, 8 GiB of RAM, and 1 TB
of PCIe 3.0 NVMe SSD as an APRON device.
Server. The APRON device frequently downloads small data
packets to selectively renovate the system image, subject to
network performance. To evaluate it, we use two APRON
servers with fast and slow network configurations. The fast-
network server is a mini computer connected to the 1 GbE
switch that the APRON device is also connected to. It features
an Intel Pentium Silver J5005 CPU (four cores) at 1.5 GHz,
8 GiB of RAM, and 500 GB of SATA SSD. The slow-network
server is a Virtual Machine (VM) in Microsoft Azure. It
features two Intel vCPUs at 2.6 GHz, 8 GiB of RAM, and
30 GiB of Premium SSD. According to netperf [49], the me-
dian TCP latencies between the device and two servers are
0.24 ms and 5.45 ms, and the TCP throughputs between them
are 934 Mbit/s and 931 Mbit/s, respectively. We additionally
throttle the slow-network server’s bandwidth to 100 Mbit/s to
evaluate low-throughput cases.
Configuration. We install Ubuntu Server 20.04 on the device
while replacing its kernel and modules with ours, comput-
ing a hash tree over the system partition, and changing its
GRUB configuration. We do not use existing image-based
operating systems because they are highly customized for spe-
cific platforms (e.g., VM, mobile phone). We reserve 10 GiB
for a device’s system partition formatted with ext4. Ubuntu
Server 20.04 occupies 5.5 GiB of the system partition. It be-
comes 1.6 GiB with gzip. We also reserve 100 MiB to store
the APRON metadata. We use 4 KiB as the data and hash
block size and SHA-256 for constructing the hash tree, and
RSA-4096 to sign the root hash. The sizes of the hash tree and
deduplication metadata are 81 MiB and 1.6 MiB, respectively.
We install Ubuntu Server 20.04 to our servers. We repeat all
experiments at least 10 times and report their average values
except for benchmark tools with internal repetitions (§6.3)
and an experiment with deterministic results (§6.4).

6.2 System Downtime (RQ1)
To minimize system downtime, APRON boots into a system
while renovating its invalid blocks requested during the boot.
We compare it against existing recovery mechanisms which re-

pair all invalid blocks before the system boot. In general, both
attacks and legitimate updates change a portion of the system
image (which will be explained later), but what and how many
blocks they will change are unpredictable. Thus, we randomly
corrupt 1%–100% of the system partition for evaluation (i.e.,
zero some of or all its 4 KiB blocks). Whether we use zero or
non-zero blocks does not affect APRON’s performance (§6.6).
We measure the delay solely introduced by APRON; that is,
we exclude any other delays due to hardware initialization,
bootloader loading and execution, and operating system load-
ing, which are ∼16 s in total on our device, because they
are independent of APRON. We use systemd-analyze [64]
for this measurement. In addition, we omit the case without
corruption because APRON does not delay it.
Full recovery. For comparison, we implement a full recovery
mechanism like existing mechanisms [4, 40, 50, 51, 98, 108,
125]. In a recovery environment (i.e., before the system boot),
an agent downloads the compressed image via HTTPS while
concurrently decompressing it to the local storage. Then, it
boots into the recovered system. We omit additional image val-
idation because we trust TLS. The recovery takes ∼60 s (high
throughput) and ∼154 s (low throughput), which is 4× and
10× longer than the system boot time. It is independent of the
corruption ratio and marginally affected by network latency.
Delta recovery. We implement a delta recovery mechanism
using rdiff [91] that the SWUpdate project [16] uses. rdiff
consists of (a) signature computation, (b) delta computation,
and (c) patch adoption. Delta update is efficient because it
can pre-compute (a) and (b) on the server-side, but the delta
recovery cannot leverage such pre-computation (details are
in Appendix B.) In total, it takes 105–561 s (high throughput)
and 112–665 s (low throughput), which is 7–35× and 7–42×
longer than the system boot time. It depends on the corrup-
tion ratio and is marginally affected by network latency. The
delta recovery is slow, but it reduces network traffic (31 MiB–
1.6 GiB) and unnecessary storage writes.
APRON. Figure 5 shows APRON’s boot-time delay while
varying the network latency, network throughput, and cor-
ruption ratio. The delay is 2.2–4.9 s (NBD over TLS) when
latency is low and throughput is high, which is 14%–31% of
the boot time. It becomes 0.2–1.2× longer than the boot time
when latency increases and 0.8–2.0× longer than the boot
time when latency increases and throughput decreases. They
are up to 27.8×, 23.9×, and 11.8× shorter than the full re-
covery, and up to 119.8×, 41.6×, and 23.1× shorter than the
delta recovery, respectively. In addition, as expected, APRON
with HTTPS is 1.6–9.7× slower than APRON with NBD over
TLS due to extra translations.
Summary. APRON ensures short downtime because it appar-
ently repairs the blocks required to boot the system first and
the remaining blocks later once the system boots up. It outper-
forms existing mechanisms especially when (a) the network
latency is low, (b) the network throughput is high, and (c) the
number of invalid blocks is small. These conditions are satis-
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Figure 5: Boot-time delay comparison between APRON and other
recovery mechanisms.

fied in practice. The network performance is improving. Also,
the number of invalid blocks is generally small in both attack
and update cases. For example, a persistent backdoor usu-
ally consists of a few small executables [29, 81]. We further
analyze how Flatcar Container Linux [39] (an image-based op-
erating system) and Fedora Cloud [93] (a pre-installed cloud
image) change over their releases. Across 36 Flatcar releases
for two years (version 2512.2.0 to 3139.1.2 for QEMU x64),
9.7%–12.2% of their 8.5 GiB images change. Also, across
11 Fedora Cloud releases for five years (version 26 to 36 for
QEMU x64), 12.5%–21.7% of their 4.5 GiB images change.
Thus, APRON is effective in decreasing the system downtime.

6.3 Runtime Overhead (RQ2)
APRON verifies and renovates the (remaining) system parti-
tion during system execution. We evaluate how its verifica-
tion and renovation processes affect the runtime performance
of other workloads using benchmark programs. We ensure
the benchmark programs terminate before renovation is com-
pleted. Otherwise, they run on the recovered system which
hides renovation overhead. To this end, we prolong renova-
tion using a fully corrupt system image and the slow-network
server and select benchmark programs which take shorter
than the renovation (§6.5). We install them in another sys-
tem image copy and execute them via APRON. We compare
APRON to a pristine environment with the same hardware
and operating system except that it runs an unmodified kernel.
Microbenchmark. Figure 6 shows LMbench [71] system
call execution times normalized to those from the pristine
environment. Both in a verification condition and during the
renovation, the overheads of the APRON device over the pris-
tine device are 0%–40%. As expected, APRON affects sys-
tem calls related to filesystem and network (e.g., stat, fstat,
open/close, UNIX socket). On a geometric mean, the over-
heads of the APRON device in a verification condition and

during the renovation are 7% and 8%, respectively.
The APRON device might download a lot of data from

the deployment server to renovate the system partition, so it
might affect the network performance of other applications.
We use LMbench’s network throughput evaluation results
to identify whether and how APRON affects LMbench’s net-
work throughputs (Figure 7). In a verification condition, the
network throughput of LMbench on the APRON device is
3.6% (geometric mean) lower than that on the pristine device.
During the renovation, the network throughput of LMbench
on the APRON device is 11.8% (geometric mean) lower than
that on the pristine device. Consequently, APRON’s renova-
tion noticeably affects the network throughput of other ap-
plications only during renovation. In addition, if we turn off
APRON’s verification once the renovation is completed, the
overhead becomes almost zero.
Macrobenchmark. We evaluate APRON with 11 real-world
application tests from Phoronix Test Suite [89] (Figure 8).
The overheads of APRON during renovation over the pris-
tine environment are 1.9%–21% (geometric mean: 9%). As
expected, renovation affects I/O-intensive workloads (e.g., 7-
Zip, Apache, and Memcached) whereas less affects compute-
intensive workloads (e.g., Crafty, FLAC, and PyBench). With-
out renovation (i.e., the verification condition), APRON’s over-
head over the pristine environment is negligible (0.01%).

6.4 Network Usage (RQ3)
During renovation, APRON fetches blocks required for recov-
ery from the deployment server. We evaluate this network us-
age. We use the randomly corrupt system images again (§6.2).
We count the number of bytes the server sends to the APRON
device at the server (using lighttpd logs) while enabling
APRON’s optimization (i.e., zero block ignorance and dedu-
plication). This network usage is independent of network
latency and throughput.

Figure 9 shows how many bytes APRON downloads from
the server while varying the corruption ratio. It downloads
44.6%–94.0% of the corrupt blocks, which are only 1.1–2.9×
larger than corresponding rdiff deltas. APRON’s optimiza-
tion is effective especially when the number of invalid blocks
is large. This is because it increases the probability that multi-
ple invalid blocks are equivalent such that no repetitive down-
loads are needed due to deduplication (§4.4).

6.5 Complete Renovation Time (RQ4)
Once the system boots up, APRON performs both on-demand
and background renovation. We measure how long it takes
to complete the renovation when the system is idle or busy.
Hastening the complete renovation is not our goal and that is
why we assign a low priority to background prefetcher to min-
imally affect other workloads (§6.3). We compare it against
the full and delta recovery to check whether it is reasonable.
Idle system. Figure 10 shows APRON’s complete renovation
time in an idle system while varying the network latency,
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Figure 8: Normalized Phoronix Test Suite overhead.

network throughput, and corruption ratio. The complete reno-
vation (NBD over TLS) demands 47.4–104.5 s when latency
is low and throughput is high, 50.2–190.4 s when latency in-
creases, and 84.0–504.3 s when latency increases and through-
put decreases. They take 0.8–1.7×, 0.8–3.2×, and 0.5–3.3×
longer than the full recovery, and 2.2–5.5×, 1.9–3.1×, and
1.1–1.4× shorter than the delta recovery, respectively. In addi-
tion, APRON with HTTPS takes 1.1–2.1× longer than APRON
with NBD over TLS. APRON’s complete renovation is subject
to network latency and throughput because it does not benefit
from bulk network transfer and compression.
Busy system. We make the system busy by running the
Memcached test from Phoronix [89], which heavily contends
with APRON (Figure 8), once the system boots up. The com-
plete renovation is delayed by at most 7.0% (low latency) and
2.5% (high latency and low throughput). Overall, the reno-
vation is moderately affected by the system’s busyness. The
renovation with the slow-network server suffers less from the
busyness than that with the fast-network server since the slow
network performance dominates the renovation overhead.
Summary. Although APRON renovates the system during its
execution in the background, it finishes the renovation within
a reasonable time—i.e., it is at most 3× slower than the full
recovery. Further, it is comparable to or even faster than the
full recovery if the network is fast and the number of invalid
blocks is small. Both are satisfied in practice (§6.2).
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and other recovery mechanisms.

6.6 Miscellaneous
Non-zero corruption. We confirm whether we use zero or
non-zero blocks to corrupt the system image does not affect
APRON’s performance. If a block is expected to be a zero
block, APRON does not touch it regardless of corruption. If
not, APRON renovates it regardless of whether it is overwrit-
ten by a zero or non-zero erroneous block. Non-zero corrup-
tion slows down the delta recovery as it complicates rdiff
signatures, but showing its worst case is not our interest.
Deduplication. The deduplication decreases not only net-
work usage but also renovation time to some extent. Without
it, the renovation is delayed by up to 2.2% (low latency)
and 9.0% (high latency and low throughput). The renova-
tion with the fast-network server marginally benefits from
the deduplication because it aims for reducing the network
overhead (§6.4). In contrast, the system downtime does not
benefit from the deduplication because only a few blocks are
requested during the system boot.
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Memory usage. APRON uses at most ∼120 MiB of addi-
tional memory when it renovates a fully corrupt system image
to cache fetched blocks and maintain its data structures. This
memory is reclaimed once the renovation is completed.

7 Security Analysis
In this section, we analyze the security of APRON. We fo-
cus on how APRON mitigates persistent kernel attacks. Also,
we explain how APRON detects or prevents less severe but
frequent userspace and network attacks.
Kernel attack. APRON efficiently recovers a computing de-
vice from advanced adversaries who have compromised the
device with critical kernel vulnerabilities. APRON runs in the
kernel and it does not assume any other non-standard kernel
integrity protection or monitoring technologies [15, 44, 69,
78, 88, 128] to protect itself. To this end, if adversaries com-
promise the kernel, they can temporarily deactivate APRON
and corrupt the system image. However, APRON eventually
defeats them based on a system administrator’s input: the
administrator can detect a misbehaving device using device or
network monitoring tools and forcefully reset it using existing,
standardized techniques [40, 118, 125]. This reset eliminates
in-memory exploits and activates APRON via secure boot
again. If the administrator prepares an updated image fixing
the exploited vulnerability, APRON prevents the adversaries
from reusing the vulnerability by rapidly recovering the sys-
tem with the updated image. Even if no patch is prepared,
APRON causes hardship to the adversaries since they must
repeatedly compromise the operating system across forceful
device resets to persist their control or system destruction.
Such repetitive attack attempts are highly visible and thus can
be detected and mitigated by network-level techniques [3].
Userspace attack. APRON prevents or detects userspace
attacks against it through all four attack surfaces userspace
attackers can access (§5): (a) filesystem containing operating
system files, (b) APRON storage layer, (c) storage device stor-
ing the system image, and (d) APRON client. First, APRON
prevents or detects the modification of its filesystem. APRON
mounts the filesystem for the operating system as read only,
preventing non-privileged attacks. Adversaries with a root
privilege can remount the filesystem and modify it. However,
such modifications only remain in memory and are not re-
flected in the underlying write-protected APRON storage layer.
Second, APRON prevents the modification of its storage layer.
The APRON storage layer ignores any block write requests
via block IO interfaces. Thus, both non-privileged and privi-
leged adversaries cannot modify it. Third, APRON prevents or
detects the modification of its storage device. Non-privileged
adversaries cannot access the storage device. In contrast, priv-
ileged adversaries can tamper with the storage device using
block IO interfaces. However, the APRON storage layer iden-
tifies and reverts such manipulation based on the signed hash
tree. Fourth, APRON detects a misbehaving APRON client.
Privileged adversaries can compromise the userspace APRON

client to deliver manipulated data to the APRON storage layer.
However, APRON identifies and ignores such manipulated
data based on the signed hash tree.
Network attack. APRON detects network attacks includ-
ing traffic manipulation. Adversaries might tamper with the
network traffic between the APRON client and deployment
server to deliver a manipulated system image. However, since
APRON traffic is secured with TLS, the adversaries cannot ar-
bitrarily manipulate it unless they break TLS or compromise
the deployment server. Even if they succeed, APRON drops
such manipulation because it verifies fetched data using the
signed hash tree.

8 Discussion
In this section, we discuss some possible alternatives to
APRON’s design.
Advanced deduplication and compression. APRON cur-
rently uses a simple block-based deduplication (§4.4) without
network traffic compression, resulting in relatively high net-
work usage (§6.4). APRON can reduce it using advanced dedu-
plication techniques like content-defined chunking [31,67,80]
and seekable compression [116], but there are two tradeoffs.
First, their computational overhead is higher than block-based
deduplication, increasing the overall recovery time and run-
time overhead. Second, they are incompatible with the effi-
cient, block-level hash tree [112] APRON leverages. To main-
tain the compatibility, APRON requires a fine-grained hash
tree with complicated data structure and computational com-
plexity. We leave balancing these tradeoffs to future work.
File-based recovery. APRON verifies and renovates the en-
tire storage or partition as it assumes the image-based system
management (§2.2). Instead, it can focus on a set of critical
files if it separately maintains their root hashes using tech-
niques like Integrity Measurement Architecture (IMA) [62]
and fs-verity [113]. This file-based recovery potentially
reduces the overhead of APRON, but it must overcome two
problems. First, it requires a separate technique to recover the
kernel and filesystem itself. Otherwise, it even cannot iden-
tify whether certain files exist in the device. Second, it must
maintain and update a set of root hash values in a scalable
and consistent manner. This is because there are many criti-
cal files depending on each other (e.g., system binaries and
shared libraries). APRON is free from such problems because
it is independent from the filesystem and it only maintains a
single root hash value for the entire image.
Mutable data. APRON leverages and ensures the read-only
property of the image-based system management, but it does
not prevent users from storing any data in the device. Like
other image-based operating systems, APRON can maintain a
separate read-writable user partition (§2.2). Then, APRON can
let users use it as a writable overlay for the storage layer (as
explained in §5) or mounting it at specific writable directories
(e.g., /etc, /home) [33].
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Single point of failure. APRON can suffer from a single-
point-of-failure problem because its recovery task relies on a
server which is remote in most cases. To overcome it, APRON
needs other techniques like a load balancer [21] to mitigate
this problem. Especially, the HTTPS version of APRON seam-
lessly benefits from such load balancing (§4.5).

9 Related Work
In this section, we explain existing studies related to APRON.
Network boot. Datacenter administrators frequently provi-
sion operating systems on new or failed server machines. They
use the Preboot eXecution Environment (PXE) boot [55] to
make each server boot into a small operating system stored
in a storage server within the same local network. This small
operating system downloads a full operating system to the
local storage and, finally, boots into it. However, the PXE boot
neither efficiently downloads system images nor ensures any
network-level security because it relies on TFTP [106]. Thus,
it can only be used within a well-managed local network. To
overcome these problems, iPXE and UEFI support HTTP(S)
boot [56, 59]. Still, they must download an entire operating
system image to local storage to boot into it unlike APRON.
Diskless boot. Administrators can configure an operating
system to use network storage as its root filesystem via remote
block storage protocols (e.g., iSCSI and NBD) or network
file systems (e.g., NFS and Samba). It is known as diskless
boot [35,48,79,97]. It makes much more sense in a data center
where servers are connected through the same high-bandwidth
and low-latency local network [20]. However, since this ap-
proach fully relies on network storage, it cannot avoid repeti-
tive fetching of the same blocks from storage servers if the
blocks are evicted from the cache due to memory pressure.
Further, a lack of required blocks due to potential network
errors can result in significant system malfunctioning. Data
block caching [26, 100, 101, 109, 110] might mitigate these
problems, but cached blocks can be evicted according to the
cache replacement policy unlike APRON. Also, all cached
blocks should be accessed via a translation layer and dis-
carded when any recovery or update is needed. Advanced
distributed file systems [2, 101, 123] can avoid some of the
problems, but they have large code bases and require com-
plicated server- and client-side configuration. Unlike them,
APRON only requires maintaining a simple file or web server.
Operating system streaming deployment. An operating sys-
tem streaming deployment [28,42,43,85,111] uses both local
and network storage. While serving block requests from ker-
nel threads and other applications using network storage, the
operating system streaming deployment stores downloaded
blocks at the corresponding locations of local storage. These
stored blocks will be used to resolve further requests to avoid
repetitive downloading of the same blocks. The operating sys-
tem streaming deployment also copies not-yet-downloaded
blocks from network storage to local storage in the back-
ground to eventually mirror the network storage to the local

storage. However, unlike APRON, existing operating system
streaming deployment mechanisms neither consider secure
operating system deployment nor support selective renova-
tions of invalid blocks. Thus, it must deploy the entire operat-
ing system image from scratch if it recognizes any corruption
or the operating system image has been updated.

Efficient update. Updating an operating system or its kernel
with minimal downtime is heavily studied [5, 7, 16, 19, 27, 63,
90, 99, 127, 130]. A/B update [5, 7, 16] has a separate parti-
tion to download an updated system image during execution
and reboot into it. Live kernel patching [19, 27, 90, 130] hot
fixes the kernel without rebooting it. Since live kernel patch-
ing cannot handle complicated changes (e.g., data layout),
other schemes [63, 99, 127] leverage memory snapshot and
soft reboot. However, all these mechanisms work only if an
operating system or underlying systems software (i.e., hyper-
visor [99], System Management Mode (SMM) [130]) is not
compromised or corrupt. For example, a privileged attacker
can tamper with both A/B partitions, hinder hot-patching, or
corrupt memory or storage snapshots. Thus, they should rely
on recovery mechanisms APRON to fix corrupt systems.

Multi-node progressive recovery. Multi-node progressive
recovery [3, 57, 92, 129] is another way to recover or update
a system with minimal or zero downtime. To maximize the
availability of a critical service, these schemes operate re-
dundant copies of the same service in multiple physical or
virtual computing nodes. If the service needs to be recovered
or updated, they first deal with a part of the nodes while run-
ning the other part of nodes to keep alive the service. They
handle the latter part of nodes after they have recovered or
updated the former part of the nodes. These schemes can
achieve zero downtime if at least one node is always running.
However, their resource costs are high because they require
multiple nodes. In addition, we note that they can benefit
from APRON because, in the end, they recover or update each
node—reducing node recovery or update time is important to
maintain their overall fault tolerance.

10 Conclusion

APRON is a novel approach to authentically and progressively
renovate an operating system image during the system boot
and after the startup of the operating system, minimizing
the system downtime needed for a recovery. It is especially
effective for the reboot-based security systems that frequently
reset and repair devices to deal with attacks and failures, and
mission-critical systems which are sensitive to the downtime.
APRON renovates the entire operating system image with
negligible runtime overhead and small network usage.
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A Merkle Hash Tree

hroot = H(h1,0||h1,1)

h1,0 = H(h0,0||h0,1)

h0,0 = H(b0)

b0

h0,1 = H(b1)

b1

h1,1 = H(h0,2||h0,3)

h0,2 = H(b2)

b2

h0,3 = H(b3)

b3

Figure 11: Merkle hash tree

A Merkle hash tree [72] is a method to efficiently and
securely verify whether any part of data is corrupt. It is con-
structed by recursively computing hashes over data and their
hashes (Figure 11). Its root hash summarizes the entire data.
Thus, we only need to ensure the root hash’s authenticity and
integrity (i.e., sign it) to verify data and node hashes. For
example, to verify a data block b′1, we compute h′0,1 = H(b′1),
h′1,0 = H(h0,0||h′0,1), and h′root = H(h′1,0||h1,1) with leaf and
internal node hashes h0,0 and h1,1—which have been verified
in the same manner—and compare h′root with signed hroot.

B Delta Update
The detailed procedure of the delta update is below. First, we
compute an rdiff signature which is a structured summary
of a base file (i.e., a corrupt system partition) to compute
delta. In our APRON device, it takes ∼21 s to compute an

rdiff signature over the system partition regardless of how
many portions of it are corrupt. The signature size is 181 MiB
without compression. Once we compress it with gzip, it be-
comes between 72 MiB (1% corruption) and 0.5 MiB (100%
corruption). Next, we upload the compressed signature to
the server, decompress it, and compute the delta between the
signature and the valid system image. The delta computation
takes 55–273 s and the size of the delta is between 91 MiB
and 4.1 GiB (between 31 MiB and 1.6 GiB after compression).
Both depend on how many portions of the system partition are
corrupt. We only use the Azure VM for this delta computation
to ignore the CPU performance difference between the two
servers. Finally, we download the compressed delta—which
take 1–16 s (high throughput) and 9–135 s (low throughput),
decompress it, and patch the system partition with it. Patching
itself takes ∼12 s regardless of the number of corrupt blocks.
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Abstract
This paper presents zpoline, a system call hook mechanism
for x86-64 CPUs. zpoline employs binary rewriting and of-
fers seven advantages: 1) low hook overhead, 2) exhaustive
hooking, 3) it does not overwrite instructions that should not
be modified, 4) no kernel change and no additional kernel
module are needed, 5) source code of the user-space program
is not required, 6) it does not rely on specially-modified stan-
dard libraries, and 7) it can be used for system call emulation.
None of previous mechanisms achieve them simultaneously.

The main challenge, this work addresses, is that it is hard
to replace syscall/sysenter with jmp/call for jumping to
an arbitrary hook function because syscall and sysenter
are two-byte instructions, and usually more bytes are required
to specify an arbitrary hook function address.

zpoline resolves this issue with a novel binary rewriting
strategy and special trampoline code; in a nutshell, it replaces
syscall/sysenter with a two-byte callq *%rax instruc-
tion and instantiates the trampoline code at virtual address 0.
We confirmed zpoline is functional on the major UNIX-like
systems: Linux, FreeBSD, NetBSD, and DragonFly BSD. Our
experiments show that zpoline achieves 28.1~761.0 times
lower overhead compared to existing mechanisms which en-
sure exhaustive hooking without overwriting instructions sup-
posed not to be modified, and Redis and a user-space network
stack bonded by zpoline experience only a 5.2% performance
reduction compared to the minimum overhead case while the
existing mechanisms degrade 72.3~98.8% of performance.

1 Introduction

System calls are the primary interface for user-space programs
to communicate with Operating System (OS) kernels. Since
user-space programs almost always go through system calls
to perform important actions, system call hooks can be the
vantage point to trace and change their behavior. Therefore,
there are many use cases, such as tracing tools [6, 19], sand-
boxes [18,25], OS emulation layers [1,8], and binary compat-
ibility supports of new OS subsystems [22, 29, 30, 33, 36, 37].

Motivating use case. Past studies demonstrated that user-
space OS subsystems [10,13,17,23,24,27], backed by kernel-
bypass frameworks [15, 34, 38], are highly performant. In
principle, system call hooks enable us to transparently apply
user-space OS subsystems to the legacy software artifacts
through the POSIX standard (as demonstrated in § 3.3), and
the transparency is an important factor for the applicability of
user-space OS subsystems.

Problem and related work. However, in UNIX-like sys-
tems on x86-64 CPUs, the representative platforms for server
systems, there is no perfect system call hook mechanism.

1. Existing kernel supports (e.g., ptrace (§ 3.1.1) and
Syscall User Dispatch (SUD) [20] (§ 3.1.3)) and the
legacy binary rewriting technique using int3 signaling
(§ 3.1.2) cause unacceptable performance degrada-
tion to hook-applied user-space programs (§ 3.3).

2. Other binary rewriting mechanisms (e.g., instruction pun-
ning [7], E9Patch [9], and the technique applied in X-
Containers [36]) (explained in § 2.1) and function call
replacement (e.g., LD_PRELOAD (§ 3.1.4)) cannot ex-
haustively hook system calls. Thus, they cannot be used
for systems requiring reliability.

3. Another type of binary rewriting technique (e.g., De-
tours [14]) overwrites instructions that are supposed
not to be modified (explained in § 2.1).

4. Solutions based on specific changes to the kernel or
additional kernel modules such as Dune [3], which are
not merged to the mainline, substantially diminish the
portability of applications relying on them.

5. Approaches requiring recompilation of the source code
of a user-space program, typically seen in Unikernel [26]
systems [5, 21], are unusable in many cases because
users often do not have access to the source code.

6. The approach, which links application binaries with a
standard library (e.g., libc) specially modified for replac-
ing the invocations of system calls with function calls
of specific OS subsystems [22, 29, 30, 33, 37], narrows
down the range of choice for applicable standard
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library implementations, moreover, cannot hook sys-
tem calls which are invoked from the outside of stan-
dard libraries.

7. Although BSD Packet Filter (BPF) [28] and its extended
version, eBPF, allow users to apply hooks to the kernel-
space functions, they cannot be used for changing and
emulating the behavior of system calls without modi-
fying the kernel source code.

In summary, every existing system call hook mechanism has
a significant downside. Due to the lack of an ideal system
call hook mechanism, there have been no practical means
of transparently applying user-space OS subsystems to ex-
isting user-space programs. Consequently, the applicability
of user-space OS subsystems has been significantly limited,
regardless of their great advantages.

Contributions. To solve this problem, we present a novel
system call hook mechanism for x86-64 CPUs named zpoline
that is free from all drawbacks mentioned above (§ 2). We
demonstrate the benefits of zpoline through microbenchmarks
(§ 3.2) and experiments transparently applying user-space OS
subsystems to user-space programs (§ 3.3).

2 zpoline

zpoline is based on binary rewriting; it replaces syscall and
sysenter, which are two-byte instructions (0x0f 0x05 and
0x0f 0x34 in opcode respectively) that trigger a system call,
to jump to an arbitrary hook function address.

2.1 Challenge and Goal
The challenge of this work is that the two-byte space, orig-
inally occupied by a syscall/sysenter instruction, is too
small to locate a jmp/call instruction along with an arbi-
trary destination address; typically, two bytes are occupied
by the opcode of jmp/call and eight bytes are necessary
for a 64-bit absolute address, or another possibility is one
byte for a jmp/call instruction and four bytes of a 32-bit
relative address. Due to this issue, existing binary rewriting
techniques give up the replacement in some cases and fail
to ensure exhaustive hooking [7, 9, 36], exceed the two-byte
space originally occupied by syscall/sysenter to put the
code bigger than two bytes while a jump to the exceeded part
causes unexpected behavior [14], or take the int3 signaling
approach (§ 3.1.2) that imposes a significant overhead (§ 3.2).
The goal of zpoline is to be free from these drawbacks.

2.2 Design
The overview of zpoline is shown in Figure 1.

System call and calling convention. zpoline employs
the calling convention of system calls. In UNIX-like sys-
tems on x86-64 CPUs, when a user-space program executes
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Figure 1: zpoline overview. The trampoline code is shaded.

syscall/sysenter, the context is switched into the kernel,
then, a pre-configured system call handler is invoked. To re-
quest the kernel to execute a particular system call, a user-
space program sets a system call number (e.g., 0 is read, 1 is
write, and 2 is open in Linux on x86-64 CPUs) to the rax
register before triggering a system call, and in the kernel, the
system call handler executes one of the system calls according
to the value of the rax register.

Binary rewriting. To hook system calls, zpoline replaces
syscall/sysenter with callq *%rax which is repre-
sented by two bytes 0xff 0xd0 in opcode. Since the instruc-
tion sizes of syscall/sysenter and callq *%rax are the
same two bytes, the replacement does not break the neighbor
instructions. What callq *%rax does is to push the current
instruction pointer (the caller’s address) to the stack, and jump
to the address stored in the rax register. Our insight is that,
according to the calling convention, the rax register always
has a system call number. Therefore, the consequence of
callq *%rax is the jump to a virtual address between 0 and
the maximum system call number which is more or less 5001.

Trampoline code. To redirect the execution to a user-
defined hook function, zpoline instantiates the trampoline
code at virtual address 0; in the trampoline code, the virtual
address range between 0 and the maximum system call num-
ber is filled with the single-byte nop instruction (0x90), and
at the next to the last nop instruction, a piece of code to jump
to a particular hook function is located.

1In Linux 5.15, the maximum system call number of the x86-64 ABI,
seen in unistd_64.h, is 448.
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Execution flow. After the trampoline code instantia-
tion and binary rewriting are completed, the rewritten part
(callq *%rax) will jump to one of the nops in the trampo-
line code while pushing the caller’s address on the stack.
The execution slides down the subsequent nops; after exe-
cuting the last nop, it jumps to the hook function. Here, the
hook function will have the same register state as the kernel-
space system call handler. The return of the hook function
jumps back to the caller address that is pushed on the stack
by callq *%rax.

Security notes. We note that, like other system call hook
mechanisms based on binary rewriting, zpoline itself does
not offer security enhancement. On the other hand, if users
wish to improve the security of zpoline-applied systems, they
can employ existing mechanisms; for instance, seccomp [2]
can filter the execution of kernel-space system calls triggered
by a zpoline-applied user-space program, and CPU supports
such as Memory Protection Keys (MPK) [16] can isolate the
implementation of a hook function.

2.3 Implementation

Our current prototype focuses on Linux. The core imple-
mentation of zpoline consists of trampoline code instantia-
tion and binary rewriting. We implement these in a shared
library called libzpoline.so and a special loader named
zpoline_loader; we assume a user uses either2. They per-
form the setup procedure of zpoline (§ 2.3.1) before the main
function of a user-space program starts.

2.3.1 Setup Procedure

The trampoline code setup procedure first allocates memory
at virtual address 0 by using the mmap system call3. Afterward,
it fills the allocated memory region with the content described
in § 2.2. The binary rewriting procedure initially obtains the
memory mapping information from procfs. Then, it traverses
CPU instructions on the executable memory regions, and
replaces syscall/sysenter with callq *%rax (§ 2.2). The
memory regions for the trampoline code and the code binary
of the user-space program are configured to be writable during
this setup phase, and they are restored to be non-writable
before the setup procedure exits. After the setup completes,
the main function of the user-space program starts as usual,
but, all system calls are hooked by zpoline. We note that this
implementation does not change the binary files of user-space

2libzpoline.so assumes to be loaded through LD_PRELOAD and
used when the application binary is dynamically linked. LD_PRELOAD
allows libzpoline.so to run the setup procedure before the main function
of the user-space program starts. zpoline_loader is complementary and
assumes to be used when the application binary is statically linked and the
LD_PRELOAD feature does not work.

3In Linux, by default, the memory mapping to virtual address 0 is only
allowed for the root user, but it can be permitted for all non-root users by
setting 0 to /proc/sys/vm/mmap_min_addr (confirmed in Linux 5.15).

programs since binary rewriting is done on the code binary
loaded onto the memory.

2.3.2 Hook Function Development

zpoline users can implement an arbitrary system call hook
function as part of libzpoline.so or zpoline_loader.
However, there is an issue that the hook function falls
into an infinite loop when it calls a function that origi-
nally executes syscall/sysenter because the replaced code
(callq *%rax) brings the execution back to the hook func-
tion. Users encounter this issue especially when they use
libzpoline.so because the default dynamic linker/loader
automatically associates library calls used in the hook func-
tion with the libraries whose syscall/sysenter instructions
are replaced with callq *%rax.

Use of dlmopen. We avoid this issue by using dlmopen,
an extended version of dlopen. dlopen loads a library file
onto the memory of a user-space process. On top of this basic
feature, dlmopen allows users to specify a namespace where
the library is loaded, and it conducts the association in the
same namespace. Thus, dlmopen enables us to avoid the au-
tomatic undesired association by loading the hook function in
a new namespace. To use dlmopen, we assume a zpoline user
builds the core of the hook implementation as an indepen-
dent shared library. During the setup phase, libzpoline.so
loads the library using dlmopen, and obtains the pointer to
the core implementation of the hook function by using dlsym.
The hook function, implemented in libzpoline.so, calls it
through the obtained pointer.

2.3.3 NULL Access Termination

Typically, a memory access to virtual address 0, namely the
NULL pointer access, causes a page fault because of the
lack of physical memory mapping at virtual address 0, and
it results in the termination of the user-space program. The
NULL access termination is important for stopping buggy
programs. On the other hand, the use of virtual address 0
in zpoline brings about the issue that the NULL access of a
user-space program does not cause a fault. To cope with this
issue, zpoline employs a set of techniques.

Terminate NULL read and write. To terminate NULL
read and write, zpoline configures the trampoline code to be
the eXecute-Only Memory (XOM)4; a user-space program,
that attempted a read/write access to XOM, will be terminated
by the kernel because of a fault.

Terminate NULL execution. To trap unintentional
NULL execution, zpoline collects the virtual addresses of
syscall/sysenter which are replaced during the setup
phase of zpoline (§ 2.3.1), and it checks, at the entry point

4In Linux running on a CPU supporting the Memory Protection Keys
(MPK) [16] feature, the mprotect system call configures XOM when only
PROT_EXEC is set in the access flag; if MPK is not supported by the CPU,
mprotect does not configure XOM.
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of the hook function, if the caller of the hook function is one
of the replaced virtual addresses or not. If it is not, zpoline
terminates the user-space program because it is not the jump
from the replaced callq *%rax, meaning an unintentional
jump to NULL. To maintain the replaced virtual addresses
while achieving a low-overhead NULL execution check, we
use a bitmap that covers the entire 256 TB (48-bit) virtual
address range that is typical in x86-64 CPUs. This bitmap
allows us to conduct the NULL execution check with a few
bit operations, and this cost is evaluated in § 3.2. The bitmap
occupies 32 TB of virtual address space, however, its physi-
cal memory consumption is substantially smaller because the
virtual address pages, whose all bits are clear, do not need to
have underlying physical memory pages5. We note that if a
user prefers to avoid occupying 32 TB of virtual address for
the bitmap, we can alternatively use a hash table at the cost
of the higher overhead of the NULL execution check.

2.4 Limitations

Here, we discuss the limitations of zpoline.
syscall/sysenter loaded at runtime. The current

prototype of zpoline cannot hook syscall/sysenter loaded
or crafted after the completion of the setup (§ 2.3.1). We
can resolve this issue by borrowing the idea of online binary
rewriting presented in the X-Containers [36] work that traps
an invocation of a system call and rewrites, on the fly, the
syscall/sysenter instruction that triggered the system call.

vDSO (virtual dynamic shared object). Kernels provide
user-space programs with several system calls by directly ex-
posing the code for them through vDSO. Like other system
call hook mechanisms, zpoline cannot hook vDSO-based sys-
tem calls by default; however, we can enable zpoline to hook
them by disabling vDSO6.

Unusable virtual address 0. zpoline is not applicable if
memory at virtual address 0 is unusable; for instance, the
virtual address 0 is already used for other purposes, or the
kernel does not allow the mapping at virtual address 0.

Other OSes. We confirmed that zpoline is functional on
FreeBSD 13.0, NetBSD 9.2, and DragonFly BSD 6.07. We
could not use zpoline on OpenBSD 7.0 because the minimum
mappable virtual address is hard-coded as the page size. In
Windows, VirtualAlloc is conceptually equivalent to mmap.
On Windows 10, VirtualAlloc fails when the specified vir-
tual address is lower than 0x10000, therefore, we could not
apply zpoline. But, Windows offers a compatibility layer for
Linux called Windows Subsystem for Linux (WSL). We con-
firmed that zpoline works on WSL2 while it did not on WSL1

5In many cases, most of syscall/sysenter instructions come from libc
and ld.so. We found the bitmap uses 22 and 5 physical 4 KB pages to maintain
544 and 50 of syscall/sysenter in libc and ld.so respectively (glibc-2.35).

6Linux disables vDSO when the kernel boot option specifies vdso=0.
7In FreeBSD and NetBSD, users can use sysctl to permit memory

mapping at virtual address 0. DragonFly BSD allows it by default.

whose mmap to virtual address 0 returns successfully but actu-
ally does not conduct the memory mapping. On macOS, the
virtual address 0 of a user-space program is used by a special
segment named __PAGEZERO, therefore, we could not apply
zpoline on macOS.

Other CPU architectures. zpoline is not compatible with
CPU architectures which assume the instructions to be aligned
by architecture-specific sizes on the memory and consider a
jump to an unaligned virtual address as an invalid operation
(e.g., ARM); this is because, when zpoline is applied, the
execution can jump to an unaligned virtual address between
0 and the maximum system call number (§ 2.2)8. However,
we believe zpoline is applicable to a large number of servers
because x86-64 CPUs are very popular.

3 Evaluation

This section evaluates zpoline through a comparison with
existing hook mechanisms (§ 3.1). Particularly, we quantify
the hook overhead of zpoline (§ 3.2) and the performance
penalty experienced by application programs and user-space
OS subsystems bonded by zpoline (§ 3.3).

Experiment setup. For the experiments, we use two ma-
chines; each has two 16-core Intel Xeon Gold 6326 CPUs
clocked at 2.90 GHz and 128 GB of DRAM. The two ma-
chines are directly connected via Mellanox ConnectX-5
100 Gbps NICs. In the experiments in § 3.3, we use one
of the two as the server machine, and the other as the client
machine. Both machines run Linux 5.15.

3.1 Comparison
We compare zpoline with ptrace (§ 3.1.1), int3 signaling
(§ 3.1.2), SUD (§ 3.1.3), and LD_PRELOAD (§ 3.1.4). Here,
we describe the mechanisms and properties of them.

3.1.1 ptrace

UNIX(-like) OSes offer the ptrace system call that enables
a tracer process to hook system calls attempted by a tracee
process. Since ptrace is a kernel feature, it can hook system
calls exhaustively. However, its hook overhead is enormous
due to the context switch between the tracer and tracee; the
tracer sleeps while the tracee is running, and the tracee sleeps
during the tracer runs its hook function. Therefore, at every
system call invocation, the tracee experiences a long latency
that includes the wake-up time of the tracer, the execution
time of the hook function, and the wake-up time of the tracee.
This latency results in significant performance degradation
of the user-space program running on the tracee.

8Besides the issue of the instruction alignment, binary rewriting tech-
niques need to pay attention to architecture-specific factors; for example, on
ARM CPUs, the simple replacement from SVC to BL overwrites/breaks the
return address saved in a specific register [31].
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3.1.2 int3 Signaling

int3 is a one-byte instruction (0xcc) that invokes a software
interrupt. On Linux, the kernel handles it and raises SIGTRAP
to the user-space process that executed int3. The int3 sig-
naling technique exploits this behavior to hook system calls; it
replaces syscall/sysenter with int3 and employs the sig-
nal handler for SIGTRAP as the hook function. Since int3 is
one byte, it can replace an arbitrary instruction without break-
ing the neighbor instructions. This technique is traditionally
used in debuggers to implement breakpoints. However, signal
handling incurs a large overhead because it involves context
manipulation by the kernel.

3.1.3 Syscall User Dispatch (SUD)

Syscall User Dispatch (SUD) [20] was added in Linux 5.11,
and it offers a way to redirect system calls to arbitrary user-
space code. For the SUD feature, the kernel implements a
hook point at the entry point of system calls. A user-space
process can activate SUD via the prctl interface. When SUD
is activated, the hook point raises SIGSYS to the user-space
process. This mechanism allows a user-space program to
leverage the SIGSYS signal handler as the system call hook.
However, similarly to the int3 signaling technique, SUD
imposes a significant performance penalty on the user-space
program due to the overhead of the signal handling.

3.1.4 Function Call Replacement by LD_PRELOAD

The dynamic linker/loader (ld.so) offers the LD_PRELOAD
feature that allows users to specify shared objects to be loaded
before the main part of a program starts, and it can be used
for selectively overriding function calls implemented in other
shared objects. Users can employ this mechanism to replace
the system call wrapper functions, which are typically imple-
mented in standard libraries, with arbitrary function calls. The
performance penalty of LD_PRELOAD is very small because
the hooks are applied through function pointer replacement.

A function call hook is not a system call hook. However,
precisely, the function call replacement for a system call wrap-
per function is not the hook for a system call; in the first place,
the syscall and sysenter instructions are not directly as-
sociated with any function calls, and LD_PRELOAD cannot
hook a syscall/sysenter instruction which does not have
a dedicated and exported wrapper function.

The case where LD_PRELOAD fails to hook. glibc [11]
is a representative example where LD_PRELOAD cannot
apply system call hooks exhaustively. In many cases, glibc
does not use the well-known system call wrapper func-
tions to invoke system calls; instead, glibc directly embeds
syscall/sysenter in its internal functions which are marked
as invisible from the outside of glibc, and LD_PRELOAD can-
not apply hooks to syscall/sysenter instructions wrapped
by such internal function calls.

Mechanism Time [ns]
ptrace 31201
int3 signaling 1342
SUD 1156
zpoline 41
zpoline (no NULL execution check (§ 2.3.3)) 40
LD_PRELOAD 6

Table 1: The overhead for hooking a system call.

Potential but impractical approach. Although it is possi-
ble for users to apply hooks using LD_PRELOAD by entirely
replacing library calls that contain syscall/sysenter in-
structions, this approach does not scale because users must
give up the use of the original library call implementations;
in other words, they need to reimplement the equivalent func-
tionalities by themselves, however, it is not realistic to reim-
plement large part of glibc. Moreover, this reimplementation
approach cannot be applied if, unlike glibc, the source code
of a shared library file is not available.

Limitation of LD_PRELOAD. In short, LD_PRELOAD
cannot exhaustively hook system calls, thus, is not an appro-
priate option to apply user-space OS subsystems to existing
user-space programs; for instance, a file descriptor, which is
opened by a user-space OS subsystem, will be passed to a
kernel-space OS subsystem if a system call is not properly
hooked, and it leads to unexpected behavior of the system.

Similarity to binary rewriting techniques. We note that,
in our experiments, the cases of other binary rewriting tech-
niques [7, 9, 14, 36] are represented by the LD_PRELOAD
case because they share the same characteristics: their perfor-
mance overhead is very small, however, as described in § 2.1,
they cannot hook system calls exhaustively.

3.2 System Call Hook Overhead
We quantify the system call hook overhead by measuring the
time to hook getpid, one of the simplest system calls. Our
primary interest here is the hook overhead itself; to avoid
the overhead of the kernel-crossing system call, we use a
hook function that returns a dummy value without actually
executing the getpid system call. Table 1 shows the results.
First, the overhead of LD_PRELOAD is negligible as ex-
pected (§ 3.1.4). The overhead of zpoline is 6.8 times higher
than LD_PRELOAD, and this is primarily due to the nops
in the trampoline code (§ 2.2). The cost of the NULL exe-
cution check (§ 2.3.3) is 1 ns out of 41 ns. zpoline is 761.0,
32.7, and 28.1 times lighter than ptrace, int3 signaling, and
SUD respectively. The major overheads of int3 signaling
(§ 3.1.2) and SUD (§ 3.1.3) derive from the signal handling
for SIGTRAP and SIGSYS. ptrace exhibits the biggest over-
head due to the cost of scheduling between the tracer and
tracee processes (§ 3.1.1).
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Figure 2: The overhead to hook a system call depending on
the number of nops at the beginning of the trampoline code.
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Figure 3: Performance of applications running on lwIP and
DPDK with different system call hook mechanisms. For ref-
erence, the throughput of the Linux kernel TCP/IP stack is
shown by the non-dotted horizontal line.

nop overhead. In zpoline, nops in the trampoline code
increase the hook overhead. The number of nops depends on
the number of system calls implemented by the kernel (§ 2.2).
To see how the overhead grows, we run the same getpid test
above while changing the number of nop instructions in the
trampoline code. Figure 2 shows that the overhead linearly
increases according to the number of nops. However, in the
first place, the kernel development communities are very wary
to add system calls. Therefore, we believe the nop overhead
of zpoline will not increase drastically in the future. Moreover,
although 3.5 K nops are located, the overhead of zpoline is
still 113.4, 4.8, and 4.2 times lower than that of ptrace, int3
signaling, and SUD respectively.

3.3 User-space OS Subsystem Performance
This section evaluates how zpoline affects the performance of
application programs backed by user-space OS subsystems;
we employ zpoline and the existing hook mechanisms de-
scribed in § 3.1 to transparently apply a portable TCP/IP
stack, lwIP [10], backed by Data Plane Development Kit
(DPDK) [15], to a simple HTTP server and Redis [35]. Nor-
mally, kernel-bypassing lwIP achieves higher networking per-

formance than the kernel TCP/IP stack of Linux [4, 32]; for
reference, we run the same benchmarks using the kernel
TCP/IP stack of Linux and report its performance by non-
dotted horizontal lines in Figure 3. We note that the simple
HTTP server and Redis are chosen for the experiments be-
cause LD_PRELOAD could apply hooks to them, and as
explained in § 3.1.4, LD_PRELOAD can fail to hook system
calls in other systems.

Simple HTTP server. Commonly, a server program trig-
gers network-relevant system calls more frequently when its
application logic gets lighter because it can serve a lot of
requests in a short time. To stress the hook mechanisms with
lightweight application logic, we made a simple HTTP server
that replies a static 64-byte content; we run it on the server ma-
chine. As the benchmark client, we run wrk [12] on the client
machine; it sends requests through 32 persistent concurrent
connections. The results are shown in Figure 3 (left). First, the
LD_PRELOAD result represents the minimum overhead case
(§ 3.2), and it demonstrates the potential of lwIP on DPDK,
which is 5.2 times faster than the Linux kernel TCP/IP stack
whose throughput is shown by the non-dotted horizontal line
in Figure 3 (left). Comparison with the LD_PRELOAD case
sheds light on the overhead of each hook mechanism. The per-
centages of performance reduction in ptrace, int3 signaling,
and SUD compared to LD_PRELOAD are 98.9%, 85.3%, and
83.0% respectively. Contrarily, zpoline causes only 12.7% of
performance reduction. These results are explained by the
hook overheads shown in Table 1.

Redis. We evaluate how a real-world application per-
forms on zpoline. For benchmarking, we use Redis [35],
a widely used key-value store; we run a Redis server pro-
cess on the server machine. As the benchmark client, we use
redis-benchmark, which is distributed as part of the Redis
source, on the client machine; we run the GET 100% work-
load so that the Redis server will spend most of its time on
networking operations rather than disk operations. Requests
are sent over 32 persistent concurrent connections. Figure 3
(right) shows a similar trend to the simple HTTP server exper-
iment, and the overall results reflect the overheads shown in
Table 1. Compared to LD_PRELOAD, the throughput results
of ptrace, int3 signaling, and SUD are 98.8%, 75.0%, and
72.3% lower respectively. In contrast, zpoline imposes only
5.2% of throughput reduction.

4 Conclusion

This paper has presented zpoline, a system call hook mech-
anism for x86-64 CPUs, that can exhaustively hook system
calls at a low overhead without overwriting instructions that
are supposed not to be modified. zpoline is a practical means
of transparently applying user-space OS subsystems to exist-
ing user-space programs and contributes to the applicability
of user-space OS subsystems.
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Abstract
Streaming workloads deal with data that is generated in real-
time. This data is often unpredictable and changes rapidly
in volume. To deal with these fluctuations, current systems
aim to dynamically scale in and out, redistribute, and migrate
computing tasks across a cluster of machines. While many
prior works have focused on reducing the overhead of system
reconfiguration and state migration on pre-allocated cluster
resources, these approaches still face significant challenges
in meeting latency SLOs at low operational costs, especially
upon facing unpredictable bursty loads.

In this paper, we propose Sponge, a new stream process-
ing system that enables fast reactive scaling of long-running
stream queries by leveraging serverless framework (SF) in-
stances. Sponge absorbs sudden, unpredictable increases in
input loads from existing VMs with low latency and cost by
taking advantage of the fact that SF instances can be initiated
quickly, in just a few hundred milliseconds. Sponge efficiently
tracks a small number of metrics to quickly detect bursty loads
and make fast scaling decisions based on these metrics. More-
over, by incorporating optimization logic at compile-time
and triggering fast data redirection and partial-state merging
mechanisms at runtime, Sponge avoids optimization and state
migration overheads during runtime while efficiently offload-
ing bursty loads from existing VMs to new SF instances. Our
evaluation on AWS EC2 and Lambda using the NEXMark
benchmark shows that Sponge promptly reacts to bursty input
loads, reducing 99th-percentile tail latencies by 88% on aver-
age compared to other stream query scaling methods on VMs.
Sponge also reduces cost by 83% compared to methods that
over-provision VMs to handle unpredictable bursty loads.

1 Introduction

Stream queries continuously process real-time data to extract
insights and make business-critical decisions, such as analyz-
ing real-time logs to extract statistics, detect anomalies, and

∗ Corresponding authors.

provide notifications [2, 6, 29, 48, 52]. Latency is an essential
service level objective (SLO) in these streaming workloads,
as faster up-to-date results mean more value. Stream systems
are expected to run 24/7 while meeting their SLOs [53].

Meanwhile, stream systems regularly face significant chal-
lenges due to sudden, unpredictable bursts of input loads
caused by random events, e.g., influencer tweets, breaking
news, and natural disasters [46,47]. These bursts can abruptly
increase the input load by more than 10× in just a few sec-
onds [11, 17, 26, 37, 56]. If stream processing systems do
not quickly acquire additional computing resources that can
handle the bursty loads and do not promptly redistribute the
load to the newly allocated computing resources, events will
soon pile up on the existing resources, leading to cascading
impacts on query latencies that can have fatal consequences
such as reduced user satisfaction and revenues [48].

One approach to quickly acquiring additional computing
resources is to over-provision resources. Existing work such
as Rhino [18], Megaphone [25], and Chronostream [55] builds
efficient stream load redistribution mechanisms by harness-
ing over-provisioned resources to minimize latency spikes on
load bursts. For instance, Megaphone [25] smoothly migrates
stream query loads to extra resources during stable load in
preparation for load spikes. However, over-provisioning solu-
tions can be costly and inefficient, as a significant amount of
resources will remain idle for most of the time.

Cloud services can reduce operational costs by offering on-
demand resource allocations. Existing scaling approaches for
on-demand resources dynamically migrate stream operator
instances, in units of parallel tasks, to the allocated on-demand
virtual machines (VMs). They redistribute the tasks and their
states, which are key-value pairs of aggregated intermediate
results [7, 15, 16, 19, 36, 49]. However, migrating tasks and
their states incurs extra overheads (e.g., (de)serialization),
which increase proportionally to the state size (e.g., a large
number of key-value pairs), and can violate low latency SLOs.
Moreover, using VMs, which are popular on-demand cloud
resources, can further exacerbate latency spikes due to the
considerable launch delay of VM instances which can take
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dozens of seconds (i.e., 25-30 secs) with conventional cloud
providers [21, 31, 44].

In this paper, we design Sponge, a new stream processing
system that requires low operational costs and keeps low
latency upon sudden bursty loads. Sponge is designed with
the following three design principles:
Combining two heterogeneous cloud resources to have
the best of both worlds: Sponge harnesses two heteroge-
neous cloud resources: VMs and serverless function (SF) in-
stances. Serverless solutions provided by conventional cloud
providers [11, 17, 26, 37, 56] only take hundreds of millisec-
onds (i.e., 300-750 ms) to launch and prepare and are de-
signed to achieve high scalability, while the operational costs
are much higher than those of VMs. Therefore, to achieve
low latency and low operational costs, Sponge uses VMs for
processing stable streaming loads for longer periods of time,
while quickly invoking SF instances and using them for short
periods of time to handle bursty loads. If the bursty input
loads persist, we may consider launching new VM instances
to permanently offload the tasks with existing state migration
techniques [16, 18, 19, 23, 25, 28, 36, 45, 49, 55]. In such cases,
on-demand SF instances can be used to accomplish system
SLOs by hiding the launch overhead during the preparation
of the new VM instances.
Keeping tasks with high migration overheads on VMs, while
quickly redirecting data to SFs: When VMs process stream-
ing data with stable loads over long periods of time, the states
of stream tasks are materialized, and the state size may in-
crease on the existing VMs. To avoid the state migration over-
heads from VMs to SFs, Sponge incorporates the redirect-
and-merge mechanism: Sponge immediately redirects the
increased load to SFs, which are imminent to offload, so that
each SF instance can build small partial states and periodi-
cally send them back to the VMs to merge with the original
states. This approach allows Sponge to promptly exploit fast-
launching SF instances and bypass the prohibition of direct
network communication between SF instances. For quick data
redirection, Sponge exploits SF properties to prevent cold start
latencies and pre-initiates copies of VM tasks on SFs to keep
its runtime, process, and pre-initiated tasks readily available
on time.
Fast reactive scaling: On top of the fast resource scaling
mechanisms on SF instances, Sponge identifies bottleneck
tasks reactively and makes precise decisions on which part of
the query to offload and how much of the compute resources
to request. At runtime, Sponge continuously monitors the
CPU usage, the major resource constraint of task execution,
to quickly react to the changing input loads. Our offloading
policy determines the fraction of input loads to offload based
on excess events accumulated in the input queue and accounts
for the optimal time to recover from load increases to meet
the SLOs for a given query.

Sponge is built atop Apache Nemo [51,57] with about 10K
lines of code. We evaluate Sponge on EC2 instances (5×
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Figure 1: (a) Logical DAG of four operators including a state-
ful Sum operator with two key groups. (b) The corresponding
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r5.xlarge) and AWS Lambda instances (up to 200 Lambda
instances of 1,769MB memory with one full CPU core) with
NEXMark [42], a popular benchmark for stream processing.
The effectiveness of our optimizations varies according to the
characteristics of queries (e.g., dataflow pattern, # of tasks,
and state size). Our evaluations show that Sponge exhibits
similar performance to costly over-provisioned approaches,
and reduces input event 99th-percentile tail latencies by 88%
on average compared to scaling queries on VMs and by 70%
compared to scaling on SFs without our techniques.

2 Background

In this section, we describe the resource demand characteris-
tics of stream processing and different on-demand resource
provisioning methods provided by current cloud services.

2.1 Stream Processing

Execution model. A stream processing query processes an
unbounded number of timestamped events to derive specific
results (e.g., top K, statistics) on every temporal window. The
execution of the query is generally expressed as a directed
acyclic graph (DAG) of operators and data dependencies. As
shown in Fig. 1, a vertex represents a stream operator that
transforms input events and emits output events, and an edge
represents how data flows between its adjacent operators. Pop-
ular stream engines like Flink [15], Spark Streaming [7], and
Beam [12] aid users with high-level languages (e.g., declar-
ative language) to facilitate query expressions. To provision
compute resources over stream operators in response to the
input data rate, the stream engine generates an optimized
physical DAG (Fig. 1(b)) after translating a user query into
a logical DAG (Fig. 1(a)). In a physical DAG, each logical
operator is expanded into n parallel tasks, p0, ..., pn−1, where
each task processes a disjoint data partition.
Streaming operators and resource demands. A stream op-
erator is either stateless or stateful. Stateless operators, such
as map and filter, are typically used to compute individ-
ual events or drop unnecessary events or fields by applying
predicates. Due to their simplicity, stateless operators can be
pipelined together within a single node to leverage data local-
ity and reduce network overheads. On the other hand, state-
ful operators, such as groupByKey and join, perform data
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(a) stateful join (b) stateless map

Figure 2: CPU and memory usage patterns for (a) stateful
windowed join and (b) stateless map operators upon process-
ing a fixed input rate of 80K events/s on identical 4 vCore
nodes. The CPU and memory usage of the stateful operator
increase until the window is full.

grouping within a window boundary to organize unbounded
streaming events into disjoint groups based on timestamps
and aggregation keys, requiring computationally extensive
key lookups. Thus, most streaming engines apply parallelism
specifically to stateful operators such that a single stateful task
pi processes events that only belong to a non-overlapping key
partition group Ki out of the entire key space K = ∪n−1

i=0 Ki.
Stateful operators are often the major source of system

bottlenecks [38, 50]. In particular, since each parallel stateful
task is assigned to a key partition group, it incurs shuffle com-
munication for the events in its key group that are collected
from the preceding (upstream) operators. Shuffle communi-
cation often requires the data to travel across different nodes,
requiring data serialization and deserialization on top of the
computation performed for the key lookups. As a result, as
shown in Fig. 2, it is prevalent to provision more CPUs to exe-
cute stateful operators rather than stateless operators [28, 54].

2.2 On-Demand Resource Provisioning
Several real-world stream analytics systems report high tem-
poral variability in the event count of data streams, even across
one-minute time windows [34, 36, 43, 48]. This means that
stream processing may need to frequently adjust resource pro-
visioning and query execution plans in response to changes
in input loads. Upon facing increased input loads, the system
needs to allocate more resources to avoid operators being
congested and maintain stable query latency.

Cloud providers offer primarily two options for on-demand
resource allocation: virtual machines (VM) and serverless
functions (SF). We compare three representative characteris-
tics between these two options in more detail.
Resource size. VMs are machine-isolated by bare-metal hy-
pervisors, whereas SFs are process-isolated by OSes. There-
fore, SFs are much more flexible in allocating resources.
Cloud providers typically provide VMs in chunks of a pre-
defined, fixed amount of resources (e.g., r5.xlarge with 4
vCores and 32GB memory). In contrast, SFs are allocated
based on a specified memory size. For the memory size, cloud
providers assign a certain number of CPU power (e.g., vCores)
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Figure 3: While scaling out on SF instances, the system must
be aware that a⃝ task state migration overheads lead to latency
spikes, and b⃝ direct data communication among adjacent
tasks is prohibited between SF instances.

guided by their pricing model [8]. We observe that network
bandwidth per SF instance is about 100Mbps and concurrently
using multiple SFs can increase the bandwidth up to GBs of
effective bandwidth, which VMs already support, providing
enough capacities to handle most streaming workloads.
Start-up time. VM instances take a significant amount of
time to launch and to prepare the runtime stack for query
workload as they virtualize resources using bare-metal hyper-
visors. We observe that provisioning a new VM instance in
major cloud service providers, like AWS, Azure, and GCP,
mostly has a latency of over 25 seconds. On the contrary, SF
instances provided by these cloud vendors take only 300-750
ms to launch and be ready to run because SF instances share
runtimes and resources at the OS level.
Usage cost. SF instances are much more expensive to use
than VM instances, e.g., 4× more expensive when running a
1GB SF instance with AWS Lambda (with < 1 vCPU) com-
pared to a t2.micro EC2 instance, which is equipped with
1 vCPU and 1GB RAM. However, temporarily using SF in-
stances primarily for frequent short-lived bursty loads that con-
stitute only a small fraction of time throughout the day [26]
does not significantly increase the operational cost (§ 6.5).

3 Challenges

Based on these observations, we propose to use a combina-
tion of VMs and SFs to have the best of both worlds. To
achieve low latency and cost, we use cheap and stable VMs
for handling continuous loads for long periods of time, and
costly and reactive SFs for bursty loads during short periods of
time. In this section, we describe several challenges in scaling
streaming loads from VMs to on-demand SF instances.
C1. Migration with large operator states. For stream scal-
ing in the cloud, existing approaches trigger resource adap-
tation primarily by re-scaling operators (i.e., increasing or
decreasing parallelism) and migrating the bottlenecked tasks
to the instances with available resources (i.e., load redistri-
bution) [7, 15, 16, 19, 28, 36, 49]. Thus, even if we can set
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Figure 4: A comparison of the overheads of different steps of
workload scaling on stream processing systems in the cloud.
The VM, SF, and managed runtime initialization overheads
are averaged across all instances, and the data redirection and
task/state migration overheads are averaged across all single-
scaling operations for the 5× input load experiment in § 6.
Error bars indicate the 95% confidence interval.

up SF instances quickly, the task state migration overhead is
inevitable with existing systems, as shown by Fig. 3 a⃝, and
paradoxically often inflicts damage to system performance.

Fig. 4 illustrates the various overheads that occur during
a single workload scaling for the queries evaluated in § 6.
As shown in this figure, the task migration and reconfigu-
ration require a few extra seconds (3-4 seconds) to resume
the work after the migration. Also, the state migration takes
several seconds (e.g., from 4 to 17 seconds) depending on the
state size because of the (de)serialization overheads of states.
These task and state migration overheads lead to increased
query latency due to the delay in receiving events from up-
stream tasks. The system that aims to meet low-latency SLOs
must correctly and rapidly carry out task offloading to SFs.
In particular, some use cases are expected to generate out-
puts even in order of seconds or less, without query accuracy
loss [36, 48].

C2. Indirect data communication between SF instances.
As SFs are designed to be provisional and temporary, cloud
vendors usually prohibit running a server process that can ac-
cept inbound network connections on an SF instance. Hence,
direct data communication across SF instances is prohibited.
This prevents neighboring stream operators (parent and child
operators) from being offloaded to SFs simultaneously, as
these operators require direct shuffle data transfers to group
data by its key partitions, as shown in Fig. 3 b⃝.

Therefore, we can choose to migrate only certain tasks to
SFs (e.g., either operator A or B in Fig. 3), but this eventually
leads the bursty input load to end up on VMs on the adjacent
operators and fails to alleviate latencies. Alternatively, we can
offload all the tasks involved in the shuffle communication on
a large SF instance. However, this forces parallel tasks to be
located on a single SF instance, which can lead to network
pressure while leaving VMs idle. Consequently, it is essential
to design the system to be able to offload adjacent opera-
tors together to SFs while bypassing the prohibited direct
communication across SF instances.

C3. Quick decision making and scaling. With frequent un-
predictable changes in input events, offloading decisions must
be made quickly at runtime. Stream systems often detect
symptoms of bottlenecks from system metrics and decide
on whether and how much to scale. However, existing ap-
proaches can be too slow, as they require multiple iterations
of optimization that scale bottleneck operators one after an-
other [19]. Other work prevents such iterations by providing a
global optimum after collecting all metrics from all executors
to redistribute tasks [28]. While these approaches effectively
find the target throughput and may be suitable for throughput-
oriented workloads, they only work in intervals of multiple
10s of seconds and may not be suitable for latency-oriented
workloads. For a stream system operating with diverse inter-
vals and window sizes, it is important to have a uniformly fast
and effective optimization level to prevent window outputs
from being delivered too late.

4 Sponge Design

In this section, we describe the key pillars of our system de-
sign and explain the details by illustrating our graph rewriting
algorithm, dynamic offloading policy, and the mechanisms
that prevent cold start latencies and enable system correctness.

4.1 Design Overview
Latency spikes occur when the input rate ri exceeds the max-
imum throughput mi on a particular task pi. When this hap-
pens, data starts to accumulate on the event queue, along with
the operator state in memory, leading to high CPU usage
and memory pressure. In a cloud environment, the maximum
throughput mi often depends on the CPU capacity allocated
to the task, regardless of the operator type. This is because
most cloud providers are equipped with GBs of network band-
widths, and memory pressure starts to increase when the CPU
becomes saturated, and the input data builds up in the event
queue with ri > mi. Therefore, our goal is to primarily fo-
cus on relieving CPU pressure. To achieve this, we design
a system that accurately estimates the amount of additional
resources needed and provides fast mechanisms for offload-
ing CPU computation from VMs to SFs through two design
principles: redirect-and-merge and fast reactive scaling.
Redirect-and-merge. Sponge is designed to rapidly forward
increased input load to available resources in SF instances. To
ensure speed, we bypass expensive query optimizations dur-
ing runtime by performing DAG optimizations during com-
pile time, i.e., when the application is launched (Fig. 5 a⃝).
During compile time, there are no concerns yet about runtime
synchronization and progress, so it only takes about 200ms
upon workload initialization to perform the DAG optimiza-
tions. After the optimization, Sponge scheduler places tasks
on appropriate executors (Fig. 5 b⃝). This allows Sponge to
focus on which operators and how much of their data volume
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Figure 5: Sponge architecture.

to offload to SFs based on monitoring CPU usage (Fig. 5 c⃝)
without having to relaunch queries at runtime.

While stateful operators are our primary focus as initial bot-
tlenecks, any operator can become a subsequent bottleneck.
Thus, we enable offloading for any operator, regardless of its
type and statefulness. We design transient operators (TOs) so
that operator logic can be prepared on SF instances to receive
events immediately after detecting an increase in the input
load and CPU usage on VMs (Fig. 5 d⃝). We also enable of-
floading to be activated at any time with high efficiency and
responsiveness. To meet these requirements, we introduce a
set of new proxy operators: router operators (ROs) and merge
operators (MOs). ROs supervise the data communication to
downstream VM and SF instances, in order to enable the sys-
tem to rapidly and elastically forward data from any existing
operators to the designated instances (Fig. 5 e⃝). To minimize
state migration overhead, which is a major bottleneck in task
migration [18, 23, 25, 55], the states, exclusively for the of-
floaded input load, are maintained separately on SFs. MOs
enable the system to later merge the corresponding states of
offloaded workload created on SFs with the states on the orig-
inal VMs for any stateful operators (Fig. 5 f⃝). This way, the
offloading overhead for both stateful and stateless operators
is substantially reduced, as we only have to offload the com-
putational logic, and not the states. The proxy operators are
inactive during non-scaling periods to avoid extra costs and
are only activated when needed.

Fast reactive scaling. With the principle above, we provide a
fast reactive approach that prevents inaccurate predictions on
resource provisioning by monitoring local performance met-
rics within the executors. Bottlenecks often occur individually
on VMs, so it is sufficient to mitigate them locally within each
VM. As briefly mentioned, relieving CPU pressure when the
input rate ri is greater than the operator throughput mi is key
to reducing CPU and memory strain in stream processing
systems. Sponge has low monitoring overhead, with less than
10ms per observation. Based on input rate and CPU usage
observations, Sponge estimates the amount of CPU resources
needed to increase operator throughput and meet our SLOs
under increased input loads.

Algorithm 1: DAG rewriting for operator insertion.

1 Function OperatorInsertion(dag)
2 for vertex, inedges in dag.topological_sort() do
3 t_op = TransientOp.for(vertex)
4 for inedge in inedges do
5 if inedge.comm != 1to1 then
6 r_op = RouterOp.create()
7 dag.remove_edge(inedge)
8 e1 = {inedge.src→r_op, inedge.comm}
9 e2 = {r_op→vertex, 1to1}

// connect transient operators
10 e3 = {inedge.src.t_op→r_op, inedge.comm}
11 e4 = {r_op→vertex.t_op, 1to1}
12 dag.add_edges([e1, e2, e3, e4])

13 else
14 e = {inedge.src.t_op→t_op, 1to1}
15 dag.add_edges([e])

16 if inedge.src.is_stateful() then
17 m_op = MergeOp.create()
18 dag.remove_edge(inedge)
19 e1 = {inedge.src→m_op, inedge.comm}
20 e2 = {m_op→vertex, 1to1}
21 e3 =

{inedge.src.t_op→m_op,inedge.comm}
22 e4 = {m_op→vertex, 1to1}
23 dag.add_edges([e1, e2, e3, e4])

24 return dag
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Figure 6: DAG transformation after graph rewriting.

4.2 Compile-time Graph Rewriting Algorithm

At the start of the application, our compiler applies the graph
rewriting algorithm (Algorithm 1) to the application DAG,
which produces a new DAG based on a set of conditional
rules, as shown in Fig. 6. In our algorithm, TOs, ROs, and
MOs are inserted as follows. TOs are cloned stream oper-
ators with additional features to run on SF instances, such
as maintaining partial states for stateful operators. Since all
original operators are potential candidates for offloading, we
first create TOs for all operators (line 3, Fig. 6 a⃝). This way,
all operators causing CPU bottlenecks can scale on SFs with
TOs. ROs enable data communications between VM and SF
instances when the communication pattern involves a shuffle
or a broadcast (as one-to-one communications typically occur
locally between pipelined operators) (§ 2). ROs run on exist-
ing VMs to redirect the input data to the downstream tasks
running on either VMs or SFs without performing additional

USENIX Association 2023 USENIX Annual Technical Conference    305



computations (line 5-12, Fig. 6 b⃝). If the communication pat-
tern involves the same number of partitions and tasks between
two operators, we pipeline the corresponding TOs with a one-
to-one edge (line 13-15). ROs incur almost no costs as they
simply redirect events to the tasks on target instances (e.g.,
conventional or TO tasks). Lastly, we insert an MO after each
stateful operator for every edge, so that the partially aggre-
gated states on the TOs can be merged back into the original
states on VMs (line 16-23, Fig. 6 c⃝), where the details of
the merging mechanisms are provided in § 4.5. Stateless op-
erators do not need to merge states, so they simply pass on
their output to the following operators (e.g., filter operator in
Fig. 6). During non-scaling periods, ROs are not activated
and TOs and MOs do not receive any data, adding no compu-
tational costs to the runtime. The operators are only activated
upon offloading actions.

4.3 Dynamic Offloading Policy
In this section, we describe when Sponge triggers offloading,
how many SF instances it uses, and how many events it of-
floads. Our goal is to constantly maintain low query latencies
while keeping CPU utilization stable across all active cloud
instances. To achieve this, Sponge quickly calculates the total
number of CPU cores needed to meet this goal and the Sponge
scheduler redistributes the workload accordingly among the
tasks placed on VMs and SFs.
Overall workflow. The Sponge runtime, shown in Fig. 5,
is a main system component that performs monitoring of
the resources and operator states to take immediate scaling
actions as needed. Each executor continuously monitors CPU
resources and input rates, typically every second, and observes
if the CPU load falls outside a stable range for consecutive
periods. If so, the Sponge runtime initiates the scaling phase
by first calculating the target system throughput, based on the
over-subscription period of CPUs and the current input rates
(that jointly decide the number of events in the queue), and the
recovery deadline (the time remaining to clear the events and
return the system to a stable state). Subsequently, the Sponge
runtime adds new SF instances as needed to meet the recovery
deadline by sending requests to the Sponge scheduler. The
number of new SF instances is chosen to be minimum to
neither over-subscribe nor under-subscribe the active cloud
instances, minimizing operational costs. After a scaling action
is taken, the Sponge runtime returns to the monitoring phase.
It is possible that the Sponge runtime may go through multiple
monitoring-scaling phases before the system becomes stable.

4.3.1 Detailed Offloading Process

CPU utilization goals. Along with system metrics, such as
the input rate and operator latency, Sponge measures the CPU
load of the executor in order to maintain adequate CPU loads
on individual nodes. Through extensive experiments, we have

observed that the input rate ri exceeds operator throughput mi
and event queues start to build up (i.e., ri > mi) when the CPU
is occupied at around 75-80% of its capacity. We have also
seen symptoms of over-provisioned system resources when
the CPU load falls under 50-60%. Due to such reasons, we
aim to maintain the CPU utilization range between 60-80%.
Events in the queue. Assuming ri(t)> mi(t) between times
tp and tp+1 (tp < tp+1), the number of excess events accumu-
lated in the queue can be formulated as

∫ tp+1
tp (ri(t)−mi(t))dt.

Obviously, the accumulated events in the queue will be
smaller if the duration d = tp+1 − tp is smaller. This is the
main reason for using SF instances over VMs – to reduce the
duration of ri(t)> mi(t).
Recovery deadline. Recovering from this event backpressure
is achieved by providing the system with additional resources
to achieve higher throughput, mio . If additional resources are
available from time to, we should set a deadline to+1 until
which we aim to empty the queue to return to a stable state for
our streaming system. We base the deadline on the window in-
terval of the query (e.g., 10 seconds) so that we can deliver the
query results within the query’s next output boundary. Then,
the number of additional events that can be processed from
the queue can be expressed as

∫ to+1
to (mio − ri(t))dt, where the

increased throughput is larger than the input rate (mio > ri(t)).
As a result, we should adjust our throughput mio with suffi-
cient additional resources to meet our recovery deadline to+1
(e.g., to+1 − to ≤ 10) such that the following equation holds:∫ tp+1

tp

(ri(t)−mi(t))dt ≤
∫ to+1

to
(mio − ri(t))dt (1)

The approximation of the integrals is based on Simpson’s
rule provided by [5], which turns complex calculations into
simple arithmetic that incurs trivial overheads.
Stable throughput per VM CPU core. To calculate the
target number of SF instances required to achieve our tar-
get throughput, we maintain records of the CPU usage rate
of the VM node during stable loads. Assuming that a task
pi runs on a single VM core with an average usage rate of
ucpuV M

i
(%) and an average task input rate of ri[events/sec]

based on the records, we scale and approximate the input
rate and throughput for 100% utilization of the VM core
rpcV M

i [events/(sec · core)] for task pi, as follows:

rpcV M
i =

ri
ucpuV M

i
100

[events/(sec · core)] (2)

Required number of SF instances and data redistribution.
Based on the approximation of how much input throughput a
VM core can handle, we can calculate the number of required
SF instances to achieve our target throughput mio with a sim-
ple division. We offload tasks from VMs to SFs to keep the
CPU utilization of VM clusters between 60−80% in order to
prevent resource over-provisioning. Hence, we target the VM
CPU core usages at 70%, for our approximation to solidly fall
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into our target with a ±10% buffer even when our profiling
measurements exhibit minor errors on time-varying variables
like ri(t).

Assuming the CPU capacity of each SF instance core is
different from that of a VM core, we can derive a relation
between them with profiling: capaSF

core = ρ ∗ capaV M
core. Cor-

respondingly, rpcSF
i = ρ∗ rpcV M

i because the throughput is
proportional to the CPU capacity. Altogether, the number of
total SF cores c that we need to prepare to meet our latency
goal for task pi can be derived with Equation 2 as follows:

c = ⌈ mio

0.7 · rpcSF
i

⌉= ⌈
mio ·ucpus

0.7 ·100 ·ρ · ri
⌉ (3)

where the number of required SF instance cores increases
as ρ decreases. Finally, the number of SF instances can be
calculated with c

k where k is the number of cores per SF
instance (k = 1 in our evaluation).

When offloading stateless or stateful tasks, Sponge evenly
redirects data or redistributes keys to the c

k SF instances, while
processing remaining events on VMs to keep 70% CPU usage
in average. If the event distribution is skewed across the key
space, the solution can be extended to use key histograms for
more accurate key partitioning, as in existing approaches [13,
30]. Both during scaling up and down, the target CPU usage
is set at 70% within our target range.

4.4 Reducing Cold Start Latency
In order to timely gain access to SFs, Sponge provides two
options: (1) warm-up SF workers in advance by sporadically
processing short events [21, 39, 58] to minimize the managed
runtime initialization overheads [35], and (2) use solutions
like AWS SnapStart [32], which bring shorter initialization
times of SFs by taking a snapshot of the initialized SF instance
environment and caching it for low-latency access [1]. As SFs
are charged based on the memory usage time and the number
of requests [9, 10, 22], prices for pre-warming SFs are trivial
(nearly zero). By default, Sponge prepares and keeps enough
SFs warm to handle up to 5× the stable load during the work-
load. For bursty loads that exceed 5× the stable load, Sponge
timely prepares new instances with SnapStart [32] on AWS.
SFs on AWS SnapStart [1, 32] show a slightly worse start-up
time compared to the instances that are kept warm in advance,
but the overhead is reduced by more than 80% compared to
unoptimized JVM initializations, resulting in a sub-second to-
tal start-up time for SFs (§ 6.4). As a result, by enabling both
methods for initializing the managed runtime, Sponge can
timely gain access to SFs upon facing unpredictable bursty
input loads.

4.5 Correctness
As stream systems are designed to be long-running, progress
is tracked by the positions of the watermarks that flow along
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Figure 7: Once an operator (A2) tries to scale, an offload mes-
sage (M) is generated at the RO (R2) to activate its TO (T2)
and MO (M2). The offload message acts as a boundary among
input events (1-9) for operator scaling and state merging.

with stream events [12, 15, 51, 57]. Based on the intuition,
Sponge maintains correctness by (1) introducing a watermark
in the event stream as a control message upon (de)activating
an operator and (2) ensuring that all events between two wa-
termarks are processed in the original system (i.e., without
offloading) or on the offloaded operators [23, 36].

Concretely, upon detecting a possible bottleneck in an oper-
ator task pi on an executor, Sponge fires a watermark message
M into the data channel (Fig. 7). Upon receiving watermark
messages, operators checkpoint their states to later recover
from the checkpointed states, guaranteeing exactly-once pro-
cessing. Sponge scales after temporarily pausing operators
upon control messages and delivering messages to down-
stream tasks. Once all on-the-fly events in the data plane are
consumed, downstream tasks send acks back to the upstream
tasks to guarantee no event and state loss.

Thus, the events that arrive after M are immediately redi-
rected to the tasks of the TOs on SFs, where partial states
are aggregated if the operator is stateful. For stateful opera-
tors, TOs send the aggregated states to the following MOs
placed on VMs, which know where to start merging the partial
states with the original ones. Both incremental and appended
aggregation can be mergeable with partial states, similar to
how Flink [15] manages shared states, which causes mod-
erate overhead on VMs. Even if events arrive out-of-order
in the merge operators, they wait for the same watermark to
arrive from the task in VM and its transient tasks so that the
states can be synchronized. This ensures that all input data
before and after M are processed according to the proposed
optimizations.

5 Implementation

We have implemented Sponge with about 10K lines of Java
with support for AWS Lambda, as follows:
Programming interface: To express a stream query as an
application DAG, we use Apache Beam [12] application se-
mantics, which is a widely used dataflow programming inter-
face for various systems (e.g., Spark [7], Flink [15], Cloud-
Dataflow [3]). In addition, as Beam provides APIs for devel-
opers to build associative and commutative operations (e.g.,
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used in our evaluation. M and F are map and filter operators,
GbK is a stateful group-by-key operator for incremental ag-
gregation on windows, and SI is a non-mergeable stateful
operator for the join operation.

combiners), Sponge can extract this information to build the
merge operators.
Compiler: Apache Nemo [51, 57] provides the intermedi-
ate representation and optimization pass abstractions, with
which we can flexibly optimize application DAGs. We split
our operator insertion into three separate optimization passes
for inserting ROs, TOs, and MOs on Nemo to reshape the
application DAG, defined by Apache Beam semantics.
Runtime: We modify the Nemo runtime [51, 57] to support
the migration of tasks and the redirection of the data from
VMs to SFs. Sponge executes worker processes on VM and
SF instances, which each manages a thread pool that contains
a fixed number of threads and assigns tasks to the threads.
VM workers set up Netty [41] network channels and com-
municate with other VMs and SF workers, while there are
no network channels set up between SF instances due to the
communication constraint. For launching new VM and SF
instances, as well as for deploying the worker code on AWS
Lambda, we use boto3, the AWS SDK API for controlling
AWS instances [14].

6 Evaluation
In our evaluation, we observe Sponge performance compared
to other scaling mechanisms (§ 6.2), distinguish the factors
that contribute to the Sponge performance (§ 6.3), compare
the cold start latency reduction mechanisms (§ 6.4), and ob-
serve the latency-cost trade-off between SFs and VMs (§ 6.5).

6.1 Methodology
Environment. We use AWS EC2 r5.xlarge instances (32GB
of memory and 4 vCores) as VM workers, and AWS Lambda
instances as SF workers. As AWS Lambda offers one vCPU
per 1,769MB and provides constant network bandwidth (i.e.,
∼ 100Mbps) regardless of the instance size, we use single-
core SF instances of 1,769MB to provision each instance
with enough network bandwidth to achieve the throughput
of the CPU core. VMs generally provide 10Gbps networks,
which effortlessly cover the traffic generated by the CPU

Query Stateful State
Size

# of Tasks
(per Op.)

Stable in-
put rate

Q1 X - 120 550 K/s
Q4 O ∼90 MB 60 190 K/s
Q5 O ∼2.4 GB 70 19 K/s
Q6 O ∼73 MB 70 230 K/s
Q7 O ∼1.5 GB 90 15 K/s
Q8 O ∼7 GB 60 60 K/s

Table 1: Characteristics of different NEXMark stream queries.
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Figure 9: Examples of different bursty input patterns used in
some experiments, where input rates increase at time t = 380.
(a) shows a sudden increase from 60K to 300K (5×) for 60
seconds, (b) shows a sine-curve increase and decrease, and
(c) shows a gradual increase.

core throughput (i.e., < 10% bandwidth utilization when of-
floading 450K events/sec). We set up Amazon Virtual Private
Cloud (VPC) for the data communication between the VM
and SF instances for stable network connections.
Workloads. NEXMark [42] is a widely used streaming bench-
mark [28, 33] that analyzes auctions and bid data streams.
NEXMark contains diverse stream queries with complex
dataflow and stateful operations. Among the 8 (Q1-8) NEX-
Mark queries, we choose 6 queries as shown in Table 1
because they represent distinctive data communication pat-
terns and stateless and stateful operations. We omit Q2-3
because Q2 is a stateless query similar to Q1, and Q3 is a
non-associative stateful query like Q7.

Fig. 8 illustrates the simplified original DAG of NEXMark
queries, and Table 1 summaries the characteristics of the
queries. The queries except for Q1 contain windowed op-
erations. We configure the window size of queries as 60 sec-
onds and the window interval as 1 second. While the system
throughput declines with larger and more frequent windows,
we evaluate under a frequent window interval to test Sponge
under requirements for frequent, time-critical resource scal-
ing. The throughput of the evaluated engine [51,57] is similar
to the performance of other stream processing engines [7, 15]
when the same window size and interval are used. Nonethe-
less, in our evaluation, the bursty traffic is increased by up to
10× events/sec and represents a wide range of realistic input
rates in the field (§ 6.2).
Baseline. We compare Sponge with the following baselines:
• NoScaling executes stream queries on static VMs without
scaling out stream queries.

• VMBase dynamically creates new VMs and migrates tasks
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Figure 10: The tail latency graph, under a bursty load
(Fig. 9(a)) at t = 380s and scaling is triggered at t = 381s.

to the new VMs for scaling without dataflow reshaping.

• SFBase dynamically creates SF instances and migrates
tasks to SFs for scaling without dataflow reshaping. For SF-
Base and Sponge, we prevent cold start latencies on SF work-
ers as described in § 4.4.

• VMInit initializes new VMs in advance and migrates tasks
to the new VMs for scaling without dataflow reshaping.

• Over over-provisions VMs and already has enough re-
sources to cover input loads without dataflow reshaping.

Bursty traffic and resource allocation. We emulate bursty
traffic by increasing the input rate over a short period of time,
as shown in Fig. 9. In this traffic pattern, we first generate
stable input streams where the input rate is stable and does not
fluctuate. At a specific point (e.g., t = 380s in our evaluation),
we increase the input rate for a short period of time (e.g., 60
seconds) to emulate an increased load and then decrease the
rate back to the stable input rate. In § 6.2, we observe the av-
erage performance of the different systems under up to 10×
burstiness ( bursty input rate

stable input rate ), and we provide detailed analysis on
the effects of the burstiness rising from 3× to 6× in § 6.3. By
default, the burstiness is set to 5×, as it distinctly shows the
limitations of existing approaches comparatively. For exam-
ple, as the stable CPU load is kept at 60−80%, most baselines
already experience high latencies from 2× burstiness, but the
performance results are more clearly distinguishable between
the baselines under the 5× burstiness.

During the stable load, we run 5 VM workers. We gen-
erate events (per second) for the stable load such that all 5
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Figure 11: The CPU utilization graph, under a bursty load
(Fig. 9(a)) at t = 380s and scaling at t = 381s.

VM workers undergo CPU usage between 60% and 80%,
preventing the VM cluster from being under-loaded or over-
loaded. As queries have different computational complexity,
the stable input rate is configured differently for each query as
shown in the last column of Table 1. Once bursty loads occur,
we dynamically allocate up to 200 single-core SF instances
for Sponge and SFBase, and up to 50(10×) new extra VM
instances for VMBase depending on the query load.

6.2 Performance Analysis
Fig. 10 and Fig. 11 illustrate the 99th-percentile tail latency
and CPU utilization, respectively, of the different systems
across different queries for the Burst traffic pattern in Fig. 9.
Overall, Sponge and Over exhibit lower latencies compared to
others during bursty periods and successfully keep the CPU
utilization stable. The latency of NoScaling continuously in-
creases with full CPU utilization as the existing VMs are
overloaded and never perform offloading. Henceforth, we dis-
cuss Sponge and other baselines that perform scaling. For
SF-based strategies that are restricted by the prohibited di-
rect communication between SF instances, we profile their
operator costs and manually configure them to make the best
scaling decisions.
Sponge. Sponge reduces the tail latency on average by 88%
compared to VMBase and 70% compared to SFBase and
performs comparably to Over. Sponge also keeps the CPU
utilization relatively stable across time, as shown in Fig. 11.
Subsequently, we illustrate below why other scaling strategies
cannot deliver the same benefits as Sponge in further detail.
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Traffic pattern Burstiness Duration

Figure 12: Summarized results of the experiments, with sim-
ilar settings as in Fig. 10, displaying the average peak tail
latency across the different NEXMark queries under diverse
input patterns and burstiness.

VMBase. The latency of VMBase in Fig. 10 increases by at
least 30s due to the slow start-up time of the VMs. Specifically,
we observe that it takes around 25-30 seconds for the VMs to
start, and around 4 extra seconds for managed runtime (i.e.,
JVM) worker processes to start on the newly started VMs.
Moreover, as JVM processes are cold at the beginning and
JIT compilation is not triggered, the processing throughput
is low in the beginning, which causes extra latency of up
to 44 seconds. After new VMs are instantiated, tasks are
migrated to new VMs, and the latency of the VM decreases as
the throughput eventually becomes larger than the input rate.
Nevertheless, the CPU utilization of VMBase shown in Fig. 11
is continually kept high after the peak load, as it tries to climb
down from the latency peak by heavily processing the data in
the event queue.
SFBase. The slow start-up time of VMs can be mitigated
by using SFs as shown in SFBase. Upon scaling out Q1 (a
simple stateless query), SFBase significantly reduces the la-
tency and CPU compared to VMBase, as the start-up time of
an SF instance only takes a few hundred milliseconds in our
evaluation. This result suggests that only by using SFs instead
of VMs, we can significantly improve the latency for scaling
out a simple stateless query, similar to MArk which handles
bursty loads of stateless inference jobs [58].

However, for scaling out other complex queries with N-to-
N shuffle data communications and stateful operations, the
performance gain of SFBase compared to VMBase declines.
It indicates that naïvely scaling queries on SFs without any
operator insertion has limitations due to the challenges ex-
plained in § 3. In Q4 and Q6, latency increases by up to 12
seconds because the operators with shuffle edges cannot be
redistributed to SFs and VMs become the bottleneck. In Q5,
Q7, and Q8, latency and CPU spikes are caused by task and
state migration overheads.
VMInit. Like SFBase, VMInit reduces the slow start-up time
of VMs by starting them in advance. For VMInit, queries with
N-to-N shuffle data communications can be offloaded, but we
can see that it still incurs task and state migration overheads
resulting in short steep peaks of tail latencies and CPU usage,
which is highlighted in Q8.
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Figure 13: The latency graphs for SF, SpongeRO, SpongeTO,
SpongeSnap, and Sponge to analyze and break down the per-
formance improvements of Sponge.

Over. The over-provisioned case is the most expensive solu-
tion, providing enough resources for the peak loads without
considering an upper bound for runtime costs. In Fig. 10, we
can see a slight increase in latency as the input load increases,
but it soon stabilizes back. The CPU usage in Fig. 11 dis-
plays an under-utilization before the peak load, but shows an
adequate utilization rate afterward, as it is allocated with an
adequate amount of resources for the peak load.
Input patterns. In Fig. 12, we can see the average tail latency
among the different queries along the different input patterns.
We can see that Sponge and Over show good performance
among all settings, and NoScaling continuous increases in
most cases. The sine and gradual bursts show a relatively mild
effect compared to others, as their bursts are more gentle. We
can see that while 120s and 30s bursts show somewhat similar
results, 7× and 10× bursts show higher tail latencies due to
the increased load.

6.3 Graph Rewriting Effect
To validate our design, we analyze the performance gain on
Sponge with the following additional baselines:
• SpongeRO scales queries on SFs while allowing direct
communication between SF instances with ROs only.

• SpongeTO scales queries on SFs by adding event redirec-
tion atop SpongeRO with ROs and TOs.

• SpongeSnap shows performance for Sponge, with ROs,
TOs, and MOs, on SnapStart, without pre-warming instances.

Fig. 13 illustrates the tail latencies of SFBase, SpongeRO,
SpongeTO, SpongeSnap, and Sponge in more detail. Q1 and
Q7 are omitted in the figure, as Q1 is a simple stateless query,
and Q7 is represented by Q5 and Q8.
Router operator effect. Comparing SpongeRO with SFBase
shows the effect of router operators. In Q4 and Q6, SFs exhibit
higher latencies as VMs are bottlenecked while processing
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Figure 14: Comparison on Q4 for (a) SFBase and SpongeRO
on diverse burstiness, and (b) SpongeRO and SpongeTO on
different degrees of parallelism (# of parallel tasks).

events for M operators (Fig. 8) on VMs (only 3% of input
events are filtered before M2). As naive SFs can only offload
one of M and GbK, we choose to offload GbK, as the amount
of computation on M is smaller than that of GbK due to the
additional aggregation. However, the input rate of M on VMs
becomes higher than the maximum throughput on the VMs
with 5× bursts in Q4 and Q6, and events pile up in M operators,
incurring latency increases in SFs. In Q5 and Q8, the latency
of SFBase is similar to SpongeRO as VMs sufficiently handle
the load on M operators. The main bottlenecks in Q5 and Q8
are GbK operators, which incur large aggregate computations.
This result indicates that the RO is effective when the input
rate and the overhead caused by the operators running on
VMs are high.

We also evaluate when VMs become bottlenecks on M op-
erators, by varying the burstiness ( bursty input rate

stable input rate from 3 to 6 in
Q4 (Fig. 14(a)). In the figure, the bottom and top of the box
are the 25th and 75th percentiles, the line indicates the me-
dian, error bars are the 95% confidence interval, and outliers
are dotted as rhombi. VMs sufficiently handle 3× and 4×
burstiness, and the latency of SFBase does not increase and is
similar to SpongeRO. However, when the burstiness increases
to 6×, VMs become the bottleneck in processing the input
events of M. Unlike SFBase, SpongeRO adds an RO between
M and GbK, and migrates both M and GbK to SFs while keeping
the RO on VMs. As an RO does not (de)serialize events and
does not perform computation, the amount of computation of
RO is always smaller than that of M, and reduces latencies by
up to 70%.

Transient operator effect. Transient operators enable Spon-
ge to redirect data without stopping the workload for
rescheduling. The effectiveness of transient operators in-
creases as the number of tasks to be migrated (or redirected)
increases. Q4 requires a large number of tasks to be migrated
or redirected. For Q4, we had to migrate or redirect 85%
of total tasks to SFs to mitigate the bottleneck in the VMs
in SpongeRO and SpongeTO. SpongeRO takes around 2.8
seconds for migrating its tasks. In contrast, SpongeTO takes
around 1.4 seconds for redirecting its tasks. Due to the fast
redirection mechanism, SpongeTO additionally reduces the
latency by up to 28% compared to SpongeRO.
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Figure 15: (a) The latency during a bursty period, and (b) a
rough calculation of the cost according to the % of the bursty
duration throughout the day.

When the degree of parallelism increases, the number of
tasks to be migrated or redirected also increases. Fig. 14(b)
illustrates the tail latency under different degrees of paral-
lelism in Q4. With 50 parallel tasks for each operator, the task
migration/redirection overhead is small, but the latency in-
creases after the migration and redirection in both SpongeRO
and SpongeTO, as a smaller degree of parallelism makes the
system more prone to unevenly skewed tasks. With 70 parallel
tasks, the overall latency decreases but the task migration over-
head increases in SpongeRO. As a result, the peak latency in-
creases by up to 8 seconds. In contrast, due to the lightweight
redirection optimization, the peak latency of SpongeTO is kept
at around 3.5 seconds, which is 56% smaller than SpongeRO.
Merge operator effect. Even with ROs and TOs, SpongeTO
still suffers from high latencies in Q5 and Q8 due to the state
encoding/decoding overheads. The state migration overhead
is trivial in Q4 and Q6 (< 100MB), but the overhead increases
with the state size. The time to encode/decode the states of
Q5 and Q8 takes around 13s (for ∼2.4GB state) and 35s
(for ∼ 7 GB state), respectively. As a result, the latency of
SpongeTO increases by up to 15 and 38 seconds in Q5 and
Q8. In contrast, Sponge significantly reduces the latencies
to 4 seconds in Q5, and to 6 seconds in Q8, preventing state
migration overheads with MOs.

6.4 Cold Start Latency Reduction Methods
In § 4.4, we describe two methods for reducing the cold start
latency: by keeping warm SF instances and by using snap-
shots of SFs through tools like SnapStart [32]. In Fig. 13, we
can see that the performance of SpongeSnap, which solely
bases its initialization method on SnapStart [32], is slightly
worse, but comparable with Sponge, which uses a hybrid of
both methods in optimizing the managed runtime (e.g., JVM)
initialization overhead. Since the overhead is reduced by more
than 80% with SnapStart [32], and > 90% with warm SF in-
stances compared to the original managed runtime initializa-
tion methods on SF instances, both methods succeed to timely
supply SFs within a sub-second total start-up time.

6.5 Latency-Cost Trade-Off
The cost of using SF instances may be higher than over-
provisioning VMs when the bursty input persists. In such
cases, it makes more sense to launch new VMs while Sponge
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handles the bursty traffic and offload our tasks to the VM. To
investigate the latency-cost trade-off and figure out when it is
more beneficial to launch new VMs, we compare the follow-
ing two VM over-provisioning approaches with Sponge in
terms of latency and cost on the workload shown in Fig. 9(a).
One is 20-VMs (static), where 20 VMs are statically allocated
without dynamic scaling, and the other is 25-VMs (static),
where 25 VMs are statically allocated. As the default number
of VMs used in Sponge is 5, 20-VMs and 25-VMs allocate 4×
and 5× more VMs compared to Sponge, respectively.

Fig. 15(a) illustrates the latency of 20-VMs, 25-VMs, and
Sponge during the bursty period. The latency of Sponge is in
between 20-VMs and 25-VMs. Compared to 25-VMs, which
has enough resources to handle 5× bursty loads, Sponge has
inherent scaling overheads due to the redirection and migra-
tion protocols. This is why the latency of Sponge is slightly
higher than 25-VMs.

In terms of cost, Fig. 15(b) shows a rough calculation of
cost according to the bursty duration in a day. For instance,
1% of bursty duration represents that bursty loads happen
for 24hr ∗0.01 during a day. Basically, the cost of Sponge is
smaller than others when bursty loads occur in short durations.
When the duration of the bursty load is less than 15%, Spon-
ge has lower latency and cost compared to 20-VMs. When
the bursty load persists (at more than 25% in Fig. 15(b)), the
cost of Sponge exceeds 25-VMs due to the high cost of the
SF instances. In this case, it is more beneficial to statically
over-provision VM resources in terms of latency and cost.
Nevertheless, as presented in existing works [36, 40], bursty
loads are mostly short-lived, and persistent peaks are compar-
atively much rare, resulting in their duration generally falling
much below 15% of the total time. Sponge provides mech-
anisms to initially provide prompt scaling with fast-starting
SFs regardless of the peak duration and later expands the
cluster to additional slow-starting VMs if the peaks persist,
making the solution effective with any bursty traffic in terms
of both cost and latency.

7 Related Work

To the best of our knowledge, Sponge is the first work that
addresses all technical challenges described in § 3. There are
some existing works that partially address the challenges, and
we compare them with Sponge.
Data communication across SF instances. Researchers
have exploited fast-starting SF instances for various work-
loads such as interactive data analytics [27, 44], video analyt-
ics [4, 21], and daily applications [20]. These applications are
also represented as DAGs, and shuffle operations are required
between SF instances. Their solutions to enable data commu-
nication across SF instances enable using additional VM relay
servers [21], using HDFS in VMs [27], building an ephemeral
storage service [31], and using a NAT-traversal technique [20].
Sponge router operators enable data communication across SF

instances preserving event-based stream processing with low
latency, without requiring any of the additional VM resources
or NAT-traversal technique.
Optimizing state migration. Rhino [18] and ChronoStre-
am [55] replicate states of stream queries across extra (over-
provisioned) machines to minimize state migration over-
heads. Replicating and holding states requires costly over-
provisioning of long-running resources like VMs. Holding
states on SFs will cause additional state recovery and cost
when SFs are reclaimed by cloud vendors. Megaphone [25]
proposes fluid migration that smoothly migrates states from
source to destination resources for a long period to reconfigure
system configurations. However, when bursty loads happen,
the reconfiguration must be executed in a short period of time.
As a result, a large amount of state migration is inevitable to
quickly migrate the load on VMs. In contrast, Sponge avoids
state migration from VMs to SFs by just forwarding data to
SFs and merging partial states in SFs into the existing VMs.
Scaling policy. Regarding scaling policies, SEEP [16],
StreamCloud [24], and Dhalion [19] use metrics like CPU uti-
lization for their decisions. Systems such as DS2 [28] aim to
measure the processing and output rates of individual dataflow
operators through system instrumentation. Many of these
scaling policies are designed to be agnostic to the underlying
scaling mechanisms and resource acquisition schemes. In con-
trast, the Sponge scaling policy also explicitly considers the
characteristics of SF instances and offloads the right amount
of computations to keep the CPU utilization high.

8 Conclusion
Sponge harnesses SF instances for offloading bursty loads
from existing VMs in streaming workloads. Sponge mini-
mizes task migration overheads and addresses data commu-
nication constraints on SF instances by inserting new stream
operators in the application DAG: router, transient, and merge
operators. Sponge also provides an offloading policy that de-
termines when and how to offload the increased input loads.
Our evaluation on AWS EC2 and Lambda shows that the
Sponge operators are effective in significantly reducing tail la-
tencies in stream processing upon unpredictable bursty loads,
compared to existing scaling mechanisms on VMs and SFs.
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Abstract

AWS Lambda is a serverless event-driven compute service,
part of a category of cloud compute offerings sometimes
called Function-as-a-service (FaaS). When we first released
AWS Lambda, functions were limited to 250MB of code and
dependencies, packaged as a simple compressed archive. In
2020, we released support for deploying container images
as large as 10GiB as Lambda functions, allowing customers
to bring much larger code bases and sets of dependencies
to Lambda. Supporting larger packages, while still meeting
Lambda’s goals of rapid scale (adding up to 15,000 new con-
tainers per second for a single customer, and much more in
aggregate), high request rate (millions of requests per second),
high scale (millions of unique workloads), and low start-up
times (as low as 50ms) presented a significant challenge.

We describe the storage and caching system we built, op-
timized for delivering container images on-demand, and our
experiences designing, building, and operating it at scale. We
focus on challenges around security, efficiency, latency, and
cost, and how we addressed these challenges in a system
that combines caching, deduplication, convergent encryption,
erasure coding, and block-level demand loading.

Since building this system, it has reliably processed hun-
dreds of trillions of Lambda invocations for over a million
AWS customers, and has shown excellent resilience to load
and infrastructure failures.

1 Introduction

AWS Lambda is a serverless event-driven compute service,
part of a category of cloud compute offerings sometimes
called Function-as-a-service (FaaS). First launched in 2015,
today AWS Lambda functions run millions of times per sec-
ond over millions of unique customer workloads. One factor
that attracts customers to Lambda is its ability to scale up
to handle increased load, typically in less than one second
(and often as quickly as 50ms). This scale-up time, which
customers have come to refer to as cold-start time, is one of

the most important metrics that determine the customer ex-
perience in FaaS systems. When we launched AWS Lambda,
we recognized that reducing data movement during these cold
starts was critical. Customers deployed functions to Lambda
in compressed archives (.zip files), which were unpacked as
each function instance was provisioned. As Lambda evolved,
and customers increasingly looked to deploy more complex
applications, there was significant demand for larger deploy-
ments, and the ability to use container tooling (such as Docker)
to create and manage these deployment images. Customers
also wanted Lambda to support these images without compro-
mising on cold-start performance.

Adding container support to AWS Lambda without regress-
ing on cold-start time presented a significant technical chal-
lenge for our team. The core challenge is simply one of data
movement. Today, Lambda can start up to 15,000 containers a
second [18] for production workloads, and we expect to scale
further for future workloads. Simply moving and unpacking
a 10GiB image for each of these 15,000 containers would
require 150Pb/s of network bandwidth. To achieve scalability
and cold-start latency goals, we needed to take advantage of
three factors which simplify this problem:

Cacheability While Lambda serves hundreds of thousands
of unique workloads, large scale-up spikes tend to be
driven by a smaller number of images, suggesting that
the workload is highly cacheable.

Commonality Many popular images are based on common
base layers (such as our own AWS base layers, or open
source offerings like Alpine). Caching and deduplicating
these common base layers reduce data movement for all
containers that build on them.

Sparsity Most container images contain a lot of files, and
file contents, that applications don’t need at startup (or
potentially never need). Harter et al [15] found that on
average only 6.4% of container data is needed at startup.

Our solution combines caching, deduplication, erasure cod-
ing, and sparse loading to take advantage of our needs. With-
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Figure 1: Architecture of the AWS Lambda invoke path

out adding any customer visible complexity (they simply up-
load a container image to a convenient repository), we were
able to achieve our scale and cold-start latency goals, while
having significant headroom for future scaling.

In this section, we present the existing architecture of AWS
Lambda, and the overall architecture of our system. Section 2
presents the low-level implementation of our sparse loading
solution. The cache architecture, and use of erasure coding
to improve scalability and tail latency is presented in Section
4. Section 3 presents our convergent encryption-based secure
deduplication architecture. Finally Section 6 compares our
solution to other approaches from academia and industry.

1.1 Existing Architecture Overview

To reduce risk and optimize time-to-market, we wanted to
introduce these new capabilities to Lambda with the minimum
amount of change to the existing architecture, as shown in
Figure 1. Requests to execute a certain function (we call
these invokes) arrive via a load-balanced stateless frontend
service. This service loads the metadata associated with the
request, performs authentication and authorization, and then
sends a request to the Worker Manager, requesting capacity.
Worker Manager is a stateful, sticky, load balancer. For every
unique function in the system, it keeps track of what capacity
is available to run that function, where that capacity is in
the fleet, and predicts when new capacity may be needed.
If capacity is available, the Worker Manager instructs the
frontend to forward the request payload to a Worker, where
the function is executed. If no capacity is available, the Worker
Manager identifies a Worker with available CPU and RAM,
and sends a request to start a sandbox for the relevant function.
Once this is complete, the frontend is notified and the function
is executed.

Each Lambda worker, as shown in Figure 2, includes a
small controller process, the Micro Manager, some additional
agents for logging and monitoring, and a large number of
MicroVMs. Each MicroVM, based on our Firecracker [3]
hypervisor, contains the code for a single Lambda function
for a single customer. Inside the MicroVM is a minimized

Customer Code

Firecracker

λ Shim

Linux Kernel

virtio

Micro
Manager

MicroVM “slot”Monitoring, 
Logging, etc.

Figure 2: Architecture of the AWS Lambda worker

Linux guest kernel, a small shim that provides Lambda’s
programming model, any provided runtime (e.g. the JVM for
Java or CoreCLR for .NET), and the customer’s code and
libraries. As described in our Firecracker paper [3], the key
concern here is security: customer code and data is not trusted,
and the only communication between the workload inside
the MicroVM and the shared worker components is over a
simple, well tested, and formally verified implementation of
virtio [27, 32] (specifically virtio-net and virtio-blk).

In the first generation architecture (before this work), when
a new MicroVM is created with new capacity for a particular
function, the Worker downloads the function image (a .zip file
up to 250MiB in size) from Amazon S3, and unpacks it into
the MicroVM guest’s filesystem. This model is simple, and
works well for small images, but requires the full archive to be
downloaded and unpacked before the new MicroVM can do
any work. To support larger images, we wanted to avoid this
blocking download, and avoid the storage cost of unpacking
the entire archive if only part of it is used.

2 Block-Level Loading

To take advantage of the sparsity property of containers, we
needed to allow the system to load (and store) only the data the
application needs, ideally at the time it needs it. Approaches
like Slacker [15] and Starlight [8] have approached this prob-
lem at the filesystem level - a natural fit for containers, which
are built as an overlayed stack of file-level archives. This ap-
proach isn’t the right one for our environment. We believed
that the inherent complexity of filesystems, and additional
complexity of overlaying multiple filesystems, would unac-
ceptably increase the attack surface of the shared components
in Lambda. Instead, we decided to keep the block-level virtio-
blk interface between the MicroVM guest and the hypervisor,
perform all filesystem operations inside the guest. This re-
quires performing sparse loading at the block, rather than file,
level.

Figure 3 shows our high-level architecture, showing the
Lambda worker (shown in detail in Figure 4) where cus-
tomer’s code is run, container registry which contains the
primary copy of customer’s container images, and the chunk
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creation and caching infrastructure.
Our first step in supporting block-level loading is to col-

lapse the container image into a block device image. As de-
scribed in the OCI image specification [1], a container image
is a stack of tarball layers. In the typical container stack, these
layers are overlayed at at runtime using overlayfs. In our im-
plementation, we perform this overlaying operation at the
time the function is initially created, following a determinis-
tic flattening process which applies each tarball in order to
create a single ext4 filesystem. Function creation is a low-rate
control-plane process, that is typically only triggered by cus-
tomers when they make changes to their code, configuration,
or architecture. Even the most aggressive adoptees of con-
tinuous integration only make these changes on the order of
minutes, while function invocation can happen up to millions
of times a second.

The flattening process is designed so that blocks of the
filesystem that contain unchanged files will be identical, al-
lowing for block-level deduplication of the flattened images
between containers that share common base layers. We’ll
revisit this in Section 3, but the high-level reason is that differ-
ences between functions (and even more so between versions
of the same function) are typically much smaller than the
functions themselves. The flattening process proceeds by un-
packing each layer onto an ext4 filesystem, using a modified
filesystem implementation that performs all operations deter-
ministically. Most filesystem implementations take advantage
of concurrency to improve performance, introducing non-
determinism. Ours is serial, and deterministically chooses
normally-variable parameters like modification times.

Following the flattening process, the flattened filesystem
is broken up into fixed-size chunks, and those chunks are
uploaded to the origin tier of a three-tiered cache for later use

Customer Code

Firecracker

λ Shim

Guest Linux Kernel

virtio
MicroVM “slot”

ext4 Filesystem

Local Agent

Per-function resources

Worker Local 
Cache

To shared cache

Worker

Figure 4: Lambda worker with per-worker, per-customer, and
in-guest components

(we use S3 as this origin tier). Chunks in the shared storage
are named according the their content, ensuring that chunks
with the same content have the same name and can be cached
once. This scheme, described in detail in Section 3, allows
efficient deduplication of chunk content in storage and cache
layers without requiring a central directory or index of chunks.

Each fixed-size chunk is 512KiB. Smaller chunks lead to
better deduplication by minimizing false-sharing, and can ac-
celerate loading for workloads with highly random access pat-
terns. Larger chunks reduce metadata size, reduce the number
of requests needed to load data (hence improving throughput),
and provide natural read-ahead for sequential workloads. The
optimal value will change over time as the system evolves,
and we expect that future iterations of the system may choose
a different chunk size as our understanding of how customers
use the system evolves.

2.1 Per-MicroVM Snapshot Loading
Once chunks are created, the system needs to be able to access
the data they require from the chunks that contain that data.
As shown in Figure 4, we added two new components to
support this loading:

• A per-function local agent which presents a block device
to the per-function Firecracker hypervisor (via FUSE),
which is then forwarded using the existing virtio inter-
face into the guest, where it is mounted by the guest
kernel.

• A per-worker local cache which caches chunks of data
that are frequently used on the worker, and interacts with
the remote cache (see Section 4 for details)

When a new Lambda function is started on a worker, the
Micro Manager creates a new local agent, and a new Fire-
cracker MicroVM which contains two virtio block devices: a
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root device which is the same for all MicroVMs, and a block
device backed by the FUSE filesystem exposed by the local
agent. The MicroVM boots, starts some supervisory com-
ponents, and then starts executing the customer code in the
container image. Each IO that this code performs (unless it
can be served from the page cache kept by the guest kernel)
turns into a virtio-blk request, which is then processed by
Firecracker, and handed off to the local agent.

The local agent handles reads by reading directly from the
local cache, if the chunk that contains the requested offset
is already present there. If not, the relevant chunk is fetched
from the tiered cache, as described in Section 4. The local
agent handles write by writing them to block overlay, backed
by encrypted storage on the worker. A bitmap is maintained
at page granularity, indicating whether data should be read
from the overlay, or from the backing container image. The
page granularity of the bitmap requires a read-modify-write
for writes from the guest which don’t cover an entire page.

This page-level copy-on-write approach allows the Mi-
croVM guest to handle both reads and writes, while keeping
the data in the local cache (and all other caching tiers) im-
mutable, allowing it to be shared across multiple guests.

3 Deduplication Without Trust

Base container images, such as the official Docker alpine,
ubuntu, and nodejs are extremely widely used: each boasts
over a billion aggregate downloads from the popular Dock-
erHub container repository1. Starting from one of these base
images, and customizing it to the special needs of the applica-
tion, is a common way to create new container images. When
a popular base image is used, the deterministic flattening pro-
cess described in Section 2 produces unique chunks for the
customized parts, and chunks for the common parts that are
identical to those produced for other images with the same
base. These shared chunks create a significant opportunity for
deduplication: if only a single copy of these chunks is stored,
less data movement is needed, less storage is consumed, and
caches are more effective.

Approximately 80% of newly uploaded Lambda functions
result in zero unique chunks, and are just re-uploads of images
that had been uploaded in the past. This appears to be pri-
marily driven by automated testing and deployment (CI/CD)
systems. Of the remaining 20% of functions that create at
least one unique chunk (and therefore aren’t just trivial re-
uploads), the mean upload contains 4.3% unique chunks, and
the median 2.5% unique chunks. Trivial all-zero chunks are
not included in these numbers: they are excluded entirely
from images at creation time.

Figure 5 shows the distribution of deduplication effective-
ness, for the top quartile (by image size) and remainder of the
population. This breakdown shows that the majority of func-

1statistics from https://hub.docker.com/, accessed July 2022

Figure 5: Empirical CDF of deduplication effectiveness at
chunk creation time, among functions that aren’t trivial re-
uploads.

tions of all sizes are heavily deduped, and a significant tail
where deduplication is not as effective. While large functions
are still effectively deduplicated, they have a smaller tail of
unique chunks. This data clearly suggests that deduplication
is worth the complexity, reducing storage by as much as 23x,
and improving effectiveness of the cache tiers (how much
cache effectiveness is improved depends on the correlation
between probability of deduplication and frequency of ac-
cess). While the 80% of functions with no unique chunks
aren’t statistically interesting, deduplicating these has a large
practical benefit, including reducing storage costs by another
5x, and boosting cache effectiveness.

3.1 Convergent Encryption
Deduplication of plaintexts is relatively straightforward.
Venti [30], dating back to 2002, used a hash of block con-
tents and a separate index to deduplicate blocks. Introducing
encryption, however, significantly complicates deduplication.
As Storer, et al [33] write:

Unfortunately, deduplication exploits identical con-
tent, while encryption attempts to make all content
appear random; the same content encrypted with
two different keys results in very different cipher-
text. Thus, combining the space efficiency of dedu-
plication with the secrecy aspects of encryption is
problematic.

One solution is to have a shared key, or keys, that can be
used to decrypt shared blocks, but this either introduces single
keys that can access a large number of blocks, or a significant
key management problem. Perhaps the hardest problem is
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minimizing trust. While AWS Lambda runs user code with
strong isolation [3], we still wish to restrict each Lambda
worker host to only being able to access the data it needs for
the functions that have been sent to it.

The authors of Farsite [2,11] developed convergent encryp-
tion as a solution to this problem. A cryptographic hash of
each block (in the case of Farsite a file block, in our case a
chunk of a flattened container image) is used to determinis-
tically derive a cryptographic key that is used for encryptng
the block. We follow this same scheme, but mix additional
metadata into the key derivation (as described in Section 3.3).

The flattening process described in Section 2 takes each
chunk, derives a key from it by computing its SHA256 digest,
and then encrypts the block using AES-CTR (with the derived
key). Here, AES-CTR is used with a deterministic (all zero)
IV, ensuring that the same ciphertext always leads to the same
plaintext. Using a deterministic IV in this context is safe,
because due to the collision resistance of SHA256, a key, IV
pair is only used on for one plaintext block [12]. A manifest of
chunks is then created, containing the offset, unique key, and
SHA256 hash of each chunk2. The manifest is then encrypted,
using AES-GCM, using a unique per-customer key managed
by AWS Key Management Service (AWS KMS). Chunks are
then named based on a function of the hash of their ciphertext,
and uploaded to the backing store (AWS S3) using that name
if no chunk of that name already exists.

In our scheme, we do not encrypt the entire manifest with
the customer’s unique key. Instead, only the key table (the
keys of each encrypted chunk) is encrypted, and the whole
document is authenticated (i.e. included in the calculation
of the AES-GCM tag as additional data). This allows the
garbage collection process to access the list of chunks in the
manifest, while having no access to the chunk keys. The size
of manifests, stored in an efficient binary format, is negligi-
ble: less than 3MiB for a 16GiB container image, or 0.02%
overhead.

This approach provides a number of desirable properties:

• Data can be deduplicated with no sharing of keys: the
keys to decrypt the customer’s manifest are unique to that
customer, and access to them (via AWS KMS) is only
provided to the workers that that particular customer’s
functions are placed on.

• Data can be deduplicated with no coordination or spe-
cial access provided to the flattening process. Flattening
processes operate independently, and the only special
operation they need is "upload this file to storage if it
doesn’t already exist".

• The scheme provides strong end-to-end integrity protec-
tion for chunks. Workers check the chunks they down-

2It may appear attractive to use an AEAD mode like AES-GCM rather
than the more expensive SHA256 in this application, but these modes do not
commonly provide collision resistance against attackers who know the data
key [10], an important property in our security scheme.

load against the MAC in the manifest, ensuring that mod-
ified ciphertexts can be detected and rejected.

3.2 Compression

Our system does not compress chunk plaintexts prior to en-
cryption. This is for two reasons. First, given the network
bandwidth available to our caches and workers the additional
latency of decompression, and difficulty of allowing random
access to compressed data, makes the latency benefit of com-
pression marginal. Second, compression before encryption
allows potential attackers to infer plaintext contents from com-
pressed sizes, a compression side channel. This risk, and the
relatively small expected benefit, means that we decided not
to implement compression (beyond trivial elision of all-zero
chunks).

3.3 Limiting Blast Radius

While deduplication has value in cost and cache performance,
it also adds some risks. Some popular chunks are widely ref-
erenced, meaning that anything that causes access to those
chunks to break or become slow, also has a very wide impact
on the system. Risks include partial (gray) failures of cache
nodes, operational issues that cause unavailability of data,
bugs in garbage collection, or corruption of data in the cache
hierarchy. Highly popular chunks also cause hot-spotting in
distributed storage. While our cryptographic scheme detects
corruption and will prevent readers from seeing corrupt data,
it does not correct it, and so corrupted data will become un-
available.

To solve this problem, we include a varying salt in the key
derivation step of our convergent encryption scheme. This
salt value can vary in time, with chunk popularity, and with
infrastructure placement (such as using different salts in dif-
ferent availability zones or datacenters). Otherwise-identical
chunks with different salt values will end up with different
keys, and therefore difference ciphertexts, and will not dedu-
plicate against each other. By controlling the frequency with
which the salt is rotated, we can continuously trade off dedu-
plication efficiency with blast radius. Salt allows us to encap-
sulate the control of deduplication entirely within the chunk
creation layer, without any other component needing to be
aware of its decisions. Salt rotation is an operational concern,
and is not needed for the security of the deduplication scheme.

3.4 Garbage Collection

A key challenge of any distributed deduplication scheme is
garbage collection: removing data from the backing store
when it is no longer actively referenced. Garbage collecting
the wrong chunk could cause wide impact across multiple cus-
tomers. Our deduplication scheme does not maintain a central
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Figure 6: Lifecycle of data chunks used by the generational
garbage collector.

directory of chunk references or manifests, making exact ref-
erence counting infeasible. Past experience with distributed
garbage collection has taught us that the problem is both
complex (because the tree of chunk references is changing
dynamically) and uniquely risky (because it is the one place
in our system where we delete customer data). The approach
we took to garbage collection is based on this experience.

Our approach to garbage collection is based on the con-
cept of roots. A root is a self-contained manifest and chunk
namespace, analogous to the roots used in traditional garbage
collection algorithms. Unlike traditional GC roots, in our
system we periodically create new roots (which then get all
new data), and retire old roots (after moving any still-needed
data into a fresh root).When a customer’s container image
is converted, the manifest and set of chunks are placed in an
active root, for example R1. An active root handles both reads
and writes of data. Periodically, a new root R2 is created and
becomes active, while root R1 enters a retired state at which
point it only serves reads of data. While R1 is retired, any
manifest that is still referenced in R1 is migrated, along with
any chunks it references, to R2. Over time the manifests and
chunks in R1 that are in active use will be migrated to R2,
allowing R1 to be safely deleted. This process is repeated: R2
is retired and R3 becomes the active root and so on. Figure 6
shows this lifecycle. Moving chunks along with their manifest
ensures that if a manifest exists in root R, then all the chunks
it references do to. A unique identifier for the currently active
root is also included in the deduplication salt (Section 3.3),
ensuring that newly-created chunks in the active root are not
shared with previous roots.

Instead of deleting roots immediately after data migration
is complete, we put them into an expired state. In this state,
data is still allowed to be read, but any attempt to access data
leads to an alarm. These alarms both engage an operator and
automatically stop further deletion of data. This approach
allows us to robustly detect garbage collection issues (espe-
cially incomplete copying) in production, and quickly and
automatically stop any data from being deleted. While this
mechanism is inexact (data could be accessed after the period
the root is expired), it provides a valuable additional layer of
protection against data loss. While software bugs are rare, and
we test garbage collection changes carefully, multiple layers
of protection against customer data loss are critical in any

distributed storage system.
Having data in multiple roots does drive up storage costs,

however that additional cost is palatable for Lambda as cus-
tomers often update their functions and a large majority of
data is never migrated to a new root. The system is also ca-
pable of having multiple roots active simultaneously, which
reduces the blast radius of bugs and provides the ability to
roll out new garbage collection changes and algorithms to a
subset of manifests and their chunks.

4 Tiered Caching

When workers don’t have chunks in their local cache, they
attempt to pull them from a remote availability-zone-level
(AZ-level) shared cache (as shown in Figure 3). If chunks
aren’t in this cache, workers download them from S3, and
upload them into the cache. This AZ-level cache is a custom
implementation of a fairly standard design: chunks are fetched
over HTTP2, data storage is two-tiered with an in-memory
tier for hot chunks and a flash tier for colder chunks, and evic-
tion is LRU-k [29] (a scan-resistant variant of Least Recently
Used). Chunks are distributed to the AZ-level cache using a
variant of a consistent hashing [19] scheme, with optimiza-
tions to improved load spreading (similar to the approach of
Chen et al [7]). The caching tier improves fetch performance
considerably: from the worker’s perspective, a hit on the AZ-
level cache takes a median time of 550µs, versus 36ms for a
fetch from the origin in S3 (99.9th percentile 3.7ms versus
175ms).

Figure 7 shows the effectiveness of these three cache tiers.
Over a week of production usage in one large AWS region,
a median of 67% of chunks were loaded from the on-worker
cache, 32% from the AZ-level distributed cache, and the re-
maining 0.06% from the backing store.

The per-worker cache has a median hit rate of 67%, and a
10th percentile low hit rate over the week in question of 65%.
The in-AZ cache is even more effective, with a median hit
rate of 99.9% and 10th percentile low hit rate over the week
of 99.4%. Figure 8 shows the empirical CDF of the hit rate
of the in-AZ cache over the week, measured in one-minute
buckets across one at-scale production availability zone. The
left tail of the distribution is associated with large spikes in
traffic to newly created functions. We are evaluating priming
the in-AZ caches during the chunk creation process to flatten
this left tail and further improve hit rates, primarily with the
goal of reducing load-time latency for new functions.

4.1 Optimizing for Tail Latency

While data in the AZ-level cache is not required to be durable
(durability is ensured using S3 as the origin), a simple unrepli-
cated cache scheme (where each object is stored in a single
node) didn’t meet our needs for three reasons.
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Figure 7: One week of hit rates on each of the cache tiers:
on-worker (L1), distributed in-AZ (L2), and backing store
(L3)

Figure 8: Empirical CDF of in-AZ cache hit rate

Tail latency A single slow cache server can cause
widespread impact. Slowness could be caused by conges-
tion at the host or in the network, or by partial hardware
or software failure.

Hit Rate Drops Having each item cached in a single server
means that the hit rate drops if that server fails, or is
taken down for deployment.

Throughput Bounds Having each item cached in a single
server means that the bandwidth available to fetch the
object is bounded by a single server’s bandwidth.

Of these, tail latency is the largest practical concern. Our
experience operating these types of systems suggests that

debugging slowness and partial failure is much harder than
debugging outright failure. Even if this slowness is only in the
long tail, it still matters in production because each container
start needs to fetch a large number of chunks. For example,
a start which fetches 1000 chunks will experience the 99.9th
percentile tail latency of the cache on 63% of tasks. The
difference is material: in one deployment of the cache we
observe a median client-measured latency of 500µs, and a
99.9th percentile latency of 4ms.

Replication, combined with redundant requests is a well-
established [13, 37, 39] technique to drive down tail latency,
and would also solve our throughput and hit-rate problems.
Unfortunately, replication increases costs proportionally to
the replication factor, an important concern in a primarily in-
memory cache. Instead, we chose erasure coding, following
a similar scheme to EC-Cache [31]. Erasure coding is not
widely used in caches, but provides compelling solutions for
all three of our concerns. When a worker misses the cache,
it fetches the chunk it needs from the origin, then uploads
erasure-coded stripes of that chunk into the cache. When a
worker needs to fetch a chunk, it requests more stripes than
are strictly needed to reconstruct the chunk, and then recon-
structs the chunk as soon as enough stripes are returned. Our
current production deployment uses a 4 of 5 code, achieving
25% storage overhead, and a 25% increase in request rate in
exchange for a significant decrease in tail latency. Figure 9
compares the empirical latency CDF of the 4 of 5 code versus
a hypothetical 4 of 4 scheme using latency measurements
from one deployment of our production system.

This scheme prevents any drop in hit rate from occurring
when cache nodes fail, or are taken down for deployment.
A common approach in similar systems is to use retries to
hide the effects of deployments and failed nodes, an approach
which is known to lead to metastable failure modes in large
systems [5, 17]. Erasure coding allows us to achieve a similar
level of resiliency while performing the same amount of work
in success and failure cases (a design philosophy we call
constant work [23]).

4.2 Stability and Metastability

Caches with high hit rates, such as ours, are desirable from a
latency and efficiency perspective, but have a hidden down-
side. If the cache becomes empty (such as due to power loss or
operational issue), or the hit rate suddenly drops (such as due
to a change in customer behavior), the downstream services
can see significantly more traffic than they are used to. In the
case of our cache, with an end-to-end hit rate typically exceed-
ing 99.8%, this downstream traffic increase could be up to 500
times normal. S3 is an extremely scalable backing store, and
can tolerate the full uncached load. However, the increased
latency leads to higher concurrency demand from customer’s
applications (due to Little’s Law [21]), and therefore higher
demand for new Lambda slots, increasing load and changing
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Figure 9: Comparative empirical CDFs of client-side latency
of 4-of-4 parallel cache load, versus 4-of-5 erasure coded
cache load.

the size and composition of the system’s working set. This
can lead to metastable behavior [5, 6, 17], where the system
isn’t able to refill the cache when it is empty3.

We have built mitigations for this risk into higher layers of
Lambda. Primarily, the system is designed to be concurrency-
limited. When container starts slow down and the number of
concurrent tasks exceeds this limit, new starts are rejected un-
til in-flight ones complete. We also actively test the system’s
ability to cold start from an empty cache at the maximum
concurrency. This testing allows us to be confident that the
system is able to restart from a cold cache, or tolerate work-
load changes that significantly reduce hit rate.

4.3 Cache Eviction and Sizing

Traditional cache replacement policies like Least Recently
Used (LRU) and First In First Out (FIFO) are simple and
easy to implement, but have a significant downside for this
application: a lack of scan resistance. In our case, this means
that a large number of infrequently used functions starting up

3Related effects have been observed in computer systems since at least the
1960s. In the 1968 paper ‘The Working Set Model for Program Behavior’ [9],
Peter J Denning observed a similar effect in paging systems:

This can create a self-intensifying crisis. Programs, deprived
of still-needed pages, generate a plethora of page faults; the
resulting traffic of returning pages displaces still other useful
pages, leading to more page faults, and so on.

can replace all the hot entries in the cache with recently-used
entries belonging to those functions, dropping cache hit rates
for more frequently-used entries, and filling the cache with
entries that will never be read again. This happens periodically
in our environment, driven by weekly, daily, and hourly spikes
of periodic cron job functions. These functions are large in
number, but each runs at a low scale (typically only using one
sandbox), making caching their chunks relatively unimportant.
To avoid the hit-rate drops caused by this periodic work, we
use the LRU-k [29] eviction algorithm, which tracks the last
k times an item in the cache was used, rather than only the
most recent time.

Eviction and hit rates are also related to the size of our local
and AZ-level caches. Following the logic of Gray and Put-
zolu’s classic Five Minute Rule [14], the minimum desirable
cache size is the one that makes the cost of cache retention
equal to the cost of fetching chunks from S3. However, be-
cause our cache is not only aimed at reducing costs but also
improving customer-observed latency, we also set a hit rate
goal and increase the cache size if we fall below that goal.
The total cache size, then, is the larger of the size needed
to achieve our hit rate goal, and the size needed to optimize
costs.

5 Implementation and Production Experience

We built the local agent (the FUSE implementation that backs
the sparse block device for each MicroVM), the worker-local
cache, and the remote cache server in the Rust programming
language. We used the tokio runtime, and reqwest and hyper
for HTTP. At the time we started this project, the invoke path
of AWS Lambda includes components written in Java, Go,
C, and Rust. We chose Rust because of our good experiences
with the Rust components we had built in the past, especially
around performance and stability, and have again been happy
with our choice of Rust, encountering no major production
bugs in the libraries we chose. We were also attracted to Rust
because of the successes other AWS teams (such as the Ama-
zon S3 team [4]) have had applying formal methods to verify
code correctness in Rust, even with non-expert programmers.

One interesting stumbling block with Rust (version 1.46.0,
current at the time of implementation) is brittle optimization,
especially autovectorization, of hotspots. Unsurprisingly, we
found that the parity calculations we use for erasure coding
are nearly 5x faster when performed 64 bytes at a time (with
AVX512) or 32 bytes at a time (with AVX or NEON) than
when performed 8 bytes at a time, and 10x faster than when
performed byte-at-a-time. Unfortunately, the naive Rust loop
emitted the byte-at-a-time code (as shown in Listing 1), de-
spite the compiler being capable of autovectorization. Small
changes to the code would change autovectorization behav-
ior, even changes outside the function of interest. Reluctant
to move to assembly for this code, we finally settled on the
code in Listing 2, which robustly emits appropriately unrolled
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AVX, AVX512, or vectorized ARM code depending on the tar-
get platform. Seemingly small changes to this function (such
as removing the assert, changing any of the assignments, or
allowing it be inlined) cause autovectorization to be disabled.
This is a small issue with Rust, and one that we expect to be
improved in future compiler versions.

Listing 1 Naive byte-by-byte x86 assembly code as emitted
by the Rust compiler for straightforward loop implementa-
tion (with annotations by perf showing percent of runtime).
Note significant missed opportunities for optimizations like
vectorization and loop unrolling.

0.08 |350: cmp %rax,%rsi
| ↓ jae 3f4

49.18 | movzbl (%rdi,%rsi,1),%ebx
0.13 | xor %bl,(%rcx,%rsi,1)

50.52 | lea 0x1(%rsi),%rbp
0.08 | mov %rbp,%rsi

| cmp %rax,%rbp
| ↑ jb 350

Listing 2 Implementation of parity calculation in Rust, show-
ing extra lines needed for reliable autovectorization.
#[inline(never)]
fn parity(target: &mut [u8], source: &[u8]) {

assert_eq!(source.len(), target.len());
let len = target.len();
let _ = target[len-1];
let _ = source[len-1];

for i in 0..len {
target[i] ^= source[i];

}
}

On the other hand, the Rust ecosystem’s support for build-
time microbenchmarks (such as with the criterion crate)
makes it fast and easy to iterate on this type of performance
work, and even assert at build time that autovectorization has
succeeded (effectively stopping regressions from entering pro-
duction). This is a significant boon in a cloud environment,
where performance regressions can cause production outages,
and performance is tied to both cost and carbon efficiency.

5.1 Latency and Multimodality
As with any storage system, performance was an important
goal for the design and implementation of our snapshot chunk
loading system. While throughput, CPU efficiency, and other
bandwidth measures contribute to the cost of running the
system, its scale-out nature make latency and scalability the

Figure 10: Empirical CDF of server-side measured latency of
the L2 cache server

most important factors of performance. The local agent and
on-worker caches trivially scale out, due to the fact that they
do not communicate off their worker, except in interacting
with S3 (to pull chunks from the origin), and the L2 AZ-level
cache.

Figure 10 shows the latency for GETs and PUTs on this
cache, measured from the server side, across all of the cache
nodes in a production deployment over the course of one
week. Each GET or PUT is of a 512kB chunk. As discussed
in Section 4, the L2 cache is a flash-based cache with a sig-
nificant local memory tier (about 10% of cache size). GET
latency is very consistent, with a median of below 50µs. PUT
latency is less consistent, with some multi-modality appar-
ently caused by writeback behavior on the cache host. Despite
this multi-modality, performance is still excellent, with a me-
dian latency of 125µs, a 99th percentile latency below 300µs,
and a 99.99th percentile of 413µs4. When building this cache
server, we chose HTTP2 as a wire protocol for convenience
with the intention of replacing it with an efficient binary pro-
tocol later. In production, we’ve found the overhead of HTTP
(implemented with hyper and reqwest) so low that we have
not yet been motivated to replace the protocol.

Figure 11 shows the end-to-end latency for returning a read
from the perspective of the local agent (that is the FUSE im-
plementation). This doesn’t show the end-to-end IO latency
experienced by guests, because it’s from the perspective of
the worker and does not include the (significant) hit rate on
the page cache maintained by the MicroVM guest’s kernel,
and read-ahead performed by the guest to populate that cache.
Like the L2 server latency, this end-to-end latency shows sig-

4Having a 99.99th percentile at less than 4x the median is a very desirable
property, and difficult to achieve with garbage collected languages like Java
and Go
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Figure 11: Empirical CDF of end-to-end read latency ob-
served at the local agent (FUSE implementation).

nificant multi-modality: a mode below 100µs which represent
local cache hits, a mode around 2.75ms which represent L2
hits (and the subsequent work like decryption), and mode
(trimmed from the graph) showing rare fetches from the ori-
gin (see Figure 7 for the relative frequencies of these modes).
We are working on an optimized cryptographic scheme which
reduces the latency of decryption.

Multi-modality like this is the norm in storage systems,
but presents a few practical challenges to operators. First,
as discussed in Section 7 a small change in the relative fre-
quencies of each mode can significantly change the mean
latency observed by clients (and so change the concurrency
and throughput of the system). Second, latency percentiles and
trimmed means are the summary statistics most commonly
used by operators at AWS, and they tend to obscure multi-
modality. Plots like empirical CDFs (eCDFs, as presented
here) can be valuable, but don’t show change-over-time as
time series of summary statistics do. We have experimented
with heat maps, day-over-day eCDFs, and others, but have
yet to find a succinct way to present these data to operators.
Third, multi-modality makes the decision of where to spend
optimization resources more complex. Which mode should
the team work to improve? Or should they work to reduce the
relative frequencies of higher modes?

5.2 Production experience with FUSE

Our experiences with FUSE match those reported by Vangoor
et al [36], showing relatively little throughput overhead when
well tuned. However, we have found that the choice to use
FUSE to present a file which is then subsequently used as a
block device by Firecracker’s virtio-blk implementation, has
introduced significant overhead. When an application running

in a MicroVM reads a new chunk, control is passed to the
guest kernel, then Firecracker, then the host kernel’s FUSE
layer, then the local agent, before flowing back through the
same path. This introduces context switch overhead, but more
importantly requires four different threads to be scheduled
by the host kernel’s scheduler. This introduces inefficiency in
steady state, and significant jitter under load. We are moving
away from FUSE for this application, primarily due to this
effect. Our new implementation uses userfaultfd and mmap,
removing two layers from the architecture.

We don’t regret starting with FUSE. It provided a conve-
nient interface, a clear security and operational isolation story,
and allowed a team without deep systems-level programming
experience to build an acceptably high performance system.

6 Related work

Mirroring the rise in popularity of serverless and contain-
ers accelerated container loading has been a highly active
area of research, and industry implementation, over the last
decade. Before that, accelerating VM loading through faster
disc image movement was an active area of research. For
example, Frisbee [16] in 2003. Amazon EC2 has taken ad-
vantage of common data to accelerate VM image loading,
through tracking lineage of EBS snapshot chunks [28], since
2009. With Slacker [15] Harter et al studied access patterns in
container loading, and presented a system which takes advan-
tage of these patterns by performing layer-level lazy loading.
Starlight [8] takes a fairly similar filesystem-orientated ap-
proach, optimized for loading at the edge where minimizing
round-trips to the datacenter is a significant contributor to
performance. eStargz [35] extends common container image
formats to make lazy loading at the layer level more efficient,
building on the approach of Google’s CRFS.

DADI [20] uses a block-level approach fairly similar to our
own, but with a peer-to-peer approach rather than a dedicated
cache layer, and without the ability to deduplicate as widely
as our system is able to. FaaSNet [38] approaches a similar
problem to the one we were solving, but works on the layer
level (rather than flattening images as we do), and does not
appear to perform deduplication. Cntr [34] and Yolo [26] take
the approach of breaking down container images into different
classes of data, some needed urgently on start up and some
likely to be accessed less urgently. This explicit approach
may be more efficient than the simple block-based approach,
but also requires a deeper introspection of the contents of
the container. Wharf [41] and CFS [22] take the distributed
filesystem approach, showing that can significantly improve
loading performance at the cost of increased coordination
between containers.

Accelerating storage performance and loading with dedu-
plication has an even longer history, for example in 2001
with Muthitacharoen et al [25] and 2002 with Venti [30], and
Farsite [2].
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7 Conclusion

We present AWS Lambda’s solution for accelerated loading
of container images, and approach that combines deduplica-
tion, erasure coding, tiered caching, userspace filesystems,
and convergent encryption. We have operated this system for
several years, and are extending its use into other areas of
AWS. While our solution on the surface appears to have a lot
of moving parts, it is optimized for what we believe to be the
realities of building massive scale cloud systems: failures are
frequent, failures are often partial and complex, and security
is the top priority.

7.1 Broader Lessons and Future Work
While Lambda’s snapshot loading infrastructure is a special-
ized system for a rather specialized application, we believe
that there are some broader lessons from our experiences that
apply to the systems community as a whole.

• Containers are most popularly used by Lambda cus-
tomers as “static linking in the large” dependency clo-
sures. Customers want to build, test, and deploy a func-
tion with all its dependencies in one atomic unit, but
traditional static linking is either unavailable or inconve-
nient. However, containers are also highly inefficient in
this context, necessitating the deduplication and sparse
loading we describe here. We believe that there is a sig-
nificant need for a lighter-weight dependency closure
mechanism, which comes closer to traditional static link-
ing in the size of the artifacts that it creates.

• Caches reduce costs, improve latency, and reduce load
on durable storage, and are a critical component of nearly
any stateful system. However, they also introduce risks
such as metastable failures (due to unexpectedly empty
caches, or sudden shifts in workloads), and challenges
for users like multi-modal latency distributions. While
work such Yang et al [40], and Huang et al [17] have
made steps towards deeply understanding these effects,
we believe that significantly more work is needed to
understand the dynamic behaviors of caching in large
systems, and to develop patterns to mitigate the risks of
caches.

• MicroVMs provide an isolation mechanism which is
nearly as lightweight as containers, or even processes [3,
24], while providing additional interfaces for plugging
in both local and distributed operating system logic. Mi-
croVMs provide a powerful new tool in the operating
system researcher’s or builder’s toolbox. We believe that
operating system support for virtualization, and virtual-
ization support for applications, operating systems, and
databases are ripe areas of research which are not yet
receiving sufficient attention.

Our future work is focused on optimizing the system further
for cost, performance, and especially customer-experienced
cold-start latency. This same system is used in Lambda Snap-
Start, a feature of AWS Lambda which reduces cold-start
latency using memory snapshots, to store and load memory
snapshot contents. That use-case is especially latency sensi-
tive, motivating significant investments in both average case
and tail latency. We expect this work to include optimizing
cache retention and data placement policies, optimizing client
and server performance, and completing the migration from
FUSE to userfaultfd.
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Abstract
The Internet Computer (IC) is a fast and efficient decentral-
ized blockchain-based platform for the execution of general-
purpose applications in the form of smart contracts. In other
words, the IC service is the antithesis of current serverless
computing. Instead of ephemeral, stateless functions operated
by a single entity, the IC offers decentralized stateful server-
less computation over untrusted, independent datacenters. De-
velopers deploy stateful canisters that serve calls either to
end-users or other canisters. The IC programming model is
similar to serverless clouds, with applications written in mod-
ern languages such as Rust or Python, yet simpler: state is
maintained automatically, without developer intervention.

In this paper, we identify and address significant systems
challenges to enable efficient decentralized stateful serverless
computation: scalability, stateful execution through orthogo-
nal persistence, and deterministic scheduling. We describe the
design of the IC and characterize its operational data gathered
over the past 1.5 years, and its performance.

1 Introduction

Recently, the technological advances in blockchain [29], cryp-
tography [27] and consensus protocols [5, 9, 24] have enabled
more and more efficient execution of decentralized Web3 [56]
applications and smart contracts. Platforms that service such
applications are larger than ever [42], consisting of thousands
of nodes, processing billions of requests, storing large quanti-
ties of data and connecting many users. Currently, the research
community lacks a clear understanding of the operational
data of such large-scale platforms, their challenges and perfor-
mance, beyond testnet deployments with synthetic workloads
and failure patterns. In this article, we introduce the Internet
Computer (IC), its design, several of its systems challenges
and real-world operational performance data.

The IC is a decentralized platform for the execution of
general-purpose decentralized applications (dapps). Listing 1
shows an example for such a dapp. In current serverless

use ic_cdk_macros::{query, update};

use std::{cell::RefCell, collections::HashMap};

thread_local! {

static STORE: RefCell<HashMap<String, u64>> = RefCell::default();

}

#[update]

fn insert(key: String, value: u64) {

STORE.with(|store| store.borrow_mut().insert(key, value));

}

#[query]

fn lookup(key: String) -> u64 {

STORE.with(|store| *store.borrow().get(&key).unwrap_or(&0))

}

Listing 1: Functional key-value store canister. The update call
adds a key value pair; the query call gets values by keys. State
is stored on the canister heap and persisted transparently.

offerings, this application would not work without an ex-
ternal service, as functions are stateless. Instead, the IC
enables decentralized and stateful serverless com-
puting. The IC protocol [53] runs on globally distributed
servers in independent datacenters. It is highly scalable and
efficient in executing applications. The main goals of the IC
are decentralization, security and performance.

In particular, the IC aims to enable governance and evo-
lution to be controlled by different parties in a trustless and
fault-tolerant manner instead of a central entity. The IC must
also provide strong integrity and access control guarantees for
the apps running on it as well as the users interacting with it in
an efficient way. Overcoming these challenges requires novel
blockchain technology, cryptography and consensus proto-
cols [9, 27, 53]. Those advances need to be combined with a
carefully crafted system design. In this paper, we focus on
those systems-related challenges at the application execution
layer and we present our solutions and operation data.

Application developers deploy dapps (equivalent to server-
less function workflows) on the IC without the cumbersome
process of resource management, just like in serverless en-
vironments. The dapps interact with each other and with
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end-users. Each dapp is composed of canisters, the small-
est units containing code and data, an immediate equivalent
to serverless functions. Such canisters can be combined to
build complex and powerful smart contracts. Figure 1 depicts
our protocol stack. The IC operates as a large-scale replicated
state machine. To achieve wide-range scalability, the IC nodes
are partitioned (sharded) [13, 57] into subnets, each running
its own replicated state machine.

Central to this article is the execution environment, which
ensures that the actions implemented by developers are trig-
gered efficiently and deterministically, and that consumed
resources are accounted for. For simplicity and portability,
applications are programmed in a high-level language such as
Rust, but compiled down to WebAssembly [28]. Canisters run
isolated from one another inside sandboxed processes that
execute code running under a WebAssembly virtual machine.

We identified significant execution layer systems chal-
lenges that we addressed when designing and building the
IC. First, as opposed to serverless environments [49], our
applications are long-running and (C1) stateful. The IC
enables this through an efficient mechanism to track modified
memory during canister call execution [39]. Coupled with
canister statefulness, the IC programming model is inspired
by an event-driven, actor-based model, where application pro-
grammers implement functionality that responds to messages
from users or other canisters. To simplify programmer experi-
ence the IC offers orthogonal persistence [14, 31] – the
system running the canister automatically persists the canister
memory state without users taking action toward this goal.
Therefore, sending messages to a canister is just like invoking
multiple times a serverless function, with the distinction that
function state modified by earlier calls is persisted without
the programmer explicitly saving data in external services.

Second, similarly to current scalability challenges [30, 50,
58] in serverless computing, our nodes need to run thousands
of canisters (or functions) per node. This entails achieving
intra-node (C2) scalability. This is a must to accommo-
date large subnets with tens of thousands of canisters.

Third, we emphasize (C3) determinism. Since the IC is a
large decentralized replicated state machine, all nodes must
transition to the same next state, despite potentially malicious
user input, canister code and node behavior. In a first step,
this requires strict message ordering. Moreover, determinism
is necessary in scheduling [2, 36, 44] actions that alter the
replicated state and, of course, the actual state changes must
be performed deterministically as well.

Of utmost importance for the IC is ensuring (C4) security
for application developers and end-users. More precisely, the
IC design aims to minimize the trust application developers
and end users must place in individual entities. Thus, the IC
relies on strong integrity, availability and access control guar-
antees. In particular, only valid messages will be processed
and the response can be verified as long as more than two
thirds of the nodes are honest. Canisters cannot inspect or

 Message Routing

 Peer-to-peer
 Consensus

 Execution

Subnet A Subnet CIC node
App 1 

App 2 

Subnet B
App N App 3 

Figure 1: The protocol stack run by the nodes of the Internet
Computer. The P2P layer disseminates protocol and user-
generated messages. Message validation and ordering is es-
tablished by the consensus layer. Messages are then routed to
the execution environment and trigger efficient deterministic
(replicated) computation of the apps deployed on the IC. Apps
on different subnets can send messages to each other.

change the state of other canisters or other parts of the system.
These guarantees are achieved by carefully crafted low-level
operating systems and runtime mechanisms as well as through
the use of virtualization and sandboxing techniques.

In this paper we show that the years-old mantra saying
blockchains are slow and inefficient is coming to an end.
Addressing these challenges efficiently means the IC is, to
the best of our knowledge, the fastest and most efficient
blockchain to date, outpacing the execution speed, transac-
tion and execution costs [16] of other blockchains by orders
of magnitude, while having significantly fewer carbon emis-
sions [10]. More importantly, it enables decentralized stateful
serverless computing. We therefore omit comparing the IC
with other blockchains, but rather compare its performance
with native and non-decentralized client-server architectures,
whose performance we aim to achieve.

Having operated the IC for more than 1.5 years, we share
our experience in designing and building the IC, with an
emphasis on its systems challenges. The IC was launched in
May 2021. As of January 2023, it hosts over 230,000 canisters
for a total state of 2.5 TB (more than twice the size of the
Ethereum blockchain) running services ranging from social
media to decentralized finance. Our main contributions are:
1. We present the high-level design of the IC (Section 2).
2. We present systems challenges of the IC execution layer,

with a focus on the memory subsystem, orthogonal persis-
tence, deterministic scheduling and scalability (Section 3).

3. We showcase the performance of the IC. We introduce
high-level operational data, which we open to the pub-
lic. We present end-to-end application performance and
study in-depth the IC performance compared to native
applications. We discuss the (performance) implications
of decentralization and statefulness (Section 4).

2 The Internet Computer Design

In this section we briefly introduce the IC. For a more com-
prehensive article explaining protocol aspects in more depth
we refer the reader to the IC whitepaper [53].
Motivation. The IC aims to provide efficient multi-tenant,
general-purpose, and secure computation in a decentralized

330    2023 USENIX Annual Technical Conference USENIX Association



and geo-replicated manner tolerating Byzantine faults, offer-
ing developers a modern and easy to use programming model.
Overview. The nodes of the IC run a network of replicated
state machines [48], which interact with each other via mes-
sages. State machine replication achieves the same output
state for a service replicated on multiple machines. Each state
machine generates new states by applying deterministic state
transformations — based on the deterministic execution of
the canisters’ code provided by the app developers — to the
previous state by processing ordered input messages from
users and other canisters. The result is a new state and output
messages to canisters and users.
Subnets and nodes. The nodes (term used interchangeably
with replicas, machines, or servers) of the IC are partitioned
into subnets, each subnet providing state machine replication
for the set of canisters deployed on it.

Each node in a subnet runs all the canisters deployed in
that subnet. Subnets can be smaller or larger: we have subnets
with 80,000+ canisters and subnets with several hundreds.
Most subnets have 13 nodes that are geo-replicated across
the Americas, Europe and Asia. For applications in need of
improved security, we have higher-replication subnets, span-
ning up to 40 nodes. A subnet should continue to function
even if some replicas are faulty. The replicas running the IC
protocol are hosted on servers in geographically distributed,
independently operated data centers, bolstering security and
decentralization.

Currently, the IC nodes are homogeneous. Homogeneity
is important for system parts that are executing code running
in the replicated state machine, as otherwise, speed may be
reduced due to too many slow nodes. However, functionality
outside of the replicated state machine, such as for executing
non-replicated query calls can be scheduled proportionally to
each machine’s resource availability.

The IC supports heterogeneous subnets as long as all ma-
chines in a subnet are homogeneous. For example, certain
subnets have 13 machines while others have 40, certain sub-
nets have different disks and IO throughput and charging is
based on the number of nodes in a subnet (i.e., replication
factor). Overall horizontal scalability is achieved through the
sharding mechanism. This effectively allows the IC to scale
horizontally adding massive numbers of nodes without much
additional overhead.

2.1 Failure Model
To maximize decentralization, the IC is designed for Byzan-
tine fault-tolerance, in which faulty nodes may deviate in an
arbitrary way from the IC protocol.

In any given subnet with n≥ 3 f +1 nodes, at most f nodes
may behave in a faulty manner. This is the highest number
of failures which can be tolerated without additional assump-
tions on failures and message delivery [22, 48]. The failures
account for software bugs, power outages as well as outright

malicious behavior by colluding nodes. To limit the expo-
sure and maximize decentralization, the nodes in a subnet
are chosen in different geographical areas, jurisdictions and
node provider organizations. In the future, trusted execution
environments will further reduce the attack surface.

Traditional systems [8,11,38] often assume a weaker crash-
stop failure model and aim to be available if a subset of nodes
crash, but cannot cope with Byzantine behavior. The perfor-
mance implications of Byzantine fault tolerance over crash-
stop are acceptable for the applications deployed on the IC.

2.2 IC interface
The Internet Computer provides two distinct types of calls
(i.e., requests sent to canisters): update and query calls. We
refer to these operations interchangeably as either calls, re-
quests, or messages. The IC also provides special calls for the
canister life cycle: canister creation, canister installation and
canister upgrades. Those are special forms of update calls.

Update calls can modify canister state. They are executed
on all machines in a subnet participating in state machine
replication. The calls are ordered and validated by consensus
in a Byzantine fault-tolerant manner. This order, together
with deterministic execution of canister code and relevant
parts of the IC, provide state machine replication guarantees.
Since consensus is computation and communication heavy,
agreement and execution of update calls is done in batches to
optimize throughput. Thus, update call latency is dependent
on the time spent for consensus to reach agreement on blocks.

While update calls for different canisters may be executed
in parallel, update calls for the same canister are processed se-
quentially. The response to an update call is threshold-signed
by 2 f +1 nodes, i.e., a super-majority of the nodes created
a signature collectively, hence users can verify correctness
without having to communicate with multiple nodes.

The IC API guarantees atomicity for update calls as long as
no further calls to other canisters are made. Updates that mod-
ify local state and run local computation are always atomic.
For computation that calls into other canisters/smart contracts
2PC protocols could be implemented.

Query calls, on the other hand, do not change the canister’s
persisted state. As such, a query call may be processed directly
by a single replica without passing through consensus. This
reduces the query call latency significantly.

The correctness of query call responses from individual
machines can be verified despite the Byzantine fault tolerance
failure model with certified variables. Such variables carry
threshold signatures which are generated collectively by a
super-majority of the nodes in a subnet. Data elements that
programmers want to verify via certified variables need to
be arranged in a Merkle tree [35]. With certified variables,
elements of a canister’s state can be verified by clients even
when talking to a single IC node.

Note that the Internet Computer does not guarantee any
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order between query calls and other calls to the system (nei-
ther query nor update). If the order of calls matters, canister
developers must use update calls and/or provide a versioning
scheme as part of the canister code.

Applications running on different subnets can call each
other by means of an asynchronous pull-based reliable com-
munication primitive on top of consensus on both the sending
as well as the receiving subnetwork.
IC Programming. Currently, developer support for appli-
cations programmed in Rust, Motoko [18], or Python [15]
exists. The IC canister code is compiled down to WebAssem-
bly, which is executed under a sandboxed virtual machine on
the IC nodes. Any language that can be compiled down to
WebAssembly could also be used. A detailed description of
WebAssembly execution is provided in Section 3. Listing 1
shows an example of a functional 15-line key-value store can-
ister implemented in Rust. It exports one update call to insert
elements in the kv-store and one query call to retrieve them.

2.3 The IC Protocol Stack
As illustrated in Figure 1, the Internet Computer Protocol
consists of four layers.
Peer-to-peer Layer. Within a subnet, nodes exchange in-
formation to achieve consensus on the replicated state and
the messages to be processed next. To this end, the peer-
to-peer layer offers a (prioritized) broadcast service to the
layers above. To conserve bandwidth, peer-to-peer relies on
an advert-based mechanism, where nodes first send a small
advert to announce they have an artifact. Other nodes can then
request the artifact if they need it, based on the details in the
advert. Peer-to-peer relies on TLS over TCP streams between
the nodes of a subnet. On top of that, it adds further reliability
with notifications for unsent messages (in case of sender-side
errors), and automatic connection re-establishment and re-
quests for recent adverts.
Consensus Layer. Incoming messages must be validated and
ordered so all replicas process them in the same order. The
IC uses a novel consensus protocol [9] briefly described here.

The protocol proceeds in rounds. The replicas grow a tree
of blocks referencing valid predecessor blocks. Their local
trees form a consistent yet sometimes locally incomplete tree
view. In each round, a pseudo-random process is used to
assign each replica a unique rank. The replica of lowest rank
is the leader of that round. When the leader is honest and
the network is synchronous, the leader will propose a block,
which the other honest nodes in the subnet will validate and
add to their local tree. If the leader is not honest or the network
is not synchronous, some other replicas of higher rank may
also propose blocks, have them validated and added to the
tree. Whenever 2 f +1 replicas report that they added exactly
one block to the tree, this block and its predecessors on the
path to the root are declared finalized and the non-finalized
parts of the tree up to this height are pruned.

Figure 2: Routing messages through the IC protocol stack.
Messages for canisters, issued by users or canisters on other
subnets, are validated and ordered by consensus. Subse-
quently, messages are put into input queues for their des-
tination canister. Messages created by canisters are put into
output queues from where they are either transferred to their
respective input queues on the same canister (bypassing con-
sensus) or sent as part of streams to their target subnet.

One can prove that this protocol provides the consensus
properties, namely safety (i.e., all replicas in fact agree on the
same ordering of inputs) and liveness (i.e., all replicas should
make steady progress). The IC consensus protocol guaran-
tees safety despite asynchrony. This means that there is no
assumption of an upper bound on the time to send information
from one node to another. For liveness short intervals with fast
message delivery are sufficient. The IC consensus protocol
degrades gracefully when some replicas are malicious.
Message Routing. Once the consensus layer orders input
messages, they are delivered to the message routing layer.
The destination canister for each message is selected and the
messages are enqueued for processing by the execution envi-
ronment. During execution, the destination canister updates
its state as part of the replicated state machine and generates
outputs handed back to the message routing layer.

The message routing layer enqueues messages in one of
multiple input queues. For each canister C running on a subnet,
there are several input queues — there is one queue specif-
ically for user-generated messages to C. Furthermore, each
other canister C′, from which C receives messages, gets its
own queue. In each round, the execution layer will consume
some of the inputs in these queues, update the replicated state
of the relevant canisters, and place outputs in various output
queues. For each canister C running on a subnet, there are
several output queues — each other canister C′, with whom C
communicates, gets its own queue. The message routing layer
will take the messages in these output queues and place them
into subnet-to-subnet streams to be processed by a crossnet
transfer protocol, whose job it is to actually transport these
messages to other subnets. This is visualized in Figure 2.

Thus, the replicated state comprises the state of the canis-
ters, as well as “system state”, including the above-mentioned
queues and streams. Thus, both the message routing and ex-
ecution layers are involved in updating and maintaining the
replicated state of a subnet. It is essential that all of this state
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is updated in a completely deterministic fashion, so that all
replicas maintain exactly the same state.

The consensus layer is decoupled from the message rout-
ing and execution layers, in the sense that only messages
from finalized blocks of the chain reach routing and execu-
tion. Temporary block tree branches are pruned before their
payloads are passed to message routing. This is in contrast to
other blockchains which execute blocks speculatively, before
ordering and validating them [46].
Execution Layer. The Execution Environment operates in
rounds, during which it takes messages from canister input
queues and executes the corresponding Wasm function with
the message as payload. Based on the input and canister state,
the execution environment updates the canister state, and
could additionally add messages to output queues. One of
the main challenges is that computation must be deterministic
for state machine replication to work.

A scheduler determines in which order messages are exe-
cuted in each round. The main goals of the scheduler are (see
Section 3.3 for a more detailed description): (1) it must be
deterministic; (2) it should distribute workloads fairly among
canisters (3) optimizing for throughput over latency.

The IC offers orthogonal persistence, an illusion given to
programs to run forever: the heap of each canister is automati-
cally preserved and restored the next time it is called. Listing 1
shows an example key-value store that illustrates how easy it
is to use orthogonal persistence. The key-value store in this
case is backed by a simple Rust HashMap stored on the Wasm
heap by means of a thread-local variable. We use a RefCell to
provide interior mutability. The example would also be possi-
ble without it, but mutating the thread-local variable would
be unsafe in that case, as the Rust compiler cannot guarantee
exclusive access to it.

3 Systems Challenges of the IC

We focus on the execution layer of the IC and discuss the
challenges C1-C4, as well as their solutions.

The IC can execute arbitrary programs. The basic computa-
tional unit in the IC is called a canister. Canister programs are
encoded in WebAssembly (Wasm) [28], a binary instruction
format for a stack-based virtual machine.

The main goal is to execute deterministically,
securely and efficiently the functions triggered by mes-
sages sent to canisters. Each canister is executing under a
long-running Wasm virtual machine whose state is persisted
over long periods of time. In terms of efficiency IC nodes are
able to sustain running tens of thousands of canisters [17].
The memory subsystem of the nodes addresses challenge C1.

The IC needs to scale up, by achieving high resource uti-
lization on individual nodes. This is important to achieve
performance comparable to native systems and to amortize
the cost of state machine replication. Essential for achieving

Figure 3: Memory faulting architecture, including heap delta
and checkpoint file. When Wasm instructions trigger page
faults, memory contents can be faulted in from the memory
checkpoint. When pages are dirtied by writes, heap deltas
are created, which invalidate page content in the checkpoint
file. Subsequent faults are served directly from heap deltas.
Periodically, heap deltas are merged into a new checkpoint.

these goals is to enable efficient execution of developer code
through Wasm code execution, solving challenge C2.

To ensure correct and deterministic state machine replica-
tion, we designed and implemented a deterministic scheduler
for the IC nodes. Our scheduler implements a deterministic
time slicing mechanism, effectively solving challenge C3.

Security is achieved at multiple layers of the IC through
trust, consensus, byzantine fault-tolerance and so forth. De-
tails about these can be found in our whitepaper [53]. At
this layer, we ensure security through operating systems and
virtualization mechanisms effectively solving challenge C4.

3.1 C1 - Statefulness - The Memory Subsystem
Currently, canisters can use up to 52 GiB of memory to be
accessed by users. Any implementation of orthogonal persis-
tence has to solve two problems: (1) How to map the persisted
memory into the Wasm memory; and (2) How to keep track
of all modifications in the Wasm memory so that they can be
persisted later. We use page protection to solve both problems.
We divide the entire address space of the Wasm memory into
4 KiB pages. All pages are initially marked as inaccessible
using the page protection flags of the OS.

The first memory access triggers a page fault, pauses the
execution, and invokes a signal handler. The signal handler
then fetches the corresponding page from persisted memory
and marks the page as read-only. Subsequent read accesses
to that page will succeed without any help from the signal
handler. The first write access will trigger another page fault,
however, and allow the signal handler to remember the page as
modified and mark the page as readable and writable. All sub-
sequent accesses to that page (both r/w) will succeed without
invoking the signal handler.

Invoking a signal handler and changing page protection
flags are expensive operations. Messages that read or write
large chunks of memory cause a storm of such operations,
degrading performance of the whole system. This can cause
severe slowdowns under heavy load.
Versioning: Heap Delta and Checkpoint Files. A canister
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Figure 4: The performance improvement given by memory
faulting optimizations (lower is better). Note the logarithmic
vertical axis. Speedups range from 1.25X to 3.5X.

executes update messages sequentially, one by one. Queries,
in contrast, can run concurrently to each other and to update
messages. The support for concurrent execution makes the
memory implementation much more challenging. Consider
that a canister is executing an update message at (blockchain)
block height H. At the same time, there could still be a pre-
vious long-running query that started earlier, at block height
H−K. This means the same canister can have multiple ver-
sions of its memory active at the same time; this is used for
the parallel execution of queries and update calls.

A naive solution to this problem would be to copy the
entire memory after each update message. That would be slow
and use too much storage. Thus, our implementation takes a
different route. It keeps track of the modified memory pages
in a persistent tree data-structure [41] called Heap Delta that
is based on Fast Mergeable Integer Maps [37]. At a regular
interval (i.e., every N rounds), there is a checkpoint event
that commits the modified pages into the checkpoint file after
cloning the file to preserve its previous version. Figure 3
shows how the Wasm memory is constructed from Heap Delta
and the checkpoint file.
Memory Faulting Optimizations. We describe below three
optimizations we designed to improve memory faulting.
♢ Optimization 1: Memory mapping the checkpoint file
pages. This reduces the memory usage by sharing the pages
between multiple calls being executed concurrently. This op-
timization also improves performance by avoiding page copy-
ing on read accesses. The number of signal handler invoca-
tions remains the same as before, so the issue of signal storms
is still open after this optimization.
♢ Optimization 2: Page tracking in Queries. All pages dirtied
by a query are discarded after execution. This means that the
signal handler does not have to keep track of modified pages
for query calls. As opposed to update calls, for queries we in-
troduced a fast path that marks pages as readable and writable
on the first access. This low-hanging fruit optimization made
queries 1.5x-2x faster on average.
♢ Optimization 3: Amortized prefetching of pages. The idea
behind the most impactful optimization is simple: to reduce
the number of page faults, we need to do more work per signal
handler invocation. Instead of fetching a single page at a time,
the signal handler tries to speculatively prefetch pages. The
right balance is required here because prefetching too many
pages may degrade performance of small messages that access

Figure 5: The execution of messages instantiates a Wasmtime
instance in a sandboxed environment. Each sandbox can run
multiple wasmtime instances. The Wasm module is compiled
to a binary running inside the VM while memory accesses are
faulted in from the memory heap deltas and checkpoint file.

only a few pages. The optimization computes the largest
contiguous range of accessed pages immediately preceding
the current page. It uses the size of the range as a hint for
prefetching more pages. This way the cost of prefetching
is amortized by previously accessed pages. As a result, the
optimization reduces the number of page faults in memory
intensive messages by an order of magnitude.

These optimizations bring substantial benefits for the per-
formance of the memory faulting component of the execution
environment. Figure 4 plots the performance optimizations we
achieved when enabling all three optimizations in comparison
with turning them off. We measured this for a memory inten-
sive benchmark which allocates 8 bytes, 1 MiB, or 512 MiB.
The optimizations allow the IC to improve its throughput for
memory-intensive workloads as depicted in the Figure and no
performance degradation was observed for other workloads.

3.2 C2 - Scalability: Wasm Execution
To process a message, the canister executes the corresponding
function in the Wasm module. Figure 5 depicts this process.
Function execution requires a Wasm instance which is a com-
bination of Wasm code and memory. One of the challenges
is that we cannot afford to keep one Wasm instance alive for
each of the canisters running in a subnet because we would
run out of memory. Instead, we construct Wasm instances
on demand for each message and dispose of them after the
message execution. Thus, the latency of message execution
depends on the instantiation time and the actual time to exe-
cute the function. Included in this instantiation time is also
the time to compile the Wasm code. One optimization we
deployed is to cache compilations of Wasm code.

For one of the most used canisters in production, the com-
pilation cache optimization reduces the P99 for running non-
replicated queries by 2 orders of magnitude. This is depicted
in Figure 6. Therefore, for our real-world example, cold-start
times are now below 10 ms for previously compiled user-code
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Figure 6: Compilation caching effects. P99 for running a
short (1 ms), non-replicated query on a cold started canister.

and around 230 ms when compiled for the first time. This
is an important achievement compared to major serverless
providers where cold-start times are in the order of seconds
to tens of seconds [1, 49, 51, 55]. However, compilation time
varies proportionally with the complexity of the Wasm code
being compiled. Therefore, for certain applications longer
first-time compilation times are to be expected—subsequent
calls are optimized by caching the compilations.

Section 3.1 describes how the Wasm instance manages a
canister’s memory in checkpoint files or heap deltas.
Instrumentation: Time-slicing and Accounting. Since
Wasm is Turing-complete we need a mechanism to ensure
termination of message execution. Otherwise, a faulty or mali-
cious smart contract would be able to stall the progress of the
blockchain by potentially infinitely long running messages.
As everything else in the execution layer, the point at which
we do that needs to be deterministic. However, execution
duration is not, as execution might be slightly different on
different nodes due to nondeterministic events in the system
(e.g. one machine having a page fault, but not the other one).

Instead, we instrument Wasm code to count the number of
instructions that have been executed for each message that is
being processed by the system. To reduce the performance
overhead, our compiler extension performs counting at the
basic block level instead of individual instructions. Concretely,
at the start of an execution round we initialize the global
instruction counter of the Wasm module for each canister to
the instruction limit. In each basic block of the Wasm module
we insert a snippet of code to decrement the counter by the
number of instructions in the basic block. In re-entrant blocks,
such as function and loop headers, we insert code that aborts
message execution when the counter is negative.

Another benefit of quantifying computation done via in-
struction counting is that we can deterministically charge
canisters for performed work. The canisters are charged for
the resources they are consuming, including computation,
communication and storage. For that reason, the IC needs to
account for resource usage of all canisters in the system. Two
examples for resources being accounted are memory accesses
(estimated by the number of pages read and written) as well as
CPU instructions used. Memory accesses are tracked with the
memory protection mechanisms as described in Section 3.1.

Resources also need to be accounted for when serving users
query calls. Queries are especially complex since their execu-
tion is non-replicated due to their execution on just a single
node. However, the canister still needs to be charged determin-
istically by all nodes as the balance of a canister is part of the
canister’s state which is managed by state machine replication.

This is currently an open problem we are investigating.

3.3 C3 - Deterministic Scheduling
Since we are operating a replicated state machine, it is essen-
tial that each replica processes the same inputs in the same
order. To achieve this, the replicas in a subnet run a consensus
protocol [21], which ensures that they process inputs in the
same order. If the IC code executing those messages as well
as the canister code itself is deterministic, the internal state
of each replica will evolve over time in exactly the same way,
and each replica will produce exactly the same sequence of
outputs in the absence of hardware-related problems.
Granularity. For simplicity, the scheduler works at a coarse
level, scheduling canisters instead of individual messages and
executing each canister until there are no more messages in its
queues or the system-defined instruction limit for a round is
reached. IC nodes are modern dual-socket multi-core servers.
Deterministic behavior on such a machine can be achieved
when canisters are pre-allocated to specific CPU cores at the
beginning of each round. Our current scheduler takes this
approach because it is a simple and effective design choice
which is then easily proven correct (see Appendix A).
Allocation and fairness. To ensure responsiveness under
heavy load, canisters have the option of paying upfront for
a compute allocation. Since canisters are single threaded, a
compute allocation is a fraction of one CPU core, expressed
in percentage points. Only part of a subnet’s compute ca-
pacity can be allocated, ensuring progress for canisters with
zero compute allocation, i.e. best effort canisters. Fairness is
defined as guaranteeing canister compute allocations (i.e., a
backlogged canister with compute allocation A executing at
least A full rounds out of every 100) and evenly distributing
the remaining capacity ("free compute") across all canisters.

Given a deterministic state machine with N CPU cores
(and N × 100 compute capacity), we schedule (at least) N
canisters to execute a full round: a round, in which a canister
either exhaust the instruction limit or completes the execution
of all their enqueued messages. The scheduling algorithm
uses credits accumulated across rounds as priority: an amount
of credits equal to the canister’s compute allocation plus a
uniform share of the free compute is credited to every canister
at the beginning of every round; canisters in the priority queue
are assigned round-robin to CPU cores (each of the first N
canisters are scheduled first on a CPU core), and 100 credits
are debited from each canister that executes a full round.

Our algorithm’s time complexity to compute the schedule
algorithm is linear in the number of canisters, which is accept-
able because scheduling only happens once per round (along-
side other operations that require linear time). The scheduling
algorithm has the following properties:
• Correctness wrt. compute allocation: every back-
logged canister gets a "full execution round" at least A out of
every 100 rounds, where A is the canister compute allocation.
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• High throughput: in the absence of information regard-
ing the number of instructions required to execute each mes-
sage ahead of time (which might allow for better bin packing);
and given the constraint that canisters must be allocated to
specific cores ahead of time; the algorithm provides optimal
throughput by executing canisters allocated to each core until
the round instruction limit is reached.
• Fairness: the credits system ensures that (backlogged)
canisters with equal compute allocations get the same number
of "full execution rounds" over a long enough time period.

Appendix A defines and anlyses the scheduler formally.
Deterministic Time Slicing. The scheduler, as explained
above, although effective, is suboptimal for messages that
trigger executions of varying length. Each subnet of the IC
operates in epochs of many rounds. Messages run either to
completion or to a predefined upper limit on the number of
instructions per round. In the second case, the execution is
aborted and returns an error. In this case, the user would have
to rewrite the algorithm to make the execution of the long-
running message span multiple execution rounds. This is less
than ideal because of two reasons. First, it can artificially in-
crease round duration due to stragglers, which leads to overall
throughput loss and slowdown. Second, it can lead to signif-
icant CPU waste because a long-running execution that is
aborted due to reaching instruction limits will be re-executed.

To solve this problem, we designed a deterministic time
slicing mechanism on top of our scheduler, where each mes-
sage execution longer than a round is sliced in a number of
intervals with roughly equal numbers of instructions. This is
akin to time slicing in modern schedulers [7], although the
biggest challenge here is to enforce determinism. Time slicing
also increases the amount of intermediate state, that needs to
be kept while a message is preempted. The slices achieved
here are then scheduled as described before.

3.4 C4 - Ensuring Security
The security model of the IC aims to provide access control
and integrity of canister and system data in the presence of
malicious canisters and users. Canisters can specify a method
that accepts or rejects requests, e.g., based on caller ID, re-
source consumption etc. Only correctly signed messages are
then processed. Responses to update calls and queries for
certified variables are threshold-signed by the subnet nodes,
so clients can verify authenticity. Canisters cannot inspect or
change state of other canisters or parts of the system. This is
guaranteed by eliminating the main Wasm attack vectors.

An adversary may craft Wasm code to: (1) exploit bugs in
the Wasm engine to escape its protection mechanism; and (2)
perform side-channel attacks to obtain data from the system
or other canisters [33]. The IC protects against these attacks
using OS isolation and sandboxing. Each canister is compiled
and executed in its own sandboxed process that communicates
only with the main replica process via security-audited IPC.
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Figure 8: The rate of non-replicated and replicated messages.

Sandboxes are given minimal permissions needed to execute
using object-based access control (SELinux).

In the future, hardware-based security, offering fully en-
crypted VMs with the possibility to attest remotely if the
expected VMs are running, will increase obstacles curious
and malicious node providers face.

4 The Internet Computer In Data

We present data related to the operation and performance
of the IC. We show the growth and usage patterns the IC is
experiencing, its overall performance (in comparison with
native code) and identify sources of overhead with regard to
the systems challenges presented in Section 3.

The Internet Computer Hardware. The IC currently runs
on homogeneous hardware that is hosted by independent node
providers. The chosen configuration makes use of dual-socket
AMD EPYC 7302 processors with a total of 32 physical cores
running at 3 GHz, each core having 2 hardware threads. The
IC servers make use of 503 GiB of memory. AMD chips were
chosen due to their secure encrypted virtualization feature to
enable VM encryption across VM upgrades in combination
with remote attestation.

The data presented in Sections 4.1-4.2 is gathered from
production. Experiments discussed in the rest of this section
are executed on an internal testnet that mimics subnets on the
IC. The difference to IC machines is that two IC VMs are
deployed to each host, instead of one. Testnet machines are
hence expected to be slower for concurrent workloads.

4.1 A High-level View of the IC
IC Growth (C1 + C2). We focus on the high-level opera-
tional data gathered from the IC. The usage has been steadily
increasing since launch, showing an acceleration of the num-
bers of deployed applications since the beginning of 2022.
Figure 7 depicts the number of deployed canisters over time,
as well as their overall allocated state, which reaches 2.5TB.
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Figure 9: The block rate of the IC.
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Figure 10: Aggregated IC Nodes network traffic.

Workload Growth (C1 + C2). Together with the increase in
the deployed applications we also observe an increase in the
workload deployed on the IC. Figure 8 plots the arrival rate
of messages over time. As expected, non-replicated messages
(i.e., queries), which do not pass through consensus and do
not alter canister state are being triggered significantly more
often than replicated messages by our users. Replicated execu-
tion, which incurs the consensus overhead is used less — we
assume only for operations that need to alter application state.
An interesting observation to make here is that in February
2022, we have changed the way in which we quantify the
number of replicated messages. Whilst before this date, the
number only sums up update calls, after this date the date
adds also replicated execution that the canisters use for their
operation (e.g., periodic heartbeats). The graph shows a sig-
nificant increase in the number of replicated messages after
February 2022. We note here that it is common practice that
for operational systems, metrics sometimes change meaning
over time as the systems itself is refined and continuously
evolving. The significant increase in replicated execution in
Dec 2022 is due to the launch of a popular application, while
the later drop corresponds to a change in the call pattern of
the same application.
IC Scaling Out (C2). Over time, the IC has increased its
capacity to sustain increased workloads and achieve decen-
tralization. Evidence to sustain the scaling out of the IC is
given by examining the block rate – the number of blocks
generated by the consensus layer. Figure 9 plots these data,
showing an increase of 57% since launch.

Similar evidence to sustain growth of the IC in terms of
higher workload demands is represented by the increased net-
work bandwidth used to exchange messages between nodes.
Figure 10 depicts the aggregated bandwidth of traffic gener-
ated: since launch, the traffic generated between the nodes has
increased from around 250 MB/s to about 3 GB/s, over an or-
der of magnitude increase over a period of a year. The amount
of ingress and egress traffic is very similar, as expected.
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Figure 11: The time queries or replicated messages take in
the execution layer, without consensus overhead.
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Figure 12: The number of instructions spent for executing
queries or replicated messages.

4.2 The IC Performance
The IC has attracted the developers of several large appli-
cations, for example: OpenChat (a decentralized chat appli-
cation), DSCVR (decentralized social news aggregator), and
distrikt (a decentralized professional social media platform).
These applications have added a significant increase in work-
load complexity for the IC. We present an in-depth analysis
of the metrics of the subnet that runs the OpenChat canisters.
We focus mostly on data related to the systems challenges
described in Section 3.

The subnet hosting the OpenChat application is composed
of 13 replica nodes distributed geographically (in North Amer-
ica, Europe and East Asia). The subnet hosts 80,000 canisters.
Replicated vs. Non-Replicated Execution. (C1-C3) First,
we assess the duration of non-replicated queries in compari-
son with replicated update calls in Figure 11. We compare the
data in the OpenChat subnet with the data coming from the
subnet running DSCVR (and other applications). Note that
this comparison does not include the overhead of the P2P, con-
sensus and messaging layer, but only measures the time spent
in the Execution layer. By analyzing the data in Figure 11
we conclude that queries run longer for the OpenChat subnet,
while updates dominate on the DSCVR subnet. Figure 12
plots the number of Wasm instructions for queries compared
to replicated messages. The average number of instructions
executed for queries is significantly higher than for replicated
messages for OpenChat, leading to longer executions. On the
contrary, on the DSCVR subnet the behavior is the exact oppo-
site. This shows that the IC runs a diverse set of applications,
with varied needs and characteristics.
Memory Overhead (C1 + C2). The heap delta is used in-
between checkpoints to keep track of modified memory pages.
This data structure can affect the subnets’ ability to scale up
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Figure 13: Heap delta for an IC subnet over time.
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Figure 14: Scheduling overhead for an IC subnet over time.

to many concurrent canisters as tracking modifications incurs
overhead. Figure 13 shows how the heap delta for all canisters
on OpenChat subnet evolves over time. The data shows that on
average the heap delta is below 5 GB, but more recently, since
November 2022 it has significantly increased, up to 350 GB.
This shows a large increase in OpenChat usage, aggregated for
more than 80,000 canisters. On subnets with fewer canisters
heap deltas are typically smaller.
Scheduling Overhead (C3). When scheduling replicated
messages the same ordering has to be ensured on all replicas
so that determinism is guaranteed. Deciding which message
gets scheduled for execution and at what time is a costly
operation that can affect scalability. We plot the scheduling
overhead, i.e., the time to compute the schedule for one round,
in the OpenChat subnet in Figure 14. The immediate con-
clusion is that this overhead is in the order of hundreds of
milliseconds per round for this subnet. An interesting point
is the overhead reduction which can be observed around the
end of May 2022. This is attributed to an optimization related
to the scheduling process, namely checking if a canister has
messages to be run. We checked the scheduling overhead
for subnets with smaller numbers of canisters as well. Our
conclusion is that this overhead is proportionally smaller (as
the overhead complexity is O(N logN) for N canisters). Simi-
larly to the heap delta observation, the scheduling overhead
increased significantly since November 2022. This is also
because the number of users (and canisters) for OpenChat has
significantly increased, leading to many more messages being
scheduled for execution in this subnet. We investigate ways
to reduce this overhead to support efficient scheduling with
larger workloads.

4.3 The IC Virtualization Stack
We quantify the impact of the IC virtualization. In Section 3
we described how user code is executed. In short, user code
is compiled to Wasm, which gets instrumented and compiled
to a binary that gets executed inside a sandbox. To achieve
orthogonal persistence and stateful execution we keep track

of memory writes in a persistent data structure from which the
Wasm VM is faulting in its pages. This indirection introduces
a non-trivial overhead. We quantify this overhead for two
types of workloads: compute- and memory-intensive. Each
of these workloads stress different resources of the stack.

Compute Intensive Workload (C2). We implemented a
workload that calculates prime numbers up to a given integer
number. This is a single threaded workload, which we wrote
in Rust and deployed on the IC. We ran the same workload
(identical Rust code) on an IC machine natively (compiled to
an x86 binary), without the entire virtualization stack. Further-
more, we ran the same Rust code on one of the top-3 serverless
providers. Experiments in the IC have been measured from
within the Execution Environment and hence do not contain
network latency or the cost of other parts of the IC stack. We
provide similar data for the serverless provider and take the
latency from the provider’s dashboard. The experimental data
is presented in Table 1. The overhead is computed against the
native execution (not against the serverless provider).

First, the Internet Computer performance compared to na-
tive execution is good for longer-running workloads consid-
ering the extra features that the IC execution environment
provides: sandboxing, accounting and tracking changes. Sec-
ond, we emphasize that the IC performance is in the same
order of magnitude with one of the top-3 serverless providers.
Considering the extra operations that the IC does to offer
its users decentralization, security etc., we deem these per-
formance data encouraging, especially taking into account
the fact that the serverless execution is faster than native ex-
ecution in our case. This directly implies that the hardware
running the serverless platform is very likely faster than the
hardware we described in Section 4.

Memory Intensive Workload (C1). We performed a simi-
lar experiment with a memory intensive workload. Here, mem-
ory is accessed sequentially in strides of 8 bytes. The totally
allocated memory is 1 GB. In this experiment we only com-
pare against a native execution because all current serverless
platforms are not stateful. Therefore, the serverless functions
access memory directly (i.e., without any faulting architec-
ture, persistence, versioning) through either microVMs [1] or
containers [43]. A more direct comparison would involve a
serverless function that stores its state in a storage environ-

n IC [ms] Native [ms] Serverless [ms] Slowdown
IC / native

0 1.40 0.02 3.53 70 X
100 1.43 0.03 1.93 47 X

1,000 2.35 0.94 2.94 2.5 X

10,000 41.54 33.85 19.65 1.22 X
50,000 718.26 610.73 347.54 1.17 X

Table 1: Median computation time for a compute intensive
workload running on the IC, native execution and running on
a serverless provider (average for serverless due to lack of
raw data) over 30 executions. The workload identifies primes
in the first n integers.
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Operation Data Size
[Bytes] IC [ms] Native [ms] Slowdown

IC / native

Read 50,000 2.15 0.02 107 X
Read 5,000,000 26.36 1.83 14.2 X
Read 50,000,000 195.52 18.27 10.7 X

Write 50,000 2.28 0.02 114 X
Write 5,000,000 33.79 2.14 15.8 X
Write 50,000,000 277.36 19.13 14.5 X

Table 2: Median computation time over 30 executions of a
memory intensive benchmark performing strided reads/writes
of different sizes on the IC and native execution.

ment [32], but this is outside the scope of this article.
We therefore compare the execution time of executing the

benchmark compiled to a native x86 binary on one of the IC
node to the time of executing the same benchmark as canister
code. Table 2 summarizes our findings. For workloads that
touch up to 50 MiB of data, the overhead of running this
benchmark on the IC is approximately 10 X to 15 X. Lower
amounts of data touched incur larger slowdowns, with smaller
data giving the largest slowdown.

Even though the slowdown compared to native execution
seems large, we remind the reader that a rather deep virtualiza-
tion stack is involved in memory operations. Further, the IC
needs to account for resource consumption and track memory
writes, which the native version does not do. Finally, update
calls pass through consensus and the entire IC stack, therefore
offering the users all the Internet Computer benefits: decen-
tralization, security, and tamper-proof execution. Moreover,
we remind the reader that the IC is orders of magnitude faster
and more efficient than other blockchains. We are further
working on improving the memory faulting layer using write
barriers [6] or userfaultfd [39] so that in the future we can
reach our goal of (close-to-)native performance.
The Cost of Decentralization and Statefulness (C1-C4).
One of the overarching goals of the IC is to offer levels of
performance as close as possible to native and traditional
client-server architecture performance. With regard to user-
perceived overhead, the factors contributing most are the con-
sensus protocol, the networking, and the crypto primitives,
as well as memory faulting. At a macro level, this overhead
can be observed by re-interpreting Figures 9 and 10. All the
replication protocol-related mechanisms leads to network traf-
fic (e.g., a few MB per machine per second, see Figure 10,
considering that at the moment of writing the IC runs on over
500 machines) and computational overhead for the creation
and validation of blocks and the messages contained therein.
This overhead is not crippling the operation of the IC and its
benefits significantly outweigh its downsides.

We ran many memory-intensive update calls in one of our
testing and benchmarking subnets. Memory-intensive updates
especially stress the entire system stack because they: (i) mod-
ify significant amounts of the canister state; (ii) need repli-
cated execution; (iii) require consensus for ordering. There-
fore, we quantify the overhead of system components by run-
ning Linux perf. Figure 15 is an instance of quantifying

Figure 15: Decentralization and statefulness overheads when
several memory-intensive update calls are made. Data
presented as flame graphs [26].

such overhead. We observe that the actual workload takes
approximately 50% of the used CPU time (not all the CPU
capacity is used). A large fraction of the overhead can be
attributed to the consensus and P2P protocol, networking or
crypto primitives stack, together they account for roughly
20% of the CPU time. Another sizeable CPU time consump-
tion is due to the memory faulting subsystem (9%) and the
execution management stack (11%). The latter involves all
processing related to canister administration, Wasm instru-
mentation, communication with sandboxes.

4.4 End-to-end Performance (C1-C4)
We quantify the end-to-end performance of our subnets using
the default subnet size of 13 nodes. Note that for enhanced
security guarantees (e.g., tolerating more malicious nodes) the
IC hosts even larger subnets (i.e., 40 machines). All subnets
are geo-replicated, i.e., are composed of machines running on
multiple continents – the Americas, Europe, Asia. Our results
are depicted in Table 3.

In contrast to other experiments we execute requests with
insignificant execution overhead, so we can safely attribute
the latency overhead to other layers. A geo-replicated subnet
is able to run∼78K queries per second with a latency of 50ms-
200ms, given by differences in geographic location of client
and targeted IC node. Since no coordination among nodes
is needed for query execution, we can safely attribute this
latency to the networking layers. In terms of updates (stateful
and replicated execution), a geo-replicated subnet is able to
serve 950 updates per second for a latency of 1-4s (which

Op Throughput
(ops / s)

Latency
(s) Overheads

Query 78,000 0.05-0.2 Networking

Update 950 1-4

Networking,
Consensus,
Replicated
Execution,

Statefulness

Table 3: End-to-End performance for the two operations sup-
ported by the IC.
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includes networking, consensus and replication overheads).
Note that this latency is comparable to the top-3 serverless
platforms cold starts [54].

5 Related Work

The IC builds on fruitful years of research at many levels:
from consensus, to peer-to-peer networking, cryptographic
protocols, blockchain, and operating systems. We limit our
discussion to blockchain-related technology and large-scale
systems making use of it, and the value of opening up and
discussing data from large-scale operational systems.
Blockchain Execution Environments. It has become a
mantra that blockchains are slow. Just like for the IC, others
have investigated ways in which computations and transac-
tions running atop blockchains can be sped up. These are
related to either speeding up consensus [12, 52], using soft-
ware transactional memory [25,46,47], enforcing determinism
and ordering [34, 52], or optimizing execution layers [2]. The
performance evaluation in these works relies on synthetic
workloads in test environments. To the best of our knowledge,
this paper is the first to report on the performance of the exe-
cution environment of a real-world blockchain deployment.
Operational Systems and Data. Next to the more tradi-
tional workloads, such as high-performance scientific com-
puting [20], analytics [4], cluster workloads [45], recently
data centers started providing Blockchain-as-a-service of-
ferings [23]. As Amvrosiadis et al. point out [3] data set
diversity is key to understand the characteristics of work-
loads and to tailor new resource management schemes. The
community recognizes and emphasizes the need of analyzing
operational systems, such as the Microsoft Serverless plat-
form [49], CloudLab [19], or the evolution of the Google data
center network [40]. We believe our article adds significant
data and insight on the design, operation and growth of sys-
tems that offer general-purpose computation capabilities on
top of blockchain platforms.

6 Conclusion

The Internet Computer overcomes traditional blockchain
limitations with respect to speed, storage costs, and computa-
tional capacity. We demonstrated how the novel design of
the IC, coupled with solving low-level systems challenges
enables decentralized stateful serverless. In particular, we
presented an in-depth description of the execution layer of the
IC followed by an evaluation of operational and performance
data over real-world workloads as well as compute and
memory-intensive benchmarks.

The IC code and data can be found here:
• IC code: https://github.com/dfinity/ic
• Dashboard: https://dashboard.internetcomputer.org/
• Dataset API: https://ic-api.internetcomputer.org/api
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A Appendix – Scheduler Analysis

Notation For a vector v we write v j for the j’th entry in v.
By overloading notation, we write e j for the unit vector with
1 on the j’th position and 0 everywhere else. We write |v| for
∑ j v j – for vectors with positive entries |·| corresponds to |·|1.

For a set S we write |S| for its size. For a real number x we
write |x| for its absolute value. We write x← a for assigning
to variable x value a. If S is a set, we write x ← S for a
deterministic way of assigning a value s ∈ S to variable x.

Problem statement An allocation for t canisters is repre-
sented by a vector a=(a1,a2, . . . ,at), a vector in {1,2, . . . ,v}t

for some v. Given an allocation vector a = (a1,a2, . . . ,at),
we define a deterministic (stateful) scheduling algorithm
which, for each round k ∈ N outputs some index sch(k) ∈
{1,2, . . . , t}, or equivalently, some unit vector e j∗ (with j∗ ∈
{1,2, . . . , t})1.

Intuitively, a good scheduler approximates the allocation
vector well, i.e. for large enough k it outputs j a number of
times proportional to its allocation. We formalize this intuition
as follows.

1To simplify notation, we ignore that the scheduler is stateful

For each k ∈N and i∈ {1,2, . . . , t} let idxs(k, i) = { j | j≤
k,sch( j) = i} the set of indexes j such that i was scheduled
in round j (i.e. s( j) = i). For a good scheduler, the quantity∣∣∣∣ |idxs(k, i)|

k
− ai

|a|

∣∣∣∣
is “small" for all large enough k. Informally, the above relation
states that the scheduler has allocated k rounds proportional
to the desired allocation.

Scheduler description Given an allocation vector a, we
define the following scheduler. The state of the scheduler at
step k is given by vectors d(k),p(k),s(k) defined as follows2.

The initial state is d(0) = s(0) = (0,0, . . . ,0). For k ≥ 1
define:

p(k) = d(k−1)+a
j∗←{ j | p j(k)≥ pl(k), ∀l ∈ {1,2, . . . , t}}
s(k) = s(k−1)+ e j∗ ,
d(k) = p(k)− e j∗ · |a|
sch(k) = e j∗

Analysis The following lemma states some invariants that
hold throughout the execution of the scheduler.

Lemma A.1. For any k ∈ N it holds that:

|d(k)|= 0

For any k ∈ N∗ it holds that:

|p|= |a|

Proof. We prove the invariant holds true for d by induction
on k. The invariant for p follows immediately.

Base case For k = 0 we have that d(0) = (0,0, . . . ,0) so the
invariant holds trivially.

Induction step By definition,

d(k) = d(k−1)+a− e j∗ · |a|

for some j∗ ∈ {1,2, . . . , t}. We then get that:

|d(k)|=
∣∣d(k−1)+a− e j∗

∣∣= 0+ |a|− |a|= 0

The following lemma establishes a relation between d and
s. Informally, the relation says that s(k) is an approximation
of k · a

|a| – the quality of the approximation is given by the
entries in d.

Lemma A.2. For any k ∈ N it holds that:

d(k) = k ·a− s(k) · |a|

Proof. Proof by induction.
2In fact p is explicitly maintained only for convenience of analysis; it can

be reconstructed from d,s and a
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Base case For k = 0 we have that d(k) = s(k) = (0,0, . . . ,0)
so the equality holds trivially.

Induction step Assume it holds for k−1, i.e. d(k−1) =
(k− 1) · a− s(k− 1) · |a|. By definition, d(k) = d(k− 1) +
a− e j∗ · |a| for some j∗. From the induction step, this can be
rewritten as

d(k) = (k−1) ·a− s(k−1) · |a|+a− e j∗ · |a|
= k ·a− s(k) · |a|

The following lemma establishes a lower bound on the
the debt which processes can accumulate throughout their
lifetime.

Lemma A.3. For any k ∈N and j ∈ {1,2, . . . , t} it holds that:

1−|a| ≤ d j(k)

Proof. Proof by induction.

Inductive step The inequality trivially holds for j ̸= j∗

since by definition (and the induction hypothesis):

d j(k) = d j(k−1)+a j ≥ d j(k−1)≥ 1−|a|

To prove the bound for j∗, notice that by Lemma A.1, for
any k ∈ N:

t

∑
j=1

d j(k)+a j(k) = |a|

Since j∗ is such that d j∗(k−1)+a j∗ ≥ d j(k−1)+a j for all
j and t ≤ |a|, it holds that

d j∗(k−1)+a j∗ ≥
|a|
t
≥ 1.

So, we have that

d j∗(k) = d j∗(k−1)+a j∗ − (e j∗ · |a|) j∗

≥ 1−|a|

Finally, the following theorem establishes that in |a| rounds,
job i is scheduled ai times.

Theorem A.4.

s(|a|) = a

Proof. By Lemma A.2, it holds that:

d(|a|) = |a| ·a− s(|a|) · |a|= (a− s(|a|)) · |a|

Since d j∗ ≥ 1−|a| (by Lemma A.3) and d j(|a|) is an inte-
ger divisible by |a| (by the above equality) then, it holds that
d j(k) ≥ 0. Since |d(|a|)| = 0 then d(|a|) = (0,0, . . . ,0) and
the desired equality follows.
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Abstract
DBMSs (Database Management Systems) are essential in

modern enterprise software. Thus, ensuring the correctness
of DBMSs is critical for enterprise applications. Among vari-
ous kinds of bugs, logical bugs, which make a DBMS return
an incorrect result set for a given SQL query, are the most
challenging for detection since they typically do not result in
apparent manifestations (e.g., crashes) and are likely to go un-
noticed by users. The key challenge of detecting logical bugs
is the test oracle problem, i.e., how to automatically charac-
terize the expected results for a given query. The state-of-the-
art approaches focus on generating the equivalent forms of
queries via the customized rules, which rewrite a seed query
to achieve the equivalent transformation. This dramatically
limits the forms of SQL queries fed to the DBMS and thus
leads to the under-reporting of many deeply-hidden logical
bugs. In this paper, we propose a novel approach, PINOLO,
to constructing a test oracle for logical bugs. Instead of gen-
erating the equivalent mutants of a seed query, our idea is
to synthesize the queries that theoretically should return a
superset or a subset of the result set of the seed query, form-
ing the over-approximations or under-approximations of the
seed query. A logical bug is detected if the result set returned
by our synthesized query does not follow the expected ap-
proximation relation. We implemented our idea as a DBMS
testing system and evaluated it on four widely-used DBMSs:
MySQL, MariaDB, TiDB, and OceanBase. By the time of
writing, PINOLO has found 41 unique logical bugs in these
DBMSs, 39 of which have been confirmed by developers.

1 Introduction

Database Management Systems (DBMSs) are widely used
as a key component in modern enterprise software. Their
correctness and reliability are critical for many enterprise ap-
plications, such as online banking, e-shopping, e-payment, etc.
Therefore, DBMS testing has attracted considerable attention
in the industry [14, 23, 38, 41] and academia [10, 34–36]. For
example, fuzzing, a widely-used testing technique, has been
extensively applied to DBMSs [14, 38], showing its effective-
ness in detecting crash bugs. However, as another typical kind

∗Corresponding author: Rongxin Wu (wurongxin@xmu.edu.cn)

of bug, logical bugs would cause DBMSs to return an incor-
rect result set for a given query but can easily go unnoticed
by developers since they would not behave with apparent
manifestations like system crash.

The predominant approach to detecting logical bugs con-
sists of various automatic testing techniques. However, design-
ing effective automatic testing techniques is non-trivial. One
of the fundamental technical challenges is to characterize a
correct result concerning a given query for comparison, which
is a classical problem in testing, i.e., test oracle problem [12].
To tackle this challenge, researchers have proposed various
ways to obtain the test oracle. The first category is based on
differential testing [39]. It provides the same generated SQL
query to multiple DBMSs for execution and resorts to the
querying results to construct the test oracle. More concretely,
the inconsistency among the result sets returned by differ-
ent DBMSs indicates the presence of a potential logical bug.
However, as pointed out by the existing studies [34, 36, 39],
differential testing cannot be applied when a generated SQL
query cannot comply with the grammar of all selected DBMSs
or contains operations that have different semantics between
different DBMSs. Although all the DBMSs support the com-
mon core syntax of SQL, each of them provides various ex-
tensions and forms its own dialect [39], which dramatically
limits the generality of differential testing.

The second category is the oracle-guided synthesis ap-
proach [36], which does not rely on multiple DBMSs and
thus mitigates the limitation of differential testing. It first
specifies a randomly-selected row in a database table, namely,
pivot row, as the test oracle and then synthesizes the query
whose result set should contain this pivot row. The failure of
fetching the row with the synthesized query evidences a po-
tential bug underlying the tested DBMS. However, since such
an approach considers only one row each time and the synthe-
sis merely focuses on the where clause generation, it would
miss logical bugs in various scenarios [34, 35]. For example,
those rows that are duplicated to the pivot row are wrongly
fetched or omitted, or the values processed by performing
operators on the original row data are mistakenly computed
and returned. Moreover, as pointed out by some recent stud-
ies [34, 35], the synthesis requires domain knowledge of the
database dialect’s supported operators and functions, and thus
the implementation effort is high.
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The third category is the metamorphic testing based ap-
proach [34, 35]. It first transforms a given query q into an-
other query q′ such that their querying results satisfy a specific
relation, which is referred to as a metamorphic relation. The
violation of the metamorphic relation upon the querying re-
sults indicates the wrong result of evaluating q or q′. For
example, TLP [35] decomposes a query q into three parti-
tioning sub-queries, each of which computes the result sets
for a boolean predicate to be evaluated as TRUE, FALSE, and
NULL, respectively, and then constructs an equivalent query q′

by performing the union operation on these three sub-queries.
NOREC [34] transforms an optimized version of a query into
a non-optimized one by the customized rule, e.g., changing
“SELECT * FROM t WHERE p” into “SELECT (p IS TRUE)
FROM t.” Compared with the aforementioned two categories
of approaches, metamorphic testing based approaches are
much more lightweight to implement and have been proven
to be more effective in detecting logical bugs [34, 35]. How-
ever, existing studies instantiate the metamorphic relations as
equivalent relations, which are still insufficient to detect many
deeply-hidden bugs. This is because it is highly possible that,
owing to the limited search space of mutations, the pair of
equivalent queries would still share common buggy operators
and functions and eventually return the same results. In such
a case, the oracle from the equivalent query cannot provide
any hint to detect logical bugs.

In this work, we present a new metamorphic testing based
approach, named PINOLO, to detect logical bugs. Our idea to
instantiate the metamorphic relation originates from the obser-
vation that the querying result of a given query is essentially a
multi-set of tuples. The inclusion relation between the multi-
sets, which is the foundation of set theory, is a good choice to
characterize the metamorphic relation of two queries. There-
fore, we try to mutate a given seed query to obtain the queries
over or under-approximating it, of which the querying results
are the superset or the subset of the one of the seed query.
Based on the approximation relations, we can reveal a logical
bug if the actual results violate the approximation relation. To
systematically synthesize the two kinds of mutants, we intro-
duce a series of approximate mutators, e.g., strengthening or
weakening the predicates in where clauses, and propose an ap-
proximate query synthesis algorithm to generate the queries
that have the over and under-approximation relations with
the seed queries. Benefiting from our approximation relation
and flexible approximate mutators, PINOLO can seize more
opportunities to reveal logical bugs, as it can perform more
aggressive mutations over the seed queries (e.g., discarding
several functions), which explore the mutants of a seed query
thoroughly. We also prove the correctness of our test oracle
to solidify the theoretical foundation of PINOLO.

We implemented our idea as a DBMS testing system and
evaluated it using four widely-used and comprehensively
tested DBMSs, including MySQL, MariaDB, TiDB, and
OceanBase. Compared with the state-of-the-art approaches,

PINOLO is more effective in detecting logical bugs. During
the 24-hour run, PINOLO can find 41 unique logical bugs,
while the three state-of-the-art approaches together can only
discover 14 bugs. Upon the submission, 39 out of 41 bugs
have been confirmed by developers, showing the great impact
of PINOLO on the four real-world DBMSs. In summary, this
paper makes the following contributions:

• We introduce the concept of the approximation relation
and a series of approximate mutators to resolve the test
oracle problem in testing logical bugs in DBMSs.

• We propose a systematic metamorphic testing based ap-
proach PINOLO to detecting logical bugs in DBMSs,
which leverages the approximate mutators to synthesize
approximate queries for a seed query.

• We implement our idea as a DBMS testing system
and systematically evaluate it using four widely-used
DBMSs. The evaluation results demonstrate the effec-
tiveness of PINOLO in detecting logical bugs.

2 Background

As discussed in § 1, this paper focuses on finding logical bugs
in the DBMSs. This section provides several preliminaries
as the background, including the concept of the DBMS, the
logical bugs in the DBMSs, and the metamorphic testing
based approaches for DBMS testing.

2.1 Database Management Systems

The DBMSs are widely used in many modern software sys-
tems. They enable the developers to perform various data
manipulations, namely insertion, removal, update and search,
according to their demands. Here, we concentrate on the rela-
tional DBMSs in our work as our target, which are one typical
kind of DBMSs. Basically, they are developed on top of the
relational model (RM) [7], where data is organized as a col-
lection of tables. Each table is essentially a relation storing
the records inserted by the developers, which is a multi-set of
tuples from a mathematical perspective. Finally, a database
in the DBMS consists of one or more tables, storing the data
in a relational manner. In this paper, we use the DBMSs to
indicate the relational DBMSs without introducing ambiguity.

There have been an increasing number of DBMSs re-
leased by the industry and academia, including MySQL, Mari-
aDB, TiDB, and OceanBase [9, 22, 26, 29]. To interact with
DBMSs, SQL [3], which is the most commonly used domain-
specific language to store and operate data, was proposed.
When retrieving data, developers write SQL queries and send
them to DBMSs to get querying results. Each querying result
is a multi-set of tuples indicating specific attributes of queried
records in the tables. Overall, DBMSs provide an intuitive and
flexible way to store and retrieve information, promoting the
prosperity of database-backed applications in the real world.
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--create a table
CREATE TABLE t ( c1 FLOAT ); 
INSERT INTO t VALUES (-1);

-- queries
(SELECT 1 FROM t WHERE COT(0.2)=0) 
UNION ALL (SELECT (BINARY c1 | 0) FROM t);
--result: {0}

(SELECT 1 FROM t WHERE TRUE) 
UNION ALL (SELECT (BINARY c1 | 0) FROM t);
--result: {18446744074709551615, 1}

(SELECT 1 FROM t WHERE FALSE) 
UNION ALL (SELECT (BINARY c1 | 0) FROM t); 
--result: {18446744074709551615}

Figure 1: An example of a logical bug in OceanBase.

2.2 Logical Bugs in DBMSs

With the prevalent usage of DBMSs in real-world industrial
scenarios, their reliability and correctness have recently been
paid increasingly more attention. As complex software sys-
tems, DBMSs can have bugs that cause crashes and other
unexpected behaviors. Remarkably, the logical bugs are one
of the most tricky bugs underlying the DBMSs. When a de-
veloper writes a SQL query and executes it upon a database,
the returned result may be erroneous, which means that the
semantics of the query is not correctly evaluated.

Figure 1 shows a logical bug in OceanBase [25]. We sim-
plify the creation of the table for better demonstration. Specifi-
cally, the first query selects the constant value 1 from the table
t if the cotangent of 0.2 is equal to 0, while the second and the
third queries replace the predicates in the where clauses with
1 and 0, respectively. Obviously, the querying result of the
first query should be a subset of the one of the second query,
and meanwhile, it subsumes the querying result of the third
one. However, the actual querying results do not conform to
such inclusion relations. As confirmed by the developers of
OceanBase, the querying result of the first query is incorrect,
which is caused by the simultaneous usage of the set operator
UNION ALL and the functions COT and BINARY.

As shown by the above example, logical bugs are more
mysterious than system crashes, which have apparent man-
ifestations. In contrast, people are often unaware of logical
bugs in DBMSs. Typically, the developers of database-backed
applications may realize the abnormal data retrieved from the
database, while they are still uncertain whether their applica-
tion is wrongly implemented or a logical bug of the DBMS
is triggered. Therefore, detecting a logical bug in the DBMS
has been typically recognized as a problem with both high
impact and significant technical challenges.

2.3 Metamorphic Testing
Recent years have witnessed tremendous efforts in resolv-
ing the test oracle for logical bug detection in the DBMSs.
Notably, the metamorphic testing based approach has been
recognized to be state-of-the-art in DBMS testing for logical
bug detection [35, 37]. Generally, the metamorphic testing
based techniques attempt to construct multiple SQL queries
of which the querying results have a specific relation, namely
a metamorphic relation. If the querying results violate the
metamorphic relation, we can have the confidence that at least
one of the queries triggers a logical bug in the tested DBMS.
For example, NOREC [34] transforms a query into a form in
which the DBMS does not apply optimizations, which yields
the test oracle that the two queries should make the tested
DBMS return the same result. Besides, TLP [35] gets the
equivalent query result by splitting the input query into several
sub-queries and merging the results of sub-queries into one.
When adapting the metamorphic testing, they take randomly-
generated queries as the seed queries and then transform them
into other queries to ensure the metamorphic relations, which
automates the testing process for logical bug detection.

Unfortunately, the existing effort has not resolved the test
oracle problem perfectly. To the best of our knowledge, pre-
vious studies only leverage the equivalent transformations,
which are supported by the tested DBMS or conducted by
their approaches, leaving the functions and operators in the
query unchanged. This greatly limits their approaches to ex-
ploring the code of the tested DBMSs and thus reduces the
chance of finding logical bugs. For example, the logical bug
shown in Figure 1 can not be revealed by NOREC [34] and
TLP [35], as the transformations preserve all the operators
and the functions, still triggering the buggy evaluation pro-
cess. To improve the capability of the metamorphic testing in
finding logical bugs in the DBMSs, we propose a new DBMS
testing approach in this work, which relaxes the equivalence
relation with a less restrictive metamorphic relation, finally
supporting finding more insightful logical bugs.

3 Approximate Query Synthesis

We propose the approximate query synthesis technique
PINOLO1 for detecting logical bugs in the DBMSs. Basi-
cally, our insight comes from the intuition that the mutation
of specific grammatical constructs can induce the approxi-
mation relation between the original query and the mutated
one, which can be adopted as the oracle of DBMS testing.
Specifically, we start from a randomly generated seed query
and mutate several constructs, such as predicates in where
clauses, comparison operators, and set operators. Based on the
mutation upon any seed query, we can successfully synthesize

1Pinolo is the English name of a cartoon character named Pinocchio.
Once he tells a lie, his nose will become longer. The relative change in its
length is the evidence to verify whether he is lying.
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① Populate database
tables randomly

② Generate initial
seed queries

③ Synthesize over-approximate and under-approximate
queries by mutating the seed query

④ Evaluate queries on the
database with the DBMS

⑤ Check the inclusion
relation of querying results

SELECT c1
FROM t1
WHERE
NOT (c1 > 0)

C0 C1

1 2

2 -1

t1:

C2 C3

-1 1

-4 2

t2:

Over-approximate queries Under-approximate queries

q1
q2 q3 q1 q2 q3 ⊆

⊆
Back to② and iterate

Figure 2: The workflow of PINOLO

a series of queries, of which the return results are the superset
or the subset of the result of the seed query. If the seed query
and a synthesized query do not produce the results with the ex-
pected inclusion relation, we safely conclude the existence of
a bug underlying the DBMS. This section presents the system
design of PINOLO to show how it resolves the oracle problem
in detecting logical bugs in the DBMS and demonstrates the
details of mutation-based query synthesis.

3.1 Approach Overview
We demonstrate the overall workflow of PINOLO in Figure 2.
In the pre-processing phase, we populate several tables in a
database by generating table records randomly, which lever-
ages the existing DBMS random testing technique [27]. After
preparing the database, PINOLO first generates a syntactically
valid SQL query as the seed query. Then it parses the seed
query and traverses its AST to determine whether each gram-
matical construct can be mutated. The mutations can make
PINOLO synthesize several new queries of which the querying
results have the inclusion relation with the one of the seed
query, achieving the over or under-approximation for the seed
query. Based on the synthesized queries and their approxima-
tion relation with the seed query, we further evaluate them on
the populated database. Any violation of the approximation
relation reveals a potential logical bug of the DBMS as at
least one of the querying results of the seed query and the
synthesized one is incorrect.

The critical component of PINOLO is to automatically gen-
erate the pairs of SQL queries with known approximation
relations. To show more technical details, we first propose
the approximation relation for SQL queries (§ 3.2), and then
demonstrate how to synthesize the queries with approximation
relations based on mutations (§ 3.3 and § 3.4). We summarize
our design and highlight the advantage of PINOLO (§ 3.5).

3.2 SQL Query Approximation
In this work, we concentrate on the syntax of SQL queries
shown in Figure 3. Basically, a SQL query can be a select-
from-where query or the result of the set operation upon sub-
queries. The logical connectives and arithmetic operators
make the query support depicting sophisticated predicates and

Relation R := t | q | r1⊗ r2 | r1 JOIN r2

Query Q := q1⊗q2 | SELECT a FROM r (WHERE p)? |
SELECT DISTINCT a FROM r (WHERE p)?

Pred P := ℓb | ec | p IS ℓb | p IS NOT ℓb

| p1 AND p2 | p1 OR p2 | NOT p

CExpr Ec := ea1⊙ ea2 | ea⊙ALL(r) | ea⊙ANY(r)

AExpr Ea := ℓn | c | ea1⊕ ea2 | f (ea)

SOp ⊗ := UNION |UNIONALL | INTERSECT |MINUS

COp ⊙ := > | < | ≥ | ≤ | == | ̸=
AOp ⊕ := + | − | × | ÷ | · · ·
BLit Lb := TRUE | FALSE NLit Ln := ℓn

Attrs A := c | ea | ea a

Table T := t Attr C := c

Figure 3: The syntax of SQL queries

quantities. Without the loss of generality, we only instantiate
an arithmetic expression with an integer literal, an attribute,
the result of an arithmetic operator, and the result of a SQL
built-in function. Notably, we can also utilize the keywords
ALL and ANY to support advanced comparison between an
arithmetic expression and the numeric attributes.

To resolve the test oracle problem in the DBMS testing,
we follow the spirit of metamorphic testing and propose the
approximation relations among the SQL queries. In what
follows, we first formulate the concept of the approximation
relation and then characterize the form of the SQL queries
that can have approximation relations with other queries.

Definition 3.1. (Approximation Relation) Given a database
D, a SQL query q1 is the over-approximation of q2 over D,
denoted by q2⊴D q1, if and only if R(q2,D)⊆ R(q1,D). Here,
R(q,D) is the return result set of q upon the database D, which
is essentially a multi-set. ⊆ is the inclusion relation between
two multi-sets. We say q2 is the under-approximation of q1
over D, denoted by q1 ⊵D q2, if and only if q2 ⊴D q1.

Intuitively, the approximation relation between two SQL
queries indicates the inclusion relation of their querying re-
sults. If we construct a pair of SQL queries (q1,q2) such that
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q1 ⊴D q2 or q1 ⊵D q2, we can utilize the approximation rela-
tion as an instantiation of the metamorphic relation, which
serves as the test oracle for DBMS testing.

Example 3.1. Assume that we have a database D = {t1},
where the schema of t1 is (c1) and t1= {(−1),(0),(1)}. Con-
sider the following three queries.

q1 : SELECT c1 FROM t1 WHERE NOT (c1 > 0)
q2 : SELECT c1 FROM t1 WHERE TRUE

q3 : SELECT c1 FROM t1 WHERE NOT (c1≥ 0)

The first query q1 selects all the non-positive values of the
attribute c1 of the table named t1. The second query q2 selects
all the values of the attribute c1. The third query q3 selects all
the values of the attribute c1 that are not large than or equal
to 0. Obviously, their querying results, denoted by R(q1,D),
R(q2,D), and R(q3,D), respectively, have the relation that
R(q3,D) ⊆ R(q1,D) ⊆ R(q2,D), implying q3 ⊴D q1 ⊴D q2,
i.e., q2 ⊵D q1 ⊵D q3.

To sum up, the syntax shown in Figure 3 characterizes the
search space of constructing a pair of queries with an approx-
imation relation. Given a seed query in the syntax, we can
always obtain a query upon a smaller/larger relation or with
a stronger/weaker where clause, which induces a subset/su-
perset of the return result of the seed query, achieving the
under/over-approximation of the given seed query. Therefore,
it is feasible to automatically generate the queries that have
the approximation relation with a specific query q by mutating
the query q, which trims/enlarges the relation or strengthen-
s/weakens the predicate in the seed query. In this way, we can
resolve the test oracle problem by synthesizing queries with
approximation relations.

3.3 Approximate Mutators
Based on the key insight in § 3.2, we propose to resolve the
test oracle problem by constructing SQL queries with the
approximation relation. Specifically, we can always obtain
the approximation relation if we transform a query to another
one preserving the set inclusion relation of the relations and
the implication relation of the predicates. According to high-
level intuition, we propose the concept of the approximate
mutator as follows, which is the fundamental ingredient of
the approximate query synthesis in § 3.4.

Definition 3.2. (Approximate Mutator) An approximate mu-
tator is a mapping from a SQL query q1 to a query q2 such
that q1 ⊴D q2 or q1 ⊵D q2.

Essentially, an approximate mutator transforms a SQL
query into another such that they have the over or under-
approximation relation. We notice that a relation can be de-
rived from other relations, e.g., the results of a select-from-
where query and set operations, while compound and atomic

Table 1: Some representative approximate mutators. Trans-
forming the construct C1 into C2 achieves the under-
approximation, while transforming the construct C2 into C1
achieves the over-approximation.

Type C1 C2

Relation

SELECT a FROM r SELECT DISTINCT a FROM r
r1 UNION ALL r2 r1 UNION r2

r1 UNION r2 r1
r1 UNION r2 r1 INTERSECT r2

r1 r1 MINUS r2

Predicate

p FALSE
p IS ℓb FALSE

p IS NOT ℓb FALSE
TRUE p
TRUE p IS ℓb
TRUE p IS NOT ℓb

Comparison
expression

ea1 ≤ ea2 ea1 = ea2
ea1 ≥ ea2 ea1 = ea2
ea1 ≤ ea2 ea1 < ea2
ea1 ≥ ea2 ea1 > ea2
ea1 ̸= ea2 ea1 < ea2
ea1 ̸= ea2 ea1 > ea2

e⊙ANY(r) e⊙ALL(r)

logical expressions pose restrictions over relations. Therefore,
we propose three categories of approximate mutators, which
are shown in Table 1.

Concretely, the mutators alter the relations and predicates
in a SQL query, and meanwhile, mutate the comparison ex-
pressions, which are often atomic constraints in a predicate,
achieving the approximation relation between the queries be-
fore and after the mutation. For each row, if we replace the
SQL grammatical construct in the second column with the
one in the third column, we can obtain a query that under-
approximates the original one; if we replace the one in the
third column with the one in the second column, we can obtain
a new query that over-approximates the original query. Now
we provide more explanations on the approximate mutators.

• Mutating relations. Using DISTINCT in a select-from-
where query removes the duplicate values in the query-
ing result, which under-approximates the original query.
The set operator UNION ALL preserves the duplicate val-
ues and the operator UNION does not, so replacing the
former with the latter ensures the under-approximation
relation between the new query and the original one.
Other mutators altering relations are fairly simple.

• Mutating predicates. For an arbitrary predicate p, we
can strengthen it by mutating it to FALSE and weaken it
by mutating it to TRUE. The logical implication would
pose more or less restrictive constrain upon the tu-
ples in the relations, which finally achieve the under-
approximation or over-approximation, respectively.

• Mutating comparison expressions. For each compari-
son expression as an atomic constraint, we can alter its
comparison operator to strengthen or weaken the con-
straint induced by the expression. For example, replacing
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≥with= makes the new expression more restrictive than
the original one. Also, mutating the keyword ANY with
ALL also induces a stronger predicate in the query.

Example 3.2. For the simpler SQL query q1 in Example 3.1,
we can mutate it by replacing the negation with TRUE and
altering > to ≥, which yield two queries q2 and q3 that over-
approximate q1, respectively. We can further consider a more
complex SQL query as follows.

q̃ : SELECT 1 FROM t1 WHERE

(NOT (FROM_DAYS(1) = ALL(SELECT c1 FROM t1)))

We can mutate the predicate in the where clause of q̃ to TRUE
to over-approximate the query q̃. Also, mutating ALL to ANY
weakens the comparison expression in the negation, and thus,
strengthens the predicate in the where clause, yielding an
under-approximation of the query q̃.

Notably, the approximate mutator proposed in this section
is a general concept. The mutators shown in Table 1 are
just several instances of the mutators, while we can further
define more mutators to enable us to obtain the queries with
approximation relations more flexibly. Actually, we provide
a systematic framework to instantiate such mutators in these
categories. The complete list of the instantiated mutators,
including REGEXP and IN operators, has been published
online [31].

3.4 Mutation-based Query Synthesis
Leveraging the approximate mutators in § 3.3, we can fi-
nally propose the approximate query synthesis algorithm by
applying the mutators upon a seed query. This section demon-
strates the technical details of the synthesis algorithm on how
to generate two sets of SQL queries that over-approximate
and under-approximate a seed query, respectively. We also
formulate our test oracle with a theorem as the theoretical
guarantee for the approximation relations among the seed
query and the synthesized ones.

Algorithm 1 shows the mutation-based query synthesis al-
gorithm. Initially, it takes a seed query as the input, parses
the query, and generates an AST of the query to facilitate
further mutations (Line 2). Basically, it traverses the AST in a
top-down manner, during which it identifies the potential SQL
constructs for the mutation (Line 3–Line 4). Consider synthe-
sizing the queries that under-approximate the seed query as
an example, where kind is set to be UNDER (Line 4). Specifi-
cally, it processes each SQL construct in two ways.

• When encountering the SQL construct (r1 MINUS r2), it
attempts to trim the relation r1 and enlarge the relation r2
so that the difference of the two relations can be trimmed
(Line 12–Line 15). Similarly, it strengthens the predicate
p for (NOT p) and (p IS NOT TRUE), and also enlarges
the relation r for the comparison expression e⊙ALL(r)
(Line 16–Line 24).

Algorithm 1: Mutation-based query synthesis
1 Procedure synthesizeApproximateQueries(q):
2 τ← parseQuery(q) ;
3 Qover← mutate(q,τ,OVER) ;
4 Qunder← mutate(q,τ,UNDER) ;
5 return (q,Qover,Qunder);
6 Procedure mutate(u, τ, kind):
7 if kind == OVER then
8 negKind← UNDER;
9 else

10 negKind← OVER;
11 S← applyApproxMutator(q,τ,kind)∪{q};
12 if u : (r1 MINUS r2) then
13 S′1← mutate(r1,getAST(r1),kind);
14 S′2← mutate(r2,getAST(r2),negKind);
15 S← S∪{r′1 MINUS r′2 | r′1 ∈ S′1,r

′
2 ∈ S′2} ;

16 else if u : (NOT p) then
17 S′← mutate(p,getAST(p),negKind);
18 S← S∪{NOT p′ | p′ ∈ S′};
19 else if u : (p IS NOT TRUE) then
20 S′← mutate(p,getAST(p),negKind);
21 S← S∪{p′ IS NOT TRUE | p′ ∈ S′};
22 else if u : e⊙ALL(r) then
23 S′← mutate(r,getAST(r),negKind);
24 S← S∪{e⊙ALL(r′) | r′ ∈ S′} ;
25 else
26 Γ← getSubASTs(u) ;
27 Π←⊥;
28 foreach (v,τv) in Γ

29 Π[(v,τv)]← mutate(v,τv,kind);
30 S← S∪concat(q,Γ,Π) ;
31 return S;

• For other SQL constructs, it trims each relation and
strengthens each predicate and comparison expression
appearing in the constructs. Lastly, it composes each
mutated constructs together by the function concat
to obtain the ASTs of the synthesized queries under-
approximating the seed query (Line 26–Line 30).

By applying the approximate mutators during the AST traver-
sal, Algorithm 1 finally synthesizes two sets of queries on the
fly, which are syntactically valid and have the approximation
relation with the seed query q.

Example 3.3. Consider the query q̃ in Example 3.2 as the
seed query. We show how to synthesize the queries that under-
approximate q̃. After generating its AST, which is shown by
the leftmost tree in Figure 4, Algorithm 1 examines each SQL
construct in a top-down manner. When encountering the pred-
icate in the where clause, we can mutate the predicate, which
is a logical negation, to FALSE, or strengthen the predicate in
the logical negation. For the latter case, we can further mutate
the comparison expression in the negation to TRUE, mutate
the comparison operator with ≥, or replace ALL with ANY,
which finally weakens the logical negation. Finally, we can
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Figure 4: An example of synthesizing queries under-
approximating the query q̃

obtain four queries that under-approximate q̂. Particularly,
one of the synthesized queries is as follows:

q̃′ : SELECT 1 FROM t1 WHERE

(NOT (FROM_DAYS(1)≥ ALL(SELECT c1 FROM t1)))

Fortunately, we find that R(q̃′,D) is not subsumed by R(q̃,D),
indicating that the querying result of q̃ or q̃′ is incorrect, which
is confirmed by the developers of MySQL [21].

It is worth mentioning that we have to restrict the values in
the database tables not to be null. Any comparison between
a non-null value and a null value can introduce an unknown
value of the comparison expression, denoted by NULL with-
out the ambiguity, which is smaller than TRUE but larger than
FALSE in the logical order. However, we can notice that the
predicate (p IS NULL) evaluates to FALSE, TRUE, or FALSE,
if p is TRUE, NULL, or FALSE, respectively, which indicates
that strengthening or weakening the predicate p does not al-
ways strengthen or weaken the predicate p IS NULL. In this
case, we cannot ensure the expected approximation relation
between the seed query and the synthesized queries in Qover
and Qunder. Formally, we state the following theorem to for-
mulate our test oracle.

Theorem 3.1. (Test Oracle) Assume that the database D does
not contain any table storing null values. Taking the query q
as a seed query, Algorithm 1 can always synthesize two sets
of queries Qover and Qunder such that:

• For any q′ ∈ Qover, we have q⊴D q′, i.e., q′⊵D q.

• For any q′ ∈ Qunder, we have q′⊴D q, i.e., q⊵D q′.

To solidify the theoretical foundation of our test oracle, we
sketch the proof of the theorem briefly. First, the fact that
the database tables do not contain null values implies that
the evaluation results of any expressions, including compari-
son expressions and predicates, are not evaluated to unknown
values, and the intermediate relations, such as the results of
the join and the union operator, do not contain null values.
Second, it is trivial to prove that the approximate mutators
applied to different constructs finally yield a weaker pred-
icate or larger relation when kind is OVER in the absence

of null values. A similar argument also holds when kind is
UNDER. Therefore, we can prove the approximation relation
between each synthesized query and the seed query based on
the principle of structural induction.

3.5 Summary
PINOLO automates the DBMS testing via the approximate
query synthesis, which discovers underlying logical bugs in
the DBMSs. The syntax in Figure 3 ensures the syntactical
validity of the seed queries, and furthermore, guarantees that
the synthesized queries have valid SQL syntax. Meanwhile,
our approximate mutators enable us to obtain the approxima-
tion relation between the seed query and the synthesized ones,
which perfectly resolves the test oracle problem. Compared
with the existing techniques [34–36], PINOLO considers more
SQL features, such as set operators, arithmetic expressions,
sub-queries, etc. The expressive syntax permits us to test the
DBMS more thoroughly and discover more logical bugs re-
ported in previous studies, which will be evidenced by our
experiments. Besides, the approximate operators can aggres-
sively mutate the seed query, which may remove the buggy
operators and functions, revealing the logical bugs more thor-
oughly than existing techniques. Lastly, it is worth noting that
PINOLO provides a general framework for discovering the
logical bugs in the DBMS. We can further extend the syntax
of SQL queries and instantiate more approximate mutators,
which can promote the capability of discovering the logical
bugs triggered by sophisticated SQL queries.

4 Implementation

We implemented our approach PINOLO as a DBMS testing
system, which was written in GO with 8,055 lines of code.
The source code of our tool is hosted in the github repository 2.
Next, we present more details of our implementation decisions
that are important for the outcome of our experiments.

Database population. We randomly generate the database
tables by leveraging an existing tool, GO-RANDGEN [27].
Following the best practice summarized in the prior study [36],
we restrict the number of table records to be no more than
30. Besides, we randomly generate the tables with the same
attributes, which makes the join operator yield a non-trivial
result. Particularly, we avoid null values in any table, as the
test oracle requires non-null values as a prerequisite, which is
stated in Theorem 3.1.

Seed query generation and parsing. To generate seed
queries as the input of our synthesis algorithm, we utilize GO-
RANDGEN [27] to automatically produce seed SQL queries.
Specifically, we use the general-purpose parser generator BI-
SON [13] to write a context-free grammar file describing the
SQL syntax with a series of production rules. We provide

2https://github.com/qaqcatz/impomysql.git
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this grammar file to GO-RANDGEN, so that it can generate the
queries by searching each production rule randomly. It then
heuristically selects the terminal or non-terminal symbols to
avoid exceeding the limitation of recursion. Moreover, we
permit users to write embedded LUA code blocks in the gram-
mar file to further restrict the form of seed queries, which
can ensure the successful query execution, e.g., the number
of columns in the two queries of UNION should be equal. To
apply the approximate mutators to seed queries, we utilize
another tool PINGCAP PARSER [28], which accepts the same
context-free grammar as the one for the seed query generation,
to generate ASTs of seed queries for the mutation.

Approximate mutator instantiation. As mentioned at the
end of § 3.3, we instantiate a series of approximate mutators
for the relations, predicates, and comparison expressions in a
given query. Each approximate mutator consists of two SQL
grammatical constructs, which indicate the construct after the
over and under-approximation, respectively. To cover most
features of DBMSs, we instantiate 25 approximate mutators
in total, including the approximate mutators demonstrated
in Table 1. Among them, 5, 6, and 14 approximate muta-
tors correspond to the mutations of the relations, predicates,
and comparison expressions, respectively. Apart from the ap-
proxmiate mutator in Table 1, we also include 7 mutators
supporting LIKE, REGEXP, IN, and BETWEEN.

Bug report post-processing. After synthesizing queries,
PINOLO obtains the querying results by evaluating queries on
the populated database in the tested DBMSs. It is noted that
inconsistent querying results frequently occur in our testing
process. For example, during a 24-hour testing period, 46,772
inconsistent query pairs are generated for MySQL. The large
number of such query pairs makes the process of confirming
and fixing bugs quite verbose. To make the testing results eas-
ier to understand, we borrow the idea of delta debugging [56]
to localize the root cause of the inconsistent returned results of
each query pair. Specifically, we associate each problematic
query pair with a release version of the under-test DBMS’s
code base, the earliest one where inconsistent query results
appear. We denote such release version with respect to a given
query pair as the bug-inducing version. Further, two bugs are
considered the same if their bug-inducing versions are the
same. Based on our interactions with DBMS developers, our
bug reports and the release version’s change lists can help
developers pinpoint culprit updates easily.

5 Evaluation

To evaluate the performance of our approach PINOLO in de-
tecting logical bugs in the popular real-world DBMSs, we
design the following research questions:

• RQ1: How many logical bugs in real-world DBMSs can
be detected by PINOLO?

• RQ2: Can PINOLO outperform the state-of-the-art logi-
cal bug detection techniques?

• RQ3: How does the randomness introduced by the seed
query generation affect the performance of PINOLO?

5.1 Experiment Setup

Environment. We conducted the experiments on one server
with 104-cores Intel(R) Xeon(R) Gold 6230R CPU @
2.10GHz and 500 GB memory. The server runs Ubuntu 18.04
system that uses Linux kernel version: 5.4.0-135-generic. To
ensure fair comparisons, we allocated four threads for each
DBMS testing in our following experiments.

Tested DBMS. Our focus was on testing four widely-used and
large-scale open-source DBMSs: MySQL, MariaDB, TiDB,
and OceanBase. There are two main reasons for the sub-
ject selection. First, these selected DBMSs are representative
DBMSs from phenomenal open-source and/or commercial
products: MySQL and MariaDB are the two most well-known
open-source DBMSs; OceanBase is a mature commercial
database product from Ant Group; TiDB is developed by
PingCap Inc. They are also commonly used in the evaluation
of previous studies [34–36]. Moreover, we admit and discuss
potential limitations introduced by our selection of DBMS
systems in § 6. Second, we chose a DBMS whose SQL syn-
tax is compatible with MySQL as an evaluation subject to
reduce the implementation effort. This is because, although
our approach can be generalized to other DBMSs, the im-
plementation of the seed query generation and parsing (See
§ 4) requires a grammar file that describes the SQL syntax
of a tested DBMS. To obtain timely feedback from devel-
opers, we tested the latest release versions of the selected
DBMSs: MySQL 8.0.31, MariaDB 10.11.1, TiDB 6.4.0, and
OceanBase 4.0.0.

Baseline. We compared PINOLO with the three state-of-
the-art logical bug detection techniques, namely PQS [36],
NOREC [34], and TLP [35], respectively, which correspond
to three kinds of test oracles. Similar to our approach, these
baselines also require knowledge about the SQL syntax of
different DBMSs for seed query generation and parsing. Un-
fortunately, their implementations cannot support all the se-
lected DBMSs. We also sought help from their authors, but
they still could not fix the problems before the paper submis-
sion. Therefore, we skipped the evaluation of the baselines on
the unsupported DBMSs. Moreover, we tried to use the same
random seed as the baselines. However, we found that they
can neither export their random seeds nor import the random
seeds provided by users. Therefore, we generated the random
seeds by ourselves for PINOLO. To understand the impacts
of the random seed query generation, we investigated how
PINOLO is robust to such randomness in § 5.4.
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Figure 5: Comparison between PINOLO and the baselines. (a)-(d) show the number of unique logical bugs over time (24 hours)
on each DBMS. We ignore the results of the baselines on the unsupported DBMSs and the baselines finding no bugs.

Table 2: The demographics of the DBMSs under the test
DBMS Version GitHub Stars LOC First Release

MySQL 8.0.31 8.6K 4,766,086 1995
MariaDB 10.11.1 4.6K 3,727,410 2009

TiDB 6.4.0 33.1K 985,518 2017
OceanBase 4.0.0 5.1K 2,722,881 2021

Table 3: Applicability of existing logical detection techniques
and PINOLO for the selected DBMSs

DBMS PQS NOREC TLP PINOLO

MySQL ✓ × ✓ ✓
MariaDB × ✓ × ✓

TiDB × × ✓ ✓
OceanBase ✓ ✓ ✓ ✓

5.2 Effectiveness of PINOLO

We used PINOLO to test the latest version of MySQL, Mari-
aDB, TiDB, and OceanBase for 24 hours. Table 4 summarizes
the results of PINOLO. The column All shows the number of
problematic query pairs that induce unexpected results, which
indicate the existence of logical bugs. As we can see, PINOLO
discovered a large number of problematic query pairs, rang-
ing from 4,675 to 46,772 for the tested DBMSs. However,
we found that most of these pairs can be attributed to the
same bug. To relieve the developers from the heavy burden
of checking the duplicate bugs, we leverage the bug-inducing
version to deduplicate the bugs (See § 4). The column Unique
shows the number of bug reports after deduplication, which
is significantly smaller than the value in column All, ranging
from 2 to 14. We submitted the deduplicated bugs to the de-
velopers for confirmation. The column Verified shows the
number of bug reports that have been verified by developers,
ranging from 2 to 14.

Table 4: The number of logical bugs found by PINOLO.

DBMS All Unique Verified

MySQL 46,772 14 14
MariaDB 42,208 14 12

TiDB 5,268 11 11
OceanBase 4,675 2 2

In total, PINOLO found 41 unique logical bugs in these
DBMSs, 39 of which have been confirmed by developers. For
MySQL, TiDB, and OceanBase, all of the detected bugs have
been confirmed by developers. For MariaDB, twelve out of
fourteen bugs have been confirmed, while the rest are still
waiting for the investigation. We sampled several bug reports
of MariaDB submitted by others and found that developers
typically take a much longer time to handle the bugs. To keep
track of the status of our reported bugs, we release the bug
list in a public GitHub repository3.

Answer to RQ1: PINOLO discovers 41 unique bugs
on MySQL, MariaDB, TiDB, and OceanBase, 39 of
which have been confirmed by DBMS developers.

5.3 Comparisons on Detecting Logical Bugs
Logical bug detection. We compared PINOLO with the three
state-of-the-art baselines, i.e., PQS, NOREC, and TLP. We
ran all methods with a time budget of 24 hours. The compari-
son results are shown in Figure 5. Note that the baselines do
not support all the DBMSs, and thus we only concentrated on
the comparison between PINOLO and the runnable baselines
with respect to each DBMS.

For MySQL, PINOLO detected 14 logical bugs, while TLP
only discovered 2 bugs. For MariaDB, PINOLO detected 14
bugs, while NOREC discovered 10 bugs. For TiDB, PINOLO
detected 11 bugs, while TLP only discovered 2 bugs. For
OceanBase, PINOLO can detect 2 bugs, while the baselines
cannot find any. We also manually verified the overlap in the
bugs detected by PINOLO and the baselines. For MariaDB,
4 out of 10 bugs detected by NOREC can also be found by
PINOLO. For TiDB, 1 out of 2 bugs detected by TLP can also
be found by PINOLO. There are no bugs detected by PQS.

Figure 5 shows the logical bug detection progress over
time for PINOLO and the baselines. We found that PINOLO is
more efficient in finding logical bugs compared to all of the
baselines. Within one hour, PINOLO was able to detect 57.1%
(8/14) of bugs on MySQL, 85.7% (12/14) on MariaDB, 63.6%
(7/11) on TiDB and 50% (1/2) on OceanBase.

Code coverage. To understand why PINOLO can find more

3https://github.com/qaqcatz/impomysql_bugreports
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Figure 6: Code coverage comparison between PINOLO and
the three baselines over 24 hours

logical bugs than all other methods, we used GCOV [30] to
compute the line coverage achieved by PINOLO and all oth-
ers. Note that we are unable to provide code coverage results
for TiDB and OceanBase. As TiDB is developed in GO, we
cannot find any feasible tool to support the program instru-
mentation or the code coverage profile for system test 4. For
OceanBase, the instrumented binary has to be deployed by the
specific tool OBDEPLOY [24], which breaks the functionality
of code coverage profiling.

Figure 6 shows the code coverage over time for MySQL
and MariaDB. The results show that PINOLO achieves a
higher line coverage than the three baselines. For MySQL, the
improvement of PINOLO over PQS and TLP is 2.2% (3,008
lines) and 4.0% (5,316 lines), respectively. For MariaDB, the
improvement of PINOLO over NOREC is 12.4% (2,835 lines).

Code coverage is well recognized as an approximation
of testing capability, because a bug cannot be detected if its
buggy code is not executed. However, larger code coverage
does not mean more bugs. To better understand the impact of
larger code coverage achieved by PINOLO, we further inves-
tigated whether there were some bugs whose buggy code is
uniquely covered by PINOLO. TiDB#40015 [42] is a typical
example. The root cause of this bug is the improper exception
handling in the function vecGetDateFromString, which has
been covered by PINOLO but missed by other baselines during
the 24-hour running.

Answer to RQ2: Compared with the state-of-the-art
techniques, PINOLO can find more unique logical bugs
and achieve higher line coverage.

5.4 Impacts of The Seed Query Generation

PINOLO uses GO-RANDGEN, which takes a random seed to
generate a set of seed queries. To understand whether the ran-
domness affects the efficiency and effectiveness of PINOLO,
we conducted the experiments which used GO-RANDGEN
with five different random seeds to generate five sets of seed
queries. We then ran PINOLO under each set and compared
their performance on detecting logical bugs.

4Go 1.20 plans to cover the features of program instrumentation and code
coverage profile, but will be available after Feb 2023 [15].

Table 5: The numbers of the discovered logical bugs when
feeding different seed queries to PINOLO

DBMS Seed1 Seed2 Seed3 Seed4 Seed5 Common

MySQL 14 18 16 16 17 11
MariaDB 14 16 13 13 13 10

TiDB 11 9 11 11 13 9
OceanBase 2 2 2 2 2 2

Table 6: Importance of the logical bugs found by PINOLO

DBMS Severity Bug impact duration
S2 S3 <1 year 1∼5 years 5∼10 years

MySQL 6 8 1 7 6
MariaDB 9 3 1 7 4

TiDB 8 3 5 6 0
OceanBase - - 1 1 0

Figure 7 shows the progress of detecting unique logical
bugs over time for the five sets of seed queries. We found that
the growth trend of the number of unique bugs over time is
similar under different sets. Table 5 shows more details about
these detected logical bugs. Among the five sets of random
seed queries, the common bugs, of which the numbers are
shown in the column Common, account for an average of
68.4%, 72.9%, 82.9%, and 100% of the total bugs on MySQL,
MariaDB, TiDB, and OceanBase respectively. This result
shows that PINOLO can find different unique logical bugs via
different sets of random seed queries.

Answer to RQ3: The randomness introduced by the
seed query generation does not have a significant
impact on the overall bug detection performance of
PINOLO. Meanwhile, the different random seed queries
can benefit PINOLO in detecting different bugs.

5.5 Discussion

Bug Importance. To understand the importance of the bugs
found by PINOLO, we investigated their severity and the im-
pact duration. The results are shown in Table 6. The column
Severity indicates the severity of the bugs labeled by develop-
ers. Our reported bugs were classified as the levels of S2 and
S3, which represent the second and third highest severity lev-
els, respectively. Typically, the S2 level indicates a severe loss
of service or missing significant functionality, while the S3
level indicates a minor loss of service or inconvenient usage.
Note that there is no severity level in the bug tracking system
of OceanBase, so we skipped the discussion for OceanBase.
We discovered 6, 9, and 8 bugs in the S2 level in MySQL,
MariaDB, and TiDB, respectively, which account for 62.2%
of the bugs in the three DBMSs. The bugs in the S3 level are
less severe, but developers still considered them to be fixed
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Figure 7: The number of unique logical bugs over time for each group of the random seed queries on the tested DBMSs

necessarily. For example, we received an appreciation from
the MySQL developers in one of the bug reports with the S3
level: “Thank you for your contribution. It is our standpoint
that all bugs should be fixed, whether major or minor.”

Table 6 also shows the bug impact duration, which is
computed as the interval between the time of the bug-inducing
version and the bug reporting time. Surprisingly, we found
that 10 (25.6%) and 21 (53.8%) of bugs have lasted for 5-
10 and 1-5 years, respectively. Specifically, the two earliest
bugs of MySQL [20] and MariaDB [17] can be traced back to
2014. This result indicates that the logical bugs are typically
difficult and slow to be found, which is also consistent with
the findings of the prior study [35].

False Positive and False Negative. According to Theo-
rem 3.1, PINOLO will not produce false positives in theory.
However, we observe two bugs that have not been confirmed
by developers for more than five months, and thus suspect that
they are false positives. We manually inspected the two cases.
In one bug report, a query returns “0”, while the approximated
query returns “-0”. In the other one, a query returns “0”, while
the approximated query returns “-0.001”. Although PINOLO
considers the above inconsistency results as bugs, developers
may have a higher tolerance for such inconsistencies. These
reports allowed us to refine our implementation to reduce
false positives in the future.

In terms of false negatives, we observed 9 cases that are
detected by the baseline approaches but cannot be detected
by PINOLO. This is mainly due to the DBMS features that are
currently not supported by PINOLO. Specifically, there are
six, two and one bugs that are related to aggregate functions,
left/right join, and three-valued logic, respectively.

Limitations and Future Work. We currently do not support
all features of DBMSs, such as aggregate functions, window
functions, and left/right join. This is because, these features
may break the approximation relation (Definition 3.1). For ex-
ample, aggregate functions typically map a set of values into
a single value (e.g., sum, average, maximum, minimum, and
so on), and the mapped value will not preserve the inclusion
relation of the original sets, thus breaking the approximation
relation. In our future work, we will design new approxima-
tion relations to support more features. In addition, we intend
to explore the application of metamorphic testing in other
system software domains (such as networking and distributed

systems [1, 32, 43, 44]).
As shown in § 5.4, different random seed queries can ben-

efit PINOLO in detecting different bugs. This indicates that
adjusting seeds dynamically is helpful to make PINOLO find
more bugs. Therefore, in the future, we will consider to inte-
grate PINOLO into the fuzzing framework to better prioritize
the seed selection and enhance the bug detection capability.

Another possible direction for the future exploration is bug
deduplication. In this work, we determine whether two bugs
are duplicated by checking their bug-inducing versions. How-
ever, the bug-inducing version is an approximation of root
causes, which would misclassify the bugs. This is because a
release version of DBMS would introduce numerous bugs,
which lead to multiple problematic query pairs. In the future,
we will consider leveraging the spectrum-based fault localiza-
tion techniques or mutation testing to improve the precision
of discovering the root cause of the bugs, so as to improve the
precision of bug deduplication.

6 Threats to Validity

The threat to internal validity is primarily associated with the
implementation of our approach. To mitigate this concern, we
have employed several DBMSs to cross-check whether the
mutants generated by PINOLO accurately represented over-
approximations or under-approximations of the seed query.

The threat to external validity lies in the representative of
the evaluation subjects. Our proposed approach was evaluated
on a restricted set of DBMSs, as explained in the evaluation
section. As a result, the conclusion drawn in this paper may
be limited. However, we believe that it is non-trivial to detect
new bugs in these selected DBMSs, as they have been thor-
oughly tested by SQLancer [33]. In the future, we will extend
the implementation of PINOLO to support the evaluation of
additional open-source and commercial DBMSs.

7 Related Work

PINOLO is an unique DBMS testing system for finding logical
bugs in DBMSs, but draws inspiration from several areas in
the literature, including DBMS testing, metamorphic testing,
differential testing, and grammar fuzzing.
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DBMS testing. Recent efforts on DBMS testing focus on
various aspects of DBMSs. Most of them target discovering
logical bugs in the relational DBMS [34–36]. They use spe-
cific metamorphic relations or multiple implementations as
the oracles and generate syntactically valid SQL queries for
metamorphic testing [5] or differential testing [18]. Some
also attempt to improve the coverage of the DBMSs and lever-
age fuzzing techniques to enumerate the queries in various
forms [10, 46, 49, 57]. PINOLO uses a new design, termed
approximate query synthesis, and does not use other DBMS
implementations as the oracle.

Metamorphic testing. Metamorphic testing [5] has become
more and more popular over the past decade. It has been
used in testing many software systems, such as compil-
ers [16, 50], SMT solvers [48, 54], DBMSs [35, 36], and
AI systems [2, 47, 55]. Metamorphic testing uses one type
of metamorphic relations to compare outputs produced by
a seed input and a mutated one. As long as the two outputs
violate the specific metamorphic relation, then at least one
of the two inputs yields a wrong result [4]. PINOLO utilizes
an instantiation of a metamorphic relation, i.e., the approxi-
mation relation, as an effective testing oracle for discovering
logical bugs in the DBMSs. Similar to the skeleton approxi-
mation enumeration in the SMT solver testing [54], PINOLO
performs the over-/under-approximation of the seed queries.
However, PINOLO has to deal with more sophisticated syntax
and supports more flexible mutations so that more buggy op-
erators and functions can be removed. Therefore, it is able to
detect insightful logical bugs that existing approaches, such
as NOREC [34] and TLP [35], fail to discover.

Differential testing. Apart from metamorphic testing, differ-
ential testing provides another testing paradigm for resolving
the oracle problem in software testing [6, 40, 52, 53]. Uti-
lizing another software system with the same functionality
as an oracle implementation, differential testing techniques
compare the system’s outputs under testing and the oracle
implementation and reveal potential functional bugs with the
divergent outputs. Although the techniques can generate the
inputs of the systems flexibly, they can only be applied to soft-
ware systems that have other implementations supporting the
same functionality, such as JVM [6], ORM frameworks [40],
and SMT solvers [53]. We believe PINOLO and other meta-
morphic testing approaches are orthogonal to differential test-
ing techniques, which can be applied and strengthened to each
other in testing DBMSs.

Grammar fuzzing. Grammar fuzzing is used to generate in-
puts that satisfy a specific language syntax [8, 11, 19, 19].
It has been widely used in testing many real-world soft-
ware systems, such as browsers [45], compilers [51], and
DBMSs [36, 57]. The generated inputs can always pass the
syntax checking of software systems, which avoids the un-
necessary enumeration of the inputs in an ill form, improving
the effectiveness of generated inputs. Instead of relying on

a specific grammar, PINOLO mutates an existing seed query
to synthesize an approximate query. Our synthesis process
rewrites specific grammatical constructs in the seed query,
which ensures the syntactical validity of the synthesized one.
We do think it is also promising to utilize existing grammar
fuzzing techniques to enumerate initial seed queries auto-
matically [36, 57], which can provide more opportunities for
improving the coverage in the DBMS testing.

8 Conclusion

This paper presents PINOLO, an automatic query synthesizer
for discovering logical bugs in DBMSs. Given a seed query,
PINOLO mutates specific SQL constructs and generates a
query that over-approximates or under-approximates the seed
query. We posit that the approximation relation provides effec-
tive guidance for discovering logical bugs underlying DBMSs.
Our experimental results demonstrate the effectiveness of
PINOLO. Benefiting from our approximate query synthesis,
PINOLO discovers 41 logical bugs in four mature DBMSs. At
the time of the submission, 39 bugs have been confirmed by
the developers. We hope that the promising results will put
forward the study of DBMS testing, further promoting the
reliability of database-backed systems.
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Abstract
Labelling incident postmortems with the root causes is essen-
tial for aggregate analysis, which can reveal common problem
areas, trends, patterns, and risks that may cause future inci-
dents. A common practice is to manually label postmortems
with a single root cause based on an ad hoc taxonomy of root
cause tags. However, this manual process is error-prone, a sin-
gle root cause is inadequate to capture all contributing factors
behind an incident, and ad hoc taxonomies do not reflect the
diverse categories of root causes.

In this paper, we address this problem with a three-pronged
approach. First, we conduct an extensive multi-year analysis
of over 2000 incidents from more than 450 services in Mi-
crosoft Azure to understand all the factors that contributed to
the incidents. Second, based on the empirical study, we pro-
pose a novel hierarchical and comprehensive taxonomy of po-
tential contributing factors for production incidents. Lastly,
we develop an automated tool that can assist humans in the
labelling process. We present empirical evaluation and a user
study that show the effectiveness of our approach. To the best
of our knowledge, this is the largest and most comprehensive
study of production incident postmortem reports yet. We also
make our taxonomy publicly available.

1 Introduction

Cloud platforms and services, despite the best efforts of
cloud providers, still suffer from production incidents and out-
ages [13,15]. To improve reliability, cloud providers must first
discover and resolve existing reliability risks [14]. Aggregat-
ing root causes of past incidents based on their post-incident
reports (PIRs) is one effective approach to uncover common
problem areas, trends, patterns, and risks (e.g., the most com-
mon root causes in the last year). Likewise, bucketing past in-
cidents by their root causes can help on-call engineers (OCEs)
to quickly retrieve and learn common mitigation strategies for

∗Work done during internship at Microsoft
†Except for the first author, all authors are in order by their last names.

a given root cause category. Such tasks are crucial for large-
scale cloud platforms like Microsoft Azure that continuously
strive to improve reliability by learning from past incidents
caused by diverse factors.

PIRs are commonly written in natural language, with lit-
tle structure. This makes the tasks of aggregating or bucket-
ing past reports challenging, especially at a large-scale. One
common practice to address this is to label each PIR with a
root cause tag representing the category of its root cause. For
example, a PIR for an incident caused by a code bug in the
network driver can be tagged as “Network.Driver.Code.Bug”.
This enables quick and accurate aggregation of and retrieval
from a large collection of PIRs simply based on their root
cause tags instead of expensive and potentially inaccurate
natural language processing of the PIR contents. For exam-
ple, the tags can enable quickly answering questions such as:
“how frequently did network driver code bugs cause incidents
in the past year?” and “how were such bugs mitigated?”

Challenges and limitations. There are two key challenges in
effectively labelling PIRs with root cause tags (more in §2).

The first challenge is to decide what root cause tags to
use to label the PIRs. A well-defined taxonomy of root cause
tags is essential for labelling PIRs consistently, otherwise dif-
ferent teams may tag the same root cause differently, hin-
dering the cross-team aggregation analysis. A well-designed
taxonomy for a large-scale cloud system such as Microsoft
Azure should balance two competing objectives: it should be
comprehensive enough to cover the myriad of potential root
causes, yet compact enough for the OCEs to navigate and use
easily. Moreover, it should be fine-grained enough to surface
actionable insights from across many services.

Designing such a taxonomy is nontrivial. Several re-
cent works analyzed production incidents and proposed tax-
onomies to capture their root causes. However, most of these
works focus on specific root cause categories, such as soft-
ware bugs [4, 5, 11, 19, 21, 40], and thus their taxonomies are
not comprehensive enough to cover other types of failures
(e.g., hardware failures). Some other works consider multi-
ple types of root causes, but they target specific services or
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systems, such as big-data systems [38], a business data pro-
cessing platform [9], or a particular cloud service [13, 14],
rather than a large-scale cloud system. Moreover, existing tax-
onomies are not fine-grained enough to represent all the root
causes we observe in Azure incidents.

Prior to our work, individual service teams in Microsoft
designed their own root cause taxonomies based on domain
knowledge. However, due to the lack of a comprehensive root
cause labelling, many potential root causes were not antici-
pated when the taxonomies were designed. Consequently, a
large portion of PIRs, whose root causes were not covered by
existing taxonomies, were labelled with “Other” instead of
more informative root cause tags (see §2 for more details).

The second challenge concerns how to select root cause
tags for incidents. Currently, this is done manually—an in-
dividual (OCE) reads lengthy incident and post-incident re-
ports, identifies the root cause, and chooses a suitable tag
from a taxonomy that is often a long flat list of tags. This man-
ual process is error-prone and can result in inconsistent tags
across incidents—at Microsoft, tens of thousands of OCEs
with varying levels of expertise and different interpretations
of root cause tags conduct root cause analysis. We manually
examined a small sample of 1241 PIRs and found that 29%
of the OCE-assigned tags are incorrect. This problem might
be mitigated if root cause tagging is done by a small group of
experts through a stringent procedure, but this is infeasible at
large scale systems like Microsoft Azure.

Contributions. In this work, we make the following three
contributions that address the challenges described above.

First, we manually analyze over 2000 high-impact produc-
tion incidents from 468 services in Microsoft Azure to identify
a comprehensive set of root cause categories behind incidents
in a large-scale cloud system. We carefully read the incident
and post-incident reports and, if needed, consult the engineers
from the affected service teams. Unlike previous empirical
analyses of production incidents [4,5,9–11,14,21,38,40], we
aim to identify not only a single root cause, but all factors con-
tributing to the incidents. This analysis took more than four
person-years and identifies 346 distinct root cause categories
spanning all aspects of a production service, such as hardware
and software, infrastructure and application, code and configu-
ration, and so on. To the best of our knowledge, this is the most
comprehensive empirical analysis of production incidents in
cloud systems, considering the scale of incidents and affected
services, the depth of analysis, and the diversity of root causes.

Our empirical analysis (§3) reveals several novel and inter-
esting findings. For example, we show that most production
incidents in real-world cloud systems involve multiple con-
tributing factors; hence, preventing such incidents does not al-
ways require addressing all the causal factors, but only one (or
a small subset) of them. This contrasts with existing research
that focuses on a single root cause of an incident [10, 13, 21].
This finding implies that tagging a PIR with a single root
cause does not capture the full picture of what caused the inci-

dent. Our analysis also shows that incidents result from many
diverse factors spanning hardware and software, infrastruc-
ture and application, code and configuration, and so on. This,
again, contrasts with existing research that focuses on a lim-
ited set of factors [4, 5, 9–11, 14, 19, 21, 38, 40]. We also show
that the set of root causes evolves over time: new root causes
emerge as new services or hardware are deployed, suggesting
the need for a continuous root cause labelling effort. While
our findings stem from analysis of incidents at Microsoft
Azure, we believe that they generalize to similar large-scale
systems and impact root cause analysis procedures at large.

Second, we propose a comprehensive taxonomy, the Azure
Reliability Tagging System (ARTS), that organizes the root
cause categories derived from our analysis. For ease-of-use,
our taxonomy is organized hierarchically, with each leaf node
representing a root cause tag describing a factor contributing
to an incident. We expect that the root causes generalize to
other cloud services and we open-source our taxonomy for
the use of other researchers and practitioners.1

Finally, to reduce manual errors and inconsistencies in tag-
ging PIRs, we developed AutoARTS, a tool that leverages
machine-learning-based algorithms to assist humans. Au-
toARTS performs two key tasks: (1) it applies a multi-label
classification technique to automatically analyze a PIR (writ-
ten in natural language) and to extract multiple contributing
factors and their corresponding tags from our proposed taxon-
omy; and (2) it generates a concise text snippet (from the PIR)
that summarizes the relevant context for the factors. The snip-
pet allows a human to quickly review the suggested tags with-
out reading lengthy incident reports or PIRs. We describe how
we adapt existing ML techniques for this purpose. Our empir-
ical evaluation with real PIRs and a user study demonstrates
the effectiveness of our approach. Specifically, our multi-label
classification achieves an F1 score of 0.89. In the user study,
our text snippets (contexts) received a score of 4.6 out of 5 (5
being ‘very useful’), contained no unnecessary details, and
helped an expert identify two additional contributing factors
(in a set of ten incidents) that they had originally missed.

Deployment status. Most of the 468 services whose pro-
duction incidents we analyze have been deployed as part of
Microsoft Azure for several years. High-impact incidents in
these services have been analyzed and labelled with ARTS
tags since November 2020. The labels, available to all ser-
vices in Azure, are regularly aggregated to identify key prob-
lem areas and to devise actionable insights (examples in §4).

2 Background and motivation

2.1 Background

Incident Reports. Incidents are unplanned outages that im-
pact production services and their users. The severity of an in-

1ARTS Taxonomy: https://autoarts-rca-taxonomy.github.io
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cident may vary based on aspects such as the criticality of the
affected services and the number of impacted users. As de-
scribed in [31], an incident’s life-cycle is a complex process
involving several steps such as detection, triaging, diagnosis,
root cause analysis, mitigation, and resolution. An incident
report documents important information related to these vari-
ous steps. At Microsoft, an incident report can be created by
impacted users as well as by automated monitors and it usu-
ally contains the following: (1) a concise title, (2) a summary
of the incident, highlighting some events in the timeline from
detection to mitigation, (3) engineers’ discussion thread to
share relevant information corresponding to the incident’s res-
olution, and (4) several other fields such as severity, owning
team, time to mitigation, mitigation steps, etc.
Post-Incident Reports (PIR). After an incident is resolved,
a best practice is to conduct a retrospective or postmortem
analysis of the incident to produce a post-incident report
(PIR). In a PIR, the service team reflects on what went wrong,
why it went wrong, what they learned from it, and how to
avoid similar incidents in the future. At Microsoft, a PIR is a
natural language document and it contains sections such as
(1) root cause summary that describes all root causes, (2) five-
whys [34] that iteratively drills-down the cause-and-effect
relationships of various contributing factors, (3) preventive
measures for similar future incidents, and so on. Generating a
PIR requires significant effort, and hence, only the incidents
with high severity are required to have them at Microsoft.
Root cause labelling. A critical component of a PIR is its root
cause tag that represents the root cause categories of the inci-
dent as determined by a postmortem analysis. For example,
a root cause tag “Authoring.Code.Bug.RaceCondition” indi-
cates that the incident is caused by a race condition in soft-
ware code. Such concise labelling allows one to efficiently
and accurately aggregate and summarize a large number of
historical PIRs solely based on their tags, without expensive
and potentially error-prone natural language processing of
the PIR contents. These aggregate results are regularly re-
viewed by the engineering leadership to find global trends
(e.g., frequent root cause categories), which guide business
decisions such as prioritizing engineering investments. These
tags also simplify information retrieval and knowledge shar-
ing: an engineer seeking to actively mitigate an ongoing in-
cident caused by a network driver can quickly retrieve and
consult past PIRs with root cause tag Network.Driver. For ef-
fectiveness of aggregation and retrieval, it is important that
the root cause analysis and labelling process is accurate.

At Microsoft, authors of incident reports or PIRs can label
their reports with root cause tags selected from taxonomies of
root cause categories that are predefined by domain experts.

2.2 Challenges in root cause labelling
We analyze a sample of ≈ 1.7M root cause analyses in Mi-
crosoft, across all its services, to understand the challenges in

root cause labelling. We now summarize the key findings.

Finding 1. Existing taxonomies, although designed by domain
experts, are not comprehensive enough.

This is due to the lack of a comprehensive study of root
causes, many potential root cause categories are missed or not
anticipated when a taxonomy is designed. As an implication,
a PIR author may not find a suitable predefined root cause
tag to describe the current incident. In our sample of root
cause analyses, ≈ 20% incidents are labelled as ‘Other’ and
≈ 58% are labelled with categories containing ‘Other’ (e.g.,
‘Network - Other’), implying that their root causes are not
covered or only partially covered by the existing taxonomies.
Such ‘Other‘ tags are not useful in the aforementioned root
cause aggregation and retrieval tasks.

Finding 2. Existing manual root cause labelling process is
expensive and error-prone.

Root cause label of an incident is often determined based
on its PIR and incident report. These documents are usually
long (4542 words per incident in our sample) and complex (on
average, ≈ 9 engineers engaged in discussion exchanging 20
comments). Thoroughly understanding these long documents
to identify all contributing factors behind an incident, and
then selecting from predefined root cause labels that represent
the factors, is a nontrivial task.

Even when the root cause is understood, PIR authors may
make mistakes in choosing the correct tag. This can happen
due to multiple factors. Existing taxonomies at Microsoft are
flat long lists, making it difficult to navigate through them
and to pick the right tags. Moreover, many individuals are in-
volved in the rootcausing efforts. For example, we observe
34K distinct individuals involved in a sample of 600K PIRs
in Microsoft. This large number of individuals are likely to
have varying degrees of expertise and different interpretations
of root cause tags. This is further exacerbated by ambiguous
or confusing tags in the taxonomy (e.g., ‘Network’ and ‘Dat-
acenter - Network’). All these factors can contribute to in-
consistent and/or inaccurate labels. We manually examined
a small sample of 1241 PIRs and found that 29% of the as-
signed tags are incorrect.

Our goals. In this paper we address the challenges above
with a three-pronged approach. First, to address the first chal-
lenge above, we conduct an extensive multi-year analysis to
identify a wide variety of fine-grained root causes of 2000+
production incidents from across 450+ services in Microsoft
Azure. Second, based on this analysis, we propose a novel
hierarchical and comprehensive taxonomy of potential con-
tributing factors behind the incidents (§4). Third, to address
the second challenge above, we develop an automated tool
that can assist a human by presenting necessary context from
PIRs that identify contributing factors to reduce cognitive
load and improving accuracy in the root cause labelling pro-
cess by suggesting tags from the taxonomy (§5).
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3 Empirical Analysis of Production Incidents

3.1 Goals and Methodology

There exists several empirical studies of production incidents
in large-scale cloud systems [4, 5, 9–11, 14, 21, 38, 40]. We
have two goals that differentiate our study from them. First,
we do not restrict our analysis to a limited set of root cause
categories (e.g., software bugs [4,5,11,19,21,40]) or specific
services/platforms (e.g., big-data systems [38]). Second, for
each incident, we try to identify not a single root cause, but all
factors contributing to the incidents. These two goals enable
us to identify a wide-range of contributing factors behind
incidents happening in large number of services/platforms.

We analyze 2051 high-impact incidents in 468 Microsoft
Azure services. We carefully analyze each incident by care-
fully reading and understanding its incident report and PIR,
the discussion comments, and even the work items (e.g., bug
fix, system upgrade) that are created due to the incident. When
something is not clear, we reach out to the incident owners
to clarify. As a part of the analysis, we not only identify the
contributing factors causing the incident but also extract text
snippets or context from the incident and PIR which helps ex-
plain and justify the identified root cause tag for future refer-
ence and validation. Every week, we peer review a randomly
selected subset of incidents to help us refine our collective
understanding of tag usage, promote learning and improve ac-
curacy. If we identify a new category of root causes, which is
not covered by existing tags, we then propose new tags which
are internally reviewed before getting introduced to the tax-
onomy. For any tag in the taxonomy, we also provide it’s de-
scription in natural language for future reference. This data
lives in an internal database which can be easily joined with
incident databases and visualization reports are created for
easy data analysis based on various pivots such as contribut-
ing factors, services, incident impact, etc. We also meet with
the engineering teams on a weekly basis, and review our data
both for accuracy and to share insights that result in reliabil-
ity improvements.

Our root cause analysis effort is guided by several prin-
ciples: (1) Our analysis is intellectually honest so that indi-
vidual teams that conduct their own postmortem analysis (to
identify a single root cause) feel psychologically safe, val-
ued, and included; (2) Our analyses have meaningful depth
because we start by capturing customer pain and go down to
“work as done” by our engineers; (3) We focus on both depth
and breadth of incident analysis enabling us to highlight the-
matic learning that broadly improves Azure services and the
underlying cloud platform; (4) Our findings are turned into
new standards or updates to existing standards and are action-
able and useful because they address customer pain; and (5)
While learning is important; continuous learning is necessary
and crucial.

The above process is required to ensure high quality of root
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Figure 1: Distribution of incidents across number of dis-
tinct contributing factors (shown until 10 factors).

cause analysis. However, it needs significant manual effort.
Since 2020, we have analyzed 2051 incidents in 468 Azure
services with a team of 2-4 members.

3.2 Analysis Results

We here present several interesting findings from our analysis.

Finding 3. Incidents are often caused by multiple contributing
factors working together instead of an isolated root cause.

This is contrary to prior work [13, 15, 16, 21] that focus on
identifying a single root cause per incident. Consider, for ex-
ample, a real incident where a service became unavailable af-
ter a single customer continuously pushed a load that was 60x
greater than what the service was scaled to handle. The orig-
inal PIR author chose the root cause label “Service – Load
Threshold.” This itself is not an inaccurate root cause when
forced to pick only one cause. However, there are many more
factors involved in this incident: (1) there was an inrush of
load from a single customer, (2) there was a lack of throt-
tling on the customer end as well as the service end, (3) in-
creased load significantly increased CPU and heap usage and
thread count at the server, which lead to failed requests with
exceptions, (4) the exception handling didn’t release some re-
sources that were allocated by the failed requests, leading to
resource leaks, (5) there were no automated watchdogs to de-
tect early symptoms of the outage (or resource leaks), and (6)
the team was unable to access their own metrics during the
outage since the metrics were collocated with the service. In
contrast, our analysis of the incident identifies all these fac-
tors and the corresponding tags in our taxonomy.

Figure 1 shows the distribution of the number of contribut-
ing factors behind each incident. As shown, over 75% of inci-
dents have been caused by more than one contributing factors.
And, more than 50% of the incidents have 4 or more contribut-
ing factors. On average, each incident has ≈ 3.6 factors. This
reaffirms the need for holistically analyzing the incidents to
understand all the contributing factors.

The presence of multiple contributing factors per incident
has important implications. On one hand, identifying the pos-
sibility of such incidents before deployment to production
with integration and end-to-end tests is challenging since test-
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Category Description Frequency TTM (Hrs)
Detection Issues related to detecting problems before they affect production 61% 50
Authoring Issues in authoring artifacts like code, config, troubleshooting guides, etc. 50% 58

Dependency Issues in a dependency the service has, most typically another service
but can also be some things where a boundary between teams is present 37% 16

Architecture Issues in how the service is architected and likely where any work
to fix would require changes to the architecture of the service 20% 33

Deployment Issues related to deployment of code or config 20% 27
Process Any issue caused by human errors, a flawed process or the lack of a process 18% 123

Load Any issue caused by the service not being able to handle changes in load 14% 13
Auth An authentication or authorization related issue 7% 21

Performance An issue that caused excess latency 6% 16
Datacenter Events (hardware, installations, power interruption, etc.) in the datacenter 4% 70

Table 1: High-level root cause categories from ARTS taxonomy with their descriptions, frequency of occurrence in our
analysis and mean Time-To-Mitigate (TTM) for incidents caused by their sub-categories.

ing needs to be performed in the presence of multiple poten-
tial contributing factors (e.g., high load and no throttling and
no monitoring of early symptoms). On the other hand, pre-
venting such an incident does not always require addressing
all the causal factors, but only one (or a small subset) of them.
For example, the aforementioned incident could have been
prevented by using proper throttling mechanism, or by fixing
the resource leak bug, or by having monitors that can restart
the service on early symptoms of resource leaks. This insight
presents a unique opportunity to fix the incidents (by address-
ing the easiest causal factor); but it requires identification of
all the causal factors (as we do) instead of identifying a single
root cause.
Finding 4. A wide-variety of factors contribute to production
incidents.

Our analysis identified a wide range of factors, including
hardware, software, code bugs, underlying infrastructure to
external dependency issues, configuration errors, deployment
issues, and so on. Specifically, we have identified 346 root
cause categories (i.e., contributing factors) for the 2051 inci-
dents we analyzed. Table 1 shows the high-level root cause
categories, each of which contains many finer-grained sub-
categories. The full list of categories and their respective fre-
quencies observed in our analysis can be found in https://
autoarts-rca-taxonomy.github.io. This contrasts our
study with prior works that focus on a small set of root causes
such as code bugs [4, 5, 11, 19, 21, 40].
Finding 5. New root-cause categories keep appearing over
time.

As software and hardware systems evolve, novel root
causes appear to contribute to their incidents. For example,
when a service migrates to a containerized environment, its
incidents may be caused by container-related factors. Simi-
larly, when a service takes a new external dependency, it may
start experiencing incidents caused by factors related to the
failures of the new dependency. We analyze incidents in the
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Figure 2: Average number of incidents successfully tagged
until a new root cause tag is introduced across quarters.

same timeline as they appear and we create root cause cate-
gories incrementally—we create a new category only if none
of the existing ones can precisely represent a new root cause.
We observe that even though many common root cause cate-
gories (e.g., code bugs) appear in early incidents that we an-
alyze, a few categories appear only in much later incidents
(e.g., those happening two years after the first incident we an-
alyzed). Figure 2 shows how often such new categories ap-
pear in our analysis. As shown, even after 1.5 years, new root
cause categories appear, albeit with a smaller rate (i.e., we can
tag higher number of incidents successfully before we need
to introduce a new root cause category). The fact that novel
root cause categories keep appearing implies that root cause
labelling needs to be a continuous process to identify (and
take actions on) emerging root cause categories. This calls for
an automated solution.
Finding 6. Lack of monitoring (i.e., observability) is the most
common factor behind incidents.

Table 1 shows the distribution of various contributing fac-
tors behind the incidents we analyzed (only high-level factors
are shown). As shown, Detection is the most common con-
tributing factor leading to outages. Detection related issues
represent missing observability signals that prevent us from
detecting early symptoms of problems, many of which could
have been avoided, e.g., by rebooting the service, if their early
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Contributing Factor Frequency
Detection.Monitoring.MissingAlert 34%

Authoring.Code.Bug.Change 25%
Detection.Monitoring.InsufficientTelemetry 18%
Detection.Validation.MissingTestCoverage 17%
Detection.Monitoring.CodeDeployment.

InsufficientHealthSignal 9%

Authoring.Documentation.
NoOrInsufficientTSG 9%

Architecture.SinglePointOfFailure 8%
Authoring.Code.Bug.Latent 7%

Detection.Monitoring.Synthetic 6%
Deployment.Mitigation.ManualTouch 5%

Table 2: Distribution of top 10 most frequent contributing
factors in our analysis from the ARTS taxonomy.

symptoms were detected. We also analyzed finer-grained con-
tributing factors from ARTS taxonomy. Table 2 shows distri-
butions of the top ten contributing factors (a contributing fac-
tor X.Y.Z means factor Z is a specific case of factor Y, which is
a specific case of factor X). As shown, Missing Alerts, which
is a specific case of Monitoring, which is a specific case of De-
tection, is the most common contributing factor. Insufficient
telemetry captured from services is also a major contribut-
ing factor which also prevents from deploying automated
alerts. An organizational policy on collecting key telemetry
and defining automated watchdogs informed by this aggre-
gate analysis can mitigate incidents (or severity) in the future.

We also analyze the most frequently co-occurring root
causes to identify the pairs that jointly cause incidents. The
two most frequent pairs are “Authoring.Code.Bug.Change"
& “Detection.Monitoring.MissingAlert" (15%) and “Author-
ing.Code.Bug.Change" & “Detection.Validation.MissingTest-
Coverage" (11%). This aligns with our experience that many
production incidents are caused by buggy code changes that
are deployed without proper monitoring and testing.

Finding 7. Incidents caused by deployment and datacenter
related issues are the most time consuming to mitigate.

In incident management, TTM is defined as the time
elapsed between the start of the incident and when its cus-
tomer impact was completely resolved. The higher the TTM,
the more the customer impact and dissatisfaction. From Ta-
ble 1, we can see that incidents caused by Process and Data-
center related root causes have the highest mean TTM. Pro-
cess related incidents have a high TTM because these inci-
dents are caused by human errors and lack of standard oper-
ating procedures which result in non-trivial hard-to-resolve
issues (e.g., accidental deletion of a database). Datacenter re-
lated incidents are caused primarily due to hardware failures
which are quite complex given that there are multiple layers
of capacity buffers all of which need to fail before an incident
is caused by hardware issues.

4 Root Cause Taxonomy

We organize the root cause categories identified in our empir-
ical study as a taxonomy of reliability tags that can be used to
label PIRs of incidents.
Design goals. We have the following design goals in design-
ing the taxonomy. First, the taxonomy should be comprehen-
sive enough to capture not only the primary root causes of
past incidents in Azure, but also other (secondary) contribut-
ing factors. Second, in order to avoid having a taxonomy too
large to be easily used in practice, the taxonomy should be
sufficient and it should include only the root causes found in
past incidents. This implies that the taxonomy is continuously
and organically grown to include new categories as they are
discovered. Third, the tags should be unambiguous, to enable
high-quality annotations. Finally, the taxonomy is organized
hierarchically, for ease of labelling and updates.
The ARTS taxonomy. We achieve the goals with a novel tax-
onomy called ARTS (Azure Reliability Tagging System) tax-
onomy. The taxonomy is built on top of the root cause cate-
gories identified by our empirical analysis described before.
We start with a small number of tags representing orthogonal
categories of themes (such as datacenter issues and authenti-
cation issues) and grow it horizontally to include new themes
and vertically to include more specific sub-themes as new in-
cidents are analyzed and existing themes/sub-themes deem
inadequate. We have established a continuous feedback loop
based process for building the ARTS taxonomy and tagging
of new incidents on an ongoing basis.

For ease-of-use, we organize the ARTS taxonomy hierar-
chically, by grouping related sub-themes under one common
theme. Currently it consists of four levels and contains 346
root cause categories identified from our empirical analysis.
The top level consists of ten broad themes (shown in Table 1),
each of which consists of multiple sub-themes. There are 346
leaf nodes, each representing a root cause tag with the name
obtained by concatenating the names of the path from the root
to the leaf node. For example, the root cause of “a gap in pre-
production detection due to missing integration tests” is rep-
resented with the tag “Detection.IntegrationTest.Missing" in
which “Missing” is the most precise leaf-level tag. The hier-
archical taxonomy naturally distinguishes between problem
spaces at different granularities. In this example, if the root
cause is that the integration tests existed but were skipped
somehow, that representative tag would have the leaf-level
tag “NotRun” instead of “Missing”.

As mentioned, the taxonomy is grown as new root causes
are identified in newly analyzed incidents. Figure 2 shows
how the taxonomy has been growing over time, with the y-
axis showing the average number of incidents analyzed until
a new tag needed to be introduced in ARTS. A larger value
indicates better stability of the taxonomy: many incidents
can be analyzed with existing tags. As shown, over time, the
taxonomy can be seen becoming stable. Specifically, in the
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most recent quarter, only one new tag needed to be introduced
after analyzing ≈ 20 incidents (i.e., after using ≈ 70 existing
tags) on average. We hope to see significantly more stability
in coming months.

For lack of space, we omit further discussion about 346
leaf nodes in the taxonomy. However, we open source the
taxonomy, with all tags and their descriptions, at https:
//autoarts-rca-taxonomy.github.io. We believe our
open-source effort will foster future research and allow prac-
titioners use our taxonomy. Even though the ARTS taxonomy
is developed based on incidents in Azure, we believe that its
categories are general enough to be used in any large-scale
cloud system.

Deployment Status. The ARTS taxonomy and PIRs labelled
with ARTS tags have been available to Microsoft engineers
since when we started building it (November 2020). It en-
ables various service teams within Microsoft Azure to sys-
tematically look at past incidents. The learnings have been
valuable, especially for service teams without the required ex-
pertise or resources to dig deep into their service reliability.
They have enabled engineering teams prioritize work items
and often times this also results in creation of new engineer-
ing standards and tools. For example, lack of unit testing was
a common factor contributing to many incidents in a large or-
ganization in Azure—incidents were caused by bugs in code
that was not tested (or poorly tested). This caused the orga-
nization to enforce the policy that all checked-in code must
have sufficient tests to achieve a certain code coverage. Lack
of throttling was another factor highlighted by aggregating
ARTS labels; this started a new engineering group with the
goal of building a common throttling service that all Azure ser-
vices can easily use. Last but not the least, engineering teams
emphasize on using more extensive monitoring/observability
tools, since as ARTS labelling showed, adequate monitoring
could prevent many incidents.

Overall, Microsoft engineers found the ARTS labels in their
PIRs useful. Here we show samples of the verbatim feedback
from the service owners at Microsoft: “Tracking incidents
against a known set of root causes is extremely useful. Your
effort has enabled us to make data-driven decisions, and al-
ready produced several benefits in a short time." “Your data
established clearly that services that have high maturity in
certificate management had fewer outages. This validated that
our investment across Azure is in the right direction." “The
ARTS report is an important resource for us for data driven
planning related to Azure Quality."

5 AutoARTS for Automated Labelling

As mentioned before, identifying and labelling PIRs with their
root causes is expensive and error-prone. To reduce the cost
and errors, we have developed an automated tool called Au-
toARTS that can assist a human in the labelling process with

two important tasks. First, it uses a multi-label classification
technique to automatically analyze an incident’s PIR (written
in natural language) and to identify multiple contributing fac-
tors and their representative ARTS tags. Second, it can pro-
duce a short text snippet (from the PIR) that captures impor-
tant context explaining the factors. The snippet enables a hu-
man to easily review the selected tags without reading lengthy
incident reports or PIRs. We now describe how AutoARTS
performs these two tasks by using ML techniques. Figure 3
shows the architecture and components of AutoARTS.

5.1 Automatic identification of ARTS tags

AutoARTS uses multi-label text classification to classify a
PIR into a set of ARTS tags. One key challenge we face is that
conventional multi-label text classification algorithms that
treat each class as opaque and independent, require sufficient
labelled data for each class to achieve good accuracy. How-
ever, even though we have a reasonable collection of labelled
data, many of the fine-grained classes (i.e., ARTS contributing
factors) contain very few labelled samples (i.e., PIRs). Specif-
ically, 68% classes have fewer than 10 labelled samples in our
dataset, which can adversely affect classification accuracy.

To address this, we leverage the hierarchical relationship
between root cause labels by encoding the taxonomy struc-
ture using Graph Convolutional Networks [18]. Exploiting
the structure of the taxonomy enables transfer of knowledge
from the categories with adequate labels to categories with
few labels (§6.2). In particular, we apply a hierarchical text
classification model called HiAGM [42]. Contrary to the con-
ventional multi-label text classification methods that disre-
gards the holistic label structure for label correlation features,
this model attempts to fully utilize the mutual interactions be-
tween the text feature space and label space, as well as label
dependencies. As an illustration, consider the root cause tax-
onomy in Figure 3. The “Authoring.Code.Change" category
only contains 13 samples, making training difficult owing to
the small amount of labelled samples. However, by modeling
the root cause taxonomy as a graph, we can transfer knowl-
edge from “Authoring.Code.Bug", which has 733 labels, to
“Authoring.Code.Change" since they share the features of
their same parent root cause category, “Authoring.Code".

Given a Post-Incident report x = (w1,w2, . . . ,wn) with n to-
kens, the sequence of token embedding is initially fed into a
bidirectional GRU neural network [6] to extract text contex-
tual features. Following the GRU model, multiple CNN lay-
ers are employed to generate the n-gram features. The top-k
max pooling layer is then applied to obtain the overall text
representation S ∈ Rn×dc that highlights the key information,
where n is the top-k output dimension of CNN layers and dc
represents the embedding dimension.

To model the ARTS taxonomy, we formulate the taxonomic
hierarchy as a directed acyclic graph G = {V,Et ,Eb}, where
V refers to the set of label nodes. Et and Eb represent the top-
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Figure 3: Overview of our Context Extraction and Hierarchical root cause Classification using Post-Incident reports.

down and bottom-up hierarchy paths respectively. To encode
the hierarchy graph, a GCN-based hierarchy encoder [18],
Hierarchy-GCN, is used to aggregate data flows within the
top-down, bottom-up and self-loop edges based on the associ-
ated neighborhood of each node. The GCN-based graph en-
coder adapts the convolution concept from images to graphs,
in which the graph convolutional operator can effectively con-
volve the multi-order neighborhood information by forming
multiple propagation steps during the forward pass. For each
node, the feature information is aggregated by the node fea-
ture from all the neighbors, including the node itself, to lever-
age the graph structure of label taxonomy.

Next, we aggregate the features of texts and labels together
using a label-wise attention mechanism [37]. Specifically, the
attention αk j, which indicates how informative the j-th text
feature is for the k-th label, is calculated as follows:

αk j =
es jhT

k

∑
n
j=1 es jhT

k
, (1)

where s j is the j-th text feature of the root cause input and
hk represents the k-th node in the label hierarchy. The label-
aligned text feature vk =∑

n
i=1 αkisi for the k-th label is then ob-

tained and fed into a classifier for hierarchical label prediction.
Finally, we flatten the label hierarchy by treating all nodes

as leaf nodes for multi-label classification, regardless of
whether a node is a leaf or an internal node. A binary cross-
entropy loss function is employed to train the model using
the ground truth and predicted sigmoid score for each label.
In additional, a recursive regularization for the parameters of
the final fully connected layer is used to encourage classes
nearby in the hierarchy to share similar model parameters.

Lr = ∑
i∈C

∑
j∈child(i)

1
2
∥wi −w j∥2, (2)

where the node j is the child of node i in the label hierarchy.

5.2 Context Extraction from PIR
The objective of context extraction is to extract key text snip-
pets from a given Post-Incident Report (PIR) for on-call en-

gineers to comprehend the contributing factors of an inci-
dent without reading the complete lengthy report. Many text
summarization techniques exist. Abstractive summarization,
where summaries may contain generated sentences, is not a
good fit for us since our goal is to select and highlight exist-
ing texts in the PIR, as is done by extractive summarization.
However, existing language models such as BERT [8] and
XLNet [36] are trained on large corpuses such as Wikipedia
articles, etc., where the syntax and semantics of the language
used is quite different from what is observed in PIRs due to
domain-specific usage of words (e.g., ‘Fabric’ in networking
terminology vs clothing) and different vocabulary. Moreover,
existing extractive summarization models are trained on and
their traditional usage in summarizing text documents, which
is different from context extraction from PIRs. Our experi-
mental evaluation in §6.3 shows that they perform poorly. We
therefore finetune an existing model called Pegasus [39] with
our labelled data (from our empirical study described before).

In Pegasus, important sentences are removed or masked
from an input text and are generated together as one output
sequence from the other remaining sentences, similar to an
extractive summary. Hence, Pegasus is amenable for context
extraction from PIRs, because we can mask the key sentences
identified in our analysis (§3.1) to finetune the model param-
eters. Using the standard Transformer encoder-decoder, Pe-
gasus model is pre-trained on two enormous text corpora: 1)
Colossal and Cleaned version of Common Crawl (C4) [27],
which comprises of text from 350 million web pages with
a size of 750 gigabytes; 2) HugeNews [39], a dataset of 1.5
billion news articles gathered from 2013 to 2019. Similar to
MLM tasks for predicting masked tokens, a new pre-training
task called Gap Sentences Generation (GSG), is applied to fill
the masked sentences. Three different strategies are applied
for selecting m gap sentences without replacement from a doc-
ument. The first method is to uniformly select m sentences at
random, whereas the second strategy is to simply select the
first m sentences. The aforementioned two strategies are com-
bined with the Principal strategy, in which top-m scored sen-
tences are chosen based on their significance as measured by
rouge score [20] without the selected sentence. Formally, the
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The root cause of this monitor alert was that a lot of subscriptions 
could not deploy VMs on indiacentral region. 
… … (omit 132 words)
This problem occurred because the traffic that was re routed to 
AZSM could not be handled. This problem occurred on 
indiacentral prod b and indiacentral prod b. As part of increasing 
inventory we have introduced news sets of AMD clusters. The 
AZSM services on these clusters still needed some configuration 
and build out related processed to be completed. Hence these 
clusters stamps could not handled the traffic re routed to them. 
The traffic was routed as part of default behavior. We are going to 
change this. The Fabricator clusters started taking tenant traffic 
even though their corresponding Az SM clusters weren’t ready. 
This was done as part of flighting on Broad clusters. India Central 
was one of the region for this flighting. We did not anticipate a 
case where new build out clusters would not be able to take the 
new traffic. This was detected as part of the API failure monitor. 
We will be working on adding more robust feature specific 
monitoring and more strict rollout to not encounter this failure 
again.

Figure 4: Context extraction from a redacted PIR. Green
sentences are extracted by both our model and human
expert, red are extracted by model only and blue are ex-
tracted by human only.

score si of the i-th sentence xi can be expressed as follows:

si = rouge
(
xi,D\{xi}

)
, (3)

where the D is the set of all the sentences in the document
and rouge function is a commonly employed metric for evalu-
ating how good an automatically produced summary against
a reference summary.

Even though Pegasus has been pre-trained on massive
datasets, it is not trained to generate context from root cause
descriptions in software engineering domain. To completely
comprehend the context extraction task in our domain, we uti-
lize the human-labeled context to further fine-tune the Pega-
sus model as a sequence-to-sequence task.

Based on the empirical results in §6.3, we found the Pe-
gasus model can outperform the state-of-the-art abstractive
summarization technique on our dataset for the reasons listed
below. The human-labeled contexts are chosen straight from
the original root cause details with no alteration to the phrase
structure. Pegasus, an abstractive summarization model that
pre-trained on the Gap Sentences Generation task, may im-
mediately replicate the important sentences from the input,
resulting in a higher overall rouge score than the traditional
abstractive technique.

Figure 4 illustrates an example of context extraction from a
PIR report consisting of 328 words. The human-labeled con-
text is shown in blue and green, whereas the context extracted
from Pegasus is shown in the green and red. This example
shows that ≈50% tokens can be filtered, which can consider-
ably enhance the efficiency with which on-call engineers read
the PIR report. Also, we discover that the extracted context
from Pegasus has a high recall compared to the human labels,
allowing engineers to seldom overlook vital information.

Section Micro-F1 Weighted-F1
Whole PIR 0.55 0.40

Title 0.53 0.45
Summary 0.47 0.46

RC-Details 0.52 0.45
5-Whys 0.54 0.40

Discussion 0.53 0.40
Mitigation 0.47 0.40

RC-Details + 5-Whys 0.56 0.42

Table 3: Study on the utility of different PIR sections in
top-level root cause classification using Random Forests.

6 Evaluation

We now empirically evaluate the performance of AutoARTS.

Dataset. Our dataset consists of 1120 PIRs that are expert-
annotated with ARTS root cause tags and contextual sen-
tences to justify them. We use stratified sampling to divide this
dataset into train(72%) and validation(8%) splits to train and
tune the hyperparameters of different models and test(20%)
split to report the results with the trained models.

Data Pre-processing. We found that engineers often included
various types of data such as debugging queries issued on
logs, error messages, stack traces, screenshots, etc., in PIRs
(also identified in [31]). These add significant noise to the vo-
cabulary of the language processed by NLP models, without
contributing to performance. We carefully remove such noise
with regular-expression based filters and only select alpha-
betic text for our evaluation. For experiments in §6.1, we also
use the NLTK [3] library to remove stop-words and extract
stems of words to construct vocabulary.

Evaluation Metrics. For root cause classification, we use
micro-F1 score to analyze performance across different in-
cidents with multiple labels. We also use weighted-F1 score
to analyze performance across different classes since our
dataset is imbalanced as shown in Table 1. For context extrac-
tion, we use ROUGE (Recall-Oriented Understudy of Gisting
Evaluation) [20] and BLEU (Bi-Lingual Evaluation Under-
study) [25] scores to evaluate the similarity of extracted con-
text against the ground truth. Rouge-N score is based on the
percentage (higher the better) of N-grams from the ground
truth that are present in the extracted context. BLEU-N score
indicates the percentage of N-grams from the extracted con-
text that are present in the ground truth. Rouge-L F1-score is
based on the longest common subsequence (not necessarily
consecutive) between the extracted context and target context.

6.1 Featurization and Feature Selection
R1: Given the input text sequence length limitations of DL
models, what information should be used from PIRs?

Sophisticated DL language models impose constraints on
input sequence length (e.g., 512 tokens for BERT [8]). The
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Model ROUGE BLEU
Rouge-1 Rouge-2 Rouge-L BLEU BLEU-1 BLEU-2 BLEU-3

Pegasus - Pretrained 32.55 18.72 24.30 9.61 18.03 10.31 8.93
Pegasus - Finetuned 45.46 35.65 38.43 24.60 32.19 24.98 23.41

T5 - Pretrained 34.38 23.31 28.03 10.06 15.68 10.83 9.43
T5 - Finetuned 41.63 33.86 35.76 23.81 29.81 24.10 22.70

BERT-cased - Pretrained 40.05 27.03 31.01 18.62 28.43 18.95 16.83
BERT-cased - Finetuned 40.08 27.35 31.20 18.80 28.32 19.03 16.95

BERT-uncased - Pretrained 39.52 26.58 30.74 17.63 27.47 17.98 15.89
BERT-uncased - Finetuned 39.92 27.44 31.57 18.64 28.08 18.91 16.90

Table 4: Performance of Pegasus and T5 models with their corresponding pre-trained versions and fine-tuned versions.
We also present performance of unsupervised clustering based approach for extractive summarization using BERT.

Model Micro-F1 Weighted-F1
HiAGM 83.16 89.63

HiAGM_Flat 45.40 68.66
BERT_MLC 42.29 46.85

Table 5: Performance of HiAGM compared to using flat-
tened root cause taxonomy (HiAGM_Flat) and a finetuned-
BERT based multilabel classifier (BERT_MLC).

Model Test Perplexity Test Accuracy
BERT-uncased 7.57 34.83%

BERT-cased 6.69 35.26%

Table 6: Performance of MLM based pre-finetuning and
OCE-assigned root cause based finetuning of BERT.

limit is much smaller than our preprocessed PIRs (avg. length
of ≈ 1900 words). However, a PIR is organized into multiple
sections and we conduct an ablation study by featurizing each
section in the PIR into Bag-of-Words encodings and classify
them to top-level root cause categories using a Random Forest
classifier. Table 3 highlights that “root cause details” and “5-
Whys” sections achieve better micro-F1(1.8% higher) and
weighted-F1 (5% higher) scores compared to using the whole
PIR. These sections capture information relevant to root cause
classification and by only using them, we minimize sequence
length to meet constraints imposed by DL models.

6.2 Hierarchical Classification

R2: Is the hierarchical nature of our taxonomy beneficial
in leveraging relationships between root causes to classify
incidents?

Table 5 compares the level-3 root cause classification per-
formance of our trained HiAGM model against a flattened
version of our hierarchical taxonomy (HiAGM_Flat), where
we remove parent-child relationships between different root
causes in the taxonomy and consider all the root causes tags
to be opaque and independent of each other. We also com-
pare HiAGM against a multi-label classifier (BERT_MLC)

with the flattened version of the taxonomy using finetuned
BERT [8] model (details in §6.4) to encode the PIR text.
We observe that HiAGM performs significantly better (31%
higher weighted-F1 measure) than HiAGM_Flat indicating
the utility of GCN to leverage neighboring relationships be-
tween root causes and the need for root cause taxonomies to
be hierarchical. HiAGM performs significantly better (91%
higher weighted-F1 measure) than BERT_MLC along with
HiAGM_Flat (47% higher weighted-F1 measure), demonstrat-
ing no utility in finetuning existing language models on PIRs.

6.3 Context Extraction

R3: How do supervised (abstractive and extractive) or
unsupervised (extractive) summarization approaches fare
for context extraction? Is finetuning necessary for context
extraction and does it work with limited data?

Using the train and validation splits of the dataset, we fine-
tune Pegasus for 15 epochs and T5 (3 Billion parameters) [27]
for 7 epochs and report the results on the test set. Table 4 com-
pares the performance of finetuned Pegasus model against
baseline approaches using T5 and clustering-based extrac-
tive summarization [23] using BERT. We can clearly see
that our finetuned Pegasus model achieves the highest perfor-
mance across various ROUGE and BLEU metrics. We ob-
serve a significant (58.15%) improvement in Rouge-L score
as a result of finetuning Pegasus, because pre-trained version
of Pegasus is trained on significantly different domains of
language such as news articles, etc., and is trained to sum-
marize them, which is different from context extraction. We
also observe a 7.6% increase in ROUGE-L score compared to
the finetuned-T5 model, because Pegasus extracts sequences
of text from the PIR as opposed to T5 which generates new
sequences of words, which might not represent the content
present in the PIR which is where engineers derive their con-
text from. Finetuned-Pegasus performs significantly higher
(21.73%) than unsupervised clustering based summarization
approaches using finetuned-BERT, because summary of the
PIR doesn’t represent the context.
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Metric Response Description
(Q1) Usefulness of generated context to identify

contributing factors 4.6/5 1 - Not useful at all, 5 - Very useful

(Q2) # Contexts generated with unnecessary details 0/10 No unnecessary details in generated contexts
(Q3) # New Rootcauses from generated contexts 2 False negatives identified by AutoARTS

(Q4) # Examples with a crucial Rootcause tag missing
in classification 7/10 Crucial contributing factor missing from predictions

Table 7: Quantitative user feedback from an expert over the effectiveness of AutoARTS across context generation and
root cause classification tasks over a randomly chosen set of 10 incidents.

6.4 Fine-tuning Language Models

R4: Can existing language models like BERT be finetuned
to model software incident reports?

We conducted Masked Language Modeling(MLM) based
pre-finetuning of BERT to fit our domain-specific language
model, using 110K PIRs (un-tagged due to scale) from several
Microsoft services. We then finetuned the models by lever-
aging the OCE-assigned “root cause Category” tag (which
are chosen from the predefined taxonomies in Microsoft) of
each of the PIRs. As mentioned in §2, OCE-assigned root
cause category tags are not accurate; however, they are avail-
able at a large scale and this classification task is semantically
the closest to our target classification task using the ARTS
taxonomy. Table 6 shows the results for both pre-finetuning
and finetuning tasks, highlighting a high perplexity of 7.57
for BERT-uncased (perplexed between choosing 8 candidate
words for a blank in a given sentence) and poor classification
accuracy (≈ 35%) on the finetuning task. Errors in tagging
of PIRs (by OCEs) coupled with lack of sufficient training
data makes finetuning language models infeasible. Due to
space constraints, we omit the results from other variations of
BERT, but we had similar experience with them.

7 User Study

To evaluate the utility of AutoARTS, we randomly sampled 10
example incidents and the tool’s generated contexts, the cor-
responding root cause categories and presented them to one
of the leads that developed the ARTS taxonomy (by studying
PIRs). These were examples that were tagged by them in the
past that are not used for training any of our models. The goal
of this study is to understand, for each example: (Q1) How
useful the generated context is in identifying all the contribut-
ing factors that they identified, (Q2) If the generated context
has extra details that are not useful for identifying contribut-
ing factors (to evaluate the succinctness of our generated con-
texts), (Q3) Whether the generated context can help them iden-
tify any new contributing factor that they have not identified
previously (to evaluate the generalization of the model’s out-
puts beyond accidental False Negatives in ground-truth) and
(Q4) Whether the tool missed the most important contribut-

ing factors (to evaluate the importance of False Negatives).
Although we quantitatively evaluated the syntactic similar-

ity of generated contexts to the ground truth, the developer
study helps us understand if they are semantically similar and
ultimately usable by a human (OCE). Similarly for Root cause
classification task, the relative severity of each individual con-
tributing factor is not identifiable from ground truth (no rank-
ing). Q4 helps us understand if the predicted contributing fac-
tors miss any crucial tag from the ARTS taxonomy.

We quantify response to Q1 on a Likert scale of 1 to 5,
where 1 meant ’not useful at all’ and 5 meant ’Very useful’.
Q2-Q4 were answered as a binary Yes/No, by providing clari-
fying responses wherever necessary for sanity check. Table 7
shows the utility of the tool based on the subject’s responses
to Q1-Q4. We find from the study that the contexts generated
by the tool are extremely useful in identifying all the con-
tributing factors and they are succinct enough without pre-
senting additional information that is not useful in identifying
contributing factors. In addition to this, we also found that our
tool helped the subject find 2 new root cause tags that should
have been assigned to these incidents in the past, highlighting
the difficulty in manually sifting through postmortem reports
to identify contributing factors.

At the end of the experiment, the subject was asked to an-
swer on a scale of 1-5 (5 being very useful, 1 being not useful
at all), indicating the overall usefulness of our tool to assist
them in their task based on the 10 examples. The subject rated
our tool ‘above 4.5’. In addition to this, the subject’s verbatim
feedback on our tool — ‘This tool is very useful from con-
text generator perspective for the root cause classification
task. From the Tags perspective, if we had 4th level for
just code change related tags this is very useful for change
management standards team. Need to fix the dependency
tags related logic as it’s defaulting to “Data Bricks”. Over
all I am very happy with this tool’ — highlights the utility of
our context generation and the lapses in automated root cause
classification. The imbalance in tag distribution over our train-
ing set resulted in misclassifying incidents with tags that do
not have sufficient supporting training samples. Overall, the
feedback indicates the promise for deploying the tool for prac-
tical use in assisting engineers by providing enough context
from PIRs to assign root cause tags from ARTS taxonomy.
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8 Related Work

Rootcause analysis of past incidents. Rootcause analysis
of incidents and outages and defining taxonomies to capture
their root causes has been a popular topic of study in the soft-
ware engineering and systems community. We find that prior
work can be categorized into two major buckets. The first cat-
egory of prior work focuses on specific type of production
issues such as software bugs [4, 5, 11, 19, 21, 40] or network
issues [14]. The other category focuses on specific services or
systems such as big-data systems [38], business data process-
ing platform [9], high performance computing [17, 29] and a
specific cloud service [13]. In contrast, we consider a large-
scale cloud system consisting of many hundreds of services
and all types of failures including hardware and software, in-
frastructure and application, software code and configuration,
and so on. The scale of our study also differentiates us from
existing studies (e.g., 152 incidents from 1 service considered
in [13], 100 incidents from networking service in [14]). To the
best of our knowledge, this is the most comprehensive effort
of analyzing production incidents and building a fine-grained
taxonomy. Prior work that propose solutions to simplify the
task of actively identifying the root cause of a failure [10, 32]
are orthogonal to our focus.
Text Summarization & Root cause classification. Text sum-
marization [33] is the task of rewriting a long document
into a condensed form while retaining its essential mean-
ing, hence reducing the burden to read through lengthy docu-
ments. The most prevalent paradigms for summarization are
extractive and abstractive based approaches. When generat-
ing summaries, abstractive summarization approaches [35]
are typically considered as a sequence-to-sequence learning
problem [24, 26, 30], whereas extractive summarization meth-
ods [12, 41] extract key sentences as summary directly from
the text. In our context extraction task, we utilize the gap sen-
tence based summarization technique not to condense the PIR
context, but to extract essential text snippets describing dif-
ferent contributing factors. Saha et al. [28] construct a causal
knowledge graph from postmortem reports but do not gener-
ate consistent root-cause tags for incidents. This can lead to
ambiguous and non-uniform tagging of similar incidents, as
we observed from manual tagging using different taxonomies
(in Finding 2).

Prior work focused on diagnosing different kinds of inci-
dents such as, Rex [22] suggests changes in potential mis-
configurations using syntax trees, DeepAnalyze [32] identi-
fies culprit frame in Windows Error Reporting (WER) crash
stack traces, Orca [2] identifies buggy commits using differen-
tial code analysis and provenance tracking, Revelio [10] gen-
erates debugging queries for root cause analysis using logs
and user reports, SoftNER [31] analyzes postmortem reports
to extract entities. To the best of our knowledge we are the
first to classify incident postmortems into an extensive high-
granularity taxonomy.

9 Discussion

Generality of AutoARTS. Postmortems are routinely con-
ducted in large scale production cloud systems to document
learnings from incidents, similar to PIRs in Microsoft Azure
(e.g., Google [14], AWS [1], and Cloudfare [7]). These post-
mortem reports may have different structures and content
across different clous systems, but they all contain natural lan-
guage descriptions of root cause diagnosis of incidents. Since
the ARTS taxonomy is based on a diverse and large set of ser-
vices and incidents, and AutoARTS is trained on postmortems,
we believe that they can benefit other cloud systems.

Evolution of Taxonomy. Our open-sourced ARTS taxonomy
captures a wide range of contributing factors, but new factors
may emerge and the taxonomy may evolve. Therefore, we
deliberately separate context generation and classification
in AutoARTS so that new categories can be detected from
the generated contexts (Table 7). When a new category is
identified, the HiAGM model of AutoARTS can be finetuned
for the new tags only (which takes a few minutes). We also
hope others can contribute to the growth of ARTS taxonomy.

10 Conclusion

Incident postmortems are treasure troves of rich insights and
retrospective analyses of them reveals actionable insights to
improve reliability and availability of large-scale production
systems. Unfortunately, it’s not done at scale today because of
the manual effort required in analyzing them. We developed
a novel hierarchical and comprehensive taxonomy based on
a painstaking extensive multi-year analysis of 2000+ severe
incidents across 450+ Microsoft Azure services. To make this
taxonomy accessible and assist engineers in analyzing post-
mortem reports, we proposed techniques to extract key con-
text from postmortems and automatic classification to iden-
tify all the contributing factors for an incident and presented
our findings. To the best of our knowledge, this is the largest
study of production incident postmortem reports yet.

We envision that this paper enhances the audiences’ under-
standing of contributing factors for production incidents and
fosters future research by leveraging the open-sourced taxon-
omy for root cause labelling. Our experimental findings show
promise in assisting engineers with classifying postmortem
reports and we intend to fully automate this task incorporat-
ing engineers’ feedback and leverage larger training datasets
in future work.
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Abstract
It is common for performance studies of computer systems
to make the assumption—either explicitly or implicitly—that
results from each trial are independent. One place this assump-
tion manifests is in experiment design, specifically in the order
in which trials are run: if trials do not affect each other, the
order in which they are run is unimportant. If, however, the
execution of one trial does affect system state in ways that
alter the results of future trials, this assumption does not hold,
and ordering must be taken into account in experiment design.
In the simplest example, if all trials with system setting A are
run before all trials with setting B, this can systematically bias
experiment results leading to the incorrect conclusion that “A
is better than B” or vice versa.

In this paper, we: (a) explore, via a literature and artifact
survey, whether experiment ordering is taken in to consid-
eration at top computer systems conferences; (b) devise a
methodology for studying the effects of ordering on perfor-
mance experiments, including statistical tests for order de-
pendence; and (c) conduct the largest-scale empirical study
to date on experiment ordering, using a dataset we collected
over 9 months comprising nearly 2.3M measurements from
over 1,700 servers. Our analysis shows that ordering effects
are a hidden but dangerous trap that published performance
experiments are not typically designed to avoid. We describe
OrderSage, a tool that we have built to help detect and mit-
igate these effects, and use it on a number of case studies,
including finding previously unknown ordering effects in an
artifact from a published paper.

1 Introduction

Systems performance analysis typically involves running a
series of trials and then calculating statistical measures (such
as mean or median) from the performance data collected.
These measures are used to conclude that one system is, on
average X% faster than another, that the addition of a new fea-
ture does not have a statistically-significant impact on perfor-
mance [12, 16], or that software scales well to large problem
sizes. One of the most fundamental assumptions of this kind
of analysis [36] is that trials are independent; in particular,
that each trial is unaffected by prior trials in the series. If this
assumption does not hold, it can systematically bias results

and alter or even invalidate conclusions drawn from them.
Typical systems research work does not take ordering into

consideration as part of experiment design. This can lead to
violations of the independence assumption.

The problem is especially pernicious because there is not
one, or even a few, root causes behind performance-affecting
state that carries over between trials. In the highly complex
environment of a modern computer system, there are a large
number of hardware and software components whose state
can be carried over from one trial to another [26]. These
include caches [8], data layout in RAM and on disk [22],
application and operating system tuning parameters [20, 41],
and even temperature (with consequences such as thermal
throttling [3, 13]). The systems under test themselves can,
intentionally or unintentionally, make changes that persist
between trials, such as changes to software packages, global
system configuration, environment variables [26], or files.

Thus, while the question of why order matters is important,
it is highly specific to the software being tested, the hardware
it is run on, and the design of the experiment. Before “why”
can be considered, there is the more fundamental question
of whether the order matters for a specific experiment. In
many cases, knowing that order-dependent performance exists
can itself be an interesting result because it indicates some
unexpected property of the software or system under test.
Therefore, eliminating it entirely through experiment design
is not always even desirable.

In this paper, we formulate a systematic approach to ana-
lyzing whether the order of trials within an experiment affects
results. We use this method to collect and analyze a large new
performance dataset that we collected on over 1,700 servers
over a period of 9 months and show that experiment order is
a factor that cannot be neglected. We find that for the selected
benchmarks the order can bias performance by 50% or more
and potentially alters conclusions in 72% of cases.

Order is acknowledged to have some level of impact in the
literature [1, 26]. However, we show this acknowledgment
has not translated into experiment design in practice. We con-
ducted a survey of three major systems conferences and found
that it is exceedingly uncommon to discuss experiment order-
ing in these papers. Furthermore, we examined the artifacts
for the papers and find that they are not designed to detect or
avoid ordering effects. To help relieve this situation, we con-
tribute OrderSage, a tool that helps experimenters with both
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the orchestration and analysis aspects of experiment ordering.
In this paper, we make the following contributions:

• We perform a literature survey of top-tier systems confer-
ences (Section 2), showing that experiment order is reported
as part of experiment design in fewer than 10% of papers.
We also analyze these paper’s artifacts, and show that this
neglect extends to the way experiments are run in prac-
tice: more than 94% of artifacts run experiments in either a
single fixed order or do not specify an order.

• We develop a methodology (Section 3), using established
statistical tests, for determining whether results are order-
dependent and narrowing down specific experimental tests
that are particularly affected.

• We collect and publicly release a large, first-of-its-kind
dataset for studying the impact of ordering on performance
experiment results (Section 4). This dataset contains the
results of over 2.3M trials run in a variety of different orders.

• We analyze this dataset using our methodology (Section 5)
and show that ordering can make a significant difference,
even to the level of potentially changing conclusions. This
provides strong evidence for the claim that systems re-
searchers should consider order in their experiment design.

• We developed and release OrderSage, a tool that easily
applies our methodology to performance experiments (Sec-
tion 6). OrderSage embodies both a mechanism for random-
izing experiment order and analyzing its effects. To demon-
strate its use, we present case studies (Section 7) applying
it to the performance test-suite for memcached [2, 7, 21],
and to NPBench [43]. We also use OrderSage on one of the
artifacts from our literature survey and find a previously-
unknown ordering effect in it.

We cover related work in Section 8 and conclude in Sec-
tion 9.

2 Literature and Artifact Survey

To evaluate the extent to which ordering effects are taken
into account in practice in the systems research literature,
we conducted a survey involving the OSDI ’21, SOSP ’21,
and EuroSys ’22 conferences. We selected these three con-
ferences because they ran Artifact Evaluation Committees
(AECs), meaning that we were able to look at both what pa-
pers say about ordering and what the artifacts (code, scripts,
etc.) actually do.

We had two inclusion criteria for our survey. First, the pa-
pers need to have received all three AEC badges (Available,
Functional, and Reproduced)—this lets us know that not only
did the paper have an artifact submitted, but that the artifact is
complete. Second, the papers need to base their main claims

Figure 1: Paper selection for our literature and artifact survey.

on a set of performance metrics (e.g., runtime, latency, band-
width, etc.) executed on real (not simulated) systems. Under
these criteria, we ended up with 56 papers out of the three
conferences’ 130 papers, as seen in Figure 1.

Following the selection and filtering phase, we performed
the survey in two passes; each paper/artifact was reviewed by
a different reviewer in each pass, with the goal of countering
individual reviewers’ biases. Table 1 presents the results from
both passes as well as the agreement between the two passes.
It is worth noting that the spread is larger for the artifact anal-
yses because they required more investigation than reading
the evaluation sections of the surveyed papers. Regardless,
we consider all observed relative agreement numbers to be
high enough to serve as a convincing basis for our conclu-
sions. As detailed below, our artifact review provided much
more insight into how the studies were run compared to the
information in the papers alone.

Do papers specify the ordering of their experiment de-
sign? Only 4 out of 56 papers (7%) clearly stated the order in
which the corresponding performance experiments were run.
This percentage is not surprising, because space constraints
lead authors to focus on describing the factors that are key
to their work instead of latent factors such as the order of
execution. Of special note is that EuroSys ’22 allowed artifact
description appendices, which we considered as part of the
paper rather than part of the artifact. This is where we found
most of the ordering-related information; these appendices
allowed authors to detail steps in their evaluation workflows,
leaving no ambiguity about the orderings.

Do papers describe their inter-experiment reset pro-
cedures? Between 4 and 10 papers, or 7–18%, described
reset procedures for ensuring that subsequent trials are not
potentially impacted by the preceding tests. Such procedures
included clearing caches, running warmup tests, rebooting
hardware, and launching new cloud instances, among others.
Similar to our conclusion about the order information, the
reset specification was scarce in the studied papers.

What order do artifacts execute experiments in? Be-
cause papers do not tell us much about what order is used for
experiments, we examined the artifacts themselves. 36 to 37
artifacts (64–66%) use a fixed-order experiment design. This
was typically implemented by providing a “run all” script
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Table 1: Results of studying 56 papers and the corresponding artifacts.
Attribute being tested 1st pass 2nd pass Match b/w passes
Paper explicitly describes an order of experiment execution 4 (7%) 4 (7%) 93%
Paper describes a reset procedure to be run between experiments 4 (7%) 10 (18%) 82%
Artifact’s primary experiment execution order: 63%

fixed 36 (64%) 37 (66%)
undefined 17 (30%) 17 (30%)
parallel 3 (5%) 2 (4%)

Artifact runs a reset procedure between experiments 27 (48%) 16 (29%) 73%

that iterates through the studied algorithms or configuration
options in sequence with no randomization. In other cases, a
specific order was documented in the repository’s README
files. Many other artifacts (17, or 30%) provided instructions
on how to run individual groups of tests (e.g., for specific
figures and sections in the papers) but did not specify any
sequence between them—we categorized their orderings as
undefined. Another small class of studies (2–3 artifacts) used
parallel execution, where tests were run concurrently on mul-
tiple worker machines or cloud instances and therefore can be
considered to run each test in its own clean environment. We
have not identified any artifacts that implemented a random-
ized ordering, or which clearly showed explicit attention to
ordering concerns. To summarize, 53–54 artifacts out of 56
(94–96%) used undefined or fixed orderings, both of which
can be questioned from the presentation and experiment de-
sign perspectives. Expanding on the latter case, we show in
this study that fixed-order experiment designs have potential
to introduce adverse bias in performance analysis.

Do artifacts use inter-experiment reset procedures? Be-
tween 16 and 27 artifacts (29–48%) ran identifiable proce-
dures to reset the system to a known state between experi-
ments. Finding these procedures in the code is a non-trivial
and time-consuming process, which explains the spread be-
tween the results in the two survey passes. While we did find
reset procedures in up to half of the artifacts, it is concerning
that the other half of the artifacts did not manifest any reset
procedures. While it may not matter for some of the studies
because of the nature of their performance analysis, there is
a chance that for a subset of them it may be an oversight
causing undesirable effects on their conclusions.

From the survey, we learn that the literature does not make
order an explicit part of experiment design, and we do not see
evidence that ordering issues are explicitly addressed. In the
remainder of this paper, we show how this can constitute a
trap for experimenters and discuss how to avoid this trap.

3 Analyzing Order Dependence

In this section, we detail the procedure we have designed to
find order dependence in performance experiments. There
are two primary outputs from this procedure: first, it reports
whether the statistical distribution of performance results dif-

fers when run using fixed-order and random-order experiment
designs—that is, whether the order has an effect on the ex-
periment results. Second, it reports whether these differences
are potentially large enough to change inferences—that is,
whether it is possible for ordering effects to be large enough
that the conclusions drawn from an experiment could change
based on the execution order.

For consistency, we use the following terminology in this
section and throughout the remainder of the paper:

Test: A test is an individual unit of the system under evalua-
tion. A test typically represents an individual benchmark or
an application with a specific configuration or input.

Trial: A trial is an execution of a test. The outcome of a trial
is a single-metric performance assessment, such as runtime,
throughput, latency, etc. Multiple trials of the same test typ-
ically exhibit variations in performance stemming from the
nondeterminism intrinsic to the test itself or the system used
for benchmarking.

Run: A run is a set of trials, in a particular order, of all tests
in series. Conceptually, one could (and often does) report the
results from a single run in a single order.

Experiment: An experiment is a collection of one or more
runs done for the purpose of reaching a conclusion about
the system(s) under evaluation; typically, such a conclusion
will be reached by comparing results of the trials associated
with different tests. The order of trials within the runs of an
experiment is part of the experiment design and is referred to
as the experiment order.

An outline of the method is shown in Algorithm 1; below,
we go through each step in detail.

¶ Select a “Baseline” Order Select an ordering of trials
that will be used for “fixed order” runs. The order itself is not
important; the order in which trials have been run in the past,
or a “natural” order (such as by increasing parameter value)
is sufficient. This does not need to be a “correct” order: it will
act as the control against which we test random orderings.

· Define a “Reset to Clean State” Procedure Each run
(series of trials) should start from a clean state, such that
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Algorithm 1 Order-Dependence Test
Input T : List of trials in baseline order . ¶
Input R: Reset procedure . ·
Input N: Number of repetitions
Input α: Desired family-wise error rate (commonly 0.05)
1: for n = 1, . . . ,N do . ¸
2: Execute R
3: for all t ∈ T do . Run trials in baseline order
4: fixedOrderResults[t][n]← Execute t
5: end for
6: Execute R
7: for all t ∈ RandomlyPermute(T ) do . Run trials in random order
8: randomOrderResults[t][n]← Execute t
9: end for

10: end for
. ¹

11: for all t ∈ T do . Calculate p-values for distribution comparison
12: pKW[t]←KruskalWallis(fixedOrderResults[t], randomOrderResults[t])
13: end for
14: αBC ← α/length|T | . Use Bonferroni corr. for multiple comparisons
15: if ∃t ∈ T | pKW[t]< αBC then
16: return true . Order matters for 1 test→ it matters for the experiment
17: else
18: return false
19: end if

state left over from earlier runs will not affect performance
results of the next run. In many cases, this will be much more
expensive than running the benchmarks themselves: for the
purposes of the experiments in this paper, this procedure is a
reboot of the server on which the benchmarks are executed.
This might instead consist of restarting a server process, pro-
visioning fresh VMs, clearing storage devices, etc.

¸ Run in Both Fixed and Random Orders We execute a
series of runs. Each run consists of the same set of trials, and
each trial may comprise of multiple invocations of the system
under evaluation in order to increase statistical significance.
For half of our runs, trials are run in the fixed baseline order; in
the other half, the order is randomly permuted (separately for
each run). Between runs, the environment is reset to a clean
state using ·. Since the evaluation might take long enough
that time-varying effects (such as hardware degradation) could
be observed, fixed (Lines 3–5) and random order (Lines 7–9)
runs are interleaved to avoid bias. The outcome of each run
is a set of performance results, one from each trial, with the
units being the “natural” units for the tests, e.g., seconds for
runtime, MB/s for bandwidth, etc. The experimenter should
complete a sufficiently sized set of runs (Line 1) to provide
the desired statistical significance in the subsequent steps.

¹ Compare Distributions The next step is to compare the
samples obtained from the fixed- and random-order runs. The
intuition behind this step is that if the two sets of samples
come from the same statistical distribution, it can be said
that the order does not change the distribution, and thus does
not matter. If they come from different distributions, then the
order does indeed matter.

Algorithm 2 CI Overlap Test
Input fixedOrderResults, randomOrderResults from Algorithm 1
Input t: test to check
1: (fLow, fMedian, fHigh)← RankBasedCI(fixedOrderResults[t]) . º
2: (rLow, rMedian, rHigh)← RankBasedCI(randomOrderResults[t])
3: if (fLow > rHigh)∨ (fHigh < rLow) then
4: return Case 1 . Inference does change
5: else if (fLow < rMedian < fHigh)∧ (rLow < fMedian < rHigh) then
6: return Case 2 . Inference likely does not change
7: else
8: return Case 3 . Inference may or may not change
9: end if

To avoid assumptions of normality (which have been shown
to rarely hold for computer systems performance results [22]),
we use the non-parametric Kruskal-Wallis test (Lines 11–13).
This distribution-comparison test produces a p-value indicat-
ing the likelihood of observation assuming the null hypothesis
(i.e., that both samples come from the same distribution). This
should be performed for each test, longitudinally across all
runs: the two populations are (a) the outcomes for all trials
(executions) of the test from fixed-order runs, and (b) the
outcomes of all trials for the same test from random-order
runs. Thus, we are looking at whether a particular test’s per-
formance differs based on where its trials occur in the runs
that are differently ordered.

For each test, compare the p-value produced by Kruskal-
Wallis with a threshold chosen to provide the confidence level
desired; we aim for a family-wise error rate of α = 0.05 (95%
confidence) as is common in such tests. Because we perform
a potentially large number of comparisons, the problem of
multiple comparisons [25] arises; we apply the Bonferroni
correction [9] (Line 14) to obtain the per-test thresholds (αBC)
required for multiple comparisons to reach the target family-
wise confidence level. This correction scales the thresholds
down (making them stricter) in proportion to the number of
comparisons made.

If the p-value is above the threshold, we cannot reject the
null hypothesis, and therefore conclude that both samples
could have come from the same distribution—the order likely
does not matter. If the p-value is below the threshold, we re-
ject the null hypothesis and conclude that a single distribution
would be highly unlikely to yield the observed samples—the
order of the tests does matter.

We note that it is possible, and in our experience common,
that different tests within an experiment produce different
results at this step. This could indicate that some tests are
affected by what runs before them and others are more robust
in this respect. Overall, however, as long as any test shows
order-dependence, this indicates that the experiment design
as a whole needs to be aware of ordering (Lines 15–19).

º Compare Confidence Intervals A typical experiment
setup in performance analysis is to ask whether there is a
difference in performance between two systems. A situation
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particularly important to avoid is one in which inferences
from the experiment could change depending on the ordering,
in turn leading to a change in the conclusions drawn. We look
for such situations by comparing confidence intervals [12]
(CIs) as shown in Algorithm 2. CIs can be compared within
tests (e.g., comparing fixed and random orders, to determine
whether order changes the median computed), or across tests
(e.g., comparing two or more tests and checking whether
different performance is observed.)

The outcome of this test tells us something related to, but
distinct from, the Kruskal-Wallis test. Kruskal-Wallis tells
us whether the distributions differ, but not directly whether
they differ enough to change conclusions in a significant way.
Looking at the effect size (detailed in Section 5.1.1) gives us
a sense of the latter, but the CI test answers it directly. Recall
that a CI is an estimated interval we expect to include the
true value of a population measure [12]. For instance, for the
95% CI of the median (the interval we use), we expect that
in a collection of many such intervals, 95% of our estimates
would contain the true population median.

We use rank-based CIs estimating the population me-
dian [17] to avoid assumptions of normality. This comparison
results in three possible cases (visualized in Figure 5):

Case 1: The CIs for the fixed- and random-order runs do not
overlap. In this case, we can have high confidence that we
would expect to compute different medians depending on the
order. This is a red flag, and indicates that we could come to
different conclusions based on the order.

Case 2: The median for at least one of the two samples lies
within the CI for the other population. If this is the case, given
one population, we could have potentially arrived at the other
observed median, and we conclude that our conclusions likely
would not change based on order.

Case 3: In the final case, the CIs overlap, but both medians
are outside the other group’s interval. This case is inconclu-
sive, and requires more careful analysis to determine if it
could change conclusions. Still, it is a potential sign that more
careful experiment design is needed.

4 Dataset and Data Collection

To study performance effects at a large scale, we have col-
lected a dataset covering nearly 2.3 million executions (trials)
of 25 benchmarks on 1,700 machines over a period of nine
months. Many benchmarks were run in multiple configura-
tions, such as on different sockets or with different CPU fre-
quency settings, resulting in multiple tests per benchmark ap-
plication. This data was collected across more than 9,000 runs.
We released this dataset as part of this paper’s artifact: https:
//github.com/ordersage/paper-artifact. Collection
of the dataset covers the first three steps of the method de-

scribed in Section 3; we cover the rest of the steps in the this
section.

This dataset focuses on low-level measurements of CPU
and memory performance through the use of standard bench-
marks, in particular STREAM [23], the NASA Parallel Bench-
marks [27] (NPB), and Reece’s memory benchmarks [30, 31].
We have additional benchmarks of disk and network perfor-
mance, but leave analysis of them to future work. Our case
studies in Section 7 have examples of our methodology ap-
plied to higher-level applications.

4.1 Environment

We collected our data by running experiments in Cloud-
Lab [5], a public testbed for research use. CloudLab has a
variety of different types of server hardware [37], and we ran
our experiment across 13 different server types. We consid-
ered each configuration of each benchmark on each node type
as constituting its own test for the purposes of this analysis:
thus, we have 1,880 different collections of corresponding
trials to compare. CloudLab is an attractive platform for this
work, as it has previously undergone study to quantify and
calibrate the level of variability across different hardware in
the platform [22].

Servers in CloudLab are allocated at a bare-metal level
to one user at a time. Disks used are all local to the server,
and for this paper, we do not consider the network or other
shared resources. Thus, our benchmarks were not affected by
any other simultaneous users of the servers in question or the
CloudLab system as a whole, and did not have any artifacts
due to virtualization. We believe our dataset to be robust with
respect to time-varying, location-dependent (e.g., environmen-
tal/temperature), and micro-architectural factors: we gathered
this data over a period of months; CloudLab nodes are in
three different geographically distant data centers; and they
encompass a variety of processor and memory technologies.

4.2 Baseline Order ¶

The baseline order that we use is a “natural” one that groups
benchmarks from the same suite (e.g., NPB [27]) together,
and reflects the order in which we added the suites to our
experiment setup. This reflects the type of order that a systems
experimenter would be likely to arrive at in the process of
developing scripts to run their experiments.

4.3 Reset Procedure ·

The reset procedure we use is a fresh load of the operating
system and clean boot of the host on which the experiments
are run. This means that each run sees, as much as possible,
the “pristine” state of a just-booted machine, not affected by
any software or configuration changes made by prior users.
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It is important to note that we do not claim this clean state to
be correct: we do not claim that the results of a trial gathered
under these conditions are more “valid” than results after
the machine has been running for some time. It is possible
for boot-time effects to alter results, and for some tests, a
scenario in which a machine has been booted and active for a
long period of time may be more realistic. What we do claim
about this procedure is that we can be confident that all runs
started from the same state. Therefore, it can tell us if the
order of trials within the run affected results.

4.4 Running in Fixed and Random Orders ¸

Our data collection framework allocates machines in Cloud-
Lab on which to perform runs. For each run, it randomly
chooses—with equal probability—to execute trials in our
fixed baseline order or a random order. This procedure en-
sures that we interleave baseline and random runs, running
them in approximately equal proportion throughout the entire
time period to avoid a systematic bias in one direction or the
other due to potential changes in the facility over time. If
the random order is chosen, the framework shuffles the list
of all trials for that run. The framework records this order
information for use in future analysis.

5 Analysis Applied to Our Dataset

We now describe how we analyze the order-dependence of
the performance results gathered in Section 4. This section
covers steps ¹ and º from the method described in Section 3.

The nature of our data collection adds another dimension to
our tests, and thus we adopt terminology used elsewhere in the
literature [22] for clarity. Because CloudLab contains servers
of many different types, each of the tests we define will be
executed on 13 different hardware types—each different hard-
ware type may have a different processor, different amount of
RAM, etc. We refer to a combination of {test, hardware type}
as a configuration, where the test itself is a combination of
{benchmark, settings}. For example, the STREAM benchmark
run in its COPY mode on a server of type m400 represents one
configuration; STREAM in COPY mode on a server of type
c6520 is another; and STREAM in SCALE mode on an m400
would be a third. In total, we have 1,880 such configurations.
Results from trials executed under a particular configuration
across all runs are grouped together: our primary compari-
son of interest is whether the same configuration produces
different results when run as part of differently-ordered runs.
It is worth noting that we do not expect results from different
configurations to be independent, and do not analyze them as
such: there is strong likelihood, for example, that STREAM
in COPY mode exhibits similar order-dependent performance
effects to STREAM in SCALE mode. The value derived from
running so many configurations is that it helps to make our re-
sults robust with respect to many different programs, settings

for those programs, and types of hardware.
We analyze data from our memory and CPU benchmarks

as separate experiments: this avoids mixing results from per-
formance tests with very different goals, and offers interesting
insight into how the effects of ordering can differ depending
on the main resource being exercised.

5.1 Comparing Distributions ¹

The next step in our method is to compare the distributions of
performance results for each configuration when run in fixed
vs. random orders.

5.1.1 Memory Benchmarks

The left side of Figure 2 plots the p-values for all 1,198 config-
urations of memory benchmarks. For this test, the Bonferroni-
corrected αBC (n = 1,198) is 4.2×10−5. Configurations are
sorted on the x-axis according to the effect size (discussed be-
low). As can be seen from the figure, most (1,042, or 87%) of
the configurations fall well below the αBC threshold, showing
clear evidence of performance effects due to ordering.

To strengthen our analysis, we calculated the effect size for
each pair of compared samples. This measure is not meant to
replace the p-values but rather should complement them [40].
While the statistical tests indicate that the probability of the
sampling error causing the observed performance difference
may be low, measuring the effect size helps us understand the
scale of the difference between the groups.

We calculate the effect size for each statistical test. The
larger the effect size, the larger the estimated difference be-
tween the populations being compared; a small effect size can
indicate that even when there is a statistically significant dif-
ference revealed by a p-value, it may be small enough not to
be of practical importance. To align with the Kruskal-Wallis
test, we use the non-parametric formulation of the effect size
η2 that is defined using the H-statistic [4]. In statistics terms,
η2, which yields values between 0 and 1, estimates the frac-
tion of variance in the dependent variable that can explained
by the independent variable. The review article [40] provides
additional context and includes the formula for η2 calculation.

η2 values are plotted in the right side of Figure 2. Past the
first few hundred configurations, η2 becomes larger indicating
that the difference between the fixed-order and random-order
results becomes larger. This is also the exact region in which
p < αBC, which indicates significance. It is worth noting that
we do not compare η2 with arbitrary thresholds but rather
observe its growth across the range of the tested configu-
rations for comparison purposes; from this standpoint, it is
assessed similarly to how we interpret percentage differences
in Section 5.1.3.

378    2023 USENIX Annual Technical Conference USENIX Association



Figure 2: Kruskal-Wallis p-values and effect sizes for memory benchmarks, sorted in order of increasing Kruskal-Wallis η2

effect size. The horizontal line at the bottom of the left plot comes from rounding small values up to 10−30 for display.

Figure 3: Kruskal-Wallis p-values and η2 effect sizes for CPU data. The plotting is as described for Figure 2.

5.1.2 CPU Benchmarks

Figure 3 shows the Kruskal-Wallis p-values and effect sizes
for our CPU benchmarks. For these comparisons, αBC (n =
682) is calculated as 7.3×10−5. As with the memory bench-
marks, most configurations fall well below the αBC threshold,
indicating that the order in which they are run makes a dif-
ference. The most observable distinction between the CPU
tests and the memory tests is the shape of the effect size curve:
while there are still some configurations that have large effect
sizes, there are fewer of them. There are a larger number of
configurations that reach statistical significance in the p-value
test but have an effect size small enough that it may not have
a practical impact. This demonstrates the need to look at both
significance tests and effect sizes.

Table 2 summarizes the observed Kruskal-Wallis p-values.
From this table, we can clearly conclude that the order of ex-
periments matters for the selected microbenchmarks. This ef-
fect appears to be more pronounced for memory benchmarks
which have a higher ratio of configurations with p < αBC.

5.1.3 Relative Difference

Most computer systems studies report their results not in terms
of effect sizes but in terms of absolute or relative differences
between several alternatives. To align our analysis with our
research community, we also looked at the order effects in
terms of percentage differences (representing the difference
between the mean fixed-order result and mean random-order
result, divided by the mean-fixed order result):

∆% =
µ f ixed−µrandom

µ f ixed
×100%

Figure 4: Percent Difference for Memory & CPU benchmarks.

Figure 4 shows the observed ∆% values for memory and
CPU benchmarks. The configurations are sorted on the x-axis
by ∆% values, and the y-axis is ∆% for a particular configura-
tion. The range of ∆% values gives a sense of the magnitude
of the studied order-related effects.

Our memory data is measured in throughput, so the higher
the value, the better the performance—since we calculate ∆%
as fixed order performance minus random order performance,
a positive ∆% indicates that the fixed order had better per-
formance than the randomized order. A negative ∆% means
the randomized order performed better. Conversely, our CPU
data is measured as execution times, so lower values mean
better performance: for these, positive values mean that the
randomized experiment design results in better performance.

From these figures, we can see that both memory and CPU
benchmarks have some effects that would be considered large
enough to affect results. Though they have similar absolute
average ∆% values (8% for memory, and 7.3% for CPU), the
details of their curves are quite different. Both have some
configurations that are faster in random order and some that
are slower, but the magnitudes and shapes of the curves differ.
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Table 2: Configuration classification showing whether there is difference between fixed and random orders or not. The comparisons
used Kruskal-Wallis test with Bonferroni-corrected αBC = 4.17×10−5 for memory and αBC = 7.33×10−5 for CPU comparisons.

Benchmark Type Kruskal-Wallis p < αBC Kruskal-Wallis p > αBC Total
Memory 1042 (86.97%) 156 (13.02%) 1198

CPU 475 (69.65%) 207 (30.35%) 682

5.2 Comparing Confidence Intervals º

In Section 5.1, we showed that experiment order does impact
performance using statistical tests and percentage difference.
In this section, we look at whether the bias caused by experi-
ment order can result in incorrect conclusions. Answering this
question will allow us to establish whether a researcher should
consider experiment order while analyzing performance.

Figure 5 shows each of the three cases from the confidence
interval overlap test, using examples drawn from our mem-
ory benchmarks. The x-axis represents the experiment order.
The y-axis is the rank-based 95% confidence interval of the
median performance for each order, with the shaded region
representing the interval and dashed lines extending the inter-
val limits to the full width of each figure for comparison. The
diamond represents the median value. Case 1 indicates that
the conclusion would change based on order, Case 2 indicates
that it is unlikely to do so, and Case 3 is inconclusive.

Figure 5: Examples of CI arrangements. The plots are created
based on actual measurements for three memory tests; scales
are different for them. Red vertical bars are rank-based non-
parametric 95% CIs for medians, and �—median estimates.

For both memory and CPU benchmarks, we found that
most configurations fell into Case 1, meaning that order could
change conclusions. This can be seen in Figure 6. The effect
is more pronounced for memory benchmarks, where 81% of
the configurations fall into Case 1, than for CPU benchmarks,
for which only 56% fall into Case 1. Overall, 72% of all
configurations are in Case 1. From these results, it becomes
amply clear that one can arrive at an incorrect conclusion
by merely modifying the experiment order. A performance
analysis needs to consider order to ensure accurate results.

6 Automating Experiment Order Testing

We have shown that order can be important in experiment
designs. However, it can be difficult for experimenters to

Figure 6: Three CI cases for memory and CPU tests.

rethink their performance experiments to account for this
factor. To this end, we have developed OrderSage, a tool
that enables experimenters to follow the methodology from
Section 3 in their experiments with minimal effort.

6.1 Motivation
The data collection efforts described in Section 4 can be
characterized as long-term, extensive, and requiring robust
infrastructure. The first refers to the fact that we collected the
studied measurements over the period of 9 months. The sec-
ond indicates that we benchmarked a large pool of hardware
types, used numerous tests, and studied many unique permuta-
tions of commonly tuned benchmark and system parameters.
The third stresses that experimentation of this kind requires re-
liable computing resources and software for orchestrating test
execution, gathering and storing results, etc. We met these re-
quirements using CloudLab hardware, the testbed’s program-
matic interface built upon geni-lib Python package [38],
and a set of custom scripts developed for orchestration [39].

This is in contrast to most studies, which describe short-
term and focused analysis efforts, where experimenters thor-
oughly study subsets from many combinations of tunable pa-
rameters and gather the needed results in a limited timeframe.
In such settings, the emphasis often is on demonstrating that
one algorithm or hardware implementation is better than the
alternatives and on characterizing its observed gains. To ar-
rive at such conclusions, experimenters need to make sure
that their measurements are not significantly impacted by the
order-related effects. In the simplest cases, this means that
if they were to run the same sets of tests in different orders,
their conclusions would remain valid. We note that in many
cases in which order-dependent performance is discovered,
this may indicate unexpected behaviors in the system, and is
itself an interesting finding.

Aiming to support such focused experimentation, we de-
sign OrderSage with the target user in mind who is an ex-
perimenter collecting performance data for publication (such
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Figure 7: The main operation of OrderSage.

as in a research venue) or for decision-making (such as in a
production computing environment.) We assume that such
a user can script the execution of each test (e.g., in shell or
Python), and thus OrderSage’s primary responsibilities are to
execute a number of runs with the scripted tests in different
orders, collect and store test results, and analyze the results
through the lens of possible order effects. Below, we describe
the key components of OrderSage’s experiment orchestration.

6.2 Implementation
OrderSage is implemented as a set of Python modules
and is available at https://github.com/ordersage/
ordersage. Its operation can be described using the follow-
ing terms:

Controller: A machine that facilitates experimentation on a
remote node or nodes and performs the statistical analyses.
This is the primary place where OrderSage’s code runs.

Worker: A machine that executes an experiment that con-
sists of several fixed and random runs. Workers are accessed
(through ssh) and controlled by a single controller node. One
controller can make use of one or more workers.

Results: Each trial produces one performance result in the
form of a floating-point number. Multiple performance met-
rics should be treated as separate results. OrderSage collects
these results from the worker(s) and stores them on the con-
troller for analysis.

Figure 7 shows a high-level system diagram that includes
the key processes being orchestrated by OrderSage:

¬ allocate(): Support is provided for use of worker nodes
that are either pre-allocated by the user or reserved on
CloudLab testbed. Outside of CloudLab, any node—local
or remote—into which the user can ssh, run the tests (in-
cluding installing software, if necessary), and execute the
reset procedure can be used. Analogous allocate() rou-
tines can be implemented for commercial clouds using the
APIs they provide.

 Initialize: Worker nodes are readied via an initialization
script provided by the user. This typically includes in-
stalling and configuring the software under evaluation.
During initialization, a baseline order is selected (Step ¶
from the method described in Section 3) by running a
user-provided script that produces the commands for each
test. OrderSage defaults to rebooting a worker node as the
“clean state” reset procedure (Step · from the method).
However, this behavior can easily be redefined by the user.

® Run Tests: After initialization, tests are run according to
Step ¸ of the method. Each run consists of an execution
of all trials in some order. Half of the runs are performed
in the baseline order, and half in an order that is randomly
shuffled (separately for each run); these orders are inter-
leaved. The reset procedure is executed in between each
run.

¯ Collect Results: Performance measurements are collected
as outlined in Step ¸ of our method and saved as raw data
from each trial. Additionally, metadata such as random
orderings, machine environment information, execution
times, and stdout outputs are saved for each run.

° deallocate(): If the worker(s) were allocated()ed in
¬, (such as with our CloudLab integration), OrderSage
will handle the deallocation of nodes at the end of the
experiment.

± Statistical Analysis: Results are analyzed according to
Steps ¹ and º from the method described in Section 3.
The results of all statistical analyses are saved on the con-
troller node. If multiple worker nodes were used, the neces-
sary result aggregation will take place. A final comparative
step will provide a high-level overview of the combined
vs. individual experiment analyses.

Running OrderSage is detailed in Appendix A.

7 Case Studies

We used OrderSage to facilitate the methodology proposed
in Section 3 for three case studies. Our goals were to demon-
strate its use on common benchmarks and application test
suites and investigate the impact of test order on the results
of these cases. All case studies were executed on CloudLab
servers of the xl170 hardware type [37]. For these experi-
ments, which occurred over 24-48 hours, each experiment
was run on a single worker. All data from these experiments
are included in the released artifact: https://github.com/
ordersage/paper-artifact.

7.1 memcached Benchmark Suite
This case study uses memcached’s own benchmark suite,
which is designed to mimic the process of reporting perfor-
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Table 3: Test results for the memcached experiment. We use
Bonferroni correction with n = 3 and αBC = 0.0167 (pro-
viding a family-wise error rate of 0.05). The Kruskal-Wallis
p-values are shown, as are their interpretation relative to αBC:
the column contains • if the null hypothesis can be dismissed
or ◦ if it cannot. ∆% is calculated as in Section 5.1.3 and the
CI cases are as defined in Section 3.

Test KW p-value KW test ∆% CI case
cmd_set 0.49 ◦ 0.3 2
cmd_get 0.74 ◦ −0.2 2
get_hits 0.00009 • 5.3 3

mance numbers for this application. memcached [2] is an
efficient and widely used in-memory key-value store, and
its associated mc-crusher [24] benchmark suite includes a
variety of scripts designed to exercise a server instance and
measure its performance.

The mc-crusher documentation specifies “You should
start a fresh memcached”, and includes a series of three tests
(cmd_set, cmd_get, and get_hits) in its included sample
configuration file, executed serially in that order; accordingly,
we start memcached after the reboot in our standard Step ·
reset procedure, and perform those same three tests in each
of our runs. We follow the same ordering of trials in the fixed
case, with a single instance of memcached for all trials (fol-
lowing the mc-crusher distribution exactly). We increase
the sample duration to 60 seconds per test (to reduce the in-
fluence of noise on each sample) and permute the order of
the trials in our random runs to check our hypothesis that
ordering affects the observed results, but otherwise do not
modify the sample mc-crusher parameters. From inspection
of the mc-crusher source, we expect the three benchmarks
to operate on generally disjoint data, and therefore do not
anticipate any direct connection between the execution of
one and the output of the next. However, it is difficult to pre-
dict the presence or magnitude of indirect ordering artifacts,
where the side effects of previous computation might influ-
ence the efficiency of subsequent operations, which is what
our analysis aims to measure.

Table 3 presents the results we obtained by running Order-
Sage with memcached version 1.5.22, with 50 fixed and 50
random runs, each including the three tests described.

Overall, we conclude that the order of trials within a run
does affect the measurements obtained for the mc-crusher
environment under test, at the 95% significance level. This
coincides with the get_hits’s median performance changing
by over 5% based on whether a fixed-order or random-order
experiment design is used.

7.2 NPBench & NPB

NPBench is a “a set of NumPy code samples representing a
large variety of HPC applications” [43]. The authors use it to

Table 4: Test results for the NPBench & NPB experiment.
Columns are as described for Table 3.

Test KW p-value KW test ∆% CI case
IS 0.83 ◦ 0.00 2
SPMV 0.69 ◦ −0.60 2
softmax 0.03 • 0.46 3

test a variety of Python HPC frameworks and compilers that
aim to accelerate NumPy code; they also expect the results
to be useful to end-users of such frameworks. NAS Parallel
Benchmarks (NPB) is an open source benchmarking suite
which includes “a small set of programs designed to help
evaluate the performance of parallel supercomputers.” [27]
We select two tests from NPBench that exercise operations
used in data analytics and machine learning: sparse matrix-
vector multiplication (SPMV) and the normalized exponential
function (softmax) used in neural networks. In addition, we
select integer sort (IS) from NPB, which is used to benchmark
random access memory. SPMV and softmax are generally
CPU-bound, while IS generally has its performance limited by
memory speed. Using OrderSage, we did 100 runs in each of
fixed and random orders. We set problem sizes to large enough
values to get meaningful results on CloudLab machines: flag L
in NBbench is expected to take about 1000ms to run whereas
class D in NPB is the largest test problem for IS, and the
median runtime was 36 seconds.

The results from these experiments are in Table 4. IS and
SPMV show no order-dependence. While softmax does show
a statistically-significant change in distribution when run in a
random order, the effect size of 0.46% is small enough that
it is unlikely to make a difference in practice: these three
tests can be safely run in any order. This demonstrates the
need to look at effect sizes as well as statistical significance: a
positive result from the Kruskal-Wallis test does not, by itself,
guarantee that the effect is large enough to matter.

7.3 uFS Paper Artifact Reproduction

Our final case study looks at the uFS filesystem presented at
SOSP 2021 [19]. This paper submitted an artifact and was
awarded the Available, Functional, and Reproduced badges;
it was part of our survey in Section 2. uFS is a user-level
filesystem “semi-microkernel” [19] that claims good base
performance and better scalability than the ext4 filesystem in
the Linux kernel. This is demonstrated with benchmarks at
various scales and under various threading conditions. Using
OrderSage, we find that some experiments run for this paper
are order-dependent with large effects (up to 17%), though
not large enough to change the conclusions of the paper.

The evaluation scripts supplied with the artifact run multi-
ple benchmarks, of which we selected the Microbenchmarks
with single-threaded uFS and ext4 (both without journaling.)
Their scripts run all 32 workloads in sequence; we modified

382    2023 USENIX Annual Technical Conference USENIX Association



Table 5: Test results for the uFS experiment. In the original
paper, ufs results are compared with corresponding ext4nj
experiments. Columns are as described for Table 3.

Test KW p-value KW test ∆% CI case
ufs.ADSS 0.028 • 16.8% 2
ext4nj.ADSS 0.364 ◦ -4.0% 2
ufs.ADPS 0.013 • 6.7% 2
ext4nj.ADPS 0.406 ◦ 4.7% 2
ufs.RDSR 0.112 ◦ 0.2% 2
ext4nj.RDSR 0.406 ◦ -0.8% 2
ufs.RMS 0.940 ◦ 0.8% 2
ext4nj.RMS 0.650 ◦ 0.1% 2
ufs.LsMS 0.650 ◦ -0.6% 2
ext4nj.LsMS 0.940 ◦ 0.0% 2
ufs.RMP 0.545 ◦ 0.0% 2
ext4nj.RMP 0.545 ◦ 0.3% 2
ufs.CMP 0.496 ◦ -0.2% 2
ext4nj.CMP 0.256 ◦ -0.1% 2
ufs.LsMP 0.151 ◦ 3.6% 2
ext4nj.LsMP 0.406 ◦ 0.1% 2
ufs.CMS 0.019 • -1.3% 2
ext4nj.CMS 0.705 ◦ 0.3% 2
ufs.RDPR 0.112 ◦ 0.2% 2
ext4nj.RDPR 0.226 ◦ 1.9% 2

them to run one workload at a time as individual tests. We
use the leftmost data point for evaluation as described in the
paper’s Section 4.2 and Figure 5a—these are used to evaluate
the claim that uFS performs as well as or better than ext4 un-
der baseline, single-threaded conditions. We used OrderSage
and a c6525-100g node in CloudLab (which has a dedicated
NVMe drive as does the original authors’ machine) to run
these tests in fixed and random orders (10 times each).

Our results (Table 5) show that order does not mat-
ter to most tests, but it does matter to three: ufs.ADSS,
ext4nj.ADPS, and ufs.CMS, with the ufs.ADSS test chang-
ing the most: in the fixed order, its median is 119K with a tight
CI of [117K,120K]. In random order, its median drops by
16.8% with a much wider CI of [74K,121K]. The conclusion
from the uFS paper still holds: the random-order ufs.ADSS
median of 98K is still greater than the 41K random-order re-
sult for baseline system it is compared to, ext4nj.ADSS, and
the CIs do not overlap. This effect may be due to hardware dif-
ferences: the original uFS paper was evaluated on an NMVe
drive using Intel Optane memory, while the drive we used on
CloudLab has traditional flash memory. As a result, latencies
and flush strategies differ between the environments. How-
ever, this demonstrates the necessity of avoiding the ordering
trap, as such order-dependent results are probably “hidden”
in many published results, and likely indicate system effects
that the authors may not be fully aware of.

8 Related Work

There is much scientific literature focused on experimental
design and analysis of computer systems performance experi-
ments [12,16,18,32,34]. Among recent work in related areas

are studies of presentation flaws specific to performance re-
sults [11] and analysis of performance variability in computer
systems [22]. In a separate but relevant context, some research
and development efforts are focused on testbeds, i.e. computer
infrastructure, designed for reproducible experiments [28,42],
and how they can facilitate trustworthy experimental evalu-
ations. Studies of computer benchmarking [10, 15] consider
both the nuances of benchmark design and interpretation of
results. However, the aforementioned sources do not help con-
clusively answer the question: “Does the order of tests matter,
and if so, how much?” Our study aims to bridge this gap.

One recent study related to our work focuses on repeatable
experiments in highly variable cloud environments [1]. The
authors study the following designs: 1) Single Trial, 2) Multi-
ple Consecutive Trials, 3) Multiple Interleaved Trials (MIT),
and 4) Randomized Multiple Interleaved Trials (RMIT). An-
other study of the RMIT execution plan led to the develop-
ment of WPBench, a web serving benchmark suite that bun-
dles a set of micro and application benchmarks [35]. The fixed
and random orders we study correspond to MIT and RMIT,
respectively. While those studies argue for using RMIT, our
investigation extends previous work with a large-scale eval-
uation of both approaches and shows where the differences
between the two are most significant. We also consider envi-
ronments without “background noise” from other tenants.

The idea of turning a proposed methodology into a reusable
tool was inspired by the recent work on Lancet, a self-
correcting tool for latency analysis [14]. TraceSplitter [33]
applies an analogous statistical approach to traffic traces. Sim-
ilarly, Hyperfine [29] facilitates many tasks involved in the
benchmarking process and common subsequent analyses. In
turn, experimenters can focus more on creating interesting
experiments with increased confidence that their conclusions
are unbiased by factors such as test ordering. We implement
OrderSage with this vision in mind and describe in this paper
the results it collects in several use cases.

Another related study considers performance change-
points [6]. The data collection in our work is similar to the
process described in that paper. However, rather than char-
acterizing temporal patterns broadly, we focus on the order-
related effects and the methodology for studying them.

9 Conclusion and Future Work

The order in which tests are run is a significant, but often
neglected, part of experiment design—as shown in our survey,
it is rarely mentioned in papers, and the artifacts that support
them show little sign of being designed with ordering in mind.
Our findings show that order can indeed make a difference:
sometimes quite a large one. Systems experimenters should
take this into account in their experiment designs, and test for
order dependence when feasible. The response to discovered
order-dependence will vary depending on the system, the
experiment, and its goals. In some cases, there may be aspects
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of the system under test, test environment, or test procedure
that need to be “fixed” to make runs more consistent and less
dependent on order. In other cases, some amount of variability
is simply to be expected, and experiments should be run in
several randomized orders to avoid systematically biasing
results with a single order. Finally, in some cases, it may be
that a “clean” environment is not the most realistic one in
which to run the experiment, and more effort needs to be
taken to get the environment into a suitably realistic state.

Our work thus far has left out of scope a deep analysis of
why order matters. This would be an interesting subject for
follow-up research, and we expect that the reasons will be
as varied as the tests that are run and the environments they
are run in. One way to do such an investigation would be
to analyze which tests cause changes in the following trials,
and which ones see the largest effects. We hope that our open
dataset and tool will help to enable such explorations.
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Appendix A Using OrderSage

Using OrderSage is straightforward, and requires little beyond
that used in a typical experiment.

• Experiment Environment: Users must have a controller
node and at least one worker node that has remote-access
capabilities. The controller is separate from the worker so
that the latter can be rebooted as part of the reset procedure.

• Experiment Repository: The tests to run and their as-
sociated scripts are stored in a git repository created by
the user, which makes them natively version-controlled. In
addition to the system(s) under evaluation, the repository
contains the following:

– Test Configuration Script: Called during the initial-
ization phase by the controller, this script prints a list
of commands to stdout. The commands will be exe-
cuted in-order for the fixed runs and shuffled for the
random runs. Each command represents a single test
and all commands must be unique. It is up to users
to implement this script as they wish as long as these
requirements are met. In the simplest case, it can be a
series of print statements of varying test commands
or it can be more complex and include methods to
iterate through complex sets of parameters, producing
a command for each one.

– Initialization Script: The controller calls an initial-
ization script to ready all workers for experimentation
as defined by the user. This script can install packages,
set machine states, etc. Its only requirement is that
it creates a “results” directory in a location on the
worker.

• Configuration File: To run OrderSage, the user creates a
configuration file. This configuration contains the URL of
the experiment repository, the location of the configuration
and initialization scripts within the repository, and other
parameters. These parameters include paths to results files,
the number of runs, etc. If the set of worker node(s) is pre-
allocated, the workers parameter of this file must contain
a list of all worker node hostnames.

• Define Reset Protocol: Our default implementation of
OrderSage calls reset(), which is implemented to reboot
the worker node(s) and reconnect between runs. However,
if users prefer a different reset procedure, they can override
this method.

• Results: Results are collected in a single text file on each
worker node. Each test run (trial) must provide a single,
floating-point number on a new line of the file. It is impor-
tant that this results file is presented in-order (i.e., the first
trial produces the first number and the nth trial produces the
nth number). In total, the number of lines in the result file
must equal the number of tests × the number of runs × 2
(for fixed and random runs).

Once the aforementioned configuration is complete, a user
can run OrderSage by executing the following command:

# python controller.py
The artifact with the code and data we released, https://
github.com/ordersage/paper-artifact, has more in-
formation on running OrderSage and reproducing the results
presented in this paper.
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Abstract
Workload autoscaling is widely used in public and private
cloud systems to maintain stable service performance and
save resources. However, it remains challenging to set the
optimal resource limits and dynamically scale each workload
at runtime. Reinforcement learning (RL) has recently been
proposed and applied in various systems tasks, including re-
source management. In this paper, we first characterize the
state-of-the-art RL approaches for workload autoscaling in
a public cloud and point out that there is still a large gap in
taking the RL advances to production systems. We then pro-
pose AWARE, an extensible framework for deploying and
managing RL-based agents in production systems. AWARE
leverages meta-learning and bootstrapping to (a) automati-
cally and quickly adapt to different workloads, and (b) provide
safe and robust RL exploration. AWARE provides a common
OpenAI Gym-like RL interface to agent developers for easy
integration with different systems tasks. We illustrate the
use of AWARE in the case of workload autoscaling. Our
experiments show that AWARE adapts a learned autoscal-
ing policy to new workloads 5.5× faster than the existing
transfer-learning-based approach and provides stable online
policy-serving performance with less than 3.6% reward degra-
dation. With bootstrapping, AWARE helps achieve 47.5% and
39.2% higher CPU and memory utilization while reducing
SLO violations by a factor of 16.9× during policy training.

1 Introduction
Motivation. Reinforcement learning (RL) has become an
active area in machine learning research and is widely used in
various systems tasks (e.g., resource scaling [23,47–49,59,62],
power management [58, 64], job scheduling [4, 5, 32, 33, 35,
63], video streaming [34, 60], and congestion control [22,
28, 31, 56, 60]). As a viable alternative to human-generated
heuristics, RL automates the repetitive process of heuristics
tuning and testing by enabling an agent to learn the optimal
policy directly from interaction with the environment.

One example is workload resource autoscaling for meeting
application service-level objectives (SLOs) while achieving
high resource utilization efficiency [8, 30, 47, 49, 50, 59]. Tra-
ditional rule-based approaches [2, 3, 6, 25] configure static
upper and lower thresholds offline for certain system metrics
(e.g., CPU or memory utilization) or application metrics (e.g.,
request arrival rate, throughput, or end-to-end latency) so that
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Figure 1: RL agent performance when managed by AWARE
compared to the baseline (FIRM [47]). Stages 1 , 2 , and
3 demonstrate the benefit of RL bootstrapping, incremental

retraining, and fast adaptation, respectively.

resources can be scaled accordingly when the measured met-
rics go above or below the thresholds. Tuning and testing of
fine-grained thresholds require significant application/system-
specific domain knowledge from experts to achieve optimal re-
source allocation. Further, repeated parameter tuning for each
workload can be labor-intensive, especially for microservice-
like applications in large-scale production systems. As differ-
ent types of services may use different amounts of resources
(e.g., CPU and memory) and are sensitive to different kinds
of interference and workload spikes, a customized threshold
has to be set for a service differently.

RL, on the other hand, is well-suited for learning optimal
policies, as it models a systems task (e.g., workload autoscal-
ing) as a sequential decision-making problem and provides a
tight feedback loop for exploring the state-action space and
generating optimal policies without relying on inaccurate as-
sumptions (i.e., heuristics or rules) [32, 48]. Integrating RL
with those complex systems management tasks in production
systems can (a) make full use of the abundant monitoring data
on applications and the infrastructure, and (b) automate the
process of developing optimal policies while freeing operators
from manual workload profiling and parameter tuning/testing.
For example, FIRM [47]’s RL agent learns an optimal work-
load autoscaling policy that adapts to specific application
workloads with online telemetry data that alleviates the need
for handcrafted heuristics (see §2.2 for details).
Challenges. However, even as RL is starting to show its
strength in the systems and networking domains [4, 5, 22,
23, 28, 31–35, 47–49, 56, 58–60, 62–64], there is still a large

USENIX Association 2023 USENIX Annual Technical Conference    387



gap in directly applying RL advances to real-world produc-
tion systems due to a series of assumptions that are rarely
satisfied in practice. First, a learned RL policy is workload-
specific and infrastructure-specific. Retraining is needed to
adapt to a new workload or underlying infrastructure in het-
erogeneous and dynamically evolving (possibly multi-cloud)
datacenters [18,37,53,54,58]. For instance: (a) In SLO-driven
resource management, application performance and utiliza-
tion differ significantly among heterogeneous workloads [47].
Fig. 1 stage 3 shows that FIRM’s trained RL policy suffers
performance degradation and requires substantial retraining.
(b) In power management, diverse power consumption and
workload sensitivity to core/uncore frequency require separate
training of RL policies [58]. (c) In video streaming and net-
work congestion control, different sets of traces have diverse
payload characteristics and network environments [60] (e.g.,
dynamic link bandwidth, delay, and loss rate). Even with trans-
fer learning (TL) [47], nontrivial retraining is needed to adapt
to new workloads and environment shifts in each problem
domain, which is a critical problem in making RL practical
in production. Further, TL requires fine-grained environment
clustering to identify the most appropriate model to transfer
from, and requires saving one model per cluster.

Second, for the same application and environment, there
could be slight changes (e.g., patches and rolling updates),
unusual workload patterns not seen before (e.g., due to migra-
tion rollout), or traffic jitters. Without timely retraining, the
online policy-serving performance of the RL agent fluctuates
and leads to undesired degradation (as shown in Fig. 1 Stage
2 ). It is crucial to ensure robust online performance in case

of environment or model uncertainty [40, 46].
Third, RL training is through trial and error [32, 35, 47], so

worse-than-baseline or suboptimal decisions can be generated,
especially at an early stage of training (as shown in Fig. 1
Stage 1 ). Direct training in the production system leads to
suboptimal performance and undesired SLO violations, while
training in a simulator and then transitioning to the production
system face the problem of poor generalization [61].

A framework that can bring the RL advances to production
systems is needed so that (a) the RL model can be trained
in a safe and robust manner, (b) the learned RL policy can
be adapted to new workloads and altered environments seam-
lessly without significant retraining, and (c) the online RL
model policy-serving performance can be kept stable.
Our Work. We first performed a characterization study of
RL in production systems in the task of workload autoscal-
ing. The study focused on the impact of workload change
and environment shift regarding (a) RL agent performance
degradation or variation and (b) retraining cost. To facilitate
the deployment and operation of RL agents in the systems
management tasks of a production cloud environment, we
introduce an RL model-serving and management framework.
As a general framework to support a variety of RL agents for
systems management tasks, it can be used by system operators

to develop RL-based agents that can be quickly adapted to
new environments and achieve stable online policy-serving
performance with continuous monitoring and safe bootstrap-
ping (as shown in Fig. 1). In the end, system operators can
benefit from RL automation of systems management tasks.

• To achieve fast model adaptation in each domain or sys-
tems task, we leverage meta-learning [39] to model the RL
agent as a base-learner and create a meta-learner for learning
to generalize and adapt to new applications and environment
shifts. The base-learner discovers policies that generalize
across workload variations and intra-environment dynamic-
ity for an <application, environment> pair, while the meta-
learner generalizes across <application, environment> pairs
to address inter-environment dynamicity and application het-
erogeneity. We designed a novel framework that allows the
meta-learner to learn to generate an embedding [38, 39, 57]
that projects the application- and system-specific data to a
vector space. On this projected vector space, workloads with
similar characteristics are projected to closer locations, while
those with quite different characteristics are projected to lo-
cations far from each other. The embedding is generated by
encoding a set of episodes from the RL agent’s exploration of
the environment. Since each episode records a step-by-step in-
teraction of the RL agent with the environment, the time-series
episodes naturally encode spatial and temporal characteristics.
In the task of workload autoscaling, spatial characteristics cor-
respond to the workload’s performance sensitivity to different
resource allocations, and temporal characteristics correspond
to the time-varying load patterns. The generated embedding
is then fed as input to the base-learner to adapt to the appli-
cation and environment shift (from the environments with
similar characteristics). With the embedding, fewer retraining
iterations are needed for new, previously unseen workloads.
• To achieve stable online RL policy-serving performance,
we leverage continuous monitoring, and designed a retraining
detection and trigger mechanism. An RL agent observes a
state, performs an action, and gets a reward at every step in
an episode. The time series of states, actions, and rewards in
an episode form a trajectory. RL trajectories are collected and
stored in a time-series database. The most recent rewards are
used to calculate the average reward and variation for com-
parison against user-specified targets. Continuous monitoring
ensures that RL model retraining can be triggered or stopped
timely so that the RL policy can seamlessly adapt to any en-
vironment jitters. We intercept the RL model update logic to
enable the switch between RL policy serving and retraining.
• To achieve safe RL exploration, we designed an RL boot-
strapping module that combines offline and online train-
ing. The agent starts with offline training, and a traditional
heuristics-based controller (e.g., the Kubernetes Horizontal
Pod Autoscaler (HPA) [25] and the Vertical Pod Autoscaler
(VPA) [15] in the case of workload autoscaling), is used as
the navigator for (online) exploration of the state and action
space in the environment. After the RL model is trained to the
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same level as the heuristics-based controller by comparing
rewards, the agent continues to be trained online.

We have demonstrated the proposed framework in the
task of workload autoscaling on Kubernetes by implement-
ing AWARE (i.e., Automate Workload Autoscaling with
REinforcement learning). Each RL agent manages a Kuber-
netes Deployment and configures resources automatically,
adjusting both the number of replicas (horizontal scaling)
and the CPU/memory limits (vertical scaling) to maintain
workload service-level objectives (SLOs) and achieve high re-
source utilization. To integrate RL agents with Kubernetes, we
designed and implemented a multidimensional Pod autoscaler
(MPA) system. MPA provides system support for RL-based
controllers and translates RL outputs into multidimensional
autoscaling actions in a holistic manner by (a) providing an
API for RL agents to execute horizontal and vertical scaling
decisions on Pod CPU and memory limits, (b) combining
vertical and horizontal scaling actions in a single CRD ob-
ject [24], and (c) providing a user interface for user-defined
objective functions for multidimensional autoscaling.
Results. We present a detailed experimental evaluation of
AWARE, demonstrating that AWARE significantly improves
the practicality of applying RL in production cloud systems
(for workload autoscaling). We first show that the adaptation
process of a learned autoscaling policy to new workloads with
meta-learning is 5.5× faster than the existing transfer-learning-
based approach (§5.2), and then demonstrate that AWARE
provides stable online policy-serving performance with less
than 3.6% reward degradation (§5.3). AWARE’s bootstrap-
ping mechanism helps achieve 47.5% and 39.2% higher CPU
and memory utilization while reducing SLO violations by a
factor of 16.9× during training (§5.4).
Contributions. In summary, our main contributions are:
• A characterization of RL-based production workload au-

toscaling and the challenges involved in applying RL in
production cloud systems (§2.3).

• The design of a novel meta-learning-based framework for
fast RL model adaptation in workload autoscaling (§3.2).

• The design of an RL retraining management and boot-
strapping mechanism for stable policy-serving performance
(§3.3) and robust RL environment exploration (§3.4).

• An implementation of the proposed framework in the task of
workload autoscaling with MPA, which enables integration
of RL agents with Kubernetes (§4.1).

• A detailed evaluation of AWARE that demonstrates sub-
stantial improvements through meta-learning and RL life-
cycle management while maintaining workload SLOs and
resource utilization (§5).

2 Background & Characterization
2.1 Reinforcement Learning
In reinforcement learning (RL), an agent interacts with an
environment modeled as a discrete-time Markov decision pro-
cess (MDP) (as shown in Fig. 2). At time step t, the agent
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(System task modeled as a 
Markov Decision Process)

Figure 2: An RL agent interacting with an environment mod-
eled as a systems task (e.g., workload autoscaling or conges-
tion control) in the form of a Markov decision process (MDP).

perceives a state st ∈ S of the environment and takes an action
at ∈ A. The agent receives a reward rt ∈ R as feedback on
how good the decision is, and at the next time step t +1, the
environment transitions to a new state st+1. The whole se-
quence of transitions {(st ,at ,rt)}0≤t≤T is called a trajectory
or episode of length T . The agent’s goal is to learn a policy
πθ

1 that maximizes the expected cumulative rewards in the
future, i.e., E[∑T

t=0 γt · rt ], where the discount factor γ ∈ (0,1)
progressively de-emphasizes future rewards. RL consists of a
policy-training stage and a policy-serving stage [41]. At the
policy-training stage, the agent (using an initialized policy)
starts with no knowledge about the task and learns by rein-
forcement and directly interacting with the environment. At
the policy-serving stage, the trained policy is used to generate
an action based on the current state of the environment, and
model parameters are no longer being updated.

2.2 Workload Autoscaling with RL
Because of the sequential nature of the decision-making pro-
cess, RL is well-suited for learning resource management poli-
cies, as it provides a tight feedback loop for exploring the state-
action space and generating optimal policies without relying
on inaccurate assumptions (i.e., heuristics or rules) [32, 48].
In addition, since the decisions made for workloads are highly
repetitive, an abundance of data is generated to train such
RL algorithms even with deep neural networks2. By directly
learning from the actual workload and operating conditions
to understand how the allocation of resources affects appli-
cation performance, the RL agent can optimize for a specific
workload and adapt to varying conditions in the learning envi-
ronment. RL [23, 47–49, 59, 62] has been shown to automate
resource management and outperform heuristics-based ap-
proaches in terms of meeting workload SLOs and achieving
higher resource utilization.

Specifically, we adopted the design and took the open-
source implementation of an RL-based workload autoscaler
from FIRM [47], which is the state-of-the-art RL-based au-
toscaling solution, to the best of our knowledge. FIRM uses
an actor-critic RL algorithm called DDPG [29].

The RL agent monitors the system- and application-specific
measurements and learns how to scale the allocated resources
vertically and horizontally. Table 1 shows the model’s state

1A policy πθ maps the state space S to the action space A and is usually
represented by neural networks (with parameters denoted by θ).

2Deep neural networks can express complex system-application environ-
ment dynamics and decision-making policies but are data-hungry.
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Table 1: State-action space of the RL agent.

State Space (st )
Resource Limits (CPU, RAM), Resource Utilization (CPU,
Memory, I/O, Network), SLO Preservation Ratio (Latency,
Throughput), Observed Load Changes

Action Space (at )
Resource Limits (CPU, RAM), Number of Replicas

Table 2: RL training hyperparameters.

Parameter Value

# Time Steps per Episode 100 × 64 mini-batches
Replay Buffer Size 106

Learning Rate Actor (3×10−4), Critic (3×10−3)
Discount Factor 0.99
Soft Update Coefficient 3×10−3

Random Noise µ (0), σ (0.2)
Exploration Factor ε (1.0), ε-decay (10−6)

and action spaces. The goal is to achieve high resource uti-
lization (RU) while maintaining application SLOs (if there
are any). SLO preservation (SP) is defined as the ratio be-
tween the SLO metric and the measured metric. If no SLO is
defined for the workload (e.g., best-effort jobs) or the mea-
sured metric is smaller than the SLO metric, SP = 1. An SLO
metric can be either request serving latency (e.g., the 99th
percentile of the requests are completed in 100ms) or through-
put (e.g., request processing rate is no less than 100/s). The
reward function is then defined the same as in FIRM [47],
rt = α · SPt · |R |+(1−α) ·∑i∈R RUi, where R is the set of
resources. Table 2 lists the hyperparameters tuned for better
performance in the experiments. The RL algorithm is trained
in an episodic setting. In each episode, the agent manages the
autoscaling of the application workload for a fixed period of
time (100 RL time steps in our experiments).

2.3 Characterization of RL in Production
In the characterization study of FIRM for workload autoscal-
ing, we selected 16 representative production cloud work-
loads based on a survey of 89 industry use cases of server-
less computing applications [11], as serverless workloads are
highly dynamic (and thus require autoscaling) and rely on the
provider to manage the resources. The selected production
workloads include CPU-intensive tasks (e.g., floating-point
number computation), image manipulation, text processing,
data compression, web serving, ML model serving, and I/O
services (e.g., read, write, and streaming). Next, we deployed
the selected workloads as Deployments in a five-node Ku-
bernetes cluster in a public cloud and ran an RL-based multi-
dimensional autoscaler (i.e., a FIRM agent) with each work-
load. All nodes run Ubuntu 18.04 with four cores, 16 GB
memory, and a 200 GB disk. For RL agent training and infer-
ence, we used real-world datacenter traces [65] released by
Microsoft Azure, collected over two weeks in 2021.

We next present the key insights from the characterization
study in the order of adaptation, online policy-serving, and
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Figure 3: Retraining cost of RL models.

early-stage of RL training.
Insight 1: Adaptation Retraining Cost. To study the retrain-
ing cost of adapting a trained RL policy to new application
workloads, we selected each application from the workload
pool, trained an RL agent for the application until conver-
gence, and retrained the learned RL policy to serve all the
other different applications. We then measured the reward
drop after the workload changed and the number of episodes
each agent took to retrain to convergence. As shown in Fig. 3
(column 1), we observed a 45.6% average per-episode reward
drop percentage when the workload had been changed, and
retraining to convergence required around 230 episodes (with
the model parameter transfer learning used in FIRM [47]).
Insight 2: Online Policy-serving Performance Jitters. We
introduced seven scenarios to explore the performance insta-
bility of RL-based workload autoscaling agents when facing
application or service payload size changes and load pattern
changes. For I/O services to a backend file system (e.g., AWS
S3) and the compression/decompression services, the size of
files being read, written, or streaming was changed from [128
KB, 256 KB, 384 KB] to [512 KB, 768 KB, 1024 KB]. For
database services, the size of the table being scanned was
changed from 1024 items to 10240 items. For floating-point
number calculation, the number of operations was changed
from 108 to 208. For image manipulations, the dimension was
changed from 40×40 to 160×160. For text processing, the
JSON file size was changed from [250 B, 500 B, 1 KB] to
[2 KB, 3 KB, 5 KB]. For ML model serving, we changed
the matrix multiplication dimension from 50 to 150. For load
pattern changes, we divided the Azure workload traces into
two parts, one half with a higher daily load (> 105 per day)
and the other half with a lower daily load (≤ 105 per day).

Fig. 3 (columns 2–9) shows the per-episode reward drop
percentage and the retraining cost of each scenario. File size
changes led to the lowest 12.8% reward drop and around
70 episodes of retraining. We attribute this to I/O-intensive
workloads’ relatively low sensitivity to CPU/memory alloca-
tion, compared to compute- or memory-intensive workloads.
Other payload-related changes (i.e., table size, ML model,
floating-point number operations, image dimension, and text
size) resulted in a 15.6–19.9% reward drop. Load changes
from high request arrival rates to low arrival rates (i.e., H→L
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Table 3: Workload performance and utilization efficiency
deficit (i.e., the relative difference compared to the rule-based
approach) in early-stage RL model training.

RL Episodes EP 1–100 EP 101–200 EP 201–300 EP 301–400

CPU Util -32.3% ± 14% -42.9% ± 15% -22.1% ± 12% -10.0% ± 6%
Memory Util -28.8% ± 11% -30.5% ± 10% -26.5% ± 8% -7.8% ± 2%
SLO Violations 56.1 ± 14 × 22.2 ± 7 × 12.7 ± 5 × 10.1 ± 3 ×

in Fig. 3) and from low rates to high rates (i.e., L→H) resulted
in 19.9% and 21.8% reward drops, which required around 98
and 107 episodes of model retraining, respectively.
Insight 3: Cost of Early-stage RL Training. As mentioned
in §2.2, RL training proceeds in episodes. When the initial-
ized RL agent starts to learn the optimal policy, especially at
an early stage of policy training, the policy might be worse
than the baseline heuristics-based approach or even produce
undesired actions, such as an oscillating scaling up and down
behavior. This is primarily due to the exploration of the state-
action space and RL agent learning through trial and error.
To study what is lost during policy training, we compared
workloads managed by RL agents with the same workloads
managed by the rule-based autoscaling approach (i.e., HPA
and VPA). We define the early stage of RL training to be the
training process from the beginning to the episode at which
the RL agent starts to get better than the rule-based approach
(which is around 400 episodes in our experiments) because
we are interested in the loss due to RL training compared to
non-RL-based approaches. We then divided the 400 episodes
(in the early training stage) into four segments. For each seg-
ment, we calculated the accumulated utilization deficit and
SLO violations of the application workloads controlled by
the RL agents; the results are shown in Table 3. The rela-
tive difference in utilization or SLO performance is based on
the comparison between the RL agent and the rule-based ap-
proach when used to control the same application workloads
with the same set of traces.

Results show that RL policies necessarily lead to poor deci-
sions in the early stages of training. In the first 100 episodes,
the RL agents inevitably caused more SLO violations than in
the other segments (56.1× more than the rule-based approach,
which had five SLO violations per 100 episodes). We observe
that most SLO violations were due to the under-provisioning
of resources, so the CPU and memory utilization deficits
(32.3% and 28.8% lower, respectively, than for the rule-based
approach) were smaller than those in the later segments. In
the last three segments, we observe a utilization deficit (i.e.,
10–42.9% lower CPU utilization and 7.8–30.5% lower mem-
ory utilization) and more SLO violations (i.e., 10.1–22.7×)
compared to the rule-based approach.
Summary and Implications. Workloads running in produc-
tion cloud systems might be user-facing or high-stakes. To en-
joy the benefit of RL in systems management, the key challenge
is to produce fast-adapting, effective, and robust RL-based
solutions under the constraints of production cloud systems.
As of now, to the best of our knowledge, there are no systems
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that can help agent developers address this challenge.

3 AWARE Design
3.1 Overview
Driven by the insights from §2.3, we describe the design of
AWARE, a framework that supports RL agents for multidi-
mensional Pod autoscaling (MPA) of workloads in production
Kubernetes systems. AWARE manages the RL agent lifecycle
to deliver stable and robust agent performance. Fig. 4 provides
an overview of AWARE. We next present a brief summary of
each component in this section.
RL Environment. The RL environment (denoted by 1 in
Fig. 4) of AWARE consists of a cluster deployment (e.g.,
Kubernetes) and an MPA wrapper. The MPA wrapper is de-
signed and implemented as a shim layer that follows an “agent-
centric” pattern of request-response interaction advocated by
OpenAI Gym [44]. The purpose of the MPA wrapper is to
translate measurements and scaling recommendations to and
from RL abstractions (i.e., states/rewards and actions), respec-
tively. The communication between the wrapper and the RL
agent is through remote procedure calls (RPCs). When the
agent steps the environment forward by sending an action
to the MPA wrapper through the RPC request, the wrapper
translates the received action to vertical and horizontal scal-
ing configurations and applies it to the cluster deployments
(e.g., by setting the VPA object [15] and calling the replica
re-scaling API). The wrapper gets measurements from the
monitoring service in the cluster (e.g., Prometheus [7] in Ku-
bernetes), translates them to RL states and rewards, and sends
them back to the agent through the RPC response. The wrap-
per then waits on the RPC server for the next action request.
We describe implementation details in §4.1.

The framework can also be applied to other systems man-
agement tasks (e.g., job scheduling or network congestion
control) by replacing the RL environment. Decoupling the RL
environment (i.e., the environment wrapper) from the rest of
the framework and using the standard OpenAI Gym interface
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make environment replacement easy [33].
RL API Gateway. The RL API gateway connects the RL
agent to the MPA wrapper by sending the RL action in an
RPC request and unpacking the state and reward in the RPC
response for the RL agent. Each RL trajectory consists of
<state, action, reward> transitions in one episode where the RL
environment defines the length or the terminating condition of
an episode. The trajectories from each RL agent, along with
the logical timestamp (i.e., the episode and time step index),
are saved to the RL trajectory database.
RL Agent (Base-learner). The RL agent implements the
DDPG RL algorithm (as described in FIRM [47]) and inter-
acts with the RL environment to perform policy training or
policy serving (i.e., inference). Since the interface between
the RL agent and the MPA wrapper follows the OpenAI Gym
standard, different advanced RL algorithms can be used to
replace the original RL algorithm DDPG.
Meta-learner. To help adapt to new workloads or environ-
ment updates within the problem domain, the meta-learner
(denoted by 2 ) selects RL trajectories from the database and
generates an embedding that accurately represents the work-
load running in the environment. RL trajectories are selected
per application, and the criteria are based on the reward asso-
ciated with each trajectory. The embedding is then fed to the
base-learner (i.e., the RL agent) as part of the input. The RL
agent leverages the embedding to adapt (fine-tune) its policy
by differentiating heterogeneous workloads and environment
updates. See §3.2 for more details.
RL Retraining Detector and Trigger. At the end of each
episode, the RL retraining detector (denoted by 3 ) pulls the
recent episode rewards gained by the agent from the trajectory
database. The mean and standard deviation of the per-episode
rewards are calculated and compared to predefined thresholds
for performance and variability assessment. If conditions are
met, the RL retraining trigger will intercept the inference or
training loop of the RL agent to switch retraining on or off,
respectively. See §3.3 for more details.
RL Bootstrapper. The RL bootstrapper (denoted by 4 ) de-
termines whether the RL training is online or offline. In the
online RL training mode, the RL agent interacts directly with
the RL environment. However, offline RL training avoids
worse-than-baseline performance or illegal actions in the early
stages of RL training, which is desired by production systems.
In the offline RL training mode, the RL policy training hap-
pens offline based on data collected using a fallback option
(i.e., a heuristics-based method), while the RL policy is not
used for interacting with the environment. The RL bootstrap-
per intercepts the request-response path between the RL agent
and the RL API gateway and replaces the RL agent with the
controller implemented as the fallback option. For instance,
in the case of workload autoscaling, the default autoscalers
widely used are the traditional rule-based approaches HPA
(for horizontal scaling) and VPA (for vertical scaling). Given
the states at each time step, corresponding autoscaling actions
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Figure 5: Architecture of meta-learning for RL.

are then generated based on the HPA and VPA algorithms and
sent back to the RL API gateway for execution. The trajecto-
ries recorded in the RL trajectory database will be used for
the offline RL policy training. See §3.4 for more details.

3.2 Meta-learner
Traditional RL-based resource management approaches [23,
47, 48, 59, 62] require the collection of large amounts of train-
ing data samples and retraining (even with transfer learning)
to adapt to new environments for (a) updated or previously un-
seen application workloads or (b) constantly evolving cloud
infrastructures [18, 37, 53, 58]. Pure RL-based approaches
are no longer tenable in such dynamic cloud environments or
even in the context of multi-cloud computing [54]. A novel
approach that provides fast model adaptation is needed to
make RL practical in production cloud systems.

In AWARE, we leverage meta-learning to reduce the re-
training overhead and thus adapt quickly to new environments.
In essence, the RL agent is treated as the base-learner for
an individual environment, and a meta-learner is designed
to generate representative embeddings that help differentiate
environments. We next give a brief primer on meta-learning
and the concept of embeddings before presenting AWARE’s
meta-learning model and an interpretation of embeddings
from a systems perspective.
Meta-learning Primer. Meta-learning is known as learning to
learn [26]. A good meta-learning model is capable of adapting
well or generalizing to new environments that have never been
encountered during training time. The adaptation process,
essentially a mini-learning session (with limited exposure
to the new environment), happens after the meta-learning
model training stage. In the meta-learning model training
stage, rather than training the learner on a single environment
(with the goal of generalizing to unseen “intra-environment”
samples from a similar data distribution), a meta-learner is
trained on a distribution of environments, with the goal of
learning a strategy that generalizes to unseen environments
(i.e., “inter-environment”). Even without any explicit fine-
tuning (i.e., with no gradient back-propagation on trainable
variables), the meta-learning model autonomously adjusts
internal hidden states to learn [12, 20, 39, 43].

392    2023 USENIX Annual Technical Conference USENIX Association



Embedding Techniques. Embeddings map variables to low-
dimensional vectors in a way that similar variables are close
to each other [38, 57]. Embeddings have been widely used in
the area of NLP and software engineering (e.g., word or code
embeddings) and can also be applied to dense data to create
a meaningful similarity metric. In AWARE, embeddings are
used to explicitly represent and differentiate environments,
and meta-learning enables learning to generate embeddings.
AWARE’s Meta-learning Model Design. There are three
key components in the design of the meta-learning model:
• A Distribution of MDPs (i.e., RL environments): Each MDP

corresponds to one agent to which the base-learner will
adapt. During the training of each agent, the meta-learner is
exposed to a variety of environments and is trained to adapt
to different MDPs. In our case of workload autoscaling,
each environment represents a different application work-
load managed by the base-learner, where workloads can
have heterogeneous SLOs, payloads, or architecture.

• A Model with Memory: We use a recurrent neural network
(RNN) [17, 52, 55] that maintains a high-dimensional hid-
den state with nonlinear dynamics to acquire, process, and
memorize knowledge about the current environment. In an
RNN, hidden layers are recurrently used for computation.
Compared to memoryless models such as autoregressive
models and feed-forward neural networks, RNNs store in-
formation in the hidden states for a long time, so they are
effective in capturing both spatial and temporal patterns.
We did not explicitly use memory augmentation [51] for
our RNN meta-learner because we found that the features
of our application workloads are not as high-dimensional
as those of computer vision tasks [51], and the RNN hidden
states suffice to provide good representations.

• Meta-learning Algorithm: A meta-learning algorithm learns
to update the base-learner to optimize for the purpose of
adapting quickly to a previously unseen environment [20,
39]. Our novel approach uses an ordinary gradient descent
update of RNN with a hidden state reset at a switch of
MDPs. As training proceeds, the algorithm learns how to
generate an embedding to best represent the environment
and differentiate one environment from another.

Integration between Meta-learner and Base-learner. The
base-learner discovers a rule that generalizes across data
points for an <application, environment> pair, while the meta-
learner generalizes across <application, environment> pairs.
Fig. 5 illustrates the interaction between the meta-learner ( 2

in Fig. 4) and the base-learner. Suppose that each data point
used in the training and inference of the RL agent (i.e., a
base-learner) with the <application, environment> pair i is
{(st ,at ,rt)}0≤t≤T , i.e., one RL trajectory T Ri from the envi-
ronment i; then, each data point in the meta-learner is a bundle
of M trajectories from the same environment, i.e., [T Ri

1, T Ri
2,

. . . , T Ri
M]. These episodes contain characteristics of the on-

going task that can be used to abstract some specific informa-
tion about the environment (through <state, action, reward>

transition sequences). The meta-learner uses a bidirectional
RNN [52] to generate an embedding given a sequence of RL
trajectories from the same environment (same base-learner).
Unidirectional RNN has the limitation that it processes inputs
in strict temporal order, so the current input has the context
of previous inputs but not the future. Bidirectional RNN, on
the other hand, duplicates the RNN processing chain so that
the inputs are processed in both forward and backward orders
to enable looking into future contexts as well.

The input trajectories (to the meta-learner) are selected
from the RL trajectory database (that are generated by the
RL agent interacting with the current RL environment) dy-
namically at runtime. We chose the top M trajectories that
have resulted in the highest rewards so far because the experi-
mental results show that the trajectories with lower rewards
are unhelpful or even harmful. Intuitively, those lower-reward
trajectories are generated with a random policy or a poorly
trained policy, so they are not representative of the workloads.

The output from the bidirectional RNN of the meta-learner
is an embedding that is used to fingerprint/represent the <ap-
plication, environment> pair with which the base-learner is
interacting. As shown in Fig. 5, the generated embedding
based on past experience (i.e., the episodes previously ex-
plored by the base-learner) is fed to the base-learner as part
of the input at each time step. Since we adopted as our base-
learner the RL design from FIRM [47], which is an actor-critic
RL algorithm, the embedding is taken by the actor network.
Interpreting Embeddings from Systems Perspective. The
environment-specific embedding is able to differentiate one
<application, environment> pair from another and thus guides
the base-learner to adapt to the new environment. Fig. 6 visu-
alizes the key idea of embedding. The spatial and temporal
characteristics of the workloads are encoded and mapped onto
a low-dimensional latent vector space by the embedding layer.
Workloads with similar characteristics are projected to loca-
tions that are close to each other on that vector space. By
calculating the cosine similarity between any two generated
vectors (i.e., embeddings), we can get a monotonic similar-
ity measure. To help understand how generated embeddings
can represent spatial and temporal characteristics, we selected
RL trajectories from <application, environment> pairs with
human-detectable different performance sensitivities or load
patterns, and then the plotted embedding projection shows
that indeed similar workloads are closer to each other when
comparing cosine similarities of their embeddings. In Fig. 6
(upper), the sensitivity of application performance to different
resource allocations is shown in the heatmaps to illustrate
the spatial characteristics, with the X-axis being CPU cores
and the Y -axis being allocated RAM. Darker colors represent
worse performance in terms of application request-serving
latency. In Fig. 6 (lower), the application load-per-second
time series are plotted to represent the temporal characteris-
tics. Again, workloads with similar patterns are projected to
adjacent locations in the output vector space.
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Figure 6: An example illustrating the idea of workload em-
bedding for encoding spatial and temporal characteristics
from a systems perspective. The yellow points (upper figure)
indicate that workloads with similar performance sensitivities
(to resource allocations) are projected to locations near each
other in the embedding vector space. The blue points (lower
figure) show that workloads with similar load arrival patterns
are projected to adjacent locations in the embedding vector
space. The similarity metric used is cosine similarity.

Meta-learner Training. During the training of the meta-
learner, both the meta-learner and base-learner model param-
eters are updated. After each RL episode, the loss value is
generated by the base-learner and is backward-propagated
to update the model parameters in the base-learner. Since
the meta-learner is trained across a distribution of environ-
ments, the total loss of all sampled environments in the train-
ing dataset is used to update the model parameters in the
meta-learner. In the end, the trained meta-learner is capable
of abstracting the individuality of each <application, environ-
ment> pair; the trained base-learner is a shared RL model
that is able to generate optimal workload autoscaling policies
conditioned on the workload embeddings provided by the
meta-learner. The base-learner can be used as a starting point
and as the basis for fine-tuning a specific novel <application,
environment> pair in the inference stage.

Meta-learner Inference. After the meta-learner is trained,
the meta-learning model is able to adapt the base-learner to
a new <application, environment> pair that has never been
encountered during training. Note that even though the new
environment has never been encountered during training, it
comes from the same distribution as, or shares similar pat-
terns with, the encountered ones, so that transferring is still
possible [12, 20, 39, 43]. The adaptation process only requires
limited exposure to the new environment. Therefore, AWARE
simply samples RL episodes and runs the meta-learner to

Algorithm 1 RL agent lifecycle transition management for
bootstrapping and triggering of online retraining. Four status
codes INITIALIZED, ONLINE, OFFLINE, and SERVING stand
for agent-initialized, online training, offline training, and on-
line policy-serving, respectively.

Require: Rewards R = [rt ]t∈T , User Profile P
1: procedure OBSERVEANDTRIGGER(R, P)
2: stage← INITIALIZED
3: while True do
4: if state.equal(INITIALIZED) then
5: if P.BOOTSTRAP == True then
6: stage← OFFLINE ▷ Bootstrapping
7: else
8: stage← ONLINE ▷ Skip Bootstrapping
9: end if

10: else if state.equal(OFFLINE) then
11: if avg(R) ≥ P.Tonline then
12: stage← ONLINE
13: end if
14: else if state.equal(ONLINE) then
15: if avg(R) ≥ P.Tserving & std(R) ≤ P.Tvar then
16: stage← SERVING
17: end if
18: else if state.equal(SERVING) then
19: if avg(R) < P.Tserving ∥ std(R) > P.Tvar then
20: stage← ONLINE
21: end if
22: end if
23: end while
24: end procedure

generate the workload embedding. With the workload embed-
ding, the base-learner can be continuously trained to learn the
workload autoscaling policy for the new <application, envi-
ronment> pair. The meta-learner model parameters are fixed
during the inference stage.

3.3 Incremental Retraining
When deploying the RL agent in a production system, one
needs to ensure that the policy behaves as expected and scales
to the workload in production. AWARE leverages continu-
ous monitoring to detect any anomalous behavior and trigger
retraining when needed. Alg. 1 describes how AWARE’s
RL retraining module ( 3 in Fig. 4) manages the lifecycle
of the agent and enables incremental retraining at runtime
(lines 14–21). The input to the retraining module includes (a)
the user profile specifying the configuration, and (b) recent
rewards pulled from the RL trajectory database. When the
mean and the standard deviation of the recent rewards sat-
isfy the threshold-based condition (i.e., agent performance is
bounded to a target value), the agent enters the policy-serving
stage; otherwise, the agent enters the policy-training stage.
Retraining of the RL agent is by online interaction with the RL
environment. As discussed in §3.4, non-RL-based approaches
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(i.e., HPA and VPA) can be used as a fallback option for RL
agents when high-stakes applications want to keep the RL
agent in the offline mode during retraining.

3.4 Bootstrapping
The policy at the early RL training stages could be worse
than the baseline approaches. For example, overprovisioning
leads to low resource utilization, while under-provisioning
results in SLO violations. For production workloads, espe-
cially high-stakes applications, such suboptimal actions are
not acceptable. In AWARE, an RL bootstrapper ( 4 in Fig. 4)
has been designed to combine offline and online RL training.
If the user specifies enabling bootstrapping (as shown in lines
4–9 Alg. 1), the offline mode will be turned on first. AWARE
will then use Kubernetes HPA [25] (which is a threshold-
based approach) for horizontal workload autoscaling, and use
Kubernetes VPA [15] (which adjusts resource limits based on
history profile) for vertical workload autoscaling. Note that
HPA and VPA can also be used as a fallback option for RL
when high-stakes applications want to keep the RL agent in
the offline mode during retraining, as discussed in §3.3.

In the offline mode, the RL bootstrapper intercepts the
request-response path between the agent and the RL API gate-
way and replaces the RL agent with the fallback controller
to react to the received states and generate actions at each
time step. The RL API gateway then takes the received action
for execution, and the resulting behavior is the same as when
workloads are managed by HPA and VPA. The RL agent sam-
ples trajectories from the trajectory database for offline policy
training. To overcome extrapolation errors whereby previ-
ously unseen state-action pairs are erroneously estimated, we
apply a state-conditioned generative model to combine with
the critic network for producing previously seen actions [14].
In the online training mode, the agent will then directly inter-
act with the RL environment through the API gateway.

4 Implementation
4.1 Kubernetes MPA
We propose our own design and implementation of multi-
dimensional Pod autoscaling because the current HPA and
VPA controllers are independent of each other and can lead
to a large number of tiny Pods [16]. Google MPA [10] is a
pre-GA beta version product that offers an integrated solution
for HPA and VPA, but it is not open-sourced and does not sup-
port custom recommenders. In AWARE, the MPA framework
combines the actions of vertical and horizontal autoscaling
but separates the actuation from the controlling algorithms.
As shown in Fig. 7, there are three controllers (i.e., a recom-
mender, an updater, and an admission controller) and an MPA
API (i.e., a CRD object [24]) that connects the autoscaling
recommendations to actuation.

The multidimensional scaling algorithm is implemented in
the recommender mostly by importing HPA and VPA libraries
to serve as the fallback option for RL-based approaches. The
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Figure 7: MPA design overview and integration with RL.

metrics required by the algorithm are collected from the Ku-
bernetes Metrics Server, including default metrics such as
container resource utilizations and custom metrics such as ap-
plication throughput or latency. The scaling decisions derived
from the recommender are stored in the MPA object as scal-
ing configurations. The updater and the admission controller
retrieve those updated configurations from the MPA object
and then actuate them as vertical and horizontal actions on the
application Deployments. The separation of action actuation
from scaling decision generation allows developers to replace
the default recommender with the alternative recommender,
i.e., the RL controller. The implementation is in Go and at the
stage of releasing to the Kubernetes upstream as well.

4.2 Integration with RL
The creation of MPA is through declarative YAML files.
To integrate MPA with RL agents, one needs to specify a
custom recommender to replace the default recommender
(HPA+VPA). After an MPA is initialized for the application
deployment, an MPA wrapper is created as a shim layer to
communicate with the RL agent through RPCs. We follow
the “agent-centric” pattern of request-response interaction
advocated by OpenAI Gym [44]. The exposed interfaces
include (a) init() (for initializing the RL environment),
(b) state = reset() (for resetting the environment at the
beginning of each RL episode), and (c) state, reward =
step(action) (for RL agent stepping). When the MPA wrap-
per receives an action through the RPC request, it first trans-
lates the action to vertical and horizontal scaling configura-
tions and writes to the MPA object. We deploy Prometheus [7],
the standard monitoring service in Kubernetes, to export de-
fault and custom metrics from the application Deployment.
The wrapper then queries the Prometheus service for real-time
metrics and translates to RL states and rewards. Finally, the
wrapper sends the metrics back to the agent through the RPC
response. The MPA wrapper is implemented in Python.

4.3 Meta-learning-based RL-serving
AWARE’s meta-learning-based RL agent management frame-
work is implemented in Python. Both the base-learner
(adopted from FIRM [47]) and the meta-learner are imple-
mented using PyTorch [13]. The meta-learner is essentially a
bidirectional two-layer RNN followed by two fully connected
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layers with the ReLU activation function. We chose the tra-
jectory bundle size to be 20 for the fastest adaptation with
the fewest trajectories according to the sensitivity analysis.
Each RNN hidden layer consists of 256 neurons, and the fully
connected layers consist of 256 and 64 neurons. We chose
two layers and an embedding size of 64 because adding more
layers and hidden units does not increase performance in our
experiments; instead, it slows down training speed signifi-
cantly. We used the Adam optimizer for parameter updates.

RL trajectories are saved to InfluxDB [21], an open-source
time-series database that is built to handle metrics with time-
stamped data. Recent rewards, sampled RL trajectories for
offline base-learner training, and the inputs for embedding
generation are all pulled from the trajectory database by using
the InfluxDB Python client library.

AWARE provides a simple and declarative user interface
for RL pipeline developers, which is consistent with Kuber-
netes’ way of creating and managing objects in the cluster. To
specify the targets for the workloads, i.e., resource utilization
targets and the application SLO (if there is one), users only
need to provide a YAML file following the definition template.
Both application latency and throughput SLOs are currently
supported. In addition, users can also specify the thresholds
for RL rewards and whether or not to enable bootstrapping in
the YAML file, which constructs the profile used in Alg. 1.

5 Evaluation
Our experiments addressed the following research questions:
§5.2 Does AWARE provide fast model adaptation to new

workloads? What is the value of meta-learning?
§5.3 How does AWARE perform in online policy-serving

when workload updates or load changes occur?
§5.4 How does AWARE perform in the early stages of policy

training, compared to RL agents without bootstrapping?

5.1 Experimental Setup
We implemented an application generator capable of gener-
ating a large number of synthetic applications by combin-
ing the 16 selected representative production application seg-
ments [11] (discussed in §2.3 as well) based on random sam-
pling with replacement from the segment pool. Each segment
represents the smallest granularity of common workloads in
cloud datacenters. In addition, each segment has to be associ-
ated with its own inputs to simplify load generation (e.g., the
image manipulation workloads come with random images).
The generator also comes with setup and tear-down scripts for
all external services each segment uses (e.g., databases or mes-
saging queues). Overall, we generated 1000 unique applica-
tions, deployed them as Deployments in a Kubernetes cluster
of 11 two-socket physical nodes, and ran an RL-based mul-
tidimensional autoscaler with each application. Each server
consists of 56–192 CPU cores and RAM that vary from 500
GB to 1000 GB. Seven of the servers use Intel x86 Xeon E5
processors, and the remaining ones use IBM ppc64 Power8
and Power9 processors.
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Figure 8: RL agent retraining cost and performance compari-
son of AWARE, transfer learning (TL), and transfer learning
with augmented features (TL+).

While it would be impossible to cover all cloud workloads,
the selected production workload segments should enable the
generation of a large number of synthetic cloud workloads
with varying resource consumption profiles. In the future,
the number of implemented segments can easily be extended
if specific workload profiles are missing. We refer to the
open-source artifact for additional details on the generator im-
plementation. With the same datacenter workload traces [65]
discussed in §2.3 with respect to RL agent training and policy-
serving, we divided the 1000 generated application pool with
the 8:2 ratio. The 800 applications with varied workloads
are used to train the meta-learner, while the remaining 200
applications are used to evaluate the adaptability. The total
runtime is ∼60 days, and the meta-learner training time is
∼312 hours on an Intel(R) Xeon(R) E5-2695 processor.

The RL formulation and design (in the base-learner) are
adopted from FIRM [47] (as mentioned in §2.3). As an end-
to-end evaluation, Fig. 1 shows that, compared to AWARE,
the RL-based autoscaler FIRM by itself suffered from poor
performance during the initial training stage (i.e., Stage 1 ,
which demonstrates the benefit of AWARE’s bootstrapping
mechanism), online policy-serving performance degradation
(i.e., Stage 2 , which demonstrates the benefit of the online
retraining triggering mechanism), and slow adaptation with
non-trivial retraining (i.e., Stage 3 , which demonstrates the
benefit of meta-learning). We then present the evaluation
results related to each research question in §5.2–§5.4.

5.2 Fast Adaptation
To study adaptability to new workloads, we compared
AWARE with the existing transfer learning approach.
FIRM [47] leverages transfer learning to train an RL agent
for a new service based on previous RL experience gained
when training the RL agent for a known service. In the
transfer-learning-based approach (TL), the model parame-
ters (weights) are shared between the agents managing the
known workload and the new workload. We also compared
AWARE with a novel approach (TL+) based on transfer learn-
ing that includes additional spatial and temporal features in
the RL states, since the meta-learner in AWARE is trained
to output an embedding to represent the spatial and temporal
characteristics of the <application, environment> pair. We
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Figure 9: RL agent online policy-serving performance com-
parison of AWARE, no retraining, the rule-based method, and
the agent with the converged RL policy. In the comparison
of reward and CPU/memory utilization, the higher, the better,
while a lower number of SLO violations is better.

used the widely used ARIMA model [19] to generate the
predicted load for the next time step (i.e., temporal feature)
and recorded a table mapping from resource allocation to
performance (i.e., spatial feature). We performed A/B tests
in which the workload traces were the same, but the recom-
mender in MPA was replaced with TL, TL+, and AWARE,
which drove the horizontal and vertical scaling of the work-
load. We repeated the A/B test 100 times. In each test, we
randomly selected a workload from the pool and trained the
RL agent to convergence. We then randomly selected 10 other
different workloads from the pool for adaptivity evaluation.
We measured the retraining time, CPU cycles involved in re-
training, utilization deficit (compared to the converged RL
policy), and SLO violations.

Fig. 8 shows that AWARE adapted 5.5× and 4.6× faster
(saved 68–72% CPU cycles) than TL and TL+, respectively.
During the adaptation period, TL+ had 4.6× and 6.2× higher
CPU and memory utilization deficit compared to AWARE
while AWARE reduced SLO violations by 7.1×. TL+ encodes
additional spatial and temporal features, but each state is still
a stateless snapshot of the running workload. Additional fea-
tures (i.e., the table and the ARIMA output) greatly increase
the state space. Meta-learning, on the other hand, offers a sys-
tematic and automated way of learning how to differentiate
the workloads well and outputs a low-dimensional embedding
to be used by the base-learner.

5.3 Online Policy-serving
To evaluate the online policy-serving performance when fac-
ing workload updates and load changes (described in §2.3),
we compared AWARE with (a) a rule-based approach, (b) an
RL agent without continuous monitoring and retraining, and
(c) an RL agent with the converged policy. For the rule-based
approach with manual scaling, we measured the maximum
CPU utilization when the SLO was met, and set it as the
threshold for HPA. We used the default Auto mode [15] for
VPA. We performed the same style of A/B tests 100 times
and replaced the MPA recommender with the four approaches.
In each A/B test, we randomly selected a workload from the
pool, trained the RL agent to convergence, and injected a se-
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Figure 10: RL agent training performance comparison of
AWARE, no bootstrapping, the rule-based method, and the
agent with the converged RL policy. In the comparison of
reward and CPU/memory utilization, the higher, the better,
while a lower number of SLO violations is better.

ries of the seven random instability scenarios introduced in
§2.3. We then measured the average reward, CPU/memory
utilization, and the number of SLO violations during the time
until the agent managed by AWARE converged. Fig. 9 shows
that AWARE had 9.6% and 14.8% higher CPU and memory
utilization, and reduced SLO violations by 3.1× compared to
the RL agent without retraining (the second-best approach),
resulting in 8.6% higher per-episode reward. Compared to
the converged RL policy, AWARE had a 3.6% lower average
per-episode reward because we set the retraining threshold to
be 5, corresponding to a 2.6% reward degradation. Sensitivity
analysis showed that AWARE converged to the no-retraining
baseline as the threshold increased while a smaller than 5
threshold led to constant retraining with no policy serving.

5.4 Bootstrapping
To study how much bootstrapping helps reduce the cost of
early-stage RL training, we compared AWARE with (a) the
rule-based approach (same as in Fig. 9), (b) an RL agent with-
out bootstrapping, and (c) an RL agent with the converged
policy. Since the per-episode reward achieved by the rule-
based autoscaler is around 130 (translated from the measured
utilization and performance), we set the bootstrapping thresh-
old in AWARE to 130. In the sensitivity analysis, we observed
that a higher threshold led to endless bootstrapping driven
by the rule-based autoscaler (since the measured reward is
always lower than the threshold), while the lower the thresh-
old, the more performance degradation AWARE had during
its early-stage training. A threshold of 0 basically converges
to the learning curve without AWARE bootstrapping (i.e.,
no offline learning). We performed A/B tests 100 times and
replaced the MPA recommender with the four approaches.
In each A/B test, we randomly selected a workload from
the pool and trained the RL agent to convergence (with or
without bootstrapping). We then measured the average re-
ward, CPU utilization, memory utilization, and the number of
SLO violations during the time until the RL agent converged.
Fig. 10 shows that AWARE had 47.5% and 39.2% higher CPU
and memory utilization, respectively, and reduced SLO viola-
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tions by a factor of 16.9× compared to the RL agent without
bootstrapping (the second-best approach), resulting in 47.3%
higher average per-episode reward before convergence.

6 Related Work
RL Training and Model-serving Frameworks. Ray [41] is
an open-source distributed execution framework that facili-
tates RL model training and serving by making it easy to scale
an RL application and schedule distributed runs to efficiently
use all resources (i.e., CPU, memory, or GPU) available in a
cluster. Amazon SageMaker [1] uses the Ray RLlib library
that builds on the Ray framework to train RL policies. Sage-
Maker also provides cloud services that help build and deploy
ML models (e.g., data processing and model evaluation). RL-
zoo [9] is an RL library that aims to make the development of
RL agents efficient by providing high-level yet flexible APIs
for prototyping RL agents. RLzoo also allows users to import
a wide range of RL agents and easily compare their perfor-
mance. Park [33] provides 12 representative RL environments
in the field of systems and networking (e.g., job scheduling)
for developing and evaluating RL algorithms. Genet [60] is
an RL training framework for learning better network adapta-
tion policies. Genet leverages curriculum learning [42], which
aims to sequence tasks to achieve the best performance on a
specific final task instead of quickly adapting to a new task
within a small number of gradient descent steps.
RL in Production. Panzer et al. [45] provide a survey of
existing RL applications in production system domains, in-
cluding resource scheduling. They summarize the implemen-
tation challenges and generalizability of simulation-trained
RL models. SOL [58] is an extensible framework for develop-
ing ML/RL-based controllers for tasks such as core frequency
scaling. SOL is complementary to AWARE, which can further
guarantee that the RL agent operates safely under various re-
alistic issues, including bad data and external interference like
resource unavailability. SIMPPO [36, 48] provides a scalable
framework based on the mean-field theory that enables multi-
ple RL agents to coexist in a shared multi-tenant environment.
Autopilot [50] is a workload autoscaler used at Google that
leverages multi-armed bandits (i.e., the simplest version of
RL) to choose a variant of the sliding window algorithms
that historically would have resulted in the best performance
for each job. In its essence, it is still a heuristic mechanism
and has been shown [59] to suffer from poor system stability
because of inaccurate estimation of horizontal concurrency;
it can also result in a large number of tiny Pods [16] due to
the independence between horizontal and vertical scaling.

7 Discussion and Future Challenges
Extension to Other System Domains. AWARE is a general
and extensible framework that can be applied to other systems
management tasks (e.g., congestion control or job scheduling).
To apply it to a new domain, one needs to (a) replace the
RL environment by implementing the provided environment
wrapper interface; and (b) provide a default non-RL-based

agent for the RL bootstrapper. We leave the study of the
performance in other system domains to the future.
Out-of-distribution Workloads. AWARE provides the op-
portunity to quickly customize the model to specific work-
loads. However, out-of-distribution <application, environ-
ment> pairs still require training because meta-learning as-
sumes that all pairs, including the unseen cases, are inherently
within the learned distribution [20] (e.g., in terms of service
request arrival patterns or sensitivity to resource allocation).
Given the diversity of workloads in the cloud datacenter (used
in the training dataset), the meta-learner and the shared base-
learner can be continuously trained, and out-of-distribution
cases are covered eventually. Meanwhile, with offline RL
training, users can still benefit from the heuristics-based so-
lution used as the fallback option. One limitation of our ex-
periment was that the generated applications might not have
covered all possible cloud workloads. However, application
segments can easily be extended in the synthetic application
generator if specific workload profiles are missing (§5.1).
On-policy RL Algorithms. When RL agents are being boot-
strapped at the initial stage, off-policy RL agents (such as
DDPG [29, 47] and DQN [59, 62]) can be trained directly
using the collected RL trajectories. However, on-policy RL
agents (such as PPO [48]) require trajectories generated from
their own policy. One potential way to train on-policy RL
agents offline would be to build a simulator based on the
collected trajectories, which would essentially map resource
allocation to workload performance and system metrics. A
balanced experience replay scheme [27] could potentially be
applied for locating near-on-policy samples from the simula-
tor constructed based on the offline dataset. Instead of drawing
trajectories from the trajectory database (as in §3.4), the RL
base-learner can interact with the simulator for bootstrapping.

8 Conclusion
This paper explored the challenges of applying RL in work-
load autoscaling in production cloud platforms. We presented
a general and extensible framework for deploying and man-
aging RL agents in production systems. To demonstrate the
framework, we implemented AWARE for automating RL-
based workload autoscaling in Kubernetes and experimentally
showed (a) the benefits of leveraging meta-learning for fast
model adaptation, and (b) how the design of AWARE ensures
the stable and robust online performance of RL models.
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Availability
We provide an open-source implementation of AWARE at
https://gitlab.engr.illinois.edu/DEPEND/aware.
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and Ravishankar K. Iyer. SIMPPO: A scalable and
incremental online learning framework for serverless re-
source management. In Proceedings of the 13th Sympo-
sium on Cloud Computing (SoCC 2022), pages 306–322,
New York, NY, USA, 2022. Association for Computing
Machinery.

[49] Fabiana Rossi, Matteo Nardelli, and Valeria Cardellini.
Horizontal and vertical scaling of container-based appli-
cations using reinforcement learning. In Proceedings of
the 12th International Conference on Cloud Computing
(CLOUD 2019), pages 329–338, 2019.

[50] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,
Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-
mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, and John Wilkes. Autopilot: Workload
autoscaling at Google. In Proceedings of the 15th
European Conference on Computer Systems (EuroSys
2020), New York, NY, USA, 2020. Association for
Computing Machinery. https://doi.org/10.1145/
3342195.3387524.

[51] Adam Santoro, Sergey Bartunov, Matthew Botvinick,
Daan Wierstra, and Timothy Lillicrap. Meta-learning
with memory-augmented neural networks. In Proceed-
ings of the 33rd International Conference on Interna-
tional Conference on Machine Learning (ICML 2015),
pages 1842–1850. JMLR.org, 2016.

[52] Mike Schuster and Kuldip K Paliwal. Bidirectional
recurrent neural networks. IEEE Transactions on Signal
Processing, 45(11):2673–2681, 1997.

[53] Akshitha Sriraman and Abhishek Dhanotia. Accelerom-
eter: Understanding acceleration opportunities for data
center overheads at hyperscale. In Proceedings of the
25th International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS 2020), pages 733–750, New York, NY, USA,
2020. Association for Computing Machinery.

[54] Ion Stoica and Scott Shenker. From cloud computing
to sky computing. In The 18th Workshop on Hot Top-
ics in Operating Systems (HotOS 2021), pages 26–32,
New York, NY, USA, 2021. Association for Computing
Machinery.

[55] Ilya Sutskever, James Martens, and Geoffrey E. Hin-
ton. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference
on Machine Learning (ICML 2011), 2011. https:
//icml.cc/2011/papers/524_icmlpaper.pdf.

USENIX Association 2023 USENIX Annual Technical Conference    401

https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW
https://proceedings.neurips.cc/paper/2000
https://proceedings.neurips.cc/paper/2000
https://jmlr.org/papers/volume21/20-212/20-212.pdf
https://jmlr.org/papers/volume21/20-212/20-212.pdf
https://www.gymlibrary.dev/
https://www.gymlibrary.dev/
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/3342195.3387524
https://icml.cc/2011/papers/524_icmlpaper.pdf
https://icml.cc/2011/papers/524_icmlpaper.pdf


[56] Chen Tessler, Yuval Shpigelman, Gal Dalal, Amit Man-
delbaum, Doron Haritan Kazakov, Benjamin Fuhrer, Gal
Chechik, and Shie Mannor. Reinforcement learning
for datacenter congestion control. Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI 2022),
36(11):12615–12621, Jun. 2022.

[57] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word
representations: A simple and general method for semi-
supervised learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics (ACL 2010), pages 384–394, USA, 2010. Associa-
tion for Computational Linguistics.

[58] Yawen Wang, Daniel Crankshaw, Neeraja J. Yadwadkar,
Daniel Berger, Christos Kozyrakis, and Ricardo Bian-
chini. SOL: Safe on-node learning in cloud platforms. In
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2022), pages 622–634,
New York, NY, USA, 2022. Association for Computing
Machinery.

[59] Ziliang Wang, Shiyi Zhu, Jianguo Li, Wei Jiang, K. K.
Ramakrishnan, Yangfei Zheng, Meng Yan, Xiaohong
Zhang, and Alex X. Liu. DeepScaling: Microservices
autoscaling for stable CPU utilization in large scale
cloud systems. In Proceedings of the 13th Symposium on
Cloud Computing (SoCC 2022), pages 16–30, New York,
NY, USA, 2022. Association for Computing Machinery.

[60] Zhengxu Xia, Yajie Zhou, Francis Y. Yan, and Junchen
Jiang. Genet: Automatic curriculum generation for
learning adaptation in networking. In Proceedings of
the ACM SIGCOMM 2022 Conference, pages 397–413,
New York, NY, USA, 2022. Association for Computing
Machinery.

[61] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: A randomized ex-
periment in video streaming. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 2020), pages 495–511, 2020.

[62] Zhe Yang, Phuong Nguyen, Haiming Jin, and Klara
Nahrstedt. MIRAS: Model-based reinforcement learn-
ing for microservice resource allocation over scientific
workflows. In IEEE 39th International Conference on
Distributed Computing Systems (ICDCS 2019), pages
122–132, Washington, DC, USA, 2019. IEEE Computer
Society.

[63] Hanfei Yu, Athirai A. Irissappane, Hao Wang, and Wes J.
Lloyd. FaaSRank: Learning to schedule functions in
serverless platforms. In Proceedings of the 2nd IEEE
International Conference on Autonomic Computing and

Self-Organizing Systems (ACSOS 2021), pages 31–40,
Washington, DC, USA, 2021. IEEE Computer Society.

[64] Kuo Zhang, Peijian Wang, Ning Gu, and Thu D. Nguyen.
GreenDRL: Managing green datacenters using deep re-
inforcement learning. In Proceedings of the 13th Sympo-
sium on Cloud Computing (SoCC 2022), pages 445–460,
New York, NY, USA, 2022. Association for Computing
Machinery.

[65] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and cheaper serverless
computing on harvested resources. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP 2021), pages 724–739, New York, NY,
USA, 2021. Association for Computing Machinery.

402    2023 USENIX Annual Technical Conference USENIX Association



Nodens: Enabling Resource Efficient and Fast QoS Recovery of Dynamic
Microservice Applications in Datacenters

Jiuchen Shi, Hang Zhang, Zhixin Tong, Quan Chen, Kaihua Fu, Minyi Guo
Department of Computer Science and Engineering, Shanghai Jiao Tong University

Abstract
Current microservice applications always meet with load and
call graph dynamics. These dynamics can easily lead to inap-
propriate resource allocation for microservices, and further
lead to Quality-of-Service (QoS) violations of applications.
However, current microservice management works are inca-
pable to handle these dynamics, mainly due to the execution
blocking effect among microservices. We therefore propose
Nodens, a runtime system that enables fast QoS recovery of
the dynamic microservice application, while maintaining the
efficiency of the resource usage. Nodens comprises a traffic-
based load monitor, a blocking-aware load updater, and a
resource-efficient query drainer. The load monitor periodi-
cally checks microservices’ network bandwidth usage and
predicts the monitored loads based on it. The load updater
updates the actual "to-be-processed” load of each microser-
vice to enable fast resource adjustment. The query drainer
allocates just-enough excessive resources for microservices to
drain the queued queries, which can ensure the QoS recovery
time target. Our experiments show that Nodens can reduce the
QoS recovery time by 12.1X with only the excessive resource
usage of 6.1% on average, compared to the state-of-the-art
microservice management systems.

1 Introduction

User-facing applications are evolving towards the microser-
vice architecture, with which the microservices communicate
through the network [25, 41] and are able to scale indepen-
dently [1, 5, 9]. The dependencies of the microservices can
often be denoted by a Directed Acyclic Graph (DAG) [31,32],
each node represents a microservice and each edge represents
the call dependency [24, 38]. Moreover, a production mi-
croservice application often has multiple call graphs [31, 32],
as users have different query patterns. Figure 1 shows an
example dependency graph and two call graphs that handle
different user queries.

In these applications, the load of each microservice change
dynamically, because 1) the load of the entire application may
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Figure 1: An example microservice dependency graph and
two call graphs.

change over time due to the diurnal, irregular, and bursty load
patterns (referred to be “load dynamic”) [3, 19, 28, 40], and 2)
the percentages of queries that go to different call graphs may
change over time (referred to be “call graph dynamic”) [34].
We analyze the open-sourced production traces [2,8], and find
that the load variation is 30% on average (up to 7.5X), and
the percentages of queries that go to different call graphs also
vary by 15% on average (up to 70%).

While it is crucial to ensure the required Quality-of-Service
(QoS) of user-facing applications [20,30,39], prior works [22,
38, 41, 44] fail to handle these dynamic applications. Most
prior works periodically check the load of each microservice,
and adjust the resource allocation of each microservice based
on the monitored load. They are incapable for the current
dynamic microservice applications for two main reasons.

As for the first reason, the monitored load of a microser-
vice may not be its real “to-be-processed” load due to the
cascade call relationship. Many queries may be blocked by
its upstream microservices. A microservice may not be al-
located enough computation resources in this case. Worse,
there is a lag in noticing the load increase. For instance, if
the monitoring period is 1 second, the lag can be 1 second
as well. However, the short lag may result in the long QoS
violation, as a great many of queries may queue up at the mi-
croservice. A very long time is needed to adjust resources and
drain up the query queue, when the microservice’s resource is
allocated based on the monitored load. Our experiments show
that the QoS can be recovered in as long as 84.4 seconds.

Some other prior work [18, 23, 25, 45] predict the QoS and
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adjust the resource allocation beforehand. They assume all the
queries go through all the microservices, thus are not able to
handle the dynamic loads due to the variation of call graphs.

An intuitive solution is calculating the actual “to-be-
processed” queries of each microservice based on the depen-
dency graph and the call graphs, and adjusting their resources
accordingly. However, it does not work because we find that
the queries of a microservice may also be blocked by other
microservices besides of its upstream microservices in the
dependency graph. For instance, microservice-2 in Figure 1
may be blocked by microservice-4 or microservice-5 that
do not call it in the dependency graph. This happens when
microservice-0 calls microservice-1 and microservice-2 in a
fixed order and the resource allocation of microservice-4 or
microservice-5 is insufficient.

An appropriate solution should be able to capture all the
potential “blocking” relationships, and be able to drain up
the query queues due to the monitoring lag. We therefore
define an execution blocking graph that captures all the supe-
rior microservices that may block a microservice, based on
which we further propose a runtime system named Nodens1

that enables fast QoS recovery, if the loads of some microser-
vices suddenly increase due to the two types of dynamics.
Note that the execution blocking graph is not the same as the
microservice dependency graph.

Nodens comprises a traffic-based load monitor, a blocking-
aware load updater, and a resource-efficient query drainer.
For each microservice, the load monitor periodically checks
the input network traffics, and predicts the current monitored
load of the microservice based on the traffics. This method
is much faster than obtaining the load information from the
microservices’ interfaces, enabling earlier resource allocation
adjustment. The load updater updates the execution blocking
graph with the monitored load obtained from the monitor, and
estimates the actual “to-be-processed” load of each microser-
vice. The query drainer adjusts the CPU resource allocated to
each microservice based on the actual loads of the microser-
vices and the queued queries during the previous process, in
order to quickly recover the QoS.

This paper makes three main contributions.

• Comprehensive analysis of current methods to han-
dle microservice dynamics. The insights obtained from
the analysis identify the opportunities to enable fast QoS
recovery when dealing with microservice dynamics.

• The design of a method to update actual loads of mi-
croservices under execution blocking effect. We con-
struct the execution blocking graph based on microser-
vice dependencies, with which we can update actual
loads of microservices under the blocking effect.

• The design of a policy to drain the queued queries
during the resource adjustment process. The policy

1The source code is available at https://github.com/shijiuchen/Nodens.

allocates excessive resources for microservices to sat-
isfy the QoS recovery time target, while maintaining the
resource efficiency.

We evaluate Nodens with our benchmarks on an eight-
node cluster. The experimental results show that Nodens can
reduce the QoS recovery time by 12.1X with only the over-
provisioned resources of 6.1% on average, compared to the
state-of-the-art microservice management systems.

2 Related Work

There has been some related work on ensuring the QoS of
user-facing applications.

2.1 Reactive Microservice Management
Reactive microservice management systems periodically mon-
itor the state (e.g., load or latency) of each microservice, and
adjust the resource allocation of each microservice based on
the state.

Heuristic methods: SHOWAR [17], PEMA [27], As-
traea [44], and ATOM [26] designed heuristic approaches
to conduct horizontal or vertical scaling for CPU or GPU mi-
croservices based on the resource utilization and response la-
tency. These heuristic methods can determine the resource al-
location for microservices in a quick way, but hard to achieve
the near-optimal values.

Machine Learning (ML) based methods: Nautilus [22]
used Reinforcement learning (RL) as feedback to tune mi-
croservices’ resources based on the application’s response
latency. FIRM [38] identified the critical microservices which
caused QoS violations, and used RL as feedback to adjust
resources for each microservice based on tail latencies, to
guarantee the QoS of the application. ELIS [41] utilized the
bayesian optimization algorithm with tail latencies as input
to recycle the over-provisioned resources and then allocate
just-enough resources to critical microservices. These ML-
based methods can allocate near-optimal resources for mi-
croservices, but are slower due to incremental training under
microservice dynamics.

Moreover, above reactive methods all have long QoS recov-
ery time when handling dynamics of microservices, which is
caused by the long monitoring interval, and the load blocking
under the cascade call relationship among microservices.

2.2 Proactive Microservice Management
Proactive microservice management systems predicted the
performance and resource allocation for microservices based
on historical data. Seer [25] and Sage [23] used ML-based
methods to predict the microservices that cause QoS viola-
tions based on the latency metrics, and increase the allocated
resources for them. Sinan [45] and DeepRest [18] utilized
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Figure 2: Load variation of top 20 microservice applications.

the deep learning-driven methods to predict the end-to-end
latency and estimate the resource allocation for different mi-
croservice stages, which can minimize the resource usage
while ensuring the QoS target. These works only consider
a unique dependency graph, which cannot handle the call
graph dynamics of the microservice application. Moreover,
Madu [34] predicted the load size for microservices based
on time series prediction models with the consideration of
dynamic call graphs into the loss function. However, it cannot
handle the unpredictable dynamic load and call graph cases
that commonly exist in production traces [2, 40].

3 Investigating Dynamic MS Applications

In this section, we first analyze the production trace in the
current public cloud. Then, we introduce microservice bench-
marks we make which have the dynamic call graph features.
At last, we explore the challenges of the current microservice
management systems in dealing with dynamics.

3.1 Dynamic Loads and Call Graphs
We analyze the open-sourced production-level microservice
trace [2] that contains the microservice call dependencies
across 3000+ applications in 12 hours to show the dynamics.

In the analysis, we record the loads of the microservices
for every five seconds, and calculate the load variation. The
load variation is defined to be the load changes in the adjacent
samples. Figure 2 shows the cumulative distribution of the
load variation of the microservices in the top 20 production-
level microservice applications. The top-20 applications are
selected according to the numbers of their queries. As ob-
served, the load variation is from 10% to 40% for 70% of the
samples. In the worst case, the load may increase by 2.3X.

From statistics, we find some of the top 20 microservice
applications have a great many types of call graphs, with a
maximum of 53761 types. All the microservices touched by
a query form a call graph. Different queries may have the
same call graph. Moreover, Figure 3 shows the call graph
proportion variation over time of the top 5 call graphs in the
largest microservice application. A call graph’s proportion
variation is defined to be its proportion changes in the adjacent
samples. We can observe that the percentages of queries to
the call graphs change dynamically with no oblivious pattern.
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Figure 3: The call graph proportion variation of the largest
microservice application in Alibaba Cloud.
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With the large number of call graphs and the unstable varia-
tion, it is non-trivial to profile the call graphs and their patterns,
and define static optimal resource allocation beforehand.

3.2 The Investigation Benchmarks
While current microservice benchmarks do not support dy-
namic call graphs [24,42,46], and the traces [2] do not include
the actual microservices (only the call traces), we build three
benchmarks by integrating the call graph patterns of the trace
and actual microservices in the benchmark suites.

Figure 4 shows the dependency graphs of the three bench-
marks, and the number of call graphs. The HR benchmark
is revised based on the popular HotelReservation bench-
mark [24]. It has five call graphs that respond to five types of
user queries: nearest hotel search, highest rated hotel search,
cheapest hotel recommend, comprehensive hotel recommend,
and hotel reservation. The benchmarks EB1 and EB2 are cre-
ated based on the dependency graphs of the top 2 applications
with multiple call graphs in the trace. For EB1 and EB2, simi-
lar to current benchmarks and related work [24,35,36,46], we
use commonly-used workloads in microservices, i.e., Near-
est Neighbor Searching [6], Word Stemming [13], Quick
Sort [15], Float Calculation [43], and Page Rank [16] to be
the stateless microservices.

3.3 The Long QoS Recovery Time
We show the QoS recovery time and 99%-ile latencies of the
benchmarks with load and the call graph dynamics in this
subsection. The QoS recovery time is the time needed to re-
duce the 99%-ile latency to be below a fixed latency target
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Table 1: Experiment specifications
Specifications

Hardware
Eight-node cluster, Intel(R) Xeon(R) CPU E5-2630 v4

@ 2.20GHz, 256GB Memory Capacity,
25 MiB L3 Cache Size (20-way set associative)

Software Ubuntu 20.04.2 LTS with kernel 5.11.0-34-generic
Docker version 20.10.18, Kubernetes version v1.20.4
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Figure 5: The QoS recovery time and 99%-ile latencies of
benchmarks with ELIS.

(e.g., 100ms) after microservice dynamics happen. Table 1
summarizes the detailed hardware and software configura-
tions. ELIS [41] uses bayesian optimization to tune resource
allocation for microservices. We use ELIS as the representa-
tive resource management system for microservices in this
section. Other systems have similar results and we show them
in the evaluation section.

In the experiments, each benchmark has 6 dynamic load
and call graph scenarios. We run the experiments on three
identical servers managed with Kubernetes [14]. We expand
the evaluation on eight servers in Section 8. In each test, each
microservice is allocated the hand-tuned enough resource, and
the numbers of queries to different call graphs are the same.
Figure 5 shows the QoS recovery time and 99%-ile latencies
in all the test cases. The x-axis represents the dynamic scenar-
ios. For instance, 1.5X(2:1:2:1:4) means the load increases
to 1.5X , and the proportions of the 5 call graphs change to
2/10, 1/10, 2/10, 1/10, and 4/10. As observed, the QoS recov-
ery time ranges from 24.6 to 84.4 seconds, and the 99%-ile
latencies range from 3.1 to 4.8 seconds, in all the test cases.

Both the two types of dynamics result in serious QoS vio-
lations and the QoS recovery time is long.

3.4 Causes of The Long Recovery Time
Our investigation shows the long QoS recovery time is caused
by long monitoring interval, execution blocking effect due to
dynamcis, and slow query draining.

3.4.1 Long Monitoring Interval

Current resource management systems monitor the realtime
latencies of the microservices, and reallocate resources based
on either heuristic methods [17, 27, 44] or machine learning
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Figure 6: The exploration of latency monitoring intervals.
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Figure 7: The 99%-ile latency of each microservice after its
superior microservices have been allocated enough resources.

based methods [23, 38, 45]. These systems often use seconds
or tens of seconds to be the monitoring interval.

As an example, Figure 6 shows the 99%-ile latency and
average latency of the benchmark HR, when we increase its
load to 1.5X. The x-axis shows the time since we increase
the load. As observed, the monitored 99%-ile latency has no
obvious increase in the first second, even if the load already
increases. The 99%-ile latency starts to increase sharply at
about the first second, and becomes stable after 3.3 seconds.
This is because the latencies of the newly arrived queries are
not reported before they complete. In this case, the 99%-ile
latency reported in the first second is actually the latency
before the load actually increases.

Long monitoring intervals are required for current systems
that rely on the latencies of the microservices to adjust the re-
sources. However, a great many of queries may already queue
up at a microservice during the long monitoring interval.

3.4.2 Execution Blocking Effect

The second problem is that the monitored realtime load of a
microservice may not be its actual “to-be-processed” load.

For instance, as shown in Figure 4(a), the load of
microservice-3 may be blocked by microservice-0 if
microservice-0 does not have enough computation resources.
Similarly, the loads of microservice-8 and microservice-9 may
also be blocked by microservice-3. There is more complex
blocking effect, besides of the simple dependency relation-
ship. The effect is referred to be execution blocking effect in
this paper. We will analyze the effect in detail in Section 6.

Figure 7 shows the latencies of the microservices in the HR
benchmark, when we allocated their superior microservices
enough computation resources, normalized to their perfor-
mance with the default resource allocation. The dynamic
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Figure 8: The results of queued query draining.

scenario of this experiment is 1.5X(2:1:2:1:4). As observed,
the latencies of many microservices increase when their su-
perior microservices get enough resources. This is because
these microservices may get the real “to-be-processed” loads
when the blocking effect is alleviated.

Due to the execution blocking effect, the monitored load
of a microservice may be much smaller than its actual “to-be-
processed” load. Current methods based on monitored load
may not allocate enough resources for microservices, thus
require to adjust the resource allocation for multiple times.

Similar to our conclusion, prior machine learning based
and heuristic-based systems also notice that they require to
adjust the resource allocation for multiple times [17, 22, 27,
38, 41]. For instance, the bayesian optimization based system,
ELIS [41], needs to search for 4-15 samplings to find the final
resource configuration for each microservice. Reinforcement
learning-based system, FIRM [38], has to perform multiple
incremental model updates, if the microservice application
has dynamics. Each adjustment interval is also at least several
seconds, incurring more queued queries.

Even if the optimal resource allocations can be determined
directly, the long monitoring interval and the blocking effect
already result in the long query queues. We also evaluate the
optimal resource decision case in Section 8.

3.4.3 Slow Query Draining

The queued queries during the monitoring and the resource
adjustment period can result in the long QoS recovery time.

As an example, Figure 8(a) shows the 99%-ile latency of
the benchmark HR with ELIS, when we change the dynamic
scenario to 1.5X(2:1:2:1:4). As observed, although appro-
priate resources are allocated to each microservice for its
“to-be-processed” load, the 99%-ile latency gradually drops
from time 39.6 seconds to 47.9 seconds instead of backing to
normal immediately. This is because the resource allocation
does not consider the queued queries at each microservice.

We further try to allocate excessive resources for microser-
vices, and explore the impact of excessive ratio on queued
query draining. The excessive ratio is the excessive resource
allocation ratio for microservices after the resource adjust-
ment process. Figure 8(b) shows the draining time under
different excessive ratios. We can observe that the larger the
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Figure 9: Design overview of Nodens.

excessive ratio, the shorter the draining time.
It is possible to reduce the queued query draining time

through excessive resource allocation, so that can reduce the
overall QoS recovery time. We should carefully determine
the amount of excessive resources to ensure high resource
efficiency, while minimizing the QoS recovery time.

4 Nodens Methodology

We design Nodens to enable the fast QoS recovery of dynamic
microservice applications based on the above analysis.

Figure 9 shows the design overview of Nodens. It com-
prises a traffic-based load monitor, a blocking-aware load
updater, and a resource-efficient query drainer. The monitor
predicts the monitored load of a microservice based on the pe-
riodically obtained network bandwidth usage of the microser-
vice. The load updater calculates the actual “to-be-processed”
load of each microservice, based on the monitored loads of
the microservices, the resource allocation of the microser-
vices, and the execution blocking graph of the application.
The query drainer allocates “just-enough” excessive resources
for each microservice, to quickly drain the queued queries
generated during the above process.

We use the network bandwidth usage to predict the load of
a microservice for the short monitoring time. Section 5 shows
that the incoming network bandwidth of a microservice is
closely related to its realtime load. The monitored bandwidth
is stable with the 1 second interval. With the short and stable
monitoring interval, we can find the load variation quickly
and tune the resource allocation as early as possible, reducing
the number of queued queries at a microservice when the load
increases.

The most challenging part is obtaining the actual “to-be-
processed” load of each microservice, due to the execution
blocking effect. We define an execution blocking graph for a
microservice application. It reflects the blocking relationship
among microservices, and is determined by the microservice
dependency graph and microservice call order. A load up-
dating mechanism is also required to capture the complex
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realtime blocking actions due to the dynamics, based on the
execution blocking graph (Section 6).

It is inevitable that some queries queue up at a microservice
when its load increases, before the increase is noticed and the
resource is adjusted. Without careful design, these queued
queries result in serious QoS violations, or too much resource
is allocated to handle the possible queued queries. The chal-
lenging part in the query drainer is to allocate just-enough
excessive resources to ensure the QoS recovery time target
while maintaining the resource efficiency (Section 7).

Specifically, Nodens manages the resource allocation of a
microservice application in the following steps. 1) Nodens
obtains the dependency graph and the possible call graphs
of the application. Based on the obtained graphs, the execu-
tion blocking graph is built. 2) When serving the application,
Nodens deploys a daemon process on each server to monitor
the network usage of the microservices. 3) A server runs the
load updater, and determines the resource allocation of each
microservice with the query drainer. The load updater col-
lects the bandwidth data of microservices on different servers,
and calculates the actual “to-be-processed” load of every mi-
croservice. 4) The drainer updates the resource allocation
accordingly, and sends back the allocation decision to each
microservice. 5) The daemon process on each server then
reallocates the resources based on the decision of the drainer.

Since the servers are in the same datacenter, we use
gRPC [7] to collect the network usage of each microservice,
and send back the allocation decision. The transfer latency
is less than 5ms in our experiments. Nodens does not need
to modify the source code of microservice applications, and
can be implemented as a plug-in based on Kubernetes [14].
Moreover, Nodens does not focus on microservice deploy-
ment among distributed servers, and the initial deployment is
determined by Kubernetes’s random scheduling strategy.

Similar to prior works [29, 37, 41, 45], Nodens uses Linux
cgroups [4] to adjust CPU resources, which can complete
within 1ms. VPA [10] in Kubernetes also supports in-place
pod vertical scaling with low overhead. After each allocation
decision, if there are no resources available on some servers
in the first place for vertical scale-up, Nodens utilizes the
resource recycling idea [41] to deal with. Nodens will first
recycle the resources from over-provisioned microservices on
these servers, and then allocate them to microservices requir-
ing scaling up. If some servers still lack sufficient resources
for their deployed microservices after resource recycling,
Nodens adopts current load balancing strategies [22,33,41] to
migrate some microservices from busy servers to idle servers.

5 Traffic-based Load Monitor

5.1 The Speedup and Predictability
As discussed in Section 3.4.1, the latency monitoring can re-
sult in long resource adjustment time. Therefore, we use the
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Figure 10: Network traffic monitoring intervals.

upper network bandwidth usage for resource adjustment to
reflect the load change of microservices. For microservice-6
of the EB1 benchmark shown in Figure 4, its upper network
bandwidth usage is the data communication amount per sec-
ond from microservices 0, 2, and 3.

To explore the required interval of network traffic monitor-
ing, we conduct 6 experiments on the HR benchmark, whose
dynamic scenarios are the same as Section 3.3. For each dy-
namic scenario, we first run the benchmark and monitor all
microservices for 10 seconds to obtain their stable network
bandwidth usage (Mbits/s) as the baseline values. Then, we
run the benchmark again and gradually increase the inter-
vals (starting from 50ms) to find the minimum interval that
may get stable monitoring data. We consider the monitoring
data to be stable when the error between obtained microser-
vices’ bandwidth usage and corresponding baseline values
are within 5%. Figure 10 shows that the obtained minimum
monitoring intervals are less than 1000ms. Compared with the
latency monitoring interval (3300ms) we test in Section 3.4.1,
the required interval of monitoring network is 3X shorter.

In addition, we find the upper network bandwidth usage
has a typical linear relationship with the load size (i.e., queries
per second, QPS) for all microservices, and the relationship
between load size and CPU core demand is the same. For
a microservice application, we profile each call graph at 10
sets of loads (evenly from 0 to the peak supported load), and
obtain the performance samples (i.e., the load, upper network
bandwidth usage, and CPU core demand) of all microservices.
The profiling can be done automatically and online. For long-
running applications, call graphs can be known from history.
Otherwise, we can trace the call graph and profile the new
call graphs online. We use the profiled performance samples
to train the linear models for microservices. We then use the
performance samples at 10 other different sets of loads as the
test dataset. Predicting the load size through the network band-
width, and predicting the CPU core demand through the load
size, the prediction accuracies are 97.0% and 97.9% on aver-
age for the 3 benchmarks, respectively. So, we can accurately
predict the load size of each microservice through its upper
network bandwidth, and further predict its CPU core demand.
As prior works have shown that microservices are basically
sensitive to CPU resources [31, 34, 45], Nodens primarily fo-
cuses on CPU core allocation. From our observations, the
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Figure 11: The monitored loads normalized to the actual loads
of microservices.

memory usage of microservices is steady, and we pre-allocate
enough memory capacity for microservices.

Compared with the ML-based methods [38,41], we can use
these models to predict the CPU core demand from network
bandwidth usage, whose overhead is usually less than 1ms.

5.2 Network Traffic Monitoring Methods
As the analysis of production microservice applications [31,
32], most of them have tree-like dependency graphs, while
a few of them show graph-like structures. The in-degrees of
some microservices in a graph-like structure are larger than 1.

For the tree-like dependency graph, we obtain the receive
and transmit bytes of microservices’ corresponding network
interface during the monitoring interval by reading Linux file
/proc/net/dev, and then calculate the upper network bandwidth
one by one based on the tree structure. The overhead of this
method is less than 15ms, which includes reading the Linux
file and calculations. For the graph-like dependency graph, we
use Libpcap [12] to obtain network traffic between each pair
of microservices directly, and then calculate the upper network
bandwidth for each microservice. This method completes in
30ms. After obtaining the upper network bandwidth usage of
microservices, the monitor uses linear regression models to
predict the monitored loads of them as this module’s output.

6 Blocking-aware Load Updater

6.1 Execution Blocking on Monitored Load
Since the effect of execution blocking under dynamics, the

monitored loads may not equal to the actual "to-be-processed"
loads of microservices. In this subsection, we explore the
effect of execution blocking on monitored loads with the
HR benchmark. We conduct an experiment from the initial
state of 1X(2:2:2:2:2) to the dynamic state of 1.5X(3:1:1:1:4).
Figure 11 shows the normalized monitored loads to the actual
loads of microservices. The left part of Figure 12 shows the
dependency graph of HR.

As observed, since the load changes from 1X to 1.5X, we
can find most microservices’ monitored loads are about 1

1.5 of
their actual loads, as their superior microservices can only han-
dle 1X load with current resource allocation. Microservices-8

Call dependency Call order Execution blocking relationship
0
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Figure 12: The dependency graph, and execution blocking
graph of the HR benchmark.

and 9’ monitored load is about 1
3 of their actual loads, as the

proportion of their located call graph also increases two times.
Above observations prove that execution blocking effect can
be caused by the call dependencies among microservices.

Moreover, microserivce-5’s monitored load is about 1
2 of

its actual load, but not 1
1.5 . After looking into the dependency

graph, we find since microservice-4 and microservice-5 are
called by microservice-1 in a fixed order, the microservices
in the subtree of microservice-4 can be the execution block-
ing microservices of microservice-5. In detail, since the load
changes and the proportion of microservice-4’s located call
graphs also changes, microservice-4’s subtree blocks 1

2 of the
actual load, which cannot be passed to microservice-5. Above
observations prove that the execution blocking effect can be
caused by the call order among microservices.

We give a simple example for Figure 12. Suppose queries
pass through part of the microservices in following orders: 1)
log in (microservice-3), 2) authentication (microservice-8),
and 3) reservation (microservice-9). Suppose microservice-
3’s loads increase to 1500 queries per second but it only has
just-enough resources to handle loads of 1000. At this point,
the loads to its downstream microservices are blocked at 1000,
which is 1/1.5 of 1500 (microservices-8 and 9’s actual loads).

If we adjust resources only based on monitored loads, we
need to adjust resources for microservices multiple times to
deal with the execution blocking, which can greatly increase
the QoS violation time. Therefore, a reasonable method is
to combine the microservice dependency graph, monitored
load, and resource allocation to update the actual loads of
microservices in advance. During this process, we need to
primarily consider the execution blocking effect caused by
call dependencies and call order among microservices.

6.2 Execution Blocking Graph
Based on the observations in Section 6.1, we construct the
Execution Blocking Graph for the microservice application.

Figure 13 shows the execution blocking graph construction
based on the microservice dependency graph. The microser-
vice dependency graph is obtained by using tracing tools
(e.g., Jaeger [11]) after running the application online for one
minute. Firstly, for the microservice in the dependency graph
that has multiple in-degrees, we transform the subtree with it
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Figure 13: Execution blocking graph construction.

to multiple identical replicas, to maintain the tree structure of
the dependency graph, as shown in Figure 13(a). The repli-
cated overhead is low, because few microservices have multi-
ple in-degrees in production microservice applications [31].

We then construct the execution blocking relationship for
each sub structure. On the one hand, as shown in Figure 13(b),
microservices X and Y have no fixed call order from their
common superior microservice. In this case, the execution
blocking relationship is equal to the call dependencies among
microservices. On the other hand, as shown in Figure 13(c), X
is called before Y by their common superior microservice. In
this case, the execution blocking microservices of Y are the
ones at the end of the execution blocking subtree with root
X. The number of this kind of microservices can be one or
more. We take an example for better explanations. Suppose
X is the "authentication" microservice, Y is the "reservation"
microservice, and Z is the "log in" microservice. As X is
called before Y by Z, the resource insufficiency of X can block
Y. By contrast, if X and Y are called by Z asynchronously, X
cannot block Y.

Breaking down the microservice dependency graph into
multiple sub structures, we iteratively build the execution
blocking relationship from the root microservice. Then, we
can obtain the execution blocking graph for the microservice
application. Nodens does not need to replicate microservices
with multiple in-degrees in the execution blocking graph.

We use the example of HR benchmark in Figure 12 to fur-
ther explain the whole construction process. As microservices
1, 2, and 3 have no fixed call order, their execution blocking
relationship is equal to their call dependencies. Some other
microservices have similar construction, and the middle re-
sults are shown in the middle part of Figure 12. Moreover,
microservice-5 is called after microservice-4 by their superior
microservice-1. Therefore, its execution blocking microser-
vices are the microservices at the end of the execution block-
ing subtree of microservice-4. Microservices 7 and 9 have
similar construction process with considerations of the call
order. The final execution blocking graph is shown in the right
part of Figure 12.

The execution blocking graph differs from the execution

graph in 2 ways. First, actually an execution graph is sim-
ilar to a call graph, while the execution blocking graph is
constructed once from the dependency graph and it captures
all the possible blocking relationship. Second, we define the
node and edge weights in the execution blocking graph for up-
dating the actual loads for microservices (Section 6.3), while
execution graphs do not have such information.

6.3 Actual Load Updating Mechanism
Based on the execution blocking graph, we then introduce

the actual load updating mechanism.
We define the triple to record current state of each microser-

vice i as (MonitoredLoadi,ActualLoadi,HandleLoadi). The
MonitoredLoadi is obtained from the traffic-based load mon-
itor. The ActualLoadi will be updated by the mechanism for
each microservice, and is equal to the MonitoredLoadi at the
beginning. The HandleLoadi represents the load that can be
handled for each microservice. It is predicted by using the
linear regression model from its corresponding microservice’s
resource allocation. For microservices i and j in the execution
blocking graph, the edge weight EWi j is defined as the load
passing from i to j. The EWi j is equal to the monitored load
from i to j at the beginning, and will be updated during the
updating mechanism.

Since microservices may block the load of their down-
stream microservices, we then define the blocking rate of the
microservice j as:

rate j = max(
ActualLoad j

min(HandleLoad j,MonitoredLoad j)
,1) (1)

In this formula, the blocking rate is the ActualLoad dividing
the minimum of the HandleLoad and MonitoredLoad, as
the former may be larger than the latter since higher-level
blocking. Moreover, as the loads of some microservices may
decrease under dynamics, the blocking rate may be smaller
than 1, and we set rate j = 1 for these cases.

We mainly adopt the Breadth-First-Search (BFS) algorithm
based on the execution blocking graph to calculate the block-
ing rate and update the actual loads of microservices layer
by layer. Algorithm 1 shows the mechanism. We first initial-
ize the load triple for microservices, the execution blocking
graph, and a queue for the BFS process. We then put the root
microservice into the queue, and then come into the major
process of actual load updating. During this process, we first
calculate the blocking rate of the head microservice j of the
queue based on Eq.(1), whose ActualLoad has been updated
correctly, as shown in the lines of 6-8. Then, we start to handle
the downstream microservices of j, as shown in the lines of
9-14. For each downstream microservice k, we first update
the actual load from j to k with the blocking rate of j. If k’s
all entry edges are all updated, we then put it into the queue
to follow the process of the BFS algorithm. The updating pro-
cess is ended when the queue is empty, which represents the
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Algorithm 1: Actual Load Updating Mechanism
1: Initialize (MonitoredLoadi,ActualLoadi,HandleLoadi)
2: Initialize execution blocking graph EBG with edge weights

EWi j
3: Initialize a queue q for the BFS process
4: q.put(EBG.root)
5: while q 6= /0 do
6: j = q.get()
7: ActualLoad j = ∑i→ j EWi j

8: rate j = max( ActualLoad j
min(HandleLoad j ,MonitoredLoad j)

,1)
9: for each downstream microservice k of j do

10: EW jk = EW jk× rate j
11: if all entry edges of k are updated then
12: q.put(k)
13: end if
14: end for
15: end while
16: return ActualLoads for all microserivces

actual loads of all microservices have been updated. Lastly,
we return the actual loads of microservices.

7 Resource-efficient Query Drainer

Although the resource adjustment time of Nodens is greatly
decreased compared to the latency based resource adjustment
methods, the queued query draining is non-negligible, as just-
enough resources can lead to the queued queries being unable
to be drained for a long time. As discussed in Section 3.4.3,
the larger amount of excessive resources can accelerate the
draining process, but obviously sacrifice the resource effi-
ciency. We define the QoS recovery time as the time needed
to reduce the 99%-ile latency to be below a fixed latency tar-
get (e.g., 100ms) after microservice dynamics happen. Same
to prior work [21, 38, 41, 45], the QoS is often defined to be
latency. Nodens can also support other QoS definitions (e.g.,
throughput) through simple adaption. We set the QoS recov-
ery time target for the microservice application, e.g., the QoS
recovery time is within 3 seconds after microservice dynam-
ics happen. Therefore, the excessive resource allocation of the
microservice application can be described as minimizing the
excessive resource allocation on the premise of guaranteeing
the recovery time target.

To allocate just-enough excessive resources for each mi-
croservice, we try to drain the queued queries for each mi-
croservice exactly within the recovery time target. Therefore,
our goal is to calculate the total queries to be processed for
each microservice during the residual recovery time, and then
allocate just-enough excessive resources correspondingly.

We first calculate the overload of each microservice i during
the resource adjustment process as:

OverLoadi = ActualLoadi−min(MonitoredLoadi,HandleLoadi)
(2)

where the ActualLoadi, MonitoredLoadi, and HandleLoadi
have the same definition to Section 6. For some microservices,
their actual loads may be less than or equal to their monitored
and handle loads under microservice dynamics. For these
cases, we set OverLoadi = 0 for them.

After calculating the OverLoadi, we can further calculate
the total queries to be processed for each microservice during
the residual recovery time as:

TotQueryi = OverLoadi×Ti +ActualLoadi× (QT −Ti) (3)

where Ti is the resource adjustment time which causes query
queuing, and QT is the recovery time target. In this formula,
the first item represents the total amount of queued queries,
while the second represents the total amount of normal queries
that need to be processed during the residual recovery time.

At last, we can calculate the total load (i.e., queries per
second) that needs to be handled during the residual QoS
recovery time for each microservice i as:

TotLoadi =
TotQueryi

(QT −Ti)
(4)

Obtaining the TotLoad, we can use the linear model men-
tioned in Section 5.1 to predict the total CPU core demand
of each microservice, and then tune the allocated resources
accordingly. The total CPU core demand includes the just-
enough resources under the corresponding dynamic scenario
and excessive resources for queued query draining. After QoS
is recovered, the excessive resources will be recycled to main-
tain high resource efficiency.

8 Evaluation of Nodens

In this section, we first evaluate the performance of Nodens
in recovering the QoS while achieving resource efficiency.
Then, we show the effectiveness of the blocking-aware load
updater, and the resource-efficient query drainer.

8.1 Evaluation Setup
Table 1 already shows the configurations of the experimental
platform. We evaluate all the three benchmarks HR, EB1, and
EB2 on the eight-node cluster in the experiments. For each
benchmark, we evaluate Nodens with six dynamic scenarios,
including load dynamic, call graph dynamic, and the mix of
the two types of dynamics.

We compare Nodens with two state-of-the-art microser-
vice management systems FIRM [38] and ELIS [41]. FIRM
monitors the latencies of microservices periodically, identi-
fies the critical path and critical microservices, and increases
their resources to the optimal resource allocations using rein-
forcement learning. ELIS first recycles the over-provisioned
resources of non-critical microservices before reallocating
the resources. It uses bayesian optimization to reallocate re-
sources. For FIRM and ELIS, the latency monitoring periods
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Figure 14: The normalized QoS recovery time relative to the recovery time target of benchmarks with Nodens, FIRM, and ELIS.

1.5X(2:2:2:2:2)

1X(1:1:2:2:4)

1X(1:1:3:1:4)

1X(2:1:2:1:4)

1.5X(3:1:1:1:4)

1.5X(2:1:2:1:4)

1.5X(2:2:2:2:2)

1X(1:3:2:2:2)

1X(1:1:4:2:2)

1X(3:1:1:4:1)

1.5X(3:1:1:4:1)

1.5X(1:1:4:2:2)

1.5X(2:2:2)

1X(1:3:2)

1X(3:2:1)

1X(4:1:1)

1.5X(4:1:1)

1.5X(3:2:1)

Dynamic scenarios

0.0X
0.2X
0.4X
0.6X
0.8X
1.0X
1.2X
1.4X

N
or

m
a 

i(
ed

 r
es

ou
rc

e 
us

ag
e

Nodens FIRM ELIS

HR EB1 EB2

Figure 15: The normalized resource usage relative to the just-enough resources of benchmarks with Nodens, FIRM, and ELIS.

are set to be the minimum time with which the latency is
stabilized (i.e., the subsequent latency increase is less than
5%). In Nodens, we use 1 second to be the network traffic
monitoring interval as analyzed in Figure 10.

In our experiments, we already optimize FIRM and ELIS
through offline profiling. While ML-based resource adjust-
ment requires multiple iterations to find the optimal resource
configuration, we optimize them to be able to directly allocate
the optimal resources for microservices. Moreover, we also
give each microservice excessive resources according to the
recommendation of Nodens’s query drainer. The native FIRM
and ELIS perform worse than the ones we used here.

In the following experiments, we use 3 seconds to be the
recovery time target. In other words, Nodens will adjust the re-
source allocation, in order to make sure that the QoS violation
is eliminated in 3 seconds.

8.2 QoS Recovery and Resource Efficiency

In all test cases, microservices are initially allocated the just-
enough resources when the load is 1X and the percentages of
queries that go to different call graphs are identical. Then, we
change the loads of the entire benchmark and the percentages
of queries go to different call graphs, and evaluate the perfor-
mance of Nodens in recovering the QoS before the given QoS
recovery target.

Figure 14 shows the QoS recovery time of all the 3×6= 18
test cases with FIRM, ELIS, and Nodens, respectively. The

time is normalized to the recovery time target (3 seconds).
In the figure, “1.5X(2:2:2:2:2)” represents the case that the
application’s load increases to 1.5X, and the percentages of
queries to the five call graphs are identical. As observed from
the figure, Nodens successfully eliminates the QoS violation
in the given recovery time target. By contrast, the QoS re-
covery time with FIRM and ELIS is 7.9X and 9.4X of the
recovery time target, and 10.2X and 12.1X of Nodens’s.

Nodens has shorter QoS recovery time because it has
shorter but stable load monitoring interval, and calculates
the actual “to-be-processed” load of each microservice. It
is able to reduce the queued queries during the monitoring
interval, and allocate enough resources for each microservice
beforehand. We can also find that the QoS recovery time
is longer with ELIS than with FIRM. This is because ELIS
first recycles the over-provisioned resources, which can spend
some extra time. Moreover, the QoS recovery time is also
short with ELIS and FIRM in some cases (e.g., the scenario
1X(3:2:1) with EB2). It happens when there are only a few
microservices’ resources are insufficient.

Figure 15 shows the corresponding total resource usage
(cores×hours) of the test cases during the QoS recovery pro-
cess. The resource usage is normalized to the case that all the
microservices have “just-enough” resources for the new load
since the dynamic happens. We use the longest QoS recovery
time (i.e., ELIS’s) to calculate the total resource usage for the
fair comparison. As observed, Nodens uses 1.5% and 6.1%
more resources on average than FIRM and ELIS, respectively.
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Figure 16: The QoS recovery time with Nodens-wou and
Nodens-wod normalized to the recovery time target.
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FIRM also uses more resources than ELIS. This is because
FIRM only increases the resources of critical microservices
without recycling the over-provisioned resource.

Therefore, Nodens is resource efficient while realizing the
fast QoS recovery.

8.3 Effectiveness of the Load Updater
In this experiment, we show the performance of Nodens-wou,
a variant of Nodens that disables the blocking-aware load
updater. With Nodens-wou, the query drainer still allocates
excessive resources for the microservices.

The orange bars of Figure 16 show the QoS recovery time
of all the test cases with Nodens-wou normalized to the QoS
recovery time target. As observed, Nodens-wou recovers the
QoS before the recovery time target in only two cases. Com-
pared with Nodens, Nodens-wou requires 2.6X time on aver-
age to recover the QoS.

As an example, Figure 17 shows the normalized resource
allocation timeline of Nodens and Nodens-wou in the test case
1.5X(2:1:2:1:4) of the HR benchmark. Other test cases show
similar conclusions. As shown in the figure, Nodens allocates
excessive resources to the microservices at an early time, and
returns to the “just-enough” resource allocation once the QoS
violation is eliminated. On the contrary, Nodens-wou grad-
ually increases the resource allocated to the microservices
after each monitoring interval. This is because the execu-
tion blocking effect makes Nodens-wou cannot obtain the
actual “to-be-processed” loads of the microservices. For a
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Figure 18: The resource allocation of microservices normal-
ized to the just-enough resources for an example experiment.

microservice, its load pressure is released layer by layer from
its superior microservices.

The blocking-aware load updater is necessary for Nodens.
It avoids the execution blocking effect by updating the actual

“to-be-processed” loads of microservices in advance.

8.4 Effectiveness of the Query Drainer
In this experiment, we show the performance of Nodens-
wod, a variant of Nodens that disables the query drainer. The
blocking-aware load updater still works in Nodens-wod.

The green bars of Figure 16 show the QoS recovery time
of all the test cases with Nodens-wod normalized to the QoS
recovery time target. As observed, Nodens-wod fails to re-
cover the QoS before the recovery time target in all the cases.
Compared with Nodens, Nodens-wod requires 1.6X time
on average to recover the QoS. This is because the queued
queries generated during the resource adjustment cannot be
drained up quickly without the excessive resources allocated
by the query drainer. Moreover, we can find that Nodens-
wod performs better than Nodens-wou in most cases. This is
because Nodens-wod can eliminate the execution blocking
effect which is the most important influence factor that causes
long-time QoS violations.

As an example, Figure 18 shows the actual resources al-
located of microservices normalized to the just-enough re-
sources in the test case 1X(1:1:3:1:4) of the HR benchmark
with Nodens. As observed, Nodens allocates excessive re-
sources for 5 of the 14 microservices in the test case. Specifi-
cally, microservices 3, 8, and 9 belong to the same call graph
and are affected by the same degree of execution blocking,
so they have almost the same ratio of excessive resources.
Microservices 7 and 12 belong to another call graph, and their
resource shortage is smaller than the previous 3 microservices,
so Nodens’s drainer allocates them less excessive resources.

8.5 The Impacts of Dynamics
Since there are load dynamics, call graph dynamics, and
load+call graph dynamics when serving a microservice appli-
cation, we evaluate their impacts on the query drainer.

Figure 19 shows the ratio of total excessive resource allo-
cation for all dynamic scenarios of the 3 benchmarks with
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Figure 19: The ratio of total excessive resource allocation for
all dynamic scenarios of the three benchmarks.

Nodens. As observed, the excessive resource ratio is smallest
with only call graph dynamics, larger with only load dynamics,
and the largest with both load and call graph dynamics.

This is because dynamic call graph scenarios only cause
a few microservices’ resources to be insufficient and dy-
namic load scenarios cause more, while the simultaneous
dynamic load and call graph scenarios cause the most. As
the resource shortage of more microservices can cause more
queries queued, Nodens’ drainer will allocate more excessive
resources for these scenarios.

8.6 Handling Different Recovery Time Tar-
gets

In this experiment, we show Nodens’s performance in han-
dling different recovery time targets. We use one dynamic
case of each benchmark to conduct the experiment, i.e., 1.5X
load with identical call graph percentages.

Figure 20 shows the QoS recovery time and the actual re-
source allocation for all the cases. The QoS recovery time and
the actual resource allocation are normalized to the recovery
time target and just-enough resources in each case, respec-
tively. As observed, Nodens successfully eliminates the QoS
violation in different given recovery time targets for all the
cases. Moreover, Nodens allocates more/fewer resources for
the case with the smaller/larger recovery time target, which
proves Nodens’s resource efficiency.

Therefore, Nodens can ensure different QoS recovery time
targets, while maintaining resource efficiency.

8.7 Overhead of Nodens
Offline Overhead. To train the prediction models for CPU
core allocation, Nodens needs to profile the bandwidth and
performance data for different microservices at different loads
in advance. The offline profile time is about 25 minutes for
each benchmark. The offline training time of the linear regres-
sion models for each benchmark is less than 150 ms.

Online Overhead. After deploying Nodens online, the ex-
ecution time of the load monitor to get network traffic is less
than 30ms. Moreover, the execution time for the load updater
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Figure 20: The QoS recovery time and resource allocation
under different recovery time targets.

and query drainer are both less than 5ms. The prediction time
and CPU core allocation time are all less than 1ms. The data
transfer latency between servers is less than 5ms. Therefore,
the total online overhead is about 50ms. The overhead is ac-
ceptable as it is far less than the monitoring interval in our
experiments (i.e., 1 second).

We also evaluate Nodens’s overhead using a simulated
large-scale application with 200 microservices and 10 call
graphs based on production-level microservice traces [31].
The online overhead is 126.6ms (59.4ms, 31.6ms, and 35.6ms
for the network monitor, load updater, and query drainer, re-
spectively), the offline profiling overhead is 50 minutes, and
models can be trained in 2s.

9 Conclusion

In this paper, we propose Nodens to enable fast QoS recov-
ery of dynamic microservice applications, while maintaining
the efficiency of resource usage. Nodens’s traffic-based load
monitor predicts the monitored loads for microservices based
on their network bandwidth usage. Nodens’s blocking-aware
load updater calculates the actual "to-be-processed" loads of
microservices based on the execution blocking graph. It can
eliminate the execution blocking effect, so that can reduce the
total resource adjustment time. The query drainer allocates
excessive resources for microservices to drain the queued
queries, ensuring the QoS recovery time target. We have im-
plemented Nodens and the experimental results show that,
compared to the state-of-the-art microservice management
systems, Nodens reduces the QoS recovery time by 12.1X.
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Abstract
The microservice architecture is a novel paradigm for

building and operating distributed applications in many
organizations. This paradigm changes many aspects of how
distributed applications are built, managed, and operated
in contrast to monolithic applications. It introduces new
challenges to solve and requires changing assumptions about
previously well-known ones. But, today, the characteristics
of large-scale microservice architectures are invisible outside
their organizations, depressing opportunities for research.
Recent studies provide only partial glimpses and represent only
single design points. This paper enriches our understanding of
large-scale microservices by characterizing Meta’s microser-
vice architecture. It focuses on previously unreported (or
underreported) aspects important to developing and research-
ing tools that use the microservice topology or traces of request
workflows. We find that the topology is extremely heteroge-
neous, is in constant flux, and includes software entities that do
not cleanly fit in the microservice architecture. Request work-
flows are highly dynamic, but local properties can be predicted
using service and endpoint names. We quantify the impact of
obfuscating factors in microservice measurement and conclude
with implications for tools and future-work opportunities.

1 Introduction
Microservice architectures are the de-facto method for build-
ing distributed systems in large-scale organizations [8, 13].
The basic tenants of this architectural style are well-known—
monolithic applications are decomposed into smaller software
services that communicate with one another over well-defined
APIs, facilitating independence of different development
teams, increased deployment velocity, and fine-grained
scaling [11, 22]. But, outside of this basic understanding, there
is a lack of clarity about industrial microservice architectures’
design choices and their resulting characteristics. This
ambiguity curtails the impact of microservices research. It is
impossible to identify the microservice designs to which im-
provements suggested in the literature are best suited or which
assumptions about microservices’ characteristics are valid.

There has been a plethora of research seeking to improve
the community’s understanding of microservices. Many
are qualitative, focusing on reasons for deploying microser-
vice architectures [18, 24, 39], methods for decomposing
monolithic applications to microservice architectures with
many smaller services [9, 17, 36], and difficulties introduced
by microservice architectures [39]. Though useful, they do
not provide quantitative data about different organizations’

microservice architectures, such as (but not limited to) their
scale, topologies, or communication methods, all of which
are critical to inform future research.

The community has also created many open-source testbeds
built with the microservices design philosophy [1, 13, 46]. But,
their scale and complexity do not match that of large-scale
organizations’ microservice architectures. Past research has
shown that these testbeds exhibit much simpler behaviors
than industrial architectures [31]. As a result, quantitative
data about microservices obtained from these testbeds are not
representative of industrial microservice architectures where
the microservice architectural style is perhaps most valuable.
This is concerning due to the number of research papers that
rely on these testbeds [12, 14, 23, 25, 37, 38, 40, 43, 44]. For
example, Sage [12] assumes synchronous RPCs. Tprof’s [14]
layer 4 grouping assumes non-combinatorial explosion when
grouping requests by visited services’ execution order. Both
assumptions are invalid at Meta.

Recent publications from other large cloud companies
provide quantitative data about their microservice archi-
tectures [20, 41]. But, they represent only partial views of
single design points. Additional quantitative studies—both
confirming existing findings and focusing on unexplored
dimensions— are needed to enrich the community’s under-
standing of large-scale microservices. We envision that these
studies will collectively inform robust assumptions for use
in microservice research and development.

We present a top-down analysis of Meta’s microservice
architecture, starting from its service-level topology and
descending into individual request workflows. (Request
workflows describe the order and timing of services visited by
requests when executing.) Our focus is on underreported char-
acteristics of microservice architectures important for develop-
ing microservice tools and artificially modeling microservice
topologies. Specifically, we describe growth and churn of the
microservice topology (to inform tools that learn models of
the topology [12, 25, 44]), whether elements of the topology
fit power-law distributions common to large graphs (to inform
potential artificial topology generators), and the predictability
of individual request workflows (to inform the vast number
of tools that work by aggregating trace data [14, 29, 45]). We
report on characteristics described in previous studies, such as
workflows’ sizes and shape, to enable qualitative comparisons.

We perform our study using production datasets1 describing
Meta’s microservice topology and request workflows within it.

1https://github.com/facebookresearch/distributed_traces
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Our datasets for topological analyses span a 22-month period
(the entire amount of time historical data about the topology
has been maintained). We focus on 1-day of distributed
traces [16] (totaling 6.5 million) for our analyses of request
workflows, which allows us to focus on predictability of
specific request behaviors.

We present our main findings below and conclude this
paper with their implications along with a discussion of future
research opportunities.

(1) Topological characteristics: The topology is very diverse
containing many types of software entities that are
deployed as services. The topology is constantly growing,
sees daily churn in deployed and deprecated services, and
(mostly) does not exhibit power-law relationships.

(2) Workflow characteristics: Traces of request workflows
vary in size depending on the high-level functionalities
they represent. Similar to previous studies [20, 41], we
find that traces are small in size and wide in number
of communication calls. Service and endpoint names
do not predict number of communication calls or their
concurrency. But, they reduce uncertainty in the set of
services they will call (callers and callees are specified as
services + ingress endpoint). Adding knowledge of the
children service set better predicts concurrency.

(3) Obfuscating factors preventing quantitative compar-
isons between architectures: Scale and complexity analy-
ses are hindered because the term “service” is ill-defined for
microservices and previous studies do not report their def-
initions. Different organizations use different tracing plat-
forms with unspecified assumptions about how workflows
are sampled and what sampling policies are used. We find
that these factors have non-negligible effects on our results.

2 Toward characterizing Meta’s microservices
Figure 1 illustrates Meta’s microservice architecture.
It is similar to other large-scale microservice architec-
tures [11, 20, 22, 31, 41], consisting of 1 (in Figure 1) a topol-
ogy of interconnected, replicated software services running
in dozens of datacenters; 2 load balancers for distributing re-
quests amongst service replicas; 3 an observability framework
for monitoring the topology and creating traces (graphs) of a
sampled set of request workflows; and 4 a globally-federated
scheduler for running services on host machines within
containers. A basic assumption of Meta’s architecture (which
may or may not be true for other organizations’ architectures)
is that business use case is a sufficient partitioning by which
to define services, scale functionality, and observe behaviors.

The rest of this section motivates the value of studying
the topology and request workflows, discusses limitations of
previous studies, and fills in important details about Meta’s ar-
chitecture relevant to our analyses. We conclude by discussing
the observability framework and the datasets generated from it
that we use in our analyses. Given the sparsity of information
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Figure 1: Meta’s microservice architecture and an example
request workflow. The architecture consists of many service
instances distributed across many datacenters.

available about Meta’s microservice architecture, we err on
the side of providing more information than strictly needed.

How do applications use Meta’s microservice ar-
chitecture? Customer applications, such as Instagram or
Facebook mobile, issue requests that are load balanced by
DNS to specific datacenters and processed by a subset of the
architecture’s software services. Example requests include
those to save photos or record reactions to posts. Applications
internal to Meta, such as dashboard or internal tools, use the
architecture similarly. But, their requests are load balanced
via internal mechanisms, not DNS.

2.1 Topology: services & communication
Why study microservice topologies? We need to understand
their complexity, factors that influence their complexity,
heterogeneity of constituent services, and the speed at which
the topology changes. These characteristics are important
to inform tools that visualize the topology, learn models
based on the topology, or make assumptions about services’
homogeneity [12, 14, 25, 44].

Limitations of existing studies: Only Wen et al. [41]
focuses on the microservice topology. The scale they report
for number of services is based on a sampled dataset of
request workflows, which may not reflect the true scale of
their architecture. No existing study defines what constitutes
a service or how their definition impacts analyses of the
topology (e.g., number of services and communication edges).
Existing studies do not report on how the topology evolves
or the velocity of change [20, 45].

Meta’s microservice topology: The topology is formed by
many replicated software services ( in Figure 1) deployed
across dozens of geographically-distributed datacenters along
with their communication to process application requests.
(Replicas are typically called instances). We note that within
the topology, the notion of an application is ill-defined. Individ-
ual service instances may process work on behalf of multiple
applications. They may also issue requests with batched data
from multiple applications to other service instances. The
topology evolves organically with no central coordination
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because development teams responsible for services have
complete control over how they are built and maintained.

Services: Services are defined as units of software with
well-defined API interfaces, called endpoints ( in Figure 1).
Each service satisfies a specific business use case (e.g., caching
a photo feed). There is significant room for interpretation
in defining the scope of a business use case. Additionally,
software that pre-dates the microservice architecture may
serve multiple business use cases, but be deployed as a single
service. Both services and endpoints are named by respective
services’ developers. (We use Service ID and service name
interchangeably in latter sections to refer to services’ names.)

Services can be stateful or stateless [11]. Stateful services,
such as databases, persist state for callers whereas stateless
ones, such as search frontends, call other services and integrate
their results. A variety of programming languages are used
to write services depending on fit for the business use case and
societal pressures within the organization.

Load-balancing & Communication: Requests to services
are load balanced across their instances. Initially, a datacenter
load balancer, itself a service, load balances incoming
application requests. Afterward, requests between service
instances are load balanced by a service-routing library [30]
either linked to applications or to outbound sidecar proxies.
(Only some services use sidecars, e.g., when their runtimes do
not support linking the routing library directly). The routing
library periodically communicates with a global service
registry to discover services and routes for their instances.
Requests can be load balanced to instances within the same
datacenter or to instances in different datacenters. Only the
datacenter load balancer is depicted in Figure 1.

Most services at Meta use two-way Thrift RPCs [35] for
communication, with payloads serialized in Thrift binary
format. Many frontend and some backend services also expose
numerous HTTP (REST and GraphQL) endpoints; however,
they do not have canonical names that we can use for our
analyses. For this reason, we limit the endpoint analysis only
to Thrift RPCs reported in the dataset from the routing library.

2.2 Individual request workflows
Why study request workflows: We need to understand the
dynamic nature of request workflows. Given a single request
execution, what will vary in subsequent executions versus
what will remain stable? How much of a statement can we
make about other request executions after seeing one or a
limited number of samples? Such information is important
to inform tools that predict performance, extract critical paths,
and present aggregate analyses of request workflows.

Limitations of existing studies: Luo et al. [20] present a
way to predict the total number of services that will be called
at any hierarchical level of a request workflow. But, they do
not discuss whether the number, set, or concurrency level of
services called by a specific parent can be predicted. Wen et
al. [41] present the amount of time children execute concur-

rently. Zhang, et al. [45] present distributions of the maximum
number of concurrent services observed in workflows. But,
neither discuss if information in request workflows can predict
concurrency or other workflow characteristics.

Request workflows at Meta: Requests from external
applications originate at a datacenter load balancer. This load
balancer sends requests to instances of frontend services,
which are entry points for executing request business logic.
There are several frontends at Meta serving different subsets
of applications and each has many instances. Frontends may
call many services, which in turn may call other services. The
resulting hierarchy can be described as forming parent/child
relationships. Request workflows for requests originating
from internal applications are similar, but originate at the first
service that executes business logic on behalf of them.

The set of services involved in a request workflow depends
on a number of factors including (but not limited to) the
business logic that must be executed on behalf of application
requests and whether any requested data is cached. On the
other hand, the specific set of instances involved in a request
workflow depends on the current load and the load-balancing
policy in use.

Concurrency & latent work: Within request workflows, par-
ent services may call all or a subset of children services sequen-
tially or concurrently. The former will be the case if parents are
blocking (e.g., single threaded so cannot do work while there
is an outstanding call). It may also be the case if there are data
dependencies between subsequent calls to children, such as
an authentication token that must be returned from one service
and passed as input to others. The critical path of concurrently-
called children services includes only the slowest one, whereas
that of sequentially-called ones includes all of them. Children
may perform additional, latent work after replying to the
parent (e.g., for garbage collection or data replication).

Sample request workflow: The arrows ( ) in Figure 1
show a request traversing a single datacenter. The request first
arrives to an instance of the datacenter load balancer, which
routes it to an instance of a frontend service, such as www. The
request then traverses deeper into the topology to backend
services.

2.3 Observability framework & datasets
Meta’s observability framework includes monitoring mecha-
nisms for recording metrics, logging mechanisms for recording
various events, and a distributed-tracing infrastructure, Canopy
[16], for recording graphs (called traces) of request workflows.
Data generated by the framework is retained for a limited time
period to reduce storage volume and due to policy. We describe
Canopy in more detail below due to its criticality to observ-
ability of microservices. We conclude with a description of the
log-based and trace-based datasets we use for our analyses.

Canopy for recording request workflows: Canopy works
similarly to most existing distributed-tracing infrastruc-
tures [27]. It provides APIs that developers use to define
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a request workflow and capture important information
about the workflow that should be recorded in traces. The
former involves modifying services’ code to propagate
per-request context—e.g., request IDs and happens-before
relationships—within and among the services involved in
request execution. The latter involves adding trace points,
similar to log messages, within source code. During runtime,
records of trace points executed by requests are annotated
with request context and timestamps. Off of the critical path of
request execution, records with identical trace IDs are ordered
by happens-before relationships to create traces.

Under the hood, Canopy’s implementation is similar to
event-based tracing infrastructures [10, 26, 29]. However, the
way developers instrument services and use the resulting traces
is similar to span-based tracing infrastructures [4, 32, 34]. Im-
plementation: (1) Trace points are single events. Higher-level
blocks demarcating various intervals (e.g., service executions,
queuing time, or function executions) are constructed via anno-
tations added to them. (2) context is propagated on both request
(forward) and response (reverse) paths, allowing points to be
ordered globally within and across services. Usage: (1) devel-
opers (typically) only add blocks denoting service executions;
(2) happens-before relationships are only established in the
forward direction of context propagation, meaning they iden-
tify parent/child relationships between blocks and not ordering
between siblings; (3) causality between sibling blocks is not
explicitly captured via alternate mechanisms. It is impossible
to tell whether siblings that execute sequentially as per times-
tamps in one trace must execute sequentially in other traces.

We describe aspects of Canopy relevant to our workflow
analyses. A key observation is that traces created with Canopy
may—by design—not capture all of a request’s workflow.

Effective trace model: Traces are graphs. Nodes are blocks
(spans) indicating service execution and hierarchical levels
indicate parent/child relationships. Blocks include trace points
indicating message send and receives. They may contain addi-
tional points indicating other events of interest. Edges between
points represent network communication. Latent work started
on behalf of a request after the response is returned to the
client, such as data replication or asynchronous notifications,
may be recorded as additional points on the service block,
or as a separate trace with a link back to the originating
request’s trace (similar to OpenTelemetry’s span links [5]).
Service blocks automatically record Service IDs and endpoint
names for communication using Thrift RPCs [35]. Developers
must manually provide names for services that use custom
communication methods. Figure 2 shows an example Canopy
trace originating at the www service. It has two children
services. One of the children (Service B) also has a child (DB).

Streaming model for trace creation with timeout: A
stream-processing framework [21] is used to construct traces
from trace-point records for subsequent post-processing, such
as computing critical path or generating end-to-end latency
metrics. The framework accumulates trace events using a

Figure 2: Canopy’s tracing model.

session window with a fixed gap of inactivity [6]. Traces whose
events have a gap in the arrival time larger than the session
window would be accumulated in more than one session, but
only the first one would be used to trigger post-processing,
which may result in processing of partial traces.

Per-service sampling profiles (policies) with rate limiting:
Sampling profiles are unique to Canopy. They can be attached
to any service and indicate sampling policies to apply based
on specific attributes of incoming requests. Traces reflect the
union of all sampling profiles that their corresponding requests
encounter while executing. This means that a request’s trace
may start at a service deep in the topology, not recording prior
services executed by the request. Trace branches may end
prematurely at services whose profiles chose to stop recording
the rest of the request’s workflow.

A policy specifies: (1) a set of conditions for when it is
applicable, such as group of endpoints, (2) a sampling method,
(3) a maximum rate of trace data, measured over a sliding time
window, beyond which additional traces will not be captured,
and (4) a verbosity level to decide which instrumentation
to execute for requests. Sampling methods may be random
head-based sampling [34], in which requests are traced with
a random probability, or adaptive sampling [33], in which
the sampling probability is periodically changed to achieve
a target rate of trace throughput.

Inferred service blocks: These blocks represent services
that prematurely ended trace branches, either because of
rate limiting or because they lacked tracing instrumentation.
Inferred blocks are created during trace construction using
information in parent services’ message-send points. Inferred
blocks may be named or unnamed. The former will be the case
when parent points contain the necessary naming information.

Datasets used for this paper: Table 1 shows the datasets
we use. For our topological analyses, we use logs describing
service activity: history of deployments and deprecation,
endpoints exposed by deployed services, and calls made
from/to deployed services. For the workflow analyses, we use
distributed traces collected by Canopy. The log data describes
every deployed service, whereas traces are sampled using
methods unique to Canopy, described above.

3 Topological Characteristics
We characterize Meta’s current microservice topology as well
as how it has evolved. Our analyses of the current topology
uses the last (most recent) day of the Service History and
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Dataset Description Format Retention Size Period Used

Service History Service deployment, lifetimes &
interservice communication

Service IDs deployed each day 22 months 17 MB All

Service Endpoints Endpoints exposed by services Service ID endpoints accessed each day 30 days 18.8 MB 1 day
Traces Distributed traces Canopy Trace Objects 30 days 13.1 PB 1 day (4.6 TB)

Table 1: Datasets used for analyses.

Endpoints datasets (2022/12/21). Our historical analyses
use all 22-months of data available to us (2021/03/01 to
2022/12/21). We also use various dashboards w/statistics
about services. The main findings are summarized below.

Finding F1 (All subsections): Meta’s microservice
topology contains three types of software entities that
communicate within and amongst one another: (1) Those
that represent a single, well-scoped business use case. (2)
Those that serve many different business cases, but which
are deployed as a single service (often from a single binary);
(3) Those that are ill-suited to the microservice architecture’s
expectations that business use case is a sufficient partitioning
on which to base scheduling, scaling, and routing decisions
and to provide observability. These latter entities use Service
IDs in custom ways, obfuscating their true complexity.

Finding F2 (§3.2): The topology is very complex in its
current state, containing over 12 million service instances
and over 180,000 communication edges between services.
Individual services are mostly simple, exposing just a few
endpoints, but some are very complex, exposing 1000s or
more endpoints. The overall topology of connected services
does not exhibit a power-law relationship typical of many
large-scale networks. However, the number of endpoints
services expose does show a power-law relationship.

Finding F3 (§3.3): The topology has scaled rapidly,
doubling in number of instances over the past 22 months. The
rate of increase is driven by an increase in number of services
(i.e., new functionality) rather than increased replication of
existing ones (i.e., additional instances). The topology sees
daily fluctuations due to service creations and deprecations.

3.1 Existence of ill-fitting software entities
We discovered several anomalous patterns in the
structure of service IDs within both datasets. For ex-
ample, we found that on average, 60% of services
observed on any single day of the 22-month period
have Service IDs of the form inference_platform/
model_type_{random_number}. We found that these
services all expose a small number of endpoints with identical
names. Meta’s engineers informed us that these Service IDs are
generated by a general-purpose platform for hosting per-tenant
machine-learning models (called the Inference Platform). The
platform serves a single business use case—i.e., serving ML
models—but many per-tenant use cases. Platform engineers
chose to deploy each tenant’s model under a separate Service
ID so that each can be deployed and scaled independently per
the tenant’s requirements by the scheduler.

Following our discovery of the Inference Platform, we
investigated the most frequent Service IDs and those with
the greatest number of service instances. We found two
types of software entities that use Service IDs in custom
ways: (1) platforms, such as the Inference Platform, for
which multi-tenancy is an additional dimension that must be
considered for scheduling, scaling, routing, or observability;
(2) storage systems, which must take into account data
placement in addition to their business use case(s).

We found that some entities, such as the Inference Platform,
appear as many services where each service is a combination
of the business use case and the additional dimension(s) of par-
titioning required. Other entities, such as databases and other
platforms, appear as a single service and provide their own
scheduling and observability mechanisms. Both types of enti-
ties’ unique use of Service IDs masks their true complexity and
skews service- and endpoint-based analyses of microservice
topologies (ours and likely previous studies [20, 41]).

There is no systematic way to identify these ill-fitting soft-
ware entities at Meta. To illustrate how they may affect Service
ID-based analyses,we call out contributions by two entities that
affect our results significantly. The first is the Inference Plat-
form, which inflates the number of services observed. The sec-
ond is the ML Scheduler, a scheduling platform for ML training
jobs which chooses to appear as a single service and so inflates
instance counts. We collectively refer to them and their services
as Ill-fitting services and all other services as Regular services.

3.2 Analysis of the current topology
Scale is measured in millions of instances: On 2022/12/21,
the microservice topology contained 18,500 active services
and over 12 million service instances. Excluding the ill-fitting
services, there are 7,400 services and 11.2 million instances.

The instance count is due to a few highly-replicated ser-
vices: Figure 3 shows that the ill-fitting services greatly skew
instance counts. Notably, the ML scheduler is replicated over
270,000 times, 2.2% of all instances. When these services
are excluded, the median service’s replication factor is only
eight and the 99th percentile is 31,306. Frontend service www
is the most replicated service (557,000 instances, 4.6% of all
instances) as it handles most incoming requests.

Services are sparsely interconnected: We construct the
service dependency diagram by connecting services that
communicate with each other at least once with an edge.
(Our dependency diagram is similar to that constructed by
OpenTelemetry or Jaeger, except that it is constructed from
a portion of the Service History dataset that captures commu-
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Figure 3: Service ID replication factors. The histogram is
shown under the CDF. When the curves overlap, the colors
are blended together.
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Statistic Fan-in Fan-out Fan-in (Reg) Fan-out (Reg)

Min 1 1 1 1
Median 4 4 3 6
Average 14 12 19 15
P99 86 101 324 158
Max 14,084 5,865 2,968 1,069

(c) Statistics
Figure 4: Service fan-in and fan-out.

nication between services, not raw traces.) There are 393,622
edges that connect services, which is much smaller than a fully
connected topology (18,5002 or 342 million edges).

Services are called by services more than they call
other services: Continuing with the dependency diagram,
Figure 4 shows CDFs and statistics about services fan-in (#
of services that call them) and fan-out (# of services that they
call) degrees. The median fan-in and fan-out are the same, but
average and maximum fan-in is larger than fan-outs (14 vs
12 and 14,084 vs 5,865). Excluding the ill-fitting services, by
removing all edges connected to ill-fitting services, decreases
the median fan-in but increases the median fan-out. Excluding
the ill-fitting services also increases the 99.9 percentile and
decreases the maximum fan-in and fan-out values.

We investigated the services that have the highest fan-in and
fan-out degrees. The former is a vault server storing credentials
for use by other services. The latter is a service for querying
hosts for arbitrary statistics. Both are used heavily by ill-fitting
services, constituting 78% and 91% of the vault service’s
callers and the services called by the stats service respectively.
When ill-fitting services are excluded, two other services
rise to the highest fan-in and fan-out degrees respectively:
a generic counting service used for various rate limiting
mechanisms and a frontend service for internal applications.

Most services are simple, exposing only a few endpoints:
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Figure 5: Number of endpoints exposed by services.

Figure 5 shows a CDF and statistics of services’ endpoints.
Most services do not expose many endpoints (median: 1, P99:
26) and excluding ill-fitting services does not shift the statistics
much. The service that exposes 11,359 endpoints is www, a
frontend service which is used for many business use cases.
It is deployed as a single binary from a large, well-engineered
codebase that predates the microservice architecture.

Service complexity follows a power-law distribution:
Service complexity, measured by number of unique endpoints
in a service, follows a power law distribution (α = 2.23,
R2=0.99), indicating that most services are simple with a long
tail of more complex services. The power law does not hold for
other measures of complexity. Despite there being a long tail
of more complex services, the service dependency diagram
does not follow a power law distribution (R2 = 0.62). This
means the services with more endpoints are not proportionally
more connected to the topology than services with fewer
endpoints. While there are some highly replicated services,
the overall trend of instance counts does not follow a power
law distribution either (R2=0.25).

Sixteen different languages used to write services:
Services can be written in many programming languages.
There are currently 16 different programming languages in use
at Meta, with the most popular being Hack (a version of PHP),
measured by lines of code. Other popular languages include:
C++, Python, and Java, with the rest forming a long tail.

3.3 Past growth & dynamism
The number of deployed service instances has almost
doubled over the past 22 months: Figure 6 shows the
percentage of deployed service instances each day as a
percentage of the maximum value observed on 2022/12/21.
We show different series for when all services are included,
just the ill-fitting services, and only regular services. The slope
when all services are considered is s=0.052% per day (linear
regression R2=0.95). The slope when ill-fitting services are
excluded is s=0.046% per day (R2=0.95).

The steady increase in instance counts reflects either an in-
crease in hardware capacity over the time period or an increase
in utilization of existing hardware. It cannot be explained by
changes in instance sizes as they have remained mostly static.

Instances’ rate of increase is due to new business use
cases rather than increased scale: Figure 7 shows unique
services deployed each day as a fraction of the maximum value
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Figure 6: Total service instances over time.
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Figure 7: Service IDs over time.

observed on 2022/11/03. Note that the day with the maximum
number of Service IDs is different from the day with the most
instances. Almost all variability is explained by the ill-fitting
services, specifically the Inference Platform, which launches
and terminates services as per tenants’ demands. The daily
increase in services when ill-fitting services are excluded
(slope of Regular Services series) is s= 0.043% (R2 = 0.98).
It is almost identical to the daily increase in instance counts
when ill-fitting services are excluded, which was s=0.046%
(slope of the Regular Services series in Figure 6).

Lots of churn in services, with both long-lived and
ephemeral ones: Over the 22-month time period, 180,000 new
Service IDs were deployed, 89.7% of which were deprecated
at some point. Figure 8 shows the number of services created
and deprecated each day. Newly-created services are ones
whose Service IDs were not observed previously during the
22-month period, whereas deprecated ones are services whose
Service IDs are never observed again. For regular services,
creation rates are slightly higher than deprecation rates. As
expected, ill-fitting services have high churn.

We also computed the percentage of services observed over
the entire period that were deprecated in less than one week
(54% of ill-fitting Services, 7.7% of regular services) and the
percentage that existed throughout the 22-month period (0%
of ill-fitting services, 40% of regular services).

4 Request-workflow characteristics
We now analyze service-level properties of individual request
workflows using traces collected by different profiles. We first
discuss traces’ general characteristics, such as size and width
(§4.2). We then analyze whether specific elements of a single
trace predict properties of other traces representing the same
high-level behavior(s) (§4.3-§4.4). As with any large-scale
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Figure 8: Service ID creation & deprecation.

tracing infrastructure, traces’ visibility into request workflows
may be limited due to dropped records, rate limiting, and non-
instrumented services. We quantify the extent to which visibil-
ity into traces is obscured as a result of these factors in §4.5.

Methodology: For all experiments, we use traces collected
on 2022/12/21 from three profiles monitoring important
high-level business functionalities. Using a few profiles and
a single day avoids factors that would otherwise obscure the
interpretability of our results: the effects of analyzing traces
using many sampling policies and code updates that change
service behaviors. Focusing on important profiles increases the
likelihood that traces are representative of their workflows: the
services they access are likely to propagate context accurately
and use descriptive Service IDs and endpoint names. Overall,
we analyze 6.5 million traces representing 0.5% of traces
collected on 2022/12/21 by all Canopy profiles. Though we
do not report them, we observed similar trends to our results
on different neighboring days to 2022/12/21 while refining
our experiments.

For our predictability experiments, we conduct an ex-post-
facto analysis of whether Ingress IDs, defined as a combination
of Service ID and ingress endpoint name, predict properties
of their children across many traces. We choose to use Ingress
IDs because they are readily available in traces, are usually
the primary means of understanding trace behaviors, and are
location-independent so do not require alignment of traces
starting at different (unknown) depths in the topology. We do
not consider global characteristics of traces, such as size or
width, for prediction experiments as they are not guaranteed
to be comparable due to rate limiting or dropped trace records.
In our predictability sections, we mean Ingress IDs when we
refer to parents and children, as in "unique children."

We omit inferred calls (§2.3) from experiments that
consider service names since names of inferred services are
often unknown. Also, we omit Ingress IDs found fewer than
30 times within a profile to allow meaningful statistics to be
calculated for the rest of the endpoints.

Our main findings are summarized below; we introduce the
profiles afterward. Figure 9 describes the trace properties we
analyze and predict.

Finding F4 (§4.2): We measure traces with regard to the
number of service blocks they contain (recall from § 2.3 that
a service block represents the time interval a service was
executed; repeated invocations of the same service appear
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Figure 9: Trace Characteristics. Generic example trace show-
ing attributes for a parent Ingress ID. Root service is either
www or RaaS. Inferred services are represented as blocks of a
fixed length since they do not contain notions of time or return
edges. They are omitted from concurrency calculations.

as multiple service blocks.) Trace sizes vary depending
on workflows’ high-level behaviors, but most are small
(containing only a few service blocks). Traces are generally
wide (services call many other services), and shallow in depth
(length of caller/callee branches).

Finding F5 (§4.3-§4.4): Root Ingress IDs do not predict
trace properties. At the level of parent/child relationships,
parents’ Ingress IDs are predictive of the set of children
Ingress IDs the parent will call in at least 50% of executions.
But, it is not very predictive of parents’ total number of RPC
calls or concurrency among RPC calls. Adding children sets’
Ingress IDs to parent Ingress IDs more accurately predicts
concurrency of RPC calls.

Finding F6 (§4.5): We observe that many call paths in the
traces are prematurely terminated due to rate limiting, dropped
records, or non-instrumented services. Few of these call paths
can be reconstructed (those known to terminate at databases)
while the majority are unrecoverable. Deeper call paths are
disproportionately terminated.

4.1 Profile details
Ads: This profile represents a traditional CRUD web
application focusing on managing customers’ advertisements,
such as getting all advertisements belonging to a customer
or updating ad campaign parameters. The profile captures
traces from 56-related endpoints exposed by the www frontend
service. There are 3.2 million traces over the single-day period.
This profile’s sampling policy is random at 0.01% capped at
65 traces per second or 160 MB of trace data per minute.

Fetch: This profile represents deferred (asynchronous)
work triggered by opening the notifications tab in Meta’s
client applications. Examples of work include updating the
total tab badge count or retrieving the set of notifications
shown on the first page of the tab. It captures traces from
91-related endpoints exposed by the www frontend service.
There are 87,000 traces over the one-day period. This profile
uses adaptive sampling with a target rate of 1 trace per second,
capped at 20 MB of data per minute.

RaaS (Ranking-as-a-Service): This profile represents rank-
ing of items, such as posts in a user’s feed. The RaaS sampling
policy is applied to the RaaS service, a non-frontend service
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Figure 10: Trace Size. Service block counts per trace.
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Figure 11: Call Depth. Max depth of service blocks per trace.

that is called by other services. As a result, traces from this pro-
file always represent only portions of request workflows. Of the
workflows we analyze, only those captured by Fetch call RaaS.
Occasionally, a RaaS trace will be a portion of a Fetch trace,
but such occurrences are rare because both Fetch and RaaS
profiles use low sampling probabilities that are independent
of each other. There are 3.3 million traces over the single-day
period, from 4 different endpoints in RaaS. This profile uses
adaptive sampling with a target rate of 25 traces per second.

4.2 General trace characteristics
There is significant diversity in trace sizes: Figure 10 shows
CDFs and statistics of the number of service blocks in our
traces. Traces collected by the Fetch profile are significantly
larger than Ads and RaaS except at the tail, where Ads traces
are largest.

Traces are shallow and wide: Figure 11 shows the
maximum call depth in service blocks of our traces starting
from trace roots (root is call depth 1). Figure 12 shows
maximum trace width, which is the maximum number of calls
made by all services at any depth level. (For example, 3 service
blocks at one depth making 3 calls each results in a width of
9). We see that across all profiles, traces are much wider than
deep: in Fetch profile the median depth is 4 vs. median width
of 472, and P99 depth is 6 vs. P99 width of 7,400. We conclude
that large traces are a result of the number of calls made by
services, not depth of calls. This can be partially explained
by the widespread use of data sharding where retrieving a
collection of items requires fanning out requests across many
storage service instances.

Service reuse within traces is high and occurs at many dif-
ferent call depths: Figure 13 shows CDFs and statistics of the
number of services visited within individual traces. Comparing
with trace sizes (Figure 10), traces generally contain more ser-
vice blocks than unique services. At the median, traces visit be-
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Figure 13: Unique Services. Unique Service IDs in a trace.

Type Ads Fetch RaaS

All 421 127 72
Leaf 168 (39.9%) 63 (49.6%) 35 (48.6%)
Single relay 58 (13.8%) 21 (16.5%) 17 (23.6%)
Variable relay 195 (46.3%) 43 (33.9%) 20 (27.8%)

Table 2: Parent types. The distribution of parents of each type
within each profile.

tween 1x (2/2), 38x (498/13), and 2x (4/2) more service blocks
than unique services across Ads, Fetch, and RaaS respectively;
at P99 these ratios are 71x, 21x, and 810x respectively.

Most services are observed at more than one call depth in our
profiles. We measured the number of call depths at which each
service was observed. The services in Ads traces have high
rates of appearing at multiple depths (median: 6, average: 7.3).
Approximately 60% of Fetch and RaaS services are observed
at multiple levels (median: 2, average: 2.6 for both profiles).

4.3 Predicting parent/child relationships
Parent Ingress IDs strongly predict whether services will
have no children or only one child: Table 2 shows that such
services, defined as leaves and single relays, make up from
53 to 73 percent of service executions in our profiles. We find
that they are always databases or calls to databases.

Ingress IDs do not predict number of downstream calls:
Parents that make one or more downstream calls to children are
called variable relays in Table 2, making up from 27 to 47 per-
cent of Ingress IDs in our profiles. Figure 14 shows that variable
relays exhibit a wide distribution in the number of children calls
they make. Some Ingress IDs exhibit high variance in the num-
ber of children they call across different executions whereas
others have very little variance (but it is always non-zero).

Variability in number of children calls is due to database
calls for Fetch and RaaS: We find that at least 61.1% and

(a) Ads

(b) Fetch

(c) RaaS
Figure 14: Calls per parent. Boxplots are shown for every
Fetch and RaaS variable relay. Due to limited space, only the
50 variable relays with the greatest number of invocations are
shown for Ads. Parent Ingress IDs are sorted in descending or-
der by total number of invocations. Boxplot boundaries indicate
P25-P75 and the horizontal line within boxes indicate medians.
Lower and upper whiskers indicate the smallest/largest data val-
ues within 1.5 IQR below/above P25/P75 and dots are outliers.

72.1% of these variable relays’ children calls are database
accesses in Fetch and RaaS traces respectively. For Ads traces,
only 35.7% of children calls are database accesses.

There is a dominant set of unique children per par-
ent: When we ignore number of calls, we find that most
single and variable relay parents call only a few children
sets, where each set is defined as a combination of unique
children Ingress IDs within a given invocation of the parent
Ingress ID. For example, one children set may contain
memcache+read and database+write, whereas another
may contain key_service+retrieve and database+write.
The average number of children sets called by a relay parent
is 28 for Fetch & Ads and 12 for RaaS parents. Most parents
have a dominant children set that they call in more than 50%
of executions. Specifically, 71.9%, 80.2%, and 81.6% of Fetch,
Ads, and RaaS relays have dominant children sets.

Non-dominant children sets contain mainly one off children
Ingress IDs and are not a superset of the parent’s dominant chil-
dren set. On average, only 27% of children Ingress IDs called
by a parent are in most (>50%) of the parent’s children sets.
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Figure 15: Parent concurrency. Concurrency distribution
for all invocations of a parent Ingress ID. Shows all variable
relays for Fetch & RaaS, and the top 50 in Ads by invocation
count. Boxplots are interpreted identically to figure 14.

4.4 Predicting children’s concurrency
We define maximum concurrency as the maximum number of
children calls executing concurrently by a parent at any point
in time in its execution. More formally, a set of concurrent
calls St at time t is all children calls with tstart ≤ t< tend , where
all timestamps are measured at the parent, and the maximum
concurrency C is computed as:

C=max(|St |),∀t : t parent
start ≤ t< t parent

end (1)

We use a normalized measure of maximum concurrency,
the concurrency rate, calculated as C/num_children, to
allow comparisons across different executions of the same
parent (different numbers of children may be called in each
execution) and to allow comparisons between different parents.
num_children refers to children that have return edges and
well-defined durations. We only consider variable relays since
concurrency is ill-defined for leaves and single relays.

Parent Ingress ID does not predict whether children
will execute concurrently or sequentially: Figure 15 shows
boxplots of concurrency rates across executions for each parent
Ingress ID observed in our traces. We see that there is a mix of
high and low variation in concurrency rate across Ingress IDs.

The combination of parent Ingress ID and children set
more accurately predicts concurrency rate: Figure 16 shows
a CDF of the standard deviation in concurrency rate across all
executions of parent Ingress IDs. To understand if children set
adds predictability value, we calculate the standard deviation
for each parent’s children set and average them to obtain a

(a) Ads (b) Fetch (c) RaaS
Figure 16: Standard deviation in concurrency rate. Parent
shows a CDF the standard deviation in concurrency rates for
all executions of a parent. Per-parent avg. children set shows
the average standard deviation per children set for each parent.

per-parent average. We plot this CDF of per-parent average. In-
tuitively, if children sets provide value, the per-parent average
should decrease whereas if they do not, the data points will be
randomly distributed and standard deviation will not decrease.
Overall, we find that including children sets shifts the distribu-
tions to the left. The shift is most pronounced at the median for
Ads and Fetch: 0.13, 0.09 vs. 0.04 and 0.02. Adding children
set does not provide value in the tail for Fetch and RaaS.

We speculate the reduction in standard deviation is because
children belonging to the same children set likely have
well-defined control or data dependencies between each other.
Reduction in variation due to control dependencies may be a re-
sult of custom threading models for different code logic blocks
in parents (each responsible for a different behavior and thus
children set). For data dependencies, consider the following
examples. Children sets containing different cache services
may have no dependencies and thus may be able to execute
concurrently. In contrast, children sets comprised of a key
server and a database service may have to execute sequentially:
credentials may be required to access the database.

Ingress ID + children set calls display a range of
dependency relationships: We now quantify the strength
of dependencies within Ingress ID + children set’s calls. We
use the maximum concurrency rate observed across Ingress
ID + children set executions as a indicator of dependency.
A maximum concurrency rate of 1 implies that there are no
dependencies among children calls. A maximum observed con-
currency rate of 0 builds confidence that the children calls are
dependent and must execute sequentially. Figure 17 shows the
results. Overall, we find that most Ingress ID + children set ex-
ecutions display weak dependencies (some concurrency) and
there are a few strongly dependent (sequential) children sets.

4.5 Quantifying traces’ observability loss
Most prematurely terminated call paths are unrecoverable:
We plot the percent of branches that terminate prematurely
(at an inferred service) at each call depth in our traces
(Figure 18). Some branches terminate prematurely due to
internal rate-limiting at databases, which are usually leaves
in the traces. The shaded area in Figure 18 is the portion of
inferred services that represent known databases. The distance
between the curves are unknown inferred services, which
make up the majority of inferred services. Using trace data
alone, we cannot know what the unknown inferred services are
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Figure 17: Parent Ingress ID + children set max concur-
rency rate.
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Figure 18: Inferred Services. Percent of service calls that are
inferred at each call depth. The shaded region is the percent
of inferred services that are known to be database calls.

(some may still be other databases we were not able to identify
reliably) or the shape of the workflow from that point on.

Non-uniform probability a branch is terminated: Deep
branches are disproportionately prematurely terminated.
For RaaS traces, 80% of call paths that reach depth 3 are
terminated with inferred nodes, none of which were identified
as databases. However, as the average trace depth for RaaS
is only 2.3 (Figure 11), the majority of RaaS traces are not
affected by premature branch terminations. Similarly, Fetch
and Ads traces are shallow and prematurely terminated
branches mainly occur beyond the average trace depth.

5 Implications and opportunities
Implications for microservice testbeds: Existing testbeds [1,
13, 46] represent only single applications, whereas microser-
vices within Meta serve many applications (§2.1). Previous
studies state that existing open-source testbeds’ topologies are
lacking in scale compared to industrial microservices [20, 41].
Our results confirm these results (Finding F2) and add the fol-
lowing dimensions to consider in future testbeds: heterogeneity
of services, churn, and growth. Specifically, we find that Meta’s

microservice architecture contains a mix of software entities
that are deployed as services: complex ones that expose many
endpoints and are likely more monolithic in nature, simple
ones that expose just a few, and ill-fitting ones that require
support beyond which the microservice architecture provides
by default (Finding F1). We find that services are deployed and
deprecated (at least) daily and that the shape of the communica-
tion topology is constantly growing and changing (Finding F3).

Luo et al. [20] state that request workflows within existing
testbeds are too static. Many service-level workflow properties
can be predicted from root endpoint alone. Our analyses show
that future testbeds should include concurrency, number of
children, and set of children that are executed as dimensions
of variability in request workflows representing the same or
similar high-level behaviors (Finding F5).

Implications for microservice tooling: Tools that use
models of microservice topologies [12, 25, 44] should assume
that its constituent services are always changing and that
the topology itself is highly-dynamic (Finding F3). Periodic
retraining may be necessary; mechanisms are needed to
identify when predictions diverge from the ground truth due
to stale topological information.

Tools that aggregate request-workflow traces for
performance predictions, diagnosis, or capacity plan-
ning [7, 14, 28, 29, 45] must assume that there is significant
diversity in workflows originating from the same root end-
points or groups of related root endpoints (Finding F5). Our
studies show that many workflow properties can be predicted
when they are broken down into fundamental building blocks
(parent/child relationships) (Finding F5), perhaps a promising
starting point for aggregation-based tools. However, capturing
total orderings for entire traces [14] or even individual services
may not scale due to parent Ingress IDs initiating large number
of RPCs with high concurrency (§4.4).

Need for artificial microservice topology & workflow
generators: Such generators are a necessity given the
infeasibility of creating microservice deployments outside of
industrial settings. The sole existing workflow generator [20]
may be too specific to a single organizations’ microservice
design (that number of children depends on depth in trace) and
generates stochastic workflows that do not represent any single
request. Research is needed to identify: (1) which dimensions
of microservice architectures are best explored in testbeds
versus artificial topology or workflow generators; (2) how
to ensure these dimensions are representative of a variety of
large-scale organizations’ characteristics. Our analysis shows
that assuming topologies follow power-law relationships is in-
sufficient for modeling microservice topologies (Finding F2).

How to better incorporate ill-fitting software entities
into microservice architecture? Ill-fitting entities constitute
a significant portion of Meta’s microservice topology. Key
questions include: (1) Should infrastructure platforms provide
richer interfaces to allow scheduling, scaling, and observability
based on additional dimensions rather than only one? (2) In
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cases where ill-fitting-entities use custom techniques, what
mechanisms are necessary to allow mapping them to standard
service-level operations?

Naming & predicting missing elements of workflows:
Our predictability results (Finding F5) indicate that well-
defined service and endpoint names are important for
predicting local workflow properties. Almost all tools that
use distributed traces [7, 12, 14, 25, 28, 29, 42, 44, 45] assume
descriptive names. But, naming quality can vary considerably,
especially for services that satisfy many business use cases and
for microservice architectures in which all instrumentation
is done within proxies surrounding services [3]. Research into
naming schemas that allow different parts of service behaviors
to be differentiated based on parts of the name (or attached
attributes) is needed. Research is also needed into how to
automatically identify meaningful names and/or attributes that
differentiate important within-service behaviors, and whether
missing observability data (Finding F6) can be predicted
based on other data already available.

Need for standardized methods to contrast different
organizations’ microservice architectures: Our original
goal for this research was to compare characteristics of
Meta’s microservice architecture with previous studies of
industrial microservice architectures. At 30,000 ft, we find
that organizations’ architectures have similar architectural
diagrams (Figure 1) and use custom versions of the same
architectural components or open-source versions [4, 19, 35].
Furthermore, similar to Meta, the traces used in Luo et al. [20]
and Wen et al. [41] tend to be small. Large traces are wider
than deep, indicating common use of data sharding. We also
find some differences. Traces used in Zhang et al. [45] seem
to be much deeper than those used in our analyses, perhaps
due to their domain-oriented microservice strategy [15].

Unfortunately, we found more detailed quantitative
comparisons to be impossible due to divergent (or ill-specified)
definitions in previous studies and because different studies use
custom measurement techniques specific to their observability
frameworks. With regard to comparing scale and complexity,
previous studies do not define the term service, describe
individual service’s complexity, or describe number of
communication edges between services, or service instances.
For request-workflow-based analyses, these studies do not
identify tracing sampling rates and mechanisms, whether
traces capture all of request workflows or only parts or whether
dropped records or rate limiting impact their analyses. Similar
to rich research into Internet measurement [2], we need to
develop rich, well-accepted methodologies for collecting
data about microservice architectures to understand and
systematize similarities and differences across them.

6 Summary
The characteristics of large-scale microservice architectures
are largely invisible outside of industrial organizations. We

presented an analysis of Meta’s microservice architecture
to inform more robust assumptions for future microservices
research and development.
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Abstract
Tectonic-Shift is the storage fabric for Meta’s production ma-
chine learning (ML) training infrastructure. Industrial storage
fabrics for ML need to meet both the intensive IO and high-
capacity storage demands of training jobs. Our prior storage
fabric, Tectonic, used hard disk drives (HDDs) to store training
data. However, HDDs provide poor IO-per-watt performance.
This inefficiency hindered the scalability of our storage fabric,
and thus limited our ability to keep pace with rapidly growing
training IO demands.

This paper describes our journey to build and deploy
Tectonic-Shift, a composite storage fabric that efficiently
serves the needs of our training infrastructure. We begin with
a deep workload characterization that guided an extensive
hardware and software design space exploration. We then
present the principled design of Tectonic-Shift, which max-
imizes storage power efficiency by combining Shift, a flash
storage tier, with Tectonic. Shift improves efficiency by ab-
sorbing reads using IO-efficient flash, reducing required HDD
capacity. Shift maximizes IO absorption via novel application-
aware cache policies that infer future access patterns from
training dataset specifications. Shift absorbs 1.51− 3.28×
more IO than an LRU flash cache and reduces power demand
in a petabyte-scale production Tectonic-Shift cluster by 29%.

1 Introduction

The success of industrial machine learning (ML) training is en-
abled by highly efficient and scalable infrastructures that store
and feed massive amounts of training data to datacenter-scale
training clusters [27, 31, 44, 46, 68]. At Meta, we deploy train-
ing clusters, each with of thousands of GPUs, across many dat-
acenters in order to meet our ML training demands [42]. Each
cluster requires a storage fabric capable of storing exabytes
of data and serving reads at tens of terabytes per second.

Our prior storage fabric was Tectonic, Meta’s exabyte-scale
distributed file system [50]. Each Tectonic instance is backed
by a cluster of disaggregated hard disk (HDD) storage nodes.

To feed trainers, we needed to provision each Tectonic cluster
with HDDs to provide both sufficient storage capacity for
training datasets and enough IO capacity to meet the read
bandwidth demands of all trainers in the datacenter. The sig-
nificant and increasing IO requirements of training acceler-
ators resulted in a large imbalance between IO and storage
demands compared to what is afforded by modern HDDs.
We needed to provision an order of magnitude more storage
capacity to meet trainers’ IO demands than to store datasets.
This storage inefficiency expended a large portion of each dat-
acenter’s power budget — modern ML storage fabrics often
require more power than trainers themselves [68] — which
constrained the scalability of our training infrastructure.

This paper chronicles our journey to improve the power
efficiency of our production storage fabric for IO-bound ML
training workloads. We begin with a hardware design space
exploration and show that traditional homogeneous storage
fabrics (HDD or otherwise) cannot meet the imbalanced stor-
age and IO demands of ML training without resource over-
provisioning. An ideal storage solution should combine mul-
tiple storage media in a composite storage fabric to balance
storage and IO capacity. It can efficiently meet IO demands by
serving most IOPS from IO-efficient (high bytes/s per watt)
devices, e.g., flash, while relying on storage-efficient (high
bytes per watt) devices, e.g., HDDs, to meet storage demands.

However, simply deploying a composite storage fabric does
not beget high efficiency. It must hold the right data in IO-
efficient devices at the right time — exploiting data locality
via caching. We present a software design space exploration,
guided by a deep characterization of our production ML train-
ing workloads, showing that current cache systems do not cap-
ture the data reuse characteristics of these workloads. General-
purpose software flash and DRAM caches are designed for
web-based workloads with trillions of small requests such
as content delivery networks, social graphs, key-value stores,
and databases [1, 6, 7, 9, 13, 38, 43, 45, 55, 56, 66]. Meanwhile,
ML training jobs issue a small number of massive scans over
petabytes of data, resulting in scan and churn patterns that
easily thrash an LRU cache [52]. Alternatively, current ML-
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specific storage systems [16, 23, 30, 32, 41, 61, 71] are inef-
fective because existing solutions have been designed for
small-scale deployments with highly-synchronized training
jobs reading multiple epochs of the same static data. Mean-
while, large-scale production training environments consist
of highly asynchronous, single-epoch training jobs reading
varying subsets of continuously-updated datasets.

While cache systems leveraging composite storage have
been widely studied and deployed, our hardware and software
design space exploration elucidates the need for a unique
combination of techniques tailored to our ML workloads. To
this end, we built Tectonic-Shift, a composite storage fabric
that improves storage efficiency by balancing storage and IO
capacity across HDDs and flash. We present Tectonic-Shift
and several guiding design principles that make it deployable
and effective across our datacenters: a) Transparent. Tectonic-
Shift presents the same APIs as the Tectonic File System,
requiring no user knowledge or application changes. Tectonic-
Shift combines Shift, a flash storage tier that aims to maximize
IO absorption, with each HDD Tectonic cluster. b) Simple.
Shift is built on top of CacheLib [6], and deploying Shift re-
quires no changes to other storage services such as Tectonic’s
Metadata Layer. c) Scalable. Shift is fully decentralized, con-
sisting only of disaggregated flash storage nodes, each using
local dynamic cache policies that adjust to observed load.
d) Intelligent. While Tectonic-Shift is transparent to users, it
understands application information from training job spec-
ifications, such as the list of table partitions that comprise
the job’s dataset. We present novel cache mechanisms that
leverage this information to improve the performance of Shift
by inferring training jobs’ future data access patterns.

We demonstrate how these principles allow Shift to ab-
sorb 1.51− 3.28× IO than an LRU-based flash cache on a
mix of representative training workloads, all while managing
flash endurance limits. Furthermore, we present results on
our petabyte-scale production tiers, serving real ML training
jobs, showing how Tectonic-Shift can save 29% of power rel-
ative to using HDDs alone for training data. We close with a
discussion of lessons learned in deploying Tectonic-Shift and
several promising areas of future exploration. In summary,
we make the following contributions.

• We provide an in-depth hardware and software design space
exploration of storage systems for ML training jobs, guided
by a characterization of our production workloads.

• We present the principled design of Tectonic-Shift, which
combines Shift, a flash storage tier, with each Tectonic clus-
ter to improve the overall efficiency of Meta’s storage fabric.

• We describe novel cache policies employed by Shift that
predict and optimize for future data access patterns derived
from training job specifications.

• We show detailed production evaluation results. Shift ab-
sorbs 1.51−3.28× more IO than LRU. Tectonic-Shift im-
proves the power efficiency of our storage fabric by 29%.
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Figure 1: Overview of Meta’s data storage and ingestion (DSI)
pipeline. Tectonic-Shift is the durable storage fabric for training data
in each datacenter.

2 ML Data Storage and Ingestion Background

Deep learning recommendation model (DLRM) training dom-
inates our ML infrastructure demands [2], requiring signifi-
cant data storage and ingestion (DSI) capacities to manage
structured datasets [68]. Thus, we primarily focus on DLRM
workloads in this paper, and we discuss extending Tectonic-
Shift to other ML domains and non-ML workloads in Sec-
tion 7. Figure 1 shows how the DSI pipeline continuously
generates, stores, and ingests DLRM training data.
Data Generation. Fresh data is needed to ensure model ac-
curacy [18]. We continuously generate training samples from
inference requests served by our production fleet. When a
given host serves an inference request, it logs a snapshot of
the relevant features of the requester (e.g., a user’s set of liked
pages) and the outcome of the event corresponding to the
inference request (e.g., if a user likes the recommendation).
These logs are continuously published to Scribe [26], Meta’s
global distributed messaging system. A training data pipeline,
corresponding to a set of extract-transform-load (ETL) jobs
(e.g., Spark [67]), consume these logs by joining and labeling
them to form structured training samples.
Dataset Storage. Each pipeline’s training samples are stored
in a corresponding Hive [57] table. Tables are constantly
updated with new time-based partitions of fresh data, gener-
ated by each pipeline with a regular cadence (e.g., hourly).
Old partitions regularly expire and are deleted. Each table is
replicated to all datacenters with training clusters, and each
partition is stored as columnar DWRF [21] files (similar in
format to ORC [14]) in a new directory in each respective
datacenter’s Tectonic File System. Training jobs read from
their local Tectonic instance.

We adopt a common schema across our training tables
to ensure interoperability across models [68]. Specifically,
all features are stored in a small number of map columns
and comprise the majority of each row (> 99% of bytes).
Each column maps multiple integer feature IDs to the row’s
corresponding value for that feature (e.g., a float for a dense
feature column or lists/maps for a categorical feature column).
Data Ingestion. Training jobs are submitted to a global queue
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by ML engineers and are scheduled and routed to a specific
datacenter when capacity allows. When each job is scheduled,
it allocates a set of training nodes (Trainers) [42] and a set
of Data PreProcessing (DPP) Readers [68] from the datacen-
ter’s training cluster. Trainers are equipped with GPUs and
perform the actual training, continuously ingesting tensors
from Readers. Readers are general-purpose CPU nodes that
continuously read raw bytes from the Tectonic File System,
reconstruct minibatches of samples from the bytes, and pre-
process each minibatch into tensors.

Specifically, Readers read data based on a training job’s
dataset, specified by an ML engineer. The dataset contains a
list of table partitions and a list of feature IDs. Throughout
the lifetime of the training job, Readers will continuously
ingest (disjoint) minibatches of samples, filtering out unused
features in each sample, until the Readers have collectively
read all samples from the specified partitions. To read the ap-
propriate bytes from Tectonic, Readers map each partition to
a set of Tectonic files by querying the Hive Metastore [57,58].
Readers then scan each file and progressively read samples by
issuing Tectonic reads. Readers push filtering to storage, ref-
erencing metadata within footers of the file to selectively read
bytes corresponding to features specified by the dataset [68].

Tectonic File System. Figure 2 shows the architecture of
the Tectonic cluster (sans Shift) backing each Tectonic File
System instance. Files are divided into blocks (typically 72
MiB) representing a logical array of bytes. Tectonic further
divides blocks into smaller chunks (typically 8 MiB) and
durably encodes each via replication or Reed-Solomon (RS)
encoding [51]. Chunks are distributed across the cluster’s
Chunk Store, backed by a number of HDD storage nodes.

Readers directly read data from storage nodes using the
Tectonic Client Library. The Client Library exposes a file
pread interface to clients. For each read, the Client Library
issues requests to specific chunks on storage nodes and per-
forms reconstructions if necessary. The Client Library obtains
chunk mappings and any directory and file metadata (e.g.,
directory ls) via queries to a hash-sharded Metadata Layer
built on ZippyDB [37]. DPP Readers optimize for HDD seeks
and coalesce reads into large O(1MB)-sized IOs [68].

Table 1: Storage power requirements for an HDD, flash, and ideal
composite cluster, assuming 100 PB and 10 TB/s storage and IO
demand. We show required power to meet storage-only, bandwidth-
only, and both requirements, normalized to HDD storage-only.

Storage Req. IO Req. Storage & IO Req.

HDD Cluster 1.00 9.92 9.92
Flash Cluster 6.53 1.88 6.53
HDD + Flash 1.00 1.88 2.69

3 Production ML Storage Design Space

This section explores why we could not efficiently scale Tec-
tonic to meet the IO bandwidth that our training clusters in-
creasingly demand. We present various hardware and software
design space explorations that led us to Tectonic-Shift, guided
by a characterization of our production ML training jobs.

3.1 Hardware Design Space

We first evaluated different storage hardware options, sum-
marized in Table 1. Specifically, we used our HDD [3] and
flash [8] server specifications to calculate the power (watts)
required by the number of HDD, flash, or HDD + flash servers
(rows) to supply 100 PB of storage, 10 TB/s of read band-
width, or both (columns). These demands are representative
of our workloads [42,68], and we must provide both sufficient
storage and IO capacity. The HDD + flash analysis used only
HDDs to supply 100 PB of storage and only flash to supply
10 TB/s of IO. In the storage and IO case, we used HDDs to
supply storage capacity and flash to supply IO capacity, dis-
counting the IO capacity supplied by the HDDs. We focused
on power because it is the primary budget and optimization
metric for services across our fleet [68]. We normalized results
to the HDD, storage-only case.
Option 1: HDD-Only (Status Quo). Our first option to meet
IO demand was to continue provisioning more HDD storage
nodes into each Tectonic cluster. This would linearly scale IO
capacity as chunks are distributed across HDDs evenly. Unfor-
tunately, this option would require us to provision 9.92× more
storage capacity than necessary — 1.6EB of disks assuming
RS(9,6)! Furthermore, since our IO demand is growing 2×
as fast as storage demand [68], this option is unsustainable.
Option 2: Flash-Only. We also considered using a flash
storage tier [28] for our training datasets. Flash trades off
storage-efficiency for IO-efficiency. Compared to HDDs, A
flash cluster would need 5.28× less power to meet IO demand,
but 6.53× more power to meet storage demand. Meeting both
demands is more efficient using flash, but there is a significant
over-provisioning of IO capacity, making this sub-optimal.
Option 3: Composite Storage. Relying on a single stor-
age hardware inherently precludes us from balancing storage
and IO capacity. An ideal cluster would use both a storage-
efficient device and IO-efficient device together, provisioning
enough of each to meet their respective demands. HDDs are
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Figure 3: IO bandwidth demand across 85 tables over the course of
one day. Training tables exhibit a power law in popularity.

an ideal storage-efficient device due to their density. We con-
sidered DRAM and flash for our IO-efficient device.

Option 3.1: HDD + DRAM. We decided against using
only DRAM, as a DRAM storage node would be bound by
the NIC throughput (e.g., 100 Gbps) as opposed to DRAM
throughput. Modern SSDs can provide O(1GB/s) of read
bandwidth at O(1W ) of power [11], allowing a flash storage
node to provide the same IO capacity in roughly the same
power footprint as a DRAM storage node. Meanwhile, flash
storage nodes have significantly higher storage capacities
(O(10T B)), greatly improving cache performance.

Option 3.2: HDD + Flash. We opted to use flash as our
underlying IO-efficient device. Table 1 shows how an ideal
composite cluster would allow us to provision only 1.69×
flash-based power to meet IO demand plus 1.00× HDD-based
power to meet storage demand, reducing the power footprint
of our storage tier by 3.69× compared to Option 1.

However, Option 3.2 assumes that flash servers are able
to meet the bulk of IO demand by holding a popular subset
of bytes. Our next challenge was designing a system that
could intelligently manage the contents of each flash server
to maximize its IO absorption. Our first option was to create
both a flash and HDD Chunk Store within the same durable
storage fabric. The Tectonic Metadata Layer would move
blocks between flash and HDD based on read demand. This
option has several drawbacks. It a) requires extra RS encoding
overheads on flash, b) adds metadata overheads due to block
location updates, and c) requires significant changes to the
Metadata Layer to support sub-block granularities (due to
byte-range popularities, to be discussed in Section 3.2.1). For
these reasons, we decided to use flash as the foundation for
a metadata-less, non-durable cache. We present the design
space exploration of this software cache next.

3.2 Software Design Space
3.2.1 Production ML Workload Characterization

We begin by characterizing our production ML training jobs,
which present a uniquely challenging cache workload.
Row-wise Reuse. Training samples (rows) exhibit a skewed
popularity across training jobs. Figure 3 shows the IO demand
targeting 85 tables over the course of one day. We run many
ML model types in production, and ML engineers continu-
ously train and experiment on each model type with varying

Figure 4: (a) Normalized histogram showing # of date partitions
read by each training job, with orange bars weighing jobs by the
number of partitions read. (b) IO demand across date partitions over
a one-day period, with day 0 being the most recent partition.

popularities. Since each model type typically uses a distinct
table, this variation manifests in tables’ IO demands. There is
a distinct power-law in table popularity with a long tail.

Furthermore, training jobs typically read a subset of table
partitions, as models can typically reach convergence before
all rows are exhausted. For a similar reason, each training job
only reads its specified rows once (i.e., one epoch). Figure 4(a)
shows a distribution for a popular table1 of the number of date
partitions2 read by training jobs in one day. Most jobs read
only a few partitions. However, when we consider IO demand
by weighing the impact of each job by the number of date
partitions it reads (the orange bars), we see that the majority of
IO demand comes from jobs that read 20 or more partitions.

It is also important to understand which partitions training
jobs typically read. Figure 4 shows a normalized histogram
of IO demand over the popular table’s date partitions over the
course of one day. Partitions do not exhibit flat popularity, but
instead show multiple modalities. A large fraction of traffic
reads the most recent date partition. This is typical of “recur-
ring” jobs that keep the model up-to-date and exploratory jobs
that use the freshest data. There also exist multiple groups of
popular date partitions, where multiple larger-scale training
jobs use similar date ranges to ensure comparable results.

The above graphs show multiple important characteristics.
a) Row reuse is solely across single-epoch training jobs. b)
The active working set size of all training jobs is massive.
There are over 85 active tables, each containing O(1−10PB)
of samples [68]. c) Most IO demand comes from jobs that
read tens of date partitions. These jobs have PB-scale working
sets due to O(100T B)-sized date partitions [68]. There are
also many smaller jobs that read a few date partitions. d) Date
partitions exhibit varying popularity, with popularity changing
over time as date partitions are generated and deleted.
Column-wise Reuse. Columns (i.e., features) also exhibit
a distribution in popularity, as training jobs typically use a
subset of all features due to hardware (e.g., GPU memory)
constraints. Figure 5(a) shows an analysis of 1265 production
training jobs that read a specific date partition of the popular

1Where relevant, we characterize this same table throughout this section.
2A date partition consists of all training samples generated in a given day.
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Figure 5: (a) CDF showing distribution of stored feature bytes to
IO served to 1265 training jobs reading a single date partition. (b)
Time-series of training jobs reading a popular table over one week.

table. The x axis shows a distribution of the stored bytes,
ordered by read popularity. The y axis shows the fraction
of total IO bandwidth served by most popular x fraction of
bytes. Over 75% of bytes are read at least once. However,
roughly half of all bytes, corresponding to popular features,
serve almost all IO demand.

This has important implications for a cache system, as
features are stored into columnar byte streams within large
DWRF files. Specifically, row-wise popularity corresponds to
file-popularity, and column-wise popularity corresponds to
byte-range popularity within each file. A cache system must
effectively capture both dimensions.
Temporal Behavior. Cache systems must also account for the
unique temporal characteristics of training jobs. Figure 5(b)
shows a time-series plot of 642 jobs, launched over one week,
that read the popular table. Each horizontal bar reflects the
lifetime of each job, during which it reads the samples and
features specified in its dataset. We observe that first, training
jobs are largely asynchronous. Cache systems cannot solely
optimize for highly synchronized jobs (e.g., hyperparameter
tuning) and assume high temporal locality. Secondly, data
reuse is expressed across a small number of training jobs,
unlike the billions of requests common to web-based work-
loads [6]. Finally, each training job can run from hours to
days, requiring a large storage and temporal footprint.

3.2.2 Cache Software Design Space Exploration

With our workload characteristics in mind, we evaluated vari-
ous system architectures to manage our flash storage tier.
Option 1: General-purpose Software Caches. We built
CacheLib at Meta as a general-purpose cache engine to sup-
port caches for datacenter applications such as key-value
stores, databases, CDNs, and social graphs [6]. CacheLib
offers LRU and FIFO eviction policies over flash, and random
and reject first admission policies to manage flash endurance.
Our first option was to simply deploy a cluster of flash storage
nodes, each managed by CacheLib, to cache file byte ranges.

Unfortunately, ML training workloads exhibit patterns that
general-purpose cache policies fail to handle. Our characteri-
zation showed a long tail of jobs that read unpopular tables
and partitions. However, each job can still have working sets
up to tens of petabytes, potentially larger than the entire cache

itself. These massive and long-running scans can easily evict
the entire cache, reducing hits on popular items. Furthermore,
even popular training samples are susceptible to churn, where
each sample is repeatedly evicted and inserted into cache.
Churn occurs because a) there are relatively few training jobs
in each datacenter, b) data reuse occurs with a relatively long
duration between jobs (Figure 5), and c) working set sizes ex-
ceed our cache capacities. Scans and churns are well-known
antagonist cache patterns [52], motivating the need for spe-
cialized and domain-specific admission and eviction policies.
Option 2: ML-specific Caches. We also considered tech-
niques for building an ML-specific cache, inspired by recent
work [16, 23, 30, 32, 41, 61, 71], that allows applications to
explicitly cache samples in high-bandwidth storage. While
such caches can optimize policies for ML workloads, they
face several disadvantages. First, current ML caches employ
techniques that require assumptions not representative of our
workloads, limiting their effectiveness. For example, they
cache entire files (e.g., images), and they rely on a large
amount of intra-job data reuse across multiple epochs and
inter-job data reuse across highly concurrent hyperparameter
tuning jobs. Meanwhile, feature popularity requires our cache
to store byte ranges within files, and our workloads only ex-
hibit inter-job data reuse with highly asynchronous workloads.
Secondly, an application-controlled cache introduces security
concerns due to the need to handle access to and deletion of
multiple copies of data. Finally, ML caches require end-user
efforts to adopt, hindering both our deployment velocity, and
more importantly, the productivity of ML engineers.
Option 3: A Transparent, Application-aware Cache. Our
final cache design combined benefits from both software
and ML caches. We focused on policies that provide the
transparency and generalizability of software caches and the
application-level awareness of ML caches. Our characteriza-
tion highlighted key opportunities. Specifically, not only do
training jobs tend to favor specific rows and columns, their
dataset specifies which features, tables, and partitions the job
will deterministically read throughout its lifetime.

We next explore how our entire design space exploration
yielded a principled design of Tectonic-Shift. Section 5 then
describes how we leverage policies that infer future access
patterns from dataset specifications to minimize cache con-
tention and to maximize the read IO absorbed by the cache.

4 Tectonic-Shift Architecture

4.1 Tectonic-Shift Design Principles
Figure 6 shows the architecture of Tectonic-Shift. We designed
Tectonic-Shift around four key design principles.

Transparency: Tectonic-Shift combines Shift, a flash stor-
age tier, in front of each HDD Tectonic cluster transparently.
Each Tectonic-Shift cluster serves read requests for all training
workloads in its respective datacenter. It exposes the same
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Figure 6: The block diagram of Tectonic-Shift, with numbered arrows depicting the path of each read request.

APIs and semantics as our current Tectonic File System. Trans-
parency was important for two reasons. First, we avoided ex-
posing storage decisions to ML engineers, as doing so may
lead to inefficient configurations and hinder their productiv-
ity. It also eased deployment, allowing us to progressively
roll out Shift and re-balance Tectonic clusters under the hood.
Secondly, because most of Meta’s storage services rely on
Tectonic, a general API would allow us extend Shift to new
customers that could become IO-bound (see Section 7).

Simplicity: We kept Shift simple and robust by reusing as
much infrastructure as possible. Shift can only be accessed
via the Client Library, which uses Tectonic’s Metadata Layer.
This simplifies security since all access controls are validated
before reaching Shift. Shift also uses the fact that training data
is stored in immutable, sealed blocks [50] to avoid managing
cache invalidations or mutations. Each Shift node uses Cache-
Lib as its internal caching engine, allowing us to harness
resources from the myriad teams that rely on CacheLib.

Scalability: We built Shift to be effective at any deploy-
ment size, quickly deployable, and easily scalable to meet the
demands of each datacenter. Shift is fully decentralized, con-
sisting of only flash storage nodes placed in a consistent hash
ring. Cache decisions are only made locally to each storage
node and dynamically adjust based on observed load.

Intelligence: Finally, based on Section 3, Shift must adapt
to the unique workload characteristics of ML training jobs.
Section 5 explores how we built intelligent cache policies
on top of CacheLib. These policies infer each training job’s
data access pattern based on its initial dataset specification,
allowing each Shift node to maximize IO absorption based on
both historic and expected future data access patterns.

4.2 The Life of a Tectonic-Shift Read

Client Library. As discussed in Section 2, for each training
job, DPP Readers collectively scan through the specified par-
titions, with each Reader individually reading separate splits
of rows. Each partition is mapped to a distinct file system
directory, and Readers directly read data corresponding to
used features from files in the respective directories. Readers
obtain file handles by querying the Tectonic Metadata Layer
(Figure 2). Mappings from features and rows to file byte

ranges are decoded by Readers from file footers. Each Reader
issues reads via a pread Client Library API call, which re-
turns count bytes starting at offset within a file.

Figure 6 shows how the Client Library handles each pread.
It first decomposes the pread into a set of block reads by
querying the Tectonic File Layer. The Client Library then
checks if each block read is cache eligible. Cache ineligible
reads directly read each block range from the Tectonic Chunk
Store 1a . Cache eligible reads directly issue a get(blockId,

offset, length) for each block to the Shift cluster 1b .
We piggyback a number of tags with each get request that
associate each request with relevant metadata, such as the file
path and training job ID, to be used by Shift policies. The Shift
cluster consists of a number of flash Shift Storage Nodes (SNs)
placed in a consistent hash ring [25]. The Client Library maps
each get request to a Shift SN based on hash(blockId). get
requests either return data for the corresponding block 2a ,

or return a cache miss 2b . The Client Library reads missed

blocks from the Tectonic cluster 1a . Once all blocks are
fetched, the Client Library returns the results of the pread to
the caller.
Shift Storage Node Data Plane. Shift uses CacheLib [6]
within each SN to manage both DRAM and flash. We break
up each Tectonic block into fixed-size segments, which are
the objects that we place into CacheLib. Blocks are typically
72 MiB; we discuss segment sizes in Section 5.2.

The SN breaks up each get request’s range into segments.
If all segments are present in cache, the SN simply returns the
requested data 2a . Otherwise, Shift implements two critical
policies on top of CacheLib. First, if any segments are missing,
the SN decides if the segment is admitted (i.e., allowed) into
cache 3 . If any segment is not admitted, the SN returns a
cache ineligible miss to the Client 2b . Otherwise, the SN will
fetch admitted segments from the Tectonic cluster and insert
them into cache 4 . The SN then returns data corresponding
to the get request 2a . Secondly, any cache insertions will
potentially result in segments being evicted from the cache
5 . For each evicted segment, the SN can optionally reinsert

the segment into cache 6 , potentially avoiding a cache miss
if the evicted segment is accessed in the near future.
Shift Abstractions and Guarantees. The primary goal of
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Shift is to serve IO bandwidth corresponding to popular bytes,
reducing IO to Tectonic’s Chunk Store. We rely on and do not
change the semantics of the Tectonic File System.

Specifically, the Tectonic File System provides append-only
semantics. Data pipelines will seal blocks; we do not have to
handle modifications in Shift. Shift SNs act only as a part of
the data plane. To keep file system operations centralized and
scalable, we rely on the Tectonic cluster’s Metadata Layer for
all metadata operations. Thus, Shift does not expose a put
API. Inserts into cache are only made for missed get requests.
Accesses to blocks are consistent since Shift SNs can only be
accessed by the Tectonic Client Library, which first references
the Metadata Layer for file-to-block mappings, preventing
reads to renamed or deleted files. Similarly, unauthorized
reads are prevented as any the Client Library performs ACL
checks for each block before issuing reads to Shift.

Our proposed design also allows Shift to be inherently fault
tolerant. Shift contains no centralized state. Shift relies on the
fault tolerant Tectonic Metadata Layer [50] for metadata op-
erations. Cache policies are made local to each SN, allowing
other SNs to proceed unhindered in the event of a SN failure.
Furthermore, Shift serves only reads, and Clients will default
to Tectonic reads (e.g., after a timeout) if a given SN fails.

5 Application-Aware Cache Policies

Building on our design principles, our key insight is to in-
strument Shift with intelligent policies that maximize the IO
absorbed from Tectonic. These policies transparently adapt to
workloads by leveraging both historic and application infor-
mation, ensuring that only segments with high reuse across
training jobs are kept in each SN. Specifically, each Shift SN
contains a Control Plane that implements an admission and
reinsertion policy. We incorporate a cache eligibility pol-
icy in the Client Library to reduce RPC pressure and avoid
requests to Shift from “uncacheable” workloads.

We focused on building a flexible SN Control Plane that
aggregates the necessary metadata (including application in-
formation) to define and inform highly configurable policies,
allowing us to constantly tune and improve performance. We
prioritized admission and reinsertion policies as opposed to
eviction policies such as LRU because a) we can prevent
significant thrashing due to the scan and churn (Section 3)
patterns common in our workloads, and b) we can control
write rates to flash in order to manage flash endurance con-
straints. Meanwhile, our policies are built on top of CacheLib,
and we use CacheLib’s provided eviction policies (LRU or
FIFO) after admission into cache.

As discussed in Section 4, each Shift SN acts as an indepen-
dent entity, serving only requests on its portion of a consistent
hash ring. Thus, the overall goal of each Shift SN is to max-
imize the absorbed IO locally — doing so maximizes the
aggregate IO absorbed by the entire Shift cluster. We define
the absorbed IO at each SN as the bandwidth of successful
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Table 2: Table listing configurable parameters in Shift.

Configurable Parameter Meaning

MapSegment(s) Mapping function from segment to bucket.
BucketPriority(b) Function to calculate priority of bucket b.
AdmitT hreshold Dynamic scalar threshold to admit buckets.
ReinsertT hreshold Dynamic scalar threshold to reinsert buckets.
BucketRe f reshTime Update period for bucket policies.
RHWSize Size of request history window logs to keep.

get requests returned to clients, minus the bandwidth of data
fetches to the Tectonic cluster due to data misses. Importantly,
non-admitted cache requests do not impact absorbed IO, and
reinserted segments do not contribute to fetches to Tectonic.

5.1 Admission and Reinsertion

Figure 7 shows an overview of the Control and Data Plane
running in each SN. The Control Plane dynamically directs
the Data Plane to admit or reinsert segments into the cache
upon a cache miss or eviction, respectively, using historical
and application metadata. These decisions are made based on
the configurable parameters summarized in Table 2.
Mapping a Segment to a Bucket. The Control Plane stat-
ically maps each segment s to a bucket b using the tags at-
tached to each read request, based on a configurable function
MapSegment(s). Intuitively, each bucket represents a collec-
tion of segments that will likely be accessed together and
connects to a logical grouping within the application.

For example, we typically use a segment’s corresponding
directory as its default bucket mapping, as each training job
specifies a set of partitions to read and will scan through
files within each partition’s directory. Furthermore, we can
correlate data reuse across multiple jobs based on their dataset
partitions (and thus directories). While finer-grained bucket
mappings such as files or features (i.e., file byte ranges) are
possible, directories provide sufficient granularity since jobs
mostly read similar features within each file (Section 3).
Assigning a Policy to Each Bucket. Each bucket is assigned
a binary admission and reinsertion policy. The Data Plane sim-
ply admits/rejects (on miss) or reinserts/evicts (on eviction)
each segment depending on its bucket’s current policy. The
Control Plane will admit or reinsert a bucket if the bucket’s
current BucketPriority(b) is greater than AdmitThreshold or
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ReinsertThreshold, respectively. Bucket policy assignments
are updated every BucketRefreshTime, a configurable parame-
ter. Buckets should be updated frequently enough to react to
changes in reading patterns; we use a default of 10 seconds.
Deriving a Bucket’s Priority. BucketPriority(b) directly de-
termines b’s admission/reinsertion policy. Intuitively, we in-
terpret b’s priority as the number of times we expect each
segment in the bucket to be read in the near future. Higher
priority buckets will be placed into the cache (via admis-
sion/reinsertion) over lower-priority buckets and thus absorb
more IO in total. Our key insight is to calculate buckets’ prior-
ities using both historical and future information derived from
the Request History Window (RHW) and Global Metadata
Store (GMS), respectively.

Historic Priority. The RHW tracks recently observed re-
quests (regardless of admission) over a past time period,
RHWSize. The RHW reports the number of unique segments
and total segments requested for each bucket. A historic pri-
ority for bucket b can be calculated as BucketPriority(b) =
TotalBytes(b)/UniqueBytes(b), providing the traditional
cache signal which assumes that past access patterns are in-
dicative of the future. RHWSize is a configurable parameter.
We tune it to capture sufficient historical data without exceed-
ing memory capacity limits; we use a default of 6 hours.

Future Priority. The RHW also records the set of active
training jobs and the set of buckets read by each training
job using the job ID tag piggybacked with each request. The
GMS is a set of databases which contains real-time informa-
tion about the dataset specification of each training job. By
combining the RHW and GMS, we can directly derive future
accesses for each training job and thus bucket priorities. The
Control Plane queries the RHW for all active training jobs and
pulls each job’s dataset specification from the GMS. For ex-
ample, for directory-based buckets, the Control Plane derives
a bucket’s future priority as equal to the number of jobs that
include the corresponding partition in its dataset, discounting
any jobs that have finished reading the bucket.

In summary, the RHW captures historic access patterns and
active training jobs, while the GMS associates each training
job with application information about its dataset. While we
presented potential historic and future policies, variations can
easily be created using the RHW and GMS. For example, a
potential future policy can further prioritize directories earlier
in read order (and thus read sooner). Section 6 explores a
hybrid policy combining historic and future priorities.
Threshold Tuning. The Control Plane continuously tunes the
AdmitT hreshold and ReinsertT hreshold based on two fac-
tors. First, a minimum threshold avoids admitting unpopular
workloads that can evict the entire cache. We use a mini-
mum value that is strictly greater than 1, and we constantly
tune it based on observed performance. Secondly, we imple-
ment a PID-controlled feedback loop to ensure that the cache
admit plus reinsert rates (reported by the RHW) is strictly
less than our flash endurance limits (defined by a maximum

average write rate). This allows the threshold to increase
beyond the minimum in response to high flash write rates,
thereby admitting/reinserting fewer segments. We only tune
the AdmitT hreshold and tie the ReinsertT hreshold to be a
fixed offset (e.g., AdmitT hreshold + 1) to prioritize admits
over reinserts to limit write amplification due to reinserts.

An additional benefit in building an admission policy above
CacheLib is to rate limit prior to Tectonic reads. While Cache-
Lib provides a rate limiter, which selectively admits segments
to flash upon DRAM eviction, it inherently requires first in-
serting data into DRAM. This results in unnecessary Tectonic
reads if the data is soon to be evicted due to write endurance
limits. Shift’s admission policy acts prior to Tectonic fetches,
avoiding unnecessary HDD reads for rate limited data.

5.2 CacheLib Tuning

CacheLib offers a suite of configurable parameters that we
continuously tune via a host of stress, release validation, and
production tests. While prior flash caches focused on address-
ing write amplification caused by small objects (e.g., <1KB
messages) [6, 13, 38, 56], a key difference and advantage in
Shift is the ability to configure segment sizes. Too large seg-
ments, relative to request sizes, result in overheads since we
fetch and store data in segment-granularity. On the other hand,
too small segment sizes constrain both DRAM and flash due
to metadata and write amplification overheads. We found that
256 KB was a good balance for our workloads. We also rely
on CacheLib to optimize underlying data layouts on flash [6]
to further improve flash endurance. Finally, we evaluated the
available eviction policies for DRAM and flash and found
that LRU works well (when combined with Shift’s policies);
we provide further exploration in Section 6.

5.3 Client Cache Eligibility

We also incorporate a Shift eligibility policy at the Tectonic
Client Library. Tectonic serves a diverse set of training and
non-ML workloads across Meta. The primary purpose of the
cache eligibility policy is to prevent customers that are not
onboarded to Shift, as well as low-priority and uncommon
(and less-cacheable) tables, from issuing lookups to Shift.
While these read requests would likely be rejected by the SN’s
cache admission policy, applying a first filter significantly
reduces the RPC load and memory pressure at each SN.

We currently filter out all non-ML traffic to bolster ML
training capacity. Furthermore, Figure 3 shows that tables are
disproportionately popular. Filtering out rarely-used tables
adds another layer of protection against cache contention,
since all IO can be sufficiently served from Tectonic HDDs.
As a baseline heuristic, we filter out tables whose IO demand
can be sufficiently served by the HDD capacity needed to
store it. We continuously tune our filters based on demand.
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(a) Synchronized workload (b) Pipelined workload (c) Sequential workload
Figure 8: IO absorbed by different policies across benchmarks, normalized to the average IO absorbed by LRU eviction.

Table 3: Benchmark DLRM training job workloads used for eval-
uation. Each job j is denoted as {} j and reads each partition P in
specified order. Each partition P has a ≈ 5 TB working set.

Workload Jobs & Partitions Read Description

Synchronized {P1,P2,P3}1, {P4,P5,P6}2,
{P1,P2,P3}3, {P7,P8,P9}4,
{P1,P2,P3}5

Multi-tenant HP tuning or ex-
ploratory jobs. Jobs are launched
synchronously.

Pipelined {P1,P2,P3}1, {P2,P3}2,
{P3}3

Long-running, pipelined jobs. Jobs
are launched synchronously.

Sequential {P1}1, {P1}2, {P1}3, {P1}4,
{P2}5, {P3}6, {P1}7, {P4}8,
{P5}9

Queued jobs that launch when
training capacity is available. Jobs
1-3, 4-6, and 7-9 launch together.

6 Tectonic-Shift Deployment and Evaluation

Tectonic is Meta’s durable storage system. It has been in pro-
duction since 2015 and stores exabytes of data. Shift has been
in production since early 2022 and is deployed at petabyte-
scale alongside multiple Tectonic clusters serving DLRM
training workloads. In this section, we evaluate Shift’s various
caching policies compared to state of the art using a series of
representative workloads, and we present results of Shift in
production. We focus on and report absorbed IO because it is
Shift’s top-line metric and optimization goal. A comparison
of hit rates would yield analogous results since requests rates
are equally distributed across SNs due to consistent hashing.

6.1 Shift Policy Evaluation

To better understand how Shift policies perform, we used
a set of representative workload patterns shown in Table 3.
Each pattern was derived from production DLRM training job
traces and downsized to scale to our evaluation cluster. The
Synchronized pattern represents a case where multiple training
jobs reading the same partitions are launched at the same
time (e.g., for hyperparameter tuning jobs), with training jobs
reading other partitions interleaved due to the multi-tenancy of
our training clusters. The Pipelined pattern frequently occurs
in long-running jobs when users kill an under-performing job
and replace it with a new model using the same dataset. The
Sequential pattern occurs due to limited training resources,
where jobs will run in separate batches as jobs finish and
resources become available. For each workload, we used a set

of Readers that each read from Tectonic-Shift at ≈ 1.5 GB/s.
We evaluated on a 6-node Shift cluster deployed with our

production configuration. In each experiment, we configured
nodes with different policies and evaluated each policy concur-
rently to ensure equal read locality; consistent hashing evenly
spread requests across nodes. We used 16 GB of DRAM
cache for each node. The Synchronized, Pipelined, and Se-
quential patterns used (1.28 TB, 5 TB, and 5 TB), and (4, 5,
and 5) of total flash cache and Readers per job, respectively.
Unless otherwise stated, we used directory bucket mappings
and disabled reinsertion and write rate limits.
Do admission policies improve IO absorption? First,
we evaluated if various Shift admission policies improved
IO absorption across all workloads. We used the Historic
and Future admission policies presented in Section 5.1,
which use historic and future metadata, respectively, from
the RHW and GMS to calculate a priority equal to the
number of expected reads per segment. We also used
a Hybrid admission that uses BucketPriorityHybrid(b) =
max(BucketPriorityHistoric(b),BucketPriorityFuture(b)). We
set a minimum admit threshold of 1.1 for each policy, imple-
menting a "reject first" policy. We used LRU eviction for each
admission policy, and we compared to two baselines that only
used CacheLib’s FIFO and LRU eviction policies.

Figure 8 shows the IO (bandwidth) absorbed by each policy,
normalized to the average IO absorbed by LRU. A higher IO
absorption directly translates to higher Shift efficiency. In
the Synchronized workload, FIFO absorbed an equal amount
of IO (1.01×) as LRU. The Historic policy absorbed 2.01×
more IO than LRU, since it was able to avoid cache thrashing
induced by P4−9 (see Table 3) by not admitting them. The
Future and Hybrid policies absorbed 2.27× and 2.32× more
IO, out-performing Historic admission since they were also
able to immediately cache P1,2,3 without rejecting initial reads
waiting for the Request History Window to populate.

For the Pipelined workload, FIFO was able to absorb
1.86× more IO than LRU, since churn caused LRU to evict
more objects in P3 before job 1 read P3. Historic admission
performed worse than LRU, absorbing only 0.80× IO, as it
did not admit any bytes from P3 until job 2. Since the Future
admission policy immediately knew of P2 and P3’s popularity,

USENIX Association 2023 USENIX Annual Technical Conference    441



(a) IO Absorbed (b) NVM Write Rate (c) HDD Read / Cache Fill Rate
Figure 9: Policy performance using the Synchronized workload, normalized to Dynamic. Dynamic and Shift write limits are set to 100 MB/s.

it was able to maximize and absorb 5.84× more IO than LRU
by admitting them to both to cache on the first read by jobs
2 and 3. Hybrid admission equalled LRU (0.99×), since it
kept admitting P2 during job 1, expecting future reads due to
historic popularity and thrashing P3’s data in cache.

Finally, we observe that for the Sequential workload, FIFO
performed on-par (1.06× IO absorbed) with LRU, while His-
toric, Future, and Hybrid outperformed LRU equally (1.71×,
1.74× and 1.69× respectively). Specifically, for the first set
of jobs (1-3), all policies saw high hit rates since only P1
was actively read. However, for the second (4-6) and third
(7-9) sets of jobs, the Shift policies rejected reads from P2−5,
avoiding contention and improving IO absorbed by P1.

On average across all workloads, FIFO, Historic, Future,
and Hybrid respectively absorbed 1.31×, 1.51×, 3.28×, and
1.67× more IO compared to LRU.
Can admission policies manage flash endurance? We need
to limit the write rate to SSDs in order to preserve their life-
time. To study how well Shift policies perform under con-
strained write limits, we repeated the Synchronized workload
while limiting each Shift node with an flash write limit. We
compared to two state-of-the-art admission policies provided
by CacheLib: a Dynamic flash admission policy randomly
rejects writes to flash in order to maintain the specified write
limit, and a Reject First flash admission policy rejects objects’
first write to flash. We also evaluated no admission policy
(Admit All). We used LRU eviction for all admission policies,
and we configured Shift policies and the Dynamic policy to
write only 100 MB/s per node. To fully evaluate the Shift
threshold tuner, we did not set a minimum admit threshold.

Figure 9 shows the IO absorbed, flash write rate, and Tec-
tonic HDD read rate for each admission policy, with each
metric normalized to the average for the Dynamic admission
policy. All admission policies absorb more IO than Dynamic.
Reject First and Admit All absorb 1.51× and 2.66× more IO,
respectively; the Historic, Future, and Hybrid policies absorb
2.14×, 3.07×, and 2.99× more IO, respectively.

While Shift’s Future and Hybrid policies performed simi-
larly to Admit All, Figure 9b shows how Admit All required
significantly more (10.38×) flash writes than Dynamic, ex-
ceeding our write limit. Reject First was similarly ineffec-

Table 4: Hit rate and HDD IO (cache fills) using Hybrid admission
with dynamically-tuned reinsertion, normalized to Hybrid admission
without reinsertion. Write rate is limited to 1 GB/s.

Normalized Hit Rate Normalized HDD IO

Hybrid with Reinsertion 1.03 0.82

tive, requiring 3.78× more flash writes. Meanwhile, all of
Shift’s policies matched CacheLib’s write rate (within 5%,
even discounting CacheLib’s increased writes initially due to
its counter warm-up) while outperforming its IO absorption.

Furthermore, Shift has the advantage of avoiding excess
reads from Tectonic HDD nodes for rejected objects, com-
pared to CacheLib’s Dynamic policy which always admits
objects to DRAM first (and thus incurring an HDD read) be-
fore rejecting it from flash. Figure 9c shows this benefit; each
of Shift’s policies avoids an HDD read upon rejection, sig-
nificantly reducing the amount of cache fills (96% less than
Dynamic) compared to CacheLib’s baseline policies.

These results show that Shift’s threshold tuning mecha-
nism is effective at maximizing IO absorption given a write
constraint, without incurring excess Tectonic cluster reads.
How effective is reinsertion? We evaluated if reinsertion
was effective at reducing HDD reads compared to admission
only. We repeated the Synchronized workload with a write
limit of 1 GB/s and a reinsertion threshold 1.0 greater than
the dynamic admission threshold with a minimum admit of
1.1. We compared a Hybrid admission policy with reinsertion
against a baseline Hybrid policy without reinsertion.

Table 4 shows the hit rate and HDD IO with reinsertion
enabled, normalized to the baseline without reinsertion. We
observe that enabling reinsertion resulted in similar hit rates
(3% increase), while reducing HDD reads by 18%. However,
compared to the limited flash write rate of the baseline (≈ 300
MB/s), enabling reinsertion with dynamic threshold tuning re-
sulted in Shift always hitting the write limit, since reinsertions
caused more reinsertions until the limit was exceeded. Our
takeaway is that currently, reinsertions may be effective when
reducing HDD reads are prioritized over reducing flash writes.
However, potential future optimizations in CacheLib (see Sec-
tion 7) can harness reinsertion’s benefits while eliminating
the write overheads caused by continued reinsertions.
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Figure 10: Production results comparing Shift to an expert manual-
tuned policy that admits only IO-heavy tables.

6.2 Production Results
We have enabled the policies presented in Section 5 in our
production clusters. Since the mix of training jobs and re-
sources varies across datacenters, we are continuously tuning
policy configurations for each cluster. These policies have
helped Shift save significant amounts of power.

To demonstrate this, Figure 10 shows a representative trace
of the IO absorbed by Shift nodes in a petabyte-scale produc-
tion cluster over the course of 9 hours. We show a baseline
that uses an Expert-tuned admission policy on top of LRU,
which admitted only high-IOPS tables to cache; no admission
policy (admit all) showed near-zero IO absorption due to sig-
nificant cache contention across training jobs. We compared
against Shift using a Hybrid policy, with a minimum admit
threshold of 3.0 and without reinsertion. Both used client
eligibility policies and our production write rate limit (the
baseline additionally used Dynamic admission if necessary),
and we normalized results to the “power-neutral” IO absorp-
tion point: the required amount of IO Shift needs to absorb to
reduce power consumption compared to using only HDDs.

The Expert admission policy is ineffective at saving power
due to its inability to capture the limited data reuse of train-
ing jobs we characterized in Section 3. Simply deploying a
flash cache without intelligent and adaptable cache policies is
inefficient; our production trace shows that doing so would
only absorb 0.21× the IO needed to achieve power neutral-
ity. By employing the application-aware policies presented
in Section 5, we show that Shift can exploit the unique char-
acteristics of training jobs, saving 29% of power relative to
using only HDDs for training data storage. At our scale, this
corresponds to a massive efficiency improvement.

7 Lessons Learned and Open Questions

Define the right interface to users. Our focus on designing a
transparent but intelligent interface to users was instrumental
in the success of Tectonic-Shift. A transparent interface al-
lowed us to quickly onboard new users by simply configuring
the cache eligibility policy, requiring zero application modifi-
cations. Since applications could be agnostic to their use of
Shift, this allowed us to dynamically manage the deployment
and operation of Shift with fine granularity. For example, we
could gradually roll-out to a new customer, A/B test differ-

ent policies across SNs, or even roll-back to reduce request
pressure — all without affecting customers’ performance.

At the same time, we quickly learned that it was essential to
work closely with customers to maximize Shift performance.
We collaborated heavily with AI infrastructure and ML en-
gineering teams to understand and extract the right set of
application metadata to optimize Shift policies. Looking for-
ward, we believe that a wide range of other ML domains (e.g.,
vision, NLP, etc.) and non-ML applications will benefit from
Shift. Since these applications use the same Tectonic API, our
focus can simply lie in working with customers to extracting
the best features to maximize Tectonic-Shift efficiency.
Rely on a slate of robust testing, experimentation, and
monitoring mechanisms. We use multiple tools such as
stress tests, production A/B testing, trace-based simulation,
shadowing, and dashboards to continuously tune the multiple
Shift policies and configurations discussed in Section 5. These
tools have also helped ensure a stable deployment of Shift. For
example, data corruptions are common at our scale, requiring
us to compute, store, and verify checksums for each Shift seg-
ment. To ensure data correctness prior to deployment, we used
a shadow deployment to have clients fetch Shift checksums
to compare against data read from Tectonic.
Effectively use DRAM. CacheLib uses both DRAM and
flash to store data. For our use case, DRAM capacity was
negligible relative to the orders of magnitude larger flash ca-
pacity. Instead, we prioritized using DRAM to store metadata
(e.g., the RHW) to improve the effectiveness of Shift policies,
but we still had to reserve tens of gigabytes of memory for
CacheLib to buffer and serve requests at high throughput. Fur-
ther CacheLib optimizations to reduce memory requirements
and an investigation into the optimal split between data and
metadata may further improve Shift performance.
Can data placement and job routing policies improve
cache performance? A key opportunity we foresee is co-
designing Tectonic-Shift with data placement and training
job routing policies. Data placement policies govern how ta-
bles are replicated across our datacenters. Cache-aware data
placement policies can help reduce cache working set sizes
by intelligently reducing data replication while balancing for
data availability. Cache-aware job routing policies can im-
prove the IO absorbed by Shift by coalescing jobs that read
similar data within the same datacenter.
How much can priority-aware evictions improve cache
performance? Section 6 showed that while reinsertion was
effective, it required significant flash writes due to reinsertion
cycles. Reinsertions are necessary because CacheLib only
offers LRU or FIFO eviction. We believe that further opti-
mizations in CacheLib, such as allowing selective evictions
based on a cache object’s priority, can harness the benefits of
reinsertion without write overheads.
Can historic and future knowledge inform better cache
policies? Shift provides an extensible framework to build
cache admission and reinsertion policies based historic and
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future information. While we demonstrated that a hybrid
policy based on the maximum of historic and future priorities
was effective, a promising research direction is to explore
novel cache policies that can leverage future information.
For example, a potential cache policy may account for when
objects will be read in the future and prioritize earlier objects.

8 Related Work

Software Flash/DRAM Caches. Systems such as Redis [36],
memcached [45], RAMCloud [49], and Pocket [29] are widely
used as caches across datacenter applications. These soft-
ware caches commonly manage DRAM and/or flash using
a mix of policies including admission (e.g., TinyFLU [12]
and LARC [20]) and eviction/replacement policies (e.g.,
ARC [39], LRU [47], 2Q [22], and OPT [5]) that leverage his-
torical (or oracular) access patterns. Techniques to predict file
access patterns, e.g., access trees [33], are also well studied.

Recent works have also proposed mechanisms to dynam-
ically tune these policies using ML models [34, 52, 59],
hardware access signatures [63], NLP techniques [17, 69],
and other heuristics [40, 66]. Meanwhile, flash-specific poli-
cies [6, 13, 38, 56, 65] largely focus on managing flash write
amplification (WA). CacheSack [66] is used as the admission
policy for Google’s Colossus Flash Cache, which shares a
similar goal to Shift in absorbing IO from HDDs. CacheSack
splits objects by category and tunes the admission policy of
each category. Janus [4] is also a flash tier used in Google’s
Colossus file system, but instead requires files to be written
to flash first before being evicted to HDDs.

Various existing storage systems also leverage architectures
similar to Tectonic-Shift. Swift uses a set of configurable hash
rings to map objects to their respective storage device [48].
Numerous file systems leverage heterogeneous storage de-
vices to optimize for performance and efficiency across vari-
ous applications [24, 60, 62, 64]. For example, burst buffers,
typically consisting of IO-performant devices such as flash,
are commonly used to absorb peaks of high IO-demand from
backend (e.g., HDD) storage systems in high-performance
computing applications [35].

Tectonic-Shift is a composite storage fabric that employs
a mix of cache policies across Tectonic Clients and Shift
Storage Nodes to maximize its efficiency. Shift runs a Cache-
Lib [6] instance in each SN. We use comparatively large
segments (256 KB) and rely on CacheLib’s Large Object
Cache to handle WA. Each Shift SN dynamically tunes its
cache policies, including admission and reinsertion, indepen-
dent of CacheLib’s. While Tectonic-Shift shares a similar goal
with Google’s CacheSack [66] and Janus [4], and leverages
well-known techniques such as consistent hashing and het-
erogeneous devices, it uniquely targets industrial ML training
jobs and adopts novel application-aware policies that infer
future access patterns from job specifications.
ML-specific Caches. Recent work has shown the utility

of caches for ML training workloads. CoorDL [41] elimi-
nates data stalls in single-server training using local SSDs.
Quiver [30] and OneAccess [23] cache and share data across
highly-synchronized HP tuning jobs. DIESEL [61] targets
training workloads over small files (e.g., images). DLFS [71]
and DeepIO [70] randomize mini-batches using specialized
hardware. Cachew [16] builds on tf.data [44], and puts inter-
mediate data in cloud storage to reduce preprocessing costs.

While other ML caches require adoption effort, Tectonic-
Shift is completely transparent to users. Furthermore, Sec-
tion 3 explored why industrial ML training workloads present
novel challenges not addressed by these caches. Tectonic-
Shift is designed for exascale and continuously serves traffic
to datacenter-scale GPU training clusters.
Production ML Workload Characterization. tf.data [44]
provided an ML training workload characterization at Google,
highlighting similar traits such as prevalent data reuse and
selective reading. Tectonic-Shift is motivated by and builds
upon prior characterization of Meta’s training workloads [68].
Distributed File Systems. Tectonic-Shift is built on top of Tec-
tonic [50] and provides the same API and append-only seman-
tics as the Tectonic File System. Other distributed file systems,
such as Spanner [10], GFS [15], Colossus [19], HDFS [54],
and Lustre [53], are used across industry.

9 Conclusion

We presented Tectonic-Shift, the composite storage fabric used
in Meta’s production ML training infrastructure. Tectonic-
Shift maximizes efficiency by balancing storage and IO capac-
ity across HDD and flash. We provided an in-depth workload
characterization and design space exploration which guided
the principled design of Tectonic-Shift. Shift employs a set of
application-aware policies that infer and exploit future access
patterns using job specifications. We demonstrated how Shift
absorbed 1.51−3.28× more IO than an LRU flash cache and
improved the power efficiency of Tectonic-Shift by 29%.
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Abstract
Cloud storage is gaining popularity because of features such
as pay-as-you-go that significantly reduces storage costs.
However, the community has not sufficiently explored its con-
tract model and latency characteristics. As LSM-Tree-based
key-value stores (LSM stores) become the building block
for numerous cloud applications, how cloud storage would
impact the performance of key-value accesses is vital. This
study reveals the significant latency variances of Amazon
Elastic Block Store (EBS) under various I/O pressures, which
challenges LSM store read performance on cloud storage. To
reduce the corresponding tail latency, we propose Calcspar, a
contract-aware LSM store for cloud storage, which efficiently
addresses the challenges by regulating the rate of I/O requests
to cloud storage and absorbing surplus I/O requests with the
data cache. We specifically developed a fluctuation-aware
cache to lower the high latency brought on by workload fluc-
tuations. Additionally, we build a congestion-aware IOPS al-
locator to reduce the impact of LSM store internal operations
on read latency. We evaluated Calcspar on EBS with different
real-world workloads and compared it to the cutting-edge
LSM stores. The results show that Calcspar can significantly
reduce tail latency while maintaining regular read and write
performance, keeping the 99th percentile latency under 550µs
and reducing average latency by 66%.

1 Introduction
In recent years, the trend that many businesses and organi-
zations shift their data to the cloud has fueled the growth of
cloud storage [21, 34]. This is due to the advanced features
and cost-effectiveness of cloud storage. For example, Amazon
Web Services (AWS), the world’s most broadly adopted cloud
platform, provides various storage services with high scalabil-
ity and reliability on a pay-as-you-go basis [8] (e.g., Elastic
Block Store, EBS), making them more appealing. Another im-
portant trend is that LSM-Tree-based key-value stores (LSM
stores), such as RocksDB [5], LevelDB [1], Bigtable [14], Dy-

namo [17] and TiDB [19], are becoming the building block for
many cloud applications. However, none of the existing LSM
stores is optimized for cloud storage to eliminate long-tail la-
tency. Notably, it is challenging to balance the estimated peak
performance with the budget for cloud storage performance
(e.g., IOPS). Although many cloud storage providers adver-
tise elastic storage volumes that can accommodate changing
performance needs, these volumes’ scaling capabilities fail to
adapt to an inevitable traffic fluctuation. For instance, AWS
EBS only supports increasing the purchased IOPS, which
would take hours or even days to complete [2]. Hence, it
is impractical to rely solely on elastic volumes for timely
adjustments in the face of short-term workload changes.

To understand how cloud storage would respond to traffic
fluctuation, we have explored the latency characteristics of
AWS EBS volumes. Results show that EBS guarantees a
service agreement called Service Level Agreement (SLA)
in which the processing latency of each request falls within
an appropriate threshold if the accesses do not exceed the
paid IOPS. We observe that the processing latency of each
consecutive request dramatically increases when the demands
in a time window exceed the IOPS agreement. Besides, the
cloud storage’s contract model shows that the higher the paid
IOPS, the lower the latency. However, such an agreement is
constrained by IOPS budgets, and naturally, performance in
terms of latency will suffer if the IOPS is overdrawn.

The latency spike caused by limited IOPS in cloud stor-
age severely impacts the performance of latency-sensitive
applications on top of LSM stores. We take one of the most
widely deployed LSM store implementations, RocksDB, as
an example. The RocksDB first writes the in-memory table
(memtable) to respond quickly with reasonably low latency.
Until the in-memory table is full, RocksDB then persists the
table to the storage volume in large chunk writes (e.g., SSTa-
bles), thus aggregating the random writes into sequential ones.
Such a write scheme reduces the number of write requests and
achieves high write throughput. It then employs internal com-
paction mechanisms to merge and resort the incoming data
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with multiple levels of on-disk tables. Although the internal
compaction operation ensures the orderliness of data in each
level to improve the lookup performance, a read operation
still needs to traverse multiple levels, resulting in read ampli-
fication. As the IOPS on a cloud storage volume is limited,
the read performance of RocksDB is significantly throttled.

There are several challenges to avoid read latency spikes
in LSM stores. First, the read request performance fluctuates
significantly because the cloud storage volume isn’t flexible
enough to timely keep up with the changing workload. The
fluctuating workload causes the number of read I/Os of an
LSM store to access cloud storage volumes to vary signifi-
cantly. The request latency increases when the I/O number
exceeds the paid IOPS of the cloud storage volume. Second,
the read amplification in an LSM store further strengthens the
workloads fluctuations. Multi-level data layouts inevitably
cause read amplification problems, such as those found at
the LSM-Tree L0 level requires traversing multiple tables, so
reading a single key-value pair may generate multiple I/Os.
Third, the speed limit mechanism of cloud storage volume
conflicts with LSM stores’ internal multi-thread concurrency
mechanism, and requests among multiple threads congestion
on the cloud storage volume leads to an increase in latency
multiples. Fourth, LSM stores’ internally inherent mecha-
nisms amplify the damage on the read latency of cloud storage
volumes. Irregular flush operations or indeterminate size com-
paction operations cause a sudden increase in the number of
I/Os accessing the cloud storage volume, resulting in high tail
latency. Finally, the tradeoff between cost and performance
increases the cost exponentially to get better tail latency, re-
sulting in significant resource waste and limited throughput
improvement.

One natural solution to the above challenges is contracting
a higher IOPS budget with cloud storage volumes, ensuring
that the LSM store’s I/O number do not exceed the paid IOPS
to maintain optimal latency. However, this raises the costs.
Also, the peak IOPS demand in real production environments
is difficult to predict. Instead, we aim to explore the best
performance of an LSM store under a specific IOPS budget.

This paper presents Calcspar, a cloud storage volume
contract-aware LSM store based on Amazon’s EBS with re-
duced latency spikes, and it tolerates both external workload
fluctuations and internal operation contentions. Calcspar first
employs fluctuation-aware caching, which combines hotspot-
aware proactive prefetching and shift-aware passive caching,
to adapt to changing workloads. The prefetching strategy iden-
tifies hotspots for high load periods and proactively fetches
them during low load periods, thus smoothing out the external
load changes. Then, during the high load periods, the passive
caching leverages the temporal locality to extrude the stale
prefetched data and adapt to hotspot shifts without issuing
extra requests. Calcspar then leverages a congestion-aware
IOPS allocator to assign priority for different internal requests
and avoid elevated latency due to limited IOPS budgets. The

allocator employs a multi-queues throttling structure to pre-
vent thread congestion. The opportunistic compaction then
assigns write requests in different LSM levels into different
priority queues, thus balancing the read amplification and
write throttling. The contributions of this paper include:

1) We conducted an in-depth analysis of the performance
of cloud storage volumes, which first illustrates the un-
written contract between latency and load pressures.

2) We propose a rate-limiting performance model for cloud
storage volumes based on the observations, experimen-
tally validate the model and reveal opportunities to obtain
optimal latency.

3) Our proposed Calcspar is better suitable for AWS cloud
storage volumes where IOPS budgets are vital to the
performance and significantly reduced the tail latency of
LSM-Tree.

The rest of this paper is organized as follows. Section 2
takes Amazon’s EBS as the example to models the perfor-
mance characteristics of cloud storage volumes. The chal-
lenges of reducing the latency for an LSM store on cloud
storage are discussed in section 3. Calcspar designs are then
introduced in section 4 to address these challenges and they
are evaluated in section 5. Finally, the related work and con-
clusions are presented in sections 7 and 8, respectively.

2 Modeling Cloud Storage Performance

2.1 Contract Model of Cloud Storage

The cloud storage providers, such as AWS, offer a variety of
cost-efficient storage volumes for users to meet their distinct
needs and adapt to the changing market. Table 1 shows the
contract model of the cloud storage, which illustrates the price
and performance relationship of the corresponding volume
type. The pricing is based on block storage in the AWS ap-
northeast-2 region in July 2022 [3, 4]. The contract model
indicates that as the price of IOPS increases, the lower latency
of the corresponding type. Thus, it entails users choosing the
appropriate storage volume and IOPS budget based on their
needs. However, the paid IOPS only guarantees the number
of returned I/Os rather than the optimal latency. Also, EBS
performance scaling supports only increasing paid IOPS and
takes hours to days to take effect [2]. There’s no agreement on
how the request would be responded to when the loads exceed
the IOPS. Hence the corresponding latency characteristics are
widely ignored by existing LSM stores.

2.2 Unwritten Latency Performance

To unwrap the hidden latency characteristics and understand
how the above contract model would affect the performance
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Table 1: EBS IOPS prices and latencies.
Type Init IOPS IOPS price ($) Latency (µs)
gp2 3×GB 0.038 ∼200
gp3 3000 0.0058 ∼300
io1 100 0.0666 ∼100
io2 100 0.067 ∼10
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Figure 1: Latency CDF of different cloud storage.

of an LSM store, we first perform a series of experiments on
cloud storage volumes, then proposing a performance model.

Experiment #1: Cumulative Distribution Function (CDF)
of latency under vary I/O pressures. We measure the latency
of EBS volumes gp2, gp3, io1, and io2 with paid 3000 IOPS
for each by sending 4KB random read requests with varying
pressures. We employ fio [22] to tune the I/O pressure by con-
trolling the size of Submit IOPS, which is the number of I/Os
submitted to EBS per second. Yet, the cloud storage volume
won’t handle more than the paid IOPS. Figure 1 shows the
latency CDF results that support the following two findings.

Finding 1: When the I/O pressure exceeds the paid IOPS,
the latency increases deterministically and significantly. On
the contrary, their average latency performance is much better
when the Submit IOPS is under paid IOPS. For example, the
average latency of io2 even reached 100µs.

Finding 2: The IOPS budget is proportional to the cost
when considering Table 1. The slightly higher-cost io2 has
the best and most stable latency. The latency performance of
the cheapest gp3, which initially provides 3000 IOPS, is far
lower than the other three EBS types.

Experiment #2: Limited IOPS budgets. In this experiment,
we explore the latency CDF under different IOPS budgets.
We evaluate one io2 under two different pressures. Request
latency distributions are given in Figure 2. Results indicate
that regardless of the paid IOPS, the access latency when
the Submit IOPS exceeds the paid IOPS is more than 5×
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Figure 2: Latency CDF under different paid IOPS. “1k” means
io2’s paid IOPS. “+” indicates that the Submit IOPS exceeds
the paid IOPS; “-” means not exceed.
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spond IOPS is the number of requests returned.

worse than the access latency when not exceeded. The 99th

percentile latency are below 270µs when the Submit IOPS
does not exceed the corresponding paid IOPS. However, when
the Submit IOPS exceeds the paid IOPS, the access latency
increases to 1000∼11000µs. These long-tail latencies degrade
the user experience.

Experiment #3: Elevated latency spike. To explore rea-
sons behind the latency spike under high I/O pressures, we
rigorously control the I/O send rate in a single thread for an
1000-IOPS io2 volumes. The latency of each request is shown
in Figure 3. In the 1st second, when the Submit IOPS does
not exceed the paid IOPS, the latency is lower than 200µs. In
2nd second, the Submit IOPS is 1600, the latencies of the first
1000 requests are identical to that of the first second. However,
the latencies of the rest 600 requests increase significantly
to about 1000µs, which renders 1/IOPS second. The Submit
IOPS in the 5th second is twice the paid IOPS, the first 1000
requests can get low latency while the latencies of the last
1000 requests equal 1/IOPS second again. Although the Sub-
mit IOPS drops to 1000, the latencies of subsequent requests
remain high. Until we pause the workload at the 14th second
and resume it at the 15th second, the latencies recuperate.

Speculative Reason #1: We speculate the reason behind
the observation is due to the speed-limiting mechanism inside
EBS, which handles the current excess I/O by overdrawing
the next 1 second of IOPS, and at the same time, the “punitive”
improvement latency is 1/IOPS to prevent the requests beyond
the payment from continuing to be responded.

For example, the last 600 I/O requests in the 2nd-second
overdraw 600 IOPS from the 3rd second. Hence, only the
remaining 400 (=1000− 600) can be served quickly in the
3rd second. The overdraft is paid off when no I/O request is
sent in the 14th second. Therefore, the latency returns to a
lower level in the following 15∼19 seconds

Since the resources of cloud services are on a pay-per-use
basis, cloud storage providers use this mechanism to maintain
SLAs to prevent users from constantly acquiring benefits
beyond what they paid. Meanwhile, by increasing the delay,
the operation continues from the user’s perspective; thus,
there is no opportunity for recalling the service.

Experiment #4: Thread congestion. The effect of the num-
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ber of threads on the latency is evaluated in this experiment.
Two different I/O pressures are sent to each io2 volume with
different number of threads. Request average latencies are
shown in Figure 4. When the Submit IOPS does not exceed
the paid IOPS, the average latency holds around 120µs and
does not increase with more threads. However, when the Sub-
mit IOPS is higher than the IOPS paid, the access latency first
grows to the level of 1/IOPS seconds while growing linearly
with the number of threads. This phenomenon is consistent
with queuing theory [30], so we conjecture the following
based on the knowledge gained from queuing theory:

Speculative Reason #2: Requests are queued when they
enter the EBS, and the queue size equals the paid IOPS. The
latency in the EBS will follow the following two rules: 1)
When the Submit IOPS is lower than the paid IOPS, the la-
tency of each request will be around the threshold, depending
on the EBS type. 2) When the Submit IOPS exceeds the paid
IOPS, the latency (respone time W) conforms to the queueing
equation W = L/A, where A is the paid IOPS and L is the
number of threads.

2.3 Latency Model of EBS

Based on the above analysis, we construct an EBS latency
model to reveal the internal latency mechanism of cloud stor-
age, as shown in Figure 5.

Suppose an EBS volume a buffer queue (called I/O domain)
to maintain requests, where the queue length is equal to the
paid IOPS. When a request arrives, the I/O domain allocates
a free slot in the queue. EBS then pulls requests from the I/O
domain to promptly executes them. When the number of the
responded requests exceeds paid IOPS, the EBS stops fetching
new requests. Consequently, the pending requests are blocked
until EBS can resume the services. Congestion can occur
under multi-threaded workloads, although the total number
of requests submitted by all threads is estimated to be no
higher than the budget in one second. This is because thread
scheduling uncertainties would fire some working threads
more often, thus accidentally overdrawing the budget. Such
an overdrawing leads the consequent requests to be blocked,
resulting in significantly higher latency per request.

Overdraft Rule. EBS controls the responding speed of the
request to manage the rotation of the I/O domain. Specifically,
we use the “tokens" to describe the speed control mechanism
of EBS. Each cloud storage volume retains a token bucket

IO Perform

IOPS

I/O domain

Response of I/O requestI/O Request

Storage Device

New IOPS  
tokens Slow

return
Fast

return

Overdraft Token
Regular Token

EBS

Figure 5: Estimated EBS IOPS throttling mechanism.

and a borrowing pool, which contains the same number of
tokens equal to the paid IOPS. The user request first gets
the regular token from the token bucket. If no token is in
the bucket, the overdraft token must be obtained from the
borrowing pool. EBS ensures that requests carrying regular
tokens return quickly. In contrast, requests with overdraft
tokens are processed slowly to ensure that the user does not
use too many IOPS to maintain SLAs. The EBS is replenished
with IOPS tokens per second, which are prioritized in the
borrowing pool.

The above EBS latency model explains the aforementioned
findings (#1 and #2) and speculations (reasons #1 and #2)
about cloud storage latency: 1) When the Submit IOPS does
not exceed the paid IOPS, requests get regular tokens and
return quickly, and requests between threads do not block, so
the optimal latency is obtained. 2) When the Submit IOPS
exceeds the paid IOPS, some requests obtain overdraft tokens.
3) When the return speed is lower than the request arrival
speed, the unprocessed requests will fill the I/O domain slots,
and further tokens are replenished by replenishing the bor-
rowing pool first so that the high latency state will last for a
long time. 4) The inter-thread blocking in I/O domain leads
to increasing user-perceived latency.

3 Modeling RocksDB Performance

3.1 RocksDB under IOPS Limitation
As suggested by the above performance model, cloud stor-
age emphasizes more limitations on latency and IOPS rather
than bandwidth. The evidence is that the allowed request size
is relatively large, and increasing the IOPS budget is expen-
sive. Such a contract and performance model fits bandwidth-
sensitive workloads; however, it is unfavored by many latency-
sensitive and request-heavy workloads. For example, our anal-
ysis indicates that the data write and compaction in RocksDB
works well on cloud storage as its’ request sizes are more sig-
nificant and the number of requests is limited. However, the
read performance of RocksDB is seriously affected by the lim-
ited IOPS budget. Many applications that employ RocksDB
to serve metadata indexing expect excellent read throughput
as well as low and stable read latency [27]. Unfortunately,
they will fail to achieve their purpose if the underline device
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Figure 7: Client random read QPS and request latency with
single thread.

is cloud storage.
RocksDB does not work well on cloud storage because

its LSM-Tree is generally a write-optimized indexing struc-
ture instead of tuned for reducing the number of read I/Os.
Moreover, the hierarchical structure of the LSM-Tree results
in many read requests needing to access multiple levels of
the indexing table to locate the corresponding key. On the
contrary, write operations can be cached and aggregated into
large chunks before they finally hit the cloud storage in one
backend request. As shown in Figure 6, we perform read and
write stress tests on io2 storage volumes with different paid
IOPS. As the IOPS increases, the read throughput increases,
and the write throughput remains the same. Therefore, when
deploying RocksDB on the cloud, the maximum 1000MB/s
bandwidth of the cloud storage volume is usually sufficient.
However, the RocksDB read I/Os will easily and repeatedly
hit the IOPS limitations, which causes elevated tail latency.

3.2 Challenges in Avoiding Latency Spikes
This subsection elaborates on several challenges encountered
when optimizing the read performance of RocksDB in cloud
storage. To analyze the performance, we employ Facebook’s
most recent benchmark Mixgraph [12], which synthetically
generates key-value requests that accurately represent the
real-platform load fluctuation.

Challenge #1: The read latency fluctuates significantly be-
cause cloud storage isn’t flexible enough to meet the changing
demand. In this experiment, we send fluctuating read requests
to an io2 volume in a single thread. To reduce expense, the
paid IOPS of io2 storage volumes is the average of fluctuat-
ing requests. The experimental results in Figure 7 show that
RocksDB is significantly affected by the latency character-
istics of cloud storage volumes. When the client queries per
second (QPS) exceeds the paid IOPS, the QPS being executed
(the white part under the black line) can exceed the paid IOPS
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Figure 8: Read amplification of RocksDB.
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Figure 9: Io2 Respond IOPS and latency with 10 threads.

in a brief period, which is due to the overdraft rule. Then exe-
cuted QPS will fall to the paid IOPS and the user-perceived
latency is significantly higher than during low load. This also
results in the user’s excessive requests not being executed
(the red part of the top in Figure 7), and they will be blocked.
As the number of client requests drops below the paid IOPS,
the latency drops to the bottom level, which causes another
problem where the paid IOPS are wasted during low-load
periods, as shown in green in Figure 7.

Challenge #2: The read amplification in LSM-Tree further
strengthens the workloads fluctuation. RocksDB’s write ag-
gregation and hierarchical data layouts result in significant
read I/O amplification. As shown in Figure 8, the actual IOPS
is about 3× of the submit IOPS, amplifying the volatility of
the load, when the access I/O exceeds the paid IOPS, the re-
quest latency will be high. In addition, the L0 and L1 level,
which occupy a very small amount of data, but taking up close
to 1/3 of the I/O accesses.

Challenge #3: Thread I/O competition. Requests among
multiple threads are congested in the I/O domain resulting in
a multiplication of tail latency. We send the same QPS as in
Figure 7 with ten threads. The results in Figure 9 show that
the latency increases 10× at high loads compared to single
threads. This is because with more requests being sent to
the io2 per second, the requests are returned slower than the
requests that enter the I/O domain. When the I/O domain
is full, requests are queued on each thread, so the latency
perception is a multiple of the thread.

Challenge #4: Bulk write blocking. We sent some write
requests while keeping the read QPS constant to measure
the impact of write operations on user read requests, and the
results are shown in Figure 10. At the 70th second, RocksDB
launched compaction operations, which took up more IOPS,
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Figure 10: RocksDB I/Os and latency for a mixed read and
write load with 10 threads.
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Figure 11: RocksDB performance at different storage costs.

causing some of the user’s requests to wait in a queue. Hence
the 99th percentile latency bursts to 40ms. Secondly, at the
300th second, even in low workload period, RocksDB inter-
nally initiates some compression operations, which blocks
user requests, resulting in high latency.

Challenge #5: Performance vs. cost. We choose the av-
erage of the highest QPS and the lowest QPS of the load as
the benchmark cost to measure the performance of RocksDB
when choosing storage volumes with different costs under
the same load. Results in Figure 11 show that, as the cost in-
creases, although the latency appears to decrease, the through-
put does not improve due to serious resource waste.

4 Calcspar Design

To build an LSM store that fully exploit the optimal latency
of cloud storage volumes, the high latency caused by the
observed overdraft rules and thread I/O congestion must be
addressed. Rather than simply increasing expenses to improve
the paid IOPS of storage volumes to avoid overdraft and
congestion, we propose Calcspar to investigate the optimal
latency of LSM stores in a cost-effective manner. With a
limited number of IOPS available per second, Calcspar’s four
designs in Figure 12 holistically answer questions on getting
the optimal latency: (1) How to smooth out I/O plateaus that
are higher than the paid IOPS (§4.1 and §4.3). (2) How to
take the most of available I/Os per second for user and LSM
internal I/O requests (§4.2 and §4.4).
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Figure 12: Architecture of Calcspar.

4.1 IOPS Stabilizer for EBS

Calcspar first aims to prevent latency fluctuation from the
EBS. As discussed in §2.2, the overdraft rules do not result
in throughput improvements but higher processing latency
for EBS under high request pressures. Once the EBS enters
the overdraft status, the application is not able to withdraw
any pending requests, thus missing opportunities for further
optimization but waiting. Rather than passively detecting un-
expected latency spikes, Calcspar proactively controls the
number of I/Os during high-load periods by only submitting
requests with the highest priority. To achieve this, Calcspar
employs the observed EBS latency model (§2.3).

Figure 13 details the IOPS Stabilizer, which throttles the
request rate to match the EBS I/O budget, thus eliminating
overdraft latency spikes. The essence is to mimic the token
speed limit mechanism, which insides EBS and is widely
ignored, to the upper-layer applications. We demand each
request must obtain a token before accessing the EBS. The
number of tokens is refreshed every second decided by the
paid IOPS. By controlling the number of tokens, Calcspar
guarantees requests sent to EBS do not exceed the paid IOPS,
thus EBS processing latencies can be secured in the tens of
microseconds. Consequently, applications can expect more
stable latencies once a request successfully obtains a token.

4.2 Congestion-Aware IOPS Allocating

The second goal of Calcspar is to eliminate the latency spike
caused by request congestion among threads. To minimize
cloud storage costs, we assume the paid IOPS is only guar-
anteed to meet I/Os for the average usage. Hence, the muti-
threads design adopted by modern LSM stores will inevitably
congest due to limited tokens provided by the IOPS Stabi-
lizer. Many works prioritize the execution of latency-sensitive
I/Os by adjusting the I/O stack or leveraging multi-device
parallelism [11, 20, 26]. However, they can not prevent less
critical I/O requests from occupying precious available tokens
in each time period (e.g. one second). To solve this problem,
Calcspar uses multi queues of different priority together with
the time window policy to ensure that critical requests are not
occasionally blocked and are served in a best-effort manner.

Multi-priority Queues. Calcspar employs a multi-priority

456    2023 USENIX Annual Technical Conference USENIX Association



Refresh tokens 
per second

 EBS

IOPS StabilizerCongestion-Aware IOPS Allocating

Tim
e W

indow
Policy 

Figure 13: Congestion-Aware IOPS Allocator and Stabilizer

queue mechanism to categorize different I/O requests and
allocate I/O tokens based on a dynamic time window pol-
icy. Calcspar treats I/Os that straightly affecting the LSM
store as user-aware requests, and classifies I/Os that do not
instantly hinder user requests as non-user-aware requests.
User-aware requests are mainly for responding foreground
user requests, so Calcspar places them into the highest pri-
ority queue. Non-user-aware requests are mainly from LSM
background tasks (e.g., compactions and prefetching). Since
different background tasks impact the read/write amplifica-
tions differently, Calcspar assigns them to medium-priority
or low-priority queues. For example, prefetching requests go
into the lowest priority queue. Note that compaction requests
are further differentiated later (§4.4).

Dynamic Time Window Policy. Calcspar adopts a dy-
namic time window policy to optimize the utilization of paid
I/Os per second. Under this policy, a time window represents
a period within a second during which Calcspar grants re-
quests to acquire tokens on a best-effort basis, so the size
of a window matches the priority of the queue. The time
windows of the queues are aligned at the tail within each one-
second period, enabling Calcspar to prioritize processing I/Os
from higher priority queues before those from lower priority
queues. This ensures that requests from the highest priority
queue are processed first, minimizing the chances of them be-
ing blocked by middle- or low-priority requests. Specifically,
Calcspar always allocates a one-second time window for the
high-priority queue. For other queues, Calcspar dynamically
adjusts their time window sizes based on the allocated tokens
in the previous second, using the formula Allocated_IOPS /
Paid_IOPS. For example, during a one-second period, Calc-
spar assigns the time windows [0,1), [0.7,1), and [0.9,1)
to the high-, middle-, and low-priority queues, respectively.
In this case, the time window [0.9,1) signifies that requests
in the low-priority queue cannot acquire tokens until the 0.9th
second. Conversely, requests in the high-priority queue with
the time window [0,1) are eligible to compete for tokens
upon arrival.

4.3 Fluctuation-Aware Caching
Considering the read I/O amplification problem of an LSM
store will cause significant latency spikes on the EBS, an EBS
latency-aware cache plays an essential role on flattening I/O
request plateaus to the EBS when the workload is heavy as
well as improving the paid IOPS utilization when the work-
load is light. We find few existing cache schemes are designed
on this purpose, and their design metrics do not take into ac-

count the available paid IOPS of the underlying EBS. This
will significantly affect choices of the optimal cache policy
when workload fluctuates.

Hotspot-Aware Proactive Prefetching. When the work-
load is light, Calcspar consumes spare paid IOPS to trade
for a better cache hit ratio by prefetching SSTable. Calcspar
manage data in the unit of EBS-block (e.g., 256KB, which is
the maximum size allowed by the EBS for one I/O request),
this ensures that each prefetching I/O reads as many data as
possible. Calcspar then maintains a global table to track the
hotness of EBS-blocks using the exponential smoothing al-
gorithm based on their access history. Furthermore, Calcspar
periodically and proactively rewarms the frequently accessed
LSM top layer (e.g., L0 and L1) data, because LSM stores
retrieves key-value pairs in a top-to-bottom layer fashion.

Shift-Aware Passive Caching. When the workload is
heavy, an EBS latency-aware cache should minimizes its I/Os
to the EBS while improving space efficiency. Calcspar man-
ages the cache space passively in this case. Calcspar refines
cache space management in the unit of 4KB and uses the LRU
policy for better space efficiency because evicting any data
can be punished by competing one I/O with user requests to
access the EBS.

Cache Integration. Calcspar integrates the two cache poli-
cies introduced above and switches between them based on
workload. These two policies manage the same cache space,
but at any time, only one is active and evicts data. When the
highest priority queue requests consume more than 95% of
the tokens, Calcspar considers the workload to be heavy and
activates the Shift-Aware Passive Caching policy. Otherwise,
Calcspar harvests the available paid IOPS using the Hotspot-
Aware Proactive Prefetching policy. It is worth noting that
the global track table has a negligible memory overhead, as
1GB of data requires about 64KB of memory. Furthermore,
the minimal cache pollution resulting from coarse-grained
hotspot-aware proactive prefetching during periods of low
load does not lead to a degradation in overall performance.
This is because only frequently accessed data, known as hot
data, is loaded based on historical access patterns. Addition-
ally, given the ample IOPS budget available during low load
and the consistently low latency of cloud storage, the penalty
incurred from cache misses is negligible.

4.4 Opportunistic Compaction
The last goal of Calcspar is to remedy LSM compaction I/Os.
After launching a compaction, its bulk read operations on
at least two SSTables and write operations on at least one
SSTable will compete with user I/O requests. An LSM store,
on the other hand, retrieves a key-value pair level by level
and merges SSTables in a copy-on-write manner, providing
Calcspar with opportunities for differentiating I/Os for com-
paction jobs on different levels, thereby mitigating the compe-
tition on paid IOPS from LSM compaction operations. For L0
SSTables, which significantly affects read I/O amplifications,
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Calcspar prioritizes compaction on them. For L1 and L2 SSTa-
bles, Calcspar puts their compaction I/Os into the medium
priority queue, where they are opportunistically processed.
As for SSTables in levels below L2, Calcspar assigns these
compaction I/Os to the lowest priority queue, since short-term
deferral has no noticeably affect on performance.

5 Evaluation
We implement Calcspar based on RocksDB and evaluate it
to demonstrate its advantages. Specifically, we perform an
extensive time delay to answer the following questions. (1)
How does Calcspar perform compared to the state-of-the-
art approach? (§5.2) (2) The impact of several techniques of
Calcspar on performance. (§5.3, §5.4, §5.5) (3) The sensitivity
analysis of Calcspar (§5.6).

5.1 Experimental Setup
Test platform. We employ the most widely deployed AWS
as our test platform. The EC2 instance is m5d.2xlarge, con-
figured with 8 vCPUs and 32 GB Memory. A representative
io2 storage volume with 100 GB capacity and 1000 IOPS is
used by default for performance evaluation.

Comparisons. We compare Calcspar with RocksDB and
the other three state-of-the-art key-value stores. They are: 1)
Autotuned RocksDB [6]: isolating the I/O bandwidth between
user requests and internal flush/compaction operations to im-
prove tail latency. 2) SILK [10]: Opportunistically allocates
bandwidth to different internal I/O operations and allows low-
level Compaction preemption. 3) CruiseDB [25]: Maintains
SLAs employing an adaptive access mechanism based on
memory usage, removes L0, and optimizes memory buffer.
To make a fair comparison, all the databases take 4 threads
for compaction and 4 for flushing. The default key, value, and
SSTable sizes are set to 16B, 256B, and 8MB. The size of
Memtables is set to the default value for RocksDB. A cache
space of 500MB is opened for each database.

Table 2: YCSB workload characteristics.
Workload Description

A write-intensive:50% Update, 50% Read, Zipfian
B read-intensive: 5% Update, 95% Read, Zipfian
C read-only: 100% Read, Zipfian
D read-latest: 95% Read, 5% Insert, Latest
E scan-intensive: 5% Update, 95% Scan, Zipfian
F write-intensive:50%Read,50%read-modify-write,Zipfian

Benchmarks. Two benchmarks, Mixgraph [12] and YCSB
[15] are used to evaluate performance. YCSB is a widely used
benchmark for evaluating the key-value store systems, provid-
ing six workloads configurations and key-value pair access
distribution models listed in Table 2. YCSB can also provide
uniform distribution workloads. Mixgraph is the latest bench-
mark test developed by Facebook. The workload is more
spatially localized to simulate Facebook production work-
loads better and generate more accurate key-value queries.
Benchmarks run in 10 threads in all the key-value stores by

default, except for SILK, as multi-threading is not supported.
In all experiments, 100 million Key-value pairs are first in-
serted into the key-value store system, and the key-value store
has about 25 GB of data in its initial state.

5.2 Overall Performance
We first use the latest Mixgraph with fluctuating load char-
acteristics to evaluate the overall performance of the five
key-value stores on the cloud. Then we evaluate the perfor-
mance using the YCSB benchmark and explore the effect
under uniform load using the YCSB benchmark. To guar-
antee the fairness of the evaluation, the hardware resource
allocation is the same for each key-value store. All evalua-
tions start by randomly writing 100 million key-value pairs
and executing one million requests.

The Mixgraph benchmarks. Figure 14 shows the perfor-
mance for different read/write ratio configurations under Mix-
graph. Since read requests affect IOPS more, the ratio of read
requests is increased by varying the number of write requests.
Based on the comparison of test results, the following conclu-
sions can be drawn: 1) The throughput of Calcspar is better
than other systems under all read ratios. In Figure 14(a), Calc-
spar throughput exceeds paid IOPS the most because of the
high spatial locality of the Mixgraph load that is fully ex-
ploited. 2) Calcspar significantly reduces the average latency.
As seen in Figure 14(b), the average latency of Calcspar does
not exceed 200µs, which is 45∼66% lower than the average
latency of other key-value store systems. 3) Calcspar achieves
a lower and more stable tail latency. Figure 14(c) shows the
statistical plot of 99th percentile latency, and it can be seen
that Calcspar has the smallest box plot volume with almost
no outliers of extra-long delays. The 99th percentile latency
can be stabilized at around 0.55ms with minimal fluctuations.
CruiseDB also reduces tail latency by limiting request access,
but it is unstable and sacrifices throughput.

The YCSB benchmarks. We use YCSB workloads with
stronger time locality for performance evaluation. Figure 15
and Figure 16 show the throughput and the 99th percentile
latency for each key-value stores system under the six work-
loads of YCSB. Calcspar can guarantee that the throughput
is not lower than RocksDB in all cases, and the throughput
can be improved under workload F. Throughput is not further
improved due to the cloud storage IOPS budget constraints.
Furthermore, the hot key of Zipfian distribution is scattered
throughout the whole key space, resulting in underutilization
of aggressive prefetching cache performance. Calcspar’s main
goal is optimizing latency, and as shown in Figure 16, the 99th

percentile latency of Calcspar is reduced by 50% compared
to other schemes. The best access latency is obtained because
Calcspar is throttling the number of I/Os per second to access
the cloud storage volume within a range of no more than
paid IOPS. And cache redirection solves the queuing latency
problem, so the latency per request is low. In other systems,
requests beyond the paid IOPS will only to debit without strict
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Figure 14: Evaluation results with different read request ratios under Mixgraph workload.
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Figure 15: Throughput under YCSB workload.
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Figure 16: The 99th percentile latency under YCSB workload.

limits, and the request latency will be significantly higher.
For uniform workloads. We further use YCSB to evaluate

the performance of calcspar under a uniform workload. Figure
17 shows that although the fluctuation-aware caching is less
efficient under Uniform load, Calcspar exhibits shorter latency
due to its flexible I/O throttling. CruiseDB’s adaptive access
mechanism can also reduce the average latency, but its tail
latency increases to 20ms.

5.3 Congestion Mitigation Effectiveness

Here, we investigate the effect of Calcspar on solving thread
congestion. We first test the latency performance under dif-
ferent threads and then explore the effect of the time window
allocation IOPS strategy.

Avoid multi-thread congestion. Figure 18 shows the av-
erage latency and 99th percentile tail latency of the experi-
ment running the default Mixgraph load on io2 with 1k paid
IOPS using different user threads. Calcspar can keep the aver-
age latency at 175µs, 99th percentile latency always around
500µs, and the other schemes keep increasing both the av-
erage latency and 99th percentile latency as the number of
threads increases. On cloud drives, the 99th percentile latency
growth reaches 60× under 20 threads. Because other Key-
value stores limit bandwidth without restricting the granularity
of I/O. Therefore, as the number of threads increases, con-
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Figure 17: Evaluation results under Uniform workload. "RR"
means random read, "RRW" means 50% random read and
50% random write.
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Figure 18: The latency with different user threads.

gestion becomes increasingly severe. Calcspar utilizes the
EBS rate-limiting model, and the Congestion-Aware IOPS
allocating avoids requests queuing in the I/O domain queue.

IOPS allocation strategy evaluation. We compared Calc-
spar’s time window policy allocate IOPS (TWA) with three
other IOPS allocation schemes: contention IOPS without al-
location (NA), static allocation of IOPS among three queues
in the ratio of 6:3:1 (SA), and dynamic allocation of IOPS
based on the usage of the highest priority queue (DA). Us-
ing mixgraph load, where 5% are read requests and 95% are
write operations, guarantees enough flush and compaction
operations with 10 user threads running. The evaluation re-
sults in Figure 19 show that the time window strategy has
a good throughput and 99th percentile latency is reduced by
50% compared to the NA. The SA has the worst performance
because of resource wastage. The DA can fully utilize IOPS
and the average latency is the lowest, but the 99th percentile
latency is higher than TWA because the requests in other
queues will block user requests.
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Figure 19: Performance of four IOPS allocation schemes.
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Figure 20: Hit ratios of different caching schemes under dif-
ferent workloads.

5.4 Cache Effectiveness
Then, we evaluate the effect of Fluctuation-Aware Caching
regarding the cache hit ratio, the impact of cache size and the
corresponding read amplification.

Cache Hit Ratio. We compared Calcspar’s fluctuation-
aware cache (FA-Cache) with only passive cache (P-Cache)
and only proactive prefetching cache (PP-Cache) under YCSB
and Mixgraph workloads. Figure 20 shows that FA-cache has
the highest hit ratio under both workloads. For YCSB load,
the hotkeys are randomly distributed in the key space, so it is
more suitable for P-cache with small prefetching. However,
under Mixgraph load, the hotkeys are relatively concentrated
and more suitable for PP-cache. Calcspar’s FA-cache com-
bines these two advantages. Also, we can find less than 5% of
data space can achieve up to 60% hit rate, which can increase
the overall capacity of the system at a lower cost.

Impact of Cache Sizes. We increased the cache size from
0.1% to 20% of the total number to explore its impact on
performance. Figure 21 shows that Calcspar outperforms
RocksDB regarding latency at any cache size. With 1% cache
size, Calcspar can reduce the average latency to below 200µs.
RocksDB’s block cache requires the cache size at least 5% of
the total data to get an average latency close to 200µs, but the
99.9th percentile latency is still as high as 1200µs.

Read amplification. We count the number of read requests
sent from the client side and the I/O accesses to the EBS to
explore the effect of Calcspar in mitigating read amplification.
We use Mixgraph default configuration for evaluation and

0.1 1 2 5 10 20
Ratio of cache size to total data

0

1000

2000

3000

La
te

nc
y 

(μ
s) RocksDB Avg. lat

RocksDB 99.9thlat
Calcspar Avg. lat
Calcspar 99.9thlat 

Figure 21: Average latency and 99.9th percentile latency of
RocksDB and Calcspar with different cache sizes under Mix-
graph load.
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Figure 23: Write performance.

compare it with RocksDB without cache and RocksDB with
the same size (500MB) blockcache turned on. In Figure 22,
the results show that Calcspar sends the least number of I/O
requests to EBS with the same user requests, even during peak
periods, because the fluctuation-aware caching can cache L0
and L1 in advance during low-load periods. RocksDB with
blockcache enabled is limited by the IOPS budget during high
load, and RocksDB without blockcache enabled sends more
I/O to EBS during low load because of read amplification.

5.5 Impact of Opportunistic Compaction
Write performance. We compare the performance of Calcspar
with the rest of the schemes under full write load. Figure
23(a) shows the throughput of 10 threads writing 100 million
key-value pairs randomly (except for SILK single threads).
Compared to RocksDB, Calcspar’s write performance is only
1.2% lower. Both Autotuned RocksDB and CruiseDB allocate
bandwidth to prioritize upper-level write operations, which
improves performance. SILK can only write in a single thread,
so performance is poor.

Write amplification. Figure 23(b) shows that Calcspar re-
duces write amplification the most because Calcspar blocks
L0 level to L1 compaction slightly. However, the write per-
formance can not be improved because of IOPS allocation.
CruiseDB removes the L0 level to reduce the write amplifi-
cation. SILK prioritizes the execution of flush and L0 level
compaction, resulting in frequent reads and writes of L1 level
data, which in turn causes higher write amplification.

5.6 Sensitivity Analysis
Paid IOPS of EBS. We first evaluate five KV stores on io2
with different paid IOPS using Mixgraph to explore the im-
pact of paid IOPS on performance, where Mixgraph uses the
default read/write configuration and ensures that the average
value of load fluctuations is equal to paid IOPS. Figure 24(a)
shows that regardless of the paid IOPS of io2, Calcspar en-
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Figure 25: Performance at different workload intensities.

sures the 99th percentile latency stays low. As the paid IOPS
increases, the request latency under high pressure becomes
progressively smaller, but at 15k paid IOPS, Calcspar’s 99th

percentile latency is still 24% ~50% less than other solutions.
Type of EBS. We use four types of EBS volumes with 3000

IOPS to explore the applicability of Calcspar on AWS EBS.
Figure 24(b) shows that Calcspar exhibits the lowest 99th

percentile latency on all four EBS compared to the remaining
four options. As the performance of the storage volume gets
better, the 99th percentile latency of Calcspar gets lower, e.g.,
io2 has a lower 99th percentile latency than gp3 by 200µs.
In contrast, the other schemes have a higher latency or no
change. The results fully illustrate that our scheme is suitable
for various types of cloud block storage devices in AWS.

Workload pressure. We evaluate the pressure resistance
by varying the workload intensity, which is the ratio of the
average read requests of Mixgraph fluctuating load to paid
IOPS of io2. Figure 25(a) shows that Calcspar can handle up
to twice the paid IOPS for read requests. Figure 25(b) shows
that Calcspar can guarantee an average latency of 200µs even
at twice the workload, while the rest of the solutions have
higher latency when the read workload exceeds paid IOPS.
The 99th percentile latency of Calcspar is still the smallest at
high workloads in Figure 25(c). Overall, Calcspar has good
pressure resistance and adaptability.

Different Cloud Vendors. To demonstrate the versatility
of Calcspar, we conducted a performance comparison be-
tween Calcspar and vanilla RocksDB on three prominent
cloud provider platforms, namely AWS, Alibaba Aliyun [7],
and Microsoft Azure [29]. Our evaluation encompassed in-
stances equipped with 8v CPUs and 32GB RAM, coupled
with cloud block storage volumes configured with 5000 paid
IOPS. Specifically, AWS utilized EBS io2, Aliyun utilized
ESSD PL1, and Azure employed Azure managed disk Pre-
mium SSD v2. Figure 26 illustrates the evaluation results,
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Figure 26: Performance at different cloud vendors.

highlighting Calcspar’s better performance across all three
cloud storage types when compared to vanilla RocksDB. On
Aliyun, Calcspar exhibited notable achievements, with a sig-
nificant decrease in the 99th percentile latency from 9.6ms
to 509µs and an average latency reduction of 69.5%. These
improvements arise from Aliyun’s utilization of a throttling
mechanism that triggers longer latencies when the number of
requests exceeds the contractual agreement, which Calcspar
is designed to avoid. While Azure managed disk Premium
SSD v2 demonstrated comparatively higher latency than the
other two cloud block storage devices, Calcspar still high-
lights its efficacy and managed to reduce both average and
99th percentile latencies.

6 Discussion
Cloud Storage Vendors. We selected AWS EBS as a rep-
resentative cloud storage platform due to its significant
market share (32%) and its provision of easy-to-use, high-
performance block storage at any scale. While different cloud
storage vendors may vary in terms of equipment and pricing
for block storage volumes, they all follow an IOPS-based con-
tract model to deliver services to the public. This model is
also adopted by other providers such as Microsoft Azure [29],
Google Cloud [18], and Alibaba Aliyun [7]. During periods of
bursty large numbers of requests, it is common for paid IOPS
to be exceeded, leading the cloud provider to enforce request
processing limits in order to uphold the contract. However,
simply restricting request processing or increasing the latency
of each request would result in higher tail latency. Calcspar
mitigates such issues through a series of techniques that can
be applied across different cloud storage platforms. Figure 26
validates Calcspar’s design on various representative cloud
storage vendors.

Throttling Models. Cloud providers employ different mea-
sures to maintain contract compliance and minimize the im-
pact on other users within the cloud environment. AWS EBS
utilizes an overdraft rule, which offers little opportunity for
applications to prioritize their request queues. Experiment 3
in Section 2.2 demonstrates that once requests are queued
in EBS, they cannot be withdrawn to accommodate more ur-
gent tasks. The overdraft rule, in effect, obscures the traffic
congestion from users. On the other hand, blocks user re-
quests for a relatively long duration, resulting in prolonged
tail latency. This situation is unfavorable as it halts request
processing during that period. Other cloud storage providers
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employ varying throttling mechanisms, often achieved by in-
troducing increased latency. Consequently, enabling priority
masks or rejecting overdraft requests would be beneficial. An-
other possibility is to allow users to employ customized cache
algorithms to digest temporary workload peaks.

7 Related Work
Latency-aware Storage Stack. Many works focus on provid-
ing fast I/O services by optimizing the I/O stack [11] to exploit
the µs-scale latency of storage devices. Blk-switch [20] brings
network switch techniques into the block storage stack and
proposes an I/O scheduler, thus solving the head-of-line block-
ing problem and achieving low tail latency. FastResponse [26]
targets on ultra-low latency SSDs, and it coordinates the
scheduling of different I/O levels to mitigate I/O interfer-
ences. PAIO [28] proposes an I/O optimization framework,
enabling flexible I/O scheduling policies through I/O informa-
tion propagation. However, these efforts focus on either how
to fully explore the potential of multi-core/hardware resources
or how to alleviate contentions between latency-sensitive and
throughput-demanding applications. Calcspar targets LSM-
Tree key-value stores over the cloud storage, and Calcspar
addresses the I/O contentions between user read I/Os and
LSM internal I/Os, achieving low latency.

LSM Store Compaction. Compaction I/O operations
within LSM-Tree will compete with user read operations,
resulting in long-tail latency. There are approaches to re-
duce data writes by delaying or merging some compaction
actions [31, 33, 41]. Some studies reduce contention for stor-
age devices by tuning and scheduling internal tasks [9,10,13].
Some adaptive compaction schemes have also been proposed
for performance optimizing [16, 35]. However, these are all
compaction optimizations targeting bandwidth-constrained
SSDs. Optimizing compaction operation alone is not enough,
as user-read requests already dominate the paid IOPS.

Software and Hardware Co-design for Latency. Hard-
ware and software coordination can better reduce long-tail
latency. For example, RStore [24] fully utilizes the advantages
of multiple cores to reduce the tail latency of in-memory key-
value stores. BCW [37] achieves low write latency on HDDs
by reshaping patterns that utilize the HDD internal buffer.
Vigil-KV [23] demonstrates the latency state of NVMe SSDs
using a predictable latency mode interface and ensures con-
trollable tail latency by scheduling compaction/flush opera-
tions and client requests.

Data Cache. Prefetching or caching frequently accessed
data to a high-performance cache device can greatly improve
read performance by reducing the number of slow I/O oper-
ations. Leaper [40] leverages machine learning methods to
predict hot data and proactively prefetch them to the cache.
AC-Key [38] aims at LSM cache mechanisms in the mem-
ory, hybrids different kinds of cache objects, and dynamically
adjusts their sizes to improve cache efficiency. To reduce
cache invalidation due to hotspot shifting and internal com-

paction, A parallel cache prefetching method [43] is proposed
to prefetch the most valuable blocks into the cache by hotspot
key-value pair tracking. Thus, read operations are not affected
by the compression. LSM-tree [36] uses a compaction buffer
to minimize these cache pollutions.

Reduce Storage Cost. Cloud storage users are often sensi-
tive to storage costs, and they usually hybrids cloud storage
volumes of different prices to cut the overall storage cost. Mu-
tant [42] controls the overall storage cost by adaptively tuning
the size of expensive high-performance storage volumes. Pris-
mDB [32] pines hot data in the upper LSM levels to reduce
storage costs. RocksMash [39] stores all metadata and fre-
quently accessed data in local storage, while putting the rest
in the cloud for cost efficiency. SA-LSM [44] uses survival
analysis algorithms to predict hot and cold data at records
granularity, and schedules compaction with external services
to reduce costs by storing hot and cold data separately. Calc-
spar trades higher IOPS capabilities with the smaller memory
or higher performance storage devices as cache, rather than
simply purchasing more IOPS for cloud volumes.

8 Conclusions
This paper profoundly explores and models the latency mech-
anism of AWS’s EBS cloud storage. Experimental analy-
ses show that limited IOPS budgets in EBS contracts cause
high latency spikes to endpoint users when requests exceed
a threshold. We specifically investigate the LSM-tree based
key-value store, which both amplifies external workload fluc-
tuations and develops internal request congestion. We propose
Calcspar, a contract-aware LSM store for cloud storage with
reduced latency spikes. The fluctuation-aware caching strat-
egy in Calcspar reduces 99th percentile latency by more than
66% under varying workload pressures without incurring no-
ticeable caching costs. The congestion-aware IOPS allocation
further avoids up to 60× tail latency spikes by assigning differ-
ent priorities for internal operations and preventing thread I/O
contentions. Our sensitivity study demonstrates that Calcspar
is generalizable for different cloud storage volumes. Accord-
ingly, Calcspar can be offered as a companion service to cloud
storage providers, significantly balancing the performance and
cost for endpoint users.
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Abstract
Big data applications extensively use cache techniques to ac-
celerate data access. A key challenge for improving cache
utilization is provisioning a suitable cache size to fit the dy-
namic working set size (WSS) and understanding the related
item repetition ratio (IRR) of the trace. We propose Cuki, an
approximate data structure for efficiently estimating online
WSS and IRR for variable-size item access with proven ac-
curacy guarantee. Our solution is cache-friendly, thread-safe,
and light-weighted in design. Based on that, we design an
adaptive online cache capacity tuning mechanism. Moreover,
Cuki can also be adapted to accurately estimate the cache miss
ratio curve (MRC) online. We built Cuki as a lightweight plu-
gin of the widely-used distributed file caching system Alluxio.
Evaluation results show that Cuki has higher accuracy than
four state-of-the-art algorithms by over an order of magni-
tude and with better stability in performance. The end-to-end
data access experiments show that the adaptive cache tuning
framework using Cuki reduces the table querying latency by
79% and improves the file reading throughput by 29% on av-
erage. Compared with the cutting-edge MRC approach, Cuki
uses less memory and improves accuracy by around 73% on
average. Cuki is deployed on one of the world’s largest social
platforms to run the Presto query workloads.

1 Introduction

Nowadays, distributed data-intensive frameworks like
Flink [9], Spark [49], Presto [37], which frequently read data
from tables and files, commonly use a caching layer as one
key optimization to improve data accessing performance.
However, allocating the right amount of cache storage can be
non-trivial: excessive resource unnecessarily increases the
cost, while insufficient capacity degrades the performance.
Dynamic online workloads [24, 42] make this problem even
more challenging. Particularly, when operating the Presto
deployments, we introduced Alluxio [1, 25] as its caching
layer and observed a high cache hit ratio. It was important,
however, unclear to us based on existing cache metrics to tell

if we could reduce the cache capacity of Presto servers while
maintaining the high cache hit ratio.

Existing approaches about how to tune the cache capacity
can be mainly summarized into four categories: (1) Rule-
based approaches [21, 24, 34, 42] tune cache sizes based on
cache metric related rules. However, it always adjusts the
cache size to fit the working set size blindly and frequently.
(2) ML-based approaches [4, 28, 30, 33, 35] train machine
learning models with historical data offline and predict proper
cache sizes in the future. Nevertheless, the model might be
inaccurate under online dynamic workloads. (3) MRC-based
approaches [15,19,22,36,40,41,45,51,52] explore the optimal
cache size by exploring a miss ratio curve (MRC) as the
function of the cache size. However, MRC is generated by
assuming each item has the same size or cost, which is not
always true in practice. (4) Window-based approaches [5, 11,
20] determine the cache capacity by estimating the cardinality
of items in a sliding window. But, it can not estimate the
working set size of items in variable size or organized in
multiple scopes.

Understanding the online accurate working set size (WSS)
and item repetition ratio (IRR) is important for tuning appro-
priate cache capacity [35, 51].

Accurate WSS estimation supports better cache capacity
planning, leading to higher cache hit rate and significant end-
to-end performance improvement. In the cluster, WSS and
IRRs insight need to be captured in real-time since the data
access load may vary dynamically. In addition, it is imperative
to use low CPU and memory resource, as it is long-running
and may scale to dozens and hundreds of nodes. What’s more,
to monitor WSS and IRR of various applications, it needs to
track the online items that have different sizes and structure
levels. To sum up, ideally, to effectively tune the cache size
online, an accurate, time-efficient, dynamic, light-weighted
approach for tracking the working set size (WSS) and variable-
size item repetition ratio (IRR) in a sliding window is needed.

We propose Cuki, an approximate data structure for esti-
mating the online WSS and IRR for variable-size item access
with proven accuracy guarantee and little overhead in the slid-
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ing window. Generally, we face three challenges in the design
and usage of Cuki.

The first challenge is how to estimate the WSS and IRR
online with little resource and proven accuracy. The item
size can span over 8 ∼ 9 orders of magnitude [24, 42] in the
production environment. Therefore, inaccurate tracking items
such as sampling may lose critical items, which may cause a
huge drop in WSS estimation. The amount of data accessed
in a time window can be quite large. It would be very time-
inefficient and space-costly to store and calculate the item
information online. To address this challenge, we carefully
design a compact data structure with the approximate and
item-wise tracking mechanisms.

The second challenge is how to achieve good scalability in
high concurrency scenarios like multi-threading. It is common
for real-world applications to access data concurrently. As the
number of threads increases, the consistency and efficiency
of concurrent access issues become obvious. To address this
challenge, we adopt and propose a series of fine-grained con-
currency control methods (§ 4), such as opportunistic aging.

The third challenge is how to judge the cache status under
various scenarios with Cuki. It is non-trivial to tell whether
the cache is overloaded or underused at a moment due to the
variety of WSS and the cache-friendliness of the applications
online. To address this challenge, we get the cache status in-
sights by comparing the real cache size and the cache hit ratio
with the WSS and IRR estimated by Cuki online, respectively.

By working with both Presto and Alluxio open source com-
munities, our contributions can be summarized as follows:

• Lightweight and Accurate WSS/IRR Estimation: We
design an approximate data structure, called Cuki, to estimate
WSS and IRR online over a sliding window with little re-
source overhead and proven accuracy. Cuki uses an item-wise
fine-grained tracking mechanism to reduce WSS error caused
by missing critical items (e.g., large ones). In our experiment,
with a 96KB memory space size, Cuki can provide 99.07%
accuracy for a 511MB working set size over the MSR data
trace (§ 6.3). In addition, Cuki supports multi-scope WSS
estimation with an easy feature extension.
• Fine-grained Concurrency Control Methods: To im-
prove the efficiency of the concurrent access in Cuki, we pro-
pose opportunistic aging which decreases the lock contention
risk in high concurrency scenarios. In addition, we adopt the
segmented lock and two-phase based insertion mechanisms
to guarantee data consistency in concurrent access.
• Adaptive Online Cache Capacity Tuning Framework
Using Cuki: Finally, we propose an adaptive online cache
capacity tuning mechanism based on Cuki. It judges whether
the current workload, such as table querying and file reading,
is cache-friendly or not, and further tells whether the cache
system is overloaded or underused. Accordingly, the proposed
cache capacity tuning mechanism can adjust the cache storage
size online to fit current workloads.

• Extensive Evaluation and Application Practice: Exper-
imental results on extensive benchmarks show that Cuki
achieves over 10× higher accuracy with more stable perfor-
mance compared with state-of-the-art methods. The cache
tuning mechanism using Cuki can reduce the table reading
latency by 79% on average, and improve the file reading
throughput by 29% on average, respectively. Compared with
the cutting-edge MRC approach, Cuki uses less memory and
improves the accuracy by 73% on average. In addition, end-
to-end real-world query workload experiments show that the
proposed approach is effective for large-scale cache systems.

2 Background

Cuckoo Filter: A Cuckoo filter [17] is a well-known approx-
imate data structure for deciding whether a given item is in a
set or not. It consists of several buckets, and each bucket has
four slots by default. Each item has two candidate buckets
in a Cuckoo filter. To save space, a Cuckoo filter stores the
fingerprint of an item rather than the item itself.

To insert item x, the Cuckoo filter first gets the fingerprint of
x as f . Then, the Cuckoo filter hashes the x to get the first can-
didate bucket position b1. The other candidate bucket position
can be obtained by computing b2 = b1 ⊕ hash( f ). The item
x will be inserted into an empty slot of these two candidate
buckets. If both candidate buckets are full, the Cuckoo filter
relocates other items iteratively until it finds an empty slot. To
check whether item x is already in the set, the Cuckoo filter
first computes the two candidate buckets of x as described
above. Then, it checks the items’ fingerprints in these two
buckets. If the Cuckoo filter finds one’s fingerprint is the same
as x’s fingerprint, it returns true. Otherwise, it returns false.
Miss Ratio Curve: A key challenge of cache resource allo-
cation is understanding the relationship between the cache
hit ratio and the cache size. The miss ratio curve (MRC) is a
common approach to figure out this relationship. The basic
idea of MRC is to generate a miss ratio curve as a function
of the cache size. With the generated miss ratio curves, users
can allocate the cache size properly by observing the trend of
the cache miss ratio with the cache size.

A traditional way [29] to generate a miss ratio curve of
the specific trace is to compute the reuse distance of each
item. The reuse distance of a specific item x represents how
many items have been cached since the last access of the x.
Since the reuse distance of each item has been recorded, this
approach will give an ideal miss ratio curve. However, the
online overhead of this approach is non-negligible.

To reduce the overhead of generating MRCs, recent re-
search work use sampling techniques. Counter Stack [45]
uses down-sampled and pruned probabilistic counters.
SHARDS [41] samples the input trace. AET [22] uses av-
erage eviction time to construct MRC. Mini-sim [40] extends
SHARDS by using miniature simulation.
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However, these methods [22, 40, 41, 45] have three limita-
tions. First, they need to store or process a separate I/O trace.
Second, they use sampling techniques, which are likely to
miss heavy hitters (large-sized items) and incur inaccuracy.
Third, they focus on processing fixed-size item accesses and
need some redesign to handle variable-size objects. RAR-
CM [51] uses the hashmap to store the item access informa-
tion and estimate the item repetition ratio (IRR) for generating
an approximate MRC. However, RAR-CM is still primarily
designed for fixed-size item access and needs 128 bits to store
each item. Our Cuki only needs 52 bits for each item to sup-
port variable-size item access MRC generation and is around
73% more accurate than RAR-CM (§ 6.7).

Though the overhead for Cuki to generate MRC is low,
MRC generation brings additional overhead for Cuki after all.
Since WSS/IRR estimation is usually sufficient for cache size
tuning in our environment, we finally choose the WSS/IRR
estimation as the main approach.
Prior Cache Size Tuning Approaches: The critical difficulty
in improving cache utilization is tuning the proper cache size
online with limited resource. Prior approaches can be mainly
summarized into four categories:

• Rule-based: Rule-based approaches [21, 24, 34, 42] ob-
serve cache usage metrics. If the observed metrics exceed or
are less than the predefined threshold, it tunes the cache size.
For example, Pocket [24] increases the cache size when cache
usage exceeds 80%. However, due to lacking knowledge of
the working set sizes of online workloads, it does not know
what the best cache size should be tuned to each time.
• ML-based: ML-based approaches [4, 28, 30, 33, 35] train
machine learning models with historical data offline for fur-
ther predicting proper cache sizes according to the workloads
online. However, the pre-trained models based on historical
data can hardly be adapted to dynamic online workload sce-
narios which have quite different data access patterns.
• MRC-based: MRC-based methods [15,19,36,52] explore
the optimal cache size by generating a miss ratio curve (MRC)
as a function of the cache size. To reduce the overhead of
generating MRCs, several approaches [22, 40, 41, 45] use
sampling techniques. However, they are likely to miss heavy
hitters, which would incur inaccuracy. Moreover, most MRC-
based approaches are designed for fixed-size item access,
which might be inaccurate for variable-size item.
• Window-based: Window-based methods [5, 11, 20] esti-
mate the cardinality of items in a sliding window. However,
they can hardly compute the accurate total size due to being
unaware of each item’s size with limited memory space and
little time cost.

3 Design of Cuki

To efficiently estimate the real-time working set size (WSS)
and the item repetition ratio (IRR) of various-granularity data

bucket
(an array of entries)

fingerprint clock size payloadhash table
(an array of buckets)

entry (item) 
(a set of fields)

counters
Working Set Size

Repeated Items Number

Total Items Number

Repeated Items Size

Total Items Size

Figure 1: Data structure of Cuki.

access over sliding time windows, we design a compact ap-
proximate data structure called Cuki. In addition, we have
theoretically proved that Cuki outperforms the state-of-the-art
comparing algorithms in space usage under the same false
positive rate. The proof details are moved in Appendix B due
to page limitation. In this section, we introduce the main data
structure and supported operations of Cuki.

3.1 Data Structure

Cuki is built on the Cuckoo filter [17]. The first reason we
choose the Cuckoo filter is that it supports deletion so that
we can remove stale items. Second, different from the Bloom
filter, one item occupies one slot in the Cuckoo filter, so it is
easy to extend cells for recording items’ size.

In general, Cuki is an approximate membership query data
structure with the following features: 1) similar to the Cuckoo
filter [17], Cuki stores the items’ fingerprints rather than the
original data, which is memory-efficient. Different from the
Cuckoo filter, Cuki has a more sophisticated design to sup-
port time window semantics, working set size estimation, and
payload field extension. 2) Cuki supports insertion, lookup,
deletion, and aging operations at the item level with efficient
concurrency access control mechanisms. 3) Cuki provides
built-in efficient and accurate working set size estimation
in multi-scopes over the sliding time window based on the
lightweight tracking of each item insertion and deletion.

Figure 1 shows the data structure of Cuki. It contains a hash
table with multiple fixed-length buckets, each of which has
several fixed-length entries to store items. Each entry has four
fields to track an item’s information: fingerprint, clock value,
encoded size, and payload. In addition, there are five kinds of
atomic counters, including working set size, repeated items
number, total items number, repeated items size, and total
items size, which are high-level global metrics. Particularly,
repeated items number records the number of items that are
repeatedly accessed in a sliding window, and the total items
number is the total accessed items number in a sliding window.
Cuki can calculate IRR by simply dividing repeated items
number by total items number. All these five metrics are
updated along with inserting or deleting items. Similar to the
IRR, the bytes repetition ratio can also be easily calculated
as repeated items size / total items size.

The fingerprint field is a succinct representation of an
item. Usually, the fingerprint has few bits and is much
smaller than the original item size. Moreover, similar to
the Cuckoo filter, the fingerprint length of Cuki also of-
fers a trade-off between accuracy and space, i.e., Cuki can
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achieve more accurate estimation with longer fingerprints.
The clock value represents the freshness of an item. The

higher, the fresher. Cuki sets the clock value of an item to a
predefined value of MAX_AGE when the item is accessed
(insertion or lookup) and periodically decreases it over time by
the aging operation. Using s bits for each clock, MAX_AGE
is set to 2s − 1, where s is an accuracy-to-space trade-off
parameter. Suppose the sliding window size is T , the aging
operation will be executed every T

2s−1 . The aging operation
ensures that the stale items are cleared timely. Moreover,
since the aging operation is executed more frequently using a
longer clock bits length, there will be fewer errors in sliding
windows. Aging operations can work in the background. In
addition, we can further amortize the computation overhead
by the opportunistic aging strategy in § 4.2.

The size field stores the encoded size of each item. There
exist some naive several size encoding techniques, such as
Full-size Encoding which directly stores each item’s exact
accurate size and Truncation Encoding that only stores the
higher bits of the item size, since they are more important than
the lower bits. To make a better tradeoff between accuracy
and space overhead, we propose the Grouped Size Encoding
technique. It saves the lower bits of each item into size groups.
Every prefix has a corresponding size group to record the
size of items with the same prefix. Each size group has two
counters: counts (total number of items) and total_bytes (total
item size). For insertion, Cuki increases counts by 1 and
total_bytes by the item’s size. When an item is removed, Cuki
decreases total_bytes by the average size total_bytes/counts,
and counts by 1. For a prefix length of γ · len bits, there are
2γ·len size groups in total. The space overhead of grouped size
encoding is γ ·N · len+2γ·len ·C, where C is the bits length of
the above two counters for each size group.

Apart from the above size encoding methods, more sophis-
ticated size encoding strategies [6, 7, 14] are also compatible
with Cuki. However, these methods require additional compu-
tation. Thus, we choose not to use them as the main strategies.

The payload field stores auxiliary information of an item.
Although the former three fields are enough for the work-
ing set size estimation problem, we leave the payload as an
auxiliary field for customized needs. In § 3.2, we introduce
an example extension usage of the payload field, namely the
multi-scope working set size estimation.

3.2 Operations in Cuki

Item Insertion: First, Cuki computes the fingerprint and two
bucket indices b1 and b2 of a given item x by Equations (1)
~ (3), respectively.

f = fingerprint(x), (1)
b1 = hash(x), (2)
b2 = b1⊕hash( f ). (3)

Through Equations (1) ~ (3), Cuki can compute two candi-
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Figure 2: Illustration of insertion/aging operations in Cuki.

date buckets by fingerprint without original item information.
Next, it searches for an empty entry in the two candidate
buckets. If successful, Cuki stores the item’s fingerprint and
encoded size in that entry and initializes the entry’s clock
value to MAX_AGE. Otherwise, it relocates other entries it-
eratively until it finds an empty entry. Specifically, Cuki finds
a cuckoo path in the hash table [18]. The cuckoo path starts
with a candidate bucket and ends with an empty entry. Cuki
performs the insertion by moving items along this cuckoo
path. For example, the red color line in Figure 2(a) is a cuckoo
path, which starts with the bucket 1 and ends with the bucket
5. For inserting x into bucket 1, the entry y in bucket 1 will
be kicked out to bucket 3. This leads the entry z in bucket 3
will be kicked out to bucket 5. The Cuckoo path length will
grow as item insertion, which might lead to long tail latency.
We will discuss how to mitigate this in § 4.1.
Item Lookup: Cuki’s item lookup first computes the finger-
print and two bucket indices of a given item x by Equations
(1) ~ (3). Then, it checks if there exists an entry that matches
the fingerprint within the two candidate buckets. If yes, it
resets this entry’s clock value to MAX_AGE and returns true.
Otherwise, it returns false.
Item Deletion and Aging: Cuki supports removing an en-
try (item) by the item deletion operation or the item aging
operation (§ 4.2) at an item’s maximum age. Cuki’s deletion
method first looks up the candidate buckets which are de-
scribed above. Then, it removes the entry which matches the
fingerprint.
Item updating: If an item’s attribute (e.g., size) changes,
Cuki needs only one-single table access to swiftly alter the
hash table entry’s fields without searching the cuckoo path. If
an item’s ID changes, Cuki considers it a new insertion. The
old item can be deleted ad-hoc or via aging with performance-
accuracy tradeoff. In addition, data updates are non-common
in big data OLAP applications.

It is not trivial to automatically remove stale items from
the sliding window. A straightforward accurate solution is to
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record all item IDs and timestamps (64 bits). This method
requires too much memory because of the large number of
timestamps. In recent years, some methods [3,5,20] try remov-
ing stale items without timestamps. However, as we analyze
in § 6.3, these methods are either poorly memory utilized
or inaccurate. Different from these methods, the clock algo-
rithm [13] can remove stale items in time with little memory
overhead (8~16 bits, as shown in § 6.2).

Therefore, we introduce clock into our data structure. Every
entry in Cuki is associated with a clock value. Once an entry’s
clock value reaches zero, it should be removed because of the
staleness. This can be done by periodical aging operations
in the background. Specifically, suppose the length of the
sliding window is T , the bits length of the clock field is s,
then the aging period of Cuki is T

2s−1 . The length of window
T can be either time-based or count-based [11, 20]. The time-
based sliding window contains items that arrive in the last T
time units. The count-based sliding window contains the last
T items. In each aging operation, it iterates the whole hash
table in order and decreases each entry’s clock value by 1. If
an entry’s clock value is already down to zero before aging,
Cuki deletes this entry. Figure 2(b) shows an aging example.
For items x and y, the aging operation decreases their clock
values by 1; while for item z, whose clock value was zero, it
is removed. Though using clock to remove stale items can
save much memory, it brings errors in results. We have put the
theoretical analysis of the above statement in Appendix B.1
due to space limitation.
Entire Working Set Size Enquiry: Besides the above item-
level operations, Cuki also natively supports working size-
level operations, such as the entire working set size enquiry.

In fact, computing the entire WSS by online scanning the
entries in a full hash table and summing up their sizes is very
time-inefficient and resource-costly for each query request. In-
stead, we maintain a counter inside Cuki. The counter tracks
the WSS, updates it when inserting or deleting (e.g., by aging)
items, and can thus always answer entire WSS enquiry in con-
stant time. The counter is implemented with an atomic class.
Thus, it can be concurrently updated safely and efficiently.
Multi-scope Working Set Size Enquiry: In addition to en-
tire WSS enquiry, Cuki also supports WSS enquiry at the
scope level, which queries the sizes of specific scopes of the
entire working set. Different scopes can be regarded as differ-
ent parts of the entire working set (e.g., different tables of a
database, or different partitions of a table). The information of
each scope size is useful for resource scheduling methods [39]
and optimizing multi-tenant systems [23, 46]. For example,
in a large-scale query engine, we can use multi-scope WSS
estimation to find the table with the biggest WSS, which is us-
aully queried frequently. Replicating this table to more nodes
of the cache system may help increase the throughput of the
query engine.

To estimate multi-scope WSS, we can easily encode the
scope information (e.g., mapping scopes to an integer by

a hash table) into several bits and store them in the pay-
load field of Cuki. In addition, we need to maintain a set
of independent counters (e.g., WSS, repeated items size,
and total items size) for each scope in Cuki. For exam-
ple, when an item x belonging to scope Scopek is inserted,
Cuki will store the encoded scope Scopek along with the
entry of x, and increase the independent WSS counter of
Scopek. When the deletion or aging operation removes x,
Cuki can figure out the scope that x belongs to, by check-
ing the encoded scope information in its payload field,
and decreases the relevant WSS counter of that accordingly.

In practice, for existing methods, it is non-trivial to allocate
a suitable memory size for each scope without prior knowl-
edge of each scope’s cardinality. Instead, in Cuki, the items of
different scopes can share the same total hash table space, by
using the encoded scope information in their payload fields
to distinguish from each other. Thus, it is not necessary to
allocate static memory space for each scope in Cuki.

4 Concurrency Control in Cuki

4.1 Segmented Lock and Concurrent Insertion
We first introduce the basic concurrency control technique
called segmented lock adopted in Cuki. Then, we describe
how Cuki supports concurrent insertion.
Segmented Lock: Cuki divides the whole hash table into
several segments, and each segment is guarded by one single
lock. Users can configure the number of buckets per seg-
mented lock to tradeoff lock overhead and contention. On the
one hand, the item insertion, lookup, and deletion may access
different segments at the same time. To avoid deadlock in
operations, we always acquire and release the locks in order.
On the other hand, each segmented lock guards a group of
adjacent buckets. Therefore, for the aging operation, there is
no need to repeatedly acquire a lock for scanning items in
the same segment. Moreover, each lock manages a physically
continuous space. Benefiting from this cache-friendly design,
the aging operation can be executed faster. This is because
the aging operation accesses Cuki sequentially.
Concurrent Insertion: It is non-trivial to handle the con-
current insertion operations in Cuki. As analyzed in [18],
there will be a false negative error under concurrency when
moving items along the cuckoo path. To eliminate the false
negative error, similar to [18, 26], we separate the insertion
process into two phases: the path discovery and item move-
ment phases. In the path discovery phase, Cuki finds a cuckoo
path [18] that starts from two alternative buckets and ends
at an empty entry. Then, in the item movement phase, Cuki
moves items backward along the cuckoo path. Cuki always
acquires locks before each above phase, guaranteeing each
operation’s atomicity.

With more items inserted into Cuki, the Cuckoo path length
increases, which might lead to long tail latency. The item
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movement may also fail as analyzed in [26]. The probabil-
ity of insertion failure is less than 1.75× 10−5 in their en-
vironment. In our experiment and production environment,
there is almost no insertion failure most of the time. Also,
we find that 97% of Cuckoo paths have lengths below 2, and
99.99% of Cuckoo paths have lengths below 4 in MSR trace
with 192KB memory. To totally avoid insertion failure and
long tail latency, one can allocate appropriate memory size
for Cuki by using space resizing techniques [10, 27, 43, 50].
Specifically, when the load of Cuki reaches the high water-
mark, according to the solution proposed in [50], we can
resize the Cuki’s capacity by adding an extra homogeneous
Cuki data structure after the existing one. The new incoming
items can be inserted into the expanded data structure [50].
Except for this solution, we can adopt “partial-key linear hash-
ing” technique proposed in [43] to increase the capacity of
Cuki in a fine-grained fashion. Furthermore, similar to [26],
we adopt breadth-first search to find an empty entry. It
can be theoretically proven that the Cuckoo path found by
BFS is shorter than that found by DFS [26].

4.2 Opportunistic Aging

To update the data freshness over the sliding window, Cuki
performs aging operations periodically in the background. At
each background aging, Cuki scans the whole hash table. It
first acquires the lock of each segment, then ages the items in
that segment in turn. However, the background aging suffers
from the following issues in high concurrency scenarios.
Issue 1. Large fluctuation of estimation result: In back-
ground aging, massive obsolete items will be cleared simulta-
neously. As a result, the estimated working set size varies a
lot before and after the aging execution. Therefore, the aging
can significantly affect the error in the estimated WSS, which
decreases the estimation accuracy and stability. We conduct
an experiment to verify this, and it is in Appendix C.1.
Issue 2. Lock contention with user operations: Most op-
erations in Cuki (e.g., insertion, lookup, and aging) require
holding the lock first, which causes lock contention among
these operations. It brings in two kinds of issues. First, when
the aging operation is in execution, if there are too many ob-
solete items that need to be removed, the other data access
operations will be blocked for a long time until the lock held
by the aging process is released. It increases the delay of
other data access operations. Second, when the aging opera-
tion is waiting for execution, if there exist so many insertions
or lookup operations, the aging operation might wait a long
period before getting the lock. Thus, the obsolete items in
Cuki may not be removed in time by aging, which decreases
the estimation accuracy of Cuki.

To address these issues, we propose a lightweight concur-
rency control strategy called opportunistic aging. It amor-
tizes the aging operation into the insertion operations in Cuki.
It brings two main advantages. First, the full aging task is

Algorithm 1 Opportunistic Aging in Cuki
Input: S i is the segment to be aged, Pi is the aging pointer of S i.

1: Noa← the number of items to be aged;
2: while Noa > 0 && Pi < S i.length do
3: /* aging the Pith buckets of segment S i */
4: AgingBucket(GetBucket(S i, Pi));
5: Pi← Pi +1;
6: Noa← Noa −1;

split into multiple minor aging tasks, making the sliding win-
dow move smoother. Second, since fewer entries need to be
checked in background aging, it reduces the lock contention
risk with the background aging.

Specifically, each segment in Cuki has a pointer to track
its aging progress. Both opportunistic aging and background
aging start working from the pointer’s position. Noa items are
aged during each opportunistic aging. The pointer advances
accordingly. Subsequently, background aging ages the remain-
ing items in each segment from the position of the pointer left
by opportunistic aging. If the aging pointer is at the end of the
segment, background aging will skip this segment. Therefore,
opportunistic aging reduces lock contention.

Algorithm 1 elaborates the procedure of opportunistic ag-
ing. First, it computes the number of items that need to be
aged (noted as Noa) by the elapsed time from the beginning
of the aging period (Line 1). Suppose S i is the segment to be
aged, Pi is the aging pointer (index) of S i, Ni is the number of
buckets in S i, T is the time interval of each aging period, tcur
is the elapsed time from the beginning of the aging period,
Noa can be computed by the equation:

Noa = Ni×
tcur

T
−Pi. (4)

It guarantees that the aging progress is consistent with
the movement of the sliding window. Besides, to reduce
the latency of each insertion operation, we limit the
maximum number of items cleared during each oppor-
tunistic aging. Then, We conduct the aging operation
on the Noa items in the segment S i (Lines 2-6). The
remaining stale items, which have not been removed by
opportunistic aging, will be cleared by the background aging.

Regarding accuracy, ClockSketch [11] reveals that some
stale items are not cleaned timely by background aging (also
analyzed in our Appendix B). Opportunistic aging can miti-
gate this error by preemptively removing certain stale items
before background aging.

5 Cache Capacity Online Tuning Using Cuki

In this section, we show how Cuki can facilitate online cache
capacity tuning for many data access applications. First, Cuki
can be used in implementing the cache size adaptive tuning
mechanism. Based on that, it can accelerate data access, in-
cluding table querying and file reading. In addition, Cuki can
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also help generate miss ratio curves (MRCs), which provides
an in-depth understanding of the relationship between the
cache hit ratio and the cache size.

5.1 Data Access Application Acceleration

During setting the cache capacity for applications, we are
mainly faced with two key cache-related questions: 1) What
is the degree of the data access temporal locality for a given
data access stream? 2) How to optimize the cache utilization
online for a given data access stream?

5.1.1 Adaptive Cache Capacity Tuning Framework

In the following, we introduce the key metrics of the Cuki,
which can be used for adaptive cache capacity tuning. To
explain how to track and optimize the cache utilization with
Cuki, we define the following key metrics.
• CSS: The cache space size, which can usually be obtained
from configurations or metric monitoring of the cache system.
• WSS: The working set size over the time window, which
is estimated by Cuki online.
• CHR: The realistic cache hit ratio of the cache system,
which is often exposed by the cache metric monitor system.
• IRR: The item repetition ratio over the time window esti-
mated by Cuki. IRR is computed by ∥R∥

∥O∥ , where O and R are
the set of total accessed items and repeatedly accessed items
in the time window, respectively.

The proposed adaptive cache capacity tuning mechanism
can answer the above questions by tracking WSS and IRR in
constant time with Cuki.

IRR measures the data access temporal locality of the ap-
plication online. Specifically, since every repeatedly accessed
item is counted by Cuki, IRR can be regarded as the upper
bound of the cache hit ratio for the realistic cache system
over the past time window. WSS is the total size of recently
accessed items. It reflects the realistic cache demand of the
application in the time window. In fact, as we observed in our
real-world query service scenarios and other applications re-
ported in existing work [48,53], the working set size and data
repetition ratio do not significantly change in a short period,
following the law of temporal data locality. Thus, for a work-
load, its estimated WSS and IRR over adjacent time windows
are likely similar, and we can use the current estimation to
optimize the cache capacity for the near future.

Cuki has two main advantages in estimating WSS and IRR.
First, it can track the WSS over sliding time windows accu-
rately and stably. Second, it supports updating and querying
WSS with constant time complexity, which makes real-time
tracking and dynamic adjustment possible.

Figure 3 illustrates how Cuki and the above defined
metrics can help to improve the cache system efficiency.
Cuki is embedded into cache layer and cooperates with

Cache 
Inspector

Cache
System

Data Access 
Application

IRR is low
(e.g., IRR < 𝜽𝜽𝒅𝒅𝒅𝒅)

Cache
Status
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B: Cache System 
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Figure 3: Workflow of adaptive cache capacity tuning mecha-
nism based on Cuki (grey components are proposed by us).

the cache system seamlessly. The cache system has on-
line CSS and CHR metrics, while Cuki contains WSS
and IRR statistics during the corresponding time windows.
When a data access request arrives, the metrics of the
cache system and Cuki are simultaneously updated.

The cache inspector figures out the cache system status by
comparing these metrics according to the logic in Figure 3.
Based on the cache status and the metrics in Cuki, the cache
space size can be appropriately tuned up and down online.

Specifically, the cache inspector will measure the data tem-
poral locality of the workload by checking the item repetition
ratio IRR estimated by Cuki. For case A in Figure 3, if IRR is
low (smaller than a predefined threshold θd1, e.g., 50%), the
workload itself is not cache-friendly, which means that there
exists little repeated data access during the time window. In
this case, even if adding huge cache space, we can barely get
a higher cache hit ratio CHR.

In other cases, when IRR is high, the cache inspector will
check CHR, cache space size CSS, and the working set size
WSS over the time window. For case B in Figure 3, when CHR
is low (smaller than a predefined threshold θd2, e.g., 50%) and
CSS<WSS, it means that the cache system is overloaded, and
there indeed exists some room to improve the cache perfor-
mance further. This is because the CHR is low, but CSS is
still less than the realistic cache demand measured by the esti-
mated WSS. In this case, we can improve the cache efficiency
by increasing CSS. For example, the size of an application’s
data table usually increases as the number of application users
grows. The cache system will be under-provisioned if CSS is
not carefully configured accordingly. However, with the esti-
mated WSS as the indicator, we can allocate an appropriate
amount of cache resource easily online.

Besides, if both IRR and CHR are high (larger than a prede-
fined threshold θu, e.g., 90%), it means that the cache system
has sufficient cache resource. However, the resource might
be wasted when we allocate superfluous cache space over
the realistic cache demand measured by the estimated WSS
in Cuki (case C in Figure 3). In this case, the cache sys-
tem is underused. In real-world practice, we can tune down
the cache space or leverage this information to optimize the
query task scheduling algorithms or the cluster resource rout-
ing strategies. For example, we can facilitate the load balance
of the cache system by prioritizing scheduling the query tasks
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Figure 4: Data access applications using Cuki.

to the compute nodes where the cache is still underused.
In the last case, where both the cache hit ratio CHR and

the item repetition ratio IRR are high, and the cache space
size CSS matches the estimated realistic cache demand WSS,
the cache system is working in healthy status.

5.1.2 Table Querying Acceleration Framework

Figure 4(a) shows how the proposed adaptive cache capac-
ity tuning mechanism is integrated with Presto and Alluxio.
Presto is designed for performing SQL query computation
in memory. The Presto coordinator distributes the execution
plan fragments to Presto workers according to the scheduling
strategy. Presto workers execute query plan fragments on the
data read from the remote HDFS/S3. Since Presto workers
do not store the data, they tend to use Alluxio clients as their
cache tier. We implement the Cuki in Alluxio client to track
the LocalCache access. In order to use Alluxio LocalCache as
Presto worker’s cache, Alluxio client Jar files are distributed
to each Presto worker.

Each Presto worker queries Alluxio LocalCache inside
the same JVM through a standard HDFS interface. First,
Presto transforms the queried partitions into several splits.
Then, Presto coordinator makes the best attempt to assign the
same split to the same worker, which is cache-friendly. If the
queried splits are in the Alluxio LocalCache, splits are directly
read from local RAM and returned to Presto. Otherwise, it
retrieves data from HDFS/S3 and caches the data to local
RAM of Presto worker. Cuki monitors the whole process of
the split access in each Presto worker and updates WSS/IRR.

5.1.3 File Reading Acceleration Framework

File reading is common in distributed applications, such as
online video websites and cloud downloading services. It’s
common that there exist some hot files which are more likely
to be accessed by applications in a nearby time period. Thus,
we can use a cache system to accelerate file reading by storing
hot files. However, the size of hot files changes as time flies,
which makes it hard to determine the proper cache size. As
shown in Figure 4(b), the proposed adaptive cache capacity
tuning mechanism based on Cuki can be used to solve this
problem. The implementation of the proposed adaptive cache
capacity tuning mechanism in file reading is similar to the

above section. First, the requests for files are sent to the Al-
luxio master. Then, the Alluxio master checks whether the
requested files are stored in one of the Alluxio clients. If so,
the requested files are directly read from the local RAM of the
Alluxio client. Otherwise, Alluxio reads files from HDFS/S3
and caches the data to the local RAM of the Alluxio client.
Cuki monitors the whole file access process in each Alluxio
client and updates WSS and IRR accordingly online.

5.2 Miss Ratio Curves Generation Using Cuki
Although WSS and IRR are useful enough for the adaptive
cache capacity tuning mechanism, they still can not show in-
depth insights into the relationship between the cache hit ratio
and the cache size. Generating a miss ratio curve (MRC) as a
function of the cache size is a common method to understand
the relationship between the cache hit ratio and the cache size
thoroughly. It only needs a little change in Cuki to generate
MRCs for variable-size item access.

Similar to most MRC generation approaches [40, 41, 51],
Cuki needs to store the reuse distance distribution as RD(x).
RD(x) represents how many items are re-accessed at x LRU
stack size (x is also called as the reuse distance). With RD(x),
Cuki can compute MRC(x) simply by

∑x
i=1 RD(i)

TC , where TC is
the total items number. To compute RD(x), Cuki tracks each
item’s clock value and stores the clock distribution as CD(y).
CD(y) represents the total size of items whose clock value is
y. With CD, Cuki computes the reuse distance of the accessed
item by distance =

∑max
i=y CD(i), where y is the clock value of

the accessed item. Then, Cuki increases the RD[distance] by
one. The length of the array CD is the MAX_AGE, which
is decided by the clock bits length. Because the clock bits
length is a small constant number (never exceeding 16 in our
evaluation), the space cost of CD is negligible.

In the following, we introduce how Cuki maintains CD
when the item’s clock value changes. We use oc and nc to
represent the old clock value and the new clock value, re-
spectively. The item’s clock value changes when the item is
accessed or aged. Then, Cuki decreases the CD[oc] by the
item size and increases the CD[nc] by the item size.

6 Evaluation

6.1 Experimental Setup
To be consistent with Alluxio and Presto, we implement Cuki
and comparison methods in Java. If not explicitly mentioned,
all approaches run on a server with Intel Xeon(R) Gold 6248
CPU with ten 2.5GHz cores. The version of Alluxio and
Presto in the experiment is 2.7.0 and 0.266, respectively.
Datasets and Workloads. Experiments are run on both exist-
ing benchmarks and real-world datasets with workloads:
(1) MSR I/O trace dataset [31]. We choose the
first 12,518,968 records of MSR web proxy workload
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as a typical dataset. Each record consists of three
disk access information: timestamp, offset, and size. In
our experiment, we use the offset to represent the item ID.
(2) Twitter dataset [48]. We choose the representative
Twemcache-cluster37 first-hour data which has 10,169,267
records, and the similar Twemcache-cluster35 first-day data
as our datasets. The record’s key is regarded as the item ID,
and the item’s size is the sum of key_size and value_size.
(3) YCSB dataset [12]. We generate a concatenated trace that
contains 10 million records by the YCSB generator [47]. Each
base trace follows a zipfian distribution [32] with a skewness
factor of 0.99. The item size of each base trace ranges from
512B to 1MB, but follows different zipfian distributions.
(4) TPC-DS [38]. Typical I/O bound queries in TPC-DS are
used for the end-to-end performance evaluation.
(5) Real-world query workloads. We also adopt the real-
world query workloads from one of our large scale Presto
clusters with 200 servers in § 6.8. The total data access size
of the workload is PB-level, and the cache space is TB-level.
Comparison Approaches. Following methods are evaluated:
(1) ClockSketch [11]. We add a 32-bit size counter for each
cell of ClockSketch for WSS estimation. When a cell is first
inserted, its size counter will be set to the item’s size.
(2) SlidingSketch [20]. We apply SlidingSketch to the Bloom
filter [8] for WSS estimation. Each domain of its bucket is
used to record the item size.
(3) SWAMP [5]. SWAMP stores each item’s frequency in a
data structure called TinyTable [16]. We extend the TinyTable
in SWAMP to record each item’s size.
(4) MBF [3]. We use the Multiple Bloom Filter (MBF) im-
plementation in the latest Alluxio version [3]. Each Bloom
filter [8] is implemented with Google’s Guava library [2].
(5) RAR-CM [51]. In RAR-CM, each block has a counter to
record the last access number. To support variable-size item,
we use the RAR-CM’s counter to record its last access bytes.
(6) Cuki and Cuki-OA. Cuki is the basic approximate data
structure proposed in this paper. Cuki-OA further uses the
opportunistic aging strategy in § 4.2.
Metrics. We measure accuracy and speed performance by
following metrics:
(1) Weighted Error Rate (WER). Let error_bytes be the to-
tal size of items that are evicted faster or slower than the ideal
sliding window. The WER can be calculated by error_bytes

total_bytes .

(2) Relative Error (RE). w−ŵ
w , where w and ŵ are exact and

estimated working set size (WSS), respectively.
(3) Average Relative Error (ARE). 1

|T |Σt∈T
|wt−ŵt |

wt
, where wt

and ŵt are the exact and estimated WSS at moment t.
(4) Mean Absolute Error (MAE). 1

N
∑
|MRC(x)−MRC′(x)|,

where N is the length of reuse distance array, MRC(x) is the
hit ratio at the cache size x.
(5) Throughput. In file reading experiment (§ 6.7), it is the
number of MB/s. In other experiments, it is # of operations/s.
(6) Query Latency. The end-to-end SQL query latency.
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Figure 5: Effects of parameters in Cuki.

Parameter Settings of Approaches. All methods use the
same memory size in each experiment. For the count-based
sliding window, we set the window size to 262,144 (218) and
measure RE every 64 time units. For the time-based sliding
window, we set the window size to one-hour and one-day for
the MSR and Twitter traces as different traffics, respectively.
The default size encoding approach for Cuki is grouped size
encoding. The bits length of the fingerprint, clock and size
fields in Cuki are set to 8 if not explicitly mentioned. The
settings of the comparing methods are fully tuned to nearly
achieve their best performance for a fair comparison.

6.2 Effect of WSS Estimation Parameters
To understand the impact of the Cuki’s parameters, we con-
duct experiments on the YCSB trace with a count-based slid-
ing window. The number of entries in Cuki is fixed to 262,144
(218), just enough to track all the items within a sliding win-
dow. To reduce other parameter interference, we use the full-
size encoding method by default in this section.
(1) Effect of fingerprint bits length. As shown in Figure 5(a),
as the fingerprint bits length grows, the ARE of both Cuki
and Cuki-OA is dramatically decreased. In fact, an item’s
key is represented by its fingerprint. Thus, a small fingerprint
bits length leads to different items being hashed to the same
fingerprint, resulting in high ARE. Moreover, compared with
Cuki, Cuki-OA decreases ARE by 37% on average, which
verifies the effectiveness of the opportunistic aging strategy.
(2) Effect of size encoding methods. Figure 5(b) illustrates
the influence of different size encoding methods. The per-
formance of the truncation encoding method using and not
using opportunistic aging is the same. Thus we only show the
truncation encoding in the figure. The black line represents
the ARE of the most accurate baseline (full-size encoding).

As shown in Figure 5(b), on the one hand, full-size encod-
ing achieves the best accuracy but it stores the entire accurate
size. Compared with the truncation encoding strategy, the
grouped size encoding strategy decreases ARE by 92% on
average when the group bits length is small (< 6 bits). Thus,
we can conclude that grouped size encoding achieves the best
trade-off between memory space and estimation accuracy.
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(3) Effect of clock bits length. As shown in Figures 5(c) and
5(d), the ARE and WER can be reduced by using more clock
bits. As shown in Figure 5(c), opportunistic aging (Cuki-OA)
decreases the ARE of Cuki by 26% on average when the
length of the clock bits is small (< 8 bits). Also, we can ob-
serve from Figure 5(d) that Cuki-OA barely increases WER.

Besides the above three parameters, the parameter sliding
window size can be set as the user demands. In the above
experiments, Cuki only needs a few extra bits to track each
item’s key, access freshness, and size. Therefore, we can con-
clude that Cuki can track each item only using several bits by
sacrificing negligible accuracy.

6.3 Accuracy of WSS Estimation

In this subsection, we evaluate the accuracy of Cuki by com-
paring it with cutting-edge WSS estimation methods over
the sliding window mechanism. Figure 6 exhibits the ARE of
different methods measured in the same run on two traces. We
double the memory size at the last point of each experiment to
meet the memory requirement of each approach. As shown in
Figure 6, while the performance of all comparison approaches
gets improved with more space, Cuki and Cuki-OA exhibit
better memory-accuracy efficiency. For example, Cuki-OA
decreases ARE from 12.26% to 0.93% as the memory space
increases to 96KB on the MSR trace. In addition, Cuki-OA
decreases the ARE of Cuki by an average of 11% and 37%
on the MSR and Twitter traces, respectively. As the memory
space gradually becomes larger, the ARE of Cuki decreases to
1% and lower. However, the ARE of coarse-grained tracking
methods, such as MBF, SlidingSketch, and ClockSketch, can
hardly further decrease even with sufficient memory.

Finally, we compare the accuracy of various methods on
multi-scope WSS estimation. We use the MSR dataset as a
typical benchmark and replay it with a 144× speedup. The
time-based sliding window size is set to one hour. All methods
in the experiments use the same 24MB memory size because
of the large multi-scope combined workload. As shown in
Figure 7, Cuki-OA reduces the ARE of Cuki by 33% and 22%
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Figure 8: Performance comparison of stability on MSR trace
(comparison methods use 2× larger memory than Cuki).

on average for the 8 and 16 scopes WSS estimation, respec-
tively. Secondly, the ARE of Cuki-OA is 11 and 8 times lower
than the comparison algorithms on average for the 8 and 16
scopes WSS estimation, respectively. It mainly benefits from
Cuki’s extensibility which allows items of different scopes to
make better usage of memory together.

To conclude, Cuki and Cuki-OA achieve the best accuracy
with the same memory consumption among all the methods.
More experiments on the YCSB trace or using the WER
metric are in Appendix C.2. They have similar conclusions.

6.4 Stability Performance of WSS Estimation

We evaluate the stability performance of different methods
under the time-based sliding window. More experiments on
the Twitter trace and the count-based sliding window are
available in Appendix C.3. They have similar conclusions.

We replay the MSR trace with 168× speedup and use
192KB memory for the Cuki. In order to meet the compari-
son methods’ memory requirements, they use double amount
of memory than Cuki. Figure 8 illustrates the stability per-
formance of different methods over the time-based sliding
window. SWAMP is omitted due to it only supports the count-
based sliding window. There are jagged fluctuations in estima-
tion for all methods because of the movement of the sliding
window. Specifically, MBF switches a Bloom filter out pe-
riodically and drops the corresponding items. ClockSkech’s
fluctuations are mainly due to hash collision with limited
memory. SlidingSketch can hardly track all items within a
sliding window due to limited memory space.

For Cuki, despite its performance being affected by aging
operations, its estimation is stable. The stability is mainly
attributed to its per-item size tracking. Notably, opportunistic
aging can make the movement of sliding windows smoother.

To conclude, Cuki and Cuki-OA use less memory and
achieve the most stable estimation results.

6.5 Scalability of WSS Estimation

We evaluate the thread scalability of the comparison methods.
Specifically, we use the MSR trace with the count-based slid-
ing window, and the memory size is set to 40KB. SWAMP is
omitted due to not supporting multi-thread concurrency.

Figure 9 shows that increasing concurrency can not im-
prove ClockSketch’s throughput significantly. SlidingSketch
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Figure 10: Performance of adaptive cache capacity tuning
mechanism in table querying (FC-100MB represents the fixed
cache size 100MB, FC-10GB-T represents running with WSS
estimation in the fixed cache size 10GB, others are similar).

has heavy aging tasks after each operation. Thus, its scala-
bility is limited. MBF can improve throughput by increasing
concurrency, but it needs to manage Bloom filters for insertion
and lookup, resulting in lower throughput than Cuki.

Cuki and Cuki-OA have near-linear multi-threading scala-
bility due to their fine-grained concurrency control optimiza-
tion strategies. To conclude, both Cuki and Cuki-OA achieve
near-linear multi-threading scalability.

6.6 Cache Tuning Performance with Cuki

(1) End-to-End Performance in Table Querying : The ex-
periments run on a Presto cluster with one coordinator and five
workers using the I/O-bound TPC-DS dataset. FC-150MB,
FC-280MB, and FC-10GB represent the cache system is in
overloaded, healthy, and underused statuses, respectively. The
280MB cache size is manually chosen because it is the most
competitive cache size that makes a good trade-off between
the cache hit ratio and the cache capacity.

The adaptive cache capacity tuning mechanism use 125MB
memory, which is the default value in MBF [3]. As shown in
Figure 10(a), the cache hit ratio of FC-150MB is the lowest
one. And, the cache hit ratio of FC-10GB can be regarded
as the upper bound. By using Cuki, the cache system nearly
achieves the upper bound of the cache hit ratio. Figure 10(b)
shows the average cache hit ratio and the maximum total
cache space allocated by the proposed adaptive cache capacity
tuning mechanism and others. Compared with FC-280MB,
our method improves the average cache hit ratio by around
11% while using a similar total cache size. This is because that
our method allocates the cache space to each Presto worker
according to their different demand. Overall, by using Cuki,
the cache system can not only reach the upper limit of the
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Figure 11: Performance of adaptive cache capacity tuning
mechanism in file reading (FC-200MB and FC-10GB repre-
sent the fixed cache size are 200MB and 10GB).
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Figure 12: Performance of Cuki in MRCs generation.

cache hit ratio, but also improve the cache utilization.
The average query latency of different approaches is shown

in Figure 10(c), the average query latency of FC-10GB-T
(the fixed 10 GB cache size with WSS estimation) is close
to FC-10GB. The average query latency of Cuki is close to
the FC-10GB which is the lower bound of latency. Compared
with MBF, FC-150MB, and FC-280MB, Cuki can reduce the
query latency by around 69%, 97%, and 71%, respectively.
(2) End-to-End Performance in File Reading: This experi-
ment uses the first 9000 data access requests in YCSB [47]
trace as the workload. For each unique trace item, we generate
a file whose size is the item value and store the file in remote
storage S3. We run the experiments on an Alluxio cluster
with three EC2 servers and deploy an EC2 client which runs
in three threads to access data. Each thread sends 3000 file
reading requests and repeats three times.

As shown in Figure 11(a) the cache hit ratio of FC-200MB
is the lowest. The cache hit ratio of FC-10GB can be seen as
the upper bound because the 10GB cache size is enough to
cover all workloads. The cache hit ratio of Cuki is close to
the FC-10GB, which means Cuki helps the cache system to
reach almost the upper bound of the cache hit ratio.

As shown in Figure 11(b), we compare the end-to-end file
reading throughput of the above comparison methods. The
throughput of Cuki is close to FC-10GB which is the upper
bound of the throughput. Overall, Cuki can improve the cache
utilization of file reading to reach higher throughput.

6.7 Accuracy of Miss Ratio Curves Generation
We compare the accuracy of miss ratio curves (MRCs) gen-
eration among Cuki and RAR-CM. Considering the poor
support for the sliding window mechanism in RAR-CM [51],
the window length is the same as the trace length.

As shown in Figure 12(b), Cuki uses 96KB memory for
MSR trace and 1MB memory for other traces. Each item in
RAR-CM needs 128 bits to be stored, which is larger than
Cuki’s 56 bits. In order to make RAR-CM more accurate, we
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Figure 13: Large-scale real-world practice.

allocate RAR-CM 10 MB memory, which is 10× larger than
Cuki. Figure 12(a) shows the accuracy of Cuki in MRCs gen-
eration. Compared with RAR-CM, Cuki reduces the MAE by
around 48%, 82%, and 91% in the MSR, Twitter, and YCSB
traces, respectively. This is because that Cuki can better sup-
port variable-size item. Moreover, RAR-CM estimates the
re-access ratio to compute the reuse distance, which is inaccu-
rate. In addition, Cuki achieves comparable throughput with
RAR-CM in experiments. Overall, Cuki costs less memory
and generates more accurate MRC than RAR-CM.

6.8 Real-world Practice
We elaborate on how Cuki is used in our real-world large-scale
query platforms with the cache system called ShadowCache.
ShadowCache is being leveraged to understand the system
bottleneck and help with query system routing design deci-
sions. Specifically, with ShadowCache, the overall system
can efficiently decide how to size the cache for each tenant,
and what the potential cache hit ratio improvement is. In the
following, we evaluate the usability of the working set size es-
timation methods on a middle-scale Presto cluster (GB-level
cache space). We implement the proposed Cuki-based cache
capacity tuning mechanism. MBF is also used for comparison.

Figure 13(a) shows the estimated WSS of Cuki and MBF
on a middle-scale cluster. There exist fluctuation for MBF
in its estimation due to periodically removing a part of its
statistics as analyzed in § 6.3 and § 6.4. In fact, the cache
system can hardly distinguish the normal workload changes
from the MBF fluctuations. In contrast, Cuki provides stable
working set size estimation with little fluctuation. Thus, Cuki
is more credible and effective in real-world scenarios.

Next, we deploy the proposed approach on a large-scale
real-world Presto cluster (TB-level cache space with 200
servers). Figure 13(b) shows the performance of query work-
loads over one day on the Presto cluster, showing the realistic
cache hit ratio (CHR) performance of the cache system and
the item repetition ratio (IRR) estimated by Cuki. It can be
seen that IRR is much higher than the CHR of cache between
the 16th hour to the 19th hour. We can find that there is an
opportunity to increase the cache capacity based on the esti-
mated WSS during that period to improve the cache hit ratio.

Another interesting discovery during our deployment is
that the WSS of each Presto worker is quite unbalanced. This
is because that the data hotness of each table or partition is
different in real-world scenarios. The extent of the imbalance
is related to the access patterns. Cuki is very helpful for global

cache space allocation with multiple-scope optimization.

7 Related Work

A key challenge for improving cache utilization is provi-
sioning the suitable cache size to fit dynamic workloads
online. As analyzed in § 2, we summarize the prior works
in four categories: Rule-based approaches [21, 24, 34, 42],
ML-based approaches [4, 28, 30, 33, 35], MRC-based ap-
proaches [15, 19, 22, 36, 40, 41, 45, 51, 52], and window-based
approaches [5, 11, 20].

The most recent works related to ours are ClockSketch [11],
RAR-CM [51], and MBF [3]. ClockSketch [11] maintains
a clock value for each item to support the sliding window
mechanism. However, ClockSketch uses the bitmap [44] or
the Bloom filter [8] to estimate cardinality. It brings WSS
estimation error as not being aware of items’ various sizes
but using maximum likelihood estimation with inferior ARE.
RAR-CM [51] uses a hashmap to record item access informa-
tion and estimate the item repetition ratio. However, RAR-CM
is designed for fixed-size item tracking and might be inaccu-
rate for variable-size item tracking. Moreover, RAR-CM has
non-negligible memory consumption when handling a large
number of unique items. MBF [1, 25] uses a series of Bloom
filters to record different statistics in segments of the sliding
window. However, the switching of Bloom filters makes the
estimation result accuracy unstable.

8 Conclusion and Future Work

In this paper, we propose Cuki, an approximate data structure
for estimating the online WSS and IRR for variable-size item
access with proven accuracy guarantee. Cuki can also be
extended to solve the multi-scope WSS tracking problem.
Experimental results show that Cuki outperforms the cutting-
edge algorithms by 10× in accuracy. Moreover, the proposed
adaptive cache capacity tuning method based on Cuki can
significantly improve the cache performance online.

In the future, we plan to explore more application scenarios
of Cuki in the cloud-native data processing environment.
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Technical Appendix

A Artifact Appendix

Abstract

Cuki is implemented on Alluxio. It also relies on Presto, Hive,
and HDFS to function properly. We prepare the programs,
assemble a workflow of Cuki and package the artifact into the
Git repository.

Scope

The artifact estimates the WSS of different traces. It verifies
the basic function of Cuki and validates the accuracy improve-
ment brought by item-wise fine-grained tracking. In addition,
this artifact also validates the MRC generation accuracy of
Cuki is higher than the SOTA algorithm.

Contents

The artifact includes the source code of Cuki and experiments
scripts. A "README.md" file can be also found in the artifact.
It contains detailed description of the artifact and a step-by-
step instruction for evaluation.

Hosting

The artifact is available at GitHub1. All branches are needed to
be cloned or downloaded for evaluation. The commit version
is the latest one.

Requirements

The environment of the artifact includes Hive 3.1.3, Maven
3.5.4, Hadoop 3.3.1, Java 8, Prometheus 2.37.0, Mysql 8.0.3,
and S3.

B Theoretical Proof of Cuki

We first analyze the false positive rate of Cuki. Then, we the-
oretically demonstrate that Cuki outperforms the competitive
state-of-the-art algorithms in space usage under the same false
positive rate. We summarize the notations in Table 1.

Theorem B.1. For Cuki with f -bits fingerprint and s-bits
clock, the false positive rate is given by

ε = 1−
(
1−

1
2 f

)2b· 2s
2s−1 ·

D
n·b

≈
2s

2s−1
·

2D
n ·2 f , (5)

1Our artifact: https://github.com/shadowcache/Cuki-
Artifact-WSS-Estimation.

Table 1: Notations
Notations Definition

f Bits length of the fingerprint
s Bits length of the clock
ε False positive rate
b Number of entries in a bucket
D Number of distinct items in a sliding window
n Number of buckets in a Cuki
α Load factor of a Cuki
N Number of items in a Cuki
T Size of a sliding window

where b represents the number of entries in each bucket,D
represents the number of distinct items in each sliding window,
and n represents the number of buckets in Cuki.

Proof: The false positive rate of Cuki comes from two aspects:
(i) Cuki stores fingerprints instead of original item keys. (ii)
The outdated items in Cuki might not be cleaned up timely.
For Cuki with n buckets, we define the load factor as

α =
N

n ·b
, (6)

where N represents the number of fingerprints stored in Cuki,
and b represents the number of entries in each bucket.

When querying an element that does not exist in Cuki,
2 ·b ·α fingerprints need to be checked. For Cuki with f -bits
per fingerprint, each check may match a wrong fingerprint and
return a false positive with a probability of 1/2 f . Therefore,
the false positive rate caused by storing fingerprints is

ε = 1− (1−1/2 f )2bα. (7)

For any item in Cuki, it will be cleaned up after performing
2s rounds of the aging operation. For a sliding window of size
T , to prevent an item from being mistakenly deleted before
its time window ends, the frequency of the aging operation is
T

2s−1 . Thus, for an item in the data stream, the time interval
between insertion and clean-up is 2s

2s−1T . In other words,
Cuki actually stores all the items inserted within the time
interval 2s

2s−1T , which is 2s

2s−1 times of the sliding window
size. Suppose the number of distinct items within each sliding
window isD, the number of items stored in Cuki is given by

N =
2s

2s−1
D. (8)

Combining Equations (6), (7), and (8), we have

ε = 1−
(
1−

1
2 f

)2b· 2s
2s−1 ·

D
nb

≈
2s

2s−1
·

2D
n ·2 f . □

Experimental verification: We conduct experiments to vali-
date Theorem B.1. We vary f from 4 to 11, and set s as 12 -
f . Other parameters follow the settings in § 6. As shown in
Figure 14, the experimental results show that the theoretical
false positive rate well matches the experimental results.
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Figure 14: Verification of Theorem B.1.

Corollary B.1.1. For a fixed memory consumption M, when
s = 1, the minimum false positive rate is given by

8D
n ·2M/n·b

,

where M = n ·b( f + s) represents the memory consumption of
fingerprints and clocks in Cuki, n represents the number of
buckets in Cuki, b represents the number of entries in each
bucket, f represents the bits length of the fingerprint, s repre-
sents the bits length of the clock, andD represents the number
of distinct items in each sliding window.

Proof: As per Theorem B.1, the false positive rate is mainly
affected by f and s. Thus we only analyze the memory con-
sumption of fingerprints and clocks. Plug f = M

nb − s into
Equation (5), and we get

ε(s) =
2D

n ·2M/nb ·
4s

2s−1
,

where s = 1,2, . . . , M
nb − 1. Obviously, the false positive rate

increases as s increases, and ε(s) is the minimum when s = 1.
This completes the proof. □

Corollary B.1.2. For the same false positive rate ε, Cuki
requires less space than ClockSketch [11] and SWAMP [5].

Proof: According to Corollary B.1.1, let T = n ·b, n > 8, the
memory consumption of Cuki can be computed as

M(ε) = T log2
8D
nε
< T log2

D

ε
≤ T log2

T

ε
. (9)

According to [11], by ignoring the memory consumption
caused by storing the size field and the payload field, the
memory consumption of SWAMP is

M1(ε) > T log2
T

ε
. (10)

Therefore, to achieve the same false positive rate ε, the mem-
ory consumption of Cuki is always lower than that of SWAMP.

As per [11], the memory consumption of ClockSketch is

M2(ε) ≈
8

3ln2
T log2

1
ε
≈ 3.8472T log2

1
ε
. (11)

Let T = 2D, the memory consumption of Cuki is given as

M(ε) = 4T +T log2
1
ε
. (12)

When ε < 37.76%, which is often satisfied in real-world ap-
plications [17], M(ε) < M2(ε). This completes the proof. □

C Evaluation

C.1 Motivated Example of Opportunistic Ag-
ing: Estimation Fluctuation
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Figure 15: An example of estimation result fluctuating on the
YCSB dataset (The size of a count-based sliding window is
65,536, and the clock bits is set to 4).

A large number of items will be cleared at the same time
in the background aging process. As shown in Figure 15,
the working set size is overestimated before aging. After the
execution of aging, a tremendous amount of items are instantly
cleared. Therefore the estimation result are fluctuating, and
may affect the error of the estimated WSS. We propose an
optimization method named opportunistic aging to alleviate
this problem in aging operation.

C.2 Accuracy Evaluation of Cuki
In this experiment, we evaluate the accuracy of different WSS
estimation methods. This experiment observes an additional
metric WER on three traces (including the YCSB trace not
shown in § 6.3), which can be seen as a supplement to § 6.3.
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Figure 16: Performance comparison of accuracy.

Figure 16 shows the ARE and WER of different methods
measured in the same run on three traces. The ARE or WER
of All methods is high without sufficient memory. The ARE
or WER of Cuki decreases to 1% and lower as the memory
space gradually becomes larger. However, even with sufficient
memory, the ARE or WER of other methods can hardly further
decrease. Take the ClockSketch as an example, The WER of
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ClockSketch is decreased from 12.52% to 5.13% on MSR
trace as the memory increases to 1563KB. In contrast, Cuki
decreases the WER from 1.14% to 0.24% as the memory
increases to 768KB. This is due to the fine-grained per-item
tracking method in Cuki. Although the WER of MBF is close
to Cuki on the Twitter trace, Cuki performs much better in
other traces. This is because MBF switches a Bloom filter out
periodically and causes errors for the estimated result.

To conclude, similar to the experiment results in § 6.3,
Cuki and Cuki-OA still achieve the best accuracy with the
same memory consumption regarding the WER metric and
YCSB trace.

C.3 Stability Evaluation of Cuki
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Figure 17: Performance comparison of stability in Twitter
trace (time-based)
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Figure 18: Performance comparison of stability (count-based)

In this experiment, we evaluate the stability of different
methods under the time-based sliding window and the count-

based sliding window. For the count-based sliding window,
We use the default configuration described in § 6.1. For
the time-based sliding window on Twitter trace, we allocate
1408KB memory for Cuki and double memory for other meth-
ods to meet their memory requirements. We replay the Twitter
trace with 24× speedup according to the data request traffic.
Figures 17 and 18 illustrate the stability performance of dif-
ferent methods over the time-based sliding window and the
count-based sliding window, respectively. The estimation re-
sults of a count-based sliding window are more stable than
that of a time-based sliding window. This is because the num-
ber of items in a count-based window is fixed. However, there
are still some jagged fluctuations in all methods. The rea-
sons for these fluctuations are the same as we show in § 6.4.
Benefiting from the per-item size tracking, the RE of Cuki
and Cuki-OA is the most stable of the other four methods.
Cuki-OA has a more stable estimation result than Cuki be-
cause of the opportunistic aging. To sum up, we conclude that
Cuki and Cuki-OA also achieve the most stable and accurate
estimates on a count-based window.
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Abstract
With the application of machine learning to security-critical
and sensitive domains, there is a growing need for integrity
and privacy in computation using accelerators, such as GPUs.
Unfortunately, the support for trusted execution on GPUs
is currently very limited – trusted execution on accelerators
is particularly challenging since the attestation mechanism
should not reduce performance.

Although hardware support for trusted execution on GPUs
is emerging, we study purely software-based approaches for
trusted GPU execution. A software-only approach offers dis-
tinct advantages: (1) complement hardware-based approaches,
enhancing security especially when vulnerabilities in the
hardware implementation degrade security, (2) operate on
GPUs without hardware support for trusted execution, and
(3) achieve security without reliance on secrets embedded in
the hardware, which can be extracted as history has shown.

In this work, we present SAGE, a software-based attesta-
tion mechanism for GPU execution. SAGE enables secure
code execution on NVIDIA GPUs of the Ampere architecture
(A100), providing properties of code integrity and secrecy,
computation integrity, as well as data integrity and secrecy
– all in the presence of malicious code running on the GPU
and CPU. Our evaluation demonstrates that SAGE is already
practical today for executing code in a trustworthy way on
GPUs without specific hardware support.

1 Introduction
Fueled by recent trends such as machine learning and the
declining yields from Moore’s Law, the use of accelerators to
process the vast volumes of data is becoming indispensable.
In fact, it is expected that the majority of compute cycles in
public clouds will be executed on accelerators [29].

With the application of machine learning to security-critical
or sensitive domains such as healthcare or financial model-
ing, there is a growing need for a mechanism that maintains
integrity and secrecy for both code and data despite the com-
putation being offloaded to the GPU.

With the wide-spread deployment of trusted execution envi-
ronments (TEEs), e.g., Intel SGX [4] and ARM TrustZone [2],
an important question is how security-sensitive computation
tasks can be accomplished on GPUs. While first hardware-
based TEEs on GPUs are starting to emerge [13,20,24,27,46,
49], how can we execute code securely on GPUs in current
environments? As we have witnessed from the introduction of
hardware-based TEEs on x86 platforms, it took over a decade
until it became possible to fully and widely utilize these mech-
anisms. At the same time, technology progress in this space
is a moving target as new attacks (among other factors) force
vendors to phase out one specific hardware-based technology
in favor of more robust successors (such as with the case of
the deprecation of Intel SGX [39]). Given the importance of
software executing on GPUs, it is clear that we need to find
approaches to speed up the long lag time between deployment
and wide-spread utilization.

A promising approach for bridging this gap is a software-
only approach to trusted execution. In the context of CPU-
based execution, a rich research field has contributed numer-
ous approaches [8, 32, 33, 48]. The basic idea of the prior
software-based or timing-based attestation approaches was to
design a verification function that would run on an untrusted
system and compute a checksum over itself – where both the
correctness of the checksum and the time duration are mea-
sured by a trusted verifier. A correct checksum value that is
returned before a threshold point in time, indicated to the veri-
fier that the TEE was correctly set up and that the correct code
is now executing (code integrity and launch point integrity).
In combination with a system for control-flow verification,
control-flow integrity can also be achieved.

The challenge of such software-based TEE establishment
approaches lies in the creation of a verification function that
will slow down noticeably or produce an incorrect checksum,
if an adversary attempts to tamper with its execution.

The creation of a verification function for GPU environ-
ments poses numerous research challenges, which may be
the reason why it has so far not been achieved, to the best
of our knowledge. First and foremost, achieving (1) code se-
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crecy and integrity, and (2) data secrecy and integrity, (3) in
the presence of a malicious OS, (4) malicious code on GPU,
and (5) a malicious CPU-GPU interconnect is a formidable
challenge. Other challenges that we have to overcome include
the absence of a true random number generator on the GPU,
the lack of documentation from GPU vendors for a specific
target architecture, no toolchain support to write native GPU
microcode, and the difficulty in achieving optimal GPU uti-
lization.

We design the SAGE system, which establishes a TEE on
NVIDIA GPUs of the Ampere architecture (A100). SAGE
utilizes an SGX enclave running on the host to act as a local
verifier, and to bootstrap the software primitive to establish a
dynamic root-of-trust (RoT) on the GPU. RoT establishment
ensures either that the state of an untrusted system contains
all and only content chosen by a trusted local verifier and
the system code begins execution in that state, or that the
verifier discovers the existence of unaccounted content. SAGE
also sets up a shared secret key between the verifier and the
GPU, which can be used to establish a secure channel to
achieve integrity and secrecy for code and data transferred.
Our results indicate that after a successful invocation of SAGE,
the verifier obtains assurance that: (1) the user kernel on the
untrusted device is unmodified; (2) the user kernel is invoked
for execution on the untrusted GPU device; and (3) the user
kernel is executed untampered, despite the potential presence
of a malicious actor.

This paper presents the following contributions:
• We design a software-based attestation mechanism

for GPU execution that enables secure code execution on
NVIDIA Ampere GPUs, providing code integrity and secrecy,
computation integrity, as well as data integrity and secrecy.

• We implement the race-condition TRNG and Verification
Function used as basic security components in the software
TEE. This requires an understanding of the GPU architecture
and the format of the instructions used in the microcode,
which we derive from our decoding and instruction generation
framework.

• Through a proof-of-concept implementation on the
NVIDIA A100 platform, we demonstrate the technical feasi-
bility of the approach. Our implementation is publicly acces-
sible at https://github.com/spcl/sage.

2 Background: GPU Fundamentals

In the following, we describe the fundamentals of NVIDIA
GPUs and their programming model (CUDA) to illustrate
how compute tasks are offloaded and executed on the GPU.

The GPU is connected via the PCI control engine to the
host CPU and uses an internal bus for communication between
its core components. The core components are the command
processor, compute and DMA engines, and the memory sys-
tem, consisting of a memory controller, registers, on-chip and
device memory.

L2 Cache

Device Memory

192KB

 40MB

256KB Registers

SM

L1 Sh. Mem

Registers

SM

L1 Sh. Mem

Registers

SM

L1 Sh. Mem...

Figure 1: Memory hierarchy of a GPU with memory sizes of
NVIDIA A100 GPU.

Controlling the GPU. Commands to the GPU are trans-
mitted using a set of command queues known as channels.
The GPU’s command processor receives these commands and
forwards them to the corresponding engines.

Data transfer to the GPU. GPU programming inevitably
incurs data transfers between host and device memory. This
is handled using direct memory access (DMA). The copy
engine is responsible for handling DMA commands and their
corresponding memory accesses.

GPU execution. The GPU’s compute engine contains
multiple Processor Clusters (PCs), each containing multiple
Streaming Multiprocessors (SMs). SMs are partitioned into
multiple processing blocks, each containing specialized pro-
cessing cores (e.g., INT32 cores), a scheduler and a dispatch
unit. GPU kernels to be executed on the GPU are sched-
uled to SMs and specify the number of threads to be created.
These threads are organised in thread blocks and grids. Thread
blocks are divided into warps. Each warp is a group of 32
parallel threads and gets scheduled by a warp scheduler.

Modern GPUs have multiple processing pipelines [23]
for different data types. The FMA pipeline executes 32-bit
floating point instructions and integer multiply and add (IMAD).
The ALU pipeline executes 32-bit integer, logical, binary, and
data movement operations. In addition, there are pipelines for
64-bit and 16-bit floating point, and Tensor core operations.

GPU memory system. The memory system on GPUs con-
sists of a memory controller and different memory levels. The
memory levels are associated to the compute system as fol-
lows (see Figure 1). Each processing block includes an L0
instruction cache and a register file. The combined process-
ing blocks of a SM share a combined L1 data cache/shared
memory that can be partitioned depending on the workload.
Multiple SMs share an L2 cache before pulling data from
global (off-chip) GDDR memory. Registers are a shared re-
source and are allocated among the thread blocks executing on
a SM. Accessing a register consumes zero extra clock cycles
per instruction, but delays may occur due to register read-
after-write dependencies and register memory bank conflicts.
In case a thread requires more registers than available, the
data contained in the registers is spilled into shared memory.
Shared memory is not only used for register spilling, but also
enables communication and memory reuse between threads
in a block.
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3 Problem Definition
We first describe the design goals we strive to achieve, as well
as the assumptions and the adversary model we consider.

3.1 Design Goals
Verifiable code execution on the GPU. Verifiable code ex-
ecution describes the problem in which a verifier wants a
guarantee that some arbitrary code has executed untampered
on an untrusted platform, despite the potential presence of a
malicious entity (e.g., malicious software) [32]. This problem
is typically approached by verifying code integrity through
root of trust attestation, setting up an untampered code execu-
tion environment, and then executing the code.

Data integrity and confidentiality. In addition to code in-
tegrity also the integrity and/or confidentiality of the data
executed on the GPU must be ensured. Specifically, we aim
to guarantee that the adversary cannot observe or tamper with
data transferred to/from the GPU by a trusted application that
runs in a CPU TEE.

Dynamic root of trust without hardware support. Dynamic
root of trust establishment denotes the problem of dynamically
setting up a trusted computing base (TCB) on an untrusted
platform without hardware support. All code contained in the
dynamic root of trust is guaranteed to be unmodified and it can
thus be used to provide externally verifiable code execution.

3.2 Assumptions
Verifier and GPU on the same machine. We assume that the
verifier is executed on the same machine as the GPU we want
to attest. The GPU is directly connected to the host CPU over
a bus (e.g., PCIe with a latency of ~500 ns [18]).

GPU hardware configuration. We assume that the verifier
knows the exact hardware configuration of the GPU, including
the GPU model, the number of cores, the memory architec-
ture, and the GPU clock speed. This assumption is practical
when the hardware configuration is managed by the user or a
trusted cloud provider. The machine owner has knowledge of
the hardware configuration, which cannot be altered by soft-
ware. In this configuration, we aim to protect against remote
attackers who may arbitrarily modify software.

3.3 Threat Model
In the following, we discuss the threat model by defining the
trusted compute base (TCB) and outlining the capabilities of
an adversary. The TCB of a system refers to all hardware and
software components that are critical to its security, in the
sense that bugs or vulnerabilities occurring inside the TCB
might jeopardize the security properties of the entire system.

Trusted compute base (TCB). We assume that the remote
adversary has full control over the software of the untrusted
host system. In other words, the adversary has administrative
privileges, can tamper with the operating system, or the guest
operating system and the hypervisor in case of virtualization.
However, we assume that the hardware primitives of the CPU

Bus

Trusted Application
(Verifier)

External 
Challenger

Verification Function

GPU
 

CPU

Untrusted Host
Platform

Figure 2: Abstract system model.

and GPU, including firmware are contained in the TCB. Since
SAGE uses Intel SGX, it inherits the TCB of SGX (which
includes the CPU package, trusted libraries, etc.).

Capabilities. Considering these capabilities, an adversary
can read and tamper with code or data of any victim process,
and can access or modify data in DMA buffers or commands
submitted to the GPU. Furthermore, the adversary could inject
packets in arbitrary locations on the I/O communication path
between the host and the GPU. This gives the adversary con-
trol over attributes, such as the address of GPU kernels being
executed and parameters passed to the kernels. The adversary
may also access device memory directly over MMIO, or map
a user’s GPU context memory space to a channel controlled
by the adversary. In GPUs that support multi-tasking, mali-
cious kernels can be dispatched to the GPU, thereby accessing
memory belonging to a victim’s GPU context.

Out of scope. Since this work tackles the problem of trusted
execution on the GPU, we do not consider attacks that target
SGX, such as physical attacks to the CPU package or side-
channel attacks on SGX. In addition, we do not consider
system availability attacks that prevent the execution of our
process, as an adversary with the described capabilities can
always prevent the deployment of computing tasks on the
GPU. We assume that the adversary is not capable of using
undocumented GPU capabilities to execute an attack. We
believe that it is the responsibility of the manufacturer to
ensure that such attacks are not possible, since the details of
hardware and driver implementations are hidden from users.

4 SAGE Overview

SAGE addresses the problem of verifiable code execution on
a GPU without hardware support, in which the verifier wants a
guarantee that the user kernel has executed untampered on an
untrusted GPU platform, even in the presence of an adversary.
Figure 2 illustrates the abstract system model we consider.

SAGE comprises two main components. The first compo-
nent is the verifier, which runs as a trusted application on the
host CPU (e.g., using Intel SGX [4]) and is attested by an
external challenger. The second component is the verification
function (VF), which runs on the the untrusted GPU. The VF
computes a checksum over its own code, and is constructed
in an intricate way such that if a change is applied to the
VF then either the execution will slow down in an externally
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Figure 3: Overview of SAGE. The numbers represent temporal
ordering of events. The letters show repetitive operations.

detectable manner, or the checksum value will be incorrect.
The verifier dispatches to the GPU the VF and then invokes

it with a challenge while measuring the VF execution time.
The VF computes a checksum value and returns it to the
verifier. Using the same VF logic, the verifier independently
computes and verifies the correctness of the checksum value.
If the checksum returned by the VF is correct and it is returned
within the expected time, the verifier obtains a guarantee that
a dynamic root of trust on the GPU was established.

Once the dynamic root of trust has been established, the
VF sets up an untampered execution environment. During
the setup of the execution environment, a shared key between
the verifier enclave and GPU is established; afterwards, only
commands authenticated with this key are accepted, including
the movement of encrypted kernel code and data between host
and GPU. SAGE guarantees execution integrity and memory
protection for the code and data stored in the GPU memory
(see §8). Figure 3 shows an overview of SAGE including a
sequence of events.

5 Verification Function (VF)
The VF that runs on the untrusted GPU is the fundamental
component of SAGE. We now describe in detail these tasks
and the challenges they entail.

5.1 Design Requirements
The VF must be carefully constructed in such a way that if
an adversary were to tamper with the VF or the user kernel,
it would result in either a wrong checksum or a noticeable
time delay. Before offering a concrete design for the VF, we
describe several required properties and outline how these
properties influence the correctness of the checksum or the
VF execution time. We defer our security analysis to §8;
the following properties also account for the attack surface
analyzed therein.

Time-optimal implementation. The implementation of the
VF must be time-optimal. Otherwise, the adversary could use
a faster implementation and use the time saved to forge the
checksum (e.g., by injecting instructions).

Maximize resource usage during checksum computation.

To prevent the adversary from running any other computa-
tion during the checksum computation, the VF maximizes
its resource usage on the GPU by using all available SMs
and avoiding “empty” threads. Moreover, each thread should
use the maximum number of available registers to prevent
the adversary from using those registers. Thus, if a malicious
computation attempts to use more registers than available, the
values of the affected registers are spilled into shared mem-
ory, resulting in a noticeable execution time difference (4- vs.
30-cycle latency for registers and shared memory, resp.).

Predictable execution time. The execution on GPUs is op-
timized to achieve high data throughput with deterministic
latency, but the execution time is non-deterministic (e.g., due
to multi-threaded execution, scheduling, and caching). The
VF execution time should have low variance so that the veri-
fier can predictably determine the execution time.

Challenge-dependent checksums. To prevent the adversary
from pre-computing the checksum before making changes
to the VF, and to prevent the replay of old checksum values,
the checksum needs to depend on an unpredictable challenge
sent by the verifier.

5.2 Concrete VF Design
The VF consists of initialization, self-verifying checksum
function to establish a dynamic root-of-trust, and establish-
ing an untampered execution environment including a key
establishment protocol between the verifier and the GPU.

During the initialization phase, the memory buffer is allo-
cated on the GPU and returned to the verifier. Then the VF
code is copied into the buffer.

5.2.1 Self-Verifying Checksum Function
The checksum function is used to obtain a guarantee that the
integrity of the VF code running on the GPU is unaffected
by an adversary. For this purpose, the checksum function
computes a checksum over the entire VF code. The resulting
checksum can be used as a fingerprint of the VF and enables
detection of changes to the VF code. If an adversary modifies
the VF code, the checksum will differ with high probability.
Thus, once the verifier receives a correct checksum within a
threshold time, it has a guarantee that the VF code running
on the GPU is unmodified.

Since the checksum computation code is part of the VF and
will thus be included in the checksum calculation, the check-
sum function computes the checksum over its own instruction
sequence and verifies itself. This property is further referred
to as self-verification.

Checksum initialization. GPUs contain multiple multipro-
cessors that can be used for parallel execution. To achieve the
maximal computational power of a GPU, the verifier sends
a set of challenges containing a specific challenge value for
each multiprocessor. Upon receiving a set of challenges, each
multiprocessor uses its challenge as a seed value to initialize
all per-thread state with pseudo-random data. Each thread
has its own set of registers which are used to store the run-
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ning checksum values and a data pointer. The data pointer
references the VF code in the initially allocated buffer.

Checksum loop. The checksum computation is performed
iteratively. Each iteration executes the same number and type
of instructions and has a constant execution time.

Pseudo-random memory access prevents the adversary
from predicting which instruction will read the potentially-
modified memory location and forces the adversary to mon-
itor every memory read by the checksum code, resulting in
a noticeable time overhead. Indirectly, this process performs
the inclusion of the data pointer in the checksum to prevent
memory copy attacks (see §8).

Update the checksum. The running checksum values are
updated to include the accessed VF code into the checksum
value using a sequence of instructions. To achieve a time-
optimal implementation, we use simple arithmetic and logical
instructions (e.g., +, <<, >>, etc.) that are challenging to im-
plement faster or with fewer operations. Taking inspiration
from the strong ordering in [32], the instructions used to up-
date the checksum alternate between arithmetic and logical
instructions to enforce a strong ordering of the instructions.

Self-modifying code. The instructions of the self-modifying
code fragment depend on current value of the checksum and
are changed in each iteration of the checksum function. In
our case the current value of the checksum function is used as
an immediate value for an instruction (see §6.5 for details).

Checksum epilogue. Since the checksum computation is
conducted using individual threads located on different multi-
processors, the checksum values need to be aggregated before
sending the checksum result back to the verifier. This aggre-
gation is conducted in three steps. First, we aggregate the
checksum per warp. Each of the per-thread checksums is
added pairwise to obtain a warp-level checksum. Second, the
warp-level checksums are aggregated by thread block using
shared memory. Finally, we aggregate the checksum per grid
using global memory. Each of the aggregation steps uses a
pairwise addition (which is mapped to an atomic add instruc-
tion in native assembly). The final result of the checksum
computation is then sent to the verifier.

5.2.2 Untampered Execution Environment
After establishing a dynamic root-of-trust on the device, the
VF sets up an execution environment in which the user kernel
is guaranteed to run untampered. This includes setting up a
shared secret between the verifier and the device, and checking
the authenticity of the user kernel to be executed on the GPU
using a hash function. The shared secret can then be used
to authenticate and encrypt commands and data sent by the
verifier to the device and vice versa.

Key establishment. To establish a shared secret between the
verifier and the device, we rely on the SAKE protocol [31], a
protocol for key establishment between neighboring nodes in
sensor networks without requiring any prior secrets. The pro-
tocol is based on the Diffie-Hellman key exchange protocol

and uses the Guy Fawkes protocol [1] for authentication. The
Guy Fawkes protocol is based on hash chains and relies on
the property that each of the participants needs to authenticate
the other party’s hash chain. In SAKE, this authentication
is achieved using software-based attestation and exploits the
asymmetry in the computing time between the genuine check-
sum function executing on the device and an external entity
computing the checksum value. This allows us to use the
resulting checksum as a short-lived secret. Furthermore, the
SAKE protocol assumes that the adversary does not introduce
any computationally more powerful nodes into the network,
which aligns with the assumptions for SAGE (see §3.2).

To apply the SAKE protocol to SAGE, we change the
protocol as follows: 1) The checksum function in SAKE that
was proposed for the use in sensor networks is replaced with
SAGE’s checksum function. 2) Instead of both participants
acting as challengers, only the host enclave will engage as a
challenger. 3) We replace the cryptographic primitives used
in the protocol with AES-CMAC as the MAC function and
SHA256 as the hash function.

The key establishment protocol in SAGE works as fol-
lows. First, the verifier sets up its own hash chain for the Guy
Fawkes protocols and DH public key as:

V : v0 = ga mod p v1 = H(v0) v2 = H(v1) (1)
where a is a random bitstring a←R {0,1}n Then, it sends v2
to the device and records the current time as t0.

[t0] V→ D : v2 (2)
Upon receiving v2, the device uses it as a challenge for the
checksum function and then uses the computed checksum
and a random value to generate its own hash chain and replies
to the verifier:

D : w0 = H(c ∥ r) w1 = H(w0) w2 = H(w1) (3)
where r is a random bitstring r←R {0,1}n, c is the result of
the checksum computation and ∥ denotes to concatenation.

[t1] D→ V : w2, MACc(w2) (4)
The verifier checks if the measured execution time (t1− t0)
matches the expected execution time and aborts the protocol
otherwise. In the meantime, the device sets up its own DH
public key:

D : b←R {0,1}n k = gb mod p (5)
Then, the verifier and the device gradually disclose the re-
maining of their hash chains to each other:

V→ D : v1 D→ V : w1, k, MACw0(k) (6)
V→ D : v0 D→ V : r (7)

For each message the recipient checks whether the received
value matches the expected hash chain. Finally, the verifier V
and the device D compute the shared secret key skV D:

skV D = ka = (gb)a mod p skV D = vb
0 = (ga)b mod p (8)

After the dynamic RoT has been established on the GPU
and the integrity of the user kernel has been checked, the
host enclave can start transferring code and data to the GPU.
Depending on the sensitivity and security criticality of the do-
mains, the data could be either authenticated and/or encrypted
using the established symmetric key skV D.
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6 Implementation
The requirements to achieve a time-optimal (see §5.1) im-
plementation on the Ampere architecture (further discussed
in §6.3) include maximizing GPU utilization, consuming all
available compute resources, optimally filling the processing
pipelines, and optimizing cache usage.

Unlike the higher levels of the CUDA computing platform
such as the CUDA C++ language extension and the parallel
thread execution (PTX) virtual machine and instruction set
architecture, NVIDIA provides very little information about
the hardware-specific instruction sets for a specific target
architecture. Moreover, even if one resorts to write inline
PTX virtual assembly, the Streaming (or Shader) Assembler
(SASS) code emitted by the compiler often does not achieve
the performance of native GPU applications. The execution
of microcode that has been compiled using the regular CUDA
compiler often is on the order of 10x slower compared to
optimized microcode [14, 15]. As a consequence, libraries
used for high-performance computing (e.g., cuBLAS [25])
contain highly optimized microcode tailored to a specific
architecture. In addition to the performance gap to native
GPU code, the user has no control over the translation from
PTX virtual assembly to the SASS assembly for the target
architecture.

To achieve a time-optimal implementation, we needed to
implement a custom instruction generation framework that
allows patching of binary microcode with a highly optimized
version. The implementation of this framework requires un-
derstanding the Ampere architecture and the instruction for-
mat used in microcode. Although our focus in this paper is
on the A100, we expect that small modifications to the code
generator can provide support for the Volta and Turing ar-
chitectures as well. Figure 4 illustrates the pipeline used to
generate the VF. The VF is implemented using CUDA C++
and compiled using NVCC. However, the section containing the
checksum function is patched using an optimized implemen-
tation generated as binary microcode using our framework.

6.1 Instruction Decoding
To understand the instruction format used in the recent
Ampere GPU architectures, we implemented a framework
that allows decoding of instructions using cuobjdump and
nvdisasm [21] by decoding handcrafted code samples and
samples from existing CUDA libraries (e.g., cuBLAS [25]).

Instruction format. NVIDIA’s Ampere architecture adopts
the same general instruction format as its predecessors Turing
and Volta [14, 15]. All these architectures use 128 bits to en-
code both an instruction and its associated scheduling control
information. The encoding that is used in these architectures
is fixed length and uses similar encodings for all instructions.
Figure 5 illustrates a typical instruction encoding.

IADD3 R4, R4, 0x1, RZ ;
(1) (2) (3) (4)

neg 
(2)

neg 
(4)

neg 
(1)

(3)(2)(1)predop

      ctrl info.unused

0 63

64 127

(4)
neg 
(3)

Figure 5: Instruction as decoded by nvdisasm and its format.
pred denotes predicates, op refers to the operation code, and
neg allows negating the corresponding parameter.

Control information. The control information section in the
instruction encodes scheduling decisions taken by the com-
piler that the hardware must enforce. The control information
is organized as follows: reuse flags (4 b), wait barrier mask
(6 b), read barrier index (3 b), write barrier index (3 b), yield
flag (1 b), and the number of stall cycles (4 b). The reuse flags
allow data reuse between instructions without accessing any
register ports. The wait barrier mask and indices are used for
instructions with variable latency (e.g., instructions involving
a memory access). These dependency barriers can be used
to enforce the completion of variable-latency instructions.
The yield flag is used to balance the workload assigned to
a processing block. The stall cycles indicate the latency of
the instruction before issuing the next instruction. Jia et al.
present a detailed description of the control information [14].

6.2 Instruction Generation
Understanding the instruction format allows us to generate the
specific instructions we need for our implementation. These
instructions then need to be translated to the correct binary
format. For this purpose, we implement an instruction gen-
eration framework that allows emitting instructions either in
CUDA C++, the virtual assembly language PTX, or as binary
microcode that is natively executed on the GPU.

The instruction can be defined in the following format,
where the section separated using | symbol describes the
control information for the instruction (barrier mask B, read
barrier index R, write barrier index W, yield flag Y, and num-
ber of stall cycles S):
B......|R.|W.|Y1|S1| IMAD.U32 R28, R28, 2048, R28;

Our instruction generation framework then translates the
instruction to the selected target language (CUDA C++, PTX,
microcode). This allows us to rapidly prototype checksum
functions and compare performance between implementa-
tions in each of the languages.
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6.3 Time-optimal Technical Requirements
We formulate the following technical requirements for a time-
optimal implementation of the checksum function. These are
subject to characteristics of the target architecture; in our case,
the NVIDIA Ampere architecture.

Maximize resource consumption. To maximize the resource
consumption during the checksum computation, the check-
sum function must use all available compute resources. The
NVIDIA A100 GPU has 108 Streaming Multiprocessors
(SMs) each containing 64 FP32 and 64 INT32 units [19] that
must be used during each clock cycle.

Optimally fill FMA and ALU pipelines. Since both the FMA
and ALU pipelines have an instruction issuing latency of 2
clock cycles, FP32 and INT32 instructions must be interleaved
to fully saturate both pipelines. In addition, instructions that
use registers with a direct dependency must be executed with
a latency of at least 4 clock cycles to avoid pipeline stalls (e.g.,
read-after-write dependency).

Optimal GPU utilization. To achieve full GPU utilization,
the number of threads per thread block needs to be picked
according to the target architecture. The A100 achieves full
GPU occupancy by assigning 2 blocks of size 1024 to all the
108 available SMs (216 total). Each SM has 65,536 32-bit
registers available for threads. To use all registers during the
checksum computation while maintaining full utilization of
the GPU, 32 registers are assigned per thread [22].

Cache size. The code blocks should not exceed the capacity
of L0 and L1 instruction caches (see Figure 1).

6.4 Selection of Optimal Overheads
An optimal implementation of a checksum function should
perform a useful computation step in each clock cycle. In
practice, this requires a highly optimized use of the underlying
hardware. In the following, we show a recipe for building such
a checksum function for the A100 GPU.

Unutilized clock cycles are mainly caused by instruction
cache misses, global memory access latency, pipeline stalls,
and jumps. In the beginning of each clock cycle, the SM
warp scheduler selects a subset of warps (up to S=4 on A100)
from all active warps (up to A=64 on A100) to execute. This
selection mechanism can avoid performance losses if at least
S are ready to execute on each clock cycle.

To analyze the performance of the checksum function, we
use a simplified model of the number of clock cycles per in-
struction. In the following, we will demonstrate that it helps
to reach the performance with the precisely specified number
of clock cycles. We distinguish the total number of useful
clock cycles X and overhead cycles Y, so that the total number
of clock cycles spent by the code using a single thread is
X+Y. For example, with proper instruction ordering to avoid
pipeline stalls, an IMAD instruction has X=1 and Y=0. An in-
struction reading from global memory has X=1 and approxi-
mately Y=250. To prevent attacks on the checksum function
by executing some instruction each clock, the value of Y must

not exceed X(A/S-1). Then, the GPU scheduler will be able
to completely hide the overhead Y so that the actual amount
of time spent will be X.

Integer shifts and multiplications with addition directly
affect the result of the checksum calculation. However, the
instruction to jump from the end of the loop body to its be-
ginning does not change the checksum. The attacker may try
to unroll a few iterations of the loop to save the clock cycles
required to perform this jump (and potentially misuse them
for an attack). To prevent such attacks, we unroll the loops
until it is not possible to unroll them further without caus-
ing instruction cache misses. The target value Y for unrolling
must be so large that one additional instruction cache miss
will increase it to Y’ without the possibility for a hardware
scheduler to compensate for the increase (and potentially hide
it) using scheduling.

In practice, we have noticed that achieving this level of
control over the order of instructions, and the arrangement of
unrolled loops is very difficult without vendor support: the
documentation on SASS and hardware details is deliberately
kept closed to reduce backward-compatibility issues. It is
especially difficult to control instruction cache misses because
of the use of self-modifying code to protect against memory
copy attacks. The only way to invalidate the instruction cache
on the A100 is to overflow it with the block of instructions of
the cache size, so controlling the value of Y by changing the
size of the checksum function is not possible. That leaves only
memory accesses and jumps that can change Y. We assume
that adding an instruction to invalidate the instruction cache
requires minimal (or no) changes to the GPU architecture
because a similar instruction already exists for the data cache
(discard in PTX ISA or CCTL in SASS).

6.5 Implementation of SAGE
Verifier. We implement the verifier enclave using the Intel
SGX SDK [11] and its tcrypto library [10]. The enclave cre-
ates a CUDA context on the GPU, loads the VF as a module,
and calls the VF kernel. To generate nonces in the enclave
that are then transferred to the GPU as challenges, we use
AES-CTR with an IV that has been generated using a TRNG
during the enclave creation.

VF. The VF is implemented in CUDA C++, except the
checksum function component, which is patched by binary
microcode using our framework. The checksum function exe-
cutes a loop containing the following operations.

First, the iteration counter is increased and checked if
the maximum number of iterations is reached. Then the
VF data block D is read from memory from the location
defined by the current checksum value C, used as an off-
set: D=data_ptr+(4×C mod data_size). After the load is
complete, it is included in the checksum C+=D.

The read from main memory may take 250 – 500 cycles
to be completed. The GPU compiler sets a read barrier for
this instruction and the GPU stalls the compute pipeline until
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the read has been completed. Instead of the stall, we develop
an instruction pattern that is executed while waiting for the
memory read to complete (“busy waiting”). We use inter-
leaved (see §6.3) X+=X<<N with IMAD (FMA) and X+=X>>N
with LEA.HI (ALU) instructions where X is any of 32 registers.
The security of this computation depends on the existence of
an alternative sequence of instructions which can compute the
result faster. We expect that for some cases of long sequences
or poorly chosen shift amounts, it is possible to find a short-
cut constructed similarly to the jump ahead function in the
xorshift pseudo-random number generator (PRNG) [45]. To
prevent such shortcuts, we partition long sequences by requir-
ing materialization of intermediate values, breaking them with
random memory accesses included in the checksum. We aim
for sequences of such length that the cost of implementing a
shortcut is higher than performing the actual computation.

After updating the checksum function, we compute the
self-modifying code that consists of the following binary in-
struction: C+=C>>N, where the immediate N depends on the
current checksum value. We overwrite immediate parameter
with the current value of the checksum. Thus, the value of N
changes for each iteration and ensures that we are executing
the code that we are verifying. To avoid race conditions when
updating the immediate value of these instructions, these in-
structions are required to be located in different memory areas
for each thread block.

6.6 Random Number Generation on GPUs
For the key establishment protocol based on the modified
SAKE protocol, the GPU needs to be able to generate random
values. Given that the adversary knows the entire code execut-
ing on the GPU, we cannot use a secret provided by verifier
to initialize the PRNG used in the protocol, but instead must
rely on a true random number generator (TRNG).

TRNG implementation on GPUs. Approaches that use
physical unclonable functions (PUFs) to initialize PRNGs on
the GPU [7, 30, 43] are not practical to be used in SAGE as
they either require resetting the GPU or use features that are
under control of the adversary (e.g., voltage supplied to the
GPU). Consequently, we use a TRNG implementation which
is based on race conditions in multi-core environments caused
by simultaneous memory accesses to shared variables. It takes
advantage of uncertainties that arise when cores simultane-
ously access a particular memory location [40]. In our case,
each simultaneous memory access unpredictably flips bits
stored in shared variables. This unpredictability enables the
GPU to generate noise which can be sampled and then used
as an entropy source. We evaluated our implementation using
statistical tests such as NIST SP 800-22 [36], DIEHARD [17],
and ENT [47]. The TRNG implementation passes all standard
tests and achieves a throughput of 4 kB/s on NVIDIA A100
GPUs and thus takes around 8 ms to generate an output of
256 bits. The TRNG provides 7.999 996 bits of entropy per
byte (measured using ENT [47]).

7 Evaluation

Evaluation setup. To evaluate the performance of the check-
sum function, we use a setup based on an ASUS RS720-E10-
RS12E equipped with a A100-PCIE-40GB GPU and Intel
Xeon Gold 6348 CPU [12] which natively supports SGX
instructions. We run the SGX enclave in both native and
simulation mode. To benchmark the execution time of the ver-
ification process and evaluate runtime overheads, we also run
the VF on a dual-socket system with an A100-SXM4-40GB
and AMD EPYC 7742 CPU.

Register consumption. For the execution of the checksum
function, the loop counter, data pointer, and the checksum
result are stored in registers. In addition to those registers, we
use 22 additional registers to store intermediate state during
the computation of the checksum. In total, the checksum
function verifies 524,288 bytes. The beginning of the buffer
contains the checksum function itself, whereas the remainder
is filled with pseudo-randomly generated values.

Experiment Nr. 1 2 3 4

self-modifying code ✗ ✗ ✓ ✓

instructions 428 429 8,342 8,342
iterations 100,000 100,000 1,000 1,000
inner iterations 0 0 0 5000
inner instructions 0 0 0 216

verification (AMD) [s] 21.6 21.6 9.99 497
verification (Intel) [s] 102 102 47.0 2337

runtime Tavg [s] 0.4941 0.4977 0.1309 12.40
% of GPU peak perf. 99 98 75 100

adversarial NOP ✗ ✓ ✗ ✗

runtime σ [s] 0.0009 — — —
runtime Tmin [s] — 0.4966 — —
Tavg +2.5σ [s] 0.4964 — — —

Table 1: Evaluation of checksum implementations.

Summary of results. Table 1 summarizes our experiment
series conducted to evaluate the performance of SAGE’s VF.
We distinguish between two categories depending on whether
the checksum function contains self-modifying code or not.
Depending on the category, the total number of instructions
and number of checksum loop iterations are adapted. For
each experiment, we report the VF’s execution time on the
GPU, the utilization ratio during the checksum execution, the
verification time on the CPU, detection threshold, etc.

Experiment 1 demonstrates our best reference implemen-
tation. Experiment 2 simulates an attack on the checksum
function from the first experiment. In Experiment 3, we show
the effect on the performance of adding self-modifying code
to the reference implementation. Experiment 4 shows a possi-
ble technique to compensate for the loss of performance with
enabled self-modifying code.
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7.1 VF Performance
To evaluate the performance of VF, we report its average
runtime and utilization ratio during the checksum execution
(Table 1). As a reference for this ratio, we use the peak GPU
performance, which assumes that the number of warps that
are executed concurrently per clock cycle is 4 (see §6.4).

We compare our reference implementation from Experi-
ment 1 (in SASS) with the same code written in PTX (virtual
assembly), that has been processed using the NVIDIA PTXAS
assembler with the highest possible level of optimization en-
abled. In comparison, the optimized version of the checksum
function that we generated using our instruction generation
framework is around ∼230% faster than an implementation
in PTX.

The checksum functions in Experiments 3 and 4 contain
self-modifying code. This requires triggering cache eviction
of the instruction cache such that the modified instruction gets
updated. To trigger the cache eviction for the L2 instruction
cache (128 kB), the checksum loop is required to be larger
than the cache size. As a consequence, we use 8342 16 B
instructions in the checksum loop. With this cache eviction
strategy, our implementation is able to achieve 75% of the
maximum utilization. Upon closer inspection with a GPU pro-
filer, we find that 99% of all pipeline stalls that happen during
the execution of the checksum function are caused by the fact
that no instructions are available in the instruction cache to be
executed. On average, each warp of this kernel spends 14.1
cycles being stalled due to not having the next instruction
fetched yet. In comparison, reducing the size of the checksum
loop to 6.7 kB (as in Experiment 1), we achieve a utilization
of 99% without triggering cache eviction. This means that
the hardware is unable to load the modified instructions in
time for execution without causing any pipeline stalls. By
comparing the VF’s performance in Experiments 1 and 3, we
can conclude that a higher utilization can be achieved in case
other cache eviction strategies become available (see §6.4).

In addition to the previous experiment, we modified the
checksum function by adding an “inner” loop to the main loop
of the checksum function calculation (Experiment 4). This
effectively hides the performance loss due to cache misses
in the instruction cache and achieves 100% of the GPU peak
performance. However, the time required to verify the code
outside of the nested loop drastically increases and is thus
considered too long to be practical.

7.2 Attack Robustness
To evaluate the robustness of our VF implementation with
regards to attacks, we estimate the number of instructions that
can be injected by an adversary without causing a noticeable
time overhead. For this purpose, we measure the performance
of the checksum function for 100,000 iterations and record
the standard deviation σ of the total execution time based
on 100 runs. We assume that the results of this experiment
series are normally distributed and set the threshold value to
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Figure 6: Time per batch sample in MLP.

detect adversarial tampering to be at 2.5 ·σ from the mean.
The probability of a false positive is about 0.5%, in which
case the verification process is restarted. Depending on the
application requirements, the probability of false positives can
be decreased at the expense of a larger number of iterations.

To evaluate the robustness of this approach, we insert one
additional NOP instruction in Experiment 2 (adversarial NOP)
and report the minimum run time Tmin (averaged over 100
runs). Assuming a detection threshold of Tavg +2.5σ, we can
conclude that Tavg +2.5σ < Tmin and thus it is impossible to
insert one or more instruction without detectable overhead.

Time measurement occurs on the CPU, including the time
of communication between the CPU and GPU, in addition
to the checksum computation loop. This raises the question
of performance portability across hardware configurations.
Since the configuration is fixed and assumed to be trusted,
communication adds a constant time that can be measured
offline once and then reused. This approach allows us to
consider only the checksum loop in the detection threshold.

7.3 Memory Region Inclusion Probability
To evaluate how resilient our approach is regarding minor
modifications in memory region containing the VF code (e.g.,
bit flips), we estimate the probability that a particular location
is never included into the checksum result. We assume that
memory accesses are distributed uniformly. Each block con-
tains a single random memory access that loads an aligned
32-bit integer. For 2,500,000 iterations and a total checksum
size of 524,288 integers, the probability that a memory loca-
tion is never included in the checksum result is negligible:

(1−1/524288)2500000 = 0.0085

7.4 Runtime Overheads
Figure 6 shows a performance evaluation of SAGE using a
multilayer perceptron (MLP) as an example. It consists of
two Linear layers with weights of size 784×100 and 100×10,
with a Relu layer in between. As the workload increases, the
overhead associated with the non-standard SAGE communi-
cation protocol becomes less noticeable.

The main sources of overhead are data transfers and kernel
launches. Figure 7 shows that the copy operation requires ad-
ditional time, which is a linear function of the input data size
due to the additional data transfer between the host-accessible
GPU memory and the GPU memory allocated by the SAGE
kernel. SAGE adds less than 5% extra execution time to user
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Figure 7: Overheads of data transfers and kernel launches.

kernels, which originally took more than 14.24 ms. Our evalu-
ation does not take into account the overhead associated with
the implementation of the encryption-decryption protocol,
since its choice is left to the user.

7.5 Limitations of the Prototype
The use of self-modifying code requires triggering cache evic-
tion of the instruction cache such that the modified instruction
gets updated. With this cache eviction strategy, our imple-
mentation is able to achieve 75% of the maximum utilization.
This is due to the GPU hardware not being able to load the
required instructions in time for processing after the L2 cache
eviction. If other cache eviction strategies become available to
user code, higher utilization can be achieved. Unfortunately,
triggering cache eviction using a large checksum loop limits
the time difference caused by an adversary inserting instruc-
tions into the checksum loop. We believe that GPU vendors
with in-depth knowledge of GPU architecture would be able
to reduce the checksum loop size and use self-modification.

8 Security Analysis
In the following, we systematically analyze potential attacks
given our threat model (see §3.3).

Pre-computation. The result of the checksum function de-
pends on an unpredictable challenge issued by the verifier
enclave. This prevents pre-computation attacks where the
checksum value or part of the checksum (e.g., intermediate
values) are pre-computed to later run code other than the VF.

Computation optimizations. The checksum function imple-
mentation must be time-optimal as algorithmic optimization
would allow the adversary to find computationally faster or
more efficient way of computing the checksum value (see §6.3
for details). SAGE is designed to prevent optimization, but to
achieve provable guarantees the method of Gligor and Woo
could be applied [8].

Attacks on the host system. The host system is untrusted (ex-
cept for the verifier enclave) and the adversary is assumed to
have administrative control over the system. This enables the
adversary to eavesdrop, intercept, modify, or delay challenges
or checksum results being transmitted between the verifier
and the device. Given that the communication channel during
the checksum computation is unauthenticated, the adversary
could also inject challenges or checksum results. Modifica-
tions to the challenge would lead to a different checksum
result. By injecting challenges the adversary could treat the
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Figure 8: Memory copy attack variants.

VF as an oracle; however, given the unpredictable challenge
generation, the probability of the verifier reusing the same
challenge value is negligible.

Attacks on the device / Resource takeover. Before running
the verification function, the device is considered untrusted.
An adversary could be present on the device and interfere with
the execution of the VF (e.g., by replacing or reordering in-
structions). This is prevented by the self-verification property
and the strongly-ordered design of the checksum function. A
strongly-ordered function requires the adversary to perform
the same operations on the same data in the same sequence as
the original function to obtain the correct result. Otherwise,
the output differs with high probability if operations that have
dependencies among them are evaluated in a different order.

Our design uses all available SMs simultaneously and max-
imizes thread and register usage. Thus, if an adversary would
run a computation, the checksum computation would be de-
ferred resulting in a considerable time overhead. However, the
execution of a user kernel might not require all available GPU
resources and would allow the adversary to take over these
available resources. To prevent such attacks we require the
user to develop kernels to achieve maximum GPU occupancy.

Memory copy attacks. Seshadri et al. [32,33] specify mem-
ory copy attacks that can be conducted by the adversary in
the following three different ways as illustrated in Figure 8:

(b) The adversary replaces the checksum function with an
altered checksum function and executes it, but computes the
checksum over a correct copy of the checksum function else-
where in memory. Thus, the program counter is correct, but
the data pointer points to the original copy of the checksum
function in a different memory location.

(c) The adversary uses the correct checksum function code
in the original memory location to compute the checksum
value, but executes a modified checksum function elsewhere
in memory. Thus, the data pointer points to the original check-
sum function, but the program counter will be different.

(d) The adversary places both the original checksum func-
tion code and its altered version elsewhere from the memory
locations where the correct checksum code originally resided.
Thus, both the program counter and the data pointer will be
different compared to an execution of the original checksum
function.

To prevent memory copy attacks, both the program counter
and the data pointer need to be included in the computation
of the checksum. The DP is included in each step of the
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computation, whereas the PC is indirectly included using self-
modifying code. In addition to these specified attacks, the
attacker could also copy the entire checksum function to a
different location. This will not lead to a successful attack
because the absolute location of the checksum function is
irrelevant to security as long as the function pointer and the
data pointer remain the same relative to the location of the
effective checksum function in memory.

Proxy attacks. We refer to proxy attacks as attacks where
the adversary eavesdrops on the communication and obtains
the challenge sent to the device, sends it to a proxy, computes
the checksum function there and returns the result to the ver-
ifier. We distinguish between the following cases. GPUs on
the same host: we establish (and maintain) root-of-trust in
sequence starting from the most powerful GPU to the least
powerful one. GPUs on a different host: by involving a re-
mote entity, the measured execution time will increase by the
network latency for both sending the challenge and receiving
the response. Tuning the number of checksum iterations to
make the detection threshold smaller than the network latency,
prevents using a more powerful GPU in a remote location.

Time-of-check to time-of-use attacks [5] / Execution en-
vironment takeover. In SAGE, these attacks are considered
because the checksum computation happens prior to the exe-
cution of the user kernel. In particular, the adversary has two
points where it could take over the execution environment set
up by the VF: 1) before the launch of the user kernel, and
2) after the execution of the user kernel has completed. The
former case is prevented by launching the user kernel(s) from
within the VF epilogue. In the latter case, the execution of the
user computation has finished and thus the user is indifferent
whether the dynamic root-of-trust has been compromised. If
the user wants to execute another kernel, the dynamic RoT
needs to be re-established.

Replay attacks. To protect against duplicate transmissions
of encrypted code and data between the SGX enclave and
GPU, we add sequence numbers to each transmission.

Execution integrity and memory protection. While code
and data are encrypted in transit, they have to be decrypted
before use and placed into GPU memory. We control the allo-
cation of memory from the kernel caller by calling malloc()
from the device code. CUDA guarantees that the memory al-
located in this way (unlike cudaMalloc()) is not accessible
from the CUDA runtime or driver API. Therefore, even an
attacker with root access to the operating system will not be
able to access application code and data from such areas.

8.1 Formal Verification of Modified SAKE
To show that our modified SAKE protocol securely estab-
lishes a key between the verifier and the GPU, we have for-
mally modeled the key establishment protocol and verified its
security properties using the Tamarin prover [38] under the as-
sumption that the computed checksum provides a short-lived
secret. To model this property in Tamarin, we use a single-use

authentic channel over which we send w2,MACc(w2). We
show that the established symmetric key remains secret and is
unique, a weak agreement exists between the verifier and the
device, and recent liveness for each run of the protocol [37].

9 Related Work

To support trusted execution on GPUs, the following ap-
proaches were proposed. Graviton [46] specifies an architec-
ture for supporting trusted execution environments on GPUs
by changing the GPU’s command processor to perform re-
mote attestation based on device specific keys and ensure
isolation between multiple processes running on the GPU.
This is achieved by utilizing a set of keys where the root
key gets embedded into the hardware of the device upon its
creation. The latter requires modification to the GPU hard-
ware by modifying the GPU’s internal command processor to
impose a strict ownership discipline.

HIX [13] proposes a heterogeneous isolated execution en-
vironment. HIX does not require modifications to the GPU
architecture to offer an isolated execution environment, but
instead physically modifies the I/O interconnect between the
CPU and GPU and refactors the GPU device driver to work
from within a TEE on the host. The TEE can then allocate
trusted enclaves on the GPU.

HETEE [49] is based on a standalone computing system to
dynamically allocate accelerators (such as GPUs or FPGAs)
for either secure computing, or available to the host OS using
PCIe switches. The security controller (and its software) is as-
sumed to be trusted and interacts with the management CPU
to control PCIe switching. HETEE attempts to provide isola-
tion by selectively making accelerators available to specific
applications by controlling communication to the accelerator
through the security controller.

Telekine [9] illustrates side-channel attacks against TEE
on GPUs based on observing the timing of GPU kernel execu-
tion. It then introduces a GPU stream abstraction that ensures
execution and interaction through untrusted components are
independent of any secret data. Telekine requires a GPU TEE
to be deployed.

Machine learning represents a major use case for using
GPUs as accelerators and can require privacy-preserving ap-
proaches for sensitive data. Slalom [42] uses a combination of
a trusted enclave and untrusted GPU. The system decomposes
the machine learning into two parts, where the control flow
part runs inside the trusted enclave and operations that are
not privacy sensitive (such as convolutions based on matrix
multiplications) are offloaded to the GPU. Unfortunately, the
split results in a decrease of training and inference accuracy.

SOTER [35] relies on the associativity property of oper-
ators present in DNN models. It assumes that the GPU is
untrusted and sends modified parameter data from the SGX
enclave. The output data received from the GPU is converted
again to produce the expected result. To check the integrity of
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the result, SOTER creates challenges and expects the GPU to
return a proof of computation. If the integrity is compromised,
the proof will be incorrect.

9.1 Hardware-based Attestation
NVIDIA has introduced a confidential computing [26] feature
in the Hopper architecture. While technical details are cur-
rently scarce, this feature is touted to require no changes to
the application code, while ensuring both the confidentiality
and integrity of data and code running on the device.

With the addition of a vendor-backed hardware TEE solu-
tion, there is a question regarding the relevance of software-
based attestation. While a hardware implementation provides
reasonable levels of security, there have been several examples
where the hardware-based techniques were flawed [6, 28, 44].
In these cases software-based techniques could come to the
rescue. Software attestation can be complementary to the
newly-added confidential computing feature and add another
level of security to achieve defense in depth. Further, since
the software layer doesn’t rely on the private keys embedded
in hardware by the manufacturers, it also reduces the TCB.

The trust required to obtain the properties provided by
attestation is further reduced by combining both hardware-
and software-based approaches. In essence, as long as one
of the attestation methods is secure, the properties obtained
using attestation hold.

9.2 Software-based Attestation
SWATT [33] uses a verification function that is based on
pseudo-random memory traversal to compute the checksum.
The verifier measures the execution time and verifies the
checksum. Malicious code is required to verify each memory
access to replace memory reads of changed locations with ex-
pected content, resulting in detectable time overhead. SWATT
checks the entire memory of a system and its running time
becomes prohibitive on systems with large memories.

PIONEER [32] verifies the integrity and guarantees the
execution of code using a checksum function that is closely
tied to the Pentium 4 architecture. The checksum function
computes a fingerprint of the verification function and sets up
an untampered execution environment. It is constructed such
that manipulations by the adversary will noticeably increase
the computation time.

Kovah et al. [16] and Butterworth et al. [3] extended the
checksum computation to work on a Microsoft Windows
system (CPU only), enabling a remote verifier to attest to a
running system in a corporate environment.

Shaneck et al. [34] describe a software-based approach to
remotely attest the static memory contents of sensors without
requiring any additional hardware on the sensors nor precise
measurements of execution timing. They use self-modifying
code that generates memory read and jump instructions during
the execution of their code.

Gligor and Woo [8] proposed a system that allows to prov-

ably establish a root of trust and provide secure initial states
for all software unconditionally. The authors design a fam-
ily of k-independent (almost) universal hash functions based
on polynomials and use Horner’s rule to show time- and
memory-optimal evaluation of polynomials. An interesting
area of future work is to translate these results to the context
of computation on GPUs.

10 Conclusion

The prospect of software-only trust root establishment and
secure code execution on GPUs offers exciting opportunities:
execution of sensitive GPU code that should not be leaked to
the GPU operator (code secrecy), correct execution of GPU
code in an adversarial environment (code and execution in-
tegrity), preserving data correctness and confidentiality in
the presence of malicious code on the system (data secrecy
and integrity). SAGE represents a first step for achieving
these properties on the NVIDIA Ampere architecture, un-
der the circumstances that the architectural details about the
Ampere architecture are closed-source. Since architectural
knowledge for designing the verification function (VF) is key,
our software-based approach to provide secure code execution
on GPU paves the way forward for GPU vendors: they are
naturally in a position to align the design of the VF to their
architectural knowledge and lead the standardization process
for trust establishment on GPUs.

Remaining open challenges include the design of software-
based secure execution on alternative platforms, improving
the execution speed of the verification function, and extend
the execution model to support libraries that use a hybrid
CPU+GPU compute model (e.g., TensorFlow [41]). Ulti-
mately, an interesting future research question to answer is the
interplay between hardware- and software-based approaches
for trusted execution to achieve the strongest possible security
properties for GPU-based execution.
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Abstract

We present IPU Trusted Extensions (ITX), a set of hardware
extensions that enables trusted execution environments in
Graphcore’s AI accelerators. ITX enables the execution of AI
workloads with strong confidentiality and integrity guaran-
tees at low performance overheads. ITX isolates workloads
from untrusted hosts, and ensures their data and models re-
main encrypted at all times except within the accelerator’s
chip. ITX includes a hardware root-of-trust that provides at-
testation capabilities and orchestrates trusted execution, and
on-chip programmable cryptographic engines for authenti-
cated encryption of code/data at PCIe bandwidth.

We also present software for ITX in the form of compiler
and runtime extensions that support multi-party training with-
out requiring a CPU-based TEE.

We included experimental support for ITX in Graphcore’s
GC200 IPU taped out at TSMC’s 7nm node. Its evaluation on
a development board using standard DNN training workloads
suggests that ITX adds < 5% performance overhead and de-
livers up to 17x better performance compared to CPU-based
confidential computing systems based on AMD SEV-SNP.

1 Introduction

Machine learning (ML) is transforming many tasks such as
medical diagnostics, video analytics, and financial forecasting.
Their progress is largely driven by the computational capa-
bilities and large memory bandwidth of AI accelerators such
as NVIDIA GPUs, Alibaba’s NPU [2], Google’s TPU [18],
and Amazon’s Inferentia [3]. Their security and privacy is a
serious concern: due to the nature and volume of data required
to train sophisticated models, the sharing of accelerators in
public clouds to reduce cost, and the increasing frequency
and severity of data breaches, there is a realization that ma-
chine learning systems require stronger end-to-end protection
mechanisms for their sensitive models and data.

†Work done while at Microsoft; ‡Work done while at Graphcore.

IPU0 IPU1

CCU ICU

Figure 1: Graphcore Intelligence Processing Unit (IPU) develop-
ment board (May 2020) with ITX extensions, showing two IPUs on
the front side connected to the CCU via the ICU on the back.

Confidential computing [1, 4, 11, 31] relies on custom hard-
ware support for trusted execution environments (TEE), also
known as enclaves, that can provide such security guarantees.
Abstractly, a TEE is capable of hosting code and data while
protecting them from privileged attackers. The hardware can
also measure this code and data to issue an attestation re-
port, which can be verified by any remote party to establish
trust in the TEE. In principle, confidential computing enables
multiple organizations to collaborate and train models using
sensitive data, and to serve these models with assurance that
their data and models remain protected. However, the predom-
inant TEEs such as Intel SGX [22], AMD SEV-SNP [5], Intel
TDX [16], and ARM CCA [6] are limited to CPUs. Recently,
NVIDIA has announced TEE support in upcoming Hopper
GPUs [25] that works in conjunction with CPU TEEs.

Adding native support for confidential computing into AI
accelerators can greatly increase their security, but also in-
volves many challenges. Security features such as isolation,
attestation, and side-channel resilience must be fitted in their
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highly optimized architecture, with minimal design changes,
and without degrading their functionality, performance, or
usability. An additional requirement is the flexibility to op-
erate with various hosts, including CPUs with no TEE sup-
port, CPUs with process-based TEEs such as Intel SGX, and
CPUs with VM-based TEEs such as AMD SEV-SNP. None
of the accelerator TEE designs that have been proposed meet
this requirement, including NVIDIA GPU TEEs. Finally, the
manufacturing and assembly process and protocols must be
hardened against supply chain attacks.

This paper describes our effort to support TEEs in Graph-
core’s GC200 Intelligence Processing Unit (IPU), a state-of-
the-art custom AI accelerator. We introduce IPU Trusted Ex-
tensions (ITX), a set of experimental hardware capabilities in
IPUs. We show that, using ITX in conjunction with appropri-
ate compiler and runtime support, we can delegate ML tasks
to the IPU with strong confidentiality and integrity guarantees
while delivering accelerator-grade performance. In particular,
ITX can guarantee isolation of an ML application from an
untrusted host: application code and data appears in clear-
text only within the IPU, and remains encrypted otherwise,
including when transferred over the PCIe link between the
host and the IPU. Once an application is deployed within an
ITX TEE, the host can no longer tamper with the application
state or the IPU configuration. ITX can also issue remotely
verifiable attestations, rooted in a Public Key Infrastructure
(PKI), enabling a relying party to establish trust in a given ML
task before releasing secrets such as data decryption keys.

The main components of ITX are a new execution mode
in the IPU for isolating all security sensitive state from the
host and securely handling security exceptions, programmable
cryptographic engines capable of encrypting/decrypting CPU-
IPU PCIe traffic at line rate (32 GB/s bidirectional throughput
supporting PCIe Gen4), and a novel authenticated encryption
protocol for ensuring confidentiality and integrity of code/data
transfers without requiring trust in the host.

Trust in ITX is rooted in the Confidential Compute Unit
(CCU), a new hardware Root-of-Trust (HRoT) on the IPU
board. The CCU provides each device with a unique identity
based on a hardware secret sampled within the CCU at the
end of manufacturing. The CCU firmware is responsible for
managing the entire lifecycle of TEEs on the IPU, includ-
ing creation, issuing attestation reports that capture IPU and
task specific attributes, key exchange, launch, and termina-
tion of TEEs. Our design also features protocols for securely
provisioning firmware to the IPU in a potentially hostile man-
ufacturing environment, for issuing certificates that capture
the identity of all updatable firmware, and for supporting
firmware updates without requiring device re-certification.

Several distinguishing aspects of ITX and the IPU program-
ming model result in stronger security than one may expect
from CPU-based TEEs:

• An ITX TEE spans the entire IPU, and has exclusive
access to all IPU resources until it terminates. Therefore,

it is not possible for an adversary to run concurrently
on the same resources and exploit the resulting side-
channels. This execution model is feasible as most AI
workloads require at least one accelerator, with larger
workloads requiring thousands of accelerators for hours.

• The IPU memory system consists of large on-chip
SRAM attached to its cores, which is loaded with data
from untrusted external memory during explicit syn-
chronization phases. Thus, during computational phases,
code and data accesses to IPU memory have a fixed
latency. This has two security implications: (1) traffic
between IPU cores and memory need not be encrypted,
as it stays within the chip; (2) this avoids the need for
optimizations such as caching or speculation to hide
memory access latency, and the resulting side-channels.

• The IPU supports a programming model where alloca-
tion and scheduling of all resources on the IPU (cores,
memory, and communication channels) are statically
managed by the compiler. Hence, the IPU application
binary defines its entire data and control flow, including
data transfers within the IPU, and between IPU and host
memory. This is unlike GPUs where the host software
stack (runtime and driver) remain in full control of the
execution, and must be trusted to guarantee integrity.

There are many ways for software to utilize ITX to provide
end-to-end guarantees for ML workloads, depending on the
threat model and capabilities of the host. This paper focuses
on configurations where a multi-party ML training workload
is deployed to the IPU without trusting the host CPU. This
mode has the strongest security properties and can be used
with any CPU. We describe a prototype software stack and
protocols for it, and present its end-to-end evaluation using
standard DNN training workloads. Software to support other
configurations, e.g., where the IPU is coupled with a hardware-
protected CPU TEE, are left for future work.

We have fully implemented ITX in the IPU, taped out in
2020 and manufactured in TSMC’s 7nm node. Our extensions
use less than 1% of this large ASIC, and do not require any
changes to its compute core or memory subsystem. Its eval-
uation on a development board using confidential ML train-
ing workloads suggests a performance overhead of less than
5% compared to non-confidential IPU workloads. While our
prototype demonstrated promising results, significant work
remains to turn our work into production.

Due to implementation constraints, our prototype uses a
discrete HRoT (instead of an on-die core) and it does not
encrypt traffic over IPU-IPU links. It is therefore vulnerable
to physical attacks, e.g., on the link between the CCU and
IPU, or between multiple IPUs. These vulnerabilities are not
limitations of our design and can be addressed in future IPU
generations by integrating the HRoT on the IPU chip, and by
introducing encryption engines on IPU-IPU links.
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In summary, this paper makes the following contributions:

1. A set of experimental hardware extensions to the IPU,
a commodity custom AI accelerator, that enable high-
performance confidential multi-party machine learning.

2. Support for remote attestation and secure key exchange
based on a discrete hardware root-of-trust.

3. A pipelined application-level protocol for authenticated
encryption & decryption of code and data over PCIe.

4. Protocols for securely provisioning secrets, firmware,
and certificates to a device during manufacturing.

5. Prototype software support for enabling confidential
multi-party training of ML models expressed in Ten-
sorFlow on the IPUs without requiring trust in the CPU.

6. Hardware implementation of ITX in the IPU ASIC manu-
factured by TSMC in 7nm node, and its initial evaluation
on a development board in 2020, suggesting low over-
heads and orders of magnitude improvements over CPU
TEEs. This made our prototype the first AI accelerator
to support confidential computing.

While some aspects of our design are specific to IPUs, we
hope it can serve as a blueprint for adding TEE support in
other specialized devices and accelerators.

2 Background

This section outlines the IPU architecture and programming
model, focusing on aspects relevant to security. The section
also reviews hardware-based confidential computing.

2.1 IPU Hardware Architecture

Tiles. Each IPU consists of a set of tiles, each with a multi-
threaded core and a small amount of private on-chip SRAM.
The IPU features 1472 tiles, totalling roughly 900 MB of on-
chip SRAM. The cores support an instruction set tuned for AI,
including specialized vector instructions and low-precision
arithmetic. Each core can execute up to six statically sched-
uled threads. Since on-chip memory is accessed at fixed la-
tency, instructions can be exactly scheduled by the compiler.

Interconnects. The tiles are connected over internal ex-
change, an all-to-all, stateless, synchronous and non-blocking
high-bandwidth interconnect whose operation is similarly or-
chestrated by software. The internal exchange is connected
to an external exchange interconnect via a set of exchange
blocks. Each exchange block manages a subset of the tiles
and mediates traffic between the two interconnects. Each IPU
has a pair of PCIe links that connect to a host server, and
additional IPU-Links that connect to other IPUs.
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Figure 2: System stack (left) and IPU floorplan (right).

The external interconnect is a packet-switched Network-on-
Chip. Tiles use the external interconnect to dispatch packets
to the host via PCIe links and unicast/multi-cast packets to
tiles on other IPUs via IPU-links. Tiles read data from the host
by issuing a read request packet and waiting for all associated
read completion packets. Tiles write data to the host by issuing
one or more write request packets. Packets are routed based
on tile identifiers. For requests, packets from exchange blocks
are placed onto lanes based on the source tile identifier of
the exchange packet. For read completions, the exchange
lane is chosen based on the destination tile identifier, which
is recorded in a lookup table in the PCI complex for each
outstanding read request.
Exchange Address Spaces. The IPU exposes three address
spaces to facilitate communication between the host and the
IPU and between IPUs. The Tile address space is used by
tiles to address one another. The Host PCI space is used by
the host to address tile memory and on-chip page tables in
the Host Exchange block. The Tile PCI space is used by tiles
to address read requests to host memory over PCI. The IPU
can be configured to re-map read requests from tiles to the
PCI domain using on-chip page tables.
Host-IPU Interface. The IPU exposes a set of configuration
registers to the host via a PCI BAR space. These registers
are hosted in a component known as the PCI Complex. The
PCI complex consists of a Host Sync Proxy (HSP) responsible
for external synchronization between the host and the IPU,
a host exchange that translates packets between PCI format
and a proprietary external-exchange packet format, on-chip
page tables for address translation of read/write requests from
tiles to the PCI domain, on-chip lookup tables for keeping
metadata for outstanding PCI read requests, and a control
port that provides access to configuration registers of all other
internal components.

The host exchange subsystem also includes a component
known as the autoloader, which enables efficient scrubbing
and initialization of tile memory. To initialize a binary in tile
memory, the host can load small programs (e.g., a bootloader)
into the autoloader, which can then broadcast it to all tiles.
Host-IPU Synchronization. The IPU execution model is
based on the Bulk Synchronous Parallel (BSP) paradigm with
barriers and supersteps. A superstep involves a global syn-
chronization barrier between all tiles on one or more IPUs,
followed by an exchange phase that transfers data between
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tiles, followed by a compute phase which ends at another
barrier. This process repeats until some application specific
criteria is met—e.g., loss is under a threshold.

Using the HSP registers, the host can configure the fre-
quency of synchronization barriers and indicate barriers at
which it expects to be notified—e.g., when one or more batch
of data has been processed, at epoch boundaries. Once config-
ured, the IPUs can execute multiple supersteps independently
without requiring involvement from the host.

IPU Control Unit (ICU). The ICU is a microcontroller inte-
grated on the board and connected with the IPUs via JTAG,
and with PCB peripherals for power supply and environmental
monitoring. It is responsible for initialization of the IPUs.

Resets. The main means of resetting the IPU from the host
is a secondary bus reset (SBR) that resets the entire device
including the IPUs, the ICU, and the host link; the ICU must
re-enable the host link once it comes out of reset. Alterna-
tively, a Newmanry Reset can be triggered by writing the IPU
control register; it resets the device logic including the host
and IPU links, but does not reset the physical links. In both
of these resets, tile memory is not scrubbed.

2.2 IPU Software Stack

The IPU software stack compiles and executes applications
written in ML frameworks such as TensorFlow and PyTorch.
It consists of a compiler, a host runtime, and a set of libraries
supported by the IPU device driver.

Compiler. Given a computation graph representing a task
(e.g., a TensorFlow XLA graph), the compiler partitions each
layer of the graph between tiles, so that each tile holds a part of
the model state (weights and activations for some layers) and
a part of the input data. The compiler also assigns resources
(threads, memory) to each node of the graph, schedules its
computation, and finally emits specialized code for each tile.

The resulting IPU binary captures the different phases of
execution, including I/O for reading batches of data, code for
running the training loop, and I/O for writing the weights of
the trained model. I/O phases also include synchronization
and internal exchange code for exchanging data among tiles.

The compiler maps all data transfers between the host and
IPUs to an abstraction called streams supported by the run-
time. Data transfers from the host to an IPU (and IPU to the
host) are mapped to input (output) streams and compiled to
sequences of read (write) instructions to the Tile PCI address
space. The compiler also uses streams to implement check-
points: checkpoint creation maps all model weights to a single
output stream, and checkpoint restoration reads them back
from a single input stream.

The compiler supports an offline mode, which decouples
compilation from execution. In this mode, the compiler gener-
ates self-contained IPU binaries, which can be persisted and
loaded into one or more IPUs at a later point in time.

Host Runtime. The runtime provides code for loading IPU
binaries, and for streaming data in and out of the IPUs. It
loads IPU binaries by deploying a small bootloader into a
reserved section of each tile memory. The bootloader in turn
reads each tile-specific binary from the host into tile memory.

The runtime implements input streams by repeatedly copy-
ing data into a ring buffer in host memory and mapping the
pages of the ring buffer into Tile PCI space in the on-chip
page table. Once the ring buffer is ready and the mapping
is defined, code on tiles can issue read requests. Similarly,
output streams are implemented by copying data from the
ring buffer to application memory.

2.3 Confidential Computing

Confidential computing is a paradigm where code/data remain
protected from privileged attackers throughout their lifecy-
cle: at rest, in transit, and during use. Central to confidential
computing is the notion of a trusted execution environment
(TEE) with two key capabilities: it can host an application in
a hardware-isolated environment, which protects the applica-
tion from any external access including access from privileged
attackers; and it can issue remotely verifiable attestations that
capture security claims about the application hosted in the
TEE and the platform supporting the TEE. The attestations
can be used by a relying party to gain trust in an application.

TEEs are supported by recent processors from Intel and
AMD; ARM also recently defined a specification for sup-
porting TEEs. There are broadly two classes of CPU TEEs:
process-based and VM-based. Process-based TEEs (e.g., Intel
SGX) are designed to isolate a user-space application from an
untrusted operating system (both guest and host) and the hy-
pervisor. VM-based TEEs (e.g., AMD SEV-SNP, Intel TDX)
are designed to protect an entire guest VM from the host oper-
ating system and the hypervisor. TEEs offer varying degrees
of protection from attackers with physical access to the CPU.
Most TEE implementations assume that attackers can snoop
on interconnects between the CPU package and external com-
ponents (e.g., off-chip DRAM) and protect data by encrypting
and integrity-protecting memory traffic.

Remote attestation is typically rooted in an on-die hardware
root of trust (HRoT) with exclusive access to a unique device
secret provisioned into one-time programmable fuses during
manufacturing. During boot, the HRoT uses the secret to de-
rive a device-specific identity key. This key typically endorses
keys used for signing attestation reports. The corresponding
public key is endorsed by the hardware manufacturer.

3 Threat Model

TEE hardware is subject to a variety of attacks throughout
its lifecycle, from chip design and manufacturing up until the
hardware is decommissioned.
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Trust in TEEs is rooted in hardware, and consequently in
the chip designers and their OEMs involved in designing and
manufacturing the chips. Additional trust is also required in
the infrastructure for issuing certificates to each chip, and for
publishing the last known good version of firmware trusted
computing base (TCB). While this is also the case with the
IPU, we wish to minimize trust in the rest of the supply chain.
Hence, we conservatively assume that attackers control the
manufacturing and assembly process after tapeout, including
the process of provisioning firmware and/or secrets to each
device and harvesting their Certificate Signing Requests.

After deployment, we assume a strong adversary that con-
trols the entire system software stack, including the hypervisor
and the host operating system, and also has physical access to
the host. The adversary can access or tamper with any code
and data transferred between the host and the IPU, either in
operating system buffers or over PCIe. The adversary can
also tamper with device memory directly via the PCI BAR,
or map the victim application’s tile PCI address space to host-
side memory controlled by the attacker. Information leakage
through side-channels such as timing, power analysis, and
physical probes on the IPU are generally out of scope. How-
ever, we wish to offer protection from side-channels based on
memory access patterns, and from low-level integrity attacks
such as glitching.

We trust the IPU and HRoT packages, and we assume that
the adversary cannot extract secrets or corrupt state within
the packages. In particular, the IPU includes trusted SRAM
within the IPU tiles accessed only via on-chip channels.

With the current generation of IPUs, we make additional
trust assumptions in the ICU, which provides connectivity
between the hardware RoT and the IPUs, and in links be-
tween IPUs. We trust the ICU firmware and the physical links
that connect the HRoT, the ICU and the IPU. These trust
assumptions can be removed in subsequent generations of
the IPU by placing the HRoT on the IPU die, and encrypting
communication over IPU-IPU links.

The ML source script and configuration are trusted. The
ML framework and the compiler are trusted for integrity of
the computation—i.e., to compile the model defined in the
ML script correctly into a manifest and IPU binaries. In multi-
party configurations (involving parties that do not trust one
another), these assumptions can be met by having all parties
review the script and configuration for the workload, then
confirm that they all locally compile to the same manifest and
binaries. Each party is trusted with the integrity and confiden-
tiality of the data streams they provide for the computation;
in particular, honest parties are trusted to correctly encrypt
their data streams with a fresh encryption key, and to release
this key to IPUs only after verifying their attestation report.

In configurations that couple the IPU with a host CPU
TEE (e.g., Intel SGX and TDX, AMD SEV-SNP), the CPU
package is also trusted, along with any software hosted in
the TEE.With process-based TEEs, the CPU-based software
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Figure 3: IPU hardware extensions to support trusted execution.

TCB may include the ML training or inferencing script and
its framework (e.g., TensorFlow, PyTorch), compiler, and run-
time. With VM-based TEEs the TCB may additionally in-
clude the kernel-mode driver and a guest operating system.
The host runtime is trusted for confidentiality—i.e., to setup a
secure, attested channel between the CPU TEE and IPU, and
to transfer code/data over the channel.

Under this threat model, we wish to provide confidentiality
and integrity guarantees for model code and data, including
initial weights, input data, checkpoints and outputs. For train-
ing, integrity implies that the trained model is bitwise equiva-
lent to the model obtained in the absence of the attacker. For
inferencing, integrity implies that requests yield same results
as those obtained in the absence of the attacker.

We wish to provide remote attestation, which refers to the
ability of the platform to make remotely verifiable claims that
a relying party can use to reason about the TEE’s security
properties and thereby establish trust in the application hosted
within the TEE. Specifically, we wish to ensure that the attes-
tation can deliver temporally fresh evidence that contains all
security-sensitive parts of the platform and application state.

4 Overview

Trusted execution in IPUs enables model developers to se-
curely offload an ML job (training or inference) while pro-
tecting both its model and data from the hosting platform. In
turn, model developers can prove to data providers that their
data remains protected from both the hosting platform and
the model developers themselves. (Appendix A.1 provides a
comprehensive security analysis of ITX.)

The workflow for offloading a job involves TEE creation,
generation of an attestation report, its verification by remote
parties, code/data encryption, secure exchange of encryption
keys, job execution, and decryption of the outcome.

4.1 Hardware Extensions (ITX)

The IPU hardware contains several components (shown in
Figure 3) to support this workflow, including a new hardware
root-of-trust (RoT), called the CCU, and a new execution
mode, called the trusted mode, in which all security sensitive
state is isolated from a potentially malicious host. This mode
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is entered by writing to a configuration register. (For remote
verifiability, this register is measured by the CCU and included
in the attestation report.) Once the IPU enters this mode, its
configuration registers and tile memory can be accessed only
by the CCU and ICU. The only way to exit this mode is via
a chip reset, which is extended to scrub all key registers and
tile memory.

The IPU also includes programmable AES-GCM engines
for authenticated encryption and decryption of code and data
transferred between the host and the IPU at PCIe line rate.
These engines are hosted in new components, called Secure
Exchange Pipes (SXP), located on the interconnect between
the PCIe block and the exchange blocks. The SXP and its use
are described in Section 6.1.

4.2 Software Support
There are many ways to utilize ITX. For this paper, we il-
lustrate a particular mode, called the offline mode (Figure 4).
In this mode, a multiparty ML training workload can be de-
ployed in an IPU-based TEE without requiring a CPU-based
TEE. This mode has strong security properties (e.g., small
TCB) and minimal dependencies on the host CPU hardware.

Job Preparation. In offline mode, a model developer uses
an extended IPU compiler to statically compile a model train-
ing job expressed in an ML framework such as TensorFlow
or PyTorch to standalone IPU binaries in a trusted, offline
clean room environment (1). In addition to the binary, the
compiler generates a job manifest, which contains auxiliary
information required at runtime to execute the job. Next, the
model developer encrypts binaries and parameters such as
initial weights and learning rate using encryption keys that
remain in the clean room environment. The model developer
also generates a fresh public key share for key exchange, and

a signature over the key share using their certificate. These
artifacts, along with the model developer’s certificate are pack-
aged together to create an application package. Separately,
data providers pre-process and encrypt their input data and
labels in their own clean room environments, and create data
packages which include their key shares and certificates (2).
The resulting packages are uploaded to an IPU server (3, 4).

Job Initialization. Any entity can initiate execution of the
training job using the host runtime, which has been extended
to load encrypted code/data into IPUs. For confidential com-
puting jobs, the runtime provides user-mode APIs for opera-
tions such as creating TEEs (5) for a job, fetching their attes-
tation reports and additional collateral such as device-specific
certificates (6), and relaying key-exchange messages from
relying parties to the CCU (8). This runtime is not trusted.

Remote Attestation. In trusted mode, the CCU can issue re-
motely verifiable attestations, which are relayed to relying par-
ties (7) as proof of TEE configuration for their workload. The
attestation is a certificate chain from the IPU manufacturer
root CA to an end-certificate signed by the CCU with custom
extensions that embed initialization attributes (e.g., measure-
ment of all security-sensitive IPU registers) and job-specific
attributes, such as the measurement of the job manifest, and
the hash digest of other runtime attributes, including certifi-
cate fingerprints of all parties and the CCU’s fresh public
keyshare. The model developer and data providers verify this
report, the model, and identities of other participants. If they
decide to make their data available for this job, they derive
shared keys using the CCU’s public key share and securely
exchange their secrets with the CCU.

Job Execution. After the model developer and data providers
have released their keys to the CCU, the CCU deploys the
keys into the SXPs and starts the job (9) by installing a boot-
loader into the IPU tiles using the autoloader. The bootloader
fetches the application binary from host memory to each tile
in 1KB blocks. In trusted mode, these blocks are decrypted
and integrity checked by the SXPs before being written to tile
memory (see Section 7.3). Once the application binary has
been transferred, the runtime initiates execution of the job.
During execution, tiles generate read requests for data, also in
blocks of 1KB. In trusted mode, the blocks are fetched from
host memory over PCIe, and decrypted and integrity checked
by the SXPs before being written to tile memory. Similarly,
all write requests (e.g., checkpoints and trained model) are
encrypted and extended with authentication tags before being
written to host memory. The encryption protocol is mostly
transparent to the compiler, which can compile any training
algorithm into binary relying on the data being in tile memory
in cleartext and utilizing all available IPU compute resources.
Finally, the IPU encrypts the trained model with a key made
available only to the model receivers listed in the job manifest.
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Figure 5: CCU firmware architecture and key hierarchy.

5 Trusted Execution on IPUs

5.1 Confidential Compute Unit (CCU)

The CCU is responsible for associating each device with a
unique cryptographic identity and managing trusted execution
in its IPUs. The CCU is a discrete chip based on STMicro’s
STM32H753 microcontroller [24]. This chip was selected as
the RoT based on several security features required to imple-
ment measured boot and to offer protection from a variety
of attacks throughout the IPU lifecycle, such as the ability
to provision a custom bootloader during manufacturing and
a mode that prevents external access via interfaces such as
JTAG. As shown in Figure 3, the CCU is connected to the
IPU via the ICU. A dedicated pin receives all exceptions gen-
erated by the IPU in trusted mode, giving the CCU firmware
full control over exception handling. The CCU reset pin is
coupled in hardware with the ICU reset pin and IPU reset, so
they cannot be independently reset.

Firmware Architecture and Attestation. The CCU im-
plements a measured boot protocol which is a variant of
the Device Identity Composition Engine (DICE) architec-
ture [12, 33]. DICE ensures that each device is assigned a
unique identity while minimizing exposure of hardware se-
crets. Except for the stable device identity, all derived secrets
and keys automatically change when firmware (and its mea-
surement) changes, which ensures that low-level firmware
attacks do not compromise secrets used within other firmware.

The CCU firmware (Figure 5) consists of three layers: an
immutable primary bootloader provisioned in one-time pro-
grammable flash memory at manufacturing; a mutable sec-
ondary bootloader responsible for device identity and attes-

tation certificates; and a confidential compute engine (CCE)
that manages the TEE lifecycle.

During manufacturing, the CCU is provisioned with the
primary bootloader firmware. When the device is brought out
of reset for the first time, this primary bootloader receives
control from ROM firmware, samples a unique device secret
(UDS) using a hardware-based TRNG, stores it in a region
of flash memory, and permanently blocks its access from any
other firmware layers. The UDS is the root of the IPU key
hierarchy, and this protocol ensures that it is never exposed
outside the CCU, not even to the manufacturer.

On every subsequent boot, the CCU loads and authenticates
the secondary bootloader from flash using the IPU manufac-
turer’s firmware signing key. Next, it derives two intermediate
secrets: a Hardware Device Identifier (HDI) from UDS, and
a Composite Device Identifier (CDI) from UDS and the mea-
surement of the secondary bootloader. HDI is unique to each
card, while CDI is unique to each card and secondary boot-
loader. It then scrubs UDS from memory and transfers control
to the secondary bootloader, handing over HDI and CDI.

The secondary bootloader further derives two public-
private key pairs: a Card Identity Key (CIK) from HDI, and a
Platform Identity Key (PIK) from CDI. Hence, CIK gives each
card a stable identity whereas PIK is unique to each card and
secondary bootloader. The bootloader also generates a self-
signed CSR for CIK, a PIK CSR, and a PIK certificate signed
by CIK. The PIK CSR and certificate contain a custom exten-
sion that records measurements of the secondary bootloader
and the ICU firmware along with additional device-specific
information. The CSRs can be securely harvested during man-
ufacturing and endorsed by the IPU manufacturer CA, which
issues CIK and PIK certificates. (See Appendix A.2.)

The secondary bootloader derives the Attestation Key (AK)
from CDI and the CCE measurement. Hence, AK is unique to
each device, secondary bootloader, and CCE. The bootloader
issues an AK certificate with the CCE measurement in a
custom extension, signed by PIK, and finally scrubs all secrets
and transfers control to CCE, handing over AK.

The CCE uses AK to sign attestation reports containing
IPU- and job-specific information (Section 5.2). A relying
party can validate attestation reports using the device-issued
AK certificate, and manufacturer-issued CIK/PIK certificates.

Firmware Update. Per DICE, a secondary bootloader update
invalidates PIK certificates issued by the manufacturer and,
as UDS is provisioned within each device, the IPU manufac-
turer cannot independently derive and certify the updated PIK.
Instead, we rely on CIK, acting as a local CA, to sign the
updated PIK certificate. Additionally, the manufacturer would
issue TCB update certificates containing measurements of old
and new versions of firmware. A relying party can validate
attestations using device-issued PIK certificates, the original
PIK and CIK certificates, and TCB update certificates. (See
Appendix A.3–A.4 for more details and a hardened variant.)
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5.2 TEE Lifecycle Management
The CCU exposes an API for TEE management on the IPU.

TEE Initialization. The first step in securely offloading a job
to an IPU is to create a fresh TEE for this job. TEE initial-
ization requires a job manifest (Appendix A.5), public key
shares, signatures over the key shares and certificates for each
relying party, and a checkpoint counter indicating whether the
job is starting or resuming from a checkpoint. During TEE
initialization, the CCU first quiesces the IPU, ensuring that
there are no in-flight read and write requests between the host
and IPU. It then switches the IPU into trusted mode, scrubs all
tile memory using the autoloader, and measures the state of
the configuration registers. It then checks the signatures over
the key shares using the certificates, and generates its own
fresh EC share, which is used to establish an ECDH shared
secret between each relying party and the CCU.

The CCU generates an attestation report signed by the attes-
tation key containing various IPU-specific attributes (e.g., con-
figuration register measurements) and job-specific attributes
such as the job manifest, certificate fingerprints for all parties,
and the checkpoint counter consisting of the epoch counter
and checkpoint identifier. (See Appendix A.6 for the details.)

Each relying party can review the attestation together with
the supporting certificate chain, to validate the device and
the initial state of the CCU and IPU, then it can compute its
ECDH shared secret and wrap a key package that contains the
party’s data encryption keys and nonces to run the job. (See
Table 2 in Appendix A.6 for the keying details.)

TEE Launch. After gathering wrapped encryption keys from
all relying parties, the host launches the execution of a job.

First, the CCU computes the ECDH shared secret for each
party and uses them to unwrap the key package(s) received
from each party. It then combines the nonces to derive a check-
point key and a final-model encryption key for this run of the
job (and, if resuming from another run, the checkpoint key
from that previous run to restore its state). This key derivation
ensures both that the checkpoint key for this run is fresh (as
long as one relying party’s nonce is fresh) and that the check-
point key of a prior run can be recomputed once all relying
parties agree to resume from a checkpoint. (See Table 2 in
Appendix A.6 for the keying details.)

Next, the CCU deploys a pre-defined bootloader on the
IPU tiles using the autoloader, and it deploys a first set of
encryption keys to the SXP (including the model key) as
specified in the job manifest. It then activates the bootloader
(whose measurement is included in the attestation report)
on every tile, which issues requests to read their encrypted
application binary from host memory. Responses to these
read requests are authenticated and decrypted by the SXPs
before being copied into private tile memory.

Finally, the CCU deploys the next set of encryption keys
(including data keys) as specified in the job manifest, and
triggers the main execution loop on the IPU tiles.

1 Image (1/4)

2 Image (2/4)

3 Image (3/4)

4 Image (4/4)

5 Model (1/3)

6 Model (2/3)

7 Model (3/3)

TagIV

Figure 6: Authenticated encryption with explicit IVs. Data is par-
titioned into frames with unique IVs. Hardware-level decryption
ensures their integrity based on their authentication tag; the receiver
must verify that frame IVs match the expected IVs.

TEE Termination. At any point after initialization of a TEE,
the host runtime can also request that the TEE be terminated.
The CCU may also terminate the TEE in the event of a security
exception raised from the IPU such as failure to authenticate a
response of a read request. During TEE termination, the CCU
quiesces the IPUs, scrubs tile memory using the autoloader,
and disables all SXP keys. Finally, the CCU switches the IPU
into normal mode via Newmanry reset.

A TEE may also be terminated by a hard reset of the device.
In this case, all CCU state is cleared and the IPU reverts to
normal mode. When it comes out of reset, prior to re-enabling
the host links, the ICU scrubs tile memory to ensure that any
secrets left over from a previous execution are erased before
the host re-gains access to the device.

6 Encrypted Direct Memory Access

Next, we describe the ITX protocol for encrypted code and
data transfers to/from IPU tiles. The protocol is application-
level as opposed to transport-level. While it is transparent to
ML frameworks, it relies on application software (e.g., the
IPU compiler) to assign IVs for authenticated encryption and
to program the tiles to securely load code, initial weights,
training data, and save/reload checkpoints and results. The
protocol is supported in IPU hardware by fully pipelined
AES256-GCM engines for authenticated encryption at PCIe
line rate. This choice results in simpler hardware, allows the
IPU to be coupled with untrusted CPUs (or CPUs with varying
TEE support) and retains the compiler’s ability to maximize
PCIe utilization by parallelizing data transfers across tiles.

6.1 Data Format
In the encryption protocol (illustrated in Figure 6), application
software partitions each code and data stream into equally-
sized encrypted frames. Each frame consists of a 128-bit IV,
followed by a series of cipher blocks that carry the encrypted
contents of the frame, and by a 128-bit authentication tag. Ap-
plication software is free to use different frame sizes for differ-
ent streams, as long as the total frame size (including IV and
authentication tag) is a multiple of 128 bytes with a maximum
of 1KB, which is the largest supported PCIe read. Application
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Figure 7: IPU External Exchange Interconnect, with an SXP on
each exchange lane. Traffic is forwarded from and to exchange
blocks to exchange lanes based on the exchange block identifier.

software can use different keys to encrypt different streams.
This is critical for multi-party scenarios where streams are pro-
vided and accessed by different parties. Crucially, application
software must ensure that IVs are never reused across frames
encrypted with the same key, which would be catastrophic
with AES-GCM. In our implementation, this invariant is en-
sured by the compiler, which constructs the IV by combining
stream-specific identifiers and frame indexes, and the fact
that both code and data streams are write-once abstractions.
Together, this guarantees that unless the associated key has
been compromised, authenticated decryption with the correct
IV yields the correct payload.

6.2 Hardware Support
Multiple components in the IPU support ITX encryption. The
IPU includes blocks, called Secure Exchange Pipes, exten-
sions to packet formats for carrying encryption-related in-
formation, and extensions to exchange blocks and the PCIe
complex for supporting the task of mapping frames to keys.
Secure Exchange Pipe (SXP). The SXP is a programmable
hardware block that supports AES256-GCM authenticated
encryption and decryption of frames. Each SXP achieves 16
GBps unidirectional throughput with negligible impact on
latency. As shown in Figure 7, there are four SXPs placed on
the exchange interconnect (two per direction) to support en-
cryption/decryption at PCIe Gen4 line rate (32GBps bidirec-
tional). In trusted mode, each SXP is configured to intercept
read/write requests from four exchange blocks.
AES-GCM Engine. The SXP’s core is a fully pipelined AES-
GCM engine that supports 16 physical key contexts to enable
concurrent requests. Each context can be programmed by
loading a 256-bit key into control registers exposed to the
CCU via an internal control bus. While frames may be inter-
leaved, for functional correctness we require that each context
processes a single frame at a time. This invariant is enforced
by the compiler, as detailed in Section 7.1.

The core implements the standardized AES256-GCM algo-
rithm with two restrictions: the additional authenticated data
is always empty; and the plaintext is block-aligned and not
empty. For convenience, we also treat the IV as a full 16-byte

block, including the 32 bits of internal block counter. In each
cycle, the core performs one of the following operations on
its context: (i) the context is idle and the core receives the IV
for the frame, (ii) the context is active and the core receives a
block of data, or (iii) the context is active and the core receives
a MAC. The core detects context switches by comparing key
context identifiers between consecutive cycles, so that it can
fetch the next context before the next operation.
Frame encryption/decryption. The SXP receives three types
of external exchange packets: read requests (egress); read
completions requiring decryption (ingress); and write requests
requiring encryption (egress). Their headers are extended to
carry additional information to help the SXP determine how
the packets should be handled: an AES bit indicates that the
read completion or the write request is encrypted; a 4-bit
KEY_INDEX field identifies the physical key context to use;
and a CC bit indicates the last packet of the frame and triggers
the computation of its authentication tag.

In write request packets (outbound to the host PCIe do-
main), the AES and CC bits are set by the tile, whereas the
KEY_INDEX is set by the SXP. In read completions packets,
the information is set by the PCIe complex based on trusted
state it maintains about pending read requests.

Read request packets and packets with the AES bit unset do
not require encryption/decryption; they are passed unchanged.
For all other packets, the header bypasses the AES core, then
the AES core handles each packet (and its blocks) depending
on whether a frame starts, a frame continues, or a frame ends.
Key Selection. Each SXP supports multiple physical key con-
texts to enable encryption/decryption of concurrent I/Os. The
SXP provides a set of programmable (by CCU) registers to de-
fine a mapping between packets and the physical key context
to use for encrypting/decrypting their payload. The compiler
produces this mapping by assigning a set of tiles associated
with an exchange block context to access a single stream.
Upon receiving a packet, the SXP looks up the physical key
context using the exchange block context index computed
from the source tile identifier in the header.

Once the SXP infers the physical key context, it updates
the KEY_INDEX field in the request packet header. For write
requests, the field is then used by the SXP to switch the AES
core to the inferred physical context for encrypting its payload.
However, for read requests, the situation is more involved, as
the read requests bypass the AES core, and the inferred phys-
ical key context must be used to decrypt the read completions
that will be returned by the host after the read request has
been processed. When the PCI complex receives the read
request, it caches the KEY_INDEX and AES fields in an on-chip
lookup table along with other metadata, such as the source tile
identifier. When the corresponding read completions arrive
from the host, the PCI complex retrieves these fields from
this lookup tables and inserts them into the read completion
packets. The SXP can then use these values to identify the
physical key context to use for decrypting the payload. The
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PCI complex tracks the number of pending read completion
packets for each request, and sets the CC bit on the last one.

7 Software Extensions

We now describe a set of extensions to the IPU software stack
to compile and execute confidential ML tasks using ITX in
offline mode. This mode is triggered by a Tensorflow config-
uration option. When enabled: (1) The XLA backend trans-
forms the computation graph to use a new abstraction called
confidential data streams for all data transfers including ini-
tial weights, training data, checkpoints and the trained model.
(2) The IPU compiler compiles the computation graph into
a set of IPU application binaries (one for each IPU), where
each binary is a concatenation of tile-specific binaries. The
compiler encrypts tile binaries into a set of encrypted frames
using a freshly sampled model key. A frame is assigned a
unique IV comprised of code type, IPU/tile IDs and frame
index. (3) The IPU runtime is extended to securely bootstrap
the task, then transfer the encrypted binaries and data between
the host and IPU. (See Appendix A.8 for a sample scenario.)

7.1 Confidential Data Streams
Confidential data streams is a compiler and runtime abstrac-
tion for transferring data to/from the IPU with confidentiality
and integrity guarantees, leveraging SXPs. Each stream is a se-
quence of data instances encrypted with the same symmetric
encryption key. Each data instance is partitioned into a se-
quence of frames, and each frame is encrypted using a unique
IV composed of a stream type (data), a stream identifier, and
the index of the frame within the stream.

The compiler and the runtime implement reads and writes
to confidential data streams as follows. As discussed in Sec-
tion 6.1, the compiler first assigns a region in tile PCI space
to each stream, subject to the constraint that it never exceeds
the total capacity of the IPU ring buffer (e.g., 256 MB).

Next, the compiler assigns sets of tiles to read from or write
to each stream, reserves SRAM on each tile to hold a part
of the stream, and generates SXP mappings, subject to the
constraints that (a) the exchange block context associated
with these tiles map to physical key contexts assigned to the
stream, and (b) the number of physical key contexts in use at
any point in the program does not exceed 16 for any SXP.

To maximize performance under these constraints, the com-
piler may introduce synchronization points in the application
where existing keys are invalidated and new keys are loaded.
The compiler includes these synchronization points in the job
manifest, along with their key identifiers; and the (untrusted)
IPU runtime uses this part of the manifest to ask the CCU to
load the next decryption keys into the SXPs at these points.
The key changes apply only to input streams. Keys for output
streams are derived and loaded by the CCU at TEE launch, and
do not change throughput its lifetime. A malicious runtime

not following the job manifest’s key schedule can only cause
decryption failures, resulting at most in denial-of-service.

Next, the compiler schedules read/write operations on each
tile. The schedule is required to satisfy a hardware constraint
that, at any point, the tiles that generate requests targeting
any given physical key context be associated with a single
exchange block context. This is because, while the exchange
block can dynamically synchronize and regulate requests
within each exchange block context (so that its physical key
context is used by one tile at a time) there is no such synchro-
nization across exchange block contexts.

Finally, the compiler generates code on each tile that im-
plements the schedule, to issue read/write requests for the ac-
cessed frames. (Details are omitted due to space constraints.)

7.2 Secure Checkpointing

Checkpoints are saved to and restored from host memory, and
are implemented via data streams. Secure checkpointing is
implemented via a special form of confidential data streams,
where the IV captures the epoch (counting the number of
checkpoint resumptions for this job) and the checkpoint iden-
tifier (counting the number of checkpoints stored within an
epoch.) The CCU uses a separate checkpoint key for each
epoch, and makes the epoch counter and checkpoint identifier
available to IPU tiles via the bootloader at the start of the
application. (See Appendix A.7 for more details.)

7.3 Secure Bootstrapping

Secure bootstrapping is the process of securely loading en-
crypted application binaries into the IPU, either at the start of
a job, or while resuming a job from a checkpoint.

Bootstrapping involves the following steps. First, the IPU
runtime loads the encrypted IPU binary in host memory and
creates a TEE using the CCU APIs; this switches the IPU into
trusted mode. Next, the CCU installs a bootloader (shown in
Appendix A.5) onto every IPU tile using the autoloader de-
scribed in Section 2.1, and also configures the SXPs with the
model-decryption key. The bootloader on each tile fetches the
tile’s binary from host memory by issuing a sequence of read
requests. Each frame received from the host is intercepted
by the SXPs, authenticated and decrypted, and copied into
tile memory. The bootloader then checks that the received
IV matches the expected IV built into the bootloader logic;
this check is performed in software because the SXPs only
guarantee authenticity of each frame, not the integrity of the
entire stream. Failure of this check indicates an attempt by
the host to tamper with the code stream, such as by replay-
ing/reordering frames. In such event, the tile raises a security
exception, which is handled by the CCU. If all checks pass,
the bootloader reconstructs the original binary by stripping
IVs and authentication tags from all frames.
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Finally, the bootloader computes a hash of the tile binary;
the tiles accumulate a hash of the whole application; and
the CCU checks that it matches the measurement in the job
manifest, or generates a security exception otherwise. This
protocol, together with bootloader integrity (its measurement
is included in the attestation) guarantees application integrity.

8 Evaluation

Our evaluation focuses on TEE overheads for ML training
when using CPUs and IPUs.

Implementation. We have implemented ITX on the IPU
on a non-production development board. The IPU chip has
been fabricated in TSMC’s 7nm node, including the on-chip
security extensions, which account for < 1% of the chip size.
As part of post-fabrication validation, these extensions have
been tested to verify they conform to their specified behavior.

We have integrated the CCU on the board and implemented
the architecture described in Section 5, including the protocols
for measured boot and TEE management.

We have implemented a software prototype for confidential
training tasks where the host CPU server is untrusted. Our
prototype includes experimental support in the ML frame-
work, IPU compiler and runtime. There are a few gaps in our
prototype: (1) our implementation currently supports only
one IPU on the board; (2) the compiler makes use of only one
logical key region onto which code, data, label, checkpoints,
and outputs are mapped; nevertheless, every encrypted frame
is statically assigned a unique IV, preserving the invariant that
each IV is used only once; (3) secure resumption is not yet
implemented; and (4) the bootloader deployed on IPU tiles
does not measure the IPU binary after decryption.

Experimental Results. Figure 8 summarizes the hardware
and software configuration of our testbeds. We evaluate the
performance of confidential training on ResNet models of
various sizes (20, 56, and 110) on the Cifar-10 dataset. The
dataset consists of 60,000 32x32 images spanning 10 classes;
50,000 of these images are used for training the dataset and
the remaining are used for testing the resulting model. We
ran the same training code and data configurations in clear
and confidential modes, and confirmed that they both yield
models with the same prediction accuracy.

We compare IPU TEEs against CPU TEEs based on the
largest available AMD SEV-SNP server. The early IPU devel-
opment boards operate at reduced frequency of 900 MHz. The
AMD CPU testbed utilizes 48 single-threaded cores; hyper-
threading does not improve performance due to high vector
unit utilization leaving little room for another hyper-thread.
Scaling from 32 to 48 cores improved performance by 10%.

Figure 9 shows the training throughput that we achieve in
clear and confidential modes. IPU-based training even with a
single IPU operating at reduced frequency is 12-20x and 13-
17x faster than CPU-based training in clear and confidential

Testbed Training configuration
AMD SEV-SNP
48-core VM on
EPYC 7763

ResNet-20. Batch size: 1534; 32 epochs.
ResNet-56. Batch size: 768; 32 epochs.
ResNet-110. Batch size: 384; 64 epochs.

ITX IPU @ 900
MHz, Intel Xeon
8168

ResNet-20. Batch size: 64; 32 epochs.
ResNet-56. Batch size: 32; 32 epochs.
ResNet-110. Batch size: 16; 64 epochs.

Figure 8: Testbed configuration for TensorFlow training of ResNet
models on Cifar-10 dataset. In each configuration, batch sizes are
optimized to yield maximum performance. (Smaller batches do not
affect correctness, but may improve convergence or accuracy.)
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Figure 9: Training throughput of ResNet models on cifar-10.

modes respectively. Enabling SEV-SNP introduces modest
overheads, ranging from 8% (small model) to 14% (large
model) while the overheads of enabling ITX range from 3%
(large model) to 58% (small model). The ITX overhead is
dominated by one-time setup cost, which is amortized over
large training times; this cost includes TEE initialization and
attestation (40%), TEE launch including SXP setup (43%) and
TEE termination including SXP scrubbing (13%). Runtime
encryption introduces only 4% of the total overhead. More
generally, we expect the one-time cost to be negligible with
state-of-the-art models, which take weeks or days to train.
With ResNet-110 model, the overall overhead is just 3% (1123
vs 1089 seconds for running 64 epochs). We also expect
that utilizing both IPUs at full frequency would deliver an
additional performance improvement (up to 3.5x) over CPUs.

In summary, the evaluation shows that using ITX, AI work-
loads can continue to benefit from the use of accelerators
without compromising on performance or security.

9 Discussion

Trusted CPU TEEs. While this paper mainly focuses on a
configuration where IPUs are attached to an untrusted CPU,
ITX supports configurations with varying trust in CPU TEEs.

For instance, ITX can be used in a configuration where
IPUs are coupled with a process-based CPU TEE (e.g., Intel
SGX) hosting TensorFlow, the IPU compiler and the IPU run-
time, with the IPU kernel-mode driver and the OS running
outside the TEE. In this configuration, the enclave would re-
ceive an encrypted model script from the model developer,
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and the IPU runtime would encrypt the compiled IPU bi-
nary with fresh keys. Similarly, the enclave would receive
encrypted training data from data providers on the basis of an
Intel SGX and IPU attestation. Within the process-based CPU
TEE, the data can be decrypted, pre-processed and aggregated
(in parallel with job execution), and re-encrypted by the IPU
runtime with fresh keys. Encrypted code/data still then need
to be copied to a run buffer allocated outside the enclave (in
the host process) accessible to the IPU. While this configura-
tion has a larger TCB and incurs higher CPU cost, it offers
greater flexibility and support for inferencing scenarios.
Inferencing. While this paper mainly focuses on training,
ITX does support inferencing workloads. Scenarios, where
the number of remote inference clients using a model is small
and mostly static, can be served by the existing architecture
(no trust in the CPU) without additional overhead by assigning
a key context to each client. Scenarios, where the number of
clients is large and dynamic, could be supported by introduc-
ing a trusted front-end server component (in a process-based
TEE on the host CPU or a remote CPU) that terminates TLS
connections, receives inference requests from the clients, and
re-encrypts them in batches using a smaller number of key
contexts on the IPU (to avoid frequent expensive re-keying in
the IPU). This architecture still allows decoupling the choice
of CPU TEEs and accelerator TEEs. This is unlike GPU TEEs
that require the CPU and GPU TEEs to be on the same plat-
form. Finally, the TCB of the re-encrypting TEE is relatively
small and independent of the application.
Side-channels. Our design intends to minimize leakage from
side-channels. On the IPU itself, leakage due to memory
access patterns and timing is minimized for two reasons. First,
computation on the IPU is statically scheduled by a trusted
compiler. It is therefore possible to analyze a workloads at
compile time to ensure that memory access patterns are data
independent, or add padding otherwise. Second, the IPU cores
do not rely on speculative execution and on-chip memory
accesses incur a fixed latency. As a result, all I/O between the
untrusted host CPU and IPUs occurs at fixed time intervals.
Thus, the attacker can observe the time taken to process an
entire batch, as opposed to time taken to process each layer
in the model [15].

10 Related Work

Trusted hardware. There is a history of work [7,8,10,13,20,
20, 21, 27, 32, 35] on trusted hardware that isolates code/ data
from the rest of the system. Intel SGX [22] and AMD SEV-
SNP [5] are the latest in this line of work. Our work extends
this approach from general-purpose CPUs to accelerators.
Trusted execution on accelerators. Our work is the first to
demonstrate an ASIC with confidential computing capabilities
and the only one that does not require trust in CPU TEEs.

NVIDIA recently announced confidential computing sup-
port in upcoming Hopper GPUs [25]. Their design shares

the same core principles as ITX on IPUs. Hopper GPUs are
equipped with an on-package hardware RoT responsible for
attestation and enforcing course-grained GPU isolation un-
der the assumption that on-package GPU memory is trusted.
Hopper GPUs also support encrypted and integrity-protected
communications (kernels and data) to and from the GPU.
However, the NVIDIA design requires a VM-based CPU
TEE as the responsibility of attesting and establishing a se-
cure channel with the GPU lies within the kernel-mode driver.

Numerous mechanisms have been proposed to enable
CPU TEEs to securely interact with I/O devices—e.g.,
GPUs [17, 34, 37], FPGAs [19, 26, 30, 38], and AI acceler-
ators [14, 36, 39]. Some of this work has attempted to reduce
trust on privileged host via hardware support on the GPU [34]
or on the CPU [17]. Graviton [34] extends the GPU with sup-
port for secure resource management, and relies on a trusted
GPU runtime hosted in a process-based CPU TEE to manage
the TEE lifecycle. HIX [17] requires extensions to process-
based CPU TEEs, including the PCI interconnect and the
CPU’s MMU. GuardNN has attempted to remove the CPU
from the TCB [14] by introducing instructions for establish-
ing a secure channel between remote users and the device,
and for decrypting/encrypting inputs/outputs. However, such
architecture does not guarantee integrity as the instruction
schedule can be tampered by attackers controlling the CPU.

TEE-I/O. In parallel with our work, there has been an
industry-wide effort to develop TEE-I/O, a standard frame-
work for assignment of devices to VM-based CPU TEEs.
This effort also includes the development of TEE Device In-
terface Security Protocol (TDISP [29]), an architecture for
devices that support TEE-I/O. TDISP provides specifications
for establishing trust between the VM-based TEE and the de-
vice (SPDM [9]), and for secure TEE-device communication
(IDE [28]) and secure management of the device’s lifecycle.

CPUs and devices that support TDISP are expected to be
deployed in the next couple of years. Compared to application-
level protocols (such as Section 6), TDISP is more efficient
and transparent. CPUs that support TDISP provide hardware
encryption for PCIe communication, removing the need for
software encryption using explicit IVs. However, TDISP cur-
rently supports only VM-based TEEs, which brings the OS,
device drivers, and other user-mode components in the TCB.

11 Conclusion
We presented ITX, a set of experimental hardware extensions
for Graphcore IPUs. Our design provides application-level
confidentiality and integrity for ML tasks offloaded to an un-
trusted cloud provider. We also presented a software architec-
ture that removes trust from host CPUs, thereby minimizing
the trusted computing base and removing dependencies on
CPU TEEs. We implemented them in the GC200 IPU taped
out at TSMC’s 7nm node, and experimentally confirmed small
performance overheads for training large models.
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A APPENDIX

A.1 Attack Vectors and Security Analysis
Table 1 summarizes the attack vectors discussed in Section 3
and, for those covered by our threat model, how ITX mitigates
each of these attacks.

A.2 Firmware Provisioning and Device Certifi-
cation

In this section, we describe an example process for firmware
provisioning and device certificates that would be followed if
ITX were to be used for IPUs in a production environment.
During board manufacturing, the CCU would be provisioned
with firmware followed by a board reset to harvest certificate
signing requests (CSRs) generated by the execution of the
primary and secondary bootloaders. The CSRs would then be
used by the IPU manufacturer to issue device certificates.

Firmware Provisioning. The CCU is provisioned with
firmware using the SoC’s Secure Firmware Install (SFI) fea-
ture [23]. The firmware package consists of all firmware lay-
ers discussed in Section 5.1 and the configuration bytes (called
OPTION), whose secure user memory registers are configured
so that secure user memory includes only the regions onto
which the secure bootloader is deployed. The firmware pack-
age is encrypted with a symmetric key, which is provisioned
to a hardware security module (HSM).

The encrypted firmware package and the HSM are used
by the board manufacturer to deploy CCU firmware during
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Threat Mitigation
Host (Software, Physical)
IPU Memory Access, e.g.,
host software uses MMIO
and PCI BARs, physical at-
tacker tampers with on-chip
memory

MMIO blacklist prevents CPU from
accessing code/data in IPU; ac-
cess via interfaces JTAG prohib-
ited; IPU memory cannot be physi-
cally accessed w/o breaking into the
package.

Host CPU, Memory, and
PCIe bus, e.g., read/write,
replay, or re-ordering of
code/data in host memory or
in transit, including DMA
buffers, PCIe bus

Code/data are encrypted with AES-
GCM with explicit IVs, and keys
not shared with the host; uniqueness
and integrity of IVs are ensured by
trusted code executed on tiles.

IPU Binary Malleability,
e.g., host replaces model en-
cryption key or encrypted
code

Bootloader computes hash of the
tile binary; hash accumulated and
checked against expected measure-
ment in the job manifest. (Not
implemented.)

IPU Connectivity, ICU-
CCU or ICU-IPU Tampering
on the development board

no; attacker can mount a physical
attack to (1) retrieve the key(s) sent
to IPU, and (2) tamper with ICU FW
measurement sent to CCU

IPU-IPU Tampering no; attacker can mount physical at-
tacks against multi-IPU tasks; tam-
per with data sent across IPUs.

Supply Chain, Firmware
Primary Bootloader Provi-
sioning Tampering

The IPU manufacturer checks
whether the signed bootloader
manifest includes the expected
nonce provisioned into the CCU
primary bootloader.

Using non-genuine, known
vulnerable TCB components

Firmware authorization; hardened
measurement protocol outlined in
Appendix A.4.

Side-channels
IPU Memory IPU memory access patterns cannot

be observed by co-located attacker
as the IPU is entirely assigned to
one job at a time.

Host Memory and PCIe Bus no: attacker can observe access pat-
terns to host memory and on PCIe
bus. However, these patterns do not
leak much information in the BSP
model, e.g., the size and number of
minibatches, but not their contents.

Power and Timing no: attacker can measure power con-
sumption and/or execution time of
a superstep. Similarly, this does not
leak much information for typical
ML tasks.

Table 1: Potential threats and how ITX mitigates them. Physical
access attacks on the CCU-ICU-IPU and the IPU-IPU channels can
be mitigated once the CCU is integrated on the IPU and AES-GCM
is utilized to protect the IPU-IPU channels.

the manufacturing and testing. The chip tester implements a
multi-stage protocol between the CCU secure bootloader and
the HSM, during which the HSM authenticates the certificate
issued by the CCU and wraps its firmware encryption key
using the certified public key. This enables the CCU secure
bootloader to decrypt the firmware package, to install the
firmware, and to configure the OPTION bytes based on the
requested configuration.

While this SFI process guarantees confidentiality of the
firmware, it does not directly protect its integrity: provisioning
may be subject to supply-chain attacks that would replace
CCU parts provisioned using SFI with CCU parts containing
malicious firmware. We extend SFI with protection against
such attacks by injecting a secret known only to the IPU
manufacturer into the primary bootloader. Once the CCU has
been integrated onto an IPU board, a challenger can ask the
primary bootloader to prove possession of the secret.

This process entails the following three steps. First, the
IPU manufacturer generates a fresh secret for every batch of
CCUs. The secret is injected to the primary bootloader of the
CCU firmware. Second, the IPU manufacturer derives from
the secret an asymmetric batch-specific bootloader manifest
signing key. After deriving this key, the IPU manufacturer
keeps only the public part. Third, the IPU manufacturer issues
a certificate for the public bootloader manifest signing key.
The certificate is signed by the IPU manufacturer Firmware
certificate authority (CA). This certificate contains a batch
number, and is valid till the production date of the batch.

Device Certification. In order to certify its device identity
keys, the board tester resets the board and harvests the CIK
and PIK CSRs generated for the board and platform identity
keys, as well as the bootloader manifest. The command to
harvest the bootloader manifest includes a fresh nonce, to be
echoed in the signed bootloader manifest.

In response, the IPU manufacturer verifies the CSRs re-
ceived by the card manufacturer and issues CIK and PIK
certificates that are signed by the CIK and PIK CAs of the
IPU manufacturer. In addition, the IPU manufacturer vali-
dates the bootloader manifest against the bootloader manifest
signing key certificate specific to the batch to which the CCU
belongs, and ensures that the nonce matches the expected one.

A.3 Firmware Updates

The CCU firmware includes a secondary bootloader and a
CCE, both authenticated by the primary bootloader and possi-
bly updated after the card has been deployed in production.

Updating the Secondary Bootloader. The secondary boot-
loader involves relatively complex cryptographic operations,
and may need to be updated in the field. As discussed in Sec-
tion 5, the platform identity key (PIK) is derived from UDS
depending on the hash of the secondary bootloader. Therefore,
any updates to the secondary bootloader changes the platform
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identity, and PIK certificates issued by the manufacturer are
no longer valid, requiring device re-certification.

Unfortunately, re-certification of a remote device by the
IPU manufacturer can be a complex and lengthy operation as
the manufacturer (by design) does not retain unique device
keys. Thus, it requires collection of CSRs from the device,
and more importantly an authentication mechanism to ensure
that the manufacturer signs only PIK certificates exported
from devices in the cloud provider’s datacenters.

We overcome this challenge via a protocol that enables
updates to the secondary bootloader without invalidating
manufacturer-issued certificates.

Prior to updating the secondary bootloader (say to ver-
sion Y ), the cloud provider’s IPU Firmware CA issues a TCB
update certificate capturing the measurement of the new ver-
sion of the secondary bootloader and revokes previous certifi-
cates for versions of the secondary bootloader that should no
longer be deployed.

After a firmware update has been deployed, the primary
bootloader generates a new CDI (CDIY ). The secondary boot-
loader generates platform identity and attestation keys specific
to this version of firmware (PIKY and AKY ). However, the
card identity key (CIK) stays the same as it does not depend
on the measurement of the secondary bootloader. The PIKY

certificate, hence, is signed by the original CIK, which has
been certified by the manufacturer.

Subsequently, a remote challenger can combine the TCB
update certificate with the CIK certificate originally issued by
the manufacturer to verify the PIKY certificate is issued by the
device using the original CIK, and that the measurement of
the new secondary bootloader in the PIKY certificate matches
the measurement of the secondary bootloader in the TCB
update certificate.

Updating the CCE. Updates can be applied at any point
without the need for any additional certification from the
manufacturer. When a device boots with a new version of
CCE, it generates a new attestation key with a signature over
the public AK along with a hash of the CCE using the PIK.
Quotes generated by the updated version of CCE firmware
can be validated using a valid PIK certificate.

A.4 Measured Boot Protocol
The protocol discussed in Section 5.1 is still susceptible to
advanced chosen-firmware attacks: a malicious secondary
bootloader could impersonate another version of the firmware
by using CIK to endorse a PIK certificate for the correspond-
ing firmware measurement. Firmware authorization provides
a strong defense against such attacks—the malicious firmware
would need to be correctly signed by the IPU manufacturer
to run as secondary bootloader. We can harden the boot pro-
tocol further by moving CIK and PIK generation into the
primary bootloader (as shown in Figure 10) without revealing
the private CIK to the secondary bootloader.

Figure 10: Hardened boot protocol that protects against bootloader
impersonation attacks.

In this protocol, the primary bootloader generates CIK from
UDS, and generates PIK using CDI and the measurement of
the secondary bootloader. To allow a relying party (e.g., IPU
manufacturer CA) to attest that the PIK was indeed generated
by the primary bootloader, the primary bootloader creates a
custom structure, known as PIK endorsement, containing the
PIK public key along with a measurement of the secondary
bootloader, and a signature over these two attributes using
the CIK. The bootloader then scrubs the CIK private key and
passes public CIK and PIK keys along with the private PIK
and the PIK endorsement to secondary bootloader. During
manufacturing, the IPU manufacturer PKI issues a PIK cer-
tificate only after validating the PIK endorsement structure.
(Our prototype CCU does not implement this protocol to keep
the primary bootloader simple.)

A.5 Compiled Manifests and Bootloader

Job Manifest. The compiler-generated job manifest includes
all the information required by the IPU runtime and CCU to
create and launch a new TEE, which will host the ML task.
The manifest contains the hash digest of the application binary
loaded into each IPU. It lists the synchronization points at
which the IPU needs to synchronize with the host, and for each
synchronization point, it keeps the following information:

• the key region identifier assigned to each stream that will
be read or written following the end of synchronization
(i.e., the mapping between a stream identifier j to a key
region identifier);
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• the ring buffer region (i.e., Tile PCI space in the ring
buffer) assigned to each key region (key region definition
registers);

• the part of each stream that has been mapped to the ring
buffer region (stream offset);

• the set of physical key contexts to which the stream key
needs to be loaded;

• the physical key context assigned to each exchange block
context (exchange block context map registers); and

• the key region to which each physical key context is
assigned (physical key map registers).

Secure Code Bootstrapping. The code snippet below illus-
trates the bootloader code that fetches the application binary
frames and confirms the integrity of the IV of each frame.
def bootloader():

IPU_id = get_current_ipu_id()
tile_id = get_current_tile_id()
num_frames = TOTAL_TILE_MEMORY / (MAX_FRAME_SIZE

- IV_SIZE - TAG_SIZE)
for index in range(1, num_frames):

expected_iv = StreamType::CODE | ipu_id |
tile_id | index

frame = read_next_frame_from_host()
if expected_iv != get_iv(frame):

raise_security_exception()
strip_iv_and_tag(frame)

compute_hash()

A.6 Attestation

Cryptographic Operations. Table 2 details the keys sam-
pled, derived, and exchanged at the start of a run in trusted
mode. We rely on standard algorithms: Elliptic Curve Diffie-
Hellman for establishing shared secrets, a KDF for deriving
keys, and an AES-based authenticated key-wrapping scheme.
These operations rely on the attestation of the manifest and
runtime parameters, including all public keyshares. Each party
provides its own random nonce, and the CCU combines them
to deterministically derive keys for checkpoints and the final
model; these keys are fresh secrets as long as one party is
honest. To resume from a checkpoint saved in a previous run,
the attested runtime parameters ensure that all parties agree on
the epoch counter and checkpoint identifiers, and the parties
provide their nonces for the previous and new run.
Remote Attestation. During TEE creation, the CCU gen-
erates an attestation report that captures security-critical at-
tributes about the IPU and runtime configuration, including:

• the measurement of configuration registers;

• the measurement of the IPU bootloader used for loading
application binaries onto IPUs;

• the measurement of the job manifest;

Key or secret Provider CCU
public/private keyshare
for each relying party p

Xp,xp fresh EC share receive Xp

encryption key
for each input stream j

k j fresh key unwrapped

public/private keyshare
for the CCU in this run

Y,y receive Y fresh EC share

nonce for p in this run sp,Y fresh secret unwrapped
wrapping key
for p,Y with salt
a = X p||Y ||M

wp KDF[xp ·Y ](a) KDF[y ·Xp](a)

key to load checkpoints
saved by prior run Z

kload N/A KDF[⃗sp,Z ](’ck’)

key to save checkpoints ksave N/A KDF[⃗sp,Y ](’ck’)
key to save final model km unwrapped KDF[⃗sp,Y ](’m’)

Table 2: Keying for a workload with manifest M between relying
parties identified by their public keyshares X⃗p and a CCU identified
by its fresh CCU public keyshare Y for this run. After attestation, an
ECDH shared secret wp is used for wrapping k j , sp,Y , and sp,Z when
resuming from Z from p to the CCU, and optionally for wrapping km
from CCU to any party p designated as a receiver of the final model.
The keys used for encrypting checkpoints and the final model are
derived from nonces from all relying parties, ensuring these keys are
fresh (as long as one party is honest) and require agreement from all
parties to be released.

• the hash digest of the attributes for this run, including:

– the public keyshare of the CCU for this run (Y );

– the epoch e and checkpoint counter c from which
the job is restarted (if any);

– the certificate fingerprints of all parties (X⃗p);

– a stream assignment, specifying a party for each
input, and parties (model receivers) that receive the
model key.

The host collects the attestation report, along with a CCU-
issued certificate chain, which includes the AK, PIK and CIK
certificates, and is rooted at the self-signed CIK certificate.
These are presented to relying parties along with: the original
CIK and PIK certificates, the TCB update certificates for the
secondary bootloader and ICU firmware, and any intermediate
CA certificates.

A relying party can verify the attestation report as follows:

1. Validate the CCU-issued certificate chain and auxiliary
certificates; and check for certificate revocation.

2. Confirm that public key of the CIK certificate issued by
IPU manufacturer matches the public key in the CIK
certificate obtained from the CCU.

3. Confirm that any updates to the secondary bootloader
and ICU firmware are rooted to a valid certificate chain.
Two checks are required: (i) if there exists a TCB update
certificate issued for the secondary bootloader with a
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hash digest matching the hash digest in the CCU-issued
PIK certificate; (ii) if there exists a TCB update certifi-
cate issued for ICU firmware with a hash digest matching
the hash digest in the CCU-issued PIK certificate.

4. Review the attested manifest and attributes for this run.

Secure Key Exchange. For each run, each party p derives a
fresh wrapping key wp using its private keyshare xp and the
public keyshare of the attested CCU Y . This key is used to
wrap a key package containing the streams identifiers assigned
to the party and the party’s key for these streams k j, and the
nonce(s) sp,Y for the current run (and sp,Z for the previous
run if the current run is resuming from a checkpoint saved
in run Z.) The CCU can derive the wrapping key for party p
using its private keyshare y and the party’s public keyshare
Xp. In possession of w⃗p, the attested CCU can unwrap the key
packages of all parties, which are made available during the
TEE launch stage.

The parameters of the model are encrypted using the final-
model key km that has been derived by the CCU using the
nonces obtained from all parties. The parties engage in a
protocol for exchanging their nonces so they can derive the
key once they possess all nonces. The CCU can additionally
release the final-model key to model receivers listed in the
attestation report using the wrapping key shared between itself
and each model receiver.

A.7 Secure Checkpointing
Each IPU periodically checkpoints its state to enable recovery
from failures. A checkpoint is created by writing the weights
of the model to an output stream. The checkpoint also in-
cludes metadata, such as the current offset for all confidential
data streams. These offsets are also written in plaintext, so
that the IPU runtime can restart the job and resume loading of
confidential data streams at the correct offset. Conversely, a
checkpoint is restored by reading the weights using an input
stream and resuming confidential streams from the check-
pointed offsets. A checkpoint along with the job manifest and
binaries suffice to resume an application from the checkpoint
instead of restarting from the beginning.

In trusted mode, checkpoints are encrypted and integrity
protected. In particular, tiles enforce the integrity of the pro-
cess of restoring state from a previously created checkpoint.
This includes protecting against attacks, such as tampering a
checkpoint or loading a wrong checkpoint onto an IPU. (Guar-
anteeing freshness, e.g., resumption from the latest check-
point, would involve some form of trusted persistent storage
and is out of scope in this paper.)

Checkpoints are implemented using confidential streams.
The code generated to read a checkpoint stream generates a
sequence of expected IVs, checks that the IVs returned in the
frames match the expected IV, and strips the IV and authenti-
cation tag from the frames. Conversely, the code generated

to write a checkpoint stream generates a sequence of IVs and
places them in the header of the frame. The IV for each frame
uniquely encodes the checkpoint type, the epoch counter (in-
cremented at each resumption), the checkpoint identifier (in-
cremented at each saved checkpoint), the IPU and tile IDs,
and the frame index. The CCU uses a separate key for each
epoch; it installs the key of the epoch of the checkpoint it is
resuming from, if any, and the key of the current epoch for
writing all its checkpoints.

The tiles read and write checkpoints as follows:

1. Tiles obtain initial values of the epoch counter and check-
point identifier (assigned by the CCU along with the
bootloader code) from pre-determined locations in tile
memory. If the epoch counter is not null, the tiles use it
(with the checkpoint identifier) to compute their expected
IVs and read part of their corresponding checkpoint.

2. Each tile increments their local epoch counter and start
(or resume) the application.

3. At regular intervals, the tiles checkpoint their part of the
state, using IVs computed from their current values, and
then increment their local checkpoint identifier.

A.8 Sample Training Scenario
Figure 11 shows a sample training scenario with three parties.
Given the job manifest generated by the compiler, IPU run-
time, CCU, and IPU synchronize at various points where the
IPU runtime populate the ring buffer with the data expected
by the IPU, and the CCU loads keys to the IPU SXPs.

DescriptionTile PCI Space
in Ring Buffer

Sync
Point

Egress SXPs load key3 & key4 for checkpoint & output streams;
The keys will be used in subsequent steps.0

The ring buffer holds encrypted code;
Ingress SXPs load key0, enabling all tiles to load their code.1

Ingress SXPs load key1 & key2 to read from both providers;
RB is split between 4 streams of encrypted images and labels,
and filled with the first batch.

2

RB is filled with the second batch from both providers.3

All tiles save their part of the checkpoint, encrypted to RB (key3).4

RB is filled with the final batch from both providers.5

All tiles save their part of the model, encrypted to RB (key4).6

Training Image Stream Label 
Stream

Checkpoint 
StreamCode

IV Image (1/2) Tag IV Image (2/2) Tag

Training Image 
Stream

Label 
Stream

key0 key1 key2 key3

Output 
Stream

key4

Figure 11: Sample training scenario with 3 parties: one providing
model code (using key0) and the others (using key1 and key2) each
providing their own streams of training images and labels; this task
saves checkpoints (using key3) and a final model (using key4). The
compiler emits a job manifest that indicates, for each synchronization
point of the task, which part of each stream is mapped to the ring
buffer (1..6) and which keys the CCU should load for ingress. The
keys for egress streams are programmed in the start of the job (0).
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Abstract
Recently there has been considerable attention on design-

ing and developing hardware accelerators for deep neural net-

work (DNN) training workloads. However, designing DNN

accelerators is often challenging as many commonly used

hardware optimization strategies can potentially impact the

final accuracy of the models. In this work, we propose a hard-

ware emulation tool called Arbitor for empirically evaluating

DNN accelerator designs and accurately estimating their ef-

fects on DNN accuracy. Arbitor takes advantage of modern

machine learning compilers to enable fast prototyping and nu-

merically accurate emulation of common DNN optimizations

like low-precision arithmetic, approximate computing, and

sparsity-aware processing on general-purpose GPUs. Subse-

quently, we use Arbitor to conduct an extensive sensitivity

study to understand the effects of these optimizations on pop-

ular models such as ResNet, Transformers, Recurrent-CNN,

and GNNs. Based on our analysis, we observe that DNN

models can tolerate arithmetic operations with much lower

precision than the commonly used numerical formats sup-

port. We also demonstrate that piece-wise approximation is

effective in handling complex non-linear operations in DNN

models without affecting their accuracy. Finally, enforcing

a high degree of structured sparsity in the parameters and

gradients can significantly affect the accuracy of the models.

1 Introduction

Deep neural networks (DNNs) have shown unprecedented ac-

curacy on many complex tasks like computer vision [26, 44],

natural language processing [15, 65], recommendation sys-

tems [50], speech recognition [6], and robotics [55]. This

superior performance of DNNs, however, comes at the ex-

pense of high computational costs in the training process. As

the models are getting larger and more complex, the compu-

tational requirement for training these models has also been

growing steadily. Therefore, designing and developing spe-

cialized hardware accelerators for DNN training has become

an active area of research in both industry and academia [16].

Modern DNN accelerators are equipped with thousands

of parallel processing units to leverage the abundant com-

putational parallelism available in DNN training workloads.

Moreover, they also employ many hardware-level optimiza-

tions that are designed to take advantage of the error-resilient

nature of the DNN models. For example, DNN accelerators

commonly use low-precision numerical formats for arithmetic

operations to improve hardware utilization and energy effi-

ciency [18,48,74]. Additionally, approximate computing tech-

niques like the linear approximation of non-linear functions

are widely used to reduce the hardware design complexity

and cost [7,43]. Finally, modern accelerators support sparsity-

aware processing cores to minimize redundant computations

in DNN workloads by skipping arithmetic operations over

zeros. In recent years, there have been many studies proposing

different variations of such hardware-level optimizations that

have shown to be highly effective in improving the perfor-

mance of DNN training workloads [56, 72].

Despite being a well-studied area, making the right de-

sign decisions for DNN accelerators is still a challenging

task as many of the proposed hardware optimizations have

non-trivial effects on the convergence accuracy of the DNN

training algorithm and can potentially hurt the final accuracy

of the model [18, 48]. Understanding the influence of these

optimizations on the convergence of different DNN models

requires rigorous experimental analysis on the DNN acceler-

ator design. Unfortunately, currently available methods and

tools are inadequate for such analysis as we explain below.

Software-based architectural simulators are widely used for

the initial prototyping and analysis of different hardware de-

sign choices [8, 9, 34, 64]. These tools are primarily designed

to perform hardware simulations at circuit-level precision and

measure accurate low-level performance counters like instruc-

tions per cycle (IPC), cache miss rate, and branch prediction

accuracy. As a result, architectural simulators are generally

6−7 orders of magnitude slower compared to the real silicon

performance [20, 63]. Since standard DNN benchmark mod-

els [49, 75] take anywhere from hours to months of training

to reach peak accuracy, using software-based simulators to
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analyze DNN accelerator designs can get prohibitively time-

consuming. Even though other approaches like FPGA-based

prototyping can offer performance close to the real hardware,

programming FPGAs requires unique expertise that is rare

even among hardware researchers. Moreover, building the

software stack that can provide runtime support for training

DNNs on FPGAs requires substantial engineering effort.

To address the limitations of these traditional methods,

recent works [45, 47, 59, 70] have proposed hardware em-

ulation frameworks specifically designed for analyzing the

accuracy effects of common DNN optimizations like low-

precision training. These tools provide convenient APIs to

configure and emulate low-precision arithmetic in the train-

ing process by modifying the computation graphs of DNN

models. Unlike architectural simulators, DNN emulators are

built as extensions over popular machine learning frameworks

like TensorFlow [3] or PyTorch [54] and can be executed over

general-purpose accelerators like GPUs. This enables fast

prototyping of arbitrary low-precision numerical formats and

evaluating their effects on standard DNN benchmark mod-

els within reasonable time frames. However, we observe that

extending these tools to support other hardware features like

approximate or sparsity-aware computing require significant

effort from the user. On top of this, current DNN emulators

are designed to perform low-precision arithmetic emulation

at the DNN layer-level granularity. Under this strategy, the

computation of individual layers in the DNNs like matrix

multiplication and convolution is performed using standard

32-bit floating point format, and the output is rounded down

to the user-defined numerical format. We observe that this

coarse-grained emulation approach can produce numerically

inaccurate results compared to the real hardware. Our em-

pirical evaluation reveals that the relative numerical error of

low-precision arithmetic emulation in state-of-the-art DNN

emulators can be as high as 15% (more details in section 3).

We argue that such inaccurate emulations could lead to incor-

rect evaluation of hardware designs in DNN accelerators.

In this work, we build an easy-to-use, extensible, and more

importantly numerically accurate emulation tool called Ar-

bitor for empirically evaluating DNN accelerator designs. Ar-

bitor is built on top of TensorFlow and provides extensions to

its Keras front-end APIs for users to easily configure and em-

ulate common hardware features like low-precision training,

approximate computing, and sparsity-aware processing on

standard DNN models. In contrast to other DNN emulators,

Arbitor emulates the user-defined hardware features at the

granularity of the primitive mathematical operations in the

DNN layers to accurately mimic the behavior of real hard-

ware. We support this fine-grained emulation in Arbitor with

the help of the XLA compiler-backend in TensorFlow [23].

Modern machine learning compilers like XLA use domain-

specific intermediate representations (IR) for defining the op-

erations in the DNN computation graphs. These IR definitions

of DNN operations are designed to be hardware-independent

and are progressively lowered to GPU executable kernels

by the compiler. We make a key observation that it is possi-

ble to automatically generate GPU kernels that emulate the

user-defined hardware features by modifying the code gen-

eration pipeline of TensorFlow XLA. We empirically show

that, compared to the state-of-the-art layer-level emulation

approach, the operator-level emulation strategy of Arbitor

can perform arithmetic operations and generate results that

accurately match the results from real hardware.

We subsequently use Arbitor to conduct a series of sen-

sitivity studies on the effects of low-precision training, ap-

proximate, and sparse computing on popular DNN architec-

tures like Transformer [65], ResNet-18 [26], Convolutional

Recurrent Neural Network (CRNN) [66], and Graph Neural

Network (GNN) [73]. First, we conduct an extensive analy-

sis of various non-standard floating point specifications and

find that DNN models can maintain their accuracy with much

lower precision than many standard floating point formats

supported in current DNN accelerators. We also observe that

the numerical precision can be reduced even further by comb-

ing low-precision formats with the standard single-precision

floating point. Second, we also analyze the effectiveness of

newly proposed non-floating point numerical formats like

Posit [25] on DNN training. We find that, contrary to the

prior observations [59], Posit does not yield better model ac-

curacy compared to floating point. Third, we evaluate a pop-

ular approximate computing optimization technique called

piece-wise linear approximation [35] and find that natural

language processing (NLP) models like CRNN can maintain

their baseline accuracy even with aggressive approximations.

Finally, we analyze the effect of sparse computing and ob-

serve that enforcing more than 50% sparsity on DNN training

can significantly affect the model accuracy. To the best of our

knowledge, we are the first open study to conduct such an

extensive analysis of common DNN accelerator designs using

numerically accurate methods and tools.

In summary, we make the following contributions:

• We highlight that the hardware research community is

currently lacking a fast and accurate hardware analysis

tool for DNN training accelerators as state-of-the-art

tools are either prohibitively slow or are susceptible to

numerical inaccuracy.

• We build a hardware emulation tool Arbitor using a

compiler-assisted fine-grained emulation strategy for

numerically accurate emulation of optimizations like

low-precision, approximate, and sparse computation.

• Using Arbitor, we conduct the first in-depth empirical

analysis on the effects of low-precision arithmetic, ap-

proximate computing, and sparsity-aware processing on

the accuracy of popular DNN models like Transformer,

ResNet-18, CRNN, and GNN. We will be open-sourcing

Arbitor soon for supporting empirical research in DNN

accelerators.
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2 Hardware Accelerators for DNN Training

Modern DNN models [15,17,26,44] contain millions to even

trillions of parameters and are trained for hours to months

by iteratively processing large batches of data from humon-

gous datasets and updating the model parameters to minimize

the prediction error until the model converges to the desired

accuracy. The DNN training process primarily consists of

the repeated execution of computationally expensive alge-

braic functions such as matrix multiplication, convolution,

and element-wise operations. Fortunately, these functions ex-

hibit abundant computational parallelism which can be lever-

aged to speed up the training process using parallel processing

hardware accelerators like graphics processing units (GPUs).

While GPUs have been the mainstay for DNN training, in

recent years, there has been an increasing interest in devel-

oping more specialized accelerators. For example, Google

TPU [31], Habana Gaudi [30], Graphcore IPU [24], Cerebras

Wafer-Scale engine [14], and Amazon Trainium [5] are a

few notable examples of commercial DNN accelerators. In

addition to massively parallel processing capabilities, these

accelerators also employ several hardware-level optimizations

that exploit the inherent error-resilient nature of DNNs to im-

prove training performance and hardware utilization. Below,

we describe the three most common categories of hardware-

level optimizations supported in DNN accelerators.

1. Low-precision arithmetic. Unlike regular parallel pro-

cessing applications that require high-precision floating point

computation, DNN models are highly tolerant towards us-

ing reduced-precision arithmetic due to the error-correcting

nature of the training algorithm. Therefore, many DNN ac-

celerators support low-precision numerical formats that use

fewer bits than the standard 32-bit single-precision floating

point (FP32). This enables accelerators to provide higher pro-

cessing power from the same hardware budget. For example,

Nvidia GPUs can perform 2× higher floating point opera-

tions (FLOPS) with half-precision (FP16) than using single-

precision format [52]. Additionally, low-precision data for-

mats can also help reduce the memory footprint of DNNs and

in turn, improve the cache utilization and lower the memory

bandwidth pressure during training. As a result, many mod-

ern DNN accelerators support a wide range of low-precision

floating point formats outside the traditional IEEE-754 stan-

dard [2] as shown in Figure 1.

In general, floating points are represented using a sign bit,

exponent bits, and mantissa bits. The range and the preci-

sion of a particular format are determined by the number of

exponent and mantissa bits respectively. Therefore, differ-

ent low-precision formats make the fundamental trade-off

between the range and the precision of values the type can

represent. For example, FP16 uses 5 exponent and 10 man-

tissa bits and has a limited range (i.e., ±65,504) compared to

FP32 (i.e., ±3.40×1038). An alternative 16-bit format called

brain float 16 (BF16) [32], on the other hand, uses 8 exponent

sign

FP32

FP16

BF16

TF32

FP24

cFP8

1bit 8 bits 23 bits

1bit 5 bits 10 bits

1bit 8 bits 7 bits

1bit 8 bits 10 bits

1bit 7 bits 16 bits

1bit 5 bits 2 bits

1bit 4 bits 3 bits

1bit 3 bits 4 bits

exponent mantissa

Figure 1: Common floating point formats in DNN accelerators

bits and 7 mantissa bits and can support a similar range of

values as that of FP32. Since BF16 format trades precision

in favor of a wider range, it has shown to be better suited for

DNN training than the standard FP16 and is widely supported

in many DNN accelerators [32].

In addition to floating point formats, hardware researchers

have also been exploring other data formats e.g., fixed-point

arithmetic [41, 71, 74]. In contrast to floating points, fixed-

point arithmetic lends itself to a simpler hardware design

with a smaller chip area and lower power consumption [27]

but lacks the dynamic range and precision that floating point

formats have. In recent years, there has also been propos-

als [13, 46] in using the novel Posit formats [25] for DNN

training as it takes less circuitry than floating point processing

units while providing a wider dynamic range. Despite this

significant research attention, finding numerical formats that

make the right trade-offs in DNN training workloads is still

an open research problem.

2. Approximate computation. The training computation of

DNN models is mostly dominated by linear algebraic func-

tions like matrix multiplication and convolution. These func-

tions are composed of numerous primitive mathematical op-

erations like addition and multiplication that maps very well

with the thousands of parallel arithmetic units provided by

the DNN accelerators. In addition to these, many DNN mod-

els also contain operations that use non-linear functions. For

example, modern NLP and image classification models use

complex activation functions like tanh, sigmoid, GeLU [28],

and Swish [58] which are shown to play an important role in

achieving high accuracy for the models. However, the exact

computation of these functions is often very expensive to

perform in the hardware because of the exponentiation and

division terms present in the functions. Instead, DNN accelera-

tors employ approximations of such functions that are cheaper

to implement in hardware. Examples of such approaches in-

clude piece-wise linear/non-linear approximations [35, 61],

lookup table [37], bit-level mapping [69], or a hybrid of these

methods. Such approximations in DNN accelerators enable

them to achieve improved hardware performance and lower

chip area at the expense of imprecise computation of the non-

linear functions. Therefore, more aggressive approximations

can potentially affect the convergence of DNN training.
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3. Sparsity-aware computation. Large DNN models are

known to exhibit a significant amount of redundancy due

to the over-parameterization of the model architecture [22].

There have been several efforts in exploiting this redundancy

to improve performance and reduce the memory footprint of

DNN workloads. For example, software-level optimizations

such as DNN pruning [10] has found effective in significantly

reducing the model size by removing the redundant parame-

ters from the model. However, naiv̈ely applying DNN pruning

often ends up with models having randomly distributed spar-

sity patterns. Since DNN accelerators are primarily designed

to process dense data structures, extracting performance ben-

efits from DNNs with unstructured sparsity is often chal-

lenging. To address this issue, modern DNN accelerators are

equipped with specialized processing cores that can improve

the performance of DNN applications in the presence of semi-

structured sparsity patterns. For example, the latest Nvidia

A100 GPUs support Sparse Tensor Cores that can accelerate

matrix multiplication operations by 2× for operands having

2:4 structured sparsity.1 Recent works [56, 72] have proposed

hardware-software co-optimizations that follow structured

DNN pruning strategies during the training process to take ad-

vantage of such sparsity-aware processing units. Despite the

potential performance improvements, enforcing structured

sparsity during training is shown to have a significant im-

pact on the convergence of the DNNs [68]. Finding the right

balance between structural sparsity and model accuracy is

currently an active area of research.

3 Need for an Accurate Hardware Analysis

Tool for DNN Accelerator Design

Many of the aforementioned optimization strategies have the

potential to significantly improve the performance of DNN

training. However, at the same time, depending on the de-

gree and aggressiveness of the optimizations, they can also

negatively affect the model accuracy. Therefore, designing

accelerators for DNN training requires taking both hardware

performance and accuracy effects of the optimizations into

consideration. Even though there are standard methods and

tools available to prototype different chip designs and esti-

mate their performance, they fail to be a good fit for analyzing

their effects on model accuracy as we explain below.

Limitations of Traditional Verification Tools. One of the

most common and cost-effective approaches for prototyp-

ing and verifying hardware designs is to use architectural

simulators [4, 29]. Hardware researchers use simulators like

GPGPU-sim [8], gem5 [9], and Multi2Sim [64] to evaluate

architectural design choices by running software-based sim-

ulations of the proposed features and collecting hardware

performance counters like instructions per cycle (IPC), cache

1Here, an N:M sparsity indicates that out of every block of M contiguous

values in the input operands, only N values are non-zero.

utilization, and energy consumption. These tools are designed

to run simulations with circuit-level precision, but they come

at the cost of high execution time. Our empirical evaluation

shows that running a single 1024×1024 FP32 matrix multi-

plication using GPGPU-sim is more than 5 orders of magni-

tude slower than running on bare-metal GPUs. Since train-

ing involves iteratively executing many such operations and

can take anywhere from hours to months to finish even on

powerful hardware [49, 75], it becomes prohibitively time-

consuming to use these simulators to analyze the convergence

effects of hardware optimizations on modern DNN models.

FPGA-based prototyping is another approach followed in

the industry for hardware design verification. Programmable

chips like FPGAs allow accurate verification of the functional

logic of a design and the ability to run benchmark applica-

tions on custom-designed chips at a speed closer to the perfor-

mance of the physical hardware. But programming FPGAs to

reliably implement the desired hardware features is a labor-

intensive task and requires special expertise and infrastructure

support that is often beyond the reach of many independent

researchers [60]. On top of this, building a full-fledged soft-

ware stack that can provide the requisite runtime support for

training DNN models is a major engineering undertaking that

requires significant time and financial investment.

Since analyzing the statistical effects of DNN accelerator

optimizations using traditional hardware verification tools

is difficult and time-consuming in practice, hardware re-

searchers often end up making design decisions using limited

empirical analysis of the design or based on speculations. As

hardware manufacturing is an extremely lengthy and expen-

sive process, this could potentially cost a substantial amount

of time, money, and resources. To take a real-world example,

Nvidia first introduced half-precision floating point (FP16)

support in Tesla P100 GPUs [52] in 2016 to deliver higher

performance for deep learning workloads. However, it was

soon observed that using half-precision in training can cause

serious convergence issues on many models as algebraic func-

tions like matrix multiplication, convolution, and batch nor-

malization perform reduction over large dimensions of matri-

ces and can suffer from higher accumulation error compared

to single-precision (FP32) training. To correct this issue, it

took researchers another two years to find a software-level fix

called mixed-precision training [48] that uses a combination

of FP16 and FP32 precision (for computation and reduction

respectively) to curtail the numerical errors. More recently,

Nvidia introduced a 19-bit floating point format called Tensor

Float (TF32) in their Ampere architecture-based GPUs [51] as

a drop-in replacement for FP32 data type. This again caused

major pushback from the machine learning community for

the numerical instability it caused on certain non-standard

deep learning workloads [57]. These anecdotes suggest the

importance of having rigorous methods and tools for analyz-

ing the accuracy effects of DNN accelerator designs as early

in the hardware manufacturing process as possible.
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Inadequacy of Current Emulation Tools. To meet this

unique requirement of DNN accelerator research and devel-

opment, recent works have proposed hardware emulation

tools such as TensorQuant [45], QPyTorch [70], and Gold-

enEye [47]. Unlike architectural simulators that perform ex-

pensive cycle-accurate simulations of the entire hardware,

these tools are specifically designed for analyzing DNN opti-

mizations like low-precision training by emulating arbitrary

numerical formats on general-purpose accelerators like GPUs.

State-of-the-art DNN emulators are built on top of popular

machine learning (ML) frameworks like TensorFlow [3] and

PyTorch [54], and provide extensions to their front-end APIs

to configure and train DNN models using user-defined numeri-

cal formats. These tools take advantage of the fact that the ML

frameworks represent DNN models as layers of well-defined

algebraic functions, and therefore, the numerical errors in-

troduced by low-precision arithmetic in DNN training can

be emulated by replacing the individual layers with corre-

sponding software-emulated functions. Since these tools are

well-integrated with ML frameworks and allow fast exper-

imentation through GPU-accelerated emulation, they make

a convenient tool for quick exploration of the low-precision

data formats on a wide range of DNN models.

Despite being a promising approach, current DNN emula-

tion tools suffer from two major limitations. First, they are

primarily designed to target only a narrow scope of DNN op-

timizations, namely, low-precision training. Supporting other

optimizations like approximate or sparsity-aware computation

require intrusive changes in these tools due to their tightly

coupled design and implementation with the underlying ML

frameworks and the targeting GPU backend. Second and more

importantly, we observe that the current DNN emulators are

susceptible to numerical inaccuracies due to a coarse-grained

emulation strategy that they follow. Under this strategy, the

low-precision arithmetic emulation is achieved by performing

individual algebraic functions in the DNN model using the

standard FP32 format supported in GPUs and then rounding

the output down to the user-defined low-precision format.

Even though this layer-level rounding approach lends itself

to a simpler DNN emulator design, we observe that this strat-

egy fails to accurately reproduce numerical errors that can

occur with low-precision arithmetic. For instance, many DNN

layers like matrix multiplication and convolution internally

perform several primitive mathematical operations like multi-

plication and addition. Under the coarse-grained layer-level

emulation approach, these primitive operations are performed

using higher-precision FP32 arithmetic. As a result, they fail

to account for the low-precision multiplication and accumula-

tion error occurring within the algebraic functions.

rnd((a1 ∗b1)+(a2 ∗b2)+(a3 ∗b3)) (1)

To illustrate this limitation, we use a simple matrix multi-

plication between a 1×3 matrix ([a1 a2 a3]) and a 3×1

matrix ([b1 b2 b3]
T ) as an example. Equation 1 shows the
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definition of this matrix multiplication performed using FP16

arithmetic following the layer-level emulation strategy. In this

case, all the primitive multiplication and addition operations

are performed using FP32 arithmetic, and only the final result

is rounded to FP16 using rnd(). In contrast, an accurate em-

ulation of FP16 matrix multiplication requires rounding on

every primitive operation as shown in Equation 2.

rnd(rnd(rnd(a1 ∗b1)+ rnd(a2 ∗b2))+ rnd(a3 ∗b3)) (2)

To empirically estimate the extent of the inaccuracy, we em-

ulate FP16 arithmetic using the layer-level strategy on matrix

multiplication and 3×3 convolution operation over 128×128

matrices. Then we compare the output matrix generated with

that obtained using the native FP16 supported in real hard-

ware such as Nvidia 2080 Ti GPU [53]. Figure 2 shows the

relative error between the emulated and the hardware native

outputs on different input matrices with floating point val-

ues randomly generated from the range [10−6
,10−2]. As we

show, in comparison to the GPU native FP16 results, the re-
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sult generated by the emulated version can differ by as much

as 15.74%. Since DNN training is an iterative process, such

numerical inaccuracies in emulation can accumulate over the

course of training, leading to making incorrect assessments

about the effects of low-precision data formats on the DNN

accuracy. To demonstrate this, we first train ResNet-50 using

both FP32 and FP16 on Nvidia 2080 Ti and get validation

accuracy curves as shown in Figure 3. The highest accuracy

with FP16 is 70.36%, which is 3.7% lower than FP32 due to

the numerical error with low-precision arithmetic. We sub-

sequently use the state-of-the-art QPyTorch which applies

layer-level emulation to run the training with emulated FP16.

However, the validation accuracy using emulated FP16 in

QPyTorch is observed to be close to the native FP32 accu-

racy. This shows that the layer-level emulation strategy fails

accurately reproduce the numerical error of FP16 arithmetic.

Based on the above observations, we argue that current

DNN emulators are ill-suited for accurately estimating the

accuracy effects of low-precision arithmetic on DNN training

due to their inherent design limitations.

4 Arbitor: Overview

To address the aforementioned limitations, we propose Ar-

bitor. Arbitor strives to achieve three main goals. First, to pro-

pose a DNN emulator with an extensible design that can emu-

late common hardware-level optimizations like low-precision

training, approximate computation, and sparsity-aware pro-

cessing. Second, to enable easy prototyping of these opti-

mizations and facilitate empirical analysis on their statistical

effects on popular DNN models. Finally, we strive to provide

numerically accurate emulation support that precisely mimics

the functional logic of the hardware optimizations on general-

purpose accelerators like GPUs. To achieve these goals, we

make the following implementation choices.

First, we build Arbitor on top of the popular machine learn-

ing framework TensorFlow [3]. TensorFlow supports the con-

venient and user-friendly Keras front-end APIs for writing

DNN training applications and offers implementations of a

wide range of state-of-the-art DNN models [33]. To allow fast

prototyping of low-precision arithmetic, approximate compu-

tation, and sparsity-aware processing on DNN models, Arbitor

provides extensions in the Keras APIs for the users to define

two emulation policies: (i) Data type policy for defining ar-

bitrary precision numerical formats and the implementations

of basic primitive mathematical operations on top of the user-

defined data types. (ii) Masking policy for enforcing N : M

sparsity patterns on the parameter updates during training.

Providing numerically accurate emulation support for these

hardware features requires fine-grained manipulations of the

computations involved in DNN training workloads. However,

manual modifications to the implementation of algebraic func-

tions in the ML framework are intrusive and require signifi-

cant engineering effort. Such modifications can also hamper

the extensibility of the emulation tool, as supporting new

DNN models or hardware features would require potential

code changes. To address these challenges, we make a key

observation: despite the apparent differences among hardware

features like low-precision arithmetic, approximate comput-

ing, and sparsity-aware processing, all of them can be emu-

lated by manipulating a small set of primitive operations, such

as addition, multiplication, memory read and write, which

constitute the DNN algebraic function implementations.

Based on this observation, we design Arbitor with the help

of the XLA compiler in TensorFlow [23] to provide fine-

grained emulation support. The XLA compiler operates on

an intermediate representation (IR) named HLO IR, which

precisely represents the computation through a concise set

of fundamental primitive operations. This representation for-

mat of DNN computation is particularly well-suited for fine-

grained manipulations to support numerically accurate emula-

tion. Moreover, due to the model and hardware-independent

nature of HLO IR, this compiler-based design of Arbitor pro-

vides seamless support for a wide range of DNN models and

easy extensions for the emulation of more DNN accelerator

optimizations. The XLA compiler compiles the high-level

computation graph of DNN progressively down to hardware-

specific kernels using standard code generation techniques,

as illustrated in Figure 5. Initially, the computation graph de-

scribed in the Keras front-end is transformed to HLO IR. The

XLA compiler takes the HLO IR as the input and proceeds

to perform a series of optimizations and analyses, ultimately

lowering the HLO IR to hardware-specific kernel implemen-

tations. Notably, XLA leverages LLVM infrastructure for

generating kernels on GPU, which is the target environment

of Arbitor. During this process, Arbitor incorporates user-

defined emulation policies into the computation by modifying

the compilation pipeline.

Below, we provide details about the emulation policies and

the fine-grained emulation strategy supported in Arbitor.

4.1 Emulation Policies

Figure 5 shows an example of Keras computation using the

two emulation policies supported in Arbitor. Users can define

and configure the dtype and mask policies using the Keras

APIs. The policies can be assigned either to specific layers (in

the Figure 5), or as a global policy for the entire DNN model.

The data type policy allows users to configure low-

precision arithmetic and approximate computing emulation.

Under this policy, the user can define a custom data type spec-

ification as an implementation of an abstract C++ class called

Cus. The specification should include two components. First,

two casting functions to convert the custom data type to and

from the standard FP32 data type. Second, implementations

of primitive mathematical operations over the custom data

type such as addition and multiplication, and mathematical

functions such as exponent and logarithm.
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class EmuBF16: public Cus {
public:
    unsigned int v;
    EmuBF16(unsigned int v) : v(v) {}
};
EmuBF16 from_float(float f) {
    unsigned int bits = *(unsigned int*)&f;
    unsigned int rounding_bias = 0x7fff + ((bits >> 16) & 1)
    return EmuBF16((bits + roounding_bias) >> 16);
}
float to_float(EmuBF16 b) {
    unsigned int bits = b.v << 16;
    return *(float*)&tmp;
}
EmuBF16 operator+(const EmuBF16& a, const EmuBF16& b) {
    return from_float(to_float(a) + to_float(b));
}
EmuBF16 operator*(const EmuBF16& a, const EmuBF16& b) {
    return from_float(to_float(a) * to_float(b));
}
....

Figure 4: Custom data type specification of BF16

Figure 4 shows a specification of BF16 [32] data type in

Arbitor named EmuBF16. In this example, from_float and

to_float are the two casting functions. In addition, the Fig-

ure also shows example implementations of addition and

multiplication operations defined over EmuBF16. It should be

noted that the abstract class Cus makes very few assumptions

about the specification of the data type and the implementa-

tions of the primitive operators. This allows Arbitor to support

a wide range of arbitrary numerical formats and customized

operator implementations on top of them to emulate low-

precision arithmetic and approximate computing.

Next, the masking policy allows the users to configure

an arbitrary N : M sparsity pattern on the layers during the

training process. In addition to N and M, the masking policy

also takes a scoring function as a configuration parameter. The

scoring function is a user-defined function that takes an array

of M values as input and assigns an importance score for each

value in the array. The masking policy defined in Figure 5

uses the absolute value as the scoring function. Based on these

configurations, Arbitor dynamically generates masks for each

parameter and gradient matrices accessed during the training

and selects the top N values with the highest importance score

on every block of M contiguous values in the matrix.

Once the policies are defined and assigned, Arbitor auto-

matically takes care of emulating the corresponding hardware

feature in the DNN training computation as we explain below.

4.2 Compiler-Aided Fine-Grained Emulation

Arbitor generates customized GPU kernel implementations to

achieve numerically accurate emulation of user-defined data

types and masking policies by leveraging the XLA compiler.

For the emulation of low-precision arithmetic and approxi-

mate computing, Arbitor injects user-defined data types and

operator specifications into the generated kernels. This is ac-

complished by compiler passes that replace the primitive oper-

ations in the HLO IR with the corresponding user-defined op-

erations and automatically insert casting operations for FP32

inputs, as shown in Figure 5. For example, when emulating

the user-defined EmuBF16 arithmetic in matrix multiplication,

the default FP32 addition and multiplication operations within

the kernel are replaced with the corresponding functions de-

fined in the data type specification. This approach could also

support emulating approximation of intricate mathematical

operations, such as exponential function and hyperbolic tan-

gent (tanh) function, where users are granted the capability to

define customized implementations of these complex opera-

tions based on approximation techniques like the piecewise-

linear approximation [35]. All of these are made possible

because Arbitor makes few assumptions of specifics of data

type representation and operator behavior that users provide.

Similarly, the masking policy in Arbitor enforces sparsity

patterns on weight and gradient matrices by overriding the

memory access operations to these matrices with masking op-

erations, as shown in Figure 5. Therefore, whenever the values

in the matrices are read during the training process, Arbitor

dynamically generates the corresponding mask according to

users’ specifications and computes the element-wise product

between the user-defined mask and the accessed matrix, re-

turning the resulting masked values. This approach allows

Arbitor to preserve the original matrices to handle dynami-

cally changing sparsity patterns during training.

Emulating at the granularity of these primitive operations

allows Arbitor to accurately mimic the numerical behaviors

of the algebraic functions on real hardware, as shown in Equa-

tion 2. To empirically validate this, we re-run the experiment

in Figure 2 and Figure 3 using Arbitor-emulated FP16 and

compare the results against the hardware native FP16 results.

The results of matrix multiplication and convolution using

Arbitor’s emulated FP16 precisely match with the hardware-

native FP16 results with zero relative error, affirming that

Arbitor is numerically accurate. Furthermore, we also show

in Figure 3 that the validation accuracy curve of ResNet-

50, employing Arbitor’s emulated FP16 arithmetic, closely

matches that obtained with native FP16. The margin of error

in the validation accuracy achieved is only 0.48%. In contrast,

the accuracy obtained by QPyTorch exhibits a discrepancy of

4.32% from native FP16 accuracy. These findings underscore

Arbitor’s capability to accurately estimate the effects of low-

precision arithmetic on DNN training. In addition, we also

analyse the emulation overhead of Arbitor compared to hard-

ware native performance that can be found in Appendix B.

5 Arbitor: Case Studies

We build Arbitor to provide a reliable analysis tool for hard-

ware research to explore DNN accelerator design space. We
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Figure 5: Arbitor workflow and multiple layers of IR

illustrate the benefits of Arbitor through a series of case stud-

ies on common hardware-level optimizations proposed for

DNN accelerators. Specifically, we conduct an in-depth em-

pirical analysis on the sensitivity of low-precision training,

approximate computing, and sparsity-aware processing on

DNN training. To the best of our knowledge, we are the first

open study to conduct a numerically accurate and extensive

study on these optimizations. We would also like to highlight

that the case studies presented in this section are just a few

examples of the many potential applications of Arbitor. We

believe Arbitor is flexible and extensible to provide emulation

support for an even wider range of hardware features.

5.1 Experiment Setup

Model Dataset Accuracy

ResNet-18 [26] CIFAR-10 [36] 93.78

GNN [73] Cora [62] 84.06

Transformer [65] FordA [1] 87.24

CRNN [66] eng-fra [12] 87.25

Table 1: Benchmark models, datasets, and baseline accuracy

Workloads: Table 1 shows the DNN models we use in our ex-

perimental study, namely ResNet-18 [26], Transformer [65],

GNN [73], and CRNN [66], selected from the Keras model

hub [33]. These model implementations are based on a di-

verse range of model architectures that are part of the standard

DNN training benchmark suite MLPerf [49]. For instance,

ResNet-18 is a convolutional neural network (CNN) that is

used for image classification applications. Transformer model

is an attention-based DNN used in sequence classification and

translation. GNN is a graph neural network used for node pre-

diction in graph datasets. CRNN is a recurrent neural network

(RNN) based model used for natural language translation.

Hardware and Runtime: We conduct our experiments on

32-core AMD EPYC 7371 machines with four Nvidia 2080Ti

GPUs each with 12 GB memory. The runtime environment

uses Ubuntu 20.04 with CUDA 11.0, cuDNN 8.0, and CUT-

LASS 2.6. Arbitor is built on top of TensorFlow v2.4.0 [3].

Metrics: In our experiments, we use the peak validation ac-

curacy as the main evaluation metric. To measure the accu-

racy, we train ResNet-18 for 100 epochs, Transformer for 120

epochs, GNN for 300 epochs, and CRNN for 100 epochs on

their respective data sets. We train each model three times and

use their averaged accuracy for comparison to minimize the

effects of slight variations in the final accuracy. We use the val-

idation accuracy of each model trained using single-precision

floating point (FP32) as the baseline for all our comparisons.

The baseline accuracy of each model is shown in Table 1.

5.2 Case Study #1: Low-Precision Training

We use Arbitor to investigate the impact of low-precision

arithmetic on the model accuracy by training the DNN models

in Table 1 with different numerical formats. Current DNN

accelerators support a variety of floating point formats with

different numbers of exponent and mantissa bits, as described

in Section 2. Therefore, we conduct a sensitivity study on

different floating point formats and analyze how they affect

the model accuracy. In addition, we also evaluate the effects

of other numerical formats like Posit [25] on DNN training.
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Figure 6: Validation accuracy of models trained using different exponent and mantissa widths of floating point format

5.2.1 Sensitivity Study on Floating Point Numbers

Single-precision floating point (FP32) is one of the most com-

monly used numerical formats for DNN training. According

to IEEE 754 standard [2], FP32 is specified as follows.

value =











(−1)s ×2−126 ×0.m if e = 0x00 (subnormal)

NaN or in f if e = 0xFF

(−1)s ×2(e−127)×1.m otherwise (normal)

(3)

Here, s, e, and m correspond to the sign, exponent, and man-

tissa of the FP32 value. As shown in Equation 3, the speci-

fication primarily follows two different modes, normal and

subnormal, depending on the value of the exponent. Other

floating point formats supported in DNN accelerators also

follow a similar specification but with different numbers of

exponent and mantissa bits, each making different trade-offs

in the range and precision of values it can represent.

To analyze the sensitivity of model accuracy towards differ-

ent floating point specifications, we define a data type policy

in Arbitor of a generic floating point specification with con-

figurable exponent and mantissa bits based on the IEEE 754

standard. We use eXmY to represent a floating point specifi-

cation with 1 sign bit, X exponent bits, and Y mantissa bits.

Using the custom floating point format, we train the DNN

models in two ways. First, we train and measure the accuracy

of the models while only using the custom floating point for-

mat for the whole model. Second, we use a combination of

the custom floating point and FP32 arithmetic following the

mixed-precision training strategy described in Section 3. Un-

der this strategy, all arithmetic operations are performed using

the custom floating point except the reduction operations in

algebraic functions like matrix multiplication, convolution,

and batch normalization which are performed using FP32

arithmetic. Figures 6a to 6d shows the validation accuracy

measured on models trained using custom floating point for-

mat by varying the number of exponent and mantissa bits.

Observation 1: DNN models can maintain their accu-

racy with much lower precision than many standard

low-precision floating point formats supported in cur-

rent DNN accelerators (e.g., BF16 and TF32). Addition-

ally, the precision can be reduced even further by using

single-precision arithmetic for reduction operations.

From our results, CRNN, GNN, Transformer, and ResNet-

18 can train to the FP32 accuracy with e6m6, e6m3, e6m4,

and e6m6 respectively. That means, reserving 6 bits for the ex-

ponent is sufficient to represent the floating point values gen-

erated during the training of these models which is lower than

the standard floating point formats like FP32 (e8m23), BF16

(e8m7), and TF32 (e8m10), but higher than FP16 (e5m10).

Reducing the exponent and mantissa bits beyond these config-

urations either causes a drop in accuracy or makes the models

fail to converge altogether. We also observe that the accuracy

of the models is less sensitive towards mantissa bits than ex-

ponent bits. This reasserts the fact that an optimal numerical

format for DNN training workloads should allocate more bits

for exponent and less for mantissa to be able to represent

a wide range of values. Moreover, the mantissa bits can be

further reduced for CRNN, GNN, and ResNet-18 to e6m1,

e6m2, and e6m2 respectively using FP32 arithmetic for re-

duction operations. This suggests that the numerical errors in

low-precision training are primarily contributed by reduction

operations. Therefore, using a combination of low and high-

precision floating point formats in training can provide higher

training performance with little to no loss in accuracy.
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Next, we evaluate the importance of handling subnormal

numbers in floating point formats. The subnormal mode in

the floating point specification is introduced to gracefully han-

dle underflow for the values that fall between zero and the

smallest floating point number normal mode can represent.

However, handling the subnormal mode in floating point im-

plementation adds extra complexity to the hardware design.

Therefore, certain implementations like BF16 in TPUs [31]

do not support subnormal mode. In Figures 6a to 6d, we show

the model accuracy measured using the custom floating point

specification but with the subnormal numbers set to zero.

Observation 2: Subnormal mode has negligible impact

on the model accuracy.

Comparing the accuracy measurements with and without

subnormal mode, we observe that the subnormal numbers

can often be safely ignored on configurations with sufficient

exponent bits without affecting the model accuracy in almost

all cases. This is due to the fact that floating point specifi-

cations with larger exponent bits have a smaller subnormal

range and therefore approximating a small range of subnormal

numbers to zero only introduces minimal numerical error in

low-precision training. However, in certain cases like ResNet-

18, low-precision training without subnormal mode can cause

a slight drop in the accuracy of about 1.46%. We also observe

that this accuracy loss can be compensated by adding more

mantissa bits. For instance, ResNet-18 can achieve the base-

line accuracy using e6m8 without subnormal compared to

e6m6 with subnormal mode.

5.2.2 Posit as an Alternative for Floating Point

Even though floating point formats are the industry standard,

there have been proposals for alternative numerical formats

in the literature. Posit [25] is one such example and is a

novel data type designed as a direct drop-in replacement for

IEEE standard 754 floating point formats. Posit format is

purportedly more hardware-friendly with lower power use

and a smaller silicon footprint and can perform more oper-

ations per watt and per dollar than floating points under the

same hardware budget. Moreover, the original paper [25] and

subsequent studies [42] have shown that Posit can represent

decimal numbers more precisely than floating point format on

common arithmetic and linear algebra operations. Therefore,

Posit is considered to be a viable alternative for floating point

in deep learning applications. In this section, we evaluate the

effectiveness of Posit in DNN training with Arbitor.

An n-bit Posit format with es exponent bits, abbreviated as

P(n,es), is represented using a sign (s), regime (k), exponent

(e), and fraction ( f ) bits as follows:

value = (−1)s ×22es×k ×2e × (1. f ) (4)

Similar to the floating point sensitivity study, we specify

a data type emulation policy in Arbitor using the software-

based Posit implementation available in the BFP library [40].

Then we train CRNN, GNN, and Transformer models using

Posit configurations with different n and es values. Figure 7

shows the validation accuracy measured on these models.

Observation 3: Contrary to the observations made in

prior works [59], low-precision training with Posit does

not yield better accuracy compared to floating point.

CRNN, GNN, and Transformer achieves the FP32 accuracy

with P(13,3), P(11,3), and P(9,2) respectively. However, com-

paring a Posit and floating point configuration that uses the

same number of bits in total, we observe they both converge

to similar accuracy. This suggests that the higher precision of

the Posit representation has limited benefits for DNN training

workloads which are known to be tolerant of low-precision

arithmetic. Despite this, we believe that Posit can still be a

viable replacement for floating point in DNN accelerators due

to its comparatively simpler and hardware-friendly design.

It is important to note that, the observation we make above

goes against some of the prior works that claim that Posit

can achieve better accuracy compared to floating point with a

smaller hardware budget. For instance, Raposo et. al [59] have

shown that 8-bit Posit can substitute 32-bit floating point for

DNN training with no impact on accuracy. This underscores

the importance of using a numerically accurate hardware

emulation tool like Arbitor for such analysis. Moreover, the

experimental evaluation conducted in this work was based on

smaller models and datasets than what we use in our study.

We believe our emulation tool can help hardware researchers

to conduct accurate experimental analysis in the future and

avoid making suboptimal design decisions.

5.3 Case Study #2: Approximate Computing

In this section, we use Arbitor to conduct a sensitivity study

on a common approximate computing technique called piece-

wise linear approximation. As described in Section 2, piece-

wise linear approximation has been proposed as a cost-

effective way to support non-linear algebraic functions like

exponents and tanh that are common in natural language pro-

cessing (NLP) models [35, 61, 69]. The key idea of this op-

timization is to break down curves of a non-linear function

into pieces of line segments each approximating a part of the

curve. Therefore, the fewer the pieces of line segments, the

higher the numerical error in the approximation.

We analyze piece-wise linear approximation of the non-

linear functions tanh and sigmoid in the CRNN model and

their effect on the model accuracy by varying the number of

pieces in the approximation. For this, we use the data type

emulation policy in Arbitor to override the tanh and sigmoid

function implementations of FP32 arithmetic with the piece-

wise approximated version. Table 2a shows the validation

accuracy curve of CRNN measured during the training.
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Figure 7: Validation accuracy of models trained using Posit format with different total bit widths and exponent bits

Observation 4: CRNN model can tolerate aggressive ap-

proximation on non-linear functions without affecting

the accuracy.

We observe that even with an aggressive 3-piece approxi-

mation on both tanh and sigmoid functions, CRNN can main-

tain the baseline FP32 accuracy. This shows that piece-wise

linear approximation is an effective optimization for DNN

training. We also observe that a more aggressive 2-piece ap-

proximation on either function can significantly reduce the

accuracy by up to 5%, and the accuracy drops further by 12%

if both use 2-piece approximation. Since piece-wise linear ap-

proximation is often used in FPGAs and ASICs designed for

NLP models, we believe our tool can be helpful in estimating

the trade-offs of the approximation for specific models.

5.4 Case Study #3: Sparsity-Aware Processing

Finally, we use Arbitor to analyze how structured sparsity can

affect the model accuracy. Sparsity-aware processing units

are one of the recent innovations in DNN accelerators, e.g.,

Sparse Tensor Cores in Nvidia A100 [51]. Sparse tensor pro-

cessing cores are designed to accelerate matrix multiplication

over matrices with N : M sparsity patterns, i.e., at most N

values in every contiguous M block of values are non-zero.

However, prior works [72] have pointed out that sparsity in

DNN training is inherently unstructured, and enforcing any

kind of structure to it in order to leverage Sparse Tensor Cores

can affect the accuracy of the model.

We analyze the extent of these effects on ResNet-18 and

Transformer with different sparsity patterns enforced on the

weight parameter update operations during training. For this

experiment, we define a masking policy in Arbitor with differ-

ent N and M values. We use the absolute value of the weight

parameter as the scoring function as it is one of the common

heuristics for estimating the importance score in DNN prun-

ing techniques [22]. Tables 2b and 2c shows the validation

accuracy measured on ResNet-18 and Transformer.

Observation 5: The accuracy effects of sparse weight

updates is highly model dependent. Moreover, enforc-

ing more than 50% sparsity can have a significant im-

pact on the model accuracy.

We observe that ResNet-18 can achieve close to the base-

line FP32 accuracy with sparse weight updates. We also ob-

serve that ResNet-18 accuracy has slightly improved from

the baseline accuracy with 50% sparsity patterns 1 : 2, 2 : 4,

and 4 : 8. We believe this improvement is due to the regular-

ization effects of the sparse computation. On the other hand,

Transformer shows a significant 4.3% drop in accuracy with

50% sparsity. This suggests that different models affect dif-

ferently with sparsity-aware processing and require rigorous

experimental analysis to accurately estimate the trade-offs.

Applying patterns with more than 50% sparsity shows a sig-

nificant drop in accuracy on both models by up to 7.5%.

6 Related Work

TensorQuant [45] is one of the first DNN emulation tools

proposed and is specially designed for analyzing fixed point

arithmetic primarily using layer-level quantization strategy. In

addition, TensorQuant offers provision for fine-grained emu-

lation strategy but requires users to write custom implementa-

tions for the operators in the DNN model. In contrast, Arbitor

can support fine-grained emulation automatically with mini-

mal effort from the user because of the compiler-based design

that we follow. Moreover, due to the narrow focus on fixed

point arithmetic emulation, the applicability of TensorQuant

is limited to the analysis of DNN quantization methods. Ar-

bitor, on the other hand, is capable of emulating arbitrary

numerical formats using the data type emulation support and

has a wider application. PositNN [59] is another DNN em-

ulator built specifically for analyzing the efficacy of Posit

numerical formats in DNN workloads. Therefore, like Ten-

sorQuant, PositNN also only has limited applicability. More-

over, PositNN uses a considerable amount of hand-written

code for emulating Posit and only support a narrow range of

DNN models. As we explain in Section 5.2.2, our analysis

on a wider range of standard DNN models has refuted some
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CRNN

sigmoid tanh Accuracy (%)

3-piece 3-piece 88.12

2-piece None 82.26

None 2-piece 84.92

2-piece 2-piece 70.95

(a) CRNN with piece-wise linear approximation

ResNet-18

N

M
2 4 8

1 94.07 93.64 92.99

2 - 94.09 93.59

4 - - 94.19

(b) ResNet-18 with sparse weight updates

Transformer

N

M
2 4 8

1 82.11 78.78 75.45

2 - 82.94 80.72

4 - - 82.94

(c) Transformer with sparse weight updates

Table 2: Validation accuracy of CRNN, ResNet-18, and Transformer with approximate and sparse computing

of the observations made using PositNN. Specifically, the

authors of PositNN claim that 8-bit Posit format can substi-

tute 32−bit floating point, which we find to be untrue on the

models that we analyzed.

More recent emulators, QPyTorch [70] and GoldenEye [47]

are both implemented on top of PyTorch. These tools are pri-

marily designed for exploring low-precision formats on DNN

training and provide emulation support for a wide range of

numerical formats like floating point, fixed point, and block

floating point [21] and follow layer-level emulation strategy

with the help of the hook functionality in the framework.

GoldenEye also provides hardware error injection support

to evaluate the reliability of DNN accelerators. However, as

described in Section 3, these tools are susceptible to numer-

ical inaccuracies in emulation which can lead to incorrect

assessment of the hardware design. We argue that numerically

accurate emulation should be a necessary quality of hardware

emulators. Moreover, unlike QPyTorch and GoldenEye, Ar-

bitor is capable of supporting other common optimizations

like approximate and sparse computing.

7 Discussion

We have presented a numerically accurate approach for em-

ulating hardware optimizations and estimating their effects

on DNN accuracy to guide the hardware design. Below, we

discuss the generalizability and limitations of Arbitor, as well

as our future plans to overcome these limitations.

Supporting a broader set of numerical data formats. Al-

though we focus on case studies of floating point formats and

Posit formats in this work, Arbitor is designed to support any

arbitrary data formats through the generic data type emula-

tion policy. Hence, other floating point formats like FP8 and

fixed point formats like INT8 can also be emulated under

this generic emulation policy. We have also extended Ar-

bitor to support more complex block-based data formats, such

as block floating point format [21] and MSFP [19]. These

formats employ a block-based representation, where values

within each block share the same exponent. Emulating such

data formats is more challenging compared to regular data

formats that only require considering individual data points,

as the operations for each value depend on global informa-

tion like the value of the shared exponent. The extensible

design of Arbitor allows for adding compiler passes to rewrite

operations for different blocks to support such data formats.

Supporting more front-end frameworks. We chose to im-

plement Arbitor on top of XLA because we find it to be

the most mature ML compiler with training support and is

well-integrated with popular front-end frameworks like Ten-

sorFlow [3] and JAX [11]. However, the compiler-based ap-

proach is not tied to any specific compiler backend. We plan

to migrate Arbitor to the latest OpenXLA that is based on the

MLIR [38] infrastructure. Additionally, since the concept of

operation-level emulation is not tied to any specific compiler

backend, it is possible to apply the design of Arbitor to other

ML compilers like TorchDynamo [67].

Supporting other complex hardware features. In this work,

we demonstrate Arbitor’s support for the three most common

categories of hardware-level optimizations supported in DNN

accelerators. However, it is worth noting that there exist intri-

cate hardware features that are out of Arbitor’s current scope.

For instance, complex custom processing units, such as 3D

cube in Huawei NPU [39], are currently not supported by

Arbitor. We consider addressing these advanced hardware

features as future work.

8 Conclusion

In this paper, we showcase that hardware researchers currently

lack an accurate hardware analysis tool for empirically evalu-

ating different design choices for DNN training accelerators.

To fill this gap, we propose Arbitor, a hardware emulation tool

for analysing common hardware optimization strategies like

low-precision training, approximate computing, and sparsity-

aware processing. Unlike prior emulators, Arbitor follows an

extensible design and numerically accurate emulation support

with the assistance of modern machine learning compilers like

TensorFlow XLA. We subsequently demonstrate the utility of

Arbitor by conducting an extensive sensitivity analysis on the

aforementioned optimization strategies and their influence on

the accuracy of popular DNN models.
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A Artifact Appendix

Abstract

We provide the source code and scripts for Arbitor to repro-

duce the results of our experiments (in Section 3 and 4) and

case studies (in Section 5) presented in the paper. While our

paper explores three hardware optimizations: low-precision

arithmetic, approximate computing, and sparsity-aware pro-

cessing, the artifact focuses specifically on low-precision arith-

metic. To this end, it contains the validation of accurate emula-

tion of Arbitor. Additionally, the artifact conducts a sensitivity

study between the validation accuracy and a subset of floating-

point formats we study in the paper, similar to Figure 6. By

following our provided instructions, users can expect to obtain

results that closely align with those presented in the paper.

Scope

The artifact comprises two main components. Firstly, it gen-

erates the validation accuracy of training ResNet-18 using

FP16 format emulated with Arbitor and QPyTorch and com-

pares it to the native FP16 accuracy on GPU. This analy-

sis highlights the negligible difference in accuracy between

Arbitor-emulated FP16 and native FP16 while revealing a sig-

nificant accuracy difference when using QPyTorch. Therefore,

it could validate our claim that prior approaches like QPy-

Torch struggle to accurately replicate the numerical behavior

of training with specific data formats, such as FP16, while

Arbitor is designed to overcome this limitation.

Furthermore, the artifact automates the training process of

GNN using a subset of floating-point formats evaluated in the

paper, employing full low-precision training. This sensitivity

study explores the variations in validation accuracy as the

floating-point data format changes, thus validating the results

presented in the corresponding section (Section 5) and sup-

porting all associated claims. The results of all these training

instances will be aggregated to generate a figure similar to

Figure 6b but with fewer data points.

Contents

The artifact includes the source code of Arbitor, providing

researchers with the ability to reproduce and modify the im-

plementation. In addition to the evaluated ResNet-18 and

GNN model, the artifact also includes the other two models,

CRNN and Transformer, used in the case studies. Their corre-

sponding datasets, including CIFAR-10 for ResNet-18, Cora

for GNN, FordA for Transformer, and eng-fra for CRNN (as

outlined in Table 1), are provided in the artifact. Therefore,

researchers can readily evaluate these models and datasets,

allowing for result replication, fast customization, and further

investigation. Furthermore, the artifact provides a set of prede-

fined data formats tailored to the experiments and case studies

in the paper, including the floating-point and Posit formats,

along with guidelines for incorporating these data formats in

the training.

Hosting

The artifact can be downloaded from the main branch of

GitHub link https://github.com/arbitor-project/artifact.

Requirements

A.0.1 Hardware requirement:

Arbitor requires the use of a multi-core CPU and an NVIDIA

GPU with the Turing architecture or a more advanced counter-

part to run the artifact. In our experiment, we employed four

NVIDIA 2080Ti cards, but augmenting computation power

by utilizing GPUs like NVIDIA A100, could further optimize

the efficiency of artifact execution.

A.0.2 Software requirement:

The experiments provided in this artifact is prepared to run

inside a docker container. We recommend using a machine

with Ubuntu 20.04 with docker installed to reproduce the

results.

Installation and Environment Setup

We provide docker files to set up the runtime environment for

all the experiments.

• Install docker following the instructions in

https://docs.docker.com/engine/install/ubuntu/.

• Make sure the machine has NVIDIA GPU(s) and the

corresponding driver installed. If the NVIDIA driver is

not installed, follow the instructions at NVIDIA tutorial

to install it.

• Clone the git repository using the following command:

git clone --recursive

https://github.com/arbitor-project/artifact

• Build a docker image and enter the docker environment:

cd artifact && bash run.sh
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Experiment Workflow

We provide an end-to-end script to run everything all at once.

When inside the docker environment, execute e2e.sh to run

all the experiments and generate the results. The total execu-

tion may take several days to finish.

We also provide the step-by-step workflow as shown below:

1. Reproduce QPytorch ResNet-18 result with emulated

FP16: bash qpytorch.sh

2. Reproduce Tensorflow ResNet-18 result with native

FP16:

cd native_half && bash ./expr.sh resnet

3. Reproduce Arbitor ResNet-18 result with emulated

FP16:

cd /root/arbitor && bash ./expr.sh resnet

4. Generate a subset of data formats for GNN training sen-

sitivity study:

cd /root/ && bash ./gnn.sh

Evaluation and Expected Results

Once the above execution has finished, two files, namely

results/validation.csv and results/sens.pdf will be

generated. results/validation.csv presents the final val-

idation accuracy for three configurations: QPyTorch, native,

and Arbitor FP16. It is expected that the validation accuracy

of QPyTorch will be closely aligned with the FP32 baseline

accuracy (93.78%), while both results of native and Arbitor

are around 2% less than FP32 accuracy, consistent with the

findings from Figure 3. Since the training process involves

inherent randomness, it may be necessary to run multiple tri-

als and compute an average for more accurate results. The

file results/sens.pdf encompasses a figure depicting the

relationship between accuracy, exponent bits, and mantissa

bits. This is anticipated to bear resemblance to the first figure

of Figure 6b, with fewer data points presented.

Experiment Customization

The emulated data format can be modified by modifying the

arbitor/data_format.sh script to specify properties of

data formats. Specifically, F_OR_P decides whether to em-

ulate float or posit numbers. ACC represents the data type

for accumulation, where f32_acc is to use FP32 to accumu-

late during a dot product, and cus_acc is to use the same

type as computation for accumulation. In floating point con-

figs, EXP and MANTISSA represent the bit-width of exponent

and mantissa respectively. Setting SUBNORMAL=_subnormal

causes subnormal numbers to be enabled during emulation

and SUBNORMAL=_wo_subnormal otherwise. For Posit con-

figs, POSIT_NBITS is the whole width of the number format,

and POSIT_ES is the width of the exponent of Posit.
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Figure 8: GNN training time with different number formats

emulated by Arbitor

After changing data_format.sh, run

bash ./expr.sh [gnn | transformer | crnn |

resnet]

to train the model with the specified data format.

B Overhead of Arbitor

In addition to accurate emulation, generating customized GPU

kernels enables execution of Arbitor on GPU, in contrast

to accurate software-based simulators that primarily rely on

CPU-based execution. This allows Arbitor to leverage the

high bandwidth and massive parallelism of GPU to achieve a

level of performance that is more practical for executing DNN

training workload compared to software-based simulators. To

demonstrate the performance impact of Arbitor, we train the

whole GNN model with different data formats emulated by

Arbitor using the same experiment setup in Section 5.1. Fig-

ure 8 shows the training time for each step with different

data formats, where exp is the width of exponent bits, and

acc=cus or acc=f32 represents whether the accumulation

type is the same as computation type or is FP32. Emulating

different data formats introduces different amounts of over-

head, as the execution of emulated operations for each format

requires a distinct number of cycles on the GPU. For the float-

ing point format with 8 exponent bits with FP32 accumulation,

Arbitor incurs a 3.59× overhead. When the data format is

significantly different from FP32, such as Posit, Arbitor could

introduce a slowdown of up to 164.7×. These results show

that with the GPU acceleration, the performance of Arbitor is

significantly better than software-based simulators and is prac-

tical for the accurate emulation of DNN training. Moreover,

Arbitor can also leverage data parallel training to scale the

training over multiple GPUs to compensate for the emulation

overhead.
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Abstract
BBR is a model-based congestion control algorithm that has
been widely adopted on the Internet. Different from loss-
based algorithms, BBR features high throughput since it char-
acterizes the underlying link and sends data accordingly. How-
ever, BBR suffers from high retransmission rates in deploy-
ment, leading to extra bandwidth costs. In this work, we care-
fully analyze and validate the reasons for high retransmis-
sions in BBR flows. In a shallow-buffered link, the packet
losses are deeply correlated to both the bottleneck buffer
size and the in-flight data cap. Additionally, bandwidth drops
also cause unwanted retransmissions. Based on the analysis,
we design and implement oBBR, which aims at optimizing
the retransmissions in BBR flows. In oBBR, we adaptively
scale the in-flight data cap and update the bandwidth esti-
mate timely so that few excessive data are injected into the
network, avoiding packet losses. Our Internet experiments
show that oBBR achieves 1.54× higher goodput than BBRv2
and 39.48% fewer retransmissions than BBR-S, which are
both BBR variants with improved transmission performance.
When deploying BBR in Internet streaming sessions, oBBR
obtains greater QoE than BBRv2 and BBR-S without incur-
ring more retransmissions. To summarize, oBBR is designed
to help a transmission session reach high goodput and low re-
transmissions simultaneously, while other CCAs only achieve
one of them.

1 Introduction

Congestion control algorithms (CCAs) are essential for data
transmission on the Internet. The loss-based CCAs like CU-
BIC [18] treat the packet loss as a signal of network con-
gestion and thus throttle their sending rate. However, this
significantly underutilizes the underlying link capacity since
packet losses do not necessarily indicate congestion in the
Internet nowadays. To effectively exploit the bandwidth re-
sources, Google developed a model-based CCA based on

∗Corresponding author

measuring bottleneck bandwidth and round-trip propagation
time, or BBR [8]. BBR ignores packet losses but adjusts its
behaviors according to the estimated bandwidth and round-
trip time (RTT). After switching to BBR from CUBIC, the
throughput in Google’s B4 network is consistently improved
by 2-25× [9]. Since its release, BBR has been deployed on
22% of websites and accounts for over 40% of Internet traf-
fic [36]. This attracts content providers, like YouTube [7] and
Spotify [12], to adopt BBR.

While BBR exploits the bandwidth more effectively, this
algorithm also leads to high retransmission rates. BBR is
expected to send in-flight data at a volume of the bandwidth-
delay product (BDP) only, i.e., operating at Kleinrock’s opti-
mal point [29], but it is still observed that BBR injects exces-
sive data to the transmission channel because of bandwidth
overestimation [22, 50]. To avoid the excessive data accumu-
lated at the bottleneck, BBR imposes an upper bound to the
volume of in-flight data at 2×BDP. But this results in a high
packet loss ratio if the bottleneck buffer is not large enough to
hold the excessive in-flight data. As a result, a large amount
of data needs to be retransmitted, bringing extra bandwidth
costs to content providers.

Directly reducing the upper bound of in-flight data in BBR
is not feasible. By capping the in-flight data at 2×BDP, a BBR
flow could “fairly” share the bandwidth with a loss-based flow
(∼40%) when the bottleneck buffer is deep [14, 43, 52, 53].
If we limit the in-flight data in BBR further, it can no longer
compete with the loss-based flows, thus achieving a degrading
throughput.

Additionally, the high retransmission rates in BBR also
result from bandwidth drop. BBR estimates the bottleneck
bandwidth with the maximum delivery rate samples collected
in an RTT-based time window. If the bandwidth drops, BBR
will not update the bandwidth estimate until the outdated (and
overestimated) samples leave the time window. While BBR
keeps sending data and caps the in-flight data according to
the overestimated bandwidth, the bottleneck buffer is quickly
crammed and starts to discard packets. Moreover, the conges-
tion at the bottleneck buffer enlarges the latest RTT samples
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and thus the window size, making the old bandwidth samples
expire even later.

In this paper, we propose oBBR, optimizing the retransmis-
sion rate and throughput in a BBR session. By extending the
analysis model proposed in [52], we notice that the behaviors
of a BBR flow are deeply correlated to the bottleneck buffer
size and the in-flight data cap. Capping the in-flight data to a
smaller value than 2×BDP mitigates the retransmissions in
shallow buffers, but also weakens BBR’s competitiveness in
deep buffers. Furthermore, BBR can no longer compete with
loss-based flows if the in-flight data is exactly 1×BDP. Fol-
lowing the analysis, oBBR detects if the bottleneck buffer is
shallow once a packet loss event occurs. Then, oBBR reduces
the in-flight cap accordingly so that the retransmissions are
avoided. The in-flight cap is gradually recovered in case the
packet loss is not caused by congestion. Furthermore, identi-
fying a bandwidth drop event is not straightforward in BBR.
Bandwidth samples with smaller values than the estimate are
common because only the maximum is selected. In oBBR,
we use consecutive samples of decreasing bandwidth or in-
creasing latency to identify a bandwidth drop event. However,
it is still possible that we falsely detect a bandwidth drop. We
compare the delivery performance before and after the band-
width estimate update. If the delivery performance degrades,
we revert it to the old value.

We implement oBBR within a userspace implementation
of Quick UDP Internet Connection (QUIC) [30], which is an
appealing solution to network applications like video stream-
ing due to its improved performance, high flexibility, and ease
of deployment. We evaluate oBBR in both a lab environment
and the Internet. In a stable network environment, oBBR re-
duces the packet loss ratio by up to 30× when compared to
BBR. With 2% packet losses, oBBR achieves 14.65× higher
goodput than BBRv2 which reacts to packet losses for alleviat-
ing retransmissions. In a network with fluctuating bandwidth
between 40 Mbps and 10 Mbps, oBBR reduces the retrans-
missions by 52%. The realistic network emulation and the ex-
periments on the Internet both show that oBBR achieves low
retransmission ratios as loss-based algorithms, like BBRv2
and CUBIC, and high goodput as model-based ones, like BBR.
Especially when continuously delivering data in a long Inter-
net link, oBBR has the retransmission at ∼6.5% while gaining
1.54× more goodput compared to BBRv2, which retransmits
6.71% data. Compared to BBR-S, another BBR variant that
also has reduced retransmissions and high goodput in our ex-
periments, oBBR reduces retransmissions by 39.48%. We also
implement oBBR in a video streaming system and measure
the user’s quality of experience (QoE) of streaming sessions
on the Internet. Our experiments show that oBBR guarantees
the QoE of a video session in terms of average quality, quality
switches, and rebuffering ratio better than other CCAs includ-
ing BBRv2 and BBR-S while suppressing the retransmission
ratio as low as ∼4%. In summary, oBBR achieves both high
goodput and low retransmissions in a transmission session,

ProbeRTTProbeBWDrainStartup

Figure 1: Overview of the BBR algorithm

while other CCAs only achieve one. The contributions of this
paper are as follows:

• We carefully analyze why retransmissions are common
in BBR flows. The high retransmissions in shallow-
buffered links are deeply correlated to both the in-flight
data cap and the buffer size. Moreover, the mechanism
of BBR modeling the network becomes inaccurate if the
bandwidth drops.

• We design and implement oBBR, optimizing the retrans-
missions of the BBR algorithm. oBBR adjusts the in-
flight data cap according to the bottleneck buffer size and
updates the bandwidth estimate promptly. Both reduce
the excessive data sent by oBBR, avoiding packet losses.

• We carry out extensive experiments in both a lab envi-
ronment and the Internet, justifying the design of oBBR.
We also implement oBBR in a video streaming system
on the Internet, and the results show that oBBR reaches
higher QoE than BBRv2 while both have low retrans-
mission ratios.

We briefly introduce how BBR works in Section 2 and
analyze why the transmission rate of BBR flows is high in
Section 3. The design of oBBR is presented in Section 4. In
Section 5, extensive experiments are carried out to evaluate
our design. Section 6 discusses related work and Section 7
concludes our work.

2 Background

BBR. BBR is a model-based congestion control algorithm
released by Google in 2016 [8]. In a transmission session,
BBR estimates the bottleneck bandwidth and the round-trip
propagation time of the underlying link. To get unbiased
estimates, BBR extracts the maximum from recent bandwidth
samples and the minimum from recent RTT samples.

To regulate the traffic, BBR matches its average sending
rate to the bandwidth estimate and caps the in-flight data by
2×BDP. Two key parameters, pacing_gain and cwnd_gain,
are used in controlling the sending behaviors. pacing_gain
inflates or deflates the sending rate while setting it to 1
means the sender transmits data at the rate of estimated band-
width. This parameter is dynamically scaled in operation.
cwnd_gain caps the in-flight data and is set to 2 in practice,
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which means at most 2×BDP data are sent without acks. A
BBR session always switches among four phases: Startup,
Drain, ProbeBW, and ProbeRTT. An overview of the BBR
algorithm is shown in Figure 1

1) Startup: BBR detects the available bandwidth by inflat-
ing its sending rate, where pacing_gain and cwnd_gain are
both 2/ln2. It switches to the Drain phase if the measured
bandwidth stops growing.

2) Drain: BBR drains the excessive data queued at the bot-
tleneck buffer because of the exponential growth of sending
rate in the Startup phase. pacing_gain is set to ln2/2 until
the in-flight data is less than 1×BDP. BBR then enters the
ProbeBW phase.

3) ProbeBW: BBR spends most time in the ProbeBW phase,
where pacing_gain is periodically set to {1.25, 0.75, 1, 1,
1, 1, 1, 1} and cwnd_gain is fixed to 2. Periodically inflating
the sending rate helps BBR detect if the available bandwidth
has increased, and deflating the rate could drain the queued
data if the bandwidth is unchanged.

4) ProbeRTT: The ProbeRTT phase is independent of the
other phases. BBR enters ProbeRTT once the RTT estimate
has not been updated for 10 seconds. In this phase, BBR sends
only 4 packets in-flight and observes their RTTs.
BBRv2. Though BBR gains high throughput in transmission,
its mechanism has raised a few concerns: BBR does not react
to the packet losses caused by network congestion and thus
has high retransmission rates in links with a shallow bottle-
neck buffer; BBR does not share bandwidth with loss-based
algorithms fairly; The throughput drops drastically in the
ProbeRTT phase. To address these shortcomings, BBRv2 [11]
is proposed and has been deployed in Google’s internal net-
work [10].

In BBRv2, packet loss events are considered signals of
network congestion again. BBRv2 reduces the in-flight data
cap multiplicatively if the packet loss ratio exceeds a threshold
(2% in practice). But this also impairs the flow throughput
as the loss-based CCAs do in a network environment with a
high packet loss ratio (> 2%). In this work, we also compare
oBBR with BBRv2, and the results are reported in Section 5.

3 Retransmissions in BBR

In this section, we analyze two major reasons that cause high
retransmission rates of BBR flows in depth: 1) the underlying
link is shallow-buffered, and 2) the available bandwidth drops
in the transmission session.

3.1 Shallow-Buffered Link
Ideally, BBR operates at the optimal point of the transmission
channel, i.e., no packets are queued in the bottleneck buffer
and the latency approximates the physical delay. To achieve
this, the in-flight data should equal 1×BDP of the channel.
In practice, the bandwidth is usually overestimated [22, 50,

52], and thus the data would be gradually accumulated at the
bottleneck buffer until packet losses. To avoid this, the sender
employing BBR caps the in-flight data as

in f light = cwnd_gain · R̂T prop · B̂tlBw,

where R̂T prop and B̂tlBw are the estimates of round-trip
propagation time and bottleneck bandwidth, respectively.
cwnd_gain bounds the in-flight data to a small multiple of
the BDP and is commonly set to 2. We can safely assume the
volume of in-flight data reaches the upper bound most of the
time because BBR overestimates its bandwidth share when
competing with other flows [22].

However, R̂T prop and B̂tlBw are substantially affected
by the competing flows, especially the ones with loss-based
congestion control algorithms (CCAs). If the data from com-
peting flows are also queued in the bottleneck buffer, R̂T prop
is then composed of the physical delay and the queue length,
and B̂tlBw is the link capacity proportional to BBR’s buffer
occupancy ratio [52]. The volume of in-flight data is calcu-
lated as

in f light = g · ( pq
c

+ l) · (1− p)c,

where g represents cwnd_gain, q is the queue capacity of
bottleneck buffer, p is the buffer ratio occupied by competing
loss-based CCA flows, l is the RTT without congestion, and c
is the link capacity. Then, the queued data of a BBR flow is

queued = g · ( pq
c

+ l) · (1− p)c− (1− p)cl

= gq · p(1− p)+(g−1) · cl · (1− p).
(1)

By defining the occupied ratio of BBR flow at the bottleneck
as Qr =

queued
q and the relative size of bottleneck buffer to the

BDP as R = q
cl , we have

Qr(p;g,R) = gp(1− p)+(g−1)R−1(1− p).

This helps us understand the behaviors of BBR with different
configuration sets of g and R. We plot QR vs. p in Figure 2.

The left side of Figure 2 shows how a BBR flow behaves if
g = 2, the current setup in BBR implementations. When the
bottleneck buffer is as deep as 16×BDP, the BBR flow occu-
pies almost half the buffer no matter how many loss-based
flows coexist, which has been confirmed in prior studies [52].
If we reduce R, the shallower buffer will be more occupied
by the BBR flow. When the buffer is as shallow as 1×BDP,
the loss-based CCAs can not compete with BBR anymore.
When the buffer size is lower than 1×BDP, we do not have
enough space to hold the in-flight data and the packet loss
ratio drastically increases.

If we set g to 1, expecting that no packet is queued when
there is no competing flow, this also leads to another severe
problem. As shown in the right of Figure 2, no matter how
large the bottleneck buffer is, the BBR flow can not compete
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Figure 3: The average goodput of a BBR flow and a CUBIC flow with various configuration sets g and R

with the loss-based CCAs anymore, leading to poor perfor-
mance.

Experimental verification: We set up the testbed in our lab
environment based on nginx-quic [3], where we implement
the BBR and CUBIC algorithms in the QUIC protocol. The
details of the experimental setup are presented in Section 5.1.
In the experiments, we simultaneously launch a BBR flow
and a CUBIC flow. Both of them keep sending data without
limitation from the application layer. The bandwidth is set to
20 Mbps and the RTT is set to 40 ms. By skipping the first 60
seconds, we measure the average goodput of two flows for 7
minutes when setting g and R to different values.

In Figure 3, the leftmost reports the average goodput of two
flows when setting g = 2 and varying the bottleneck buffer
size. We can see that the goodput proportion of the BBR flow
decreases as R is greater, but it is still lower than the converge
point R−g+1

gR found in the model, which are marked as red lines
on the bars. The reason is that BBR can not adjust its behav-
ior as fast as the CUBIC does at the converging point: When
two flows fully occupy the bottleneck buffer and packets are
discarded, the CUBIC flow reduces its congestion window
and the queue size shrinks, leading to that smaller RTTs are
detected by the BBR flow. This immediately updates R̂T prop
and BBR calculates a smaller BDP. However, in the recov-

ery phase, the CUBIC flow ramps up its congestion window
quickly while BBR still uses the small BDP because the new
RTT samples are greater than R̂T prop. The inaccurate RTT
estimate expires in 10 seconds but before that, the CUBIC
flow has occupied all free space in the buffer and backs off be-
cause of the packet loss again. Furthermore, BBR periodically
enters ProbeRTT which reduces the in-flight data to 4 packets,
also yielding bandwidth to the competing flows. But since the
BBR ignores packet loss, this results in the BBR flow evicting
the CUBIC flow and starting to experience apparent packet
losses in a shallower buffer. When R is reduced to 0.5, BBR
dominates the bandwidth and the packet loss ratio increases to
13.36%. The middle of Figure 3 confirms that when g is set to
1 and no matter how large the bottleneck buffer is, BBR can
hardly compete with CUBIC and almost all the bandwidth is
used by the CUBIC flow. The rightmost of Figure 3 shows
the goodput of two flows when setting the bottleneck buffer
to 16×BDP and varying g, where BBR gains more goodput
with increasing g.

Based on the models and the experiments, we can derive
that the packet losses of a BBR flow in a shallow-buffered
link are correlated to g and R. If we reduce g, a BBR flow
only evicts the coexisting loss-based flows and experiences
packet losses in a shallower buffer. But this weakens the
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Figure 4: The network characteristics of a BBR flow when
the bandwidth drops from 20 Mbps to 5 Mbps or 2 Mbps.

competitiveness of BBR in deep buffers. When g decreases to
1, BBR can hardly compete with loss-based flows no matter
how large the bottleneck buffer size is. If set it to a high value,
BBR flows have to sustain a high packet loss ratio when the
bottleneck buffer is shallow.

3.2 Bandwidth Drop

BBR collects the delivery rate samples in a time window (typ-
ically 10 RTTs) and chooses the maximum as the bandwidth
estimate. The rationale behind this is that acks can only be
delayed. However, such a mechanism makes BBR react to the
bandwidth drop sluggishly. When the bandwidth decreases,
BBR keeps sending data at a high rate until the overestimated
samples expire after 10 RTTs. This ramps up the queue size
at the bottleneck buffer and leads to packet loss once the
queue is crammed. More severely, as the packet delivery de-
lay is extended due to the congestion at the bottleneck, the
overestimated bandwidth samples expire in a longer period.

We conduct experiments to observe how a BBR flow reacts
to the bandwidth drop in our testbed. In the experiments,
the bandwidth is initially 20 Mbps, the RTT is 100 ms, and
the bottleneck buffer is 200 KB. A BBR flow is launched
to constantly send data. After ∼10 seconds since the flow
starts, we throttle the bandwidth to a lower value (5 Mbps or
2 Mbps).

The experimental results are reported in Figure 4. The x-
axis is the time elapsed since the flow starts in seconds and we
plot the RTT samples in milliseconds, in-flight data volume in
KB, and lost data volume in KB. We can observe that even the
bandwidth drops, the in-flight data volume stays almost the
same because of the unchanged B̂tlBw and R̂T prop. While
the actual bandwidth can not match the sending rate of BBR,
the RTTs of packets rise sharply due to the increasing queue
size at the bottleneck. The lost data volume also increases
during this period. Only after 10 RTTs, i.e., ∼7 seconds on
the left of Figure 4 (the RTT samples rise to ∼700 ms) and
∼15 seconds on the right of Figure 4 (the RTT samples rise
to ∼1500 ms), the bandwidth estimate is corrected and the

in-flight data match the BDP again. During the overestimation
stage, the sudden drops of RTTs are caused by the probeRTT
phase, but this does not help the BBR client realize the actual
BDP.

4 Design

As discussed in Section 3, the main reasons for high retrans-
mission rates in BBR are: 1) In a shallow buffer, the data
in-flight could not be fully contained when g is fixed to a con-
stant; 2) The bandwidth estimate is not timely updated when
the bandwidth drops. To solve these problems, we propose to

• Adaptive g: We estimate the bottleneck buffer size with
the RTT samples, and when a packet is discarded, the
value of g is adjusted accordingly.

• Timely bandwidth updates: We identify the bandwidth
drop based on both the RTT and delivery rate samples,
updating the bandwidth estimate in time. This is re-
versible if the transmission throughput decreases.

4.1 Adaptive g

In practical BBR sessions, g is set to a fixed value of 2. This
leads to the packet loss ratio drastically rising if the bottleneck
buffer is shallower than (g − 1)×BDP. In this case, BBR
packets are dropped because the in-flight data volume is larger
than the buffer size q. By setting p = 0 in Equation 1, the
excessive data volume of a BBR flow is (g−1)cl. To avoid the
packet loss events, we could adjust g to match the excessive
data volume to the shallow buffer size q, i.e.,

g =
q+ cl

cl
.

Whenever a packet loss event occurs, we can assume this
results from a shallow bottleneck buffer. To scale g, we need
to evaluate the buffer size by

q = c(l′− l),

where l′ is the delivery latency of a packet that is queued at the
end of the bottleneck buffer. Since the current buffer is full,
l′ can be reasonably estimated using the latest RTT sample
RT Tlatest . Then, we know that if

l′

l
=

RT Tlatest

R̂T prop
< g,

the bottleneck buffer is shallow.
Once we discover the packet loss is caused by a shallow

buffer, we could scale g to

min

(
1+µ · RT Tlatest − R̂T prop

R̂T prop
,gmax

)
,
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Figure 5: The network statistics of a BBR flow in various network environments. The network bandwidth is consistently set to
20 Mbps in the transmission session or decreases to 5/2 Mbps after 10 seconds. The leftmost figure presents the cumulative
distribution function (CDF) of bandwidth samples normalized to the actual bandwidth when the bandwidth is constant. The
figure in the middle shows the max number of consecutive bandwidth samples that are below the proportions of the estimated
bandwidth. The rightmost figure shows the max number of consecutive RTT samples above thresholds of multiplicative RTTs.

where 0 < µ < 1 indicates the proportion of the shallow buffer
attributed to the BBR flow and gmax is referred to as the fixed
value used in deep buffer cases.

When the bottleneck buffer is non-shallow and there are
competing flows, RT Tlatest is expected to be greater than
gmax × R̂T prop no matter if the packet loss event is caused
by random loss or congestion. The min(·) filter helps oBBR
behave like the vanilla BBR in these cases if gmax = 2. If there
are no competing flows, a smaller g but greater than 1 still
guarantees the bandwidth is fully utilized. As a result, oBBR
can adapt to the shallow buffer cases without affecting other
scenarios.

Only scaling down g is not enough: 1) RT Tlatest might be
less than l′. For example, a packet loss happens before the
shallow buffer is crammed. 2) The bottleneck might migrate
to a deep buffer during the transmission session. Thus, we
design a recovery stage to increase g back to gmax. Whenever
an ack is received, we have

g = min
(

g+α · Sack

BDP
,gmax

)
,

where Sack is the acked data size and α is a parameter pre-
venting the congestion window growing too fast. In this way,
after the congestion window is shrunk, it keeps increasing the
value back until the packet loss happens again.

4.2 Timely Bandwidth Updates
BBR selects the maximum of bandwidth samples during the
latest 10 RTTs as B̂tlBW . In the ProbeBW stage, BBR peri-
odically inflates the sending rate to 1.25×B̂tlBW to verify if
the actual bandwidth has increased. As long as a sample of
higher bandwidth is observed, B̂tlBW is updated so that BBR
reacts to bandwidth increase timely. However, BBR fails to
adapt to the bandwidth drop in time. Though the latest acks
could show that fewer data has been received per unit time,
these signals are ignored in estimating B̂tlBW . As a result,

BBR keeps sending the data at a high rate until all samples of
high bandwidth expire.

However, observing a sample of low bandwidth does not
necessarily indicate the bandwidth has decreased. Acks might
be delayed in the transmission and this is the reason of select-
ing maximum as the estimate. We collect bandwidth samples
by running a BBR flow in the lab with 20 Mbps bandwidth
and 100 ms RTT. The bandwidth samples are normalized
to the realistic bandwidth and the results are shown in the
leftmost of Figure 5. We can find that even for an experiment
in the lab, 59% of samples are lower than 0.95×BtlBw, and
24% of samples are lower than 0.85×BtlBw.

Though the bandwidth samples could be inaccurate (we
observe a sample of 0.09×BtlBw in the experiment), the sam-
ples that are highly deviated from the realistic bandwidth
rarely appear consecutively. The middle of Figure 5 shows
the max length of consecutive samples that are below varying
thresholds proportional to the bandwidth estimate. We can
see that for the constant bandwidth, at most 22 consecutive
samples are observed below 0.75×B̂tlBw. We also manually
throttle the bandwidth to 10/5 Mbps in the transmission, and
in both cases, the length of consecutive bandwidth samples
could clearly signal the bandwidth drop. To effectively detect
the decrease of bandwidth, we check if there are k consec-
utive bandwidth samples less than 0.75×B̂tlBW . With a
longer k, we are more confident to believe that the bandwidth
has decreased rather than acks are occasionally delayed.

On the other hand, the bandwidth samples could be over-
estimated in realistic network environments. For example,
routers could aggregate acks or have the capacity of handling
burst traffic, both leading to calculating a greater bandwidth
at the BBR sender. To detect the bandwidth drop even if the
bandwidth samples are not reliable, we also use RTT sam-
ples. Since at most gmax×BDP data are sent in-flight, the RTT
samples should be about gmax×R̂T prop and samples with
obviously greater values indicate the bandwidth estimate is
not accurate anymore. We plot the max number of consecu-
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tive RTT samples that are above thresholds of multiplicative
R̂T prop in the rightmost of Figure 5. When the bandwidth
is constant, at most 15 samples are observed consecutively
higher than 2.5×R̂T prop. This number increases to 373 or
328 if the bandwidth drops to 10/5 Mbps during the transmis-
sion, respectively. Thus, we also detect if there are k con-
secutive RTT samples greater than (gmax +0.5)× R̂T prop.
To the end, if any of the two cases happen, we think the
bandwidth has decreased, and we use the average of k most
recent bandwidth samples to update B̂tlBW .

Though we update the bandwidth estimate cautiously, it is
still possible that an inaccurate value is used. So we monitor
the delivery performance before and after the bandwidth up-
date, reverting to the old value if the delivery performance
decreases. Specifically, we calculate a delivery score of a fixed
time interval T following

U = delivered −10×unacked,

where delivered is the amount of data acked and unacked is
that not acked in T . We calculate the average score for 2T
before and 2T after the bandwidth update. B̂tlBW is reverted
if the score drops.

4.3 Competitiveness Analysis

As discussed in Section 3.1, the competitiveness of BBR is
determined by g and R. oBBR scales g to a smaller value once
discovering the current link is shallow-buffered, while using a
fixed gmax in deep buffers. By setting gmax to 2, oBBR behaves
just like the vanilla BBR in deep-buffered links. A smaller or
greater gmax weakens or strengthens its competitiveness.

In shallow-buffered links, the competitiveness of an oBBR
flow is determined by µ, i.e., the excessive in-flight data pro-
portional to the shallow buffer size. With a greater µ, oBBR is
more competitive, but also has a higher risk of packet losses.
Since the vanilla BBR selects a fixed g of 2, oBBR can hardly
compete with it. But we can still expect that oBBR is less
aggressive than BBR when competing with loss-based algo-
rithms.

5 Evaluation

In this section, we evaluate oBBR and other peer methods
in both a lab environment and the realistic Internet. We also
build a video streaming system with oBBR that verifies our
design also benefits network applications.

5.1 Experimental Setup
Implementation: We implement oBBR1 in nginx-quic [3],
which only has an RFC-defined congestion control algo-
rithm.2 In all experiments, we set α that controls the speed
of recovery from the packet loss to 0.01. For detecting the
bandwidth drop, we set k to 30 and T to 200 ms. We vary µ in
0.5, 0.75, and 1 to have oBBRs with different competitiveness,
which is referred to as oBBR-0.5, oBBR-0.75, and oBBR-1 in
the following discussion. In oBBR, we also set a lower bound
1.25 to cwnd_gain when the ProbeBW phase is probing for
more bandwidth.

Additionally, we implement a couple of CCAs for compar-
ison: CUBIC [18] is the default CCA in the Linux kernel,
which considers packet loss as congestion and uses a cubic
function to grow the congestion window. The vanilla version
of BBR [8] manipulates its sending behaviors only depend-
ing on the estimates of bottleneck bandwidth and propaga-
tion round-trip time. BBRv2 [11] is the successor of BBR
proposed by Google, adding reactions to packet loss and
greatly reducing retransmission rates. BBR-S [50] handles
the bandwidth overestimation caused by the burst capacity of
routers. It estimates the bandwidth at the 85th percentile of
collected samples. B3R [44] is a BBR variant, which adjusts
pacing_gain to regulate the sending rate in the ProbeBW
phase. It aims at reducing the packet loss ratio when the bot-
tleneck buffer is shallow. To compare all of these CCAs with
oBBR on an equal footing, we implement these CCAs within
nginx-quic. Implementing all of the CCAs within the same
system architecture allows us to eliminate irrelevant factors
that would otherwise complicate our comparison of CCAs.

It is worth noting that the pacing mechanism is not limited
to BBR and its variants. The pacing mechanism sends data
in a controlled manner so that the sending behavior becomes
smoother. It has been proven effective in TCP connections
with shallow bottleneck buffers [4]. So we also implement
the pacing mechanism in CUBIC. Specifically, CUBIC calcu-
lates pacing_rate by cwnd / srtt× pacing_ratio, where
cwnd is the congestion window and srtt captures the statis-
tics of RTTs in both short-term and long-term. pacing_ratio
is 2 in slow start and is 1.2 otherwise.
Testbed: We evaluate various CCAs in the client-server mode.
nginx-quic is deployed as an HTTP server so that the trans-
mission sessions in our experiments are HTTP sessions. In
our lab environment, the server resides on a Linux machine

1Our prototype is available at https://github.com/bpq233/oBBR
2RFC 9002
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Figure 7: Performance of various CCAs in stable network environments

running Ubuntu 20.04 LTS with an Intel i5-7300HQ CPU @
2.5 GHz (4 cores) and 16 GB RAM. The HTTP client is a
simple implementation in the Chromium project [1] that also
supports QUIC. For controlling the network conditions in our
lab environment, tc [21] is used. In addition to changing the
bandwidth, the latency, and the packet loss ratio, we adjust
two parameters, Limit and Burst, to emulate the buffer size
and the capacity of handling traffic exceeding the bandwidth
at the bottleneck router. In experiments that use tc, Burst
is set to 100 KB. An overview of the testbed is shown in
Figure 6.

5.2 Retransmissions and Throughput
In the following experiments, we configure the client to fetch
a data file of 1 GB via the HTTP protocol in a transmission
session. The performance of various CCAs is measured in
stable networks, variable networks, real network traces, and
the Internet.

5.2.1 Stable Network Environment

Single flow: We first run various CCAs in stable network
environments, where the bandwidth and the latency are set
to {100 Mbps, 40 ms} or {40 Mbps, 100 ms}. We measure
the retransmission ratio and the average goodput in a trans-
mission session. The retransmission ratio is the volume of
retransmitted data divided by the overall delivered data. R is
0.25 and the random packet loss ratio at 1% or 2% is also
added. The results are shown in Figure 7. We can see that
CUBIC and BBRv2 have the lowest retransmission ratios
since they aggressively reduce the in-flight data when detect-
ing packet losses. But both of them are vulnerable to random
packet losses. Introducing a 1% random packet loss ratio re-
duces their goodput by 76% (BBRv2) and 94% (CUBIC),
respectively. And the numbers increase to 94% (BBRv2) and
96% (CUBIC) with a 2% random packet loss ratio. On the
other hand, BBR maintains its goodput across all cases but
its retransmission ratios are also the highest, reaching 17.42%
on average. This is because BBR does not throttle its sending
rate until the packet loss ratio, whether caused by conges-

tion or random losses, reaches a relatively high threshold of
∼20%, which is not the case in our experiments. Across all
scenarios, oBBR schemes consistently have high goodput,
which is at least 82.76% of the link capacity. oBBR also sup-
presses its retransmission ratio of a session to a low value. For
example, in the network with 40 Mbps bandwidth and 100
ms latency, oBBR keeps its retransmission ratios at 0.51%
(µ =0.5), 0.62% (µ =0.75), and 1.97% (µ =1), respectively.
By introducing 2% random packet losses, oBBR has the re-
transmission ratios at 2.82% (µ =0.5), 3.06% (µ =0.75), and
3.93% (µ =1). B3R lowers its sending rate to avoid exces-
sive in-flight data, but this does not work in our experiments
because of the bandwidth estimation. As a result, the retrans-
mission ratios of B3R are similar to those of BBR. BBR-S
more accurately estimates the bandwidth in our scenarios
where the bottleneck router could handle burst traffic. Bene-
fiting from this, BBR-S retransmits fewer data than BBR and
B3R, but is still worse than oBBR schemes.

Then, we vary R to 0.2, 0.4, and 0.6, and fix the bandwidth
and latency to {60 Mbps, 60 ms}. The results are also re-
ported in Figure 7. With increasing bottleneck buffer size,
BBR, B3R, and BBR-S reach a lower retransmission ratio
accordingly because more in-flight data could be held in the
buffer. The fewer retransmissions also improve their good-
put. oBBR schemes have relatively high retransmission ratios
when R =0.2, which are 1.54% (µ =0.5), 1.55% (µ =0.75),
3.10% (µ =1). This is due to we set a lower bound of 1.25 to
g to match the 1.25×pacing_gain when probing for more
bandwidth. When the R increases, the retransmission ratios of
oBBR decrease again. For instance, when R =0.4, the retrans-
mission ratios of oBBR are 0.51% (µ =0.5), 0.61% (µ =0.75),
1.78% (µ =1). BBRv2 and CUBIC still have the lowest trans-
mission ratios while BBRv2 flows have goodput (similar to
oBBR schemes) higher than CUBIC flows.
Multiple flows: We simultaneously launch at most 5 flows
with the same CCA and measure the retransmission ratio and
goodput per flow. In the experiments, the bandwidth and the
latency are set to {100Mbps, 40ms}, and R is 0.5. No random
packet loss is introduced. The results are shown in Figure 8.
BBR still has the highest retransmission ratios, ranging from
8.41% (1-flow) to 15.25% (3-flows). As loss-based CCAs,
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Figure 8: Performance of various CCAs in multi-flow scenarios
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Figure 9: Performance of BBR and oBBR when bandwidth varies in a transmission session

CUBIC and BBRv2 retransmit few packets. When launching
multiple BBR-like flows, i.e., BBR, B3R, BBR-S, or oBBR,
higher retransmission ratios per flow are observed. The reason
is that for each flow, the bandwidth overestimation is more se-
vere: while some of the flows periodically switch to the drain
cycle (pacing_gain=0.75) of ProbeBW or to ProbeRTT and
yield bandwidth, the other flows obtain bandwidth estimate
samples higher than the current ones. These overestimated
samples are continuously used even though the co-existing
flows scale back their sending rates. Such overestimations are
alleviated when the number of flows increases (4-flows and
5-flows) because less bandwidth is allocated to each flow. For
oBBR, if we set µ to 1.0 which intends to send excessive data
exactly matching the bottleneck buffer, the overestimation
easily results in the in-flight data being more than that. As
a result, the retransmission ratio per flow of oBBR-1 grows
to 7.59% at most (3-flows). When setting µ to 0.5 and 0.75,
the bandwidth overestimation can hardly affect the transmis-
sion since oBBR leaves a margin in the bottleneck buffer on
purpose. The highest retransmission ratios of oBBR-0.5 and
oBBR-0.75 are 0.52% (2-flows) and 0.99% (3-flows), respec-
tively. We also report goodput per flow in Figure 8, and it
shows that all CCAs could effectively exploit and fairly share
the link capacity.

5.2.2 Variable Bandwidth

We also set dynamic bandwidth to observe if oBBR reacts to
the bandwidth drop timely as expected. In the experiments,
the latency is 100 ms and the bottleneck buffer is 300 KB. We
periodically change the bandwidth between 40 Mbps and 10
Mbps every 10 seconds. We evaluate oBBR and BBR, and
the results are shown in Figure 9. The left two figures plot
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Figure 10: Characteristics of the realistic network traces

the bandwidth samples and the latency samples collected at
the sender, respectively. We can see that oBBR reacts to the
bandwidth drop more promptly as the bandwidth samples
follow the real bandwidth change (the red line) in ∼2 seconds.
BBR only summarizes a more accurate bandwidth estimate
after ∼6 seconds because the high bandwidth estimate not
only expires after 10 RTTs but also prolongs the latest RTT
samples to ∼600 milliseconds. While BBR sends in-flight
data exceeding the bottleneck buffer, packet losses happen.
Figure 9 also shows that BBR spends 2.09× more bandwidth
than oBBR on retransmitting lost data while both of them
achieve almost the same goodput in the transmission session.

5.2.3 Realistic Network Traces

We also test various CCAs in our lab by emulating the real
network conditions following publicly available traces [41],
which are collected from a major mobile operator in Ireland.
Four traces are selected: static1, static2, car1, and car2. static*
means the trace is collected from a static object, probably a

USENIX Association 2023 USENIX Annual Technical Conference    545



BBR
B3R

BBR-S
oBBR-0.5

oBBR-0.75

oBBR-1

BBRv2
CUBIC

0

5

10

15

Re
tra

ns
m

iss
io

n 
Ra

tio
 (%

)

0

10

20

30

40

50

Go
od

pu
t (

M
bp

s)

static1 & 0.25xBDP
Retransmission Ratio
Goodput

BBR
B3R

BBR-S
oBBR-0.5

oBBR-0.75

oBBR-1

BBRv2
CUBIC

0

5

10

15

Re
tra

ns
m

iss
io

n 
Ra

tio
 (%

)

0

10

20

30

40

50

Go
od

pu
t (

M
bp

s)

static2 & 0.5xBDP
Retransmission Ratio
Goodput

BBR
B3R

BBR-S
oBBR-0.5

oBBR-0.75

oBBR-1

BBRv2
CUBIC

0

5

10

15

Re
tra

ns
m

iss
io

n 
Ra

tio
 (%

)

0

10

20

30

40

50

Go
od

pu
t (

M
bp

s)

car1 & 0.75xBDP
Retransmission Ratio
Goodput

BBR
B3R

BBR-S
oBBR-0.5

oBBR-0.75

oBBR-1

BBRv2
CUBIC

0

5

10

15

Re
tra

ns
m

iss
io

n 
Ra

tio
 (%

)

0

10

20

30

40

50

Go
od

pu
t (

M
bp

s)

car2 & 1xBDP
Retransmission Ratio
Goodput

Figure 11: Performance of various CCAs in the testbed emulating the realistic network

Table 1: Characteristics of the realistic network traces
avg. bandwidth avg. RTT duration

static1 45±62 Mbps 80±47 ms 3,137 s
static2 70±80 Mbps 69±6 ms 3,322 s
car1 32±64 Mbps 78±18 ms 1,645 s
car2 10±15 Mbps 118±78 ms 1,155 s

PC, and car* means the trace is collected from a moving
object, probably a car. Table 1 characterizes the traces and
Figure 10 shows how the bandwidth and RTT vary over time.

We set R to different values for these traces. It is worth
noting that no random packet losses are introduced in the em-
ulations. We record retransmission ratios and average goodput
of various CCAs. The results are reported in Figure 11. We
can see that BBRv2 and CUBIC still have the lowest retrans-
mission ratios in all cases, and more interestingly, they have
lower goodput when compared to the oBBR schemes because
oBBR reacts to the network dynamics more timely. Other
performance trends are similar to those in stable network en-
vironments: BBR and B3R have the highest retransmission
ratios. BBR-S has lower retransmission ratios but is still worse
than oBBR. oBBR achieves the highest goodput in three out
of four traces (35 Mbps of oBBR-1 in static1, 32 Mbps of
oBBR-1 in static2, and 13 Mbps of oBBR-0.75 in car1).

5.2.4 Competitiveness

In this section, we measure how oBBR competes with other
CCAs. We compare oBBR to BBR, CUBIC, and BBRv2,
respectively. We also set µ to {0.5, 0.75, 1} for observing
how this parameter affects oBBR’s competitiveness. In exper-
iments, the bandwidth is 40 Mbps and the latency is 100 ms.
R is set to 0.5 or 1.0. For a transmission session, two flows,
where one must be an oBBR flow, are launched simultane-
ously. We record the goodput of each flow and terminate both
flows once the 1 GB data file has been fully delivered.

The results are shown in Figure 12. When competing with
BBR, oBBR can hardly gain bandwidth when the buffer is as
shallow as 0.5×BDP because BBR sends more in-flight data.
This can be alleviated by increasing µ. Setting µ to 1 helps
oBBR share 33% bandwidth. When the buffer size increases
to 1×BDP, BBR performs less aggressively and even setting

µ to 0.5 lets oBBR take 40.5% bandwidth. When competing
with CUBIC, oBBR is aggressive in shallower buffers. But
oBBR yields more bandwidth to CUBIC than BBR which
takes almost all bandwidth in a 0.5×BDP buffer. In a buffer
of 1×BDP, CUBIC takes up to 46.6% bandwidth share. When
competing with BBRv2 in a 0.5×BDP buffer, the trend of
bandwidth shares is similar to CUBIC because both of them
react to packet losses. But since BBRv2 probes RTT more
frequently, it takes more bandwidth in a 1×BDP buffer.

5.2.5 Internet

We further carry out the data delivery experiments in the In-
ternet environment. We deploy the server in a data center in
Virginia, USA, and the client in Shandong, China. The server
is equipped with a 2-core CPU @ 2.5 GHz and 4 GB RAM,
and its maximum egress bandwidth is 80 Mbps. The operat-
ing system is Ubuntu 20.04 LTS. The average link latency is
about 270 ms. We experiment with data transmission in the
morning, afternoon, and midnight. The results are shown in
Figure 13. From the figure, CUBIC has the lowest retransmis-
sion ratio at 0.16% because it is the most sensitive algorithm
to packet losses, and it also has the lowest goodput of 6.30
Mbps. BBRv2 has a retransmission ratio of 6.71% which
is higher than the oBBR schemes because it fails to adjust
its behavior timely in such a complex network environment,
and its average goodput is 17.66 Mbps since the unavoid-
able packet losses in long Internet links. By setting µ to 0.75,
oBBR achieves the highest goodput of 27.17 Mbps, which
is 1.54× higher than BBRv2. Our oBBR schemes also have
low retransmission ratios at 6.30% (µ=0.5), 6.58% (µ=0.75),
and 6.85% (µ=1), which means 39.48%, 36.79%, and 36.11%
fewer data are retransmitted compared to BBR-S, another
BBR variant reaching a high goodput (26.94 Mbps) and a
low retransmission ratio (10.41%) in the Internet experiments.
These experiments indicate that oBBR could fully exploit the
Internet link capacity while suppressing the retransmissions
effectively.

5.3 Video Streaming

We also evaluate oBBR in video streaming, which is the dom-
inant data delivery service on the Internet today.
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Figure 12: Competitiveness of oBBR against other CCAs

5.3.1 Experimental setup

We build a video streaming system based on dynamic adap-
tive streaming over HTTP (DASH) [47], which uses HTTP
as the vehicle for delivering video data. On the server, the
test video is encoded into multiple bitrates and is further sep-
arated into segments of fixed length. Each of the segments
is identified by a uniform resource locator (URL). We use
dash.js [2] as the video player that fetches video segments
to the client. In the player, the adaptive bitrate (ABR) algo-
rithm dynamically switches between a buffer-based one and
a throughput-based one to determine the quality of the next
segment to download [46].

We use a 10-min video Big Buck Bunny as the test video,
which is encoded into 10 bitrates of {254, 507, 759, 1013,
1254, 1883, 3134, 4952, 9914, 14931} Kbps. 3 For each bitrate
level, the video is chunked into segments of 4 seconds. We
put the server in Virginia and the client in Shandong, China.
The experiments are carried out on the real-world Internet.

5.3.2 Metrics

Three metrics are used in the evaluation: average quality (AQ),
quality switches (QS), and rebuffering ratio (RB).
Average quality: the average quality level (from 0 to 9) of
all played segments. We expect the viewer to have a better
quality of experience (QoE) with a greater AQ.
Quality switches: the number of segments with a lower qual-
ity than the previous one. A low QS means the visual quality
does not fluctuate in playback, also indicating better QoE.
Rebuffering ratio: the proportion of time consumed in re-
buffering. The viewers will stop watching if the rebuffer-
ing time is long. RB is calculated as (playback time −
video length)/video length.

5.3.3 Results and analysis

Figure 14 shows the performance of different CCAs in real-
world video streaming sessions. For the retransmission ratio,

3Available at https://dash.akamaized.net/akamai/bbb_30fps/
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Figure 13: Performance of various CCAs on the Internet

BBR-S, BBRv2, CUBIC, and the oBBR schemes have sim-
ilar performance, which is much lower than BBR and B3R.
However, the low retransmission ratio of BBR-S, BBRv2,
and CUBIC comes at the cost of low throughput, i.e., these
algorithms fail to support the application layer to deliver high-
quality videos. They have the lowest average quality, the
highest quality switches, and the highest rebuffering ratio. For
CUBIC, as it is too sensitive to packet loss, its throughput is
suppressed at the lowest level, and the client almost selects
the lowest quality level to fetch. This also decreases the re-
buffering ratio of the CUBIC session. The oBBR also has
low retransmission ratios (<4%) in the streaming sessions,
but the user’s QoE is not sacrificed. For example, by setting µ
to 0.5, oBBR achieves the average quality of 6.37, the qual-
ity switches of 4, and the rebuffering ratio of 0.28%. Thus,
the experiments show that oBBR benefits video streaming
applications. It improves the QoE without incurring high re-
transmissions as BBR, which is friendly to content providers.

6 Related Work

BBR. BBR has been well-studied since it was proposed. It has
been deployed in various networking scenarios, including mo-
biles [51], Wireless LANs [16], and clouds [17], and these re-
search point out that the pacing mechanism in BBR may lead
to poor performance. BBR is also implemented in MPTCP
on Linux and the superior performance over other congestion
control algorithms is observed [5]. The BBR-based MPTCP
is further improved with respect to fairness and throughput in
following studies [20, 35]. The performance of BBR against
most existing CCAs has been extensively evaluated [31]. Such
a wide range of research uncover that BBR still has problems.
Bandwidth overestimation in BBR. Since BBR selects the
maximum of delivery rate samples within the latest 10 RTTs
as the estimated bandwidth [56], it is easy to overestimate the
bandwidth, which could result in network congestion. Chiari-
otti et al. [13] adopt the Adaptive Tobit Kalman Filter instead
of the maximum filter for estimating bandwidth more accu-
rately. Another study [19] suggests using Kalman Filter at
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Figure 14: Performance of various CCAs in an Internet video streaming session

the receiver side and to communicate with the sender with
the newly defined feedback frame of QUIC. A delayed band-
width update strategy [48] also helps, which does not update
the bandwidth estimate unless consecutive rate samples are
received. BBRx [24] adjusts the estimated bandwidth based
on the RTT deviation in an online learning manner. Different
from these studies, we use a utility function to evaluate the
delivery before and after the bandwidth update and revert to
the old value if the throughput degrades.
High retransmissions in BBR. The high retransmission rates
of BBR in shallow buffers have been recognized in prior stud-
ies [6, 14, 22]. To reduce the retransmissions, BBR-ACD [34]
halves its congestion window when three consecutive iden-
tical RTT samples are received or the latest RTT sample is
greater than 2×RTT estimate. BBR-A [33] is an extension to
BBR-ACD that additionally decreases its pacing rate while
the congestion window is reduced. In another study [45], the
accurate propagation latency is detected when competing with
CUBIC flows, and it cuts the congestion window to 1/3 of the
in-flight data once there is packet loss. The existing optimiza-
tions for reducing high retransmissions in BBR flows apply
loss-based multiplication to reduce the congestion window.
oBBR sets the congestion window as BDP plus a proportion
of bottleneck buffer so that the in-flight data will not keep de-
creasing even in a complex network, effectively guaranteeing
the transmission throughput.
Unfairness of BBR. BBR has also been criticized for its un-
fairness when competing with loss-based CCAs [23, 42, 55].
Models [37,52] are proposed for dissection. Researchers have
found that a BBR flow occupies the same share of bandwidth
regardless of how many loss-based flows coexist [52]. Fur-
thermore, if too many BBR flows coexist, their advantage in
throughput diminishes [37]. A learning-based model [27] has
been proposed for determining the type of competing flows
and mitigating the BBR’s aggressiveness once the competi-
tors are loss-based. Besides, a BBR flow gains a competitive
advantage against another BBR flow if its propagation time
is longer [32, 39, 40, 43, 49]. BBQ [32] enforces a cap to the
span of the period that BBR pours more data for bandwidth
probing. This bounds the advantage that a BBR flow with
a long delivery latency can gain. BBR-E [28] reduces the
in-flight data cap when the recent RTTs exceed a threshold.
In another work [26], a factor γ is designed to compensate for

the impacts of different RTTs, which makes the in-flight data
from various flows almost the same. The fairness of BBR is
out of the scope of this paper, but this is important and worth
further exploring in future work.
BBRv2. To address these problems, Google introduced
BBRv2 [11], which has been tested in a few studies [15, 25,
38, 54]. BBRv2 improves the fairness between flows with dif-
ferent RTTs and behaves less aggressively against loss-based
CCAs [15, 38]. BBRv2 also reduces the high retransmission
rates in BBR but at the cost of weakened resistance to packet
losses [25]. In a network with bandwidth fluctuations, BBRv2
performs poorly [54]. In this work, we strive to solve the
problems, i.e., degrading throughput and low responsiveness
towards network dynamics, that still exist in BBRv2.

7 Conclusion

In this work, we carefully analyze the reasons for high retrans-
missions in BBR flows. We notice that the packet losses in
shallow-buffered links are closely correlated to the in-flight
data cap and the buffer size. Additionally, the slow reaction to
bandwidth drops also makes BBR send excessive data to the
transmission channel, thus leading to high retransmissions. To
solve the problems, we design oBBR, which intelligently de-
tects the bottleneck buffer size and scales the in-flight data cap
accordingly, avoiding packet losses in the shallow-buffered
links. oBBR also detects the bandwidth drop in an accurate
and timely manner and tweaks its sending rate to avoid con-
gestion. Extensive experiments in both a lab environment
and the Internet have shown that oBBR significantly reduces
retransmissions while still reaching a high data delivery rate.
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Abstract
To improve the user experience of mobile web services,

various congestion control algorithms (CCAs) have been pro-

posed, yet the performance of the application is still unsat-

isfactory. We argue that the suboptimal performance comes

from the gap between what the application needs (i.e., Quality

of Experience (QoE)) and what the current CCA is optimizing

(i.e., Quality of Service (QoS)). However, optimizing QoE

for CCAs is extremely challenging due to the convoluted re-

lationship and mismatched timescale between QoE and QoS.

To bridge the gap between QoE and QoS for CCAs, we pro-

pose Floo, a new QoE-oriented congestion control selection

mechanism, as a shim layer between CCAs and applications

to address the challenges above. Floo targets request com-

pletion time as QoE, and conveys the optimization goal of

QoE to CCAs by always selecting the most appropriate CCA

in the runtime. Floo further adopts reinforcement learning to

capture the complexity in CCA selection and supports smooth

CCA switching during transmission. We implement Floo in

a popular mobile web service application online. Through

extensive experiments in production environments and on

various locally emulated network conditions, we demonstrate

that Floo improves QoE by about 14.3% to 52.7%.

1 Introduction
Last decade has witnessed a dramatic increase in the use of

mobile web services. The latest statistics demonstrate that

more than 60% of global Internet users access web services

with mobile devices [4]. Mobile web services are built on the

transport layer, which typically employs a congestion control

algorithm (CCA) that determines the data sending behavior

and significantly affects the user experience. However, unsat-

isfactory performance of mobile web services has still been

0Jia and Yan are with Department of Computer Science and Technology,

Tsinghua University. Yixuan, Enhuan and Zili are with Institute for Network

Sciences and Cyberspace, Tsinghua University. Shaorui is with Depart-

ment of Electronic Engineering, Tsinghua University. Mingwei is with

Department of Computer Science and Technology and Institute for Network

Sciences and Cyberspace, Tsinghua University. Xiaoming is with Institute

of Computer Science, University of Goettingen.

reported [40, 43, 49]. A recent measurement in 2020 shows

that some web service users are still suffering from multi sec-

onds request completion time [54], which also corroborates

our observation in our web service in production (§5.3).

Our observation is that the key issue of the unsatisfactory

performance in mobile web services is the mismatch between

what CCAs are optimizing and what the applications need.

Normally, CCAs optimize the Quality of Service (QoS) met-

rics describing the transport layer protocol delivery capabili-

ties, i.e., delay, throughput, loss rate [22,31], or a combination

of these metrics [7, 19], in different network conditions. How-

ever, the applications do not really need an optimized QoS.

Instead, they need a high quality of experience (QoE) for

users. Specifically, for mobile web services, they have no idea

what is throughput but only care about request completion
time (RCT)1. The mismatch between QoE and QoS for current

CCAs leads to their suboptimal performance.

However, optimizing QoE for CCAs is extremely challeng-

ing due to the following reasons. First, in terms of causality,

the relationship between QoE and QoS is convoluted. For ex-

ample, for small requests in web services, the increase of RTT

will result in the degradation of the RCT. However, for large

bulk requests, the effect of the increase of RTT on RCT is

negligible. Therefore, without clearly understanding the rela-

tionship between QoE and QoS, directly optimizing the QoS

may not be able to improve the QoE for the application. Sec-

ond, in terms of timeliness, network conditions in QoS such as

RTT and throughput are usually measured on a fine timescale

(e.g., per packet). With this, CCAs can also make decisions

on a short timescale. However, QoEs are usually perceived

in a much longer timescale. RCTs in web services can only

be calculated after the request completes, which usually takes

seconds, during which, the CCA has already made numerous

decisions. Thus, it is challenging for CCA to know which

decisions are right and further correct its decisions (§2.1).

Our insight in this paper is not to directly optimize the CCA

1There are various QoE metrics of mobile web service, such as page load

time. In this paper, we focus on the request completion time, i.e., the time

interval between the request sent and the response fully received.
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itself, but to introduce a shim layer between the application

layer and transport layer to select the appropriate CCA for a

better QoE. After decades of evolution of CCA, although there

may not exist one CCA to fit all scenarios, we believe that

there should always be at least one CCA that behaves well in a

certain scenario. Selecting the CCA addresses the challenges

above in two ways: First, instead of blindly optimizing those

low-level instructions for CCAs with QoS, we could select the

appropriate CCA based on the QoE. Second, we can perform

the CCA selection at the same or longer timescale to fully

and accurately utilize the information from QoE. Therefore,

if we could always select and switch to the best CCA in the

runtime, we will have the QoE directly optimized (§2.2).

However, it is challenging to propose a CCA selection

mechanism for large-scale mobile web service due to the

following reasons (§2.3).

• Generating an optimal CCA selection policy is challeng-
ing. The CCA selection policy, or in other words, mapping

from the observed network conditions and application QoE

metrics to the appropriate CCAs, is complicated. (1) The

mobile network conditions can fluctuate, and are not easy

to capture from the metrics observed on endpoints. (2)

It is very difficult to model and characterize the CCAs,

especially the recent proposed complicated CCAs [9, 19].

• Switching between CCAs is nontrivial. Different CCAs

maintain different states. For example, BBR maintains the

maximum delivery rate in the last 8 RTTs, but Cubic does

not. If we need to switch between CCAs in the runtime,

we should handle the states for a seamless switch carefully.

Otherwise, if each CCA starts with the slow start, the QoE

might be severely impaired during each switching.

To address the above challenges and provide better per-

formance to the real applications, we propose Floo, a QoE-

oriented mechanism for congestion control selection in large-

scale mobile web services. Our key ideas are (1) to design

a QoE-oriented CCA selection mechanism, and (2) to sup-

port seamless CCA switching during transmission. To turn

our ideas into reality, we design several building blocks in

Floo. First, we propose a reinforcement learning (RL)-based

framework (to understand CCAs) that uses QoE as the selec-

tion criterion, and carefully selects both transport layer and

application layer metrics (against network dynamic) to be

jointly used in CCA selection (§3.2 and §3.3). Second, we

devise a CCA switching mechanism to ensure the smooth-

ness of switching by migrating the CCA phases and variables.

The switching mechanism can be applied to traditional non-

learning CCAs, and it is implemented with multiple classical

CCAs in this paper (§3.4). Briefly speaking, Floo selects the

optimal CCA for each connection according to QoE, and

switches to a new, better CCA when the network condition

changes (§3.1).

We implement Floo atop QUIC in the production environ-

ment of one Meituan’s popular mobile web service applica-

tion, Dianping, with O(10M) daily active users (§4.1). To

make Floo work for real application scenarios, we collect

real-world application traces for 14 days, including 35 mil-

lion request logs. The traces are employed for analysis and

training to reduce the gap between emulated environments

and real world scenarios, enabling Floo to directly serve the

real applications (§4.2). Extensive experiments demonstrate

that Floo reduces the RCT by about 14.3% to 52.7% on aver-

age compared to using a static CCA. Further evaluation also

shows that Floo is able to achieve satisfactory performance in

the real world in different scenarios (§5).

In summary, our key contributions in this paper are:

• By demonstrating the difficulty of optimizing QoE for

CCAs, we reveal the need for a practical QoE-oriented

CCA selection mechanism (§2).

• We propose Floo, a QoE-oriented mechanism for CCA

selection, which supports seamless switching on the fly for

large-scale deployment of mobile web services (§3, §4).

• We deploy and evaluate Floo with Dianping service of

Meituan. Our extensive experiments showed that Floo

achieves consistent high performance under dynamic mo-

bile networks (§5).

2 Motivation and Challenge
In this section, we use real-world mobile web service traces

to demonstrate optimizing QoE for CCAs is extremely chal-

lenging in §2.1. Then, we present our design choices in §2.2

to address the mismatch between QoS and QoE. Finally, we

elaborate on the challenges of designing the QoE-oriented

CCA selection mechanism in §2.3.

2.1 Optimizing QoE for CCAs is extremely challenging

Convoluted relationship between QoS and QoE. QoE met-

rics are defined by applications. In contrast, QoS metrics

focus on the descriptions of transport layer performance. The

optimization of QoS is not consistent with that of QoE. For

example, for large bulk requests, a reduction in RTT does not

imply a QoE improvement [37]. Small request-intensive web

pages are not that sensitive to throughput increase, since their

total bandwidth need may still be small. As for the applica-

tions that apply recovery techniques such as FEC [32], packet

loss also does not have a significant impact on QoE [25]. CCA

has no idea what goal the application optimizes towards and

whether application layer techniques are used. Therefore, the

relationship between QoE and QoS is convoluted.

We conduct emulated experiments to demonstrate the con-

voluted relationship. Four well-known CCAs are considered:

Cubic [23], BBR [12], Copa [9], and Westwood [14]. We use

real-world traces extracted from Dianping to generate request-

response messages (detailed in §4.2) on Mahimahi [41] emu-

lated network paths. The WSP algorithm [44] is employed to

compute the configurations of 100 different network path con-

ditions (detailed in §4.3.1). Each CCA runs on each network

path condition for 2 minutes. We calculate the metrics of Thpt,

RTT, Power [27], etc., periodically at the sender according to

transport layer acknowledgments. The results are presented
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Figure 1: The mean through-

put and RTT of the four CCAs

achieved on a network path.

Figure 2: The RCT for all net-

work path conditions following

different CCA selection metrics.

Metrics Definition

QoE Request completion time
Power [27] Power = T hroughput

Delay

Power_V [28] Power_V = T hroughput∗(1−LossRate)
Delay

Vivace [19] Vivace = ratet −b∗ rate∗ dRT T
dT − c∗ loss∗ rate

Thpt Delivery rate

Table 1: A QoE metric and four QoS metrics. QoE is calculated as

the average RCT after the CCA convergence (20s after connection

establishment). Power is the most common metric used for transport

layer evaluation [7, 22, 31, 57]. Power_Variant [28] is one variant of

Power, which also considers the packet loss rate. Vivace is used by

an online learning CCA, and it is in form of utility function [19, 20].

in Fig. 1 and 2.

Fig. 1 shows the performance of the CCAs on a specific net-

work path. Among the four CCAs, the CCA that achieves the

highest throughput or the lowest RTT does not reach the best

QoE (defined in Tab. 1). Then we consider the relationship

between QoS and QoE on multiple network paths. For each

network path condition, we select the best CCA following

different metrics listed in Tab. 1. For each metric, we obtain

all the RCT of the requests running the selected CCA for all

network path conditions. Fig. 2 shows the Tukey boxplot for

each metric. Results show that if the CCA is selected follow-

ing the QoE metric, the RCT can be reduced by at least 27%

on average, and none of the popular QoS metrics can achieve

similar RCT to the QoE metric. This well demonstrate the

convoluted relationship between QoS and QoE.

Mismatched timescale between QoE and QoS. The mis-

match also exists in the time scale of the CCA and application

optimization. CCAs collect fine-grained ACK information

and make decisions at a granularity of packet-level or RTT-

level. In contrast, QoE is measured and evaluated at a coarse

granularity of the request level, usually around hundreds of

milliseconds or even longer [9, 54]. As a result, it is difficult

to map high time scale QoE to low time scale CCA behavior.

2.2 Design Choices
Instead of optimizing QoE for CCAs, we decide to design

a shim, which selects an appropriate CCA aiming for better

QoE. The QoE-oriented CCA selection approach addresses

the mismatch between QoS and QoE:

• Optimizing the real goal. It is hard to make QoS-oriented

CCAs optimize the QoE, because of the mismatch between

QoE and QoS. However, with QoE metrics as the basis, the

CCA selection shim allows the transport layer behavior to

be optimized toward application layer objectives. As dis-

cussed in §2.1, the QoE is hard to be replaced by existing

transport capability-oriented QoS metrics. Therefore, QoE

is regarded as the real goal of our approach.

• Time scale. The CCA selection approach works above

the transport layer to make decisions at a coarser granu-

larity, understanding the QoE, and deciding which CCA

to use. Specific sending rate/CWND increase or decrease

decisions of the CCAs’ are not necessarily closely coupled

with QoE. Thus, the time scale mismatch is solved. The

CCAs do not need to interact with the application layer

and do not need to be modified.

2.3 Challenges
However, designing and implementing a CCA selection mech-

anism is non-trivial in a large-scale real-world deployment of

mobile web service.

CCA Selection. Creating a mapping from the observed net-

work conditions and QoE metrics to CCAs, or in other words,

generating a CCA selection policy is challenging.

• Fluctuating network conditions. Under mobile networks,

network conditions fluctuate due to wireless channel fad-

ing, user movement, or network congestion. Adapting to

the dynamic network condition is challenging.

• Empirical CCA characteristics. The existing knowledge

of the applicable scenarios of CCA is usually empirical [11,

15]. It is very difficult to model and characterize the CCAs,

especially the recent proposed CCAs [9, 19]. Adapting to

the complicated CCAs is challenging.

Smooth switching on the fly. Due to dynamic network con-

ditions, CCA switching may occur during transmission. We

consider two kinds of switching: Part Switching and Full

Switching. While Full Switching makes the new CCA inherit

all CCA-related variables, including connection-level vari-

ables (e.g., CWND/sending rate and RTT-related values), and

CCA private state variables (e.g., fulled_pipe in BBR), Part

Switching only inherits connection-level variables, and the

private state variables of the new CCA are initialized from

default values. To demonstrate their differences, we build a

small testbed including two hosts and one switcher. The two

hosts establish a QUIC connection, which continues to send

massive data. One CCA switch event happens at the 10th

second. As shown in Fig. 3, the switching without CCA state

migration (Part Switching) has two problems:

• Longer convergence time and performance deteriora-
tion. Without CCA state migration, the new CCA starts

at the slow start phase and the CWND or sending rate in-

creases exponentially from the steady state of the previous

CCA until it converges again. The path condition informa-

tion required for the new CCA still needs time to be col-

USENIX Association 2023 USENIX Annual Technical Conference    555



0 5 10 15 20
Time (s)

0

50

100

KB
yt

es

CWND

(a) Cubic switches to BBR.

0 5 10 15 20
Time (s)

50

100

150

KB
yt

es

CWND

(b) Cubic switches to Copa.

0 5 10 15 20
Time (s)

0

50

100

RT
T 

(m
s)

RTT
Loss Event

(c) Cubic switches to BBR.

0 5 10 15 20
Time (s)

0

50

100

RT
T 

(m
s)

RTT
Loss Event

(d) Cubic switches to Copa.

Figure 3: Two demonstrations of Part Switching. The switch event

happens at the 10th second. (a) and (b) show the CWND change

over time. (c) and (d) show the smooth RTT changes over time

and when loss events happen. Part Switching from Cubic to BBR

leads to longer convergence time and performance deterioration. Part

Switching from Cubic to Copa leads to distorted path estimation

collected and results in abnormal behavior of the new CCA.

lected and estimated. Worse still, since the previous CCA

has converged basically, the new CCA’s re-convergence

will cause a lot of packets lost (about 14.8% within 2s after

switching in Fig. 3c).

• Distorted path estimation results in abnormal behavior
of new CCAs. The network condition observed by the

new CCA reflects the condition after the previous CCA

converged. It may not be consistent with the real path con-

dition. For example, as shown in Fig. 3d, there is already

a queue buildup in the buffer by Cubic when the switch-

ing occurs. Therefore, the minRT T observed by Copa is

biased after the switching. In such a case, Copa is unable

to make proper decisions to reduce the RTT or drain the

queue. Fig. 3d shows that the high RTT may last for tens

of seconds or even longer, which completely conflicts with

Copa’s design goal of low latency.

Therefore, smooth switching is necessary. Ideally, the new

CCA should inherit all the CCA-related variables and con-

tinue to update them according to the newly observed network

conditions after the switching. However, considering the more

complex state design of emerging CCAs, and the personalized

state variables, mapping the state of a certain CCA to a new

one is much more challenging.

3 Design
3.1 Design Overview
Fig. 4 shows the overall architecture of Floo. We build the

main building blocks of Floo atop QUIC, including Moni-

tor module, Selector module and Switcher module. Monitor

module collects information from both the transport layer and

application layer. According to the state variables saving ap-

plication statistics and connection statistics, Monitor module

Figure 4: Floo Overview

Characteristic Metric Description

Btlbw T hpt_max The maximum delivery rate

RTProp RT T _min The minimum RTT

Random Loss Loss_rate |Lost Packet| / |Sent Packet|

Buffer RT T _rate Smooth RTT / Min RTT

RTT Variety RT Tvar The variance of RTT samples

CCA
CCA_name Current CCA

CWND/SendRate CWND or pacing rate

App-level

Good put The average Size / Duration of past responses

Unsent_size Total bytes of the response waiting for writing to Send Buffer

Qws The average duration the response wait for writing to Send Buffer

Qwsgradient The gradient of the Qws samples

Bytes_interval Bytes sent in the last SP

Table 2: The metrics collected by Monitor module.

computes the metrics of interest in consecutive time intervals

and feeds them to Selector module every selection period (SP)

(§3.2). According to the metrics fed by the Monitor module,

Selector module selects a CCA based on a pre-trained selec-

tion policy, which maps the metrics from Monitor module to

appropriate CCAs. With the help of that policy, an appropri-

ate CCA is selected to maximize the application QoE. The

selection policy is pre-trained offline with RL methods (§3.3).

After getting informed of the new optimal CCA, Switcher

module conducts CCA state migration to complete a smooth

switching from the current CCA to the new CCA (§3.4). Thus,

an accurate and smooth switching of CCA is completed.

For a QoE-oriented CCA selection mechanism, one key

design decision of Floo is how to incorporate QoE metrics

into the mechanism. From emulated experiments in §2.1, we

observe that it is difficult to replace QoE with QoS. As Fig. 2

shows, the CCAs selected with the QoE criterion achieve

the lowest RCT, while the other four QoS metrics, Power,

Power_V, Vivace and Thpt, have 31.01%, 31.34%, 27.87%,

28.01% higher RCT on average respectively. Therefore, our

answer is to directly set QoE as the selection criterion.

3.2 Monitor
Monitor module gathers collectible statistics that can be mea-

sured and monitored, including the transport layer and applica-

tion layer statistics. The transport layer statistics are collected

from the information provided by ACK packets or the connec-

tion maintained state variables. As for the application layer

statistics, we collect them from mobile web applications.

We consider the metrics shown in Tab. 2. The CCA selec-

tion mechanism is to select the optimal CCA for different

network conditions. Therefore, we first consider the charac-

teristics describing the network path conditions. They are
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the former 5 rows of the table. We use bottleneck link band-

width (BtlBw), round-trip propagation time (RT Prop), RTT

variety (RT Tvar), packet loss rate (RandomLoss) and buffer

size (Bu f f erSize) to describe a network path. We estimate

these objective network path conditions with the following

collectible metrics: the maximum delivery rate (T hptmax),

minimum RTT (RT Tmin), average loss rate (Loss_rate), rela-

tive value of buffer size v.s. BDP (RT T _rate) and the RTT

variety (RT Tvar). The calculation of the metrics occurs in a

slicing time window of 10s.

Note that the above metrics are only the observed metrics

of the network paths and not the objective network path con-

ditions. The relationship between the observed and objective

values can be affected by the current running CCA. In order to

accurately reflect the objective values of the network path, two

additional types of information are collected. On the one hand,

we record the current CCA, and CWND/SendRate if applica-

ble. On the other hand, we collect the information from the ap-

plication layer, specifically the Good put, Unsent_size, Qws,

Qwsgradient , Bytes_interval (defined in Tab. 2). It is worth

noting that Qws is the response waiting time, which is the

time between the response is generated on the server and the

response data is written to the send buffer of the transport

layer. Qws reflects the growth and drain of the queue in the

send buffer. When the network condition worsens, the queue

in the send buffer will pile up rapidly, making the rise in Qws.

The calculation of these app-level statistics occurs every SP.

3.3 RL-based Selector
Selector module selects the optimal CCA based on the met-

rics passed by Monitor module. The selection policy, or the

mapping from the Monitor module metrics to the optimal

CCA, is pre-trained and saved in Selector module. We utilize

an RL approach to build a prediction model as the selection

policy, because RL and CCAs are similar, i.e., both of them

continuously make decisions according to the changes of en-

vironment. In this section, we describe the RL system. The

process and method of offline training are shown in §4.3.

State & Action. We use the metrics passed by Monitor mod-

ule as the state of RL system, which is used to select the

optimal CCA. We use normalized metrics instead of the exact

values. This avoids exaggerating the impact of an input metric

with very large values on the final model. Further, normaliza-

tion helps Selector module generalize the network conditions

it observes during the training phase to unseen network con-

ditions and achieve better performance. As for the action, the

RL system uses CCA candidates as the possible action values.

Reward. Reward is an important factor affecting the RL

system’s performance. Specifically, the rewards the RL

agent gains at each step quantify its performance to im-

prove its subsequent action. Numerous RL-based congestion

control-related solutions adopt Power or its variants as re-

ward [7,28,31,42,57]. However, our experiment results show

that application-layer metrics are more appropriate reward in-

dices than QoS-oriented transport layer metrics (§2.1). There-

fore, we directly utilize the gradient of QoE as the reward for

our RL system.

We regard the RCT as the QoE of web services, which is

also a common QoE choice for such services. RCT is the time

taken from sending the request to receiving the last byte of the

response, recorded on the client side. RCT mainly includes the

transmission elapsed time within the network (transmission

time) and the response queuing time on the sender (i.e., Qws
in Tab. 2). For web services, we employ this value as the RL

system reward for the following reasons:

• When the sending rate is high, the response queuing time is

much smaller than the transmission time. Therefore, RCT

is approximately equal to the transmission time, which

reflects the current transmission efficiency, and thus can

evaluate the current action (i.e., CCA).

• When the sending rate is low, or is lower than the deliv-

ery rate from the sender application layer to the sender

transport layer, RCT mainly includes the response queuing

time. In this case, RCT reflects the growth and drain of

the queue within the send buffer. If the current action is

better than the previous action, it will suppress the queue

growth or accelerate the queue draining. The change of

the queue will be reflected in the change of RCT, and will

further evaluate the merit of actions in one training round.

Specifically, we use the gradient of RCT as the reward:

R = ln
Last RCTavg

Current RCTavg
. In each step, we record the average RCT

in time units and compare it with that of the last step. After

one entire training episode, we normalize all the rewards

uniformly.

Learning algorithm. Floo adopts actor-critic RL, and is

trained using the Proximal Policy Optimization (PPO) al-

gorithm [45]. PPO is an advanced RL algorithm that is adept

at exploring policies with continuous features. PPO addresses

the issues of the traditional policy gradient philosophy and

improves the utilization of data and the model stability by

the design of importance sampling and clipping. Appendix A

details how PPO is utilized in Floo.

3.4 CCA State Migration
To deal with the challenges described in §2.3, our design goals

are: (1) Inherit the network path estimation to speed up CCA

convergence and avoid performance degradation. (2) Retain

the characteristics of new CCAs consistent with the original

design goals. In our design, the CCA state migration mecha-

nism considers all the CCA-related variables, i.e., the CCAs’

phase and the variables used in CCAs. This mechanism can

be applied to non-learning CCAs, e.g. Cubic, BBR and Copa.

CCA Phase Migration. CCA phase migration is concerned

with the state transition within the CCAs. With packet loss no

longer the only congestion signal, the emerging CCA phases

become more complex. However, a common feature of non-

learning CCAs is that they all probe the path and estimate
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Variable Type Description

Sending rate variables
Variables that directly determine the sending rate,

e.g. CWND, Pacing rate, etc.

Observation variables
Observations of the connection,

e.g. smooth RTT, max delivery rate, etc.

Parameter variables
Variables related to CCA design,

e.g. β=0.8 in Cubic when packet loss.

Other variables
Variables that maintain CCA’s current state,

e.g. f ulled_pipe in BBR, and velocity in Copa.

Table 3: Four types of CCA-related variables.

their occupancy of the path based on the feedback. Therefore,

we coarsely classify CCA phases into two categories based

on how well the CCA probes the path.

The first category is the non-converged phase, i.e., where

CCA has not formed a complete awareness of the path or does

not fully utilize the available capacity. The non-converged

phase includes both the slow start phase and the situation

where the CCA would not fill the pipe for other purposes,

such as ProbeRTT in BBR. The second category is the con-

verged phase, i.e., where CCA adjusts the sending behavior

based on the observations of the path after the slow start, in-

cluding the congestion avoidance phase of traditional CCAs,

the ProbeBW phase of BBR, and the moving phase of Copa.

We adopt different measures to migrate different phases.

If the switching happens at the converged phase of the old

CCA, Floo makes the new CCA directly enter the converged

phase.This avoids massive packet loss caused by the slow start

phase after switching. We do not perform switching at the

non-converged phase. On the one hand, the statistics collected

during the non-converged phase are unreliable. On the other

hand, the non-converged phase usually does not last too long,

so it will not cause much damage even if the switch is not

made immediately. Note that there is one exception: if the

new CCA is BBR, Floo makes the BBR enter the ProbeRTT

phase first. Though the ProbeRTT phase is not converged, it

will affect the performance of the converged phase.

CCA Variable Migration. CCA variable migration is map-

ping variables from the prior CCA to the new CCA. The

variables maintained by various CCAs are different and affect

CCA switching performance differently. Therefore, we group

all variables into four types, as shown in Tab. 3. According to

our two design goals, we adopt the corresponding migration

methods for each type.

• Sending rate variables. Sending rate variables, such as

CWND and pacing rate, directly determine the sending rate.

Therefore, they need to inherit the prior rate, thus ensuring

smooth switching. The key issue here is the conversion

between the rate-based CCAs and window-based CCAs.

We use the relationship that CWND = pacing rate∗RT T
to calculate the migrated values.

• Observation variables. Observation variables are esti-

mated statistics for the network path. The observation vari-

ables collected in the converged phase can directly follow

the new CCA. Considering that some important observa-

tion variables are not preserved by all CCAs, we addition-

ally preserve the bottleneck bandwidth and minimum RTT

at the granularity of the connection.

• Parameter variables. Parameter variables are related to

the design of the CCA, which are basically fixed values

and will determine the performance. Therefore, we do not

perform any manipulation on these variables.

• Other variables. Other variables maintain CCA’s current

states, most of which are computed from observation vari-

ables. We migrate them based on the phase migration meth-

ods. The left ones are simply initialized to default values.

4 Implementation and Training
We implement Floo atop QUIC in the production environment

of Dianping service with O(10M) daily active users. We first

introduce the implementation of Floo (§4.1). Then, in order

to make our model applicable to real applications, we conduct

a large scale passive measurement on Dianping application

from Meituan, analyze the traffic patterns of the application

and use the collected application traces for training (§4.2).

Also, we train the RL-based CCA selection model with the

numerous newly collected real application traces and wireless

network traces (§4.3) to make Floo Selector module suitable

for real application scenarios.

4.1 Implementation

We implement Floo based on QUIC [29]2 in user space. Floo

only requires modification on the sender side. For the train-

ing phase, we implement Floo’s RL-Agent on top of Tensor-

flow [6]. After the training phase, we obtain the trained model,

which is used in Floo’s Selector module. The training phase

is well presented in §4.3.

As for the applications, we slightly modify Dianping to sup-

port Monitor module of Floo, then the modified Dianping can

run on top of Floo. We use it in real-world experiments (§5.3).

Additionally, we also implement a simple request-response

messaging application (Application S) atop Floo, which is

used in the training phase of Floo and all the emulated experi-

ments in §5. Application S generates requests and responses

according to the application traces introduced in §4.3.1. In

the training phase of Floo, Application S negotiates with RL

agent about the information of state, action, reward, etc. For

all the emulated experiments in §5, Application S employs

the well-trained model. The sender of Application S selects

CCA dynamically according to Floo’s Selector module.

CCA Candidates. We consider the CCAs that have been

deployed in real Internet environments as candidates for our

CCA selection policy. Firstly, for deployability, we mainly

consider widely-deployed CCAs, and thus choose the most

two widely-deployed [36] CCAs, Cubic and BBR. Secondly,

for effectiveness, CCA candidates should cover diverse QoS

metrics. Therefore, we also use the loss-resilient Westwood

2We use an IETF QUIC implementation, ngtcp2 [2].
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and latency-sensitive Copa. These four CCAs have different

preferences for QoS targets (§2.1).

4.2 Application Dataset
We measure the traffic patterns of a real mobile application

in production environments. These measurements illuminate

the nature of request-response messaging traffic and provide

the basis for constructing CCA selection policies that can be

used for real applications.

We perform a large-scale passive measurement on Dian-

ping from Meituan. Users can make purchases through this

application, and the main user actions include searching, view-

ing images, etc. When the users are using the application,

the client establishes a persistent connection with a frontend

server, through which the application sends requests to the

frontend server. We instrument the mobile APP client of that

application, and after each request is completed, the instru-

mentation collects application-level logs and connection-level

logs describing the finished transport process. We collected

the logs of about 35 million request-response messages over

two weeks.

First, we found that the connections of the application are

persistent and would last 206s on average, which is much

longer than the SP, supporting Floo’s CCA selection. Then,

we present the characteristics of the mobile web service, i.e.

size and frequency of requests and responses sent through the

persistent connections between the client APP and the fron-

tend servers in Fig. 5. Fig. 5a shows the CDF of the request

size. As we can see, over 80% of the requests are less than

10 KB, indicating that most of the upstream traffic is small

and generally not the performance bottleneck. Fig. 5b shows

the CDF of the response size. The responses have a diverse

mix of small and large sizes with heavy-tailed characteristics.

For the response workload, more than 70% of the responses

are less than 10KB, but more than 60% of all bytes are in the

3.4% of responses.

Fig. 5c shows the time interval between the two consec-

utive sending of requests from the client. The inter-sending

time between requests reflects the density and diversity of

requests initiated by the application. Since this interval is

influenced by both user behavior and application character-

istics, we filter out the request initiation due to the user be-

havior. Specifically, the two requests with an inter-sending

time greater than 1 second are considered two clicks of the

user behavior. After filtering, as shown in Fig. 5c, 80% of the

request inter-sending intervals are less than 44ms, and 38.4%

of them are concurrent (0ms). Therefore, although most of the
requests and responses are tens to hundreds of kilobytes in
size, the bandwidth needs of the application are still high.

4.3 Training
Floo’s training goal is to learn one policy that can select an

appropriate CCA to achieve good QoE in diverse network

environments. That policy should be applicable to real appli-

cations over real network environments. For this purpose, we

Parameter Value Range (Min - Max)

RTT(ms) 10 - 50, 50 - 100, 100 - 150, 150 - 300

RTT Jitter / RTT 0 - 0.2, Jitter max = 20ms

Loss rate(%) 0 - 0, 0 - 0.1, 0.1 - 5

Buffer / BDP 0.3 - 0.9, 0.9 - 1.1, 1.1 - 1.5

Table 4: Network condition parameters.

use real application traces and real wireless traces for training

in a controlled emulated environment (§4.3.1). Further, we

use real QUIC implementations and Application S, instead

of network simulators (§4.3.2). This allows the RL agent to

have an experience close to that in real-world scenarios.

4.3.1 Trace and Training Settings
Application traces. We generate training application traces

based on the distribution of the statistics collected from the

measurements(§4.2). Specifically, we generate each request

and response based on the CDF of the request and response

size (Fig. 5a and 5b). The sending time of each request is

determined based on the CDF of the inter-sending intervals

(Fig. 5c). The server of Application S generates a correspond-

ing response and delivers it down to the transport layer im-

mediately after receiving a request. We train the RL model

with many episodes, and each episode lasts 10 minutes. We

generate a separate application trace for each training episode.

Network condition parameters. We use Mahimahi to em-

ulate network paths and Traffic Control (TC) [8] to emu-

late RTT jitter. We adopt the network traces collected and

used in previous works [3, 7, 30, 34, 38, 39, 47, 50], as listed

in Tab. 6. These traces are employed to emulate the time-

varying network path rate upper limit. They can be used to

emulate various network conditions including 4G and 5G in

both stationary and mobile scenarios.

Besides rate upper limit, RTT, RTT jitter, packet loss rate,

and buffer size are also common network condition parame-

ters [17, 52]. We select the values of these parameters using

the space-filling WSP algorithm [17,44] over the ranges listed

in Tab. 4. WSP algorithm could generate multiple sets of net-

work conditions based on the range of each parameter in

order to emulate network conditions as diverse as possible.

We generate 20,000 sets of network condition parameters. At

the beginning of each training episode, we randomly select a

network trace with one set of network condition parameters.

4.3.2 Training Method

We construct a training architecture consisting of learning

agents, Application S clients and Application S servers. The

client and server connecting to the same agent also establish a

QUIC connection through Mahimahi. We set the episode to 10

minutes, which is long enough for CCAs to converge. For each

training episode, the agent selects and configures the network

condition parameters of Mahimahi and the application traces

to be applied, as described in §4.3.1. The detailed training

method is depicted in Appendix C.
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(a) Distribution of the request size. (b) Distribution of the response size. (c) Distribution of the inter-sending interval.

Figure 5: Distributions of request and response characteristics from the measurements depicted in §4.2.

5 Evaluation
We first introduce our experimental setup in §5.1. We then

evaluate Floo in the following aspects:

• Consistent high performance. We evaluate Floo over dif-

ferent scenarios. Evaluation shows that Floo achieves the

highest throughput and lowest delay under different net-

work conditions. Floo can reduce the application RCT by

up to 52.7% on average, and up to 78.16% at the tail (§5.2).

• Performance in the real world. We implement Floo in a

popular mobile web service and measure the performance

for 96 hours. Experiments with real users show that Floo

can reduce RCT by about 14.26% in the real world (§5.3).

• Overhead. Floo has acceptable overhead, with about 1.4%

additional CPU utilization and sub-ms magnitude of addi-

tional time consumption (§5.4).

• Improvement deep dive. Finally, we evaluate the effec-

tiveness of the design of Floo (§5.5).

5.1 Setup
We evaluate Floo in both emulated networks (§5.2, §5.4, §5.5)

and large scale production environment (§5.3).

Emulated environment. We evaluate Floo in a controlled en-

vironment by emulating different network conditions with

Mahimahi and generating new application traces. In our

testbed evaluation, we implement Application S atop Floo,

which sends requests and responses with application traces,

and collects statistics for evaluation. We conduct experiments

under 60 scenarios, including 10 stationary WiFi traces, 20

stationary cellular traces, and 30 mobile cellular traces. We

also use the WSP algorithm to select 60 sets of other param-

eters, using the same method as §4.3.1, and importantly, the

combinations of trace and parameter sets are different from

those traces used in training. We compare the performance

of Floo respectively with Cubic, BBR, Copa, Westwood and

Vivace [19]. In each scenario, we send requests and receive

responses using different algorithms for 3 minutes with the

newly generated application traces.

Large scale production environment. We implement Floo

in Dianping, with O(10M) daily active users. Our experiments

are conducted in production environment where clients are

heterogeneous including different OS, HTTP versions, etc.

We manually enable Floo for a fraction of users, measure the

performance for four days and collect 35 million request logs.

In the experiments, we set the selection period (SP) as 12s. A

StaticOpt
Floo

Cubic BBR
Copa

Westwood
Vivace

0.0
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R
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Figure 6: Floo achieves lower

RCT than QoS-oriented CCAs.

Figure 7: CPU utilization.

further analysis of the impact of different SP values is detailed

in Appendix F.

5.2 Consistent high performance
Here, we demonstrate that Floo achieves consistent high per-

formance over different network scenarios.

Overall performance. We evaluate Floo under different sce-

narios, with 60 real-world traces. We record the RCT and

show the performance of all scenarios in Fig. 6. For each

scenario, we compare the four CCA candidates, and select

the optimal CCA which achieves the lowest average RCT.

The aggregated best choices for all scenarios is presented as

Static_Opt. Floo achieves the lowest RCT, and reduces the

overall RCT by a median of 20.11% to 32.54% and 21.18% to

78.16% in the 90th percentile. The average RCT was reduced

by 14.3% to 52.7% compared with QoS-oriented CCAs.

Remark 1 (Cubic and Westwood): Floo reduces the av-

erage RCT by 52.7% compared to Cubic and 50.8% to West-

wood. For the 90 percentile (the tail) RCT, Floo shows great

improvement, and has a 74.6% reduction compared to Cubic

and 78.18% to Westwood. This is because that different types

of CCA have different scopes of application. Empirically

speaking, the performance of loss-based CCAs (i.e. Cubic

and Westwood) degrades with high RTT and random packet

loss, and will suffer longer tail latency. The improvement of

Floo in the tail RCT demonstrates its selection accuracy to

not use Cubic/Westwood when the network condition is poor.

Remark 2 (Copa and BBR): Compared to Copa and

BBR, Floo reduces the average RCT by 20.53% and 14.3%

respectively. For the 90 percentile (the tail) completion time,

Floo has a 21.18% reduction compared to Copa and 21.57% to

BBR. The improvement of Floo over the four CCA candidates

validates the accuracy of our Selector module.
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(b) Highly variable scenarios.
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Figure 8: A set of transport layer results for the three scenarios.

(a)(b)(c) present the normalized avg. delay, and avg. throughput,

where the dashed line represents the Pareto front of baselines. (d)

presents the standard deviations of the overall results.

Remark 3 (Static_Opt): Floo can adapt to variable and

dynamic network scenarios, and switch to a better CCA dur-

ing the connection whenever the network condition changes.

Therefore, Floo obtains better performance than statically

optimal selection (9.6% reduction in avg. RCT). The advan-

tage of Floo over Static_Opt demonstrates the need for CCA

switching during the connection.

Remark 4 (Vivace): Vivace is also designed for perfor-

mance. Therefore, we adopt Vivace as a baseline to evaluate

Floo’s ability to improve application QoE. Results show that

Floo achieves 17.72% lower RCT on average than Vivace,

and 25% reduction in the 90th RCT. This is because Vivace

still focuses on transport layer metrics and the utility func-

tion of Vivace is not consistent with the QoE. In addition,

the penalty for packet loss and latency in the utility function

makes Vivace less resistant to random packet loss.

Transport layer performance under different scenarios.
In our emulated experiments, we consider three scenarios, in-

cluding stationary cellular scenario, highly variable scenario

and unseen WiFi scenario. We analyze the transport layer

metrics under different scenarios. We consider two perfor-

mance metrics: average smooth RTT and average throughput.

For each scenario, we normalize the RTT and throughput

performance of all CCAs (including Floo) to the minimum

delay and maximum throughput achieved on that scenario,

respectively. Then, we average all normalized values over all

scenarios and show the results in Fig. 8. More detailed results

are presented in Appendix E.

• Stationary cellular scenarios. In our evaluations, there

are 20 traces of the stationary cellular network, including

indoor [34] and outdoor [7] traces (Fig. 8a).

• Highly variable scenarios - mobile cellular. Similarly, we

tested 30 mobile cellular traces, which are highly variable

scenarios (Fig. 8b). These traces are collected when walk-

ing and driving under 4G [7] and 5G mmWave [38]. We

also adopt the 4G measurements on high-speed rails [30] to

construct a scenario with violently fluctuating bandwidths.

• Unseen scenarios - WiFi. To evaluate the behavior of Floo

in unseen scenarios (Fig. 8c), we use WiFi traces that have

not been employed in the training, We used 10 WiFi traces

from [35], including traces from office and a public WiFi

provided by a crowded restaurant during dinner hours.

Results show that Floo generally achieves the highest

throughput with the lowest latency under different scenarios.

Even in unseen scenarios, Floo shows advantages, demon-

strating Floo’s generalization capability. The improvement

of Floo demonstrates that, besides QoE improvements, di-

rectly optimizing the application QoE through CCA selection

approach can further improve transport layer capabilities.

We also present the stability of throughput and RTT (i.e.,

the standard deviation of the normalized average throughput

and RTT) of each CCA under all scenarios in Fig. 8d. Results

show that Floo could almost achieve stable high performance

in all three scenarios, especially in terms of latency.

5.3 Real-world performance

We implement Floo in Dianping with O(10M) daily active

users. We manually enable Floo for a fraction of users. Specif-

ically, we deployed Floo on the front-end server to serve the

persistent connection between the front-end server and the

client. We enabled Floo for 5% of the users for evaluation.

Besides Floo, we also implement a Floo with Part Switching

(P-Floo), enable P-Floo for another 5% users and evaluate

the effectiveness of switching algorithms. As a comparison,

we set up another 5% of the users to use Cubic, BBR, Copa,

Westwood and Vivace respectively. We collect logs for 96

hours, resulting in more than 35 million request logs, cover-

ing users from more than 50 countries and regions. We collect

RCT from client side and the results are shown in Fig. 9 and

Fig. 10.

Floo is still able to reduce the RCT and obtain optimal

performance in real-world scenarios. Floo achieves a QoE

improvement of 8.07% to 14.26% in real scenarios, with a

reduction of about 25.5% for tail RCT. The difference in RCT

between the real scenario and the emulated evaluation mainly

comes from the different distribution of network conditions.

For emulated evaluation, we aim to cover various network

conditions by selecting as diverse network environments as

possible. In contrast, the network states in the real scenario

are not uniformly distributed. We found that there are about

57.89% of scenarios are under better network conditions (i.e.,

packet loss rate is 0% and min RTT is less than 44ms). There-

fore, unlike the significant advantage of Copa in the emulated
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Figure 9: In real world experiments, Floo

brought 12.9% reduction on average RCT.

Figure 10: Floo reduces 25.5% of the 99th

percentile (the agestail) completion time.
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Figure 11: The probability of switching

types of different user groups.

Part CPU utilization (%) Time Consumed (μs)

Network Monitor 0.784 (3.109) 47.4375

Selector 0.431 (3.540) 66.1875

Switcher 0.233 (3.773) 19.5625

Table 5: CPU overhead and time consuming of Floo.

scenario, Cubic and Westwood obtains a lower average RCT

in the real world. As a result, the improvement brought by

Floo in real world is a little lower.

We count the switching frequency and types in the real

world in Fig. 11. With the SP of 12s, the probability of a CCA

switching occurring at selecting is 25.76%, which implies an

average switching interval of about 47s. Among the switching,

the mutual switching between Copa (Cp) and Cubic (Cbc) is

the most frequent, with more than 74% of the switching being

Cubic to Copa and more than 23% being Copa to Cubic. We

group users based on the location of CDN nodes they access.

The results of switching frequency and actions in different

groups are similar.

5.4 Overhead
We report the CPU utilization and runtime overhead of Floo.

CPU utilization. We measure the system overhead of Floo

and compare it with other state-of-the-art CCAs. We performe

experiments on an emulated network (with 48Mbps bottle-

neck link and 20ms RTT) for 6 minutes. We measure the

average CPU utilization with real application traces and a

long flow separately and show the results in Fig. 7. All algo-

rithms are implemented atop QUIC in user space. Although

Floo has a higher overhead compared to classical CCAs, how-

ever, compared to Cubic, which has the lowest overhead, the

additional overhead is only 1.4%.

We measure the CPU utilization of each part by incremen-

tal experiments. Specifically, we separately measure the CPU

utilization of only Monitor module, Monitor module with Se-

lector module, and the complete Floo. We define the computed

overhead of each part as the difference in CPU utilization (%)

between two measurements. The results are shown in Tab. 5.

Time consuming. We show the time consumed by recording

the time spent for each module. Tab. 5 presents the results

taken as an average across 16 runs. We see that the additional

consumed time introduced by Floo is at the sub-millisecond

level, which is much less frequent than that of CCA selection

(about 38.9s on average in our testbed experiments). Specifi-

cally, Selector module takes the most time (about 66μs) be-

cause of the complex calculations for CCA selection. Monitor

module also consumes about 47μs to collect the additional

information. Switcher module executes the state migration

mechanism, which consumes about 19us.

5.5 Floo deep dive
Here, we evaluate the effectiveness of Floo’s design of state

migration, generalizability to other QoE metrics and resilience

to stochastic packet loss.

5.5.1 Effectiveness of state migration
Functional validation. Floo encounters situations where the

path conditions change during transmission and switching-

on-fly is required. To evaluate the effectiveness of Floo’s state

migration algorithm, we manually set the CCA switching

every 20s and switch between all CCAs in an emulated en-

vironment. We compare Full Switching and Part Switching

under 60 different scenarios.

Fig. 12 shows the details of the congestion control switch-

ing process. We show the performance of switching from

BBR to Copa, and to Cubic. We do not show additional details

of Westwood, since Westwood is basically similar to Cubic in

terms of algorithm design. As described in §2.3, packet loss

occurs under Part Switching when switching occurs without

convergence. In addition, Copa maintains a high CWND and

thus experiences a high RTT with packet loss due to the dis-

tortion of estimation of path conditions. Full Switching, as

shown in Fig. 12, avoids these problems and maintains the

CCA characteristics consistent with their design. Specifically,

when switching to Copa (Fig. 12b), Floo is able to decrease

the CWND within 1 second, thus quickly emptying the queue

built by BBR and maintaining low latency. When switching

to BBR (Fig. 12d), Floo first enters the ProbeRTT phase so as

to obtain the RTProp, which the prior CCA did not maintain

earlier. After that, BBR does not enter the Startup phase, but

gradually converges with the ProbeBW phase.
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Figure 12: Details of Full Switching. (a)(c) Full Switching statistics

of CWND, smooth RTT and loss event. (b) Detailed CWND of Full

Switching from BBR to Copa. (d) Detailed CWND of Full Switching

from Cubic to BBR.

Performance analysis. We compare the performance of Full

Switching and Part Switching in both emulated and produc-

tion environments. Fig. 13 shows the distribution of packet

loss rate within 1 second after the switching in the emulated

environment. Part Switching leads to more packet loss, while

Full Switching significantly reduces the packet loss rate, es-

pecially when switching from Cubic to the low-latency algo-

rithms, i.e. BBR and Copa. For real-world experiments, Fig. 9

shows that the average RCT is reduced by about 7.59% with

Full Switching compared to Part Switching.

5.5.2 Generalizability to other QoE metrics

We change QoE to tail RCT in order to analyze Floo’s ability

to generalize to other QoE metrics. Accordingly, we set Re-

ward as R = ln
Last RCTp90

Current RCTp90
and retrain a new RL model. We

evaluate Floo-P90 under the same 60 scenarios as §5.2. For

each scenario, we record the RCT of total requests, the RCT

at the 50th percentile, and the RCT at the 90th percentile3,

respectively. We gather the value of all scenarios in Fig. 14.

Floo-P90 is not as good as Floo in terms of total perfor-

mance of all requests. However, for the 90th percentile RCT,

Floo-P90 has a significant improvement, with a reduction of

21.78% on average. Compared to Floo, Floo-P90 selects Cu-

bic less frequently by 6.03%, while the frequency of using

BBR, Copa and Westwood increased by 4.02%, 1.0% and

1.0%, respectively. This is because the loss caused by Cubic

when filling the buffer can result in a long RCT, while BBR

are relatively conservative. As a comparison, Floo reduces

RCT at the 50th percentile by about 19.49% compared to

3We do not compare the 90th percentile RCT of all secnarios because it

represents the performance under poor network scenarios.

Floo-P90. The above results show that with our mechanism,

there can be a significant improvement on the target QoE

metric. See §7 for more analysis on generalization ability.

5.5.3 Resilience to stochastic packet loss

We also analyze Floo’s resilience to stochastic packet loss.

Stochastic packet loss often occurs under cellular networks

due to channel interference, mobility, etc [24, 51]. We evalu-

ate the performance of Floo with a single flow on a link with

4 Mbps bandwidth, 20 ms RTT, 10 KB buffer, and varying

random loss rate from 0% to 10%. As shown in Fig. 15, Floo

still maintains a low RCT when the stochastic loss rate is set

to 10%. It is worth mentioning that Vivace maintains a low

RCT until a loss rate of about 4%. After that, corresponding

to the 5% loss resistance in the utility function [19], the aver-

age RCTs increase dramatically, even up to 9.5 times of the

no packet loss case. In addition, the performance of Vivace

suffers uncertainty and instability with random packet loss.

6 Related Work
QoE-oriented transport-layer optimization. There are

many other ways to conduct QoE-oriented transport opti-

mization [18, 19, 33], while conveying QoE to transport layer

by CCA selection is more appropriate. QoS, the target of

transport optimization, is reflected in the behaviors in the

network, e.g. how to utilize the bottleneck queue, where

CCA is the most effective procedure to control. For example,

better packet scheduling could improve the host queueing

time through reordering the packets [16]. However, packets

from one application always have the same QoE, leaving

little optimization space for packet scheduling. And flow con-

trol schemes could also decide the sending rate, while it is

not aware of network behaviors. Therefore, conveying QoE

through CCAs is more appropriate.

QoE-oriented CCAs. We are not the first to observe that

CCAs should be optimized towards application QoE. One line

of solution is to integrate application design and the transport

layer behavior [13, 21]. However, these works are designed

for specific applications and redesign is needed if designers

want to migrate their good performance to other applications.

There are also proposals to use application requirements, such

as deadline [55] and priorities [56], to guide the design of

CCA at the transport layer. However, they can only be used for

application requirements that can be directly understood by

the transport layer. For example, deadline can be identified as

the data delivery time, which the transport layer can estimate

and optimize directly from RTT and packet loss events. For

the complex QoE metrics, a possible solution is to adopt

mature algorithms, such as reinforcement learning, yet we

found it impractical. If we put translated QoS as the goal

of RL [7, 26], the gap between QoE and QoS remains. If

we put QoE as the goal of the RL, the indirect and distant

connection between QoE and cwnd/rate decisions makes the

training extremely hard to converge. RL-based CCAs also
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significantly reduces the 90th percentile

RCT by 21.78% on average.
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have interpretability issues in the wild. Therefore, Floo adopts

CCA selection mechanism to bridge the gap between the

complex, application-oriented QoE and the direct, transport

capability-oriented QoS.

CCA-selection methods. There has been some work that

adopts CCA selection methods [15,20,42,57]. Existing works

still aim to optimize transport layer performance. However,

as stated in §2.1, QoS-driven CCA-selection methods will

suffer performance degradation when selection criteria are not

entirely consistent with QoE. In addition, existing schemes

cannot address the two challenges (§2.3) well. Their selection

policy generation methods do not consider QoE, and they

could not support seamless switching either.

Advanced CCAs for mobile web service. In recent years,

many advanced CCA schemes have been proposed, includ-

ing CCAs specifically designed for wireless network, such

as Sprout [50], Verus [53], and emerging learning-based

CCAs [7, 19]. However, these CCAs are still oriented to opti-

mize the transport layer performance and do not address the

QoS and QoE mismatch. Moreover, considering the practi-

cal issues [7, 15] and unproven performance in production

environments, we did not consider them as CCA candidates.

7 Discussion

Generalization to heterogeneous applications and scalabil-
ity to various CCAs. In this paper, we propose a solution for

mobile web service, aiming to reduce RCT, and using four

classical CCAs as candidates. In fact, Floo could be applied to

heterogeneous applications and various CCAs. For example,

for streaming applications, Floo can be reused by consider-

ing a chunk as a request. For complex QoE, as long as we

could extract the traces, characteristics, and the QoE metric

of the application, Floo can theoretically be used for any ap-

plication without any idea of the implementation details and

optimization techniques of the application. For CCAs, Floo

can incorporate various CCAs into the selection mechanism.

Nevertheless, CCA state migration has to be considered. Our

design in §3.4 can be extended to all non-learning algorithms.

However, generalizing to complex applications and switching

between complex CCAs are not designed and verified in this

paper, and are future work.

Fairness and friendliness. Floo selects among various CCAs,

and the fairness and friendliness of Floo is consistent with

that of the CCA candidates. In this paper, we select from

the deployed CCAs, which already has had theoretical and

experimental analysis of fairness and friendliness [9, 11, 48].

Portability to TCP in Linux kernel. Although Floo is im-

plemented atop QUIC, Floo can still be applied to TCP im-

plementation in Linux kernel. Firstly, eBPF technique [1, 10]

provides a safe and convenient way to interact between user

space and kernel. One can imagine that Floo works in user

space, extracts information from the kernel and delivered the

selected CCA to the kernel. The state migration mechanism,

on the other hand, requires further modifications to the kernel.

Secondly, as for the integration with mechanisms specific for

TCP or QUIC, e.g., multi-streaming in QUIC, Floo is orthog-

onal to pre-CCA optimizations. Therefore, for implementing

Floo over TCP without pre-CCA optimizations, Floo can also

select the appropriate CCAs in respective situations.

8 Conclusion
We propose Floo, a QoE-oriented CCA selection mechanism

for mobile web service. Floo uses QoE as the selection cri-

terion and employs RL techniques to construct the mapping

from the transport layer and application layer metrics to CCAs.

Floo switches smoothly during the transmission. We imple-

ment Floo in a popular mobile web service, and evaluate Floo

in both emulated and production environments. Experiments

show that Floo reduces the RCT by 14.3% to 52.7% in differ-

ent scenarios.

This work does not raise any ethical issues.
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A Learning Algorithm of Floo
Floo’s agent interacts with the environment, gets a series of

trajectories ((state, action, reward) or (s, a, r) for short), and

updates the policy according to the information of its interac-

tion. Upon receiving state (st), Floo’s agent needs to choose

a corresponding action (at), i.e. one CCA, and will get the

reward(rt ) in the next step. The policy that Floo’s agent used

to choose an action, is defined as the probability distribu-

tion of actions: π(st ,at)→ [0,1]. π(st ,at) is the probability

of taking action at in state st . Then the agent uses the PPO

algorithm to update the parameter θ of the policy π. The PPO

algorithm is optimized from the policy gradient methods [46],

which estimates the gradient of the expected total reward by

observing the trajectories obtained by following the policy.

The gradient of Policy Gradient can be computed as:

∇θJ(θ) = E(st,at)∼πθ

[
Aθ (st,at)∇ logπθ (a

n
t | sn

t )
]

(1)

Aθ (st,at) is the Advantage Function, which represents the

difference in the expected total reward when we choose action

at in state st , compared to the expected total reward for the

action drawn from policy πθ.

Policy Gradient is an on-policy method where the collected

sample (st , at , rt ) is used only once. In order to make full use

of the training data and improve the learning efficiency, PPO

extends the Policy Gradient method. The original policy is

denoted as πθ, and when the gradient ∇θJ(θ) is applied to the

original policy πθ, the new policy is denoted as πθ′ . At this

point, if we want to reuse the data generated by the policy

πθ to update πθ′ , considering the different distributions of

trajectories in πθ′ and πθ, an importance sampling method is

needed:

Ex∼p[ f (x)] = Ex∼q

[
f (x)

p(x)
q(x)

]
(2)

Therefore, the gradient of the off-policy is calculated as fol-

lows, with the parameters before and after the update denoted

as θ and θ′:

∇θJ(θ) = E(st,at)∼πθ
′

[
πθ (at | st)

πθ′ (at | st)
Aθ′ (st,at)∇ logπθ (a

n
t | sn

t )

]

(3)
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Trace Year Type (Num) Stationary / Mobile Description

Lumos [38, 39] 2020 4G (166), 5G mmWave (121) Stationary, Mobile (walking, driving) Verizon’s 4G and 5G service in Minneapolis.

NYC [7] 2019 4G LTE (23) Stationary, Mobile (bus, taxi) Cellular traces gathered in NYC.

PiTree [34] 2019 4G(61) Stationary Measurement of indoor 4G bandwidth.

HSR [30] 2018 4G (33) Mobile (high-speed rails) 4G measurements on high-speed rails.

FCC18 [3] 2018 4G (397) Stationary The broadband network in 2018 provided by FCC.

Ghent [47] 2016 4G (40) Mobile (foot, bicycle, bus, tram, train, car) 4G measurements in 2016 by Ghent University.

Table 6: The description of the real network traces.

The objective function is calculated as Eq. (4). To ensure

that the difference between the policy before and after the

update is not too large, PPO adds a constraint to the objective

function. The clip function forces
πθ(at |st)

π
θ′(at |st)

between 1− ε and

1+ε, and finally takes the minimum value among the rewards

that have been clipped and those that have not been clipped.

Jθ′(θ) = ∑
(st ,at )

min(
πθ(at | st)

πθ′(at | st)
Aθ′(st ,at),

clip(
πθ(at|st)

πθ′(at|st)
,1− ε,1+ ε)Aθ′(st,at))

(4)

The detailed derivation and sample code can be found in [5,

45].

B Real Network Traces
Tab. 6 shows the traces used in Section 4.3.1.

C Detailed Training Method

Figure 16: The workflow of the training phase of Floo. Multiple

(Agent, Server, Client) sets run simultaneously.

We construct a training architecture as shown in Fig. 16.

Each learning agent (Agent in Fig. 16) establishes two connec-

tions with an Application S client (Client in Fig. 16) and an

Application S server (Server in Fig. 16) respectively, commu-

nicating about the experimental configurations and training

trajectories. Each server/client only connects to one agent.

The client and server connecting to the same agent also estab-

lish a QUIC connection through Mahimahi. For each training

episode (10 min), the agent selects and configures the net-

work condition parameters of Mahimahi and the application

traces to be applied, as described in §4.3.1. During the inter-

action between the client and the server, the agent receives

the states and rewards from the server and client respectively,

and selects the corresponding action (i.e., CCA) based on the

acquired state. The selected CCA is switched smoothly by

Floo on the server.

To accelerate the training and improve the generalization

performance of the RL model, we employ a distributed frame-

work. We distribute 10 (Agent, Server, Client) sets. All the

agents, servers, and clients are deployed in a cluster. These

servers/clients are connected to the agents with high-speed

links. Each agent observes a series of trajectories, and contin-

uously sends the tuples (state, action, reward) to the central

agent. The central agent then uses the PPO algorithm to com-

pute the gradients (Eq. (3)) and updates the parameters in the

selection model (Eq. (4)). The updated model will be pushed

to each agent and will be used for the next episode. Tab. 7 in

Appendix D shows the detailed model and parameters used

during the training.

D Training Setting
Floo uses an actor-critic architecture. Floo’s actor, taking state

and outputting action, use one hidden layer with 200 units.

The output layer is a softmax layer to map to probabilities

of actions. The critic networks, taking state and outputting V

values, have one hidden layer with 200 units. The output layer

is a linear unit representing the V function. All hidden layers

in actor and critic networks are followed by Leaky ReLU

nonlinearity. Tab. 7 shows other parameters used during the

training of Floo.

Parameter Value

Optimizer Adam

Episode duration 10min

Actor’s Learning Rate 0.0001

Critic’s Learning Rate 0.0002

Discount Factor 0.99

ε in clip function 0.2

Table 7: Parameters used for the training.

E Detailed Results in Emulated Experiments
Our emulated experiments involve three scenarios: stationary

cellular scenario, highly variable scenario and unseen WiFi

scenario. We analyze the transport layer metrics, including

average smooth RTT and average throughput. For each sce-

nario, we normalize the RTT and throughput performance of

all CCAs (including Floo) to the minimum delay and maxi-

mum throughput achieved on that scenario, respectively. We

show the normalized results in Fig. 17a, Fig. 17c and Fig. 17e.

The ellipse indicates the standard deviations from the average
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(c) Highly variable scenarios.
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Figure 17: The detailed transport layer results for the three scenarios.

(a)(c)(e) presents the normalized avg. delay, and avg. throughput.

The center of each ellipse shows the average value of each CCA,

while the ellipse indicates the standard deviations from the average

values and their covariance. (b)(d)(f) shows the avg. delay (icons),

90% tile delay (end of lines), and avg. throughput of a sample.

values of the RTT and the throughput and their covariance4.

Floo can not only achieve lower latency and higher through-

put, but also obtain a smaller ellipse than other CCAs, which

denotes better stability and consistency. In Fig. 17b, Fig. 17d

and Fig. 17f we also depict the avg. delay (icons), 90% tail

delay (end of lines), and avg. throughput of three typical sam-

ple traces. Under all three scenarios, Floo achieves excellent

performance both in delay and throughput.

F Analysis of Selection Period.
Here, we investigate the impact of SP value on the perfor-

mance and overhead of the mechanism. Intuitively, the SP

determines the frequency of Floo monitoring network and

application states, and selecting CCAs. SP should be consis-

tent with the granularity of the application QoE and should

also consider the network fluctuation. To this end, we vary

the SP and record its impact on application performance. We

4Note that RTT/RTT_Min ∈ [1,∞), and Thp/Thp_Max ∈ [0,1). The ellipse

may exceed the range, but the outlier part is actually not sampled.
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across diff. SPs

vary the SP from the fine-grained ACK level to the coarse-

grained second-level. To report the performance, we conduct

experiments in 60 scenarios and record the RCT and CCA

switching interval. Note that if no switching has occurred in

one scenario, the switching interval is counted as the duration

of that experiment (120s).

Fig. 18 depicts the results. QoE gradually improves with

the growth of the SP. The performance of ack-level selection

is worse. We find that even for fine-grained ack-level SP, the

granularity of CCA switching interval is at the second-level,

with a median of about 5 to 10 seconds and an average value of

more than 16 seconds. The QoE results are consistent with the

frequency of CCA switching. This is because the fine-grained

data estimation is susceptible to outliers, and cannot reflect

the real path condition and application performance. On the

other hand, the frequency of CCA selection is higher than that

of request sending, which could lead to meaningless CCA

switching. However, long SP, such as 24s, is challenged to

capture and react to the instant changes in network conditions

and application performance. In 96% of the scenarios, the

SP of 24s does not switch during the connection. Therefore,

long SP could not achieve good performance. As for the CPU

utilization, experiments show that SP has little impact on the

overhead. The difference in CPU utilization between different

SPs is less than 0.28%. To have a balanced performance

and overhead, we set a fixed SP of 12s in this paper, which

represents the minimum switching period.
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Abstract

Skewed write-intensive key-value storage workloads are in-
creasingly observed in modern data centers, yet they also
incur server overloads due to load imbalance. Programmable
switches provide viable solutions for realizing load-balanced
caching on the I/O path, and hence implementing write-back
caching in programmable switches is a natural direction to
absorb frequent writes for high write performance. However,
enabling in-switch write-back caching is non-trivial, as it
not only is challenged by the strict programming rules and
limited stateful memory of programmable switches, but also
necessitates reliable protection against data loss due to switch
failures. We propose FarReach, a new caching framework
that supports fast, available, and reliable in-switch write-back
caching. FarReach carefully co-designs both the control and
data planes for cache management in programmable switches,
so as to achieve high data-plane performance with lightweight
control-plane management. Experiments on a Tofino switch
testbed show that FarReach achieves a throughput gain of up
to 6.6× over a state-of-the-art in-switch caching approach
under skewed write-intensive workloads.

1 Introduction
Key-value stores have been widely deployed in modern data
centers to manage structured data (in units of records) for data-
intensive applications, such as social networking [1, 33, 41],
web indexing [7], and e-commerce [11]. Practical key-value
storage workloads are traditionally read-intensive (e.g., up to
a read-to-write ratio of 30:1 at Facebook’s Memcached [1]).
Recent field studies of production key-value stores show the
dominance of write-intensive workloads; for example, more
than 20% of Twitter’s Twemcache clusters have more writes
than reads [41], and the AI/machine-learning services at Face-
book’s RocksDB production have 92.5% of read-modify-
writes [6]. Also, write-intensive workloads are skewed; for ex-
ample, 25% of frequently accessed (i.e., hot) records dominate
in the write workloads at Twitter’s Twemcache clusters [41].

Enabling high write performance for key-value stores in
data centers is challenging. Write requests issued from a client
to a key-value storage server often suffer from long round-trip
times (RTTs) due to switch-to-server transmissions and server-
side processing. In particular, if the server is overloaded, I/O
requests will have long queuing delays or even be dropped.
Also, in distributed key-value stores that span multiple servers,
a small portion of servers may be bottlenecked by substantial
requests for hot records under skewed workloads, thereby

leading to load imbalance [17, 21].
Programmable switches [5] offer an opportunity to im-

prove the write performance of key-value stores. By de-
ploying a programmable switch on the I/O path (e.g., as
a top-of-rack switch in a rack-based data center), it can in-
herently intercept the I/O requests for all servers within the
rack and provide stateful memory that can be programmed
to cache frequently accessed records. For each request issued
by a client, the switch can read or write any of its cached
records and directly respond to the client, thereby eliminat-
ing the long RTT to access the server-side record. It is also
proven that load balancing is achievable by keeping only
O(N logN) records, where N is the number of servers [14].
Recent studies have demonstrated the effectiveness of load-
balanced in-switch caching [20, 27–29] for high throughput
and sub-RTT latencies. However, existing in-switch caching
approaches [20, 27–29] target read-intensive workloads and
implement write-through caching (i.e., write requests update
records both in the in-switch cache and the server side). Thus,
they do not provide write performance gains compared with
no caching under skewed write-intensive workloads.

To address skewed write-intensive workloads, it is desirable
to implement in-switch write-back caching (i.e., write requests
update records in the in-switch cache only without immedi-
ately updating the server side) to absorb frequent writes to
hot records. However, enabling write-back caching in pro-
grammable switches is subject to several challenges. First,
in-switch write-back caching raises an issue of synchronizing
records in both the in-switch cache and server-side storage.
Without proper synchronization, the latest records may be-
come unavailable to clients during cache eviction. Second,
since the in-switch cache keeps the latest records under the
write-back policy, protecting against data loss in the in-switch
cache during switch failures is critical. However, providing
fault tolerance guarantees for the in-switch cache is chal-
lenged by the limited switch resources (e.g., limited stages
with only tens of megabytes for stateful memory) [5, 31].
Finally, the strict pipeline programming model and limited re-
sources in programmable switches necessitate a design of sim-
ple but efficient caching mechanisms. While programmable
switches can be managed with a software controller to relax
switch resource constraints [20, 29], the control-plane interac-
tion between the controller and programmable switches can
incur long delays and slow down the data-plane I/O perfor-
mance. Even worse, the synchronization and fault tolerance
issues complicate cache management with extra control-plane
overhead, thereby further degrading I/O performance.
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In this paper, we propose FarReach, a fast, available, and
reliable in-switch write-back caching framework to improve
the I/O performance of key-value stores under skewed write-
intensive workloads. FarReach exploits a careful co-design
of the control and data planes, such that it offloads cache
management to a centralized controller in the control plane,
while achieving high data-plane performance with lightweight
control-plane management. It comprises the following design
features: (i) fast cache admission that admits hot records into
the in-switch cache without blocking data-plane I/O traffic;
(ii) available cache eviction that ensures that the latest records
evicted from the in-switch cache remain available to read
requests; and (iii) reliable snapshot generation and zero-loss
crash recovery for the protection against data loss during
switch failures. To the best of our knowledge, this is the first
work that specifically addresses the availability and fault tol-
erance issues of in-switch caching.

We implement FarReach and compile the in-switch cache
prototype (written in P4 [4]) into the Tofino switch chipset
[39]. We evaluate FarReach with YCSB [42] and synthetic
workloads. Compared with NetCache [20], a state-of-the-
art in-switch caching framework that targets read-intensive
workloads and implements write-through caching, FarReach
achieves a throughput gain of up to 6.6× across 128 simulated
servers under skewed write-intensive workloads. FarReach
also has low access latencies, fast crash recovery, and limited
switch resource usage.

We now release the source code of our FarReach prototype
at http://adslab.cse.cuhk.edu.hk/software/farreach.

2 Background and Motivation
2.1 Programmable Switches

Figure 1 shows the programmable switch architecture, which
consists of both a data plane and a control plane. The data
plane processes packets with a stringent timing requirement
for line-rate forwarding. It contains multiple ingress and
egress pipelines. When a packet arrives at the switch through
an ingress port, the packet first enters the corresponding
ingress pipeline, which specifies an egress port. Then the
traffic manager, which interconnects between the ingress and
egress pipelines, transfers the packet to the egress pipeline
corresponding to the specified egress port. Finally, the packet
leaves the switch through the egress port. On the other hand,
the control plane contains an operating system within the
switch, called the switch OS, to manage the forwarding rules
of the data plane. The switch OS of each switch interacts with
a centralized controller, which manages the packet processing
of all switches in a network-wide manner.

Each ingress/egress pipeline follows a reconfigurable
match tables (RMT) model [5]. When a packet enters an
ingress/egress pipeline, it is first processed by a parser, which
extracts packet header fields into the packet header vector
(PHV). The pipeline transfers the PHV across a number of
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Figure 1: Programmable switch architecture.

stages with multiple match-action tables each. Each stage
also keeps a limited amount of SRAM, composed of tens
of memory blocks, for tracking stateful information that is
accessible by the match-action tables. A match-action table
can use an ALU to perform arithmetic or logical operations
and store the results into the PHV. It matches the fields in the
PHV from the previous stage and performs the correspond-
ing action to update the PHV for the next stage, while the
match-action rules can be configured by the switch OS. A
match-action table can also use a special kind of ALU, called
stateful ALU, to store the results into on-chip memory. To
fulfill the stringent timing requirement, the memory blocks
associated with a stage cannot be accessed from other stages,
while the processing of a packet within a stage can only access
a limited number of memory blocks associated with the stage
and each memory block can only be accessed at most once.
After being updated by all stages, the PHV is processed by
a deparser, which reconstructs the new packet header fields.
The header fields are combined with the original payload to
form the packet to be forwarded.

2.2 Challenges
Write caching policies can be classified into write-through and
write-back. Write-through synchronously updates the records
both in the cache and on the server side; in contrast, write-back
(a.k.a. delayed-write) updates only the records in the cache,
and later reflects the updates on the server side. Existing in-
switch caches [20, 27–29] mainly implement write-through
caching. In this work, we focus on write-back caching, as it
improves the write performance over write-through caching
by delaying server-side updates. However, managing write-
back caching is non-trivial, and is subject to three unique
challenges in programmable switches.

Performance challenge. Since a programmable switch has a
restricted pipeline programming model (i.e., it can only ac-
cess a limited number of memory blocks) and scarce hardware
resources (i.e., it only has a limited number of stages and state-
ful ALUs) [5], it is necessary to offload switch-level cache
management (including cache admission and eviction) to a
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centralized controller [20, 29], while the switch only updates
the cached records in the data plane under the write-back
policy. However, due to the high controller-to-switch latency,
control-plane processing is much slower than data-plane pro-
cessing in a programmable switch, thereby bottlenecking the
I/O performance.

Availability challenge. Under write-back caching, both cache
admission and eviction algorithms need careful coordination
between the control and data planes, so as to correctly main-
tain the latest records in either the in-switch cache or server-
side storage; otherwise, the outdated records may be returned
to the client. Such an issue does not exist in write-through
caching [20, 29], as it always keeps the latest records on the
server side. The availability issue is even more challenging in
programmable switches, since the controller needs to manage
both the cache and server updates, but incurs high overhead.
Also, the controller is not on the packet forwarding path and
has no view about the traversed packets in the data plane.

Reliability challenge. Under write-back caching, the latest
records may only be kept in the in-switch cache and may have
their updates to the server-side storage delayed. If the switch
crashes, all latest records are lost. Such an issue again does
not exist in write-through caching, as the latest records can
be persistently kept in server-side storage [20, 29].

3 FarReach Design
3.1 Design Overview
Architecture. FarReach is a fast, available, and reliable in-
switch write-back cache architecture for improving the I/O
performance and load balancing of server-side key-value
stores. Figure 2 shows FarReach’s architecture, in which
clients are connected via the in-switch cache to multiple
servers for key-value storage, while the controller is responsi-
ble for cache admission and eviction. Recall that the controller
has no view about the data plane (§2.2). Thus, the cache man-
agement decisions are triggered by the switches (in the data
plane) based on the workload patterns.

Goals. FarReach’s core idea is a careful co-design of the con-
trol and data planes. Table 1 summarizes our design features.
FarReach aims for three design goals:

• Fast access (§3.2). FarReach supports non-blocking cache
admission for admitting hot records into the in-switch cache,
so as to achieve high write performance. It also ensures

Table 1: Summary of design features of FarReach.

Design features Design details

Non-blocking
cache admission
(§3.2)

FarReach tracks the “outdated” or “latest”
state of each cached record to limit conserva-
tive reads. It also associates a validity register
with each cached record for atomicity.

Available cache
eviction (§3.3)

FarReach uses a “to-be-evicted” flag to make
each evicted record available. It identifies lat-
est records by sequence numbers and handles
packet loss by record embedding.

Crash-consistent
snapshot genera-
tion (§3.4)

FarReach reports original cached records to
the controller. It recirculates writes for atom-
icity, and exploits client-side record preserva-
tion for zero-loss recovery.

atomicity in cache admission under the multi-pipeline set-
ting of programmable switches.

• Availability (§3.3). FarReach ensures that any latest record
that is evicted from the in-switch cache remains available
to clients.

• Reliability (§3.4). FarReach protects against data loss dur-
ing switch failures. It uses a crash-consistent snapshot gen-
eration algorithm for making snapshots of the in-switch
cache state. It also ensures atomicity of snapshot generation
in the multi-pipeline setting. It further couples snapshot
generation with upstream backup [18] to achieve zero-loss
crash recovery.

Design assumptions. FarReach currently supports a fixed
key length of 16 bytes and a variable value length of up to
128 bytes due to limited switch resources; the same con-
straint is also assumed in NetCache [20] and DistCache [29].
Thus, FarReach is suitable for workloads dominated by small
records (e.g., ZippyDB and UP2X in Facebook’s RocksDB
production [6]). For large records, FarReach simply relays
them between clients and servers without caching.

FarReach currently does not support range queries, since
programmable switches cannot feasibly maintain sorted struc-
tures with the memory access limitations (§2.1) and servers
are unaware of the latest in-switch records under the write-
back policy. In this work, we focus on skewed write-intensive
workloads without range queries.

FarReach guarantees reliability for switch failures. We as-
sume that the durability of server-side records is addressed by
the persistence feature of key-value stores [25, 30, 37].

3.2 Non-blocking Cache Admission
Problem of cache admission. A naı̈ve design of cache ad-
mission in programmable switches can introduce blocking to
write requests. Due to limited switch resources, the controller
is responsible for cache management (§2.2). Suppose that the
controller is about to admit a new hot record into the in-switch
cache. As control-plane processing is slower than data-plane
packet forwarding (§2.2), the switch may receive subsequent
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Figure 4: Atomic validity control in FarReach.
For a record R with a key K and a value V , the
controller maintains an egress validity register
for atomicity of cache admission.

writes for the same key before the record from the first write
is admitted to the cache. In this case, such subsequent writes
need to be blocked until the record is admitted; otherwise, the
admitted record may overwrite the newer records from the
subsequent writes that arrive earlier at the switch, due to the
write-back policy.
Cache admission policy. Before proposing our cache admis-
sion design, we first describe the cache admission policy in
FarReach. FarReach currently triggers cache admission for
the hot records with high access frequencies. It follows the
design of NetCache [20] and deploys space-efficient in-switch
data structures for frequency tracking, due to the limited
in-switch SRAM. Specifically, FarReach maintains a Count-
Min Sketch [10] to track the access frequencies of uncached
records for cache admission, as well as a counter array to track
the access frequencies of cached records for cache eviction
(§3.3), within the switch. A Count-Min Sketch is a fixed-size,
error-bounded summary data structure composed of multiple
rows with a fixed number of counters each. FarReach samples
incoming requests for frequency monitoring to reduce pro-
cessing overhead. For each sampled request to an uncached
key, FarReach updates the Count-Min Sketch and estimates
the access frequency. If the frequency exceeds a pre-defined
threshold, FarReach identifies the key as hot. It triggers the
controller to admit the hot record into the in-switch cache, and
also tracks the frequency of the cached record in the counter
array. To avoid counter overflow, FarReach periodically resets
all counters of the Count-Min Sketch and the counter array to
zero. Note that we do not claim the novelty of this design.
Our cache admission design. We propose a non-blocking
cache admission algorithm for FarReach, as shown in Fig-
ure 3. Suppose that a client issues a write request of a record
(say, R) to a server. If R is not yet cached and is identified
as hot based on the Count-Min Sketch, the switch forwards
R to the server ( 1 in Figure 3(a)). The server forwards R to
the controller for cache admission ( 2 in Figure 3(a)). Note
that a read request issued by a client can also trigger cache
admission, except that the server will send the server-side
latest record R to the controller ( 2 in Figure 3(a)). Before
the controller admits R into the in-switch cache, the switch

forwards subsequent writes for the same R’s key (i.e., cache
misses) to the server without updating the cache ( 3 in Fig-
ure 3(a)). The server directly processes the writes without
blocking. Thus, the server now keeps the latest record.

After R is admitted, FarReach temporarily marks the admit-
ted R as “outdated” ( 1 in Figure 3(b)). For any read request
to R’s key (which is “outdated”), FarReach conservatively
forwards the read request to the server to obtain the latest
record ( 2 in Figure 3(b)).

Conservative reads increase read latencies due to server-
side processing. To limit conservative reads, our insight is
that all requests and responses must traverse the switch, so
FarReach can monitor all traversed requests and responses
to mark the “outdated” cached record as “latest” as early as
possible. Specifically, FarReach marks the “outdated” record
as “latest” ( 3 in Figure 3(b)) if it sees: (i) a write request
from a client for the same key (which carries the latest record),
or (ii) a read response from the server for the same key (which
carries the latest record while the cached record remains out-
dated). When a cached record is marked as “latest”, it can be
directly updated by subsequent writes based on the write-back
policy. Under skewed write-intensive workloads, an “outdated”
cached record can soon be marked as “latest” by a subsequent
write for the same key, so conservative reads are limited.

Recall that a server in FarReach is responsible for send-
ing a record to the controller for cache admission (i.e., 2
in Figure 3(a)). Thus, it can determine whether any record
of the same key has been sent to the controller and avoid
sending duplicate records of the same key, thereby keeping
limited control-plane bandwidth usage (e.g., up to 1.41 MiB/s;
see §5.4). This is in contrast to NetCache [20], in which a
switch sends records to the controller for cache admission
and needs an in-switch Bloom Filter [3] to avoid duplicate
submission; FarReach removes the need of maintaining an
in-switch Bloom Filter and hence saves switch resource usage
for implementing in-switch write-back caching.

Atomic validity control. FarReach stores the keys and values
of records in the ingress and egress pipelines, respectively, to
accommodate the limited number of stages of a single pipeline.
However, it is critical but non-trivial to provide atomicity for
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cache admission under the multi-pipeline setting. Specifically,
a switch can only provide atomicity within a single pipeline
rather than multiple pipelines, yet the requests for the same
key can arrive from different ingress pipelines. Without the
atomicity of cache admission, the write requests to the same
key arriving from different ingress pipelines may have incon-
sistent views on the key: cached or uncached. For the former,
the cached record is updated directly by the write-back policy;
for the latter, the requests are forwarded to the server based
on our non-blocking cache admission design. Thus, the key
may be updated with an inconsistent value.

Our insight is that although the requests for the same key
can enter a switch from different ingress pipelines, FarReach
can forward them to the same egress pipeline correspond-
ing to the same server. Note that such forwarding does not
incur cross-pipeline imbalance, as the bottleneck lies in server-
side storage (including both CPU processing and disk I/O)
instead of line-rate switches. The server-side bottleneck is
shown in our evaluation, where the system throughput is
up to 12.1 MB/s under 128 simulated servers (§5.2), signif-
icantly lower than the maximum throughput 3.2 Tbps of a
two-pipeline Tofino switch [39]. Thus, FarReach can provide
atomicity for each record being admitted, with the aid of the
single egress pipeline that is connected to the corresponding
server, while incurring limited performance degradation.

We propose atomic validity control for cache admission
in FarReach (Figure 4). Specifically, programmable switches
provide atomic primitives for each register within a single
pipeline. FarReach introduces a validity register for each
cached key in an egress pipeline. Before admitting a record
R with key K and value V sent by a server, FarReach first
sets the validity register for R as “invalid” ( 1 in Figure 4).
It then admits, via the switch OS, V into the egress pipeline
and K into all ingress pipelines (the latter is to ensure consis-
tency across all ingress pipelines) ( 2 in Figure 4). Finally, it
changes the validity register to “valid” ( 3 in Figure 4). Based
on the validity register, FarReach treats a record as a cache
hit only if the key is cached in an ingress pipeline and the
validity register is “valid” in the single egress pipeline; or as
a cache miss otherwise. Thus, if a key has not been admitted
into all ingress pipelines, its record is treated as a cache miss
as its validity register remains “invalid”.

3.3 Available Cache Eviction
Problem of cache eviction. If the in-switch cache is full for
cache admission, FarReach selects a cached record to evict,
by sampling multiple cached records and selecting the one
with the least access frequency from the counter array (§3.2).
It then triggers the controller to perform cache eviction on
the selected record. Under the write-back policy, the evicted
record may also be the latest record and has not yet been
updated in the server. It is critical to keep any latest record
to be evicted available during cache eviction. To achieve
this goal, the controller needs to synchronize the views of

both the switch and the server on the evicted record during
cache eviction, especially when there also exist read/write
requests for the evicted record. However, the controller is
constrained by slow control-plane processing, which leads to
high synchronization overhead.

Our cache eviction design. We propose a cache eviction
algorithm for FarReach that ensures availability, whose work-
flow is shown in Figure 5(a). Our idea is to associate ad-
ditional metadata with each cached record in the in-switch
cache, so as to maintain the availability of any evicted record,
while incurring limited synchronization overhead to the con-
troller. Specifically, when a cached record (say, R) is to be
evicted, the controller first marks R as “to-be-evicted” and
loads R from the in-switch cache ( 1 in Figure 5(a)). It then
sends R to a server for storage ( 2 in Figure 5(a)). If there is
any write request to the “to-be-evicted” R, FarReach simply
forwards the write request to the server (instead of updating
the record in the cache under the write-back policy) and marks
the evicted record as “outdated”. If there is any read request
to the “to-be-evicted” R and R is “latest” (marked in cache ad-
mission (§3.2)), the cache returns R to the client; otherwise, if
R is “outdated” (i.e., it has been updated), FarReach forwards
the read request of R to the server, which holds the latest
record. Thus, we ensure that any evicted cached record that is
also the latest record remains available. After the server has
stored the latest “to-be-evicted” cached record, the controller
acknowledges the cache to actually evict the “to-be-evicted”
R ( 3 in Figure 5(a)). Note that all writes to the “to-be-evicted”
R must be forwarded to the server no matter with the view of
cached or uncached, so FarReach does not have any atomicity
issue when evicting R in the multi-pipeline setting.

Identifying latest records. One subtlety is that a server may
receive the request of storing a record from two possible paths:
(i) the eviction of a record from the cache and (ii) the write
request of the record issued by a client. It is critical to dif-
ferentiate the latest version of a record that is finally stored
in the server. To resolve this issue, recall that FarReach for-
wards the write requests of the same record to the same egress
pipeline corresponding to the server (§3.2). As programmable
switches can provide atomicity and serialize packets in a
single pipeline (§3.2), FarReach associates a sequence num-
ber with each cached record atomically. It increments the
sequence number for each write request of the key in the
egress pipeline based on the serialized order of accessing the
cache, and embeds the sequence number into the write re-
quest. When the server receives a request of storing a record,
it overwrites the existing record only if the received record has
a higher sequence number than the existing record; otherwise,
the received record will be discarded.

Handling packet loss. Packet loss in switch-to-server trans-
missions can break the availability of cache eviction. To elab-
orate, recall that an in-switch record can be the latest version
under the write-back policy. During cache eviction, FarReach

USENIX Association 2023 USENIX Annual Technical Conference    575



Programmable Switch

Controller

①
②

③
Send R

Load R

Switch OS

Evict R

Read R
Write R

Cache

R à (“to-be-
evicted”, seq) Client Server

Programmable Switch

①

Switch OS
Read

Cache

“to-be-evicted” and 
“outdated” R, seq

①Read
embedded
w/ (R, seq)

②Read
latest version

Client Server
Stale

Version

Programmable Switch

Controller

②

③Send 
original R

Trigger 
snapshot 

generation

Write R

①
② Load 

records

Switch OS

CacheClient

(a) Cache eviction workflow (b) Record embedding
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Figure 6: Crash-consistent snapshot genera-
tion in FarReach. If the switch receives the
first write to a cached record R during snap-
shot generation, it forwards the original R to
the controller before R is updated.

forwards the write request to a “to-be-evicted” record to the
server and marks the evicted record as “outdated”. If the write
request is lost during its transmission (e.g., due to server-side
congestion or packet corruption), the server is not updated
with the latest version, but still keeps the stale version. As
the in-switch cache marks the evicted record as “outdated”, it
forwards all subsequent reads to the server and receives the
stale version. Note that such an issue does not exist in cache
admission, as a write request updates either the server (before
the record is admitted to the in-switch cache) or the in-switch
cache (after the record is admitted to the in-switch cache),
instead of changing both of them.

To maintain availability under packet loss, FarReach em-
ploys record embedding during cache eviction, as shown in
Figure 5(b). Our insight is that even though an evicted record
is marked as “outdated” during cache eviction, it can still be
the latest version that can be used for serving read requests.
Specifically, before forwarding a read to the server, the in-
switch cache embeds the “outdated” evicted record (if such
a record exists) into the read; the embedded record includes
the value and sequence number assigned by the switch ( 1 in
Figure 5(b)). FarReach ensures that the latest version is avail-
able to any client-issued read by comparing the embedded
record with the server-side version ( 2 in Figure 5(b)): if the
sequence number embedded into a read request is larger than
that stored in the server (i.e., the embedded record is the latest
version), FarReach directly returns the embedded record to
the client; otherwise, FarReach returns the record stored in
the server (which is the latest version) to the client.

3.4 Crash-consistent Snapshot Generation
We now address the reliability challenge (§2.2) through a con-
sistency model that incurs zero data loss after switch failures.
At a high level, FarReach periodically generates snapshots to
protect against data loss of in-switch cached records. It also
lets each client preserve the cached records generated after the
latest snapshot for recovery. Note that the uncached records
are protected by server-side persistent key-value stores (§3.1).
Problem of snapshot generation. Since the in-switch cache

keeps the latest records under the write-back policy, we need
to protect against data loss in switch failures. We propose to
generate a snapshot for all cached records in the in-switch
cache at regular time points (called snapshot points), so that
the switch can restore from the latest snapshot when recover-
ing from a switch failure. However, the design of such snap-
shot generation is non-trivial. Since programmable switches
have limited stages for cache backup and limited on-chip
memory for snapshot storage, they need to offload all cached
records to the controller. Note that the snapshot overhead is
limited for the controller, as the controller only needs to store
the latest snapshot for crash recovery (e.g., 1.5 MB for 10K
records with 16-byte keys and 128-byte values). When the
cached records are loaded to the controller during snapshot
generation, some cached records may be updated under the
write-back policy. The final snapshot will become inconsistent
with the in-switch cache state at the snapshot point. Block-
ing cache updates during snapshot generation can avoid such
inconsistencies, yet it also degrades the I/O performance.
Our snapshot generation algorithm. We propose a two-
phase snapshot generation algorithm for FarReach to maintain
crash consistency in snapshot generation, without blocking
cache updates. Our insight is that whenever FarReach receives
the first write request to a cached record during snapshot gen-
eration, it can send the original cached record (i.e., after the
snapshot point but before the first write) to the controller.
This allows the controller to keep the backups for all original
cached records that are to be overwritten. At the end of snap-
shot generation, the controller replaces the overwritten cached
records by their backups of the original cached records, so
that the snapshot is crash-consistent with the in-switch cache
state at the snapshot point. Under the skewed write-intensive
workloads where most writes are issued to a small fraction
of hot records, FarReach only needs to send limited original
cached records to the controller (without the need to send the
cached record for the subsequent writes after the first write).
Thus, the bandwidth overhead in the controller is limited.

Based on the insight, FarReach generates a crash-consistent
snapshot in a two-phase manner (i.e., triggering snapshot gen-
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eration and making a consistent snapshot) at each snapshot
point, as shown in Figure 6. In the first phase, the controller no-
tifies the in-switch cache to trigger snapshot generation ( 1 in
Figure 6). The cache monitors each traversed write request to
identify whether the write request is the first write to a cached
record during snapshot generation. If so, the cache sends the
original cached record to the controller ( 2 in Figure 6). In
the second phase, the controller loads all cached records from
the cache for snapshot generation ( 3 in Figure 6). Note that
if a cached record has been loaded to the controller and later
receives the first write, the cache no longer needs to send the
original cached record, which has already been loaded. Once
the controller loads all cached records, it notifies the cache
about the completion of snapshot generation (i.e., the cache
no longer needs to monitor the writes to cached records), re-
verts any overwritten cached record with the original one, and
finally obtains a crash-consistent snapshot.

FarReach carefully updates the snapshot to address two
corner cases. If a new record is first admitted to the cache
after the snapshot point, the controller will not include the
record into the snapshot. If a cached record is evicted after the
snapshot point, the controller saves the evicted record during
cache eviction (§3.3), and replaces the updated record with
the evicted record in the snapshot after the second phase of
snapshot generation.
Atomic triggering of snapshot generation. As the write re-
quests of a record can arrive from multiple ingress pipelines,
FarReach needs to trigger snapshot generation in multiple
pipelines at the same time; otherwise, the ingress pipelines
may set a snapshot point at different times and generate incon-
sistent snapshots. We propose a coordination mechanism to
support simultaneous snapshot generation in multiple ingress
pipelines. Specifically, FarReach selects one of the ingress
pipelines, and recirculates all write requests from other ingress
pipelines to the selected ingress pipeline; in other words,
all write requests are processed as if they arrive at a sin-
gle ingress pipeline. The controller first notifies the selected
ingress pipeline to trigger snapshot generation, such that the
selected ingress pipeline notifies the egress pipelines to send
any original cached record that receives the first write to the
controller. It then notifies the remaining ingress pipelines to
trigger snapshot generation. After all ingress pipelines trigger
snapshot generation, FarReach disables the recirculation, and
now the controller can perform snapshot generation with all
ingress pipelines in parallel. Thus, we ensure that snapshot
generation is applied to all ingress pipelines at the same snap-
shot point. Note that the recirculation overhead is limited,
due to the short duration for notifying all ingress pipelines to
trigger snapshot generation (e.g., ≈6 ms from our evaluation).
Zero-loss crash recovery. Our snapshot generation only
guarantees crash consistency for switch failures, but the
cached records that are newly added or updated after the lat-
est snapshot point remain unprotected and can be lost during
a switch failure. Unfortunately, switches do not have exter-

nal storage for keeping cached records reliably. To achieve
zero-loss crash recovery, we propose client-side record preser-
vation based on the idea of upstream backup [18] in stream
processing, by keeping the copies of cached records after
the latest snapshot point on the client side. Specifically, after
a client sends a write request of a cached key and receives
the response from the in-switch cache, it keeps locally the
value and sequence number assigned by the in-switch cache
(§3.3) for the cached key. After the completion of snapshot
generation at each snapshot point, the controller notifies each
client with the cached keys and the corresponding sequence
numbers at the snapshot point. Each client then releases its
preserved records whose sequence numbers are no larger than
those notified by the controller. Since the in-switch cache only
keeps a limited number of hot records, FarReach incurs low
client-side overhead for record preservation.

FarReach exploits a replay-based approach to achieve zero-
loss crash recovery after a switch failure. It first replays the
write requests of the latest cached records to update the servers
for persistent storage. Specifically, FarReach collects both the
latest in-switch snapshot (from the controller) and the client-
side preserved records (from all clients), and selects the record
with the largest sequence number for each cached key. If the
sequence number of each selected record is larger than that
stored in a server, FarReach replays the write request to store
the selected record in the server for persistent storage. After
all latest records are persisted, the clients can then release
their preserved records.

FarReach next recovers the in-switch cache, by replaying
the cache admission for each record of the latest in-switch
snapshot, and marks each cached record as “outdated”. The
“outdated” records of the in-switch cache are expected to be
quickly marked as “latest” under skewed write-intensive work-
loads (§3.2). Note that we do not simply start with an empty
in-switch cache from scratch, as it incurs large overhead to
admit all records through the controller.
Client crashes. One limitation of FarReach is that data loss
can occur if both a client and the switch crash simultaneously.
If any client crashes before replay-based recovery, the cached
records preserved by the client, which are not yet protected
by the latest in-switch snapshot, will be lost after a switch
failure. We can reduce the snapshot period to a smaller win-
dow for less vulnerability, at the expense of incurring larger
snapshot generation overhead. Nevertheless, the snapshot gen-
eration overhead remains still limited (e.g., up to 1.41 MiB/s
of control-plane bandwidth when the snapshot period is 2.5 s;
see §5.4). We leave how to completely prevent data loss from
client crashes as future work.

3.5 Discussion

Novelty. While FarReach borrows ideas from NetCache [20]
(e.g., cache admission based on a Count-Min Sketch), it has
other novel design elements: (i) non-blocking cache admis-
sion for fast access, with atomic validity control to address
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the atomicity issue (§3.2); (ii) available cache eviction for
the availability of records, with record embedding to handle
packet loss (§3.3); and (iii) crash-consistent snapshot gener-
ation with zero-loss recovery (§3.4). Note that the last two
elements are tailored for write-back caching and are not found
in NetCache for write-through caching.
Trade-offs. FarReach makes two trade-offs in its design. First,
FarReach trades extra switch resources for in-switch caching
for higher key-value storage performance under skewed write-
intensive workloads, yet we show that the extra switch re-
source usage of FarReach for supporting the write-back pol-
icy is similar to that of NetCache (§5.5). Second, FarReach
trades extra client-side storage capacity for zero-loss recovery.
Nevertheless, since the clients only keep the copies of cached
records after the latest in-switch snapshot, the client-side stor-
age overhead is limited (e.g., 1.5 MB for 10K cached records
with 16-byte keys and 128-byte values).
Future work. We pose two open issues as future work. First,
in addition to reducing vulnerability window from client
crashes (§3.4), FarReach should collect the preserved records
from all clients during crash recovery, and it may limit scala-
bility as the number of clients increases. One possible solution
is to extend FarReach with multiple switches and partition
clients among them, such that FarReach can collect the pre-
served records through multiple switches in parallel. Second,
FarReach offloads cache management (including cache ad-
mission and eviction) to a centralized controller, which may
be overwhelmed by extensive cache admission and eviction
decisions. One possible solution is to rate-limit admission and
eviction operations to avoid overloading the control plane.

4 Implementation
We prototyped FarReach with both the control and data planes.
The control plane includes the switch OS and the controller,
while the data plane includes multiple clients and servers
as well as the in-switch cache. All communications among
different components are based on UDP with a timeout-and-
retry mechanism for low-latency yet reliable transmissions.

4.1 Control Plane
We implement both the switch OS and the controller in C++,
with 2.2K and 1K LoC, respectively, and compile the pro-
grams by g++ (v5.4.0) with the -O3 optimization. The switch
OS provides interfaces for: (i) cache admission/eviction by
configuring match-action tables and setting registers, and (ii)
snapshot generation by loading in-switch records and sending
original cached records. The controller manages the in-switch
cache through the interfaces provided by the switch OS and
coordinates snapshot generation by communicating with the
switch OS and all key-value storage servers.

4.2 Data Plane
Client implementation. We evaluate our prototype with the
YCSB benchmark [42] (§5), which is written in Java. We im-

plement a client application in Java that supports YCSB, with
the common key-value storage interfaces including get,put,
and delete to access records stored in both the in-switch
cache and key-value storage servers. The client application
also provides a shim layer to manage client-side record preser-
vation for zero-loss recovery under switch failures (§3.4).
Server implementation. We deploy RocksDB (v6.22.1) [37]
in each server; RocksDB is a log-structured merge-tree (LSM-
tree) persistent key-value store [34] that is suitable for write-
intensive workloads. To support multiple servers, we dis-
tribute records across servers using consistent hashing [22].
In-switch cache. We implement the in-switch cache in P4 [4]
and compile it into the Tofino switch chipset [39]. The cache
implementation includes both ingress and egress pipelines.
In each ingress/egress pipeline, the Tofino switch provides
12 stages for pipeline programming. Each stage has 4 stateful
ALUs to support at most 4 register arrays, and each register
can store 4 bytes of data.

In each ingress pipeline, we deploy multiple match-action
tables for egress processing. We implement a match-action ta-
ble for cache lookup, which matches the key (currently of size
16 bytes) in the packet header to obtain the record location
in the egress pipeline. We also deploy a match-action table
to trigger snapshot generation, such that each egress pipeline
can send the original cached records to the controller (§3.4).
As the Tofino switch currently does not support cross-pipeline
recirculation, we connect the selected ingress pipeline with
each of the other ingress pipelines with a physical wire, so
as to recirculate the write requests from the other ingress
pipelines to the selected ingress pipeline during snapshot gen-
eration in the multi-pipeline setting (§3.4). Furthermore, we
pre-compute the hash results for the Count-Min Sketch in the
ingress pipeline and send them to the egress pipeline by each
packet header, so as to save the stages in the egress pipelines.

In each egress pipeline, we store the statistics, metadata,
and cached values. In the first stage, we deploy a Count-Min
Sketch and configure it with 4 rows as suggested in [20]. Each
row corresponds to a register array with 64K registers. We
use part of the second stage to maintain a counter array (as
a register array) to track the access frequencies of cached
records (§3.2). To support write-back caching and snapshot
generation, we use the remaining part of the second stage and
the third and fourth stages to maintain the required metadata.
We use the remaining 8 (out of 12) stages to provide 32
register arrays of 4-byte registers in total for supporting a
value size of up to 128 bytes.

We need to address two subtle issues in the egress pipeline
implementation. First, to support write-back caching, the in-
switch cache needs to directly respond to a write request
with a cache hit. However, the Tofino switch cannot directly
change the egress port in the egress pipeline. Thus, we drop
the original write request and send a response to the client by
cloning. Second, to assign a sequence number for each write
request, we can maintain a global counter to track the latest
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sequence number, but this easily leads to overflow. Instead,
we use multiple global counters to reduce the likelihood of
overflow. Specifically, we maintain a register array with 32K
registers. We map the write requests of different keys into
different registers by hashing, and then increment the hashed
register to assign a sequence number for each write request.

5 Evaluation
5.1 Methodology
Testbed. We conduct evaluation on a testbed composed of
a 3.2 Tbps two-pipeline Tofino switch [39] and four physi-
cal machines. Each machine has four 12-core CPUs (Intel
E5-2650 v4), 64 GiB DRAM, and 2 TB hard disk (HGST Ul-
trastar), and is connected with the switch by a 40 Gbps NIC
(Intel XL710). We use two physical machines as clients and
another two as key-value storage servers. We connect one
client and one server with one pipeline of the switch, and
connect the other machines with another pipeline.

Setup. We evaluate FarReach using both YCSB [42] and
synthetic workloads (see §5.2 and §5.3, respectively). Since
our testbed comprises only two servers, we exploit server
rotation [20] to simulate a much larger number of servers.
Specifically, let N be the number of simulated servers. Given
a workload, we issue the requests to N logical partitions via
consistent hashing [22] (§4). We find the partition (called the
bottleneck partition) that receives the most requests among
all N partitions. We run each experiment over N iterations.
In the first iteration, we deploy the bottleneck partition in a
physical server and send sufficient requests to saturate the
bottleneck to measure its performance. In the subsequent N−
1 iterations, we deploy the bottleneck partition in a physical
server and each of the N − 1 non-bottleneck partitions in
another physical server, and measure the performance of the
non-bottleneck partition. After N iterations, we add all per-
partition performance to obtain the aggregate performance.
By default, we simulate 16 servers, and increase the number
of simulated servers for scalability evaluation (Exp#3). Note
that server rotation is only applied to static workloads without
the dynamics in key popularity, and we also study the impact
of dynamic workloads (Exp#7).

We compare FarReach against two baselines: NoCache
(i.e., no in-switch caching) and NetCache [20] (i.e., the in-
switch cache that implements write-through caching). Before
each experiment, we pre-load 100M records, each of which
contains a 16-byte key and 128-byte value, into each server
that is initially empty. For FarReach and NetCache, we fix
the in-switch cache size as 10,000 records and pre-load the
hottest records into the cache. We also set the sampling rate
as 0.5 and the pre-defined threshold as 20 requests for the
Count-Min Sketch. For FarReach, we set the snapshot period
as 10 s by default. We run all experiments with 5 times, and
plot the average results with the 95% confidence levels based
on the Student’s t-distribution.

Summary of results. We summarize the results as follows:
• Under YCSB workloads, FarReach increases the I/O

throughput by up to 91% and 84% (for workload A with
50% reads and 50% writes) compared with NoCache and
NetCache, respectively (Exp#1). FarReach also achieves
sub-RTT latency with up to 72% reduction of average la-
tency (Exp#2) and scales to an increasing number of servers
with up to 6.6× throughput gain (Exp#3).

• Under synthetic workloads, FarReach achieves higher
throughput gains over NoCache and NetCache for more
write-intensive and more skewed workloads (Exp#4 and
Exp#5, respectively), while maintaining similar through-
put gains for different value sizes and dynamic workloads
(Exp#6 and Exp#7, respectively).

• FarReach’s snapshot generation incurs limited overhead
on throughput and control-plane bandwidth (Exp#8). Its
recovery time is within 2.35 s (Exp#9).

• FarReach incurs similar switch resource overhead as Net-
Cache (Exp#10).

5.2 Performance under YCSB Workloads
(Exp#1) Throughput analysis. We first evaluate the end-to-
end throughput using YCSB workloads, namely Load (insert-
ing records), A (50% reads, 50% writes), B (95% reads, 5%
writes), C (100% reads), D (95% reads, 5% writes), and F
(50% reads, 50% read-modify-writes); we do not consider
range queries (i.e., Workload E) due to switch limitations
(§3.1). For each workload, we generate requests with 16-byte
keys and 128-byte values. The Load workload follows the
uniform distribution, workload D follows the read-latest dis-
tribution, and workloads A, B, C, and F are skewed and follow
the Zipf distribution with the Zipfian constant 0.99 (default
in YCSB). We verify that under NoCache, the load through-
put to a RocksDB instance can reach 0.06 MOPS, which is
consistent with prior findings [2, 35].

Figure 7 shows that FarReach increases the throughput of
NoCache by 91%, 55%, 85%, and 72% in the four skewed
workloads A, B, C, and F, respectively, by reducing and bal-
ancing the server-side load with in-switch write-back caching.
FarReach also increases the throughput of NetCache by
84%, 20%, and 61% in workloads A, B, and F, and achieves
similar throughput as NetCache in workload C (which is
read-intensive). In NetCache, the writes of the cached keys
keep invalidating the in-switch write-through cache, espe-
cially in write-intensive workloads A and F, and hence limit
the throughput of NetCache. NetCache only achieves high
throughput in read-intensive workloads B and C. In the non-
skewed workloads Load and D, both FarReach and NetCache
have similar throughput as NoCache due to limited cache hits.
(Exp#2) Latency analysis. We next evaluate the request la-
tencies. We focus on YCSB workload A, which is skewed and
most write-intensive. In particular, we examine the trade-off
between the latency and target throughput (i.e., configured
by a given sending rate) as in prior studies [8, 12, 20]. We
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Figure 7: (Exp#1) Throughput
analysis.
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Figure 8: (Exp#2) Latency anal-
ysis.
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Figure 9: (Exp#3) Scalability
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Figure 10: (Exp#4) Impact of
write ratio.

only show the average latency results, while the results of
other latency statistics (e.g., medium and 95th-percentile) are
similar and hence omitted for brevity.

Figure 8 shows that all schemes have small average laten-
cies under low target throughput, as the servers do not have
heavy loads and can quickly process requests. FarReach re-
duces the average latencies of NoCache and NetCache by
65% and 72% when the target throughput is 0.8 MOPS, re-
spectively. For high target throughput, both NoCache and
NetCache are bottlenecked by an overloaded server and hence
incur large queuing delays. NetCache has a larger latency
than NoCache, as NetCache needs extra server-side overhead
to update the in-switch write-through cache for the write re-
quests. FarReach effectively reduces and balances the server-
side load and hence achieves a small latency. Note that No-
Cache and NetCache show larger confidence intervals than
FarReach, especially for high target throughput. The reason
is that the server-side queuing latency can vary significantly
for highly overloaded bottleneck server across different runs,
while FarReach maintains a low latency due to load balancing.

(Exp#3) Scalability analysis. We evaluate the scalability of
different schemes by varying the number of simulated servers.
We focus on YCSB workload A. Figure 9 shows that the
throughput gains of FarReach are 1.9×, 2.5×, 3.9×, and 6.6×
those of NoCache and NetCache (both of which have very sim-
ilar throughput) under 16, 32, 64, and 128 servers, respectively.
As the number of simulated servers increases, the throughput
of FarReach also increases due to load balancing across all
servers, while the throughput of both NoCache and NetCache
is limited by the overloaded servers due to load imbalance.
Our results show that FarReach scales to a large number of
servers under skewed write-intensive workloads.

5.3 Performance under Synthetic Workloads
We generate different synthetic workloads with YCSB for
varying write ratios (over all reads and writes), key distribu-
tions, value sizes, key popularities. By default, we generate
requests with 16-byte keys and 128-byte values, where the
keys follow the Zipf distribution with the Zipfian constant
0.99, and set the write ratio as 100% (i.e., write-only requests).

(Exp#4) Impact of write ratio. We first vary the write ratio
of the synthetic workload to evaluate the throughput of dif-
ferent schemes. Figure 10 shows that FarReach increases the
throughput of NoCache by 67-135% for different write ratios,
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Figure 11: (Exp#5) Impact of
key distribution.
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Figure 12: (Exp#6) Impact of
value size.

due to load balancing in FarReach. FarReach achieves similar
throughput as NetCache when the write ratio is zero (i.e., read-
only requests), while increasing the throughput of NetCache
by 48-186% as the write ratio ranges from 25% to 100%. The
throughput gain of FarReach over NoCache and NetCache is
the highest when the write ratio is 100% through in-switch
write-back caching. Note that NetCache has slightly smaller
throughput than NoCache, especially under the write ratio of
100%, due to the extra server-side overhead to maintain cache
coherence for write requests.

(Exp#5) Impact of key distribution. We next consider syn-
thetic workloads under the uniform key distribution as well
as the Zipfian key distributions with different Zipf constants.
Figure 11 shows that all schemes achieve similar throughput
of ≈1 MOPS under the uniform key distribution, as most re-
quests are from the uncached keys and will be processed by
the servers, so FarReach cannot benefit from in-switch write-
back caching. For the skewed workloads, FarReach increases
the throughput of NoCache by 34-135% and that of NetCache
by 50-186%. The throughput gain of FarReach is higher when
the workload is more skewed (i.e., a larger Zipfian constant),
as NoCache and NetCache becomes more imbalanced.

(Exp#6) Impact of value size. We further vary the value
size of the synthetic workload from 16 bytes to 128 bytes
(while the key size remains 16 bytes); note that the number
of records that can be cached in both NetCache and FarReach
(i.e., 10,000 records) remains unchanged. Figure 12 shows
that the throughput gains of FarReach over NoCache and Net-
Cache remain almost the same at 2.33× across different value
sizes, as the caching behavior of FarReach mainly depends
on the key distribution.

We also evaluate all schemes when the value size in-
creases to 256 bytes (i.e., exceeding the maximum value size
of 128 bytes). All schemes achieve similar throughput of
≈0.7 MOPS (not shown in a figure), as both NetCache and
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key popularity changes.

Figure 14: (Exp#8) Performance of snapshot generation, in terms
of throughput (left) and control-plane bandwidth (right).

Figure 15: (Exp#9) Crash recov-
ery time.

FarReach directly forward all records to the servers and have
similar behavior as NoCache.

(Exp#7) Impact of key popularity changes. Finally, we con-
sider dynamic key popularity patterns, in which the access
frequency of a specific key may change over time, while the
previous experiments thus far focus on a static key popu-
larity pattern. We consider three dynamic patterns as used
in prior work [20, 27]: (i) hot-in, which periodically moves
the 200 coldest keys to the highest key popularity ranks and
decreases the ranks of other keys accordingly; (ii) hot-out,
which periodically moves the 200 hottest keys to the lowest
key popularity ranks and increases the ranks of other keys
accordingly; and (iii) random, which randomly replaces 200
keys of the top 10,000 hottest keys with coldest keys. As the
dynamic patterns will trigger cache management decisions
and hence change the system state, we cannot simulate multi-
ple servers by server rotations as in prior experiments. Instead,
we evaluate the performance on the two physical servers, each
of which runs a RocksDB instance. For each dynamic pattern,
we run each scheme for 70 s, and change the key popularity
ranks based on each dynamic pattern every 10 s. We mea-
sure the instantaneous throughput every 1 s, and evaluate the
average throughput over the entire 70 s.

Figure 13 shows that FarReach increases the average
throughput of NoCache and NetCache by at least 59% under
different dynamic patterns. We also run each scheme for 70 s
without any key popularity change (i.e, static), and FarReach
has similar throughput gains as in the dynamic patterns. The
reason is that FarReach quickly reacts to the key popularity
changes (typically within 1 s from our measurement), so it
maintains the cache hit rate and hence the average throughput.
Note that the throughput is smaller than that in prior exper-
iments as we now use fewer servers, yet our emphasis here
is to examine the adaptiveness of FarReach to key popularity
changes rather than the absolute performance.

5.4 Snapshot Generation and Crash Recovery
(Exp#8) Performance of snapshot generation. We vary the
period of snapshot generation to evaluate the throughput and
control-plane bandwidth of FarReach on synthetic workloads.
We focus on the results under dynamic patterns, in which
the bandwidth costs of both snapshot generation and cache
management are included, while we observe similar results
under the static pattern and they are omitted for brevity.

Figure 14 shows both the throughput and control-plane
bandwidth of FarReach versus the snapshot period; note that if
the snapshot period is zero, it means that snapshot generation
is disabled. FarReach keeps its throughput at about 0.2 MOPS
for various snapshot periods under different dynamic patterns,
implying that snapshot generation has a limited impact on
throughput.

When snapshot generation is disabled (i.e., the snapshot
period is zero), FarReach only incurs about 0.03 MiB/s of
control-plane bandwidth, since it only triggers cache man-
agement decisions for new hot records and avoids sending
duplicate records to the controller (§3.2). When snapshot gen-
eration is enabled and as the snapshot period increases from
2.5 s to 10 s, the control-plane bandwidth of FarReach de-
creases from 1.41 MiB/s to 0.33 MiB/s. Note that the control-
plane bandwidth of FarReach is far smaller than the maximum
bandwidth of the controller (i.e., 40 Gbps).

(Exp#9) Crash recovery time. We evaluate the crash recov-
ery time of FarReach under a switch failure for various in-
switch cache sizes. Specifically, for a given in-switch cache
size, we first run the synthetic workload under the static pat-
tern with 16 servers simulated by server rotations. We man-
ually kill the in-switch cache and the switch OS to mimic a
switch failure. We then trigger zero-loss crash recovery (§3.4),
which applies a replay-based approach to update the servers
and recover the in-switch cache. For multiple servers, we
take the average time of updating a server as the server-side
recovery time.

Figure 15 shows that the time of updating a server in
FarReach stays at about 1 s as the cache size increases, as
FarReach only replays a limited number of writes partitioned
in each server, while taking the majority of time to collect
client-side preserved records and control-plane in-switch
snapshot. The time to recover the in-switch cache in FarReach
increases from 1 s to 1.35 s as the cache size increases from
100 records to 10,000 records, as FarReach needs to admit
more records from the latest snapshot under a larger cache
size. Overall, the crash recovery time is within 2.35 s for
various in-switch cache sizes.

5.5 Switch Deployment

(Exp#10) Switch resource usage. We compile the three
schemes into the same Tofino switch chipset [39] to eval-
uate the switch resource usage. We focus on the following
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Table 2: (Exp#10) Switch resource usage (percentages in brackets
are fractions of total resource usage).

SRAM (KiB) # stages # actions # ALUs PHV size (bytes)

NoCache 320 (2.08%) 4 (33.33%) 6 (nil) 0 (0%) 134 (17.45%)

NetCache 8800 (57.29%) 12 (100%) 69 (nil) 45 (93.75%) 528 (68.75%)

FarReach 8992 (58.54%) 12 (100%) 70 (nil) 45 (93.75%) 499 (64.97%)

metrics: SRAM consumption (with up to 768 KiB for stateful
information and 512 KiB for match-action tables per stage),
the numbers of stages (12 stages in total), actions, and ALUs
(at most 4 stateful ALUs per stage) for in-switch computation,
and the packet header vector (PHV) size (768 bytes in total)
for cross-stage communication.

Table 2 shows the results. NoCache has the smallest hard-
ware resource usage, as it only needs to support basic network
functions (e.g., L2/L3 forwarding). NetCache and FarReach
have similar switch resource usage, as both of them deploy
an in-switch cache that consumes SRAM to track stateful in-
formation (e.g., key-value records and cache metadata). Also,
both schemes maintain SRAM-based match-action tables,
exploit the stages, actions, and ALUs to perform in-switch
computations (e.g., cache lookups and updates), and use the
PHV size to transmit each request across different stages.

6 Related Work
In-switch caching and storage management. Several
in-switch caching designs have been proposed for high-
performance storage. SwitchKV [27] caches hot keys in a
software switch, which forwards the reads of cached keys to
the in-memory cache nodes, instead of servers, for accessing
the values. IncBricks [28] caches records in general-purpose
network accelerators and implements packet parsing in pro-
grammable switches to serve the reads of cached keys. Net-
Cache [20] implements a packet processing pipeline for an
in-switch read cache based on switch ASICs. DistCache [29]
implements distributed in-network caching across multiple
racks. The above studies target only read-intensive work-
loads with write-through caching, which incurs significant
overhead under write-intensive workloads (§5). PKache [15]
implements in-switch caching with limited associativity and
provides a general framework with different cache manage-
ment policies, yet it does not address write-back caching.

Aside from caching, some studies use programmable
switches for efficient storage management. AppSwitch [9] of-
floads hash-based routing to software switches, and its control
plane dynamically updates the routing rules based on server
loads for load balancing. NetChain [19] stores records in pro-
grammable switches for the coordination of the switch-based
chain replication model. TurboKV [13] and Pegasus [26]
keep in-switch directory information to speed up the repli-
cation protocol of in-memory key-value stores. Concordia
[40] tracks the locations of host-side cache copies in pro-
grammable switches for efficient cache coherence. Mind [24]
maintains in-switch memory management (e.g., address trans-

lation and cache coherence) for efficient and transparent rack-
scale memory disaggregation. Such systems do not consider
in-switch caching for server-side key-value storage.

Write-back caching. Prior studies propose write-back
caching policies. DEFER [32] improves the reliability of
write-back caching by replication and logging. FlashTier [38]
deploys a write-back flash cache and ensures consistency by
storing both cached data and mapping details durably in flash.
Some studies propose write-back caching policies with differ-
ent reliability guarantees. Examples include: (i) ordered and
journaled policies [23] that provide point-in-time consistency,
(ii) write-back flush and persist policies [36] that use write bar-
riers for durable and consistent caching, and (iii) client-side
buffered write policies [16] that ensure durability by replica-
tion with read-after-write consistency guarantees. However,
programmable switches have restricted programming require-
ments and limited hardware resources for implementing such
policies. How to enable new write-back caching policies with
stronger reliability guarantees is our future work.

7 Conclusion
FarReach is a fast, available, and reliable in-switch write-back
caching framework for load-balanced key-value stores in mod-
ern data centers under skewed write-intensive workloads. It
incorporates new co-designs of control and data planes for
cache admission and eviction under a write-back policy. In
particular, FarReach pays special attention to crash-consistent
snapshot generation and zero-loss crash recovery, so as to
protect against data loss under switch failures. Evaluation
under YCSB and synthetic workloads demonstrates the per-
formance benefits of FarReach under skewed write-intensive
workloads.
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González-Férez, and Angelos Bilas. Tucana: Design and
implementation of a fast and efficient scale-up key-value
store. In Proc. of USENIX ATC, 2016.

[36] Dai Qin, Angela Demke Brown, and Ashvin Goel. Reli-
able writeback for client-side flash caches. In Proc. of
USENIX ATC, 2014.

[37] RocksDB. https://github.com/facebook/
rocksdb/.

[38] Mohit Saxena, Michael M Swift, and Yiying Zhang.
Flashtier: a lightweight, consistent and durable storage
cache. In Proc. of ACM EuroSys, 2012.

[39] Tofino. https://www.intel.com/content/
www/us/en/products/network-io/
programmable-ethernet-switch/tofino-
series/tofino.html.

[40] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin
Chen, and Jiwu Shu. Concordia: distributed shared
memory with in-network cache coherence. In Proc. of
USENIX FAST, 2021.

[41] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at Twitter. In Proc. of USENIX OSDI, 2020.

[42] YCSB. https://github.com/
brianfrankcooper/YCSB/.

584    2023 USENIX Annual Technical Conference USENIX Association

https://github.com/facebook/rocksdb/
https://github.com/facebook/rocksdb/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://github.com/brianfrankcooper/YCSB/
https://github.com/brianfrankcooper/YCSB/


CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and
Computation for Billion-Scale Approximate Nearest Neighbor Search

Junhyeok Jang∗, Hanjin Choi∗†, Hanyeoreum Bae∗, Seungjun Lee∗, Miryeong Kwon∗†, Myoungsoo Jung∗†

∗Computer Architecture and Memory Systems Laboratory, KAIST
†Panmnesia, Inc.

Abstract
We propose CXL-ANNS, a software-hardware collaborative
approach to enable highly scalable approximate nearest neigh-
bor search (ANNS) services. To this end, we first disaggregate
DRAM from the host via compute express link (CXL) and
place all essential datasets into its memory pool. While this
CXL memory pool can make ANNS feasible to handle billion-
point graphs without an accuracy loss, we observe that the
search performance significantly degrades because of CXL’s
far-memory-like characteristics. To address this, CXL-ANNS
considers the node-level relationship and caches the neighbors
in local memory, which are expected to visit most frequently.
For the uncached nodes, CXL-ANNS prefetches a set of nodes
most likely to visit soon by understanding the graph traversing
behaviors of ANNS. CXL-ANNS is also aware of the archi-
tectural structures of the CXL interconnect network and lets
different hardware components therein collaboratively search
for nearest neighbors in parallel. To improve the performance
further, it relaxes the execution dependency of neighbor search
tasks and maximizes the degree of search parallelism by fully
utilizing all hardware in the CXL network.

Our empirical evaluation results show that CXL-ANNS
exhibits 111.1× higher QPS with 93.3% lower query latency
than state-of-the-art ANNS platforms that we tested. CXL-
ANNS also outperforms an oracle ANNS system that has
DRAM-only (with unlimited storage capacity) by 68.0% and
3.8×, in terms of latency and throughput, respectively.

1 Introduction
Dense retrieval (also known as nearest neighbor search) has
taken on an important role and provides fundamental sup-
port for various search engines, data mining, databases, and
machine learning applications such as recommendation sys-
tems [1–8]. In contrast to the classic pattern/string-based
search, dense retrieval compares the similarity across differ-
ent objects using their distance and retrieves a given number
of objects, similar to the query object, referred to as k-nearest
neighbor (kNN) [9–11]. To this end, dense retrieval embeds
input information into a few thousand dimensional spaces
of each object, called a feature vector. Since these vectors
can encode a wide spectrum of data formats (e.g., images,
documents, sounds, etc.), dense retrieval understands an in-
put query’s semantics, resulting in more context-aware and

(a) Previous studies. (b) CXL-based approaches.

Figure 1: Various billion-scale ANNS characterizations.

accurate results than traditional search [6, 12, 13].
Even though kNN is one of the most frequently used search

paradigms in various applications, it is a costly operation
taking linear time to scan data [14, 15]. This computation
complexity unfortunately makes dense retrieval with a billion-
point dataset infeasible. To make the kNN search more practi-
cal, approximate nearest neighbor search (ANNS) restricts
a query vector to search only a subset of neighbors with a
high chance of being the nearest ones [15–17]. ANNS ex-
hibits good vector searching speed and accuracy, but it sig-
nificantly increases memory requirement and pressure. For
example, many production-level recommendation systems
already adopt billion-point datasets, which require tens of
TB of working memory space for ANNS; Microsoft search
engines (used in Bing/Outlook) require 100B+ vectors, each
being explained by 100 dimensions, which consume more
than 40TB memory space [18]. Similarly, several of Alibaba’s
e-commerce platforms need TB-scale memory spaces to ac-
commodate their 2B+ vectors (128 dimensions) [19].

To address these memory pressure issues, modern ANNS
techniques leverage lossy compression methods or employ
persistent storage, such as solid state disks (SSDs) and per-
sistent memory (PMEM), for their memory expansion. For
example, [20–23] split large datasets and group them into
multiple clusters in an offline time. This compression ap-
proach only has product quantized vectors for each cluster’s
centroid and searches kNN based on the quantized informa-
tion, making billion-scale ANNS feasible. On the other hand,
the hierarchical approach [24–28] accommodates the datasets
to SSD/PMEM, but reduces target search spaces by referring
to a summary in its local memory (DRAM). As shown in
Figure 1a, these compression and hierarchical approaches
can achieve the best kNN search performance and scalabil-
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ity similar to or slightly worse than what an oracle1 system
offers. However, these approaches suffer from a lack of accu-
racy and/or performance, which unfortunately hinders their
practicality in achieving billion-scale ANNS services.

In this work, we propose CXL-ANNS, a software-hardware
collaborative approach that enables scalable approximate near-
est neighbor search (ANNS). As shown in Figure 1b, the main
goal of CXL-ANNS is to offer the latency of billion-point
kNN search even shorter than the oracle system mentioned
above while achieving high throughput without a loss of ac-
curacy. To this end, we disaggregate DRAM from the host
resources via compute express link (CXL) and place all essen-
tial datasets into its memory pool; CXL is an open-industry
interconnect technology that allows the underlying working
memory to be highly scalable and composable with a low
cost. Since a CXL network can expand its memory capacity
by having more endpoint devices (EPs) in a scalable manner,
a host’s root-complex (RC) can map the network’s large mem-
ory pool (up to 4PB) into its system memory space and use it
just like a locally-attached conventional DRAM.

While this CXL memory pool can make ANNS feasible
to handle billion-point graphs without a loss of accuracy, we
observe that the search performance degrades compared to
the oracle by as high as 3.9× (§3.1). This is due to CXL’s
far-memory-like characteristics; every memory request needs
a CXL protocol conversion (from CPU instructions to one
or more CXL flits), which takes a time similar to or longer
than a DRAM access itself. To address this, we consider the
relationship of different nodes in a given graph and cache the
neighbors in the local memory, which are expected to visit
frequently. For the uncached nodes, CXL-ANNS prefetches a
set of nodes most likely to be touched soon by understanding
the unique behaviors of the ANNS graph traversing algo-
rithm. CXL-ANNS is also aware of the architectural struc-
tures of the CXL interconnect network and allows different
hardware components therein to simultaneously search for
nearest neighbors in a collaborative manner. To improve the
performance further, we relax the execution dependency in the
KNN search and maximize the degree of search parallelism
by fully utilizing all our hardware in the CXL network.

We summarize the main contribution as follows:
• Relationship-aware graph caching. Since ANNS traverses
a given graph from its entry-node [10, 19], we observe that
the graph data accesses, associated with the innermost edge
hops, account for most of the point accesses (§3.2). Inspired
by this, we selectively locate the graph and feature vectors in
different places of the CXL memory network. Specifically,
CXL-ANNS allocates the node information closer to the entry
node in the locally-attached DRAMs while placing the other
datasets in the CXL memory pool.
• Hiding the latency of CXL memory pool. If it needs to tra-
verse (uncached) outer nodes, CXL-ANNS prefetches the

1In this paper, the term “Oracle” refers to a system that utilizes ample
DRAM resources with an unrestricted memory capacity.

datasets of neighbors, most likely to be processed in the next
step of kNN queries from the CXL memory pool. However,
it is non-trivial to figure out which node will be the next
to visit because of ANNS’s procedural data processing de-
pendency. We propose a simple foreseeing technique that
exploits a unique graph traversing characteristic of ANNS
and prefetches the next neighbor’s dataset during the current
kNN candidate update phase.
• Collaborative kNN search design in CXL. CXL-ANNS sig-
nificantly reduces the time wasted for transferring the feature
vectors back and forth by designing EP controllers to calcu-
late distances. On the other hand, it utilizes the computation
power of the CXL host for non-beneficial operations in pro-
cessing data near memory (e.g., graph traverse and candidate
update). This collaborative search includes an efficient design
of RC-EP interfaces and a sharding method being aware of
the hardware configurations of the CXL memory pool.
• Dependency relaxation and scheduling. The computation
sequences of ANNS are all connected in a serial order, which
makes them unfortunately dependent on execution. We exam-
ine all the activities of kNN query requests and classify them
into urgent/deferrable subtasks. CXL-ANNS then relaxes the
dependency of ANN computation sequences and schedules
their subtasks in a finer granular manner.

We validate all the functionalities of CXL-ANNS’s soft-
ware and hardware (including the CXL memory pool) by
prototyping them using Linux 5.15.36 and 16nm FPGA, re-
spectively. To explore the full design spaces of ANNS, we also
implement the hardware-validated CXL-ANNS in gem5 [29]
and perform full-system simulations using six billion-point
datasets [30]. Our evaluation results show that CXL-ANNS
exhibits 111.1× higher bandwidth (QPS) with 93.3% lower
query latency, compared to the state-of-the-art billion-scale
ANNS methods [20, 24, 25]. The latency and throughput be-
haviors of CXL-ANNS are even better than those of the oracle
system (DRAM-only) by 68.0% and 3.8×, respectively.

2 Background

2.1 Approximate Nearest Neighbor Search
The most accurate method to get k-nearest neighbors (kNN)
in a graph is to compare an input query vector with all data
vectors in a brute-force manner [9, 31]. Obviously, this sim-
ple dense retrieval technique is impractical mainly due to
its time complexity [10, 24]. In contrast, approximate near-
est neighbor search (ANNS) restricts the query vector to re-
trieve only a subset of neighbors that can be kNN with a high
probability. To meet diverse accuracy and performance re-
quirements, several ANNS algorithms such as tree-structure
based [32, 33], hashing based [11, 34, 35] and quantization
based approaches [20–23] have been proposed over the past
decades. Among the various techniques, ANNS algorithms
using graphs [10,19,24] are considered as the most promising
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Figure 2: Distance.

Algorithm 1: Best-first Search
Input: query,
k := number of nearest neighbor to find
Output: k nearest neighbor of query

1 distance = calcDist(query, startNode)
2 CandidateArr = {startNode, distance}
3 curNode = startNode
4 CandidateArr.markVisited(curNode)
/* Main iteration (line 5∼10) */

5 while !candidateArr.allVisited() do
6 neighbors = Graph.neighbors(curNode)
7 distances = calcDist(query, neighbors)
8 CandidateArr.insert(neighbors, distances)
9 curNode = CandidateArr.getNextNode()

10 CandidateArr.markVisited(curNode)
11 return CandidateArr[: k]

solution, with great potential 2. This is because graph-based
approaches can better describe neighbor relationships and
traverse fewer points than the other approaches that operate
in a Euclidean space [19, 36–39].
Distance calculations. While there are various graph con-
struction algorithms for ANNS [10, 19, 24], the goal of their
query search algorithms is all the same or similar to each
other; it is simply to find k numbers of neighbors in the target
graph, which are expected to have the shortest distance from a
given feature vector, called query vector. There are two most
common methods to define such a distance between the query
vector and neighbor’s feature vector (called data vector): i)
L2 (Euclidean) distance and ii) angular distance. As shown in
Figure 2, these methods map the nodes that we compare into
a temporal dimension space using their own vector’s feature
elements. Let us suppose that there are n numbers of features
for each vector. Then, L2 and angular distances are calculated
by ∑i(Queryi −Datai)

2 and ∑i(Queryi ·Datai), respectively;
where Queryi and Datai are the ith feature of a given query
and data vectors, respectively (i ≤ n). These distance defini-
tions are simplified to reduce their calculation latency, which
differs from the actual distances in a multi-dimensional vector
space. This simplification works well since ANNS uses the
distances only for a relative comparison to search kNN.
Approximate kNN query search. Algorithm 1 explains the
graph traversing method that most ANNS employs [10,19,24].
The method, best-first search (BFS) [38, 40], traverses from
an entry-node (line ❸) and moves to neighbors getting closer
to the given query vector (lines ❺∼❿). While the brute-force
search explores a full space of the graph by systematically
enumerating all the nodes, ANNS uses a preprocessed graph
and visits a limited number of nodes for each hop. The graph is
constructed (preprocessed) to have the entry-node that arrives
all the nodes of its original graph within the minimum number
of average edge hops; this preprocessed graph guarantees that
there exists a path between the entry-node and any of the
given nodes. To minimize the overhead of graph traverse, BFS
employs a candidate array that includes the neighbors whose

2For the sake of the brevity, we use “graph-based approximate kNN
methods” and “ANNS” interchangeably.

(a) Compression-based approach. (b) Hierarchical approach.

Figure 3: Existing billion-scale ANNS methods.

distances (from the query vector) are expected to be shorter
than others. For each node visiting, BFS checks this candidate
array and retrieves unvisited node from the array (line ❻,
❾). It then calculates the distances of the node’s neighbors
(line ❼) by retrieving their vectors from the embedding table.
After this distance calculation, BFS updates the candidate
array with the new information, neighbors and distances (line
❽). All these activities are iterated (line ❺) until there is no
unvisited node in the candidate array. BFS finally returns the
k number of neighbors in the candidate array.

2.2 Towards Billion-scale ANNS
While ANNS can achieve good search speed and reasonable
accuracy (as it only visits the nodes in the candidate array),
it still requires maintaining all the original graph and vectors
in its embedding table. This renders ANNS difficult to have
billion-point graphs that exhibit high memory demands in
many production-level services [18,19]. To address this issue,
there have been many studies proposed [20–27], but we can
classify them into two as shown in Figures 3a and 3b.
Compression approaches. These approaches [20–23] reduce
the embedding table by compressing its vectors. As shown in
Figure 3a, they logically split the given graph into multiple
sub-groups, called clusters; the nodes A and E are classified
in the cluster X whereas the others are grouped as the cluster
Y. For each cluster, these approaches then encode the corre-
sponding vectors into a single, representative vector (called
centroid) by averaging all the vectors in the cluster. They then
replace all the vectors in the embedding table with their clus-
ter ID. Since the distances are calculated by the compressed
centroid vectors (rather than original data vectors), it exhibits
a low accuracy for the search. For example, the node E can be
selected as one of kNN although the node B sits closer to the
query vector. Another issue of these compression approaches
is the limited reduction rate in the size of the graph datasets.
Since they quantize only the embedding table, their billion-
point graph data have no benefit of the compression or even
get slightly bigger to add a set of shortcuts into the original
graph.
Hierarchical approaches. These approaches [24–27] store
all the graph and vectors (embedding table) to the underly-
ing SSD/PMEM (Figure 3b). Since SSD/PMEM are prac-
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(a) Types of CXL EP. (b) CXL-based memory pool.

Figure 4: CXL’s sub-protocols and endpoint types.

tically slower than DRAM by many orders of magnitude,
these methods process kNN queries in two separate phases:
i) low-accuracy search and ii) high-accuracy search. The
former only refers to compressed or simplified datasets, simi-
lar to the datasets that the compression approaches use. The
low-accuracy search quickly finds out one or more nearest
neighbor candidates (without a storage access) thereby reduc-
ing the search space that the latter needs to process. Once it
has been completed, the high-accuracy search refers to the
original datasets associated with the candidates and processes
the actual kNN queries. For example, DiskANN [24] ’s low
accuracy search finds the kNN candidates using the com-
pressed datasets in DRAM. The high-accuracy search then
re-examines and re-ranks the order of kNN candidates by vis-
iting their actual vectors stored in SSD/PMEM. On the other
hand, HM-ANN [25] simplifies the target graph by adding
several shortcuts (across multiple edge hops) into the graph.
HM-ANN’s low-accuracy search scans a candidate closer to
the given query vector from the simplified graph. Once HM-
ANN detects the candidate, the high-accuracy search checks
its kNN by referring to all the graph and data vectors recorded
in SSD/PMEM.

2.3 Compute Express Link for Memory Pool
CXL is an open standard interconnect which can expand
memory over the existing PCIe physical layers in a scalable
option [41–43]. As shown in Figure 4a, CXL consists of three
sub-protocols: i) CXL.io, ii) CXL.cache, and iii) CXL.mem.
Based on which sub-protocols are used for the main commu-
nication, CXL EPs can be classified as Types.
Sub-protocols and endpoint types. CXL.io is basically the
same as the PCIe standard, which is aimed at enumerating the
underlying EPs and performing transaction controls. It is thus
used for all the CXL types of EPs to be interconnected to the
CXL CPU’s root-complex (RC) through PCIe. On the other
hand, CXL.cache is for an underlying EP to make its states
coherent with those of a CXL host CPU, whereas CXL.mem
supports simple memory operations (load/store) over PCIe.
Type 1 is considered by a co-processor or accelerator that does
not have memory exposed to CXL RC while Type 2 employs
internal memory, accessible from CXL RC. Thus, Type 1 only
uses CXL.cache (in addition to CXL.io), but Type 2 needs to
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use both CXL.cache and CXL.mem. A potential example of
Type 1 and 2 can be FPGAs and GPUs, respectively. On the
other hand, Type 3 only uses CXL.mem (read/write), which
means that there is no interface for a device-side compute unit
to update its calculation results to CXL CPU’s RC and/or get
a non-memory request from the RC.
CXL endpoint disaggregation. Figure 4b shows how we
can disaggregate DRAM from host resources using CXL EPs,
in particular, Type 3; we will discuss why Type 3 is the best
device type for the design of CXL-ANNS, shortly. Type 3’s in-
ternal memory is exposed as a host-managed device memory
(HDM), which can be mapped to the CXL CPU’s host phys-
ical address (HPA) in the system memory just like DRAM.
Therefore, applications running on the CXL CPU can access
HDM (EP’s internal memory) through conventional mem-
ory instructions (loads/stores). Thanks to this characteristic,
HDM requests are treated as traditional memory requests in
CXL CPU’s memory hierarchy; the requests are first cached
in CPU cache(s). Once its cache controller evicts a line as-
sociated with the address space of HDM, the request goes
through to the system’s CXL RC. RC then converts one or
more memory requests into a CXL packet (called flit) that can
deal with a request or response of CXL.mem/CXL.cache. RC
passes the flit to the target EP using CXL.mem’s read or write
interfaces. The destination EP’s PCIe and CXL controllers
take the flit over, convert it to one or more memory requests,
and serve the request with the EP’s internal memory (HDM).
Type consideration for scaling-out. To expand the mem-
ory capacity, the target CXL network can have one or more
switches that have multiple ports, each being able to connect
a CXL EP. This switch-based network configuration allows
an RC to employ many EPs (upto 4K), but only for Type 3.
This is because CXL.cache uses virtual addresses for its cache
coherence management unlike CXL.mem. As the virtual ad-
dresses (brought by CXL flits) are not directly matched with
the physical address of each underlying EP’s HDM, the CXL
switches cannot understand where the exact destination is.

3 A High-level Viewpoint of CXL-ANNS
3.1 Challenge Analysis of Billion-scale ANNS
Memory expansion with compression. While compression
methods allow us to have larger datasets, it is not scalable
since their quantized data significantly degrades the kNN
search accuracy. Figure 5 analyzes the search accuracy of
billion-point ANNS that uses the quantization-based com-
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Figure 7: CXL baseline architecture.
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pression described in §2.2. In this analysis, it reduces the em-
bedding table by 2×∼16×. We use six billion-point datasets
from [30]; the details of these datasets and evaluation envi-
ronment are the same as what we used in §6.1. As the density
of the quantized data vectors varies across different datasets,
the compression method exhibits different search accuracies.
While the search accuracies are in a reasonable range to ser-
vice with low compression rates, they significantly drop as
the compression rate of the dataset increases. It cannot even
reach the threshold accuracy that ANNS needs to support
(90%, recommended by [30]) after having 45.8% less data
than the original. This unfortunately makes the compression
impractical for billion-scale ANNS at high accuracy.
Hierarchical data processing. Hierarchical approaches can
overcome this low accuracy issue by adding one more search
step to re-rank the results of kNN search. This high-accuracy
search however increases the search latency significantly as
it eventually requires traversing the storage-side graph and
accessing the corresponding data vectors (in storage) en-
tirely. Figure 6 shows the latency behaviors of hierarchical
approaches, DiskANN [24] and HM-ANN [25]. In this test,
we use 480GB Optane PMEM [44] for DiskANN/HM-ANN
and compare their performance with the performance of an
oracle ANNS that has DRAM-only (with unlimited storage
capacity). One can observe from this figure that the storage
accesses of the high-accuracy search account for 87.6% of the
total kNN query latency, which makes the search latency of
DiskANN and HM-ANN worse than that of the oracle ANNS
by 29.4× and 64.6×, respectively, on average.
CXL-augmented ANNS. To avoid the accuracy drop and
performance depletion, this work advocates to directly have
billion-point datasets in a scalable memory pool, disaggre-
gated using CXL. Figure 7 shows our baseline architecture
that consists of a CXL CPU, a CXL switch, and four 1TB
Type 3 EPs that we prototype (§6.1). We locate all the billion-
point graphs and corresponding vectors to the underlying

Type 3 EPs (memory pool) while having ANNS metadata
(e.g. candidate array) in the local DRAM. This baseline al-
lows ANNS to access the billion-point datasets on the remote-
side memory pool just like conventional DRAMs thanks to
CXL’s instruction-level compatibility. Nevertheless, it is not
yet an appropriate option for practical billion-scale ANNS
due to CXL’s architectural characteristics that exhibit lower
performance than the local DRAM.

To be precise, we compare the kNN search latency of the
baseline with the oracle ANNS, and the results are shown
in Figure 8. In this analysis, we normalize the latency of the
baseline to that of the oracle for better understanding. Even
though our baseline does not show severe performance deple-
tion like what DiskANN/HM-ANNS suffer from, it exhibits
3.9× slower search latency than the oracle, on average. This is
because all the memory accesses associated with HDM(s) in-
sist the host RC convert them to a CXL flit and revert the flit to
memory requests at the EP-side. The corresponding responses
also requires this memory-to-flit conversion in a reverse order
thereby exhibiting the long latency for graph/vector accesses.
Note that this 3.6∼4.6× performance degradation is not ac-
ceptable in many production-level ANNS applications such
as recommendation systems [45] or search engines [46].

3.2 Design Consideration and Motivation
The main goal of this work is to make the CXL-augmented
kNN search faster than in-memory ANNS services working
only with locally-attached DRAMs (cf. CXL-ANNS vs. Ora-
cle as shown in Figure 8). To achieve this goal, we propose
CXL-ANNS, a software-hardware collaborative approach,
which considers the following three observations: i) node-
level relationship, ii) distance calculation, and iii) vector re-
duction.
Node-level relationship. While there are diverse graph struc-
tures [10, 19, 24] for the best-first search traverses (cf. Algo-
rithm 1), all of the graphs starts their traverses from a unique,
single entry-node as described in §2.1. This implies that the
graph traverse of ANNS visits the nodes closer to the entry-
node much more frequently. For example, as shown in Figure
9a, the node B is always accessed to serve a given set of kNN
queries targeting other nodes listed in the graph branch while
the node G is difficult to visit. To be precise, we examine the
average count to visit nodes in all the billion-point graphs
that this work evaluate when there are a million kNN query

(a) Traverse. (b) Nodes’ visit count.
Figure 9: Graph traverse.

Figure 10: End-to-end break-
down analysis.

(a) Reduction example. (b) Reduction ratio.
Figure 11: Data reduction.
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requests. The results are shown in Figure 9b. One can observe
from this analysis that the nodes most frequently accessed
during the 1M kNN searches reside in the 2∼3 edge hops. By
appreciating this node-level relationship, we will locate the
graph and vector data regarding inner-most nodes (from the
entry-node) to locally-attached DRAMs while allocating all
the others to the underlying CXL EPs.
Distance calculation. To analyze the critical path of billion-
point ANNS, we decompose the end-to-end kNN search task
into four different sub-tasks, i) candidate update, ii) memory
access and iii) computing fractions of distance calculation,
and iv) graph traverse. We then measure the latency of each
sub-tasks on use in-memory, oracle system, which are shown
in Figure 10. As can be seen from the figure, ANNS dis-
tance calculation significantly contributes to the total execu-
tion time, constituting an average of 81.8%. This observation
stands in contrast to the widely held belief that graph traver-
sal is among the most resource-intensive operations [47–49].
The underlying reason for this discrepancy is that distance
calculation necessitates intensive embedding table lookups to
determine the data vectors of all nodes visited by ANNS. No-
tably, while these lookup operations have the same frequency
and pattern as graph traversal, the length of the data vectors
employed by ANNS is 2.0× greater than that of the graph
data due to their high dimensionality. Importantly, although
distance calculation exhibits considerable latency, it does not
require substantial computational resources, thus making it a
good candidate for acceleration using straightforward hard-
ware solutions.
Reducing data vector transfers. We can take the overhead
brought by distance calculations off the critical path in the
kNN search by bringing only the distance that ANNS needs
to check for each iteration its algorithm visits. As shown
in Figure 11a, let’s suppose that CXL EPs can compute a
distance between a given query vector and data vectors that
ANNS is in visit. Since ANNS needs the distance, a simple
scalar value, instead of all the full features of each data vector,
the amount of data that the underlying EPs transfer can be
reduced as many as each vector’s dimensional degrees. Figure
11b analyzes how much we can reduce the vector transfers
during services of the 1M kNN queries. While the vector
dimensions of each dataset varies (96∼256), we can reduce
the amount of data to load from the EPs by 73.3×, on average.

3.3 Collaborative Approach Overview
Motivated by the aforementioned observations, CXL-ANNS
first caches datasets considering a given graph’s inter-node
relationship and performs ANNS algorithm-aware CXL
prefetches (§4.1). This makes the performance of a naive
CXL-augmented kNN search comparable with that of the or-
acle ANNS. To go beyond, CXL-ANNS reduces the vector
transferring latency significantly by letting the underlying EPs
to calculate all the ANNS distances near memory (§5.1). As
this near-data processing is achieved in a collaborative man-
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Figure 12: Overview.

ner between EP controllers and RC-side ANNS algorithm
handler, the performance can be limited by the kNN query
service sequences. CXL-ANNS thus schedules kNN search
activities in a fine-grained manner by relaxing their execu-
tion dependency (§5.3). Putting all together, CXL-ANNS is
designed for offering high-performance even better than the
oracle ANNS without an accuracy loss.

Figure 12 shows the high-level viewpoint of our CXL-
ANNS architecture, which mainly consists of i) RC-side soft-
ware stack and ii) EP-side data processing hardware stack.
RC-side software stack. This RC-side software stack is com-
posed of i) query scheduler, ii) pool manager, and iii) kernel
driver. At the top of CXL-ANNS, the query scheduler handles
all kNN searches requested from its applications such as rec-
ommendation systems. It splits each query into three subtasks
(graph traverse, distance calculation, and candidate update)
and assign them in different places. Specifically, the graph
traverse and candidate update subtasks are performed at the
CXL CPU side whereas the scheduler allocates the distance
calculation to the underlying EP by collaborating with the
underlying pool manager. The pool manager handles CXL’s
HPA for the graph and data vectors by considering edge hop
counts, such that it can differentiate graph accesses based on
the node-level relationship. Lastly, the kernel driver manages
the underlying EPs and their address spaces; it enumerates
the EPs and maps their HDMs into the system memory’s HPA
that the pool manager uses. Since all memory requests for
HPA are cached at the CXL CPU, the driver maps EP-side
interface registers to RC’s PCIe address space using CXL.io
instead of CXL.mem. Note that, as the PCIe spaces where the
memory-mapped registers exist is in non-cacheable area, the
underlying EP can immediately recognize what the host-side
application lets the EPs know.
EP-side hardware stack. EP-side hardware stack includes
a domain specific accelerator (DSA) for distance calculation
in addition to all essential hardware components to build a
CXL-based memory expander. At the front of our EPs, a phys-
ical layer (PHY) controller and CXL engine are implemented,
which are responsible for the PCIe/CXL communication con-
trol and flit-to-memory request conversion, respectively. The
converted memory request is forwarded to the underlying
memory controller that connects multiple DRAM modules at
its backend; in our prototype, an EP has four memory con-
trollers, each having a DIMM channel that has 256GB DRAM
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Figure 13: Data placement.

modules. On the other hand, the DSA is located between the
CXL engine and memory controllers. It can read data vectors
using the memory controllers while checking up the operation
commands through CXL engine’s interface registers. These
interface registers are mapped to the host non-cacheable PCIe
space such that all the commands that the host writes can be
immediately visible to DSA. DSA calculates the approximate
distance for multiple data vectors using multiple processing
elements (PEs), each having simple arithmetic units such as
adder/subtractor and multiplier.

4 Software Stack Design and Implementation
From the memory pool management viewpoint, we have to
consider two different system aspects: i) graph structuring
technique for the local memory and ii) efficient space mapping
method between HDM and graph. We will explain the design
and implementation details of each method in this section.

4.1 Local Caching for Graph
Graph construction for local caching. While the pool man-
ager allocates most graph data and all data vectors to the
underlying CXL memory pool, it caches the nodes, expected
to be most frequently accessed, in local DRAMs as much
as the system memory capacity can accommodate. To this
end, the pool manager considers how many edge hops (i.e.,
calculating the number of edge hops) exist from the fixed
entry-node to each node for its relationship-aware graph cache.
Figure 13 explains how the pool manager allocates the nodes
in a given graph to different places (local memory vs. CXL
memory pool). When constructing the graph, the pool man-
ager calculates per-node hop counts by leveraging a single
source shortest path (SSSP) algorithm [50, 51]; it first lets
all the nodes in the graph have a negative hop count (e.g.,
-1). Starting from the entry-node, the pool manager checks
all the nodes in one edge hop and increases its hop count.
It visits each of the nodes and iterates this process for them
until there is no node to visit in a breadth-first search manner.
Once each node has its own hop count, the pool manager
sorts them based on the hop count in an ascending order and
allocates the nodes from the top (having the smallest hop
count) to local DRAMs as many as it can. The available size
of the local DRAMs can be simply estimated by referring
to system configuration variables (sysconf()) of the total
number of pages (_SC_AVPHYS_PAGES) and the size of each
page (_SC_PAGESIZE). It’s important to mention that in this
study, the pool manager uses several threads within the user
space to execute SSSP, aiming to reduce the construction time

Figure 14: Memory management.

to a minimum. Once the construction is done, the threads are
terminated to make sure they do not consume CPU resources
when a query is given.

4.2 Data Placement on the CXL Memory Pool
Preparing CXL for user-level memory. When mapping
HDM to the system memory’s HPA, CXL CPU should be
capable of recognizing different HDMs and their size whereas
each EP needs to know where its HDM is assigned in HPA.
As shown in Figure 14, our kernel driver checks PCIe con-
figuration space and figures out CXL devices at the PCIe
enumeration time. The driver then checks RC information
from the system’s data structure describing the hardware com-
ponents that show where the CXL HPA begins (base), such
as device tree [52] or ACPI [53]. From the base, our kernel
driver allocates each HDM as much as it defines in a con-
tiguous space. It lets the underlying EPs know where each of
corresponding HDM is mapped in HPA, such that they can
convert the address of memory requests (HPA) to its original
HDM address. Once all the HDMs are successfully mapped
to HPA, the pool manager allocates each HDM to different
places of user-level virtual address space that the query sched-
uler operates on. This memory-mapped HDM, called CXL
arena, guarantees per-arena continuous memory space and
allows the pool manager to distinguish different EPs at the
user-level.
Pool management for vectors/graph. While CXL arenas
directly expose the underlying HDMs of CXL EPs to user-
level space, it should be well managed to accommodate all
the billion-point datasets appreciating their memory usage
behaviors. The pool manager considers two aspects of the
datasets; the data vectors (i.e., embedding table) should be
located in a substantially large and consecutive memory space
while the graph structure requires taking many neighbor lists
with variable length (16B∼1KB). The pool manager employs
stack-like and buddy-like memory allocators, which grow up-
ward and downward in each CXL arena, respectively. The
former allocator has a range pointer and manages memory
for the embedding table, similar to stack. The pool manager
allocates the data vectors across multiple CXL arenas in a
round-robin manner by considering the underlying EP archi-
tecture. This vector sharding method will be explained in §5.1.
In contrast, the buddy-like allocator employs a level pointer,
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(a) PE architecture. (b) Sharding.

Figure 15: Distance calculation.

each level consisting of a linked list, which connects data
chunks with different size (from 16B to 1KB). Like Linux
buddy memory manager [54], it allocates the CXL memory
spaces as much as each neighbor list exactly requires and
merge/split the chunk(s) based on the workload behaviors. To
make each EP balanced, the pool manager allocates the neigh-
bor lists for each hop in round-robin manner across different
CXL arenas.

5 Collaborative Query Service Acceleration

5.1 Accelerating Distance Calculation
Distance computing in EP. As shown in Figure 15a, a
processing element (PE) of DSA has arithmetic logic tree
connecting a multiplier and subtractor at each terminal for
element-wise operations. Depending on how the dataset’s
features are encoded, the query and data vectors are routed
differently to the two units as input. If the features are encoded
for the Euclidean space, the vectors are supplied to the subtrac-
tor for L2 distance calculation. Otherwise, the multiplexing
logics directly deliver the input vectors to the multiplier by
bypassing the subtractor such that it can calculate the angular
distance. Each terminal simultaneously calculates individual
elements of the approximate distance, and the results are ac-
cumulated by going through the arithmetic logic tree network
from the terminal to its root. In addition, each PE’s terminal
reads data from all four different DIMM channels in parallel,
thus maximizing the EP’s backend DRAM bandwidth.
Vector sharding. Even though each EP has many PEs (10 in
our prototype), if we locate the embedding table from the start
address of an EP in a consecutive order, EP’s backend DRAM
bandwidth can be bottleneck in our design. This is because
each feature vector in the embedding table is encoded by high
dimensional information (∼256 dimensions, taking around
1KB). To address this, our pool manager shards the embedding
table in a column wise and stores different parts of the table
across the different EPs. As shown in Figure 15b, this vector
sharding splits each vector into multiple sub-vectors based
on each EP’s I/O granularity (256B). Each EP simultaneously
computes its sub-distance from the split data vector that the
EP accommodates. Later, the CXL CPU accumulates the sub-
distances to get the final distance value. Note that, since the
L2 and angular distances are calculated by accumulating the
output of element-wise operations, the final distance is the

Figure 16: Interface.

same as the results of the sub-distance accumulation using
vector sharding.
Interfacing with EP-level acceleration. Figure 16 shows
how the interface registers are managed to let the underlying
EPs compute a distance where the data vectors exist. There
are two considerations for the interface design and implemen-
tation. First, multiple EPs perform the distance calculation
for the same neighbors in parallel thanks to vector sharding.
While the neighbor list contains many node ids (≤200), it
is thus shared by the underlying EPs. Second, handling in-
terface registers using CXL.io is an expensive operation as
CPU should be involved in all the data copies. Considering
these two, the interface registers handle only the event of com-
mand arrivals, called doorbell whereas each EP’s CXL engine
pulls the corresponding operation type and neighbor list from
the CPU-side local DRAM (called a command buffer) in an
active manner. This method can save the time for CPU to
move the neighbor list to each EP’s interface registers one by
one as the CXL engine brings all the information if there is
any doorbell update. The CXL engine also pushes results of
distance calculation to the local DRAM such that the RC-side
software directly accesses the results without an access of
the underlying CXL memory pool. Note that all these com-
munication buffers and registers are directly mapped to the
user-level virtual addresses in our design such that we can
minimize the number of context switches between user and
kernel mode.

5.2 Prefetching for CXL Memory Pool
Figure 17a shows our baseline of collaborative query service
acceleration, which lets EPs compute sub-distances while
ANNS’s graph traverse and candidate update (including sub-
distance accumulation) are handled at the CPU-side. This
scheduling pattern is iterated until there is no kNN candidates
to visit futher (Algorithm 1). A challenge of this baseline
approach is traversing graph can be started once the all node
information is ready at the CPU-side. While local caching

Figure 17: Prefetching.
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of our pool manager addreses this, it yet shows a limited
performance. It is required to go through the CXL memory
pool to get nodes, which does not sit in the innermost edge
hops. As its latency to access the underlying memory pool is
long, the graph traverse can be postponed comparably. To this
end, our query scheduler prefetches the graph information
earlier than the actual traverse subtask needs, as shown in
Figure 17b.

While this prefetch can hide the long latency imposed by
the CXL memory pool accesses, it is non-trivial as the prefetch
requires knowing the nodes that the next (future) iteration of
the ANNS algorithm will visit. Our query scheduler specu-
lates the nodes to visit and brings their neighbor information
by referring to the candidate array, which is inspired by an
observation that we have. Figure 18 shows which nodes are
accessed in the graph traverse of the next iteration across all
the datasets that we tested. We can see that 82.3% of the to-
tal visiting nodes are coming from the candidate array (even
though its information is not yet updated for the next step).

5.3 Fine-Granular Query Scheduling
Our collaborative search query acceleration can reduce the
amount of data to transfer significantly and successfully hide
the long latency imposed by the CXL memory pool. However,
computing kNN search in different places makes the RC-side
ANNS subtasks pending until EPs complete their distance
calculation. Figure 18 shows how much the RC-side subtasks
(CXL CPU) stay idle, waiting for the distance results. In
this evaluation, we use Yandex-D as a representative of the
datasets, and its time series are analyzed for the time visiting
only first two nodes for their neighbor search. The CXL CPU
performs nothing while EPs calculate the distances, which
take 42% of the total execution time for processing those two
nodes. This idle time cannot be easily removed as candidate
update cannot be processed without having their distance.

To address this, our query scheduler relaxes the execution
dependency on the candidate update and separates such an
update into urgent and deferrable procedures. Specifically,
the candidate update consists of i) inserting (updating) the
array with the candidates, ii) sorting kNN candidates based
on their distance, and iii) node selection to visit. The node
selection is an important process because the following graph
traverse requires knowing the nodes to visit (urgent). However,
sorting/inserting kNN candidates maintain the k numbers of
neighbors in the candidate array, which are not to be done

Figure 21: Prototype.

CPU 40 O3 cores, ARM v8, 3.6GHz
L1/L2 $: 64KiB/2MiB per core

Local memory 128GiB, DDR4-3200
CXL memory 1 CXL switch
pool 256GiB/device, DDR4-3200
Storage 4× Intel Optane 900P 480 GB

CXL-ANNS 1 GHz, 10 ANNS PE/device,
2 distance calc. unit/PE

Table 1: Simulation setup.

immediately. Thus, as shown in Figure 19, the query sched-
uler performs the node selection before the graph traverse,
but it executes the deferrable operations during the distance
calculation time by delaying them in a fine-granular manner.

6 Evaluation
6.1 Evaluation Setup
Prototype and Methodology. Given the lack of a publicly
available, fully functional CXL system, we constructed and
validated the CXL-ANNS software and hardware in an oper-
ational real system (Figure 21). This hardware prototype is
based on a 16nm FPGA. To develop our CXL CPU prototype,
we adapted the RISC-V CPU [55]. The prototype integrates
4 ANNS EPs, each equipped with four memory controllers,
linked to the CXL CPU via a CXL switch. The system’s
software for the prototype, including the kernel driver, is com-
patible with Linux 5.15.36. For the ANNS execution, we
adjusted Meta’s open ANNS library, FAISS v1.7.2 [56].

Unfortunately, the prototype system does not offer the flex-
ibility needed to explore various ANNS design spaces. As a
remedy, we also established a hardware-validated full-system
simulator [29] that represents CXL-ANNS, which was uti-
lized for evaluation. This model replicates all operational
cycles extracted from the hardware prototype and is cross-
validated with our real system at the cycle level. We conducted
simulation-based studies in this evaluation, the system details
of which are outlined in Table 1. Notably, the system emulates
the server utilized in Meta’s production environment [57]. Al-
though our system by default uses 4 EPs, our system increases
their count for specific workloads (e.g., Meta-S) that neces-
sitate larger memory spaces (more than 2TB) compared to
others.
Workloads. We use billion-scale ANNS datasets from Bi-
gANN benchmark [30], a public ANNS benchmark that mul-
tiple companies (e.g., Microsoft, Meta) participate in. Their
important characteristics are summarized in Table 2. In addi-
tion, since ANNS-based services often need different number

Candidate arr. sizeDataset Dist. Num.
vecs.

Emb.
dim.

Avg. num.
neighbors k=1 k=5 k=10

Num.
devices.

BigANN L2 1B 128 31.6 30 75 150 4
Yandex-T Ang. 1B 200 29.0 440 900 2500 4
Yandex-D L2 1B 96 66.9 300 700 1700 4

Meta-S L2 1B 256 190 1200 2800 5600 8
MS-T L2 1B 100 43.1 60 130 250 4
MS-S L2 1B 100 87.4 580 100 200 4

Table 2: Workloads.
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Dataset Base CXL-
ANNS

BigANN 3.0 0.3
Yandex-T 66.0 7.4
Yandex-D 55.7 5.3

Meta-S 1121.2 34.2
MS-T 6.0 0.6
MS-S 107.2 8.6

* unit: ms

Table 3: Latency.

of nearest neighbors [3, 19], we evaluated our system on the
various k (e.g., 1, 5, 10). We generated the graph for ANNS
by using state-of-the-art algorithm, NSG, employed by pro-
duction search services in Alibaba [19]. Since the accuracy
and performance of BFS can vary on the size of the candidate
array, we only show the performance behavior of our system
when its accuracy is 90%, as recommended by the BigANN
benchmark. The accuracy is defined as recall@k; the ratio
of the exact k number of neighbors that are included in the k
number of output nearest neighbors of ANNS.
Configurations. We compare CXL-ANNS with 3 state-of-the-
art large-scale ANNS systems. For the compression approach,
we use a representative algorithm, product quantization [20]
(Comp). It compresses the data vector by replacing the vec-
tor with the centroid of its closest cluster (see §2.2). For the
hierarchical approach, we use DiskANN [24] (Hr-D) and
HM-ANN [25] (Hr-H) for the evaluation. The two methods
employ compressed embedding table and simplified graphs
to reduce the number of SSD/PMEM accesses, respectively.
For fair comparison, we use the same storage device, Intel
Optane [44], for both Hr-D/H. For CXL-ANNS, we evalu-
ated its multiple variants to distinguish the effect of each
method we propose. Specifically, Base places the graph and
embedding table in CXL memory pool and lets CXL CPU
execute the subtasks of ANNS. Compared to Base, EPAx per-
forms distance calculation by using DSA inside the ANNS EP.
Compared to EPAx, Cache employs relationship-aware graph
caching and prefetching. Lastly, CXLA employs all the meth-
ods we propose, including fine-granular query scheduling. In
addition, we compare oracle system (Orcl) that uses unlim-
ited local DRAM. We will show that CXL-ANNS makes the
CXL-augmented kNN search faster than Orcl.

6.2 Overall Performance
We first compare the throughput and latency of various sys-
tems we evaluated. We measured the systems’ throughput by
counting the number of processed queries per second (QPS,

in short). Figure 22 shows the QPS of all ks, while Figure 24
digs the performance behavior deeper for k=10 by breaking
down the latency. We chose k=10 following the guide from
BigANN benchmark. The performance behavior for k=1,5
are largely same with when k=10. For both figures, we nor-
malized the values by that of Base when k=10. The original
latencies are summarized in Table 3.

As shown in Figure 22, the QPS gets lower when the k
increases for all the systems we tested. This is because, the
BFS visits more nodes to find more nearest neighbors. On the
other hand, while Comp exhibits comparable QPS to Orcl, it
fails to reach the target recall@k (0.9) for 7 workloads. This is
because Comp cannot calculate the exact distance since it re-
places the original vector with the centroid of a cluster nearby.
This can also be observed in Figure 23. The figure shows
the accuracy and QPS when we vary the size of candidate
array for two representative workloads. BigANN represents
the workloads that Comp does reach the target recall, while
Yandex-D represents the opposite. We can see that Comp
converges at low recall@10 of 0.92 and 0.58, respectively,
while other systems reach the maximum recall@10.

In contrast, hierarchical approaches (Hr-D/H) reaches the
target recall@k for all the workloads we tested, by re-ranking
the search result. However, they suffer from the long la-
tency of underlying SSD/PMEM while accessing their un-
compressed graph and embedding table. Such long latency
significantly depletes the QPS of Hr-D and Hr-H by 35.9×
and 77.6× compared to Orcl, respectively. Consider Figure
24 to better understand; Since Hr-D only calculates the dis-
tance for the limited number of nodes in the candidate array, it
exhibits 20.1× shorter distance calculation time compared to
Hr-H, which starts a new BFS on original graph stored in SS-
D/PMEM. However, Hr-D’s graph traverse takes longer time
than that of Hr-H by 16.6×. This is because, Hr-D accesses
the original graph in SSD/PMEM for both low/high-accuracy
search while Hr-H accesses the original graph only for their
high-accuracy search.
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Figure 25: Data transfer.
Figure 26: Local
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(Yandex-D).

As shown in Figure 22, Base does not suffer from accuracy
drop or the performance depletion of Hr-D/H since it employs
a scalable memory pool that CXL offers. Therefore, it signif-
icantly improves the QPS by 9.4× and 20.3×, compared to
Hr-D/H, respectively. However, Base still exhibits 3.9× lower
throughput than Orcl. This is because Base experiences the
long latency of memory-to-flit conversion while accessing
the graph/embedding in CXL memory pool. Such conversion
makes Base’s graph traverse and distance calculation longer
by 2.6× and 4.3×, respectively, compared to Orcl.

Compared to Base, EPAx significantly diminishes the dis-
tance calculation time by a factor of 119.4×, achieved by
reducing data vector transfer through the acceleration of dis-
tance calculation within the EPs. While this EP-level accel-
eration introduces an interface overhead, this overhead only
represents 5.4% of the Base’s distance calculation latency.
Hence, EPAx reduces the query latency by 7.5× on average,
relative to Base. It’s important to highlight that EPAx’s la-
tency is 1.9× lower than Orcl’s, which has unlimited DRAM.
This discrepancy stems from Orcl’s insufficient grasp of the
ANNS algorithm and its behaviour, which results in consider-
able data movement overhead during data transfer between
local memory and the processor complex. Additional details
can be found in Figure 25, depicting the volume of data trans-
fer via PCIe for the CXL-based systems. The figure shows that
EPAx eliminates data vector transfer, thereby cutting down
data transfer by 21.1×.

Further, Cache improves EPAx’s graph traversal time by
3.3×, thereby enhancing the query latency by an average of
32.7%. This improvement arises because Cache retains in-
formation about nodes anticipated to be accessed frequently
in the local DRAM, thereby handling 59.4% of graph traver-
sal within the local DRAM (Figure 26). The figure reveals a
particularly high ratio for BigANN and Yandex-T, at 92.0%.
As indicated in Table 2, their graphs have a relatively small
number of neighbors (31.6 and 29.0, respectively), resulting
in their graphs being compact at an average of 129.3GB. In
contrast, merely 13.8% of Meta-S’s graph accesses are ser-
viced from local memory, attributable to its extensive graph.
Nevertheless, even for Meta-S, Cache enhances graph traver-
sal performance by prefetching graph information before ac-
tual visitation. As depicted in Figure 24, this prefetching can
conceal CXL’s prolonged latency, reducing Meta-S’s graph
traversal latency by 72.8%. While prefetching would intro-
duce overhead in speculating the next node visit, it is insignif-

icant, accounting for only 1.3% of the query latency. These
caching and prefetching techniques yield graph processing
performance similar to that of Orcl. We will explain the details
of prefetching shortly.

Lastly, as depicted in Figure 22, CXLA boosts the QPS
by 15.5% in comparison to Cache. This is due to CXLA’s
enhancement of hardware resource utilization by executing
deferrable subtasks and distance calculations concurrently
in the CXL CPU and PE, respectively. As illustrated in Fig-
ure 24, such scheduling benefits Yandex-T, Yandex-D, and
Meta-S more so than others. This is attributable to their use
of a candidate array that is, on average, 16.3× larger than
others, which allows for the overlap of updates with distance
calculation time. Overall, CXLA attains a significantly higher
QPS than Orcl, surpassing it by an average factor of 3.8×.

6.3 Collaborative Query Service Analysis
Prefetching. Figure 27 compares the L1 cache miss handling
latency while accessing the graph for the CXL-based systems
we tested. We measured the latency by dividing the total L1
cache miss handling time of CXL CPU by the number of
L1 cache access. The new system, NoPrefetch, disables the
prefetching from Cache. As shown in Figure 27, EPAx’s la-
tency is as long as 75.4ns since it accesses slow CXL memory
whenever there is a cache miss. NoPrefetch alleviates such
problem thanks to local caching, shortening the latency by
45.8%. However, when the dataset uses a large graph (e.g.
Meta-S, MS-S), only 24.5% of the graph can be cached in
local memory. This makes NoPrefetch’s latency 2.3× higher
than that of Orcl. In contrast, Cache significantly shortens
the latency by 8.5× which is even shorter than that of Orcl.
This is because Cache can foresee the next visiting nodes and
loads the graph information in the cache in advance. Note
that, Orcl accesses local DRAM on demand on cache miss.
Utilization. Figure 28 shows the utilization of CXL CPU,
PE, CXL engine on a representative dataset (Yandex-D). To
clearly provide the behavior of our fine-granule scheduling,
we composed a CXL-ANNS with single-core CXL CPU and
single PE per device and show their behavior in a timeline.
The upper part of the figure shows the behavior of Cache
that does not employ the proposed scheduling. We plot CXL
CPU’s utilization as 0 when it polls the distance calculation
results of PE, since it does not perform any useful job during
that time. As shown in the figure, CXL CPU idles for 42.0%
of the total time waiting for the distance calculation result. In
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contrast, CXLA reduces the idle time by 1.3×, relaxing the
dependency between ANNS subtasks. In the figure, we can
see that the CXL CPU’s candidate update time overlaps with
the time CXL engine and PE handling the command. As a
result, CXLA improves the utilization of hardware resources
in CXL network by 20.9%, compared to Cache.

6.4 Scalability Test
Bigger Dataset. To evaluate the scalability of CXL-ANNS,
we increase the number of data vectors in Yandex-D by 4B,
and connect more EP to CXL CPU to accommodate their data.
Since there is no publicly available dataset that is as large
as 4B, we synthetically generated additional 3B vectors by
adding noise to original 1B vectors. As shown in Figure 29,
we can see that the latency of Orcl increases as we increase the
scale of dataset. This is because larger dataset makes BFS visit
more nodes to maintain the same level of recall. On the other
hand, we can see the interface overhead of CXLA increases
as we employ more devices to accommodate bigger dataset.
This is because the CXL CPU should notify more devices for
the command arrival by ringing the doorbell. Despite such
overhead, CXLA exhibits 2.7× lower latency than Orcl thanks
to its efficient collaborative approach.
Multi-host. In a disaggregated system, a natural way to in-
crease the system’s performance is to employ more host CPUs.
Thus, we evaluate the CXL-ANNS that supports multiple
hosts in the CXL network. Specifically, we split EP’s re-
sources such as HDM and PEs and then allocate each of
them to one the the CXL hosts in the network. For ANNS, we
partition the embedding table and make each host responsible
for finding kNN from different partitions. Once all the CXL
hosts find the kNN, the system gathers them all and rerank
the neighbors to finally select kNN among them.

Figure 30 shows the QPS of multi-host ANNS. The QPS
is normalized to that when we use single CXL host with
the same number of EPs that we used before. Note that we
also show the QPS when we employ more number of EPs
than we used before. When the number of EPs stays the
same, the QPS increases until we connect 4 CXL hosts in the
system. However the QPS drops when the number of CXL
hosts is 6. This is because the distance calculation by limited
number of PEs became the bottleneck; the commands from
the host pends since there is no availabe PE. Such problem
can be addressed by having more EPs in the system, thereby
distributing the computation load. As we can see in the figure,

when we double the number of EPs in the network, we can
improve the QPS when we have 6 CXL hosts in the system.

7 Discussion and Acknowledgments

GPU-based distance calculation. Recent research has be-
gun to leverage the massive parallel processing capabilities
of GPUs to enhance the efficiency of graph-based ANNS
services [58, 59]. While GPUs generally exhibit high perfor-
mance, our argument is that it’s not feasible for CPU+GPU
memory to handle the entirety of ANNS data and tasks, as
detailed in Section 1. Even under the assumption that ANNS
is functioning within an optimal in-memory computing envi-
ronment, there are two elements to consider when delegating
distance computation to GPUs. The first point is that GPUs
require interaction with the host’s software and/or hardware
layers, which incurs a data transfer overhead for computation.
Secondly, ANNS distance computations can be carried out us-
ing a few uncomplicated, lightweight vector processing units,
making GPUs a less cost-efficient choice for these distance
calculation tasks.

In contrast, CXL-ANNS avoids the burden of data move-
ment overhead, as it processes data in close proximity to its
actual location and returns only a compact result set. This
approach to data processing is well established and has been
validated through numerous application studies [48, 60–66].
Moreover, CXL-ANNS effectively utilizes the cache hierar-
chy and can even decrease the frequency of accesses to the
underlying CXL memory pool. It accomplishes this through
its CXL-aware and ANNS-aware prefetching scheme, which
notably enhances performance.
Acknowledgments. The authors thank anonymous reviewers
for their constructive feedback as well as Panmnesia for their
technical support. The authors also thank Sudarsun Kannan
for shepherding this paper. This work is supported by Panm-
nesia and protected by one or more patents. Myoungsoo Jung
is the corresponding author (mj@camelab.org)

8 Conclusion

We propose CXL-ANNS, a software-hardware collaborative
approach for scalable ANNS. CXL-ANNS places all the
dataset into its CXL memory pool to handle billion-point
graphs while making the performance of the kNN search com-
parable with that of the (local-DRAM only) oracle system. To
this end, CXL-ANNS considers inter-node relationship and
performs ANNS-aware prefetches. It also calcualate distances
in its EP while scheduling the ANNS subtasks to utilize all
the resources in the CXL network. Our empirical results show
that CXL-ANNS exhibits 111.1× better performance com-
pared to the state-of-the-art billion-scale ANNS methods and
3.8× better performance than oracle system, respectively.
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Abstract
This paper investigates the feasibility of using inexpensive
flash memory on new interconnect technologies such as CXL
(Compute Express Link) to overcome the memory wall. We
explore the design space of a CXL-enabled flash device and
show that techniques such as caching and prefetching can help
mitigate the concerns regarding flash memory’s performance
and lifetime. We demonstrate using real-world application
traces that these techniques enable the CXL device to have
an estimated lifetime of at least 3.1 years and serve 68–91%
of the memory requests under a microsecond. We analyze the
limitations of existing techniques and suggest system-level
changes to achieve a DRAM-level performance using flash.

1 Introduction

The growing imbalance between computing power and mem-
ory capacity requirement in computing systems has devel-
oped into a challenge known as the memory wall [23, 34, 52].
Figure 1, based on the data from Gholami et al. [34] and
expanded with more recent data [11, 30, 43], illustrates the
rapid growth in NLP (natural language processing) models
(14.1× per year), which far outpaces that of memory capac-
ity (1.3× per year). The memory wall forces modern data-
intensive applications such as databases [8, 10, 14, 20], data
analytics [1, 35], and machine learning (ML) [45, 48, 66] to
either be aware of their memory usage [61] or implement
user-level memory management [66] to avoid expensive page
swaps [37,53]. As a result, overcoming the memory wall in an
application-transparent manner is an active research avenue;
approaches such as creating an ML-centric system [45,48,61],
building a memory disaggregation framework [36, 37, 52, 69],
and designing new memory architecture [23, 42] are actively
pursued.

We question whether it is possible to overcome the mem-
ory wall using flash memory — a memory technology that
is typically used in storage due to its high density and capac-
ity scaling [59]. While DRAM can only scale to gigabytes
in capacity, a flash memory-based solid-state drive (SSD) is
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Figure 1: The trend in memory requirements for NLP appli-
cations [11, 30, 34, 43]. The number of parameters increases
by a factor of 14.1× per year, while the memory capacity in
GPUs only grows by a factor of 1.3× every year.

in the terabyte scale [23], a sufficiently large capacity to ad-
dress the memory wall challenge. The use of flash memory as
main memory is enabled by the recent emergence of intercon-
nect technologies such as CXL [3], Gen-Z [7], CCIX [2], and
OpenCAPI [12], which allow PCIe (Peripheral Component
Interconnect Express) devices to be accessed directly by the
CPU through load/store instructions. Furthermore, these tech-
nologies promise excellent scalability as more PCIe devices
can be attached across switches [13] unlike DIMM (Dual
Inline Memory Module) used for DRAM.

However, there are three main challenges to using flash
memory as CPU-accessible main memory. First, there is a
granularity mismatch between memory requests and flash
memory. This results in a significant traffic amplification on
top of the existing need for indirection in flash [23, 33]: for
example, a 64B cache line flush to the CXL-enabled flash
would result in 16KiB flash memory page read, 64B update,
and 16KiB flash program to a different location (assuming a
16KiB page-level mapping). Second, flash memory is still or-
ders of magnitude slower than DRAM (tens of microseconds
vs. tens of nanoseconds) [5, 24]. As a consequence, while the
peak data transfer rate between the two technologies is simi-
lar [4, 15], the long flash memory latency hinders sustained
performance as data-intensive applications can only endure
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latency within the microsecond range at most [53]. Lastly,
flash memory has limited endurance and wears out after re-
peated writes [24,44]. This limits the usability of the memory
technology as flash memory blocks beyond their endurance
limit exhibit unreliable behavior and high levels of errors [44].

We address the above flash memory challenges by explor-
ing design options, particularly those related to caching and
prefetching, so that a CXL-enabled flash device (or CXL-
flash) can be used to overcome the memory wall. Even though
prior works have explored the scalability aspects of multiple
CXL devices [36, 42] and have proven the feasibility of CXL-
flash [9, 42], to the best of our knowledge, we are the first
open-sourced in-depth study on the design choices of a CXL-
flash device and on the effectiveness of existing optimization
techniques. Due to the large design space, we first explore
the CXL-flash hardware design in § 4 and then evaluate and
analyze detailed policies and algorithms in § 5. We discover
that it is possible to design a CXL-flash with 68–91% of its
requests achieving less than a microsecond latency and an
estimated lifetime of at least 3.1 years using memory traces
of real applications. While exploring various designs and poli-
cies, we make seven observations which collectively indicate
that modern prefetching algorithms are ill-suited to predict
memory access patterns for the CXL-flash. More specifically,
the virtual to physical address translation obfuscates access
patterns for existing prefetchers to perform adequately. To
counter this, we explore passing memory access hints from
the kernel to the CXL-flash to further improve performance.

We make the following contributions with this work.

• We develop a novel tool that collects physical memory
traces of an application, and we simulate the behavior of
a CXL-flash with these traces. Both the memory tracing
tool and the CXL-flash simulator (§ 3) are available at
https://github.com/spypaul/MQSim_CXL.git

• Through synthetic workloads, we demonstrate the potential
to effectively reduce the latency of a CXL-flash by integrat-
ing various system design techniques such as caching and
prefetching, highlighting optimization opportunities. (§ 4)

• Using real-world workloads, we analyze the limitations of
the current prefetchers and suggest system-level changes
for future CXL-flash to achieve near-DRAM performance,
specifically sub-µs latencies for the device. (§ 5)

2 Background

In this section, we first describe the opportunities presented by
CXL (Compute Express Link) [3] as a representation of PCIe-
based memory coherent interconnect technologies (which also
include Gen-Z [7], CCIX [2], and OpenCAPI [12]). We then
discuss the challenges of using flash memory with CXL.

2.1 Opportunities presented by CXL

CXL is a new interconnect protocol built on top of PCIe that
integrates CPUs, accelerators, and memory devices into a
single computing domain [42]. The main benefits of this inte-
gration are twofold. First, it allows coherent memory access
between CPUs and PCIe devices. This reduces the synchro-
nization overheads that are typically required for data transfers
between the CPU and the device. Second, it is easy to scale
the number of CXL devices: through a CXL switch, another
set of CXL devices can be connected to the CPU.

Among the three types of devices that CXL supports, the
Type 3 device for memory expansion is of interest to this
work. Type 3 devices expose host-managed device memory
(HDM), and the CXL protocol allows the host CPU to directly
manipulate the device memory via load/store instructions [3].
While CXL currently only considers DRAM and PMEM
as the primary memory expansion devices, it is possible to
use SSDs, thanks to CXL’s coherent memory access [42].
Moreover, the high capacity and better scaling of flash-based
SSDs, enabled by stacking in 3D [59] and storing multiple bits
in a cell [24], can effectively address the memory wall that
modern data-intensive applications face. Inspired by previous
works on CXL [36, 42], this paper studies the feasibility of
using flash memory as a CXL memory expansion device.

2.2 Challenges with flash memory

We discuss the following three peculiarities of flash that make
it challenging to use it as the system’s main memory.

Granularity mismatch. Flash memory is not randomly
accessible: its data are written and read at page granularity
whose size is in the order of kilobytes [33], resulting in a
large traffic amplification. Furthermore, a page cannot be
overwritten. Instead, a block, which consists of hundreds of
pages, must be erased first, and data can be written to only
erased pages [33]. This restrictive interface causes any 64B
cache line flush to incur a large write amplification through
read-modify-writes. An SSD, as a block device whose access
granularity is much larger (4KiB), has far less overhead.

Microsecond-level latency. Flash memory is orders of
magnitude slower than DRAM, whose latencies are in the
range of tens to hundreds of nanoseconds. The relatively
faster flash memory read is still in the tens of microseconds,
while the slower program and erase operations are in the hun-
dreds and thousands of microseconds. Moreover, the flash
memory latency also depends on their cell technology [24].
As outlined in Table 1 as an example, as more bits are stored
per cell, the latency increases, from SLC (single-level cell) to
TLC (triple-level cell). The ultra-low latency (ULL) flash is
a variant of SLC that improves performance at the expense
of density [46, 76]. Even the ULL technology, however, is
orders of magnitude slower than DRAM. As a block device,
microsecond-level latencies are tolerable due to the software

602    2023 USENIX Annual Technical Conference USENIX Association

https://github.com/spypaul/MQSim_CXL.git


Table 1: Overview of memory technology characteristics.

Technology
Read

latency
Program
latency

Erase
latency

Endurance
limit

DRAM [50] 46ns 46ns N/A N/A
ULL [46, 76] 3µs 100µs 1000µs 100K
SLC [24] 25µs 200µs 1500µs 100K
MLC [24] 50µs 600µs 3000µs 10K
TLC [24] 75µs 900µs 4500µs 3K

overhead in the storage stack. However, for a memory de-
vice that is directly accessed using load/store instructions,
microsecond-level latencies become a challenge.

Limited endurance. The high voltages applied to flash
memory during the program and erase operations slowly wear
out the cells, making them unusable over time [44, 72]. The
memory manufacturers specify an endurance limit as a guide
to how many times the flash memory block can be erased.
This limit also depends on the flash technology, as shown
in Table 1. While this is nevertheless a soft limit and flash
memory can still be used beyond the limit [72], worn-out
blocks exhibit unreliable behavior and are not guaranteed to
correctly store data [44]. Due to application-level and kernel-
level caching and buffering, the amount of writes to a block-
interfaced SSD is reduced, and the current endurance limit
is often sufficient during the SSD’s lifetime. As a memory
device, however, flash memory will quickly become unusable
with frequent memory writes.

We note that while these challenges for flash also exist
in the storage domain, they are handled by the SSD-internal
firmware. For CXL-flash, however, they should be addressed
by hardware due to the much finer timescale, making it dif-
ficult to implement flexible and optimal algorithms. Thus,
we expect these challenges to exacerbate when moving flash
memory from the storage domain to the memory domain.

3 Tool and Methodology

To understand the behavior of physical memory accesses
from the CPU to the CXL device, we build a physical memory
tracing tool using page fault events (§ 3.1). We then demon-
strate the necessity of this tool by comparing it with a set of
virtual memory traces (§ 3.2). The tools and artifacts gener-
ated in this work are publicly available.

3.1 Tracing memory accesses
Main memory and CXL-flash are accessed via physical mem-
ory addresses. Unfortunately, to the best of our knowledge,
no publicly available tool traces the physical memory transac-
tions between the last level cache (LLC) and the memory con-
troller without hardware modifications. Tracing the load/store
instructions in the CPU is not sufficient as (1) it collects the

Valgrind SimulatedMemoryRequestsVirtualMemoryTrace CacheSimulatorInstrument-ationApplication
PID Translation

Page   KernelFault
I______I

RecordVPN-PFNMapping
LinuxKernel PhysicalMemoryTrace

Figure 2: Workflow for collecting physical memory traces. We
collect the virtual memory trace using Valgrind and simulate
its behavior in the cache. Simultaneously, we capture page
fault events to trace the updates to the page table, and use this
to generate physical memory traces.

Table 2: Synthetic workload characteristics.

Workload
Inter-
arrival

time (ns)

Read-write
ratio

Footprint
(GiB)

Hash map 329 53:47 <1
Matrix multiply 38 55:45 <1
Min heap 72 50:50 1
Random 76 50:50 4
Stride 146 50:50 8

virtual address accesses, and (2) the eventual accesses to the
CXL-flash are filtered by the cache hierarchy.

We trace physical memory accesses by combining mem-
ory tracing from Valgrind [19, 57] and information from
page fault events. Figure 2 illustrates this workflow. As
shown in the top path, we instrument the application with
Valgrind for load/store instructions and use its cache simula-
tor (Cachegrind) to filter accesses to memory. More specif-
ically, we modify Cachegrind to collect memory accesses
caused by LLC misses or evictions. However, these memory
accesses from Cachegrind are still addressed virtually, and
the virtual-to-physical (V2P) mapping information is needed
to generate the physical memory trace. For this, as shown in
the bottom path of Figure 2, we collect updates to the page
table caused by page faults while the application is running.
We modify kernel functions that install page table entries
(do_anonymous_page() and do_set_pte()) and store the
V2P translations for the target application’s PID in the /proc
file system. This captures the dynamic nature of page table
updates during the execution of the application with minimal
overhead. We combine the virtual accesses from Valgrind and
the page table updates to generate the physical memory trace.

3.2 Virtual vs. physical memory accesses
We demonstrate our physical memory tracing tool using five
synthetic applications based on prior work on prefetching [25,
56]. The characteristics of collected traces are summarized
in Table 2. We collect the first 20 million memory accesses:
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Figure 3: The scatter plots showing access patterns for five synthetic applications: hash map, matrix multiply, min heap, random,
and stride. The top row (Figures 3a–3e) shows the virtual address accesses; the second row (Figures 3f–3j), the physical accesses.
The last row (Figures 3k–3o) shows the CDF of the difference between consecutive accesses. We observe that the physical
memory accesses appear different from the virtual ones due to address translation.

note these are not load/store instructions, but the memory
transactions between the LLC and memory.

Figures 3a–3e (first row of Figure 3) plot the accessed vir-
tual page number (VPN) for the five synthetic traces. We
can observe that the virtual address access pattern matches
our expectations for the application. However, as shown in
Figures 3f–3j (second row of Figure 3), the corresponding
physical frame number (PFN) does not resemble the VPN. We
show the difference between consecutive accesses (∆, delta)
in Figures 3k–3o (last row of Figure 3). The black dashed
line is the delta for the virtual address while the grey solid
lines are the deltas for the physical addresses across five it-
erations, with the two of the iterations running while other
applications are running to inflate the memory utilization.
We make two observations. First, the virtual access patterns
(black dashed lines) have much smaller delta values on aver-
age. However, the physical access patterns (grey solid lines)
may have very large delta values due to virtual-to-physical
address translation. Second, the grey solid lines rarely overlap
with each other, highlighting that the physical memory pat-
tern is dynamic and depends on various runtime factors that
affect memory allocation. To this end, the observed mismatch

between the physical and virtual addresses may be influenced
by dynamic factors, such as memory utilization of the system.

To demonstrate that it is necessary to capture the physical
memory trace, we measure the performance of a CXL-flash
using the virtual and physical address traces as inputs. The
CXL-flash is configured to have a flash memory backend of
8 channels and 8 ways per channel and a 512MiB DRAM
cache, and implements a Next-N-line prefetcher [41] (more
details in § 4). We measure the percentage of memory requests
with less than a microsecond latency for the five synthetic
applications and report the results in Table 3. Using virtual
memory traces generates an overly optimistic result with far
more requests completing under a microsecond compared to
the result from running physical memory traces. The error
between the running with virtual address and physical address
is significantly high: all the matrix multiply experiments have
errors over 25%. The random and stride access workload
have low error rates, making it either too difficult or too easy
to predict access patterns regardless of virtual or physical
addressing.

One technique to mitigate the change of information during
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Table 3: Percentage of sub-µs latencies for a CXL-flash using virtual and physical address traces for the five synthetic applications.
We repeat the physical trace generation five times with iterations 4 and 5 having a higher system memory utilization (thus, a
more fragmented memory layout). We compute the errors for the virtual trace performances in relation to those of the physical
traces, and highlight errors over 10% in yellow ( ), and over 25% in red ( ).

Workload
% of sub-µs

latency (virtual)
% of sub-µs latency (physical) Error (%)

1 2 3 4 5 1 2 3 4 5
Hash map 96.9% 86.7% 88.3% 74.5% 63.8% 63.9% 10.2% 8.6% 22.4% 33.1% 33.0%
Matrix mult. 98.2% 72.7% 57.4% 59.2% 48.1% 47.9% 25.5% 40.8% 39.0% 50.1% 50.3%
Min heap 97.8% 92.1% 96.0% 75.6% 69.1% 69.4% 5.7% 1.8% 22.2% 28.7% 28.4%
Random 32.2% 26.4% 27.1% 28.0% 22.4% 21.8% 5.8% 5.1% 4.2% 9.8% 10.6%
Stride 64.7% 64.3% 59.4% 64.5% 51.9% 52.0% 0.4% 5.3% 0.2% 12.6% 12.7%

address translation is to utilize huge pages, which can signifi-
cantly reduce the number of address translations [54, 58] to
preserve memory access patterns. However, such a method
can only reduce its impact on the system partially, and the
address translation is inevitable. With the rapid growth of
memory requirements of applications (14.1 × per year from
Figure 1), within a few years, huge pages would exhibit the
same challenges that the smaller pages face. Therefore, we
decide to keep the configuration general to explore the design
options for a CXL-flash.

4 Design Space for CXL-flash

We explore the design space for building a CXL-flash, specif-
ically on the hardware modules inside it; we later evaluate
algorithms and policies in § 5. To model the hardware, we
build a CXL-flash simulator based on MQSim [68] and its ex-
tension MQSim-E [49], and use the physical memory traces of
the five synthetic applications (Table 2) to evaluate the effects
of design options. The overall architecture of our CXL-flash
is depicted in Figure 4 with starting configuration in Table 4.

We answer the following research questions in this section.

• How effective is caching in improving performance? (§ 4.1)
• How can we effectively reduce flash memory traffic? (§ 4.2)
• How effective is prefetching in hiding the long flash mem-

ory latency? (§ 4.3)
• What are the appropriate flash memory technology and

parallelism for CXL-flash? (§ 4.4)
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Figure 4: Architecture of the CXL-flash

Table 4: Initial configuration for the CXL-flash in § 4.

Parameters Value
DRAM latency 46ns
Cache replacement FIFO
Flash parallelism 32 × 32
Flash technology SLC (Table 1)

4.1 Caching for performance

We first explore the effect of adding a DRAM cache in front of
flash memory. The cache mainly serves two purposes. First,
it improves the performance of the CXL-flash by serving
frequently accessed data from the faster DRAM. Second, it
reduces the overall traffic to flash memory on a cache hit.

Figure 5 quantitatively shows the benefit of using a cache.
We vary the cache size from 0 to 8GiB and measure the aver-
age latency for the physical memory accesses (Figure 5a) and
the inter-arrival time of flash memory requests to the backend.
(Figure 5b). When there is no cache, the average latency is
much higher than the flash memory read and program laten-
cies because of queuing delays. This is even though the flash
memory backend is configured to have an ample amount of
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Figure 5: Average access latency (Figure 5a) for both 64B
read and write requests and flash memory traffic (Figure 5b)
as the DRAM cache size varies. In general, the cache im-
proves performance and reduces the amount of traffic to flash.
However, even with a sufficiently large cache, the average
latencies are still much higher than that of DRAM due to the
high intensity of memory accesses.
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shaded bar, the number of repeated reads. A repeated read is a read request to an outstanding read request.

l.0
0.8
0.6

0 500Access Latency (µs)

CD
F

(a) Hash map

1.0
0.8
0.6

500Access Latency (µs)0

CD
F

(b) Matrix mult.

1.0
0.8
0.6

500Access Latency (µs)0
CD

F

(c) Min heap

500Access Latency (µs)

CD
F

1.0
0.8
0.6

0

0
(d) Random

1.0-
0.8-
0.6-

500Access Latency (µs)0

CD
F

(e) Stride

Figure 7: The latency distribution with (solid lines) and without (dashed lines) MSHR.

parallelism at 32 channels and 32 ways per channel, it is insuf-
ficient to process the memory requests with short inter-arrival
times. Adding a cache significantly reduces the traffic to the
flash memory backend and improves the overall performance.
However, we observe in Figure 5a that the average latencies
for matrix multiply and min heap are still much higher than
the DRAM latency, even though the memory footprints for
these workloads are smaller than the cache. This is due to
the short inter-arrival time of requests that overwhelm the
flash memory backend for fetching data (Figure 5b). This ex-
periment shows that caching alone is insufficient in reducing
the latency of a CXL-flash, and we need additional auxiliary
structures to reduce the traffic to flash memory.

4.2 Reducing flash memory traffic
Memory accesses are at 64B granularity while the flash mem-
ory backend is addressed at 4KiB units. Thus, upon a cache
miss, 4KiB of data will be fetched from flash, and subsequent
64B cache misses that belong to the same 4KiB will generate
additional flash memory read requests even when the flash
memory read is in progress. This scenario is very likely for
memory accesses with high spatial locality, and exacerbated
by the much longer flash memory latency. We call these re-
peated reads, and Figure 6 illustrates the severity of repeated
reads in the hash map, matrix multiply, and heap workloads:
over 90% of flash memory reads are repeats!

Inspired by CPU caches, we add a set of MSHRs (miss sta-
tus holding registers) [29, 47] to the CXL-flash, as shown in
Figure 4. MSHR tracks the current outstanding flash memory

requests and services multiple 64B memory accesses from
a single flash memory read. We note that MSHRs are un-
common in SSDs: in the storage domain, the software stack
merges block I/Os with overlapping addresses so there is no
need for the underlying device to implement MSHRs. How-
ever, for CXL-flash, there is no software layer to perform
this duty as it receives memory transactions directly from
the LLC. We observe in Figure 7 that MSHRs significantly
reduce long tail latencies, particularly for the three workloads
with a significant number of repeated reads. We also observe
small improvements to the other two workloads, random and
stride, by adding MSHR. However, MSHRs only reduce flash
memory traffic, and it does not actively improve the cache hit
rate by bringing data into the cache before they are needed.

4.3 Prefetching data from flash
Prefetching is an effective technique for hiding the long la-
tency of a slower technology. Typically prefetchers fetch ad-
ditional data upon a demand miss or a prefetch hit. To under-
stand the effectiveness of this technique, we implement a sim-
ple Next-N-line prefetcher [41] in our CXL-flash, as shown
in Figure 4. This prefetcher has two configurable parameters:
degree and offset. The degree controls the amount of addi-
tional data to fetch while the offset determines the prefetch
address from the triggering one. In other words, the degree
parameter represents the aggressiveness of the prefetcher, and
the offset controls how far ahead the prefetcher is fetching.

Figure 8 shows the effect of varying the degree and offset
for the prefetcher. For the (X , Y ) notation in a unit of the
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Figure 8: The performance of the CXL-flash with different
prefetcher configurations. (X , Y ) represents the degree and
offset for the Next-N-line prefetcher.

number of 4KiB pages, X denotes the degree, and Y is the
offset. As shown in Figure 8a, increasing the degree, or the
aggressiveness of the prefetcher generally improves the per-
formance. Even a small degree of 1 increases the portion of
sub-microsecond requests from 64% to 76% for the matrix
multiply workload, highlighting the necessity of prefetching
for CXL-flash. However, the improvement plateaus and fur-
ther increasing the degree may only pollute the cache. On the
other hand, increasing the offset shows two different behav-
iors depending on the workload. For the hash map, matrix
multiply, and min heap workloads, the performance first im-
proves when increasing the offset from 4 to 16. However, an
offset of 64 deteriorates the performance as it fetches data
too far out. The random workload is insensitive to the offset
unless it is large enough, while the stride workload shows
gradual improvement as the offset increases.

4.4 Exploring flash technology and parallelism

In previous subsections, we examine the performance of the
CXL-flash using SLC flash technology and ample flash par-
allelism of 32 channels and 32 ways per channel (32 × 32).
In this section, we experiment with how sensitive technology
(ULL, SLC, MLC, and TLC) and parallelism (8 × 4, 8 × 8, 16
× 16, and 32 × 32) are to the overall CXL-flash performance.

We first examine the effect of flash technology and cache
size for the stride workload as shown in Figure 9. We use this
workload as it performs well in the default configuration, thus
we expect it to represent the workload with the lowest room
for improvement. Figure 9a illustrates the average latency
for the different memory technologies. We observe that even
though ULL and SLC flash have a noticeable difference in
latency (3µs vs. 25µs), the performance difference between
the two is negligible with the existence of a cache. Only
when there is no DRAM cache, ULL flash is outstandingly
better. We also observe that using MLC and TLC technology
degrades the performance significantly. Figure 9b shows the
estimated lifetime of the CXL-flash based on the amount of
flash write traffic. This estimation takes into consideration the
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Figure 9: Sensitivity test to flash technology and cache size
on the performance and lifetime of CXL-flash with stride.
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Figure 10: Percentage of sub-µs requests when varying flash
parallelism and cache size. The x-axis represents the flash
memory parallelism (channels × ways). The lines represent
values for different cache sizes.

endurance limit, the capacity, and the amount of data written;
it optimistically assumes that the write amplification at the
flash memory backend is negligible. We observe that with
ULL and SLC technologies and some cache, the CXL-flash
can achieve a lifetime of more than 4 years. Increasing the
size of the cache further improves the lifetime due to reduced
flash write traffic. For MLC- and TLC-based CXL-flash, it
would only be viable with a sufficiently large cache: with only
a 1GiB of cache, it would not last more than a year.

Next, we investigate the effect of varying flash parallelism
and cache size on the overall performance using the random
(Figure 10a) and stride (Figure 10b) workloads. We use these
two as they have the largest memory footprint (8GiB and
4GiB, respectively). Flash technology here is SLC. We ob-
serve that with a sufficiently large cache, reducing parallelism
to (8 × 4) does not adversely affect the performance. However,
with smaller caches, the flash parallelism matters. Interest-
ingly, the two workloads exhibit slightly different behaviors.
The random workload shows high sensitivity to the cache
size. On the other hand, the stride workload is less sensitive
to the cache size but more to the parallelism. This is due to
the prefetcher’s effectiveness with stride workloads.
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Table 5: Workload characteristics of real-world applications. The spatial and temporal locality values range between 0 and 1, and
are computed using the stack and block affinity metrics [32]: a higher value indicates higher locality.

Workload Category Description
Inter-

arrival
time (ns)

# of
accesses

(M)

Read-
write
ratio

Footprint
(GiB)

Spatial
locality

Temporal
locality

BERT [18] NLP Infers using a transformer model 297 41 73:27 0.5 0.64 0.66
Page rank [6] Graph Computes the page rank score 51 435 68:32 3.7 0.40 0.42
Radiosity [17] HPC Computes the distribution of light 1863 61 84:16 1.6 0.93 0.87
XZ [21] SPEC Compresses data in memory 237 71 55:45 0.9 0.31 0.38
YCSB F [22] KVS Read-modify-writes on Redis [14] 1137 110 65:35 1.8 0.56 0.55

4.5 Summary of findings

We briefly summarize our findings.

• Caching alone is not sufficient to hide the much longer flash
memory latencies (§ 4.1), and we need auxiliary structures
to reduce the flash memory traffic (§ 4.2).

• Prefetching data improves the CXL-flash’s performance,
but the best configuration (or even the algorithm) is
workload-dependent (§ 4.3).

• The performance difference between using ULL and SLC
is only marginal, and it is challenging to utilize MLC and
TLC flash in terms of both performance and lifetime (§ 4.4).

5 Evaluation of Policies

Building on top of our design space exploration for the CXL-
flash architecture from § 4, we evaluate advanced caching
and prefetching policies in this section. We use five different
real-world applications that are memory-intensive from a
wide variety of domains: natural language processing [18,70],
graph processing [6, 27], high-performance computing [17,
62], SPEC CPU [16, 21], and key-value store [22, 31]. We
collect the physical memory traces using our tool (§ 3) and
summarize the workload characteristics in Table 5.

However, the memory footprints of the real applications
are smaller than we had anticipated, even though they are
collected on a machine with 64GiB of memory. Thus, we
intentionally configure the cache to be small (64MiB) so that
experimental results would scale up for larger workloads. We
also scale down the flash parallelism to a more realistic setting
and use ULL flash. The default parameters for the CXL-flash
in this section are summarized in Table 6.

Table 6: Default parameters for the CXL-flash in § 5.

Parameters Value
DRAM size 64MiB
DRAM latency 46ns
Flash parallelism 8 × 8
Flash technology ULL (Table 1)

5.1 Cache replacement policy
Unlike the previous examination of cache size on performance
(§ 4.1), here we fix the cache size and evaluate the effects
of different cache replacement policies across different set
associativities. In particular, we implement the following four.

FIFO evicts the oldest data.
Random selects data arbitrarily to evict.
LRU kicks out the least recently used data.
CFLRU [60] prefers to evict clean data over modified ones.

We select Random as our baseline, and FIFO and LRU
are two standard CPU cache policies implementable in hard-
ware. To further reduce traffic and extend the device’s lifetime,
we implement CFLRU to explore the benefits of prioritizing
evicting clean cache lines to reduce flash write activities.

Figure 11 measures the percentage of memory requests
to the CXL-flash with less than a microsecond latency, and
Figure 12 shows the number of flash memory writes. We
make five observations from these figures. First, increasing
associativity improves performance as it increases the cache
hit rate. For a caching system whose miss penalty is high,
increasing the hit rate has a greater impact than reducing
hit time. Second, CFLRU outperforms the other replacement
policies, particularly in BERT, XZ, and YCSB (Figures 11a,
11d, and 11e). This is supported by the significant reduction
in write traffic as shown in Figures 12a, 12d, and 12e. Third,
workloads with high localities such as Radiosity are insensi-
tive to cache replacement policies (Figures 11c and 12c): at
least 83% of the request have sub-microsecond latency regard-
less of the policy. Four, read-dominant workloads generally
perform better than write-heavy ones as the flash memory
program latency is disproportionately larger than that of read.
BERT and Radiosity only generate as low as 0.7M and 1.0M
flash writes, respectively (Figures 12a and 12c), and in turn,
their portion of sub-microsecond latencies are as high as 84%
and 85%, respectively (Figures 11a and 11c). Lastly, work-
loads with low localities not only perform poorly but also are
less sensitive to the cache policies. In particular, as shown in
Figure 11b, only at most 65% of the requests achieve a sub-
microsecond latency for the page rank workload due to its
low localities and large footprint. The XZ trace in Figure 11d

608    2023 USENIX Annual Technical Conference USENIX Association



FIFO
Rand

LRU
CFLRU

Sub
-µs

Req
ues

t (%
)

80
60

Set Associativity

100

1 4 16

(a) BERT

FIFO
Rand

LRU
CFLRU

Sub
-µs 

Req
ues

t (%
) 100

80
60

16Set Associativity41
(b) Page Rank

FIFO
Rand

LRU
CFLRU

Sub
-µs 

Req
ues

t (%
) 100-

80-
60-

16Set Associativity41
(c) Radiosity

FIFO LRU
CFLRURand

100

Sub
-µs 

Req
ues

t (%
)

Set Associativity

80
60

1 4 16
(d) XZ

FIFO LRU
CFLRURand

100

Sub
-µs 

Req
ues

t (%
)

Set Associativity

80
60

1 4 16
(e) YCSB

Figure 11: Percentage of CXL-flash latencies smaller than a microsecond with respect to cache replacement policies and set
associativity. In general, increasing associativity reduces the latency and CFLRU performs better than the others.
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Figure 12: Number of flash memory write requests with respect to cache replacement policies and set associativity. CFLRU
noticeably reduces the number of writes as the associativity increases.

also exhibits low localities but is more sensitive to CFLRU
than page rank as the workload has a higher write ratio.

In the storage domain, reducing the amount of data written
to the SSD is achieved by various software-level techniques,
including the OS-level page cache. Cache management for
CXL-flash, however, behaves similarly to CPU caches, and
there may be limitations to how close it approaches optimality.

5.2 Prefetching policy
Previously in § 4.3, we measured the effectiveness of a simple
Next-N-line prefetcher with a large 8GiB cache. In this sec-
tion, we scale down the cache to 64MiB, set its associativity to
16, and manage it using the CFLRU algorithm, and measure
the performance of the following five prefetcher settings.

NP (No prefetch) does not prefetch any data.
NL (Next-N-line) [41] brings in the next N data upon a
demand miss or prefetch hit.
FD (Feedback-directed) [65] dynamically adjusts the ag-
gressiveness of the prefetcher by tracking prefetcher accu-
racy, timeliness, and pollution.
BO (Best-offset) [55] learns the deltas between consecutive
accesses by tracking the history of recent requests. It also
has a notion of confidence to disable prefetching.
LP (Leap) [53] implements a majority-based prefetching
with dynamic window size adjustment. It also gradually
adjusts aggressiveness based on the prefetcher accuracy.

We select these algorithms as they are proven to be effec-
tive, implementable in hardware, and fit into the design space

of a CXL-flash. In particular, NL, FD, and BO are prefetch-
ers for CPU cache, where BO is an enhancement of NL, and
FD utilizes performance metrics we will later discuss. LP is
primarily for prefetching data from remote memory, where
the latency difference between a cache hit and a cache miss
can be similar to that in our design space.

Observation #1: Although 68–91% of requests have a
latency of under a microsecond, using a prefetcher can be
detrimental to the performance of real-world applications.
As shown in Figure 13a, the state-of-the-art prefetchers de-
grade the performance for three workloads, BERT, XZ, and
YCSB workloads, and are only helpful for the other two work-
loads. Radiosity, in particular, shows a 36% increase in sub-
microsecond latencies when using the best-offset prefetcher.
To understand why, we examine the cache hit, hit-under-miss
(HUM), and miss rate in Figure 13b. A cache hit-under-miss
refers to a hit in the MSHR where while the data is not in
the cache yet, it is being fetched due to a previous miss. We
observe that BO on Radiosity converts 25% of hit-under-miss
into hits, indicating high effectiveness of prefetching on work-
loads with a high spatial locality factor (cf. Table 5). Our
observation indicates that the performance of prefetchers de-
pends on the characteristics of workloads, and they can have
detrimental effects on applications.

Observation #2: Even under high-intensity workloads, a
CXL-flash has a lifetime of at least 3.1 years. We estimate
the lifetime of the CXL-flash under real workloads based on
the amount of data written to flash, endurance limit, and 1TiB
capacity, as shown in Figure 13c. We observe, in the worst
case, the device would last 3.1 years under Page Rank, but
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Figure 13: CXL-flash’s performance and lifetime with differ-
ent prefetchers. Figure 13a shows the portion of requests with
a latency of less than a microsecond. Figure 13b shows the
hit, hit-under-miss, and miss rate of the 64MiB cache inside
the CXL-flash. Figure 13c plots the estimated lifetime.

under workloads such as Radiosity, it would be as much as
403 years. Three factors contribute to the lifetime: workload
intensity, read-write ratio, and locality; Page rank has the
highest workload intensity, a high ratio of writes, and a low
locality. Even under this adverse condition, the CXL-flash
provides a reasonable lifetime; hence, the durability of the
CXL-flash can sustain the intensity of memory requests.

Observation #3: A CXL-flash has a better performance
per cost than a DRAM-only device. While a CXL-flash falls
slightly short of achieving a DRAM-like performance for
sub-µs requests, our analysis reveals its potential to provide
benefits for memory-intensive applications. As a CXL-flash
can serve 68–91% of the memory requests under a microsec-
ond, and the recent price point of DRAM is 17 - 100× higher
than that of NAND flash [39, 64, 77], we expect an 11 - 91×
performance-per-cost benefit from a CXL-flash over a DRAM-
only device, as depicted in Figure 14. Although some cases
may still prefer a DRAM-only device when achieving the best
performance is essential, a CXL-flash can be a cost-effective
memory expansion option depending on the workload.

Interestingly, we observe that while prefetchers are useful
for Page Rank, their performance is overall the worst, with
only at most 68% of requests completing under a microsecond.
To further understand the performance of prefetchers, we
measure the following four metrics.

Perf
orm

anc
e pe

r $
(x o

ver 
DR

AM
-onl

y)

BERT Page Rank Radiosity XZ YCSB

100
75
50
25
0

Figure 14: Performance-per-cost benefits of a CXL-flash with
BO prefetcher over a DRAM-only device. The estimation is
derived from the performance results in Figure 13a, the recent
price point of DRAM at 5 $/GB [77], and the price range of
NAND flash varying from 0.05 to 0.30 $/GB [39, 64].

Accuracy measures how much of the data brought in by
the prefetcher is actually used. Higher is better.
Coverage is the portion of prefetched data cache hits among
the memory requests. A high coverage means that cache hits
are thanks to the prefetcher, while a low coverage indicates
that the prefetcher is not contributing.
Lateness is the portion of late prefetches among all the
prefetches. A prefetched data is late if it is accessed while
it is being prefetched. Lower is better.
Pollution measures how many cache misses are caused by
the prefetcher among cache misses. Lower is better.

Observation #4: In cases where the prefetcher improves
the performance, it is due to achieving high accuracy. We
plot the four metrics for the evaluated prefetchers in Figure 15.
Lateness and pollution are negative metrics (the lower the bet-
ter), so we invert their bars so that higher is better for all
metrics. We observe that the defining characteristic for the
workloads where the prefetcher is helpful (Page Rank and
Radiosity) is that the accuracy is high. For example, the Leap
(LP) prefetcher attains 85% accuracy under Radiosity while
only reaching 27% under BERT. Additionally, the Best-offset
(BO) prefetcher achieves 48% accuracy under XZ; however,
its limited coverage of 4% suggests that despite achieving rel-
atively higher accuracy, the prefetcher is not actively fetching
data to contribute to performance improvement.

We further analyze Page Rank to understand why prefetch-
ers are able to reach relatively high accuracy even though the
workload has the lowest locality (computed using the stack
and block affinity metrics [32]). As Figure 16 shows, the Page
Rank exhibits distinct phases in their workload. During the
first phase, Page Rank loads graph information and exhibits
high locality (Figure 16a). The best-offset prefetcher is also
able to attain high coverage and accuracy (Figure 16b). How-
ever, in the second phase, Page Rank builds the graph, and
the access pattern here has a very low locality. Consequently,
the best-offset prefetcher becomes more inactive (low cover-
age) as its accuracy drops. During the last phase, Page Rank
computes the score for each vertex. While its access locality
is not high, the prefetcher performs well and most of the ac-
cesses hit in the cache. Note that while the pollution is bad,
the cache miss rate is very low so its impact on performance
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Figure 17: BO prefetcher metrics for virtual vs. physical.

is negligible. This analysis indicates that while the prefetcher
is beneficial for the first and last phases, the low locality in
the second phase limits the performance.

Observation #5: Cache pollution is the main reason
behind performance degradation when the accuracy is
low. As shown in Figure 15, BERT and YCSB have low
accuracies while their pollutions are high, leading to a re-
sult where enabling prefetchers degrades performance (Fig-
ure 13a). For XZ, even though the accuracy of the best-offset
(BO) prefetcher is low, it is no worse than no prefetcher as
it causes little pollution. We attribute this to BO’s ability to
disable prefetching based on its accuracy. For Page Rank and
Radiosity, prefetchers exhibit low pollution although their
lateness is high. Cache pollution degrades the performance of
a CXL-flash, and prefetchers should be aware of the impact
to avoid having detrimental effects on the device.

Observation #6: The virtual-to-physical address transla-
tion makes it difficult for the CXL-flash to prefetch data. To
understand the effect of V2P address translation, we simulate
the CXL-flash with the best-offset prefetcher using the virtual
memory traces of the five application workloads, and Fig-
ure 17 compares the four prefetcher metrics between virtual
and physical traces. We make two observations. First, aside
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Figure 18: Improvement in performance with memory access
pattern hints for BERT. Figure 18a is the sensitivity to the
number of addresses for which hints are provided. Figure 18b
shows the performance improvement as more hints are added.
In both figures, the line represents the number of hit-under-
misses without hints converted to cache hits with hints.

from Radiosity, we observe a significant drop in accuracy
from virtual to physical traces. The BO prefetcher under Page
Rank is 99% accurate for the virtual memory trace, but with
the physical trace, accuracy drops to 42%. Second, coverage
also drops, indicating that the prefetcher becomes less active
under physical memory accesses: for example, it drops from
76% to 26% under BERT. The drop in both accuracy and
coverage for physical traces shows that the CXL-flash would
perform better if it were addressed virtually.

Observation #7: If the kernel were to provide memory
access pattern hints to the device, the CXL-flash perfor-
mance improves by converting hit-under-misses into cache
hits. We consider a hypothetically clairvoyant kernel that
knows the physical memory access pattern. This is not too far-
fetched as data-intensive applications often iterate multiple
times and their behaviors can be profiled. More specifically,
we assume that the kernel has information on the top inten-
sively accessed physical frames, and can pass hints to the
device prior to their actual accesses. To limit the overhead of
kernel involvement, we model a probabilistic generation of
access hints. Figure 18a shows the performance improvement
for BERT when hints are generated at 10% for the top N% of
intensively accessed addresses. We observe that with access
hints to more addresses, the percentage of sub-microsecond
latencies increases from 86% to 91% by converting hit-under-
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misses (HUM) into cache hits. Figure 18b considers a variable
hint generation chance, from 0% to 10% for the top 10% of
intensively accessed addresses. Similarly, we see an overall
improvement in performance, though it plateaus at 91%. Our
experiments show that host-generated access pattern hints
leveraging the host’s knowledge of the workload behaviors
can potentially improve the CXL-flash performance.

6 Related Work

The evaluated cache policies and prefetching algorithms
are well-studied in prior proposals. However, most of them
are for managing and optimizing the CPU cache [41, 55, 65],
where the latency difference between a cache hit and a cache
miss is much smaller than that in a CXL-flash. CFLRU [60]
and Leap [53] share a similar design space to our device;
however, the memory access intensity they face is not as
extreme as what a CXL-flash needs to handle. Therefore, it
is crucial to evaluate the effectiveness of these policies and
algorithms under the design space of a CXL-flash.

Techniques to mitigate the performance degradation
due to address translations and limitations of flash has
been explored in prior works. Utilizing huge pages can reduce
the number of address translations [54, 58]. FlashMap [40]
and FlatFlash [23] combine address translation of the SSD
with the page table to reduce overheads. eNVY [73] employs
write buffering, page remapping, and a cleaning policy to
enable direct memory addressability and sustain performance.
Future research in CXL host systems should further explore
the potential benefits of host-generated hints and insights from
these prior works to reduce the overheads.

Memory disaggregation organizes memory resources
across servers as a network-attached memory pool, enabling
meeting the high memory requirements for data-intensive ap-
plications [37, 38, 52, 69]. While our work does not directly
investigate memory disaggregated systems, using CXL-flash
as disaggregated memory helps overcome the memory wall.

Utilization of non-DRAM to expand memory has been
explored in prior works [28,40,63,74]. HAMS [75] aggregates
persistent memory and ULL flash as a memory expansion by
managing data paths among hosts and memory hardware
in an OS-transparent manner. Suzuki et al. [67] present a
lightweight DMA-based interface that bypasses the NVMe
protocols to enable flash read access with DRAM-like perfor-
mance. SSDAlloc [26] is a memory manager and a runtime
library that allows applications to use flash as a memory de-
vice through the OS paging mechanism, which can cause
overheads when accessing data in SSDs. FlatFlash [23] ex-
poses a flat memory space using DRAM and flash memory by
integrating the OS paging mechanism and the SSD’s internal
mapping table. While these prior works primarily focus on
OS-level management and host-device interaction, our work
builds on top of them by investigating the design decisions
internal to a memory expansion device.

Memory expansion with CXL Type 3 devices is an ac-
tive research area [36, 42, 50, 71]. Pond [50] utilizes CXL
to improve DRAM memory pooling in cloud environments
and proposes machine-learning models to manage local and
pooled memory. While this work investigates how to use a
CXL Type 3 device in a cloud setting, our work studies how
to implement one using flash memory. DirectCXL [36] suc-
cessfully connects host processors with external DRAM via
CXL in real hardware and develops a software runtime to di-
rectly access the resources. Lastly, CXL-SSD [42] advocates
combining CXL and SSD to expand host memory. While we
share the same goal with this work, it mainly discusses the
CXL interconnect and scalability potentials of CXL-SSDs.

ML-specific designs build systems that address the mem-
ory wall challenge [45, 48, 51]. MC-DLA [48] proposes an
architecture that aggregates memory modules to expand the
memory capacity for training ML models on accelerators. Be-
hemoth [45] observes that many NLP models require large
amounts of memory but not a lot of bandwidth, and proposes a
flash-centric training framework that manages data movement
between memory and SSDs to overcome the memory wall.

7 Conclusion

We explore the design space of a CXL-flash device and evalu-
ate existing optimization techniques. Using physical memory
traces, we find that 68–91% of memory access achieves a sub-
microsecond latency for a CXL-flash device that can last at
least 3.1 years. We discover that the address translation for vir-
tual memory makes it particularly difficult for the CXL-flash’s
prefetcher to be effective and suggest passing kernel-level ac-
cess pattern hints to further improve the performance.

While we attempt to generalize the results by testing the
device with a variety of workloads and design parameters, it
is important to acknowledge a few limitations. The current
design of a CXL-flash as explored in this paper does not
consider the flash’s internal tasks such as garbage collection
and wear leveling. In addition, the host system considered may
not fully reflect the new system characteristics introduced by
CXL. Therefore, we believe more work needs to be done in
the CXL-flash research space, and our work can be a platform
on which future research can build upon.
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Abstract
Memory optimization kernel features, such as memory
deduplication, are designed to improve the overall effi-
ciency of systems like datacenter servers, and they have
proven to be effective. However, when invoked, these
kernel features notably disrupt the execution of applica-
tions, intensively consuming the server CPU’s cycles and
polluting its caches. To minimize such disruption, we
propose STYX, a framework for offloading the intensive
operations of these kernel features to SmartNIC (SNIC).
STYX first RDMA-copies the server’s memory regions,
on which these kernel features intend to operate, to an
SNIC’s memory region, exploiting SNIC’s RDMA capa-
bility. Subsequently, leveraging SNIC’s (underutilized)
compute capability, STYX makes the SNIC CPU perform
the intensive operations of these kernel features. Lastly,
STYX RDMA-copies their results back to a server’s mem-
ory region, based on which it performs the remaining
operations of the kernel features. To demonstrate the
efficacy of STYX, we re-implement two memory opti-
mization kernel features in Linux: (1) memory dedupli-
cation (ksm) and (2) compressed cache for swap pages
(zswap), using the STYX framework. We then show that
a system with STYX provides a 55–89% decrease in 99th-
percentile latency of co-running applications, compared
to a system without STYX, while preserving the benefits
of these kernel features.

1 Introduction

The modern OS offers various kernel features that can
improve the overall utilization and/or performance of
systems. Among them, memory optimization kernel fea-
tures, such as memory deduplication, compressed cache

§Mansi and Sun have contributed equally as second authors.

for swap pages, and memory compaction to name a few,
are devoted to utilizing the limited DRAM capacity of
systems more efficiently. These kernel features are at-
tractive to hyperscalers such as Google, Amazon, Meta,
and Microsoft for two key reasons. First, DRAM tech-
nology scaling has notably slowed down, resulting in
stagnant reduction in cost per GB of DRAM. Second,
the DRAM capacity needed for datacenter servers has
rapidly grown, not only for applications but also for soft-
ware packages, profiling, logging, and other supporting
functions required for efficient deployment of applica-
tions (i.e., datacenter memory tax).

These kernel features have been extensively evaluated
and enhanced [6,19,22,27,31,40,51]. They have proven
to be effective, but they also incur notable deployment
costs. Specifically, they are not frequently invoked, but
they often perform memory- and/or CPU-intensive op-
erations. They bring kilobytes to megabytes of usually
cold data into the server CPU’s caches and then make its
cores intensively execute simple but repetitive operations
on the data, often after disabling kernel preemption. As a
result, they cause significant interference especially with
co-running memory-intensive/latency-sensitive applica-
tions at the server CPU’s cores and caches. This leads
to a substantial increase in the high-percentile latency of
the applications in datacenters (§3).

In this paper, we propose STYX, using SmarTNIC
(SNIC) to efficiently manage the datacenter memorY
taX (§4). Specifically, STYX makes use of two common
Capabilities of SNIC: (C1) the RDMA capability to
copy the server’s memory regions, on which a kernel
feature intends to intensively operate, to SNIC memory
( 1 in Figure 1) and (C2) the compute capability to of-
fload the intensive operations of kernel features from
the expensive server CPU to the cheap SNIC CPU or
accelerators ( 2 in Figure 1). (C1) prevents the pollution
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Figure 1: Overview of STYX framework.

of the server CPU’s caches that stores application code
and data, while (C2) frees the server CPU’s cores from
executing the intensive operations. As such, STYX offers
a framework that allows us to deploy kernel features with
significantly less disruption to the performance of co-
running applications, without making the kernel features
less effective.

We choose SNIC as our platform to offload intensive
operations of memory optimization kernel features for
two Reasons. (R1) SNIC has already been deployed by
hyperscalers (e.g., Azure SNIC [15] and Amazon Ni-
tro [4]) to minimize the datacenter tax [24] associated
with executing network functions (e.g., compression/de-
compression, encryption/decryption, and regular expres-
sion matching) at high rates. STYX reuses this existing
capability without demanding novel or modified hard-
ware. (R2) SNIC CPU’s cores are not fully utilized as
they are typically used to control accelerators in SNIC
and orchestrate data transfers between the accelerators
and the network controller. Note that STYX is built on
a generic RDMA interface. As such, STYX also allows
servers with standard RDMA NICs (RNICs) to seam-
lessly offload the intensive operations of kernel features
to other servers with SNICs or RNICs.

To demonstrate the efficacy of STYX, we re-implement
two memory optimization Linux kernel Features as
examples: (F1) memory deduplication for virtual ma-
chines (VMs), also known as kernel same-page merging
(ksm [14]) and (F2) compressed cache for swap pages
(zswap [21]) (§5). Subsequently, we set up a server
with an Intel Xeon CPU-based CPU and an NVIDIA
BlueField-2 SNIC [20,37], and take Redis [41] driven by
YCSB [11] as a representative memory-intensive/latency-
sensitive application running on datacenter servers (§6).
Lastly, we measure the 99th-percentile (p99) response
time (or latency) of Redis for various cases. (§7).

Specifically, we begin by evaluating the p99 latency

values of Redis with systems deploying ksm (denoted as
sys-ksm) and zswap (sys-zswap), and compare them
with those of a system that deploys no memory op-
timization kernel feature (sys-no-mo). We show that
sys-ksm and sys-zswap increase the p99 latency val-
ues by 4.8–9.7× and 8.1–11.0×, respectively, compared
to sys-no-mo. Then, we evaluate the p99 latency val-
ues of Redis with systems deploying STYX-based ksm
(sys-styx-ksm) and zswap (sys-styx-zswap), and
demonstrate that they reduce the p99 latency values
to 1.0–1.1× and 1.8–3.8×, respectively, compared to
sys-no-mo, while preserving the benefits of ksm and
zswap. Finally, we assess the impact of running the
STYX-based kernel features on the performance of func-
tions accelerated by SNIC. We choose regular expression
matching (rem) as a representative function accelerated
by a dedicated accelerator in the NVIDIA BlueField-2
SNIC. Even when offloading the intensive operations
of ksm and zswap to the SNIC, STYX increases the p99
latency value of rem by only 1.3%.

2 Background

2.1 Memory Optimization Kernel Features
In this section, we provide an overview of two memory
optimization kernel features in Linux: ksm and zswap.
Other operating systems, such as Windows, also offer
similar features like page combining [7, 34] and memory
compression [54]).

ksm. It is a memory deduplication feature in Linux. It
is commonly used with kernel-based virtual machine
(KVM) to quickly consolidate more VMs within a given
physical memory capacity [35], by sharing pages with the
same content among multiple VMs (e.g., pages storing
code for OS and common libraries). As it allows for more
efficient storage of common data in cache or memory,
it also notably improves performance for certain appli-
cations and operating systems [47]. It periodically and
incrementally scans pages of two or more running pro-
cesses to identify those with the same memory contents.
Then, it merges those identical pages into a single physi-
cal copy, updates their page table entries with a copy-on-
write (CoW) attribute, and reclaims the memory space
previously used by the pages. Both the overhead and
benefit of ksm are determined by the number of scanned
pages per invocation of ksm, the frequency of scanning
pages, and the maximum number of merged pages.

zswap. It serves as a compression backend for the Linux
swap daemon (kswapd) which includes synchronous di-
rect and asynchronous background paths. kswapd takes
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the synchronous direct path when the memory alloca-
tor fails to allocate pages due to a lack of free memory
space. This requires kswapd to immediately swap out
the least recently used (LRU) pages to the backing swap
device. kswapd takes the asynchronous background path
when the amount of free memory space drops below
the page_low watermark. This makes kswapd begin to
swap out pages from the inactive page list, and contin-
ues until the amount of free memory space exceeds the
page_high watermark.

When deployed, zswap intercepts the pages from both
the paths above, compresses them, and places them in
a dynamically allocated memory pool in DRAM (i.e.,
zpool). Meanwhile, when the size of zpool reaches
the max_pool_percent threshold, zswap wakes up and
takes the LRU page from zpool, decompresses and re-
locates it to the backing swap device, and frees the com-
pressed page from zpool. To serve a page fault, zswap
first checks zpool to find whether the page is evicted to
the backing swap device. If the page is found in zpool,
it is simply decompressed and returned by zswap. Other-
wise, the system follows the standard process for swap-
ping in a page from the backing swap device.

Since zswap can notably reduce the need for accessing
the slow backing swap device, it may improve the overall
performance of the system; the page decompression on
the synchronous direct path is part of the performance-
critical path for handling page faults, but it is typically
faster than retrieving pages from the backing swap de-
vice. As such, zswap has been evaluated by Google [27]
and Meta [51] for potential deployment in production
systems.

2.2 SNIC and RDMA

Recently, various SNICs have been developed to offload
functions common in network applications such as se-
curity, compression, and network function virtualization
as part of an effort to reduce the datacenter network pro-
cessing tax [24]. Generally, an SNIC integrates a tra-
ditional network interface controller (NIC) with a CPU,
ASIC- and/or FPGA-based accelerators, and memory and
IO subsystems. For example, an NVIDIA BlueField-2
SNIC [37] consists of 8 ARM CPU cores with private
L1 and shared L2 caches, a cache-coherent on-chip inter-
connect, DRAM and PCIe controllers, onboard DRAM
as main memory, and ASIC-based accelerators for reg-
ular expression matching, encryption, and compression.
AMD/Xilinx SN1000 [5] integrates an FPGA fabric with
an SNIC similar to the NVIDIA BlueField-2 SNIC in a
single chip. An SNIC is itself a complete system, recog-

nized as an independent node.
RDMA is supported by most SNICs and standard NICs

used in datacenters. As it allows a client to directly access
the memory of servers at low latency and high bandwidth,
it is now widely used by datacenters [16, 18, 28, 53, 56].
Additionally, an SNIC in a server can access the server’s
local memory through RDMA. RNIC supports two op-
erating modes: two-sided RDMA and one-sided RDMA.
The two-sided RDMA reduces packet processing over-
head by delivering requests (or data) from a client di-
rectly to server’s memory for application processing.
One-sided RDMA allows the client to completely by-
pass the server’s CPU and directly read from or write to
the server’s memory.

3 Impact of Running Kernel Features on
Application Performance

A body of prior work has demonstrated that ksm and
zswap have proven to be effective in improving the over-
all performance of systems [8, 19, 22, 27, 35, 47, 49].
Nonetheless, such benefits come with costs that have
often discouraged system administrators from widely de-
ploying them in datacenters. In this section, we analyze
the costs associated with deploying zswap as an example.

Figure 2 shows a snapshot of (a) consumed CPU cy-
cles, (b) last-level cache (LLC) miss rate, and (c) response
latency of Redis that are captured when zswap-enabled
kswapd is invoked. See Section 6 for the detailed eval-
uation setup and methodology. First, zswap increases
the consumed CPU cycles by 26.4% during the captured
time period (Figure 2(a)). Second, it increases the aver-
age LLC miss rate from 4.4% to 49.8% (Figure 2(b)).
Lastly, it increases the mean, median, 3rd quartile, and
p99 latency values of Redis serving the same number
of requests by 1.5×, 1.2×, 1.8×, and 2.1× respectively
(Figure 2(c)).

Although we show the plots only for zswap in Figure 2,
we observe that ksm also exhibits a similar impact on
CPU cycle consumption, LLC miss rate and response
latency of Redis. Subsequently, we discuss the primary
sources of such increases in both zswap and ksm in detail.

ksm. It periodically scans pages and calculates a 32-
bit checksum for each scanned page to more efficiently
identify candidate pages for future merging. Among the
candidate pages, ksm picks two pages and performs a
byte-by-byte comparison to determine if the two pages
can be merged. Both the checksum calculation and byte-
by-byte comparisons of pages are CPU- and memory-
intensive as they bring around 400MB of data to caches
and CPU cores (often from DRAM) and do numerous
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Figure 2: A snapshot of (a) consumed CPU cycles, (b)
LLC miss ratio, and (c) response latency before and after
invoking kswapd while running Redis. We gather the
response latency values for every 1110 requests and plot
them using a box, a vertical line, a triangle, and a horizon-
tal line. The box, triangle, and horizontal line respectively
represent the 1st to 3rd quartile range, mean, and median
of the latency values for 1110 requests.

arithmetic and comparison operations for that amount of
data per invocation of ksm.

zswap. When invoked, it performs compression and
decompression, which are highly compute-intensive and
thus significantly consume CPU cycles [23, 39]. For in-
stance, in Figure 2, approximately 45,000 pages are com-
pressed in only 5 seconds, consuming roughly 25–50%
cycles of the server CPU’s core while zswap is running.
These pages represent 175MB (i.e., 45,000 × 4KB) of
cold data that is brought into the server CPU’s LLC.
Since they are unlikely to be used soon, they end up pol-
luting the server CPU’s LLC. Later, when compressed
pages in zpool are evicted to the backing swap device
(§2.1), the pages are decompressed and re-pollutes the
server CPU’s LLC with cold data again.

4 STYX Framework

In Section 3, we demonstrated that widely used memory
optimization kernel features are often CPU- and memory-
intensive, and significantly interfere with co-running ap-
plications at the server CPU’s cores and caches. To reap
the benefits of deploying these kernel features while min-

imizing interference with the co-running applications, we
propose STYX. In this section, we provide an overview of
STYX and describe its workflow as a general framework.
Subsequently, in Section 5, we delve into the usage of
STYX for offloading CPU- and memory-intensive opera-
tions of ksm and zswap to SNIC.

4.1 Overview
We design STYX based on a key observation that memory
optimization kernel features, similar to network applica-
tions, can be decomposed into control and data planes.
We then assign the most CPU- and memory-intensive op-
erations of the kernel features to the data plane, and have
the SNIC’s CPU handle the data plane. This facilitates
STYX to significantly reduce the costs of deploying the
kernel features without compromising their benefits.

Figure 3a depicts an abstracted workflow of conven-
tional memory optimization kernel features. When in-
voked, a kernel feature running on the server’s CPU 1
determines one or more memory regions that it intends
to operate on; 2 copies the memory regions to the server
CPU’s caches; 3 operates on the memory regions (e.g.,
comparing two pages using memcmp in the case of ksm);
and 4 makes a decision for the next step (e.g., whether
merge two pages or not in the case of ksm) based on the
result of 3 . STYX considers 1 and 4 as the control
plane, while it assigns 2 and 3 to the data plane.

In a conventional system, the server’s CPU performs
both control- and data-plane operations of a given ker-
nel feature. As discussed in Section 3, the data-plane
operations significantly pollute the server CPU’s caches
and intensively consume the server CPU’s valuable cy-
cles. In contrast, in an STYX-based system, the SNIC’s
CPU performs data-plane operations instead, while the
server’s CPU still performs the control-plane operations.
Specifically, the control plane on the server’s CPU first
determines memory regions that the data plane on the
SNIC’s CPU will operate on, RDMA-copies the memory
regions from the server’s memory to the SNIC’s memory,
and then makes the data plane on the SNIC’s CPU oper-
ate on the memory regions. After the data plane on the
SNIC’s CPU completes operations on the RDMA-copied
memory regions, it RDMA-copies the results back to the
server’s designated memory region. Finally, as the con-
ventional system does, the control plane on the server’s
CPU decides the next step based on the results.
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Figure 3: Workflow of a memory optimization kernel feature in conventional and STYX-enabled systems. For brevity,
only the cache and memory regions of the kernel feature’s data plane are illustrated.

1 struct STYX_descriptor {
2 func_type func;
3 // memory regions RDMA -copied to SNIC
4 u64* addrs; // starting addresses
5 int* lens; // lengths
6 int num; // number
7 // RDMA resources
8 void* completion_queue;
9 void* send_queue;

10 void* recv_queue;
11 ...
12 };

Listing 1: Data structure of STYX_descriptor.

4.2 Workflow
Figure 3b illustrates a high-level workflow of STYX
framework, which is built on top of kernel-space RDMA
verbs. It comprises four steps: 1 setup, 2 submission,
3 remote execution, and 4 completion.
1 Setup. STYX first determines the functions that will

be offloaded to SNIC. A function comprises data-plane
operations within a specific kernel feature. For instance,
memcmp, which performs a byte-by-byte comparison of
two memory regions, can be such a function in ksm. Next,
STYX establishes a communication interface between the
server and the SNIC by setting up RDMA connections
between them. Specifically, STYX allocates necessary
RDMA resources, such as completion and work queues,
in the kernel space on the server and the user space on
the SNIC ( 1 in Figure 3(b)). To avoid contention for
the RDMA resources among functions, STYX sets up
one RDMA connection for each function. Finally, for
each function, STYX creates two descriptors, each called

STYX_descriptor, on the server and the SNIC, respec-
tively, and then associates the descriptors with the cor-
responding RDMA connection. STYX_descriptor is a
data structure described in Listing 1, which stores the
following information: a function identifier, pointers to
the starting addresses of memory regions, the lengths
and number of the memory regions, and pointers to the
RDMA resources. It is designed to provide a uniform and
generic interface for a server to provide necessary infor-
mation for an SNIC that will execute a specific function
on behalf of the server.

2 Submission. Before a kernel feature executes a func-
tion, STYX on the server updates the descriptor associ-
ated with the function with the starting addresses and
lengths of memory regions that it has determined to
work on. Next, STYX uses two-sided RDMA to offload
the function. Specifically, STYX on the server sends an
RDMA send request based on the updated descriptor,
making the SNIC RDMA-copy the memory regions from
the server’s memory to the SNIC’s memory ( 2 in Fig-
ure 3(b)). Lastly, STYX calls RDMA recv. This suspends
the execution of the kernel feature until the SNIC sends
the results of the function back to the server through
RDMA send, and allows the kernel feature to yield the
server CPU’s core to other application processes.

Alternatively, STYX can employ one-sided RDMA. In
this approach, STYX on the server posts the updated start-
ing addresses and lengths to the server’s designated mem-
ory region (i.e., the descriptor on the server) registered to
the SNIC. At the same time, STYX on the SNIC continu-
ously polls the memory region using RDMA read. Once
STYX on the SNIC obtains the updated addresses and
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lengths, it proceeds with RDMA-copying the memory
regions from the server’s memory to the SNIC’s mem-
ory using RDMA read. This one-side RDMA-based
approach can allow STYX to free up the server’s CPU
for other application processes faster than the two-sided
RMDA-based approach. However, it requires the SNIC’s
CPU to poll the registered memory region using RDMA
read requests, resulting in consuming PCIe interconnect
bandwidth and SNIC CPU’s cycles.
3 Remote Execution. After receiving an RDMA send

request from the server, the SNIC starts to RDMA-copy
the server’s memory regions to the SNIC’s memory re-
gion pointed by the RDMA recv request using a single
scatter-gather transfer ( 3 -1 in Figure 3(b)). The comple-
tion of serving the RDMA recv request wakes up STYX
on the SNIC to execute a function associated with the
RDMA connection. Subsequently, STYX on the SNIC
creates a worker thread to execute the function which
operates on the RDMA-copied memory region ( 3 -2 in
Figure 3(b)). Note that executing such a function may
interfere with network applications co-running on the
SNIC. Nonetheless, the SNIC CPU serves as a control
plane for network applications executed by the SNIC
accelerators (§1), and STYX utilizes unused or under-
utilized SNIC CPU cores. Therefore, STYX negligibly
affects the performance of network applications running
on the SNIC (§7.6).
4 Completion. After completing the remote execution

of the function, STYX on the SNIC posts an RDMA
send request to send the results (e.g., the checksum of
a page in the case of ksm) to STYX on the server ( 4 -1
in Figure 3(b)). After STYX on the server receives the
result through RDMA recv previously invoked at 2 , it
makes the kernel feature resume the execution and read
the results from the server memory ( 4 -2 in Figure 3(b)).
At the same time, STYX on the SNIC invokes RDMA
recv, which makes STYX on the SNIC sleep until it
receives RDMA send from the server.

Similar to what is discussed in 2 , STYX on the SNIC
can send the result to the server through one-sided RDMA
write to a memory region registered on the server. How-
ever, this demands the server’s CPU to keep polling the
memory region until the completion signal is detected.
This not only wastes the server CPU’s cycles but also
prevents the kernel feature from yielding the server CPU
to application processes.

5 Offloading Kernel Features with STYX

In Section 4, we provided a high-level workflow of STYX
as a general framework for offloading intensive opera-

tions (or functions) of memory optimization kernel fea-
tures to SNIC. In this section, we will further elaborate
on implementations of STYX-based ksm and zswap, as
well as optimizations tailored for each kernel feature.

5.1 ksm

ksm is a memory-deduplication feature that merges pages
with the same content. We identify the two most resource-
intensive functions to offload to SNIC: (1) page compari-
son and (2) checksum calculation. The page comparison
gives the relative address of the first byte that differs in
two pages. This is used to determine whether the pages
can be merged and the relative order of the two pages.
The checksum calculation provides a word-size hash
value calculated based on the page content and indicates
whether a page has been changed between scan passes
by the ksm daemon. Algorithm 1 describes one pass of
STYX-based ksm where the page comparison and the
checksum calculation are performed by STYX_compare
and STYX_checksum, respectively.

Since we offload two functions to SNIC, STYX cre-
ates two RDMA connections and two descriptors dur-
ing the setup phase ( 1 ). STYX_compare requires two
for the number of memory regions as it compares two
pages (or memory regions). On the other hand, since

Algorithm 1: ksm with STYX offloading
1 Init stable_tree and unstable_tree
2 while pages for this pass > 0 do
3 cand_page = next page in the pass
4 for page ∈ stable_tree do
5 if STYX_compare(cand_page, page) then
6 merge(cand_page, page)
7 goto line 2

8 new_cksum = STYX_checksum(cand_page)
9 old_cksum = cand_page.cksum

10 cand_page.cksum = new_cksum
11 if new_cksum == old_cksum then
12 for page ∈ unstable_tree do
13 if STYX_compare(cand_page, page)

then
14 merged_page = merge(cand_page,

page)
15 cow_protect(merged_page)
16 remove(page, unstable_tree)
17 insert(merged_page, stable_tree)
18 goto line 2

19 insert(cand_page, unstable_tree)

20 End of pass, sleep()
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STYX_checksum calculates a checksum for a given page,
it needs one for the number of memory regions. For
the length of a memory region, both STYX_compare and
STYX_checksum use the size of a page in byte. During
the submission phase ( 2 ), STYX updates the starting
addresses of the memory regions in the descriptor for
STYX_compare with the pointers to two chosen pages.
For STYX_checksum, STYX takes the pointer to a se-
lected page and updates the descriptor accordingly. Sub-
sequently, STYX RDMA-copies these memory regions
from the server memory to the SNIC memory. During
the remote execution phase ( 3 ), STYX on the SNIC per-
forms a byte-by-byte comparison and an xxHash-based
checksum calculation [10] on the RDMA-copied page(s).
It then returns the relative address of the first byte that
differs in the two pages (STYX_compare) and the word-
size checksum (STYX_checksum), respectively, to STYX
on the server. Receiving the results from STYX on the
SNIC, STYX on the server decides whether it will merge
the two pages or not, and updates the checksum value for
the scanned page during the completion phase ( 4 ).

5.2 zswap

zswap serves as a compression backend for kswapd,
and it was incorporated into the Linux kernel starting
from version 3.5. As described in Section 2.1, there are
synchronous direct and asynchronous background paths.

Algorithm 2: kswapd with STYX offloading
1 while kswapd_enabled do
2 if free_page < page_low then
3 kswapd_running = true;
4 while kswapd_running do
5 page = page_to_swap_out()
6 if zpool > max_zpool_size then
7 if STYX_decompression(LRU_page,

dst) fails then
8 kernel_decompress(LRU_page,

dst);
9 write_to_backing_swap_device(dst);

10 free_zpool_space(LRU_page);
11 if STYX_compression(page, dst) fails

then
12 kernel_compress(page, dst);
13 write_to_zpool(dst);
14 if free_page > page_high then
15 kswapd_running = false;

16 else
17 kswapd_sleep();

STYX is capable of offloading functions from both paths
to SNIC. Nonetheless, as an optimization, we choose to
offload only the asynchronous background path which is
taken when (1) the amount of free memory space falls be-
low the page_low watermark, and (2) the size of zpool
reaches the max_pool_percent threshold. Specifically,
when (1) happens, STYX-based zswap makes SNIC com-
press pages and place the compressed pages in zpool
until the amount of free memory space is above the
page_high watermark. When (2) occurs, it makes SNIC
decompress the LRU page from zpool and relocate it
to the backing swap device. We propose this optimiza-
tion because the latency involved in RDMA-copying
pages to the SNIC memory over the PCIe intercon-
nects (i.e., ∼5µs) may slow down the time-sensitive syn-
chronous direct path, and degrade overall system perfor-
mance. Algorithm 2 describes kswapd modified to sup-
port STYX-based zswap where the page compression and
decompression are performed by STYX_compression
and STYX_decompression, respectively.

Since we offload two functions to SNIC, the setup and
submission phases for STYX-based zswap are exactly
the same as STYX-based ksm except that zswap has only
one memory region to RDMA-copy to the SNIC memory
for both the functions. Finally, after the remote execu-
tion of STYX_compression and STYX_decompression,
STYX on the SNIC will return the compressed and de-
compressed pages, respectively, to STYX on the server.

6 Methodology and Implementation

System Setup. We set up a server with an Intel Xeon
Gold CPU and an NVIDIA BlueField-2 SNIC. The de-
tailed hardware and software configurations of the server
are listed in Table 1. Note that we lock the CPU fre-
quency at 2.1 GHz and disable hyper-threading (HT) for
more consistent performance over multiple measurement
runs. VMs are pinned to specific CPU cores to reduce
performance variations and interference caused by dy-
namic voltage/frequency scaling (DVFS) [12], HT [32],
and VM scheduling.

Workload. We run Redis [41] with Yahoo! Cloud Serv-
ing Benchmark (YCSB) [11] on the system. Redis is an
in-memory data store and is used as a distributed, in-
memory key–value database, cache, and message broker,
with an optional durability feature. YCSB is a benchmark-
ing framework to evaluate the performance of various in-
memory key-value stores. It comes with four workloads:
(a) update heavy, (b) read heavy, (c) read only, and
(d) read latest that consist of (a) 50% read and 50%
update, (b) 95% read and 5% update, (c) 100% read, and
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Table 1: Hardware and Software configurations.

Intel Xeon 6138P Server

CPU: 16 Skylake cores @ 2.1GHz w/ HT disabled,
32KB L1, 1MB L2, and 1MB L3 caches per core
Memory: 5-Ch. w/ 5 16GB DDR4-2666 DRAM modules
OS: Ubuntu 18.04.6 LTS, Linux kernel 5.4

NVIDIA BlueFeild-2 SNIC

Network: ConnectX-6 Dx w/ two 25 Gbps Ethernet ports ,
RDMA over converged Ethernet V2
CPU: 8 ARM A72 cores @ 2.5GHz, 640 KB L1 per core,
4 MB L2 caches per 2 cores, and 6 MB L3 cache
Memory: 1 Ch. w/ 16GB DDR4-1600 DRAM module
Accelerators: regular expression matching, compression,
and cryptography
OS: Ubuntu 20.04.2 LTS, Linux kernel 5.4

Kernel Feature

ksm: sleep_between_scan=20ms, free_mem_thres=20
pages_to_scan ∈ [64, 1250] # adjusted by ksmtuned
zswap: compressor_type = lzo, max_pool_percent = 20
zpool_management = zbud

Virtual Machine

Hypervisor: QEMU-KVM 2.11.1
VM: Ubuntu Cloud 18.0, 1 Core, 4GB memory

(d) 95% read and 5% insert, respectively.
Methodology. Figure 4 depicts the evaluation environ-
ments for ksm and zswap. ksm aims to reduce memory
usage in virtualized environments where multiple VMs
are running similar workloads. We set up 16 VMs and
pin each VM to a physical core. Then, we organize the
VMs into 4 groups, each comprising 3 VMs for Redis
clients and 1 VM for a Redis server. To trigger zswap,
we set up a background workload designed to allocate
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Figure 4: Experimental setup for evaluating STYX-based
ksm and zswap. The blue-color boxes indicate the Redis
server (‘S’) and client (‘C’). The lighter-blue blocks (‘M’)
represent the cores running a background workload.

and free memory space periodically. We need such a
background workload because Redis is in-memory data
store, and it should be configured not to incur any page
faults. Otherwise, p99 latency is dominated by handling
page faults. We use cgroup [1] to protect the pages used
by Redis from being swapped out. In the experimental
setup for zswap, Redis servers and clients run on the
physical cores directly without VMs.

7 Evaluation

7.1 Latency

In this section, we choose p99 latency as a key per-
formance metric for our evaluation because many im-
portant datacenter applications need to meet certain
high-percentile latency requirements [36, 38]. Figure 5a
shows the p99 latency values of Redis on systems
that deploy ksm (sys-ksm), zswap (sys-zswap), STYX-
based ksm (sys-styx-ksm), and STYX-based zswap
(sys-styx-zswap), normalized to those of a system
without deploying any memory optimization kernel fea-
ture (sys-no-mo). Overall, it demonstrates that STYX
can significantly reduce the p99 latency increased by
deploying ksm and zswap.

Specifically, on average (geometric mean), sys-ksm
and sys-zswap give 6.24× and 8.70× higher p99 la-
tency values than sys-no-mo, respectively. In contrast,
sys-styx-ksm and sys-styx-zswap offer 1.11× and
3.05× higher p99 latency values than sys-no-mo, respec-
tively. That is, sys-styx-ksm and sys-styx-zswap re-
duce the p99 latency increase by 5.62× and 2.85×, com-
pared to sys-ksm and sys-zswap, respectively. Note
that sys-styx-ksm offloads most of the intensive op-
erations to SNIC, practically eliminating the p99 la-
tency increase of sys-styx-ksm. On the other hand,
sys-styx-zswap offloads only the intensive operations
of the asynchronous background path to SNIC. That is,
the intensive operations of the synchronous direct path
still affect the p99 latency of Redis, contributing to more
than 3× increase in p99 latency.

In addition, Figure 5b shows the average latency val-
ues of Redis on those systems. The average latency of
Redis is also an important performance metric, as it is
inversely proportional to the throughput. Note that Redis
often throttles serving requests to prevent response la-
tency from increasing too much when the system re-
ceives more requests than it can handle efficiently [3].
On average, sys-ksm and sys-zswap give 1.34× and
2.58× higher average latency than sys-no-mo, respec-
tively. In contrast, sys-styx-ksm and sys-styx-zswap
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Figure 5: Latency values of Redis with YCSB workloads running on sys-ksm, sys-styx-ksm, sys-zswap and
sys-styx-zswap, normalized to sys-no-mo.

offers only 1.05× and 1.55×, higher average latency than
sys-no-mo, respectively. That is, sys-styx-ksm and
sys-styx-zswap reduce the average latency increase
by 22% and 40%, compared to sys-ksm and sys-zswap,
respectively.

7.2 LLC Miss Rates

To analyze how STYX reduces the negative impact of
deploying ksm and zswap on p99 latency of Redis, we
measure the LLC miss rates of the server CPU every 1
second while evaluating sys-no-mo, sys-styx-* and
sys-*. We report the p99 LLC miss rates from approxi-
mately 160 1s intervals instead of the average LLC miss
rates, because intervals with high LLC miss rates are
likely responsible for p99 latency values of Redis.

Table 2 summarizes the p99 LLC miss rates across
all YCSB workloads at their highest throughput values
that the systems can provide. This shows that the mem-
ory optimization kernel features can significantly in-
crease the p99 LLC miss rates, bringing large amounts
of cold data into the server CPU’s caches when invoked.

Specifically, sys-ksm and sys-zswap give 7.33× and
1.70× higher p99 LLC miss rates than sys-no-mo, re-
spectively, in some intervals. In contrast, sys-styx-ksm
and sys-styx-zswap offer 3.78× and 1.28× higher p99
LLC miss rates than sys-no-mo, respectively. That is,
sys-styx-ksm and sys-styx-zswap reduce the p99
LLC miss rate increase by 48% and 25%, respectively.
Such a benefit comes from the fact that sys-styx-ksm
and sys-styx-zswap RDMA-copy the server’s memory
regions that ksm and zswap work on to the SNIC memory
instead of the server CPU’s caches.

Table 2: p99 LLC miss rates of three systems
(sys-no-mo, sys-*, and sys-styx-*) for different
YCSB workloads.

a b c d GeoMean
no-mo 9.7% 7.1% 7.3% 8.0% 8.0%
ksm 60.4% 56.9% 59.8% 57.5% 58.6%
styx-ksm 40.4% 26.5% 27.2% 28.4% 30.2%
no-mo 18.5% 21.4% 22.2% 21.7% 20.9%
zswap 34.7% 41.3% 33.9% 32.6% 35.5%
styx-zswap 25.1% 27.8% 29.8% 24.7% 26.8%
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Table 3: CPU utilization of two systems (sys-* and
sys-styx-*) for different YCSB workloads.

a b c d GeoMean
ksm 26.0% 26.0% 25.9% 25.9% 26.0%
styx-ksm 7.1% 7.3% 6.8% 6.7% 7.0%
zswap 23.5% 19.8% 20.5% 17.8% 20.3%
styx-zswap 13.0% 8.9% 11.8% 8.4% 10.4%

Note that the p99 LLC miss rate of sys-no-mo for ksm
is much lower than that of zswap. This is because of the
background workload designed to incur page faults for
zswap. Besides, in the case of zswap, STYX offloads only
intensive operations of the asynchronous background
path to SNIC. That is, intensive operations of the syn-
chronous direct path still pollute the server CPU caches
when the background workload incurs page faults. Lastly,
even in the case of ksm, STYX does not offload all the
operations, either.

7.3 CPU Cycle Consumption

In addition to reducing cache pollution, STYX conserves
the server CPU’s cycles, as it offloads the CPU-intensive
operations to the SNIC CPU. To assess the impact of
running ksm and zswap on consuming the server CPU’s
cycles, we identify the number of 1-millisecond intervals
that both a kernel feature and Redis co-run on a server
CPU’s core while measuring the number of server CPU’s
core cycles consumed by the kernel feature during these
intervals. To get the average CPU utilization shown in
Table 3, we sum up all the server CPU’s core cycles
consumed by the kernel feature and then divide it by the
total number of the server CPU’s core cycles during the
intervals in which the kernel feature and Redis co-run.

Table 3 shows that STYX considerably reduces the
consumption of the server CPU’s core cycles. On av-
erage, sys-styx-ksm and sys-styx-zswap reduce the
server CPU’s core cycles consumed by ksm and zswap
from 26% to 7% and from 20% to 10%, respectively.
The server CPU’s cycles saved by offloading intensive
operations of ksm and zswap to SNIC can be used for
Redis, which minimizes disruption of Redis operations
during these co-running intervals.

7.4 Offloading Latency

Table 4 shows the breakdown of the latency values of ksm
and zswap functions offloaded to the NVIDIA BlueField-
2 SNIC. By analyzing the breakdown, we can identify the
offloading steps that may provide further optimization
opportunities. We do not include the latency breakdown

Table 4: The breakdown of the offloading latency val-
ues of each function and the percentage values of func-
tion execution time in total kernel feature execution time
per invocation. f1 and f2 correspond to comparison
and checksum of ksm, respectively. For f1, we measure
the latency of comparing two pages with the same con-
tent, which gives the longest latency. f3 and f4 rep-
resent compression and decompression of zswap, re-
spectively.

f1 f2 f3 f4

styx-
ksm/zswap

2 (µs) 0.51 0.49 0.52 0.49
3 (µs) 14.61 12.93 20.26 16.97
4 (µs) 5.04 4.97 5.21 5.13

% in Tot. 57.2 32.3 25.4 8.3
ksm/zswap % in Tot. 36.9 19.5 12.3 6.1

of the setup step ( 1 ), because it is called once and the
latency cost is amortized over time. The submission step
( 2 ) takes ∼0.5 microseconds, e.g., only ∼2% of the total
latency of offloading the functions to SNIC. This latency
primarily comes from the time to send an RDMA send
request to SNIC.

The remote execution step ( 3 ) takes a total of 13–
20 microseconds depending on the offloaded functions.
Specifically, it spends 5–7 microseconds for RDMA-
copying memory regions from the server memory to the
SNIC memory. It spends the remaining 8–15 microsec-
onds for the SNIC CPU to execute the functions of ksm
and zswap. As the RDMA-copy latency is responsible
for a dominant fraction of the remote execution step,
we may consider making SNIC’s on-chip accelerators
execute these functions to further reduce the remote exe-
cution latency. However, the accelerators in the NVIDIA
BlueField-2 SNIC are connected to the on-chip PCIe in-
terconnect. Thus, it still takes a notable amount of time to
offload functions from the SNIC CPU to the accelerators
(e.g., ∼7 milliseconds for the compression accelerator),
which involves another DMA transfer within SNIC.

The completion step ( 4 ) consumes a notable amount
of time spent by interrupt handling and process context
switching between application and kernel feature pro-
cesses. During this step, the SNIC CPU remains active
after submitting the RDMA request until receiving an
acknowledgment from the server CPU. This waiting time
is included as part of the latency of the completion step.

7.5 Effectiveness of Kernel Features
It takes a longer time to offload functions of the kernel
features to SNIC than to run them directly on the server
CPU. This in turn increases the overall execution time
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Figure 6: The number of the compressed pages (line)
and the size of zpool (area) over time in sys-zswap and
sys-styx-zswap.

of the kernel features and may affect the kernel feature’s
effectiveness. We take zswap as an example and plot:
(1) the number of compressed pages and (2) the size of
zpool over time in Figures 6. Although the compres-
sion operation performed by the SNIC in STYX does
result in longer latency, the overall effectiveness and per-
formance of zswap are not greatly affected. First, we
observe that the size of zpool is not directly proportional
to the number of compressed pages. This is because the
compression ratio of pages varies across pages. Figure 6
shows that STYX-based zswap can provide a comparable
compression rate close to what zswap can, based on the
number of compressed pages. Figure 6 also shows that
with STYX, the rate of growth of zpool is only 2% lower
than that of the standard zswap implementation. This is
explained by run-to-run performance variations.

Note that both zswap saves the disk I/O as it
compresses the pages into swap memory and avoids
the direct swap out. We monitor the disk I/O at the
runtime of the workloads and see the overall disk I/O
consumption is 39% lower when zswap is enabled.
The disk I/O reduction is attributed to the swap-out
compressing cache in zswap. Upon deploying STYX,
the disk I/O throughput remains 35% lower than the
sys-no-mo case where no zswap feature runs. We see
that both sys-zswap and sys-STYX-zswap achieve
comparable disk I/O saving. In summary, STYX-based
zswap preserves the benefits of zswap while notably
reducing the disruption of co-running applications
caused by zswap.

7.6 SNIC Application Performance
Since SNIC has its own designated roles, we need to
analyze the impact of running STYX on performance of
applications that SNIC is designed to accelerate. Specifi-
cally, we choose regular expression matching (rem) as an

application; since it has been extensively used for various
network security applications and the NVIDIA BlueField-
2 SNIC provides a dedicated accelerator. Table 1 gives
an overview of the NVIDIA BlueField-2 SNIC. We take
the DPDK-Pktgen tool [52] on a remote server to send
network packets to the SNIC. We configure the SNIC and
DPDK-Pktgen to exercise the maximum 25Gbps network
bandwidth, and vary the size of packets to observe the
utilization of the SNIC CPU’s cores.

As the packet size increased from 128 bytes to 1024
bytes, the number of SNIC CPU’s cores required to
achieve the maximum rem throughput decreases from 5
to 1. Smaller packet sizes demand more packets per sec-
ond to use the full network bandwidth, which in turn re-
quires more cores. In our current implementation, STYX
on the SNIC utilizes only ∼30% of a single core of the
SNIC CPU, which is obtained after running the most
CPU-intensive function, page compression in zswap.
That is, the SNIC can handle STYX with little impact
on the performance of rem. Our experiment shows that
the SNIC running only rem gives a p99 latency of 13.83
microseconds, while the SNIC running both rem and
STYX offers a p99 latency of 13.85 microseconds. It also
confirms that the SNIC running both rem and STYX do
not decrease the maximum throughput of rem.

8 Related Work

Exploring the improved compute efficiency of heteroge-
neous computing, many past proposals have focused on
offloading CPU-intensive operations of user-space pro-
grams from the CPU to xPUs and FPGA. In contrast, rel-
atively less attention has been given to offloading CPU-
and memory-intensive operations of kernel-space pro-
grams from the CPU so far. Nevertheless, it has become
increasingly important, especially for datacenter servers
to cost-effectively reduce the high datacenter tax.

Some past proposals aim to make kernel features
run more efficiently. One pioneering proposal is
Pageforge [45], which implements a hardware mech-
anism in the memory controller to execute the page
comparison operations of ksm. It also exploits the Er-
ror Correcting Code (ECC) engine in the memory con-
troller to perform the checksum calculation operations of
ksm. Although Pageforge is effective, it requires hard-
ware changes in the memory controller. Lin et al. pro-
pose to accelerate checksum calculation using GPU [30].
XLH [35] enhances the page scan in ksm, utilizing hints
from guest I/O in a VM environment. It allows ksm to
identify mergeable pages earlier and merge more pages.
Nonetheless, it does not reduce either the consumption
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of the server CPU’s cycles or the pollution of its caches.
ezswap [25] estimates the compression ratios of pages
in advance, compresses only highly-compressible pages,
and store them in zpool. Classic zswap blindly chooses
pages to swap out and compress based on the LRU policy.
Song et al. propose an efficient way to enhance zswap by
skipping the compression of incompressible pages [46].
These optimizations are orthogonal to our work and can
be employed together with STYX.

Abeyrathne et al. [2] demonstrated the potential of
offloading kernel functions to FPGA by utilizing the
advanced features of the latest Xilinx FPGA with the
provided kernel modules. STYX instead deals with the
problems by elaborative and creative designs without
any limitation on the FPGA model. Roulin et al. [42]
examined the migration of the user-space network switch
daemon to the kernel space. This setup aims to grant
complete control of the routing ASIC to the Linux ker-
nel, thereby reducing the overhead of kernel-space and
user-space communication. However, this approach does
not offer a general solution to the communication be-
tween the OS kernel and the offloading device, as it is
specifically designed for network switch APIs.

There also have been many studies conducted on
SNIC to explore its capacity in various ways. Of-
floading various functions, such as distributed services
and intrusion detection, to SNICs is a promising ap-
proach to mitigate resource consumption on servers, en-
hance the performance of specialized operations, and im-
prove overall energy efficiency [9, 13, 15, 17, 29, 48, 50].
Specifically, LineFS [26] offloads distributed file system.
FlexTOE [44] offloads TCP to SmartNIC with flexibility
and high performance. Xenic [43] uses the LiquidIO 3
SNIC [33] for fast distributed transactions. Pigasus [55]
uses an FPGA-based SNIC to accelerate intrusion detec-
tion and prevention systems. STYX focuses on harness-
ing the capabilities of SNICs to effectively mitigate the
datacenter memory tax.

9 Conclusion

In this paper, we first showed that memory optimization
kernel features intensively consume the server CPU’s
cycles and pollute its caches when they are invoked. This
in turn leads to a significant increase in the p99 latency
of memory-intensive/latency-sensitive datacenter appli-
cations. Second, we proposed STYX as a solution to
minimize the consumption of server CPU’s cycles and
the pollution of its cache caused by these kernel features.
STYX accomplished these by leveraging the RDMA and
compute capabilities of modern SNIC, and offloading

the intensive operations of these kernel features to SNIC.
Lastly, we demonstrated the effectiveness of STYX af-
ter re-implementing two memory optimization kernel
features in Linux: ksm and zswap using the STYX frame-
work and running memory-intensive/latency-sensitive
applications. We showed that the systems with STYX-
based ksm and zswap achieved 5.6× and 2.9× lower p99
latency values than the systems with classic ksm and
zswap, while preserving the benefits of ksm and zswap.
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Abstract
Automated management of a physical network’s lifecycle is
critical for large networks. At Google, we manage network
design, construction, evolution, and management via multiple
automated systems. In our experience, one of the primary
challenges is to reliably and efficiently manage change in
this domain – additions of new hardware and connectivity,
planning and sequencing of topology mutations, introduction
of new architectures, new software systems and fixes to old
ones, etc.

We especially have learned the importance of supporting
multiple kinds of change in parallel without conflicts or mis-
takes (which cause outages) while also maintaining paral-
lelism between different teams and between different pro-
cesses. We now know that this requires automated support.

This paper describes some of our network lifecycle goals,
the automation we have developed to meet those goals, and
the change-management challenges we encountered. We then
discuss in detail our approaches to several specific kinds of
change management: (1) managing conflicts between multi-
ple operations on the same network; (2) managing conflicts
between operations spanning the boundaries between net-
works; (3) managing representational changes in the models
that drive our automated systems. These approaches com-
bine both novel software systems and software-engineering
practices.

1 Introduction
In large production networks, changes happen all the time.
Lots of research and development has delivered a wide range
of designs and products for managing changes to network
data planes and control planes. Requirements for scalability,
reliability, security, low cost, and rapid flexibility together
have made it essential to automate many aspects of network
management, but this work has mostly focused on managing
networks after the physical components have been deployed.
For example, Software Defined Networking (SDN) methods
do not directly address designing the physical wiring of a

network, or ensuring that the right switches and cables are
ordered from vendors, or connected to effect a design, or how
to sequence and schedule this physical work.

At Google, we have also found it necessary to automate
many abstract and physical aspects of a network’s full lifecy-
cle, including network planning (what networks do we need
to build and when, given capacity forecasts?), network design
(what specific switches and links do we need?), materials or-
dering (what specific part numbers do we need to order and
when, what cables need to be constructed?), network construc-
tion (where do data center operators need to place equipment
and cables?), firmware installation, physical validation (are
the links correctly connected and not suffering high error
rates?), network repair processes (which links/switches can
we safely drain before doing repairs?), etc. We must also
provide our automated control planes with accurate, detailed
“schematics” for the networks that they manage.

While initially we could perform Network Lifecycle Man-
agement (NLM) manually, in practice this was slow, error-
prone, and inflexible. Those problems worsened with increas-
ing scale, driving us to automate as much of this work as
possible. For example, designing optimal inter-block cabling
for a Jupiter fat-tree network is NP-complete, and a good ap-
proximation requires significant computation [31, 38]. Even
at much smaller scales, processes like correctly rolling out
router configuration changes are safest when they are care-
fully automated [23].

As we introduced systems to automate NLM, we discov-
ered that we had not sufficiently understood or appreciated
the difficulty of change management in this specific domain.
Certainly, change management has always been a problem
for network designers and operators, and much useful work
has been done on ways to manage changes to device configu-
rations (or SDN controller configurations) related to routing,
access control lists, and other post-deployment issues.

However, several other aspects of change management be-
gan to delay our progress and undermine the value of our
automation. These include managing conflicts between mul-
tiple operations on the same network; managing conflicts
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between operations spanning the boundaries between net-
works; managing representational changes in the models that
drive our automated systems; and introducing major changes
in our software infrastructure.

In this paper, we focus on these change-management chal-
lenges, the solutions we developed for them, and some of
the experience we gained. In particular, we address several
distinct (but interacting) aspects of change management:
Managing conflicts between operations: deciding what or-
der to do things in, and what process steps can be done in
parallel without conflicts. The physical lifecycle of a network
involves many steps with complex dependencies. In small
networks, changes are sometimes sufficiently rare and rapid
that they can be serialized without loss of efficiency. In a large,
frequently-changing network, multiple changes, sometimes
with extended execution time, must overlap, or else capacity
delivery and upgrades becomes unacceptably sluggish (e.g.,
see §10.1). We must prevent operational conflicts that lead to
outages, or even the risk of outages, because we want to do
these operations on “live” networks.

Planners must also be able to analyze potential sequences
of future changes to decide the best partial order, choose the
least costly option, or detect if a sequence would lead to an
infeasible or invalid state (we call this “what-if analysis”).
Planners also sometimes need to modify the order of existing
plans, as constraints or requirements change.

Therefore, a key contribution of this paper is the design of
a plan-management service (§5.2), and the abstractions that
allow us to explicitly represent how various future lifecycle
states depend on each other or can be done in parallel.
Representational change: Automation depends on machine-
readable data. Foundational to the work in this paper is the
MALT network-model representation [27], which we use to
represent the current, desired, and potential future states of
network topologies at many levels of abstraction. Planning
and design processes form a pipeline of successive refine-
ments of these models, and the generation of derived data,
such as instructions for creation and placement of cables, from
these models. Likewise, operational data, such as device and
SDN controller configurations, are primarily derived from
these models.

A notable challenge in modeling is that our continued in-
novation in network designs and components requires us to
rapidly evolve the MALT representation (e.g., Fig. 8). Previ-
ously, we found it hard to do this safely (without production
outages) and without constantly and tediously updating lots
of model-generating and model-consuming software; this se-
riously slowed our innovation.

We describe how we allow a wide variety of model-
consuming systems, built and maintained by many different
partner teams, to cope with evolution in our MALT represen-
tation and how we use it to encode specific designs, without
requiring unsustainable engineering efforts on the part of
those teams. (§7, §8)

MALT 
models

Model Query 
Service

SDN config 
generator

Switch config 
generator

Paths between
fabrics X and Y?

Enabled 
protocols on 

switch S?

Network link 
repairs

Physical devices 
spanned by link L?

Materials 
ordering

New fibers for 
deployment D?

Datacenter 
technicians

Port wiring for 
device D and 

peers?

High-availability
storage replicator

One-hop-connected 
off-site peers for 

cluster C?

Fleet efficiency 
dashboard

Deployed 
capacity between 

racks P and Q?

Figure 1: Some use cases for MALT models.

While this paper reports on our experience with large-scale
datacenter network infrastructures, we are also applying the
same tools and practices in several adjacent domains, such
as the management of WAN systems, of machines, and of
datacenter physical designs. Our approaches are useful at
smaller scales, too.
Ethical concerns: The systems described in this paper do
not handle or store any Personal Identifiable Information (PII),
and do not raise any ethical issues.

2 Context
This paper focuses on our Jupiter datacenter network fab-
rics [30, 31], and our B4 WAN fabrics [16, 18]. By “fabric” in
this paper, we generally mean a Clos network consisting of
many switches and links, with SDN controllers.1

We drive our network automation using machine-readable
representations, primarily the MALT representation (Multi-
Abstraction Layer Topology) representation, described in [27],
and summarized below in §2.1. We organize these represen-
tations as models of the network fabric’s topology and many
other static details.

Our automation covers many aspects of a network’s entire
lifecycle, including (as depicted in Fig. 1 and Fig. 2):

• Fabric planning: Our infrastructure planning team de-
cides when we need to build, expand, or decommission a
fabric. They express their high-level goals (where should
the fabric be built? Using what abstract architecture? Of
what size?) via MALT fabric intent models. These mod-
els have relatively few details. Planners might explore
several possible options for a fabric before committing
to a specific choice.

• Fabric design: Before we can construct a network, we
convert the fabric intent into concrete MALT models, via
a fully-automated process somewhat like compilation
of a program. The concrete models, after several levels
of refinement, fully define the structure of the network,
down to individual switches, fibers, racks, etc.

1We have other networks that use a more traditional design consisting of
large non-SDN routers; our management processes for those networks are
somewhat different.
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• Materials ordering: When we commit to a decision to
build or expand a fabric, we take the first (nearly) irre-
versible step of ordering materials (switches, fibers, etc.).
Since these are expensive, after this point we generally
avoid changing our intentions. The choice of exactly
what materials to order is an automated process driven
by MALT models and additional inputs.

• Fabric deployment: With the materials on hand, we can
build the network (place racks, switches, and SDN con-
troller machines, connect them with fibers, and test that
it all works). This step is carried out by humans, using
automatically-generated detailed human-readable plans
based on the MALT models. We also install the necessary
on-switch software using automated processes.

• Controller and switch configuration: Once the net-
work is built, we automatically generate SDN controller
and switch configurations from the MALT models, with
additional configuration inputs.

• Operations: Our operators manage the run-time behav-
ior of a network via various tools and services. For exam-
ple, they might need to “drain” part of a fabric to carry
out repairs or upgrades, and then “undrain” it later. The
systems that carry out these operational changes are also
driven, in part, by MALT models. We also have automated
control planes (e.g., [22]) that depend on structural in-
formation expressed using MALT.

• Health and repairs: We have automated systems to
decide whether the network is unhealthy, to diagnose
the causes of problems, and to help us understand what
systems would be affected by a faulty (or drained) com-
ponent. These all use MALT as some of their input data.

It should be obvious that we rely on accurate and up-to-date
MALT models for virtually all of our network management
automation. The challenges discussed in this paper are all
related to preserving that accuracy when our systems are
constantly evolving.

2.1 Background on MALT

We briefly summarize the aspects of MALT [27] necessary to
understand this paper.

MALT is an entity-relationship model representation, not a
database. In an entity-relationship model, entities represent
“things,” which can be abstract (e.g., an entire fat-tree net-
work) or quite detailed (e.g., a specific strand of fiber), or
in-between (e.g., an IP adjacency aggregating multiple fibers).
Entities have “kinds” (types), names, and attributes, Entities
are connected via relationships, which have kinds, but neither
names nor attributes.

A collection of entities and relationships forms a MALT
model. We divide models into shards, with some shard-
specific metadata. Model shards are typically (but not always)

aligned with physical infrastructure boundaries at the city, re-
gion, or building scale. Some shards have millions of entities.
Please refer to [27, Fig 3.] and [27, Appendix A] for example
MALT models. Detailed, machine-readable versions of these
examples are available for download [13].

We normally store shards in MALTShop, a purpose-built
system that enables easy sharing of models between systems,
which depends on naming, access control, and consistency.
Shards in MALTShop have names (similar to UNIX path-
names) and access-control lists (ACLs). Every update to a
shard creates a new, immutable version, with an immutable
version number. MALTShop uses a copy-on-write mechanism
to efficiently store many versions of a shard that is being
incrementally updated.

MALTShop supports a generic query language, which walks
an entity-relationship graph to extract a chosen subset model.
It allows one query to span a set of multiple shards.

To manage evolution, each shard can assert compliance
with one or more profiles. A profile is essentially a contract
between a shard’s producer and consumers that the shard
conforms to a set of predicates. Profiles are versioned; when
we need to change how we represent a network, we signal
that by creating a new version of the corresponding profile.

Our planners, designers, and operators usually want to think
in terms of the high-level abstract designs of these networks
(e.g., a Jupiter network is a collection of blocks connected by
spine blocks), rather than in terms of specific switches and
fibers; the support for multiple abstraction layers in a single
MALT model enables this separation of concerns.

2.2 Why automate?
Our work was motivated by our large, heterogeneous net-
works, but we believe this kind of automated approach would
be valuable for a broad range of network operators (although
we realize that the market for full-lifecycle automation soft-
ware may be small).
Automation enables design flexibility and experimenta-
tion. The research community has generated a wonderful
range of scalable network structures, including Fat-Trees [1],
expander graphs [32], F10 [25], etc. These designs exploit
path redundancy to support high bandwidth and availability
at relatively low cost.

However, most non-hyperscaler enterprises appear not to
be using modern multipath networks. In fact, the dominant
provider of network hardware recommends a simple three-
layer design with large “core” switches at the top, relatively
large “aggregation” switches in the middle, and smaller “ac-
cess” switches (e.g., top-of-rack or ToR switches) at the bot-
tom [8] and other vendors recommend two layers [3].2 Why
do most enterprises avoid multipath networks? Our (admit-
tedly anecdotal) understanding from several experts is that

2These are old citations; the age of these documents may reflect an
inherent stasis.
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most enterprises lack the design tools that they would need
to construct and maintain fat-tree networks, let alone less-
regular designs such as expander graphs. We speculate that
the low adoption rate for research-generated network designs
is at least partially due to a lack of tooling, especially to sup-
port safe and frequent changes. (There are, of course, other
reasons.)
Risk management. Hyperscalers use multipath network
topologies [2, 31, 34, 38] also because they support incremen-
tal expansion of, and upgrades to, live networks. The need for
zero-downtime changes to the structure of these networks is
driven by Service Level Objectives (SLOs) targeting 99.99%
or better availability, which allows at most a minute of down-
time per week. Some providers hope to achieve 99.999%
availability, allowing just 5 minutes of downtime per year.

Most enterprise networks are more static than ours; every
change creates the risk of a large-scale outage, so operators
are extremely change-averse. Their use of non-multipath de-
signs leads to less structural redundancy, which we and other
hyperscalers exploit to allow frequent changes at relatively
low risk. Our automated tooling both indirectly supports low-
risk changes by enabling the use of fat-trees, and directly
supports it by allowing us to validate all low-level changes
against higher-level intent. Smaller enterprises would benefit
from using such automation to mitigate change-management
risks; e.g., assigning the same IP address to two different
endpoints (a mistake we have made in manual workflows).
Addressable markets. Our work focuses on automated op-
erations on large and frequently-changing networks. Many
networks are too small or static to require such automation;
how many enterprises actually have large networks? Data on
this topic is difficult to find, often because it is only available
via high-cost market-research reports. While the number of
hyperscalers is small, when we include software-as-a-service
and other forms of cloud, there are at least dozens of such
providers [29]. The number of hyperscaler data centers is
also growing consistently [9]. However, there are many other
large non-hyperscaler data centers. There are also thousands
of smaller “Points of Presence” (POPs); a typical pattern for
both large and small enterprises is to build and maintain small
fabrics in many POPs, motivating frequent use of design and
turnup automation.

Takeaway: Many – perhaps most – network outages result
from human error, often associated with physical-network
changes [15, 21]; automation with a specific focus on change
management can make these changes faster and more reliable.
It also enables increased agility and innovation.

2.3 Related work
Prior work on network management has mostly focused on
network device configuration management, such as configu-
ration language design [7] and configuration generation for
existing networks [5, 24, 34]. Although our networks’ config-
urations are derived from network models, our focus here

is on planning for topology designs, and for the physical
construction, modification, and eventual decommissioning
of networks, as well as for their day-to-day operation.

Most prior work (both academic and commercial) has also
typically focused on managing the network as it is now, or on
verifying near-term intent (i.e., to be implemented as soon as
possible). This includes verification of data-plane [19, 20, 36]
and control-plane [4] properties.

In contrast, this paper addresses the challenges of planning
for future physical states of a network, especially on how to
manage sequences of dependent changes in the face of con-
founding factors, and on how to validate both individual states
and sequences of changes. We note that validated, accurate
topology models can enable verification of control-plane and
data-plane layers.

Some prior work (e.g., [32, 37]) discussed how topology
design affects the complexity of lifecycle management, but
did not address how to automate the management processes.

Network operators often expand network topologies to aug-
ment capacity [37]. Prior work [38] described how we expand
live data center networks, through a layer of patch panels; it
uses an integer linear programming algorithm to minimize
the number of wires to move, while also maintaining suffi-
cient bandwidth through multiple stages (so as to avoid packet
loss). In this paper, we address how those multiple stages are
planned and coordinated.

3 Change management challenges
We start by describing some of the many specific challenges
in change management.

3.1 Orchestration of physical changes
In traditional, non-automated network management, changes
to the physical infrastructure of the network (e.g.,
adding/moving/removing a switch or link) are typically
treated as risky operations. Network operators often limit
these to maintenance windows, during which some or all of
the network becomes unavailable – and because these win-
dows are disruptive, they can only be scheduled rarely, and
then must be carried out as quickly as possible. This approach
supports neither rapid evolution nor high availability.

More modern, scalable network designs such as Jelly-
fish [32] and other expander graphs, Facebook’s Fabric [2],
and Jupiter [31] use “multipath” designs that exploit path
redundancy to support high bandwidth and availability at rela-
tively low cost. Multipath topologies also support incremental
expansion of, and other upgrades to, live networks, because
their redundancy allows “draining” parts of the network dur-
ing these operations.

For example, the Jupiter architecture consists of several
types of blocks, each of which is a Clos fabric. Some of these
blocks (“pods”) provide connectivity to racks of machines via
Top-of-Rack (ToR) switches; some (“fabric border routers”,
or FBRs) provide connectivity to WANs and other Jupiters;
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some provide connectivity between other blocks in the same
Jupiter.3 This modular architecture allows us to build a large
fabric (dozens of blocks) incrementally, rather than paying
the capital costs and energy of building an entire fabric before
we need all of it. Modularity also allows us to add blocks built
from newer (faster/cheaper) switches and links to an existing
fabric. In order to manage the evolving connectivity between
blocks without having to completely rewire everything, we
use a layer of patch panels [38], but even so, adding or remov-
ing a block requires significant human effort to reconfigure
the patch panels.4

When we first started automating operations on Jupiter
networks, we ran into the issue that each change to a fabric
typically depends on the previous changes. However, our
original topology-model representation only allowed us to
represent one “intended” view of the network, so we had
to serialize changes to a fabric: generate an intended model
for one change, then carry out that change, and only then
could we generate a model for the next change; the resulting
delays become nearly intolerable. Our use of MALT solved
that problem, because we could create multiple independent
versions of a fabric’s model in advance.

However, this still left us with the problem of managing the
dependencies between a sequence of models – for example,
ensuring that two different changes did not use the same
switch port for conflicting purposes. Our solution to this kind
of conflict avoidance serializes changes by means of a fabric-
level lock, essentially a mutex.

Takeaway: To help us discover and avoid such conflicts as
quickly as possible, we have now formalized the relationships
between multiple plans for a given fabric using the concept
of PlanPoints, described in §5, and managed by a service,
TopoPlan (§5.2).

3.2 Representational change
Our network management systems are highly automated and
thus heavily dependent on machine-readable data. This data
is primarily represented in MALT, on which we focus in this
paper, but we use several other standardized representations,
such as OpenConfig [28] for telemetry. These representa-
tions must evolve over time, to support novel network de-
signs, new hardware, new management concepts (e.g., failure-
independent “zones” for high availability), etc.

For example, initially we did not model connectivity be-
tween machines and top-of-rack (ToR) switches, so we did
not model machines. However, newer policies for machine-
specific security and rate-limiting required authoritative intent
for these connections, so we added machines to MALT models.

3The original Jupiter design incorporated “spine blocks” to form a folded
Clos connecting the pods and FBRs. More recently, we connect those blocks
directly without using spine blocks, but sometimes the pods themselves
provide transit routing between other blocks [30].

4Our more recent deployments replace patch panels with optical circuit
switches, which avoid much but not all of the human effort for reconfigura-
tion [30].

Table 1: Acronyms and terms used in this paper.

Acronym/
term Definition
DCNI Data Center Network Interconnect
MALT Multi-Abstraction-Layer Topology representation

MALTShop A storage system for MALT
MSID Model-Set ID

MBS Model-building service
MDS User-facing design service
MQS Model-query service
NPI New-product introduction

Block Modular unit of fabric design
TopoPlan Change-management service

UIM Unified Intent Model
PP Patch panel

PoR Plan-of-Record

Consequently, a consumer querying a model for “all devices
connected to ToR T ” now receives not just the connected
fabric switches, but also the connected machine entities. In
practice, we’ve found that the complexity and level of detail
in our models tends to increase over time.

While we attempt to make most representational changes
backward-compatible, this is not always possible; sometimes
our best guesses about what matters are wrong. We have
learned that seemingly-innocuous changes lead to outages,
because of the many clever ways in which programmers acci-
dentally build fragile assumptions into their code.

Since our overall system-of-systems cannot have any sig-
nificant (multi-minute) downtime, when we need to introduce
a new MALT profile (see §2.1) to signal a representational
change, we cannot insist that all producers and consumers
cut over at the same instant. There are many such systems
(especially model consumers) with their own release cycles
and constraints on engineering resources. Beyond that, any
such change is risky; we would not even want to switch to a
new profile without carefully-monitored “canaried” rollouts.

Takeaway: For these velocity and safety reasons, we found
it necessary to decouple profile feature introduction from
model-reader adoption of such features. The previous paper
on MALT [27] briefly discussed our approach to profile evolu-
tion. In §7 and §8.2 we expand that discussion, showing how
we use a layer of abstraction to decouple many consumers
from the details of profiles.

4 Model-generation systems overview
To help readers understand the implications of managing con-
flicts between, and changes to, our network plans, we first
describe how we generate detailed network models. Appen-
dices §A and §B describe model generation in more detail.

Fig. 2 summarizes the model-generation process, and Ta-
ble 1 summarizes acronyms and terms used in this paper. First,
a model writer (e.g., the network planner) initiates a model
change by sending an RPC request 1 to a “design service,”
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MDS. MDS insulates humans and external systems from a
need to understand the details of UIM or TopoPlan (§5.2).

MDS is responsible for (i) translating an imperative user-
level request (e.g., “add a new block to a Jupiter fabric”)
into a sequence of declarative high-level intent changes, and
(ii) managing request concurrency (for instance, we preclude
certain types of requests from simultaneously modifying the
same fabric, and thus sequence those requests with a lock).
MDS also collects additional information (e.g., the available
IP prefixes) necessary to create the UIM changes.

MALT Shop (model storage service)

V4.0 profile ...

Planning Service

Design 
Service

Intent Deltas

A1 A2 A3Future 
Plans

The PoR 
Plan B1 A3A1 C2 A2 ...

Commit

Models (both Planned 
and HEAD)

Promote 
(to HEAD)

Build Service
(Model 

Producers)

Query
 Service

Model 
Writer

Evaluate 
(Planned)

Read

Model 
Reader

Write

V4.1 profile V5.0 profile

Various automated workflows2

1

3

7
4

5

6

Figure 2: Model-generation systems.

We express model-generation intent in a Unified Intent
Model (UIM), a form of MALT that abstractly represents the
high-level graph of the global network at a given point in time.
MDS represents intent changes as deltas to UIM.

This use of abstraction is an improvement on our prior sys-
tem, in which all network changes consisted of precise order-
ings of low-level imperative mutations. Those were framed in
terms of low-level details, such as the exact type and number
of switches and their link-level connectivity; that approach
bound decisions too early, making it hard to re-order a se-
quence of plans. Abstraction helps avoid this early binding.

Once MDS has mapped a request to a sequence of intent
changes, it conveys 2 this sequence to the TopoPlan plan
management service (§5.2). TopoPlan supports parallelism
between high-level requests by allowing interleaving of intent
changes when they do not conflict. TopoPlan also supports
“what-if” analysis, by maintaining multiple (sometimes thou-
sands of) branches of possible future states.

Whenever we need to build concrete MALT models from a
UIM plan (e.g., for physical installation), TopoPlan invokes 3
MBS, a “build service” that compiles the high-level intent to
MALT models, which are stored 4 in MALTShop. Fig. 2 shows
that we simultaneously generate semantically-equivalent con-
crete models in multiple profiles (see §2.1) – e.g., “V4.0,”
“V4.1,” “V5.0” – to support profile evolution (see §7). For
more details on MBS, and many more details on the model-
generation process, including examples of UIM, see §A and
subsequent appendices.

Models represent the intended network, so mismatches

against actual state represent deployment errors (e.g., mis-
cabling, etc.), and we correct reality to match the plans. We
use various mechanisms to detect these mismatches, such as
neighbor discovery via LLDP (IEEE 802.1AB [17]).

Model readers can query 5 these generated models via
MQS, a semantic Query Service that also helps support evolu-
tion (see §8).

A single high-level operation may invoke these processes
multiple times over the course of weeks or months. For in-
stance, when we expand a live Jupiter fabric, we need to do
this in several stages, to ensure the network always has suf-
ficient residual capacity during each expansion step. This
means we need to generate MALT models for each intermedi-
ate stage.

Network model mutations are not real-time. We have safety
checkers to block planned changes if they would violate con-
sistency checks, or capacity thresholds designed to leave room
for switch or link failures. Systems with real-time goals, such
as our SDN controller [11], maintain internal representations
of network links, initialized from MALT models.

5 Physical-change plan management
To illustrate the problems of managing concurrent future
changes, consider a simple example network with two
switches A and B connected via four links (Fig. 3(a)). This
network is currently carrying live traffic; hence we call the
corresponding MALT representation of the network the “live”
model. We would like to expand the network capacity by
adding a third switch C (Fig. 3(b)). We call the MALT repre-
sentation of this future network the “planned” model.

Switch A
A1 A2 A3 A4

Switch B
B1 B2 B3 B4

Switch C
C1
C2
C3
C4

Switch A
A1 A2 A3 A4

Switch B
B1 B2 B3 B4

(a) Current State (b) Planned Future State

Figure 3: Models for current and planned network.

For several reasons, we want to generate a planned model
well in advance. First, it allows us to accurately itemize the
physical resources (switches, racks, fiber optic cabling, etc.)
required to support switch C. Many of the resources have high
costs and lead times: purchasing too much in advance wastes
money, while purchasing too little or too late slows our ability
to deliver network and compute capacity.

Second, modeling in advance allows us to simulate the
future network, and validate it against reliability requirements.
E.g., if we must maintain ≥ 75% of normal capacity during
expansion, we must change the live network in stages, as
shown in Fig. 4. We cannot directly switch between the initial
and planned states, which would move two links from switch
A (and B) simultaneously, causing 50% capacity loss.

640    2023 USENIX Annual Technical Conference USENIX Association



Switch A
A1 A2 A3 A4

Switch B
B1 B2 B3 B4

Sw.
C

C1
C2
C3
C4

Switch A
A1 A2 A3 A4

Switch B
B1 B2 B3 B4

(a) Initial
State

(c) Final
State

Switch A
A1 A2 A3 A4

Switch B
B1 B2 B3 B4

Sw.
C

C1
C2
C3
C4

(b) Intermediate
Statestep 1 step 2

Figure 4: Two-stage migration from initial to final state.

We can also analyze or validate multiple options for a future
plan, on metrics such as total cost of ownership (TCO).

5.1 Challenges with concurrent plans
Concurrent management of multiple plans creates several
challenges: scaling issues, and (worse) the risks of incorrect
planning decisions made because of stale models.
Scaling concurrent plans across a large and changing net-
work: While one could use ad hoc methods to manage a set
of concurrent plans, such as creating copies of future models
in temporary storage, that quickly runs into scaling issues.
Because our network is large and frequently changing, we
have to manage a large set of concurrent plans. This creates
two main problems: sequencing and validation.

Switch A
A1 A2 A3 A4

Switch B
B1 B2 B3 B4

Sw.
C

C1
C2
C3
C4

Switch A
A1 A2 A3 A4

Switch B
B1 B2 B3 B4

(a) Initial
State

(c) Final State Q

Switch A
A1 A2 A3 A4

Switch B
B1 B2 B3 B4

(b) Final State P

Figure 5: Two conflicting updates, P and Q.

For example, consider a planned change P that rewires
the connectivity between switches A and B (Fig. 5(b)). This
change conflicts with another planned change Q (Fig. 5(c)) to
add switch C on ports (A3, A4, B3, B4), and thus we need to
decide whether P or Q should come first.

However, different teams may be making the concurrent
changes without coordinating, and the resultant sequence or-
der can affect materials-ordering, instructions for technicians,
etc. Worse, the live model is continually changing, and a
fabric-level change that is applied to the “live” model (e.g.,
upgrading one or both switches) may invalidate the precondi-
tions for P and Q, such as port reservations.

When each fabric has dozens of blocks and hundreds of
switches, and must evolve rapidly to meet business needs
(via expansions, upgrades, etc.), enforcing serialization on
operations such as P and Q creates painful drag. While manual
management of operational concurrency might be practical
for just a few fabrics, an enterprise with dozens or hundreds
of fabrics would find that unsustainable. Therefore, we need
automation-friendly support: for tracking plans, and how they
are ordered and sequenced; for rapid conflict-detection and

plan-validation; and for speculative analysis of multiple future
options (e.g., to cope with supply-chain issues).

Switch A
A1 A2 A3 A4

Switch B
B1 B2 B3 B4

Sw.
C

C1
C2
C3
C4

Switch A
A1 A2 A3 A4

Switch B
B1 B2 B3 B4

(a) Initial
State

w/failure

(c) Final
State

Switch A
A1 A2 A3 A4

Switch B
B1 B2 B3 B4

Sw.
C

C1
C2
C3
C4

(b) Unsafe
Intermediate

State
step 1 step 2

before new 
links are 
connected

Figure 6: Stale models might lead to an unsafe state.

Stale models: The live network can change unexpectedly,
rendering plans stale, along with any derived actions we might
have taken. For instance, if a link is removed for repairs
(Fig. 6(a)), the initial and final states are both “safe” because
they meet our 75% capacity threshold. However, the transition
to the intermediate state (Fig. 6(b)) creates an unsafe state
(only 50% capacity) while we are changing links. Unless we
update and revalidate the models for all intermediate states,
we would not detect this risk.

Advance planning can also lead to confusion if, during
the long period between plan creation and implementation,
constraints change – e.g., supply-chain issues force the use of
different hardware.

Thus, given hundreds of potentially-conflicting changes
that need to be sequenced, and validated for safety or TCO,
manual management of multiple models, or managing place-
holder elements in a single “live” model, quickly becomes
intractable.

5.2 Plan management service: TopoPlan
To address the many challenges of plan management, we
developed TopoPlan, analogous to a software-development
version control system (VCS). A network change, specified
as patches to high-level intent, may be directly applied to the
live (i.e., HEAD) intent. However, the TopoPlan service also
allows network changes to be sequenced in branches.

As in a VCS, changes within a branch can be added, re-
moved, reordered, or merged, while branches can be rebased
or merged. Branches can represent highly speculative changes
(e.g., hypothetical “what-if” scenarios), authoritative changes
(e.g., scenarios which we have financially committed to), or
changes that are somewhere in between.5

Concrete MALT models can be compiled for any change
in any branch, allowing us to analyze the network-capacity
and TCO implications of any hypothetical future network
state. TopoPlan also allows us to detect conflicts over limited
resources – e.g., two plans trying to use the same switch port
for different purposes.

5In contrast to traditional VCSes, which are geared toward human users,
are text-based, and have change-rate and branching limits, TopoPlan was built
with automation in mind, with arbitrary branching, and focuses on sequencing
changes to high-level intent, using Protobuf-based intent-patches with special
merge semantics [14].
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We show concrete examples in §10 of how using TopoPlan
greatly improves our deployement and operational efficiency
through project pipelining, stacking planned changes, and
enabling accurate material orders for future projects.
Plans and PlanPoints: TopoPlan maintains multiple
branches of possible future state. A single future change to
the network is represented by a PlanPoint, which consists of
(i) deltas to the UIM, and (ii) a best-estimate timestamp at
which the changes will be realized. A series of PlanPoints is
called a Plan, which groups together a set of network changes
into a timeline. A Plan consists specifically of (i) a sequence
of PlanPoints, and (ii) a baseline snapshot of MALT models to
which the PlanPoint deltas are to be applied. MALT models
can be compiled for every PlanPoint in the Plan simply by
starting with the UIM of the baseline, and, for each PlanPoint,
applying its UIM deltas and compiling concrete MALT mod-
els: we term this process evaluating a Plan. The compiling
process internally invokes the model generation service, as
discussed in §4, and attaches the generated concrete models
to the PlanPoint.

Add 10
A -> B

04/2021

Add 20
A -> C

07/2021

Add 15
A -> B

06/2021

HEAD

03/2021

PoR

Plan 1

Add 5
B -> C

05/2021
Plan 2

Add 10
A -> B

04/2021

Add 20
A -> C

07/2021

HEAD

03/2021

Add 5
B -> C

05/2021

HEAD

04/2021
Promote to HEAD

Add 5
B -> C

05/2021

Commit to PoR

Add 15
A -> B

06/2021

PoR

Plan 2

Plan 1

"Add X" means "Add X 
units of capacity between 
these endpoints"

Figure 7: TopoPlan plans (left) and operations (right).

The Plan-of-Record, or PoR, is a canonical branch, which
stores changes that we have committed to with a high degree
of certainty (i.e., we have ordered materials that we really
prefer not to waste). In the example of Fig. 7 (left), the PoR
contains two PlanPoints that add capacity between B4 sites
A -> B and A -> C. Plan 1 proposes increasing the capacity
augment between A -> C from 10 to 15 units, while Plan 2
proposes an additional augment between B -> C. Note that,
in this example, Plan 1 is “baselined” from a PlanPoint on the
PoR, rather than from HEAD.
Committing and promoting plans: Changes on a non-PoR
branch can be committed (Fig. 2 6 ) to the PoR (Fig. 7 (right))
if the change does not conflict with other changes on the PoR,
and when infrastructure planners sign off on the financial
readiness of the change.

Only entire Plans can be committed to the PoR. When a
Plan is committed, all its PlanPoints are validated against
those on the PoR, and on success they are copied to the PoR.
Conflicts are automatically detected by TopoPlan, but manu-
ally resolved by backing out, fixing a plan, and retrying. For
example, in Fig. 7 (right), attempting the commit operation
might reveal that we cannot add 5 B -> C units because we
have already committed all free ports at C to the 20 A -> C

units. We currently rely on human planners to make prior-
ity decisions outside TopoPlan, although automating some of
these decisions is clearly worthy of future work.

Once the changes in a PlanPoint are ready to be realized in
the physical network, the PlanPoint can be promoted (Fig. 2
7 ) to HEAD (the intent representing the current desired

state of the network). Promoting a PlanPoint applies its UIM
change directly to HEAD, compiles HEAD to concrete MALT
models, and removes the PlanPoint from the PoR.

Concrete MALT models can also be generated on demand
for any PlanPoint on any branch (including PoR). These mod-
els can be used for what-if analyses, for example.
Changing plans: PlanPoints can be added, removed, edited,
reordered by changing their timestamps, or merged by col-
lapsing their UIM deltas. Plans can be created, deleted, or
rebased by changing their baseline MALT snapshot. Both Plans
and PlanPoints are versioned, and their version numbers are
incremented on any of theses changes.

Every time HEAD is updated (100s of times per day),
TopoPlan rebases the PoR to that new version of HEAD and
does light-weight validation to ensure that no highly-certain
PlanPoints are invalid. We also perform heavy-weight POR
evaluation periodically, but not on every change to HEAD.

We also support backtracking and regeneration of a
“known-good state.” Thankfully we rarely use this; the com-
plexity of backtracking is sometimes high, especially for plans
near their deployment date, since dependencies can force us
to unwind multiple changes. Undoing physical changes is
expensive and risky, so we use multi-layered validations, as
described later in this section, to avoid backtracking.
Lightweight operations: Network changes that are typically
planned in advance are expensive capacity-related operations.
Most network changes, however, are small-scale local up-
dates (e.g., link repairs, ToR modifications); such changes
are typically done immediately and are thus applied directly
to HEAD. As a performance optimization, these direct-to-
HEAD changes are typically not specified as PlanPoints (and
thus skip the PoR), as they almost never affect future planned
capacity changes.
Validations: Because compiling concrete MALT models
could be slow and must be performed in sequence, we can
perform a lighter-weight UIM validation operation on a Plan,
which computes and validates the UIM for every PlanPoint
without full MALT compilation. This runs intent-validation
suites for each network and interconnection intent, first sepa-
rately (to ensure certain properties and assumptions are met),
and then globally (to ensure the UIM intents are consistent).

We also periodically run a detailed validation of the con-
crete models generated from the PoR PlanPoints. This vali-
dation is too expensive to run on every commit, so we made
a tradeoff between speedy commits and full validation. Full
validations still happen often enough to prevent costly mis-
takes. When our automated validations detect a conflict be-
tween plans (e.g., a missed dependency between PlanPoints
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that would lead to double-allocation of a port), this usually
requires human intervention, to modify one or more plans.
Automated resolution is an intriguing research topic.

6 Model generation challenges
Our model-generation system faces several challenges:
Design complexity: Some aspects of our network designs
are complex, requiring deep domain knowledge to convert
abstract intent into concrete models. In a few cases, e.g., the
Data Center Network Interconnect (DCNI) layer of connectiv-
ity between Jupiter aggregation blocks and spine-blocks, the
design is complex enough to require algorithmic support, such
as the ILP solver we use to “restripe” the DCNI on changes,
while minimizing unnecessary changes to wiring [38].
Heterogeneity: We often add new technologies to our net-
works – we call these new product introductions (NPIs). NPIs
sometimes involve novel concepts and so require represen-
tational change (see §7). We add NPIs without retiring old
products during their useful lifetimes, so our networks are
heterogeneous in many design details; our management sys-
tems must cope with that. Similarly, we need to be able to
rapidly evolve our model-generation system without creating
an un-maintainably complex code base.

These challenges, especially our need to support NPIs,
pushed us to adopt a layered, modularized design for our
model-generation system.

We compose our network designs from fundamental units
(“blocks”, e.g., server-aggregation blocks and spine-blocks
in Jupiter, and B4 blocks [16, 18]). Each block could contain
hundreds of chassis and tens of thousands of ports and internal
links. A complete data center fabric is composed of up to
hundreds of blocks, along with a DCNI. Our fleet has several
dozen distinct block types, and each Jupiter or B4 network
can have several different generations of blocks.

Our model-generation system uses a modular framework to
generate product-specific block-level models, plus additional
modules to compose these blocks into a consistent, complete
network. For each block type, we have a topology “build
unit”: a software component that knows how to instantiate
that block from high-level intent. These block-level build
units are expressed as rules in a concise topology-description
language. For many NPIs, we need only create a slightly-
modified version of an existing build unit. Other build units,
written in traditional programming languages, create inter-
block (DCNI) links, assign IP addresses, or validate that the
generated models are correct, etc.

When TopoPlan invokes MBS (Fig. 2), MBS creates a
dataflow graph, in which the processing steps are the appropri-
ate build units, the input is the intent in UIM, and the outputs
are detailed MALT models. MBS constructs this dataflow graph
dynamically, to account for changes in our overall network
design (the details are beyond this paper’s scope).
Scale: Our dataflow graphs are expensive to evaluate, requir-

ing GiBs of I/O and many minutes of CPU time. Concrete
MALT models are highly detailed, since they must represent
the full underlying detail of our networks. A MALT model
representing a single data center network can have millions
of entities and relationships, and we have many data centers.
Our WAN models have similar scale.

Therefore, MBS uses caching to avoid recomputing
previously-generated models. Truly global changes to the
Google network are rare and most changes are highly local,
so we typically see cache hit rates above 99%, reducing the
graph execution costs by two orders of magnitude.

7 Representation evolution
While MALT provides a common, flexible representation, we
sometimes need to change its schema, or how we use it, to
support NPIs or new management processes.

NPIs generally require changes to model generators, but
not always to model readers. For example, a link-speed up-
grade from 100G to 200G that otherwise involves no topo-
logical changes could be represented by changing the physi-
cal_capacity_bps attributes of some EK_PORT entities; this
change might not require any updates to model readers.

Switch A

EK_PORT/A1 RK_CONNECTED EK_PORT/B1

A1
A2 Switch BB1

B2

EK_PORT/A1 RK_CONNECTED C1
C1  RK_CONNECTED EK_PORT/B1

Switch A A1
A2 Switch BB1

B2
C1

C2

(a)  Before Profile Change (b)  After Profile Change

Figure 8: MALT representation of a simple network before and after
a profile change.

However, many changes do require changes to readers.
Fig. 8 illustrates this with a simplified example, where we
add new devices (C1 and C2) between switches A and B.
Suppose a model reader wants to query what peer switch port
is connected to port A1 on switch A. With the old design
(Fig. 8(a)), a query could just follow the RK_CONNECTED
relationship from A1 to B1. With the new design (Fig. 8(b)),
that query would only reach C1, probably not what the query-
author intended; the model reader would have to be updated.
Because model readers vastly outnumber model writers, such
changes are disruptive. Further, a confused model reader (e.g.,
the configuration generator for our SDN controllers [11])
could cause outages. So, if we fail to realize that a reader
needs an update, these changes are also risky.

We mitigate the risk by signalling change through the use
of profiles. A profile [27] is effectively a versioned contract be-
tween model generators and readers, attached to each model.
When a generator changes its output in a way that might
confuse readers or require updates, we increment the pro-
file version. Thus, a reader can detect during testing when it
encounters a model with a profile it cannot understand.

MALT profiles by themselves do not avoid the need for
updating model readers. Churn due to profile change was a
major problem once MALT became widely adopted, which
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led us to two requirements: (i) Model readers should have
to change their code as little as possible (ideally, not at all)
in response to profile changes, (ii) We must provide strong
guarantees that migrating to a new profile will not result in
regressions to model readers.
Key design choices. To avoid the need to update both model
generators and all consumers at the same time, our generators
produce multiple semantically-equivalent models, with dif-
ferent profiles, from the same intent (the example in Fig. 2
shows models in versions V4.0, V4.1, and V5.0). This allows
some consumers to start testing against a new profile, while
most consumers read from the most recent “released” profile
(a few stragglers may use older profiles).

To simplify or avoid the code-update problem for most
model consumers, we developed a semantic query engine,
MQS (§8).

8 Model query service
MALT supports querying models via raw traversal-based
queries [27]. However, profile changes could break raw MALT
queries (see §7). Generating multiple profile versions miti-
gates this, but migrating to a new profile version is toilsome:
(i) Raw MALT queries are structural rather than semantics-
based; (ii) Client code does not always include regression tests
for new profiles, and when it does, it is difficult to narrow
errors to specific queries; (iii) Client code typically queries
for specific data (e.g., ports within a rack), but raw queries
return full MALT subgraphs (e.g., all the devices, trays, ports
and their relationships), making it hard to predict whether a
profile change will affect a given client.

This motivated us to develop MQS, an abstraction layer
above MALT query, to minimize profile evolution toil. Stone-
braker et al. discuss a somewhat different solution to the
problem they call “database decay” [33].

8.1 Semantic queries
Instead of writing code that explicitly traverses the MALT
graph, as was previously done, developers now write code
in a new language that captures the semantics of their query
(e.g., “give me all peer ports connected to this device”) and
hides the mechanics of the MALT graph traversal (e.g., “follow
RK_CONNECTED relationships on this device’s ports until I
reach other ports”). The underlying implementation of these
“semantic queries” might be different for each profile; this is
hidden from the caller.

Semantic queries are recorded in a registry, allowing us to
automatically test that they return the same (or at least, consis-
tent) results across profiles and data sets. This testing frame-
work automatically detects unexpected changes in query re-
sults for any potential profile or data change at change-review
time, protecting model readers well before such changes can
affect production.

8.2 Canned queries
MQS offers a canned query API. A canned query is a named
function, with defined semantics that are profile-independent.
Canned queries are registered with MQS. When called to
execute a canned query, MQS translates it to an appropriate
MALT query, executes it, and processes the returned subgraph
to return a set of entities (see Fig. 9).

A C

D E

AB C

D E

MALTShopRaw MALT Queries

Result: subgraphsMQS

Canned Query APIs

Semantically 
Required Entities

Model
Readers

D E

Figure 9: An MQS canned query converts a subgraph to just the
entities that are semantically useful to the caller.

Several properties of MQS enable it to return consistent
results across multiple profiles, without client code changes:
(i) Canned queries can use different MALT queries for different
profile versions. (ii) Canned query registration includes seman-
tic tests, allowing centralized regression tests on upcoming
“beta” profile versions. (iii) Canned queries return entities with
attributes restricted to those that are relevant to clients. This,
combined with returning entities rather than MALT subgraphs,
greatly reduces the API surface of a model query, allowing
easier testing and query evolution.

We run several kinds of centralized validations to ensure
minimal profile evolution toil:
(a) Profile version tests: we test canned queries across mul-

tiple profile versions (including upcoming “beta” ver-
sions). Failing tests cause us to either fix the profile or to
update the canned-query definition for the new version.

(b) Data change tests: When we backport bugfixes or intro-
duce new kinds of products into our network, we intro-
duce changes in multiple profile versions. Before commit-
ting these data changes to production models, we generate
models in a test environment and compare canned query
results between test and production environments.

(c) Binary and configuration rollout tests: Prior to releas-
ing a new MQS binary or its associated configuration to
production, we run canned queries against the canary and
production versions; release automation proceeds only if
the results are identical.

9 Cross-shard consistency
We do not try to represent all of Google’s networks as one
giant model. Not only would the scale create prohibitively
expensive memory and communication costs, and complex
coordination challenges, but also a single fault could put the
entire infrastructure at risk. Instead, we shard the models
at natural boundaries (e.g., one shard per datacenter fabric).
Sharding allows us to limit the scope of most changes, which
greatly simplifies conflict detection.

Many operations span shard boundaries (e.g., adding a
WAN link to a datacenter). MALTShop allows queries to trans-
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parently span multiple shards, but this raises a question: since
we can have multiple future plans (hence, model versions) for
each shard, and these plans can be mutated by independent
processes, how do we query a consistent set of shard versions?

We currently lack a general solution to the shard-
consistency problem6, but we have a workable solution for
all datacenter and B4 shards: we (conceptually) rebuild all
shards from high-level intent on any intent change (and then
use aggressive caching to avoid actually building more than
necessary). Thus, each intent-change leads to a new model set,
which is given a unique model set ID (MSID) via MALTShop’s
model-labeling feature. An MSID thus represents a consistent
view across these model shards (but unfortunately, not across
adjacent shards owned by other systems). MBS uses MSIDs
to support consistent queries that cross shard boundaries.

10 Operational experiences
In this section, we dig into several operational experiences and
lessons learned. We found the change-management features
of TopoPlan to be especially useful in speeding up deployment
activities by weeks or months.

10.1 Deadzone reduction
To illustrate one benefit of the PlanPoint abstraction (§5.2),
we explain how this speeds up a capacity-delivery process.

We add capacity to Jupiter fabrics, in units of blocks, in a
three-step process. The early modeling step creates a place-
holder version of the block that will exist at a future time.
This yields a concrete model from which we can create an
order for materials, and it reserves resources, such as patch
panel (PP) ports, for this expansion. Once materials are ready
for deployment on the data center floor, the turnup/prepare
step installs and qualifies the new block, but does not connect
it to the DCNI. Finally, the restripe step gradually folds the
new block into the fabric’s topology.

However, the same Jupiter fabric may have multiple capac-
ity changes in flight, and we are not always able to overlap
the substeps of these augments. Consider the case of a PP
expansion followed immediately by a block expansion. We
cannot generate the block-to-PP physical striping for the new
block until the new PPs and their port reservations are avail-
able in a model. Therefore, if we had only one model, the
first two steps of the block expansion would be blocked until
the PP expansion is completed. This results in a deadzone,
a period when there is work that could be done in a fabric,
and is technically unblocked (i.e., we have all the software
infrastructure to do the work), but we cannot start because of
model-change serialization.

The PlanPoint abstraction allows us to avoid this serial-
ization and effectively pipeline execution. We can create a

6We suspect it is similar to distributed-replica consistency, and something
like vector clocks might work.

PlanPoint for the block’s early model that uses the post-PP-
expansion PlanPoint as its “previous model.” The resulting
PlanPoint captures a future state when the PP expansion has
fully completed and the block’s early has been built from it.
We can then calculate specific fiber-bundle lengths from this
PlanPoint, allowing us to order those bundles long before the
PP expansion starts.

10.2 WAN change management
Our B4 WAN [16, 18] is mutated even more rapidly than a
Jupiter fabric, due to its global scale. We change B4 multi-
ple times per day: adding new “neighborhoods,” expanding
an existing neighborhood, augmenting link capacity between
neighborhoods, migrating a neighborhood to a new technol-
ogy (which entails moving some link endpoints), or removing
a neighborhood.

As with Jupiter, we change a live neighborhood or adja-
cency in multiple steps, to preserve enough capacity to meet
SLOs. Thus, we not only generate planned-state models for
the end-state topology, but for all intermediate steps as well.

Sometimes projects may be executed independently (e.g.,
augmenting 2 disjoint edges), but in other cases they are inter-
dependent: e.g., if neighborhood B is port-constrained, adding
capacity between neighborhoods A <-> B might first require
removing links between B <-> C. Due to real-world con-
straints, such as supply-chain disruptions, data-center con-
struction delays, etc., the actual execution sequence of these
projects rarely follows the global order by which they are
initially committed to the plan-of-record (which happens well
in advance).

We augmented TopoPlan to express and track such depen-
dencies, adding a layer above TopoPlan to prevent unsup-
ported execution sequences. This allows us to manage WAN
projects extending years into the future. Because of the long
lead times for materials (fiber bundles, optics, etc.), our ability
to pipeline and avoid unnecessary and rigid serialization of
plans can shorten deployment timelines by weeks or months.

10.3 Early materials procurement
Supply-chain problems often make procurement of materials
(switches, transceivers, etc.) the longest step in a network
change. So, we try to order materials as early as possible,
ideally before we know exactly how a new network block will
fit when we install it (given other in-progress changes with
fuzzy completion schedules). In the past, we used heuristics
based on prior projects (and some simple scaling rules) to do
early orders; this was not always reliable.

Instead, now we speculatively generate a detailed model of
the post-change network, and from that we compute and place
a precise order. TopoPlan allows us to create these speculative
models and manipulate them exactly as we manipulate “real”
models, using unmodified software and workflows.
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10.4 Software migration
Every software system sooner or later becomes obsolete. Our
modeling infrastructure has gone through major software mi-
grations several times, first transitioning consumers from an
older representation to MALT, and then changing from a set
of monolithic model generators to a modular, more evolvable
framework. Managing these migrations without production
outages required us to carefully introduce changes in phases.
We describe our approach to migration in appendix §C.

11 Summary and future work
We have described how we plan and coordinate changes to
large network infrastructures, with a specific emphasis on
the need to support parallelism in the face of plan-changes
caused by evolving real-world constraints. Since our network-
management systems are heavily automated, our plan man-
agement must therefore also be automated to keep up with
the pace of change, and to avoid mistakes.

We described the TopoPlan system for change manage-
ment (§5.2), and the fundamental concepts (PlanPoints and
branches) it relies on. We discussed how this approach has
significantly increased the velocity with which we man-
age changes to both datacenter networks and WANs (§10.1,
§10.2).

Automated network management also depends on explicit
models of current and planned topologies, and innovation
often requires representational change for our modeling lan-
guage. We described how we support representational change
without major software-engineering disruption, by means of
explicit profiles (§7), and a profile-independent query layer
that supports many (but not all) model consumers (§8).
Research challenges: While we have already greatly ben-
efited from the work described in this paper, we see many
challenges that demand future improvements in change man-
agement. In particular, supporting cross-shard consistency, at
scale and without funneling all changes through a logically-
centralized owner, remains unsolved (see §9). There might
also be ways to expand the set of properties that can be vali-
dated automatically – not just simple resource conflicts, but
also higher-level goals such as fault-resilience.
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Appendices
Whenever it is necessary to build concrete MALT models from
a UIM, we invoke MBS (§A), a “build service” that compiles
the high-level intent from TopoPlan to generate MALT models,
using product-specific model producers. Collectively, we refer
to our module-generating software as Nimble (§B).

A Generic build service: MBS
Model production is the result of the execution of a dataflow
graph of build units (§B.1). Build units are product-specific,
but the orchestration of their execution to construct MALT
models is generic. MBS is an execution engine that, given a
set of named inputs, (i) constructs the dataflow graph of build
units, (ii) executes that graph to produce MALT models, and
(iii) transactionally stores the generated models in MALTShop.
A set of output models in one transaction is given a Model
Set ID (MSID), so that model readers can see a consistent
snapshot of models.

The main input to MBS is a global UIM representing spec-
ifications for the entire Google network at a given point in
time; this concisely represents the desired high-level state
(e.g., the number of network fabrics in a location, their topol-
ogy type, interconnect capacity between sites, etc.). MBS is
also stateful; build units record their low-level decisions as an
input to future model builds, to reduce network churn.

MALTShop

Build Worker

Build 1: B

Build 2: D

A

C B

D E

Build Leader

Build 1 F

G

H

D N

Build 2

Build LeaderBuild Worker

Build 1: C

<empty>

Build Worker

Build 2: N

<empty>

Worker Pool

Figure 10: An illustration of our distributed build system showing
two independent builds in progress.

Two-phase build. MBS is a distributed dataflow graph evalu-
ator. A graph node can represent either a datum or a rule: data
nodes are almost always MALT model fragments, while rule
nodes execute build units. Rule nodes are connected to data
nodes via either input edges, which specify the input models
for a build unit, or output edges, which specify a build unit’s
output models.

Because the dataflow graph used to generate a set of con-
crete MALT models is highly data-dependent (e.g., a new MALT
model output will be added if we’re modeling a new data cen-
ter location), we dynamically construct this dataflow graph in
MBS, by executing a much smaller, static dataflow graph. Spe-
cial build units in the static graph read the intent model and
compute the full, dynamic graph, which MBS then executes
to produce concrete models.

Graph execution (static or dynamic) is orchestrated by a
leader and worker distributed system (Fig. 10). To execute a
graph, MBS assigns it to one leader, which parses and validates
the graph, then executes rules in parallel, using a pool of
workers, as the rule inputs become available.
Build performance optimization. The resulting full-size
dataflow graph, with 100s of thousands of rule nodes, is slow
and expensive to evaluate, requiring GiBs of I/O and many
minutes of CPU time. Therefore, MBS uses extensive caching
to avoid recomputing previously-generated models. Caching
is based on hashes of input data nodes and rule specifications,
allowing MBS to skip rule evaluation if the corresponding
hashes identify a cached output model.
Why we built a distinct system: While Google and others
have created extensive distributed dataflow graph execution
engines [6, 10] and tooling to efficiently manage and build
binaries from source code [12, 26], we created MBS as a
distinct system for several reasons:
(a) Dynamic graphs: Existing systems expect the execution

graph to be provided as an input, rather than itself being
dynamically generated based on the input intent models.

(b) Stateful execution: Updates to a fabric’s concrete model
should implement the new planned intent while making
as few changes as possible to the existing network (to
limit the costs of physical changes). Existing build sys-
tems [12] did not easily allow execution i of model gen-
eration to consume the output of execution i−1.

We suspect the combination of (a) and (b) is novel in the
context of build systems.
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Figure 11: Simplified build graph for producing Jupiter and B4 models, with some areas abstracted for clarity. An expanded view of the B4
subgraph is shown on the right as an example (with some IRs omitted).

B Model generation: Nimble
We developed an ecosystem of re-usable build unit software
modules, collectively called Nimble, each responsible for con-
structing a specific part of a model. We organize the build
units into a dataflow graph that makes their dependencies ex-
plicit. Compared with a monolithic generator, using modular
build units respects the knowledge domains involved in de-
signing different aspects of a network (e.g., topology design,
IP assignment, port allocation, link striping, etc.).

Modularity also provides natural boundaries to confine
problem complexity. For instance, we divide topology design
into deterministic descriptor-driven build units and dynamic
solver-driven build units. This makes the generation of large-
scale topologies with specific properties more tractable than
directly solving a monolithic topology optimization problem.
Modules without dependencies (or satisfied dependencies)
can be executed in parallel, which helps scaling. Finally, mod-
ularity supports heterogeneity, since we can add or change
just the necessary build units, and reuse others.

Each product’s model-producers typically define dozens
of build-unit types, to collectively perform the full spectrum
of model generation tasks for each fabric and interconnect in
the network, including topology generation, IP address allo-
cation, SDN controller domain assignment, etc. We roughly
categorize build units into four classes: (i) intra-block topol-
ogy generators (§B.1.1), (ii) inter-block capacity generators
(§B.1.2), (iii) model fragment composers (§B.1.3), and (iv)
model validators (§B.1.4). While the first two categories both
generate topologies, their designs are drastically different.
The model fragment composers and validators are at the end
of the design pipeline, and are necessary to support model
sharding and ensure correctness.

Fig. 11 depicts a simplified example build graph involving
the model producers for both B4 and Jupiter networks. Build
units shown in the figure are abstracted, simplified represen-
tations of those we use in production.

B.1 Build unit overview
A build run creates two categories of model data: (i) the final
concrete MALT model(s) adhering to a specific profile, and (ii)

Intermediate Results (IRs): internal data, also represented in
MALT, that facilitate communication between build units, but
are not exposed for external consumption.

Some IRs are ephemeral, since they are consumed by down-
stream build units in the same build run. Some IRs are mem-
oized results, required for the future build runs (e.g., the set
of allocated ports). Memoization avoids the need to always
build all output from scratch. Some IRs are part of the in-
puts to the composers (see §B.1.3), which process and stitch
these together to generate the concrete, versioned model-shard
outputs. Each build unit may take as input the model intent,
previous IRs, and previous concrete models, and outputs IRs
or concrete models.

We compose our network fabrics from fundamental units
called “blocks” (e.g., server-aggregation blocks and spine-
blocks in Jupiter, and B4 blocks [16, 18]). Each block could
contain hundreds of chassis and tens of thousands of ports
and internal links. A complete data center fabric is composed
of up to hundreds of blocks, along with a “Data Center Net-
work Interconnect” (DCNI). Our fleet can have several dozen
distinct block types, as their technology evolves.

Each block type has a fixed, deterministic internal topology,
but the DCNI or WAN interconnect depends on their dynamic
properties (e.g., block type, uplink capacity, port availability,
etc.). We generate each intra-block topology from a declara-
tive topology description (§B.1.1) but we generate the DCNI
and WAN interconnects via solvers that optimize link striping
and port allocations (§B.1.2).

B.1.1 Intra-block topology generator

The intra-block topology generator is effectively a compiler
that parses a topology descriptor that declaratively describes
the desired block topology, and emits a corresponding MALT
fragment of the detailed design. These descriptors are param-
eterized templates for each topology type. This process is
deterministic, and does not require a complex solver, given
the regular design of block internals.

The descriptor language expresses intent for a given block
type as a hierarchy of modules, with specific entity-kinds
(e.g., packet switches or ports) as leaf nodes. Descriptors can
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specify entity attributes, which can be parameterized (e.g., the
index of a module within its parent), and naming schemes.
Interconnection patterns between entities, such as ports, are
selected via mappers such as fullmesh or biject, within a scope
called a group. When invoking the compiler, a build unit can
pass certain parameters (abstracted from the model intent) to
the descriptor; e.g., to control the number of racks within the
B4 block. This allows one descriptor to support a variety of
topologies for the same block-type generation. (§B.2 provides
more details on the descriptor-based approach.)

While the build-graph structure is flexible, for simplicity,
the typical pattern in most model producers’ pipelines is for
the first build unit to invoke the compiler to construct the
backbone IR for a block, while subsequent build units build
on this IR with additional entities and relationships (e.g.,
allocating management IPs, SDN control domains, etc.).

B.1.2 Inter-block capacity design

The internal topology of a block is typically static throughout
its lifecycle. Inter-block connectivity, however, is frequently
updated as we add or decommission blocks, add capacity
between blocks, or fix incorrectly-wired fibers. Updates to the
topology must meet capacity and availability requirements,
and also minimize change to deployed reality (i.e., not move
fibers unnecessarily). We have several solver-based build units
for inter-block connectivity that tackle different classes of
problems. E.g., the Internetwork build unit in Fig. 11 uses
a generic interconnect design and management solver for
block-level striping, port-allocation, interface IP addressing,
etc. This is used to generate WAN connections between B4
sites, and to the Border Routers of the data center fabrics.

These build units try to maximize the path diversity be-
tween pairs of sites or blocks, which improves tolerance of
physical faults (e.g., link-, chassis-, block-level failures), while
adhering to physical deployment constraints (e.g., minimizing
the number of wasted ports).

For pairs of B4 sites, for example, each site may span
several Points of Presence (PoPs), each containing multiple
blocks; the interconnect solver minimizes the maximum im-
balance in block-to-block, PoP-to-PoP, and block-to-PoP al-
locations of links across block-pair. We formulate this as a
mixed integer programming optimization problem.

The design problem for the data center network intercon-
nect (DCNI) has a large optimization space. We discuss that
solver in appendix §B.3.

B.1.3 IR composers

At the end of each model generation run, a set of composers
is responsible for stitching together the IRs produced by the
upstream built units to create the concrete model shards. The
MALT models are sharded for a variety of reasons, such as

domain isolation and scalability, as discussed in [27]. We have
a dedicated composer for each model shard.

Within each shard, the composer processes and merges IRs,
based on their tagged profiles, to generate profile-compliant
models for all supported profile versions. We define our
pipeline such that any profile-agnostic processing (e.g., re-
source allocation, etc.) is done as early as possible, while
profile-dependent modeling is typically branched further
downstream, at or near the composers; this helps ensure data
consistency across profiles.

B.1.4 Validators

During each model generation run, we also validate attributes,
and design rules in several categories: (i) Intent validation en-
sures that the UIM is internally consistent and its changes are
legitimate; e.g., the UIM satisfies the properties required by
model producers. (ii) Property validation focuses on validat-
ing network-specific invariants we expect in each model (e.g.,
ports do not conflict, IP addresses are not duplicated), and (iii)
intent-to-model validation, which is designed to harden the
intent-to-model translation that typically requires dynamic
solvers (e.g., whether the striping between a B4 neighborhood
and Jupiter delivers the intended capacity, while satisfying di-
versity and balance requirements). Finally, (iv) model-change
scope validation ensures the scope of model changes matches
the corresponding change in the intent. 7

During the course of development, all these validation
suites have caught some exceptions, especially for NPIs,
which if left undetected would have caused network outages
or costly deployment errors.

B.2 Details: intra-block topology generator
This section provides additional details on how we support
a high-level approach to block-level design. The intra-block
topology generator includes (i) topology descriptors that fully
declare the topology and (ii) a compiler that parses the descrip-
tors and translates them into MALT models. These descriptors
deterministically declare the intended topology.

We explain several key aspects of topology descriptors
using an example snippet (Fig. 12) of the descriptor of a B4
Stargate block [16]. We simplified the descriptor for clarity.
Hierarchy: A network is a hierarchy of modules with a single
tree root and multiple branches. The root module of a block
is usually an EK_NETWORK, and its name is globally unique.
Modules: A module, the basic building block in descrip-
tors, defines one MALT entity kind and the topology within
the entity. As our networks are heterogeneous, multiple
modules (with distinct names) may refer to the same en-
tity kind. For instance, we have two module definitions for
EK_PHYSICAL_CHASSIS in Fig. 12. A descriptor can have
multiple instances for the same module.

7MBS also performs more basic validations such as MALT lint checks and
profile schema checks.
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module {
   name: "RACK"  kind: EK_RACK
   component {
      module: "S1_CHASSIS"
      name: "s1_chassis"
      indices: “[1:32]”
   }
   group {
      name: “s2_ports”
      select {
         path: “s2_chassis[33:40].s2_node.port[2:16:2]”
         
      }
   }
   group {
      name: “s1_ports”
      select {
         path: “s1_chassis[1:8].s1_node.port[1:15:2]”
         
      }
   }
   generate  {
      group_a: “s1_ports”        group_z: “s2_ports”
      mapper: “biject”    kind: RK_CONNECTED
   }
   
}

component {
      module: "S2_CHASSIS"
      name: "s2_chassis"
      indices: “[33:48]”
  }

module {
   name: "S1_NODE"  kind: EK_PACKET_SWITCH
   component {
      module: "SINGLETON_PORT"
      name: “port”   indices: “[1:31:2]”
   }

}

module {
   name: "SINGLETON_PORT"  kind: EK_PORT
   parameter { name: “port_num”   value: “${__index__}”  }
   attributes {
      name: “device_port_name” value: “qe/${port_num}”
      
   }
   name_scheme {
      kind: EK_PORT
      format: “df1${chassis_index}:qe/${port_num}”
   } 
   
}

module {
   name: "S1_CHASSIS"  kind: EK_PHYSICAL_CHASSIS
   component { module: “S1_NODE”  name: “s1_node” }
   parameter { name: “chassis_index” value: “${__index__}” }

}

module {
   name: "STARGATE_BLOCK"   kind: EK_NETWORK
   component { module: "RACK }

}

module {
   name: "S2_CHASSIS"  kind: EK_PHYSICAL_CHASSIS

}

Figure 12: A snippet of a topology descriptor for a Stargate Block.

Components: The topology within a module is defined by
recursively including other modules as its components. The
number of components (of the same entity kind) included in
the parent module is concisely expressed using indices. For
instance, in the module “S1_NODE”, the singleton port com-
ponent is defined with indices [1:31:2], indicating that there
are 16 entities in this module, with indices from {1,3, ...,31}.
The default relationship between a module and its components
is that the module entity RK_CONTAINS all its components.
Other relationship types can be specified to override that de-
fault, at the component type granularity.
Attributes: Entities in MALT models can have attributes,
such as taxonomy (e.g., chassis type) and state (e.g., link is
in turnup). Attributes specified in topology descriptors are
self-contained: i.e., they are either static values, or they are
deterministically computable using the parameters defined
within the upstream hierarchy (branch) of the entity.
Parameterization: The descriptor is not another topology
programming language – we omitted constructs such as condi-
tionals. However, allowing basic parameterization of modules
offers useful flexibility and concision. The most common use
of parameters is to pass information top-down. For instance,
the chassis_index parameter of the “S1_CHASSIS” module
is subsequently used by the singleton port contained by the
chassis. If a module is componentized with indices, we have
multiple instances of this module; the “${__index__}” pro-
vides each instance’s index. Parameters defined in a module
are recursively visible to all components and sub-components
in the module.
Relationships: To create relationships between components
or create intra-block links between ports, the descriptor in-
troduces the Group operation to Select a set of components
within a module hierarchy, and then applies a Generate op-
eration to generate relationships or links between the com-

ponents of the two groups. A mapper is used to decide how
the components in group_a are mapped to those of group_z.
Two common mappers are biject (pairwise, requiring the two
groups to have the same number of items) and fullmesh. In
Fig. 12, the “RACK” module uses group and generate to
define how S1 ports and S2 ports are connected.
Naming schemes: Each MALT entity has a unique ID, com-
bining its name and entity kind. A topology descriptor spec-
ifies a naming scheme by either constructing it ad-hoc (po-
tentially using parameters) or simply referring to a precon-
structed regular expression (in most cases).

Given a descriptor, the topology compiler is responsible for
parsing the descriptor and generating the corresponding MALT
model fragment. Internally, the compiler parses modules top-
down, builds multiple branches based on the component in-
dices while enforcing parameter scopes within each branch,
and finally constructs entity names, attributes and relation-
ships. The compiler also allows customized mappers in the
Generate operations to compensate for topology irregularities.
Because the compiler does not make any topology-specific
assumptions, it is generic and reusable across all descriptors.

For most model producers, their first build unit instructs the
topology compiler to construct the backbone IR for a network.
Subsequent build units decorate the IR with additional entities
and relationships (e.g., allocating management IPs and SDN
control domains). Fig. 11 depicts these data flows. When in-
voking the compiler, a build unit can pass certain parameters
(abstracted from the model intent) to the descriptor; for in-
stance, to control the number of racks within the B4 block.
This enables us to support a variety of topologies for the same
network generation while reusing the same descriptor.

B.3 Details: inter-block topology generator
This section expands on the discussion in §B.1.1, describ-
ing how we generate models for the Data Center Network
Interconnect (DCNI) in a Jupiter network.
DCNI overview. A Jupiter network uses a layer of Patch
Panels (PPs) between server blocks and spine blocks. Each
block (server or spine) directly connects to the front side of
PPs, and the block-to-block connectivity is (indirectly) estab-
lished by cross-connecting the back side of PPs. Having a PP
layer removes a lot of complexity that would be introduced by
directly connecting server and spine blocks, e.g., reduced fiber
length and human labor. This is discussed in detail in [38].

We use the term DCNI (Data Center Network Interconnect)
to describe the two collections of “physical” links, i.e., block-
to-PP links and PP cross-links. The challenge for inter-block
design is to produce an optimal DCNI. We call the resulting
block-to-block paths “logical” links.
Block-to-PP generation. The Jupiter model producer has a
dedicated DCNI build unit. This build unit first performs the
block-to-PP link generation to construct the physical topol-
ogy, and then generates PP cross-links to produce the desired
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logical block-to-block topology. For a given block, its block-
to-PP fibers fan out equally across every patch panel using
a predetermined pattern (i.e., agnostic to intent). Once the
block is deployed, such fibers never change.

The block-to-PP links are dynamically allocated in three
steps: (i) A block-to-PP spec generator translates the UIM
into an IR specifying the number of PP ports needed for each
block; (ii) A patch panel port allocator takes that IR as input,
and dynamically assigns available ports to block-to-PP fibers
in an on-demand manner. It must read the previous models in
order to honor deployed reality; (iii) A bad port swapper reads
bad-port UIM, and uses reserved ports to replace those bad
ports. An external device-repair workflow automatically cre-
ates bad-port UIM to record faulty ports. Since block-to-PP
link restripe does not affect traffic (because these new links
have not been used to carry traffic), this restripe is accom-
plished in one shot, i.e., without phasing.
PP cross-link generation. Given the physical topology, ob-
taining the desired logical topology is a complex problem.
Thus, the DCNI build unit invokes a dedicated external solver,
which translates PP cross-link generation into an ILP (Integer
Linear Programming) problem, as described in [38].

Although the ILP solver is able to compute the desired
final state, it does not naturally support the crucial require-
ment that the DCNI must carry live traffic during restripe.
This requirement is addressed by having multiple incremental
restripe stages, where each stage only alters a small portion
of topology, to ensure that the network has sufficient resid-
ual capacity in all stages. We use an automated expansion
planner to decide the number of required stages. Given a
restripe request, the expansion planner iteratively searches for
the smallest number of stages C (starting from 1) that satisfies
the residual capacity requirement. For each evaluated value
of C, the DCNI build unit invokes MDS to generate a series of
C hypothetical models that resemble each intermediate stage.
The residual bandwidth is then calculated, from these models,
by counting the number of added/removed links. We provide
additional details for the restripe process in §B.4.

Another goal of the DCNI build unit is to ensure topology
stability. By its nature, the logical topology solver is not de-
terministic. Invoking the solver in different model generation
runs could cause the DCNI to change arbitrarily, even without
any intent change, forcing us to do useless re-wiring. Thus,
we use a persistent memoization layer, allowing the solver to
store its calculated topology solutions persistently. This both
prevents redundant calculation, and ensures that the DCNI
build unit generates deterministic output.

B.4 Case study: Jupiter restripe
When we add blocks or spine blocks to a Jupiter network,
we must perform a “restripe” operation, to redistribute up-
links from aggregation blocks to spine blocks. When we do
a restripe that could affect in-service links, we must do it
incrementally, to avoid distrupting too much capacity at once.

In this section, we use the restripe process to illustrate
details about the DCNI build unit.

There are three major catogeories of Jupiter data center re-
stripes. (i) Front-only restripe: the restripe only adds/removes
the block-to-PP links that do not have fiber jumpers on the
back side, so it touches only the front side of patch panels.
These added/removed links do not carry live traffic, so in-
cremental restripe is not required. (ii) Back-only restripe: the
restripe only alters the PP cross-links, so the scope of change
is limited to the fiber jumpers on the back side. Incremental
restripe is required since it changes the logical block-to-block
links. (iii) Combined restripe: the restripe alters both block-
to-PP and PP cross-links at the same time. It is the most
labor-intensive process compared with the other categories,
and it is also required to be an incremental restripe.

We observed that for most common restripe use cases, the
model update process could be divided into one front-only
restripe and multiple stages of back-only restripe. As an ex-
ample, when a new block is added to a Jupiter fabric, we
first add the block-to-PP links (front-only restripe), and then
we use multiple incremental stages to update PP cross-links
(back-only restripes). Such granularization helps reduce the
sequence requirement in the workflow, and allows better paral-
lelism among different workflows that are expanding different
parts of a Jupiter fabric.
Intermediate restripe stages. Similar to most model
changes, the DCNI design is also driven by intent changes.
Fig. 13 shows an example of high-level Jupiter data center
intent (on the left side), which is part of the global UIM. The
fields that are related to DCNI are highlighted in blue (e.g.,
the number of PP chassis). The DCNI build unit is responsible
for translating the Jupiter intent into DCNIShape, a protocol
buffer defined as the input to the topology solver interfaced
with the PP-Cross-Link Gen build unit, a subcomponent of
the logical DCNI build unit.

The PP cross-link restripe process consists of small stages
to gradually transform the current topology to the desired one
given by the solver. We use a single PP rack as the smallest
granularity of restriping stages, because it provides natural
grouping of the logical block-to-block links. Thus the whole
restripe process boils down to rewiring patch panels in multi-
ple incremental stages.

Conceptually, the model for each stage could be summa-
rized as a 4-tuple: (To,PPo,Tn,PPn), where To and Tn denote
the two sets of all physical block-to-block links in the old
and new topologies; PPo and PPn form a partition of all PP
indices, where PPn represents PPs that are restriped to have
links from Tn, and PPo represents the rest of patch panels that
still have links from To. Fig. 14 shows a 3-stage restripe with
three PPs:

(a) Before restripe. There is no old topology. The “new”
physical topology T0 connects server block 1 and
spine block 1 via PP 1, 2, and 3. Thus the tuple is
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Jupiter Datacenter Intent (Part of UIM)

name: "data-center-1"
ip_capacity_intent { … }
server_blocks_intent {
    server_block {
        index: 1
        type: SERVER_BLOCK_TYPE_A
        num_dcn_links: 6
        server_racks { … }
    }
    server_block {
        index: 2
        type: SERVER_BLOCK_TYPE_B
        num_dcn_links: 6
        server_racks { … }
    }
}
aggregation_blocks_intent {
    aggregation_block {
        index: 1
        type: AGGREGATION_BLOCK_TYPE_A
        num_dcn_links: 6
    }
}
border_routers_intent {
    border_router {
        index: 1
        peers { b4_peer_name: "b4-network-1" }
    }
}
patch_panels_intent {
    patch_panel { index: 1 connected: true }
    patch_panel { index: 2 connected: true }
    patch_panel { index: 3 connected: true }
}

DCNI Shape (Input to Jupiter DCNI Solver)

server_blocks_intent {
    server_block {
        index: 1
        type: SERVER_BLOCK_TYPE_A
        num_dcn_links: 6
        dcn_transmission_rate: 1
    }
    server_block {
        index: 2
        type: SERVER_BLOCK_TYPE_B
        num_dcn_links: 6
        dcn_transmission_rate: 2
    }
}
aggregation_blocks_intent {
    aggregation_block {
        index: 1
        type: AGGREGATION_BLOCK_TYPE_A
        num_dcn_links: 6
        dcn_transmission_rate: 2
    }
}
num_connected_patch_panels: 3

Translate

Figure 13: An example of DCNI intent translated from UIM.

({},{},T0,{1,2,3}).

(b) Stage #1. The new topology physical T1 connects server
block 1, 2, and spine block 1. Only patch panel 1 has
been updated. Thus the tuple is (T0,{2,3},T1,{1}).

(c) Stage #2. The new topology T1 remains the same. PP
2 is further folded into the logical topology. Thus, the
tuple could be summarized as (T0,{3},T1,{1,2}).

(d) Stage #3. The new topology T1 remains the same. All
PPs are updated into the logical topology. There is no
more “old” topology as restripe is completed. Thus, the
is tuple ({},{},T1,{1,2,3}).

This tuple is stored in an IR called MaskedDcnTopology
IR. The PP-Cross-Link Gen build unit will read the previous
MaskedDcnTopology IR and Jupiter intent to update the tuple,
and then translate the tuple to an intermediate topology.

C Live migration to new infrastructure
Our legacy modeling infrastructure8 had numerous problems,
including scaling issues, and weak support for schema evolu-
tion and parallel operations. For production safety, we could
not simply stop using the old systems and immediately mi-
grate its many users to our new model-generation infrastruc-
ture (Nimble) until we were confident that the old and new
systems were functionally equivalent. Even small discrepan-
cies can cause serious outages. However, we could not just
stop using the old systems while we tested the new ones, as
that would have blocked all network operations for weeks or
months.

8The legacy infrastructure was similar to a relational database schema.

Spine Block #1

Server Block #1 Server Block #2

Spine Block #1

Server Block #1 Server Block #2

Spine Block #1

Server Block #1 Server Block #2

Spine Block #1

Server Block #1 Server Block #2

Before Restripe Restripe Stage #1

Restripe Stage #2 Restripe Stage #3

Patch Panel (PP) Block-to-PP Links PP Cross Links

Figure 14: An example of 3-stage restripe with three PPs.

We conducted a live migration from the old systems in four
phases:
Phase I: Exporter. We wrote an exporter pipeline that con-
verted legacy models to equivalent MALT models. This al-
lowed most model consumers to migrate to MALT. At this
point, the legacy models were still treated as authoritative.
Phase II: Validation. To avoid production outages, we had
to ensure that models produced by Nimble were function-
ally equivalent to the exporter-generated models. We built a
pipeline that reverse-engineered UIM and relevant state from
the exporter’s output, yielding intent that we could feed to
Nimble. We could then check that Nimble and the exporter gen-
erated identical MALT models from semantically-equivalent
intent.
Phase III: Read migration. After the model equivalence
checks passed consistently for several weeks, we atomically
flipped the MALTShop paths where the exporter and Nimble
wrote their models, automatically causing readers to consume
Nimble-generated models. We staged this changeover on a per-
model-shard basis, enabling read migration for some shards
while we were still fixing differences for other shards.
Phase IV: Write migration. We then migrated all model
writers (e.g., capacity-delivery and data center expansion
workflows) to use MDS. After this, we deprecated the legacy
model-design tools.

Phased migration turned out to be invaluable. Together
with our high-level design principles for reliable systems [35],
we managed to finish the fleet-wide migration of our critical
modeling infrastructure without any production incidents.
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Abstract
1 Network faults occur frequently in the Internet. From the

perspective of cloud service providers, network faults can be

classified into three categories: cloud faults, client faults, and

middle faults. This paper mainly focuses on middle faults. To

minimize the harm of middle faults, we build a fully automatic

system in Huawei Cloud, namely AAsclepius, which consists

of a monitoring subsystem, a diagnosing subsystem, and a

detouring subsystem. Through the collaboration of the three

subsystems, AAsclepius monitors network faults, diagnoses

network faults, and detours the traffic to circumvent middle

faults at the Internet peering edge. The key innovation of AAs-

clepius is to identify the fault direction with a novel technique,

namely PathDebugging. AAsclepius has been running for two

years stable, protecting Huawei Cloud from major accidents

in 2021 and 2022. Our evaluation on three major points of

presence in December 2021 shows that AAsclepius can effi-

ciently and safely detour the traffic to circumvent outbound

faults within a few minutes.

1 Introduction
Network faults, including congestion, link failures, BGP mis-

configurations, etc., occur frequently in the Internet [1–8].

Obviously, network faults could degrade the network per-

formance, and even lead to outages [9, 10], threatening the

connectivity of the Internet. As a cloud service provider (CSP)

which serves users at the Internet peering edge, the quality of

service (QoS) for users is significantly harmed by the frequent

network faults.

As pointed by BlameIt [11], from the perspective of CSPs,

network faults can be classified into three categories based on

where they occur (see Figure 1): 1) cloud faults which occur

in the cloud network (cloud AS 2); 2) client faults which oc-

cur in the client network (client AS); 3) middle faults which

1Co-primary authors: Kaicheng Yang and Yuanpeng Li. Corresponding

author: Tong Yang (yangtongemail@gmail.com).
2AS refers to autonomous system, which is a very large network or group

of networks with a single routing policy.

PoP i

PoP i+1

Private
Backbone

C
AS j

C
AS j'

CloudMiddleClient

ControllableUncontrollable

Figure 1: Three categories of network faults. "C" refers to

a client in the client AS, and "×××" refers to a middle fault.

When a middle fault occurs in the red path, we can detour

the traffic to egress at PoPi+1, so as to route the traffic along

the green path to circumvent the fault.

occur in the middle network (all AS’es between the cloud AS

and the client AS). First, the cloud network is fully controlled

by CSPs. We have already deployed a battle-tested system

in Huawei Cloud to heal cloud faults, and this paper does

not focus on cloud faults. Second, the client network is nei-

ther controlled by nor directly connected to CSPs. Therefore,

when client faults occur, what we can do is to request the

corresponding Internet service providers (ISPs) [11] for fault

healing. Third, the middle network is not controlled by but di-

rectly connected to CSPs. Same as other CSPs, Huawei Cloud

is connected to the middle network through dozens of points

of presence3 (PoPs). All PoPs and datacenters in Huawei

Cloud are interconnected by a private backbone. Leveraging

the private backbone, the traffic between clients and Huawei

Cloud can go through different PoPs. This implies that we can

choose different middle paths (paths in the middle network)

by choosing different PoPs, so as to handle middle faults. In

3Point of presence is the point where Huawei Cloud accesses the Internet,

see more details in Section 2.1.
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summary, this paper focuses on middle faults, and identifies

client faults as well.

The design goal of this paper is to design a fully automatic

system to minimize the harm of middle faults. The system

should have three main functions: fault monitoring, fault di-

agnosis, and traffic detouring. First, the system should persis-

tently monitor the middle and client networks in a lightweight

manner to detect and report faults. Second, the system should

accurately diagnose the reported faults at fine granularity.

Third, for a middle fault, the system should efficiently and

safely detour the traffic to a healthy path, and detour the traffic

back immediately when the fault disappears.

Towards the design goal, the most important and challeng-

ing issue is to identify the fault direction, since no existing

works handle this problem. Suppose we find a middle fault

between a PoPi and a client AS j. If a fault occurs in the

path from PoPi to AS j, we define the direction of this fault

as outbound direction, and similarly we define inbound di-

rection. In this case, fortunately, we have many PoPs, and

thus outbound faults can be quickly circumvented: detouring

the traffic through another PoPi+1 to the client (see Figure

1). This action is quick because it only needs to update the

routing table of PoPi. If a fault occurs in the inbound direc-

tion from AS j to PoPi, unfortunately available solutions to

change the traffic path need to change the routing tables of all

routers in the middle network, which is obviously slow. The

above observations pose great importance on identifying the
fault direction. Further, it is challenging to identify the fault

direction. On the one hand, the middle network where faults

occur is completely out of our control. On the other hand, our

monitoring results do not include direction information.

Researchers and engineers have proposed various solutions

for network faults at Internet scale [1, 11–24]. Among them,

BlameIt [11], Edge Fabric [12], Espresso [13], Entact [14],

and CPR [15] are most related to our application scenarios.

However, as shown in Table 1, these works only have two of

the three main functions, and none of them identifies the fault

direction. BlameIt monitors and diagnoses network faults

in the cloud environment. However, it does not support traf-

fic detouring and fault direction identification. Edge Fabric,

Espresso, Entact, and CPR support traffic detouring, but they

do not diagnose network faults. In summary, all existing works

do not meet our design goal.

Aiming at the design goal, we design a system, namely

AAsclepius (AutoAsclepius). AAsclepius consists of three

subsystems: a monitoring subsystem, a diagnosing subsystem,

and a detouring subsystem. Each subsystem is responsible

for implementing a main function. Below we only show how

the diagnosing subsystem addresses the above challenge of

identifying fault direction.

Diagnosing subsystem: AAsclepius uses a decision tree with

intuitive design to achieve the accuracy and fine granular-
ity of diagnosis. Our experienced experts have spent a long

time configuring the thresholds (§ 5) used in the decision tree.

These thresholds have proven to work excellently after two

years of validation. Our key innovation is to propose a tech-

nique, namely PathDebugging, to address the most important

and challenging issue, i.e., identifying the fault direction. For

a middle fault between a PoPi and a client AS j, the idea of

PathDebugging is to replace the path from AS j to PoPi with a

zero-fault path. In spite of the simple idea, the implementation

procedure is rather complicated, and the details are provided

in Section 5.3.

To date, AAsclepius has been running for two years, keep-

ing Huawei Cloud free of major accidents. In December 2021,

we conducted an evaluation on three major PoPs. The results

show that for all outbound faults, AAsclepius can efficiently

and safely detour the traffic to circumvent them within a few

minutes.

2 Settings
2.1 Cloud Infrastructure

Private
Backbone BRs …

DRs …

PRs …

…

PoP

DC DC DC

Transit PNI IXP

PRs…

BRs…

DRs…

PoP

DC DC DC

Transit PNI IXP

… MSesMSes

Figure 2: A PoP houses multiple peering routers (PRs) to

access the Internet, backbone routers (BRs) to access the

private backbone, and datacenter routers (DRs) to access

datacenters. Each peering router is connected to a moni-

toring server (MS) cluster (currently we only deploy one

server per PR) used for monitoring QoS (§ 4.2).

In order to serve approximately one billion geo-distributed

users, Huawei has deployed a cloud consisting of dozens of

PoPs and datacenters globally, as well as a private backbone

that interconnects all PoPs and datacenters. To access the

Internet, as shown in Figure 2, each PoP houses multiple peer-

ing routers (PRs) as edge routers, exchanging BGP routes and

traffic with transit providers, private network interconnects

(PNIs), and Internet exchange points (IXPs) outside the PoP.

The interconnectivity between all PoPs and datacenters pro-

vided by the private backbone greatly improves the flexibility

of traffic detouring. Traffic from any datacenter is first routed

to the backbone routers (BRs) via datacenter routers (DRs).

Through the private backbone, the traffic can then be routed

to egress at any PoP. Similarly, the inbound traffic can also

ingress at any PoP. Such flexibility of traffic detouring is the

basis of AAsclepius (§ 6).

To serve users, each PoP announces a distinct set of IP pre-

fixes as its dominating prefixes. Obviously, the PoP at which

the inbound traffic will be routed to ingress is only determined
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Desired functions AAsclepius BlameIt [11] EdgeFabric [12] Espresso [13] Entact [14] CPR [15]

Fault monitoring � � � � � �
Fault diagnosis � � × × × ×

Direction identification � × × × × ×
Traffic detouring � × � � � �

Table 1: Comparison with prior solutions.

by its IP destination address. Unfortunately, if a PoP fails to

announce its dominating prefixes, the inbound traffic with

IP destination address in those prefixes will not be routed to

Huawei Cloud. To achieve fault resilience, each PoP addi-

tionally announces the dominating prefixes of the other PoPs

with multiple duplicate AS’es prepended to their AS_path4

(e.g., 12345, 12345, 12345). In this configuration, the traffic

is normally routed as before. If a PoP fails to announce its

dominating prefixes, after BGP converges, the traffic that orig-

inally ingresses at that PoP will be routed to ingress at another

PoP. Therefore, the availability of Huawei Cloud service is

guaranteed as long as one PoP remains operational.

We have built a traffic monitoring system in Huawei Cloud,

passively counting the sizes of flows entering or exiting

Huawei Cloud at <Source IP, Destination IP> granularity for

billing using programmable switches. This system not only

helps AAsclepius with fault monitoring as it can determine

the AS’es and IP /24 prefixes which contain clients of Huawei

Cloud, but also helps AAsclepius with traffic detouring as it

can provide visibility to the traffic volume between any PoP

and AS. While it is cost-efficient to passively monitor state-

less traffic volume, it is too expensive to maintain per-flow

state for a large cloud to monitor network faults, and therefore

AAsclepius still uses active probing.

2.2 Domestic Network Infrastructure
China’s network is mainly controlled by three top-tier transit-

providers. To serve geo-distributed users, each top-tier transit

provider builds its own large-scale backbone network with

sufficient intra-bandwidth interconnecting with all its client

networks. By comparison, the inter-bandwidth across differ-

ent transit providers is usually limited. Such infrastructure

guarantees that from a PoP’s perspective, the IPs in the same

AS share similar middle paths. It also motivates AAsclepius’

design (further shown in § 6): for traffic suffering from net-

work faults, AAsclepius detours it across different PoPs within

the same transit-provider for better performance, instead of

detouring it across different transit-providers in the same PoP.

3 AAsclepius Overview
Currently, because most traffic of Huawei Cloud exits from

PoPs deployed in our country, we have deployed AAsclepius

on a large scale in our domestic infrastructure. As mentioned

above, AAsclepius has three subsystems: a monitoring sub-

system, a diagnosing subsystem, and a detouring subsystem.

4The BGP AS path attribute sequentially lists the AS numbers comprising

the path to the destination.

Below we briefly present the modules and workflow of these

subsystems (see Figure 3). Because most of Huawei Cloud

traffic is still IPv4 traffic, AAsclepius targets at only IPv4

traffic currently. The terminologies frequently used in this

paper are shown in Table 2.

Table 2: Terminologies frequently used in this paper.

Terminology Meaning
Active IP

address

An IP address which will respond to ICMP

probes. (§ 4.1)

IP*
A representative IP address in a prefix for prob-

ing. (§ 4.1)

Victim-AS
An AS which is identified as suffering from

faults. (§ 4.3)

Fake fault
A network anomaly that causes a healthy-AS to

be identified as a victim-AS. (§ 5.1)

Backup PoP PoPi+1 is the backup PoP of PoPi. (§ 5.3)

Victim traffic The traffic that is suffering from faults. (§ 6)
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Classifier

C
lie

nt

Figure 3: The workflow of AAsclepius.

Monitoring subsystem (Figure 3 top). This subsystem con-

sists of three modules: an active IP collector, a QoS monitor,

and a fault reporter. The QoS monitor and the fault reporter

are deployed on a per-PoP basis.

1 The active IP collector monitors all IP /24 prefixes in the

AS’es which contain clients of Huawei Cloud, and collects

all active IP addresses.

2 The active IP collector selects representative IP addresses

for each IP /24 prefix and informs the QoS monitor.
3 The QoS monitor in each PoP receives representative

IP addresses, and runs QoS agents to send ICMP probes to

representative IP addresses in order to measure their packet

loss rates.

4 The QoS monitor aggregates packet loss rates at AS-

granularity, and passes them to the fault reporter.
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5 The fault reporter in each PoP receives the aggregated

packet loss data from the QoS monitor in the same PoP, then

identifies and reports victim-AS’es to the diagnosing subsys-

tem.

Diagnosing subsystem (Figure 3 middle). This subsystem

consists of three modules: a fake fault filter, a fault classifier,

and a fault debugger. The fake fault filter is deployed on a

per-PoP basis.

6 The fake fault filter receives reported victim-AS’es from

the fault reporter in the same PoP, identifies and filters fake

faults, and outputs the other faults to the fault classifier.

7 The fault classifier receives the faults from the fake fault

filter in many PoPs, classifies the faults into three categories,

and passes middle faults to the fault debugger.

8 The fault debugger receives middle faults from the fault

classifier, and runs debugging agents to monitor a second path

for each middle fault.

9 The fault debugger then compares the monitored packet

loss rates of QoS agents and debugging agents to identify the

direction for each middle fault.

Detouring subsystem (Figure 3 bottom). The detouring

subsystem consists of two modules: a detouring controller
and a BGP injector. The BGP injector is deployed on a per-

PoP basis.

10 The detouring controller receives middle faults from the

fault debugger, generates detouring strategy for each middle

fault, and outputs the strategy to the BGP injector.

11 The BGP injector receives detouring strategy from the

detouring controller, generates corresponding BGP routes,

and announces them to PRs or DRs to detour the victim traffic.

4 Monitoring Network Faults
The monitoring subsystem consists of the active IP collector

(§ 4.1), the QoS monitor (§ 4.2), and the fault reporter (§ 4.3).

Each module will be introduced in one subsection.

4.1 Collector: Selecting Representative IPs
The first module in the monitoring subsystem is the active

IP collector (collector for short). The collector, deployed in

a VM in Huawei Cloud, is used to collect and select active

IP addresses. It proceeds in two steps. 1) For only IP /24 pre-

fixes in the AS’es which contain clients of Huawei Cloud, we

decide to actively send ICMP probes to IP addresses in them,

and regard the monitored performance as the QoS for users

in this prefix. To guarantee the accuracy of active monitoring,

we need to select active IP addresses as targets for probing.

Therefore, the first step is to collect active IP addresses from

the AS’es which contain clients of Huawei Cloud. 2) Consid-

ering that the active IP addresses in each IP /24 prefix share

similar middle paths and client paths5, it is of no value to

monitor all of them. To achieve lightweight monitoring, we

need to further reduce the overhead by selecting representa-

tive IP addresses (IP*s for short) in each prefix for probing.

5Client paths refer to the paths in the client AS.

Therefore, the second step is to select IP*s in each IP /24 pre-

fix, and then passes them to the second module, i.e., the QoS

monitor. Below, we describe the two steps of the collector in

detail.

The first step of the collector proceeds as follows. The

collector maintains health points as the indicator of activeness

for each IP address, and only scans IP /24 prefixes in the

AS’es which contain clients of Huawei Cloud by sending

ICMP probes to each IP address in them periodically. In each

round of scanning, if an IP address responds to the ICMP

probes, its health points will increase; otherwise, its health

points will decrease. The health points will decay over time,

so as to indicate recent health status. After each round of

scanning, the collector selects the IP addresses whose health

points exceed a predefined threshold as active IP addresses.

The second step of the collector proceeds as follows. After

each round of scanning, for each IP prefix, the collector sorts

the active IP addresses in it based on the health points from

the highest to the lowest. The IP addresses that usually belong

to gateways (e.g., .1, .254) will be given bonus health points

before sorting. Then, for each IP /24 prefix, the collector

selects the top-k active IP addresses in it as IP*s, and passes

them to the QoS monitor. By default, we set k to 5. For those

prefixes that contain clients of Huawei Cloud, we set a larger

k to better reflect the QoS. Note that the information of the

AS’es and IP /24 prefixes containing clients of Huawei Cloud

is provided by the traffic monitoring system built in Huawei

Cloud (§ 2.1).

4.2 Monitor: Monitoring QoS
The second module in the monitoring subsystem is the QoS

monitor (monitor for short). The monitor is used to monitor

the QoS for users in different AS’es. It is deployed based on

the following considerations. 1) As Huawei Cloud can serve

users from any PoP, we need to monitor the QoS by moni-

toring the performance of IP*s from every PoP. 2) To avoid

the disturbance of cloud faults and traffic detouring (§ 6),

we should start monitoring as close to the PR as possible. 3)

Considering that the cloud traffic can egress at any PR, we

should monitor all PRs to achieve full coverage of monitor-

ing, i.e., send probes to each IP* through all PRs. Therefore,

AAsclepius deploys the monitor on a per-PoP basis as fol-

lows. As shown in Figure 2, for each PR, AAsclepius deploys

a server directly connected to it, namely monitoring server.

On each monitoring server, the monitor runs a QoS agent to

send ICMP probes, which will egress at the PR connected to

the monitoring server, so as to achieve full coverage. This

deployment can easily scale out from a monitoring server to

a cluster consisting of multiple monitoring servers, so as to

improve the capability of the monitor.

The monitor proceeds in two steps. First, the monitor mon-

itors the performance of each IP* received from the active IP

collector. Specifically, every minute, the monitor executes

a round of monitoring: for each IP*, each QoS agent sends

ICMP probes to it, and computes its average packet loss rate
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among all QoS agents, so as to achieve full coverage. We call

this process QoS monitoring.

Second, the monitor aggregates the performance of IP*s at

AS-granularity, and then passes the aggregated performance

data to the third module, i.e., the fault reporter. Specifically,

after each round of monitoring, for each AS, the monitor com-

putes the average packet loss rate of all IP*s in it as its packet

loss rate. The reason behind is as follows. It is expected that

we can monitor the QoS in every IP /24 prefix to achieve

fault monitoring at prefix-granularity, but not all IP /24 pre-

fixes contain active IP address. The network infrastructure in

our country can ensure that the IP*s in the same AS share

similar middle paths, and thus share similar middle faults

(discussed in Section 2.2). Therefore, monitoring the QoS

at AS-granularity will not degrade the sensitivity to middle

faults. In our deployment, we find the above attribute also

applies to the network of every ISP in every province. There-

fore, we call the network of every ISP in every province a

pseudo AS, and aggregate the performance of IP*s at pseudo-

AS-granularity to ease maintenance. In the rest of this paper,
we always use AS to refer to pseudo AS.

4.3 Reporter: Reporting Victim-AS’es
The third module in the monitoring subsystem is the fault

reporter (reporter for short). The reporter, deployed on a per-

PoP basis, is used to identify victim-AS’es and filter victim-

AS’es suffering from transient faults. The reporter proceeds

in two steps.

In the first step, the reporter receives the aggregated perfor-

mance data from the QoS monitor deployed in the same PoP,

and identifies whether an AS is suffering from faults based

on three observations. The first observation is that the packet

loss rate of each AS remains relatively stable when no fault

occurs; once a fault occurs, the packet loss rates of the AS’es

suffering from the fault suddenly increase. Therefore, for each

AS, we decide to monitor the variation of its packet loss rate,

and use a fault threshold to identify whether it is suffering

from faults. The second observation is that different AS’es

have different patterns of packet loss rates, because different

AS’es point to different middle paths and client paths, and

are maintained by different ISPs. Therefore, we should use an

AS-specific fault threshold rather than a unified one. The third

observation is that the condition of the Internet varies over

time, and therefore the fault threshold should dynamically

evolve as time goes by.

Based on the above considerations, the first step proceeds

as follows. The reporter considers that each AS is in healthy-
state, i.e., not victim-state (suffering from faults), at the be-

ginning. Here, we use "victim" instead of "faulty" to avoid

confusion, as a client AS suffering from faults may have no

faults occurring in its own network (the faults can occur in

the middle path between the AS and the PoP to affect the

traffic). The reporter maintains packet loss rates for each AS

in recent W minutes. For AS j, the reporter computes the aver-

age (lavg( j, t)) and standard deviation (σ( j, t)) of packet loss

rates, to characterize its current pattern, where t (Minute) is

the current time. Let Tv( j, t) be the fault threshold used to

identify whether AS j is suffering from faults at time t. We set

Tv( j, t) = lavg( j, t −1)+max(τσ( j, t −1),δ)

where δ is a constant (by default 3%) to filter minor faults.

For AS j, every minute, the reporter receives its current packet

loss rate lcur( j, t) from the QoS monitor, and then compares

lcur( j, t) with Tv( j, t). If lcur( j, t) exceeds Tv( j, t), the reporter

identifies that AS j is suffering from faults, and transits AS j
to victim-state. We call an AS in victim-state as a victim-
AS, and a time period in which an AS is continuously in

victim-state a victim-period. For a victim-AS, to avoid the

disturbance of high packet loss rate caused by faults, its fault

threshold will stop to update when it transits to victim-state

from healthy-state. When the packet loss rate of a victim-AS

stays below its fault threshold for W minutes, we consider

that all its packet loss rates in the sliding window are not

affected by faults. In this case, the victim-AS will transit back

to healthy-state and restart to update its fault threshold. In

our deployment, we set the window size W to 60 and τ to

3. Here, we provide some insights into their settings. We set

window size W to 60 (1 hour) because it can stably present

the recent condition of Internet. As shown in Figure 10, the

average packet loss rate varies smoothly per hour (with less

than 0.1% variation). We set τ to 3 because 3σ-rule is widely

used in outlier detection. When there is no fault, the loss rate

of each IP* can be regarded as independent and identically

distributed. Therefore, the average loss rate of IP*s (lavg( j, t))
follows normal distribution according to central limit theorem,

and applies to 3σ-rule.

Figure 4: CDF of fault duration of victim-AS’es.

In the second step, based on another observation, the re-

porter filters victim-AS’es suffering from transient faults, and

reports the remaining victim-AS’es to the diagnosing subsys-

tem. The observation is that transient faults disappear quickly,

and thus have limited harm to our cloud service. Therefore, we

would like to ignore transient faults. Based on the above con-

sideration, the second step proceeds as follows. Suppose the

current time is t. The reporter only reports the victim-AS’es

that satisfy the following two requirements to the diagnosing

subsystem: 1) the victim-AS is identified as suffering from

faults at time t; 2) the victim-AS has ever been identified as

suffering from faults for at least M minutes continuously in

the current victim-period. In our deployment, we set M to
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3. We select M based on an analysis of the distribution of

the fault duration6 of victim-AS’es in three major PoPs in

December 2021. As shown in Figure 4, the fault duration of

almost 2/3 of victim-AS’es is below 3 minutes. Therefore,

setting M to 3 can efficiently filter transient faults without

compromising much timeliness.

Fake Fault

faulty IP* 5% or
blocked IP* 10%

reported by 1 PoP

Outbound Fault Inbound Fault Bidirectional Fault

Ambiguous FaultClient Fault

debug's loss rate 0

otherwisereported by all PoPs

debug's loss rate
QoS's loss rate

otherwise

otherwise

Fake Fault Filter:
Is it a Fake Fault?

Fault Debugger:
The Direction?

Fault Classifier:
The Category?

Victim-AS('es)

Figure 5: Decision tree.

5 Diagnosing Network Faults
In this section, we show how to use a decision tree in the

diagnosing subsystem to achieve accurate and fine-grained di-

agnosis. As shown in Figure 5, there are three critical decision

nodes in the decision tree: the fake fault filter (§ 5.1), the fault

classifier (§ 5.2), and the fault debugger (§ 5.3). The design of

the structure of the decision tree is quite intuitive. With the re-

ported victim-AS’es, first, the fake fault filter first filters those

fake faults that lead to misreported victim-AS’es. Second, the

fault classifier pick out the middle faults that AAsclepius may

circumvent from the true faults. Third, the fault debugger clas-

sifies the middle faults into inbound/outbound/bidirectional

faults to guide the subsequent traffic detouring. Each decision

node will be introduced in one subsection.

5.1 Fake-filter: Filtering Fake Faults
Motivation: The fault reporter in the monitoring subsystem

reports a victim-AS when the average packet loss rate of all

IP*s in the AS increase. However, the increase of average

packet loss rate does not mean that a real fault occurs. For

example, when a router that hosts an IP* is updating its oper-

ating system, it may not be able to respond to ICMP probes.

Thus the packet loss rate of this IP* will suddenly increase to

100%, which also leads to the increase of average packet loss

rate. If a victim-AS is actually healthy, we say it is suffering

from fake faults. Therefore, it is desired for each PoP to filter

all victim-AS’es with fake faults.

6The fault duration of a victim-AS refers to the interval between the first

time and the last time it is identified as suffering from faults in the same

victim-period.

Figure 6: IP* Classification.

Workflow: To prevent fake faults from interfering with our

diagnosis, AAsclepius deploys the first module in this subsys-

tem: a fake fault filter for each PoP (Fake-filter for short). In

each PoP, Fake-filter performs analysis for each IP* to iden-

tify whether a reported victim-AS is caused by a fake fault,

and we will only diagnose real faults in next two modules.

The input of Fake-filter includes: a victim-AS j with its IP*s,

and the historical loss rate of each IP*. Then we analyze why

the average packet loss rate increases a lot. Fake-filter divides

the IP*s into 5 categories according to their loss rate (see Fig-

ure 6), but only use three categories (faulty IP*s, blocked IP*s,

and healthy IP*s) to identify fake faults. The 5 categories of

IP*s are detailed below.

• Symbols: Suppose at time t f ault , victim-AS j transits to

victim-state, lasts for M = 3 minutes, and then is reported

to Fake-filter. Note that the setting of M is discussed in

Section 4.3. Let Tpre[3Min] be the 3 minutes before t f ault ,

and let Tpost [3min] be the 3 minutes after t f ault .

• Faulty IP*s: We call an IP* a faulty IP* if it satisfies the

three conditions: 1) its average loss rate in Tpre[3Min] is

lower than fault threshold Tv( j, t f ault); 2) its average loss

rate in Tpost [3Min] is in [Tv( j, t f ault),100%); 3) its highest

loss rate in Tpost [3min] is lower than 100%. We consider

that faulty IP*s are affected by the fault occurring at t f ault .

• Blocked IP*s: We call an IP* a blocked IP* if it sat-

isfies the three conditions: 1) its average loss rate in

Tpre[3Min] is lower than Tv( j, t f ault); 2) its average loss

rate in Tpost [3Min] is higher than Tv( j, t f ault); 3) its highest

loss rate in Tpost [3Min] reaches 100%. These IP*s are often

blocked in two cases. First, they are added into a blocklist

by some network devices (IP blocking). Second, with a

small probability, they suffer from serious faults.

• Healthy IP*s: We call an IP* a healthy IP* if its average

loss rates in both Tpre[3Min] and Tpost [3Min] are lower than

Tv( j, t f ault). We consider that healthy IP*s are not affected

by the fault occurring at t f ault .

• Inactive IP*s: We call an IP* an inactive IP* if its aver-

age loss rate in Tpre[3Min] is 100%. Inactive IP*s previ-

ously responded to ICMP probes, but stop responses before

Tpre[3Min].
• Abnormal IP*s: We call an IP* an abnormal IP* if its

average loss rate in Tpre[3Min] is in [Tv( j, t f ault),100%).
We suspect that abnormal IP*s have suffered from other

network anomalies or network faults occurring before

Tpre[3Min].

660    2023 USENIX Annual Technical Conference USENIX Association



Identifying fake faults: After classifying faults into the above

five categories, we analyze whether it is a fake fault. Obvi-

ously, the last two categories cannot be used for identification.

We define two metrics using the first three categories. We

define faulty IP* ratio as
# faulty IP*s

# total
, and define blocked

IP* ratio as # blocked IP*s
# total

, where # total = # faulty IP*s +

# blocked IP*s + # healthy IP*s. We set two thresholds for

the two metrics respectively. According to long time main-

tenance, we find when If the faulty IP* ratio is no less than

5%, or the blocked IP* ratio is no less than 10%, Fake-filter

reports the fault as real; otherwise, Fake-filter reports the fault

as fake.

Figure 7: CDF of block IP* ratio of victim-AS’es without

faulty IP*s.

While the threshold for faulty IP* ratio is mainly set ac-

cording to long-time operational experience, we provide some

insights in the setting of the threshold for block IP* ratio.

When real faults occur, an affected IP* will be either faulty

IP* or block IP*. When there is no real fault, the faulty IP*

ratio keeps close to 0, but the blocked IP* ratio often reaches a

little larger than 0 (e.g., 5%) due to IP blocking. Therefore, we

should set a larger threshold for blocked IP* ratio to filter the

fake faults caused by IP blocking. We analyze the distribution

of the block IP* ratio of all reported victim-AS’es without

faulty IP*s in May 10th, 2023. These reported faults are of

high probability to be fake faults as no faulty IP* is reported,

and a fault with a larger block IP* ratio should have a larger

probability of being real fault. As shown in Figure 7, about

80% reported victim-AS’es have less than 10% block IP*

ratio. Therefore, setting the threshold for blocked IP* ratio to

10% may efficiently filter most fake faults while not missing

serious faults.

5.2 Classifier: Identifying Fault Category
Overview: To identify fault category, AAsclepius deploys the

second module in this subsystem: the fault classifier (classifier

for short). Recalling in the previous module, Fake-filter in

each PoP filters fake faults, and reports the other faults to the

classifier. The input is the received faults from many PoPs in

every minute: <PoP1,victim-AS list1> ... <PoPn,victim-AS

listn>. For each victim-AS, the classifier outputs its fault cat-

egory: client fault, middle fault, or ambiguous fault. For each

middle fault, the classifier will report the corresponding PoP

and victim-AS to the third module, i.e., the fault debugger.

Workflow: Our observation is the same as the prior work [11]:

most of the time the victim-AS is caused by either client faults

or middle faults. We use the number of PoPs that report each

victim-AS to identify fault category, and there are three cases.

• Case 1: If a victim-AS is reported from only one PoP, the

classifier identifies the fault as a middle fault.

• Case 2: If a victim-AS is reported from all PoPs, the classi-

fier identifies the fault as a client fault.

• Case 3: Otherwise, it is too difficult to identify, and we

have to concede, and the classifier identifies the fault as an

ambiguous fault.

The reason of the above classification is as follows. Consider-

ing a client in an AS, for different PoPs, the middle paths are

different, while the client paths are usually similar. Therefore,

1) that a victim-AS is reported from 1 PoP is incurred by

middle faults with high probability; 2) that a victim-AS is

reported from all PoPs is incurred by client faults with high

probability; 3) that a victim-AS is reported from multiple but

not all PoPs, and the above probabilities of middle faults and

client faults both decrease a lot. Our maintenance results (see

Figure 8) show that the probability of case 3 is around 7%,

and thus currently we just ignore case 3.

Figure 8: Fraction of each category of faults.

Operational experience: In our daily maintenance, we find

a situation that will degrade the accuracy of our diagnosis:

although multiple PoPs report the same victim-AS, the time

they first report is not always the same, but sometimes with

a one-minute or two-minute difference. A potential reason

behind is as follows. In the early stage of a network fault,

there may be only a small amount of congested links. Due

to the randomness of the routing inside the victim-AS, the

ICMP probes may go through paths with slight difference,

and thus the results measured at different PoP points may

be slightly different. For example, suggest that ICMP probes

sent from both PoPi and PoPi+1 reach a router using equal

cost multi-path strategy (ECMP) in a client AS, and there are

two equal-cost paths towards the destination. One of the path

first becomes congested due to the randomness of hash func-

tions, while the other one remains uncongested. Suggest that

the ICMP probes from PoPi are forwarded to the congested

link, and those from PoPi+1 are forwarded to the uncongested

link, then only PoPi reports this AS as a victim-AS. As the

congestion further evolves (which may take one or two min-

utes), both PoPi and PoPi+1 report this AS as a victim-AS.

In this case, if the classifier diagnoses a victim-AS once it is

reported, the victim-AS may be misdiagnosed because there

could be some PoPs that have not reported this victim-AS in
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time. To address this issue, for each reported victim-AS, we

decide to delay the diagnosis for two minutes. Specifically,

only when a victim-AS is continuously reported from a PoP

for three minutes, the classifier starts to diagnose it. The clas-

sifier diagnoses the victim-AS based on the number of PoPs

that report it in the past three minutes, instead of the number

in the current minute.

5.3 Debugger: Identifying Fault Direction
Overview: Recalling that the previous module reports a PoP

and a victim-AS to this module. Suggest PoPi is reported

to find that victim-AS is suffering from middle faults. This

module, namely fault debugger (debugger for short), is used

to further identify and output the direction of the middle fault.

There are three faults with different directions: outbound

faults, inbound faults, and bidirectional faults. We propose

a novel technique, namely PathDebugging, to perform the

debugging process. This technique is the key novelty of AAs-

clepius.

Victim-AS 2

C

PoP 2PoP 1

Private Backbone

OutboundOutbound

PoP n PoP 3

Inbound Debugging

…

PRPRMS MS

Figure 9: PathDebugging. "MS" refers to the monitor server

in the PoP, "C" refers to a client in the victim-AS2, and "×"

refers to a middle fault.
Statement of fault direction: As shown in Figure 9, there are

four paths between the monitor server (MS) and the client (C):

two outbound paths (solid lines with arrows), one inbound

path (dash red lines with arrows), and one debugging path

(dash blue lines with arrows including the part across the

private backbone). In this Figure, the reported PoP and victim-

AS from the previous module are PoP1 and AS2. This means

that we only know there is a fault between PoP1 and AS2,

but do not know the fault direction. Outbound faults, inbound

faults, and bidirectional faults point to different directions.

For different fault directions, we will use different detouring

strategies in the detouring subsystem (§ 6).

Rationale: To identify whether the fault is in the outbound

path or the inbound path, the idea of our key technique PathDe-

bugging is to replace inbound path with a zero-fault path,

which is named the debugging path. After replacement, we

monitor the packet loss rate of the ICMP probes between

the reported PoP and victim-AS: 1) if the loss rate does not

change, it means it is an outbound fault; 2) if the loss rate

decreases to near 0, it is an inbound fault; 3) if the loss rate

decreases but not reach 0, it is a bidirectional fault. Next we

show how to set a debugging path and route the ICMP reply

packets along the debugging path.

Workflow: Recall that each PoP has multiple PRs (peering

routers), each PR is connected to a monitoring server, and

each monitoring server runs a QoS agent. We deploy an-

other agent named debugging agent in each monitoring server.

These two agents are very similar except that they use differ-

ent source IP addresses. By leveraging the debugging agent

and BGP prefix announcement, next we show how to set the

debugging path and let the ICMP reply packets follow the

debugging path.

Phase 1: announcing BGP prefixes. We have deployed many

PoPs: PoP1, PoP2, ..., PoPn. We associate every two adjacent

PoPs for debugging and detouring. We call PoPi+1 the backup
of PoPi. For PoPi, we assign a unique IP /24 prefix to the

debugging agents in it, and the prefix is announced by all PRs

in the backup PoPi+1. For example in Figure 9, the PRs in

PoP2 announce the unique prefix of the debugging agent in

PoP1.

Phase 2: activating the debugging path. This phase aims to

let the ICMP reply packets follow the debugging path, and

observe the packet loss rate. Take Figure 9 as an example. The

debugging agent in PoP1 chooses a source IP address from its

unique IP /24 prefix Pre1, and then sends ICMP packets along

the outbound path (the solid line) to the client. The ICMP

reply packets will follow the debugging path (the dash blue

line crossing the private backbone), because the PRs in PoP2

announce the unique prefix Pre1. Note that there is no fault

in the debugging path for the following two reasons. First,

as the middle fault is identified when only PoP1 reports the

fault, there must be no fault in the path from the victim-AS to

PoP2. Second, the private backbone is adequately provisioned,

and thus can be considered as faultless. To save monitoring

overhead, the debugging path is inactive by default, and will

be activated when the module Fake-filter starts to report a

victim-AS and a PoP.

Phase 3: identifying fault direction. Let lQoS be the average

packet loss that is monitored by QoS agents. Let ldebug be

the average packet loss rate that is monitored by debugging

agents. The fault debugger then identifies the fault direction

according to the following formula.

Direction =

⎧⎪⎨
⎪⎩

Inbound Cond1

Outbound ¬Cond1 ∧Cond2

Bidirectional ¬Cond1 ∧¬Cond2

Cond1 =
[
ldebug � 3%

]

Cond2 =
[|lQoS − ldebug|� 3%

]

The rationale behind the formula is as follows. 1) If it is an

inbound fault, there should be no fault in outbound path and
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debugging path, and therefore ldebug should be small, which

corresponds to Cond1 =
[
ldebug � 3%

]
. Here, 3% equals

to the constant δ (Section 4.3) that we use to filter minor

faults. 2) If it is an outbound fault, both debugging agent

and QoS agent should detect the fault, and therefore they

must not meet Cond1. Further, considering there is no fault

in inbound path and debugging path, the difference between

ldebug and lQoS should also be small, which corresponds to

Cond2 =
[|lQoS − ldebug|� 3%

]
. 3) If it is an bidirectional

fault, as discussed in 1) and 2), it should not meet Cond1 and

Cond2.

6 Detouring Victim Traffic
The detouring subsystem consists of a detouring controller

and a BGP injector deployed on a per-PoP basis. We describe

how the detouring controller and the BGP injector cooper-

ate to detour traffic suffering from faults (so called victim

traffic), circumventing outbound faults (§ 6.1) and inbound

faults (§ 6.2), respectively. For bidirectional faults, we can

split them into outbound faults and inbound faults, and then

circumvent them separately. Therefore, we will not discuss

how to circumvent bidirectional faults.

6.1 Circumventing Outbound Faults
Rationale: For every outbound fault associated with one

victim-AS j and one reported PoPi, the traffic from PoPi to

victim-AS j is the victim traffic. To circumvent the outbound

fault, considering its backup PoPi+1 not reporting victim-AS j,

we decide to detour the victim traffic to egress at PoPi+1. As

the cloud network is fully under control, to achieve this, we

can inject BGP routes to DRs in PoPi. Because traffic de-

touring will inevitably degrade the latency when there is no

fault, we need to detour the victim traffic back as soon as

possible after the fault disappears. As AAsclepius deploys

the QoS monitor on monitoring servers directly connected

to PRs, the traffic detouring at DRs will not interfere with

QoS monitoring. Therefore, the monitoring subsystem can

continuously identify whether victim-AS j is suffering from

faults after detouring, and thus we can detour the victim traffic

back when we have high confidence that the fault has already

disappeared.

Workflow: The workflow of detouring victim traffic proceeds

as follows. First, to ensure safety, before detouring the victim

traffic, the detouring controller checks whether the PRs in

PoPi+1 and the private backbone will exceed 80% load rate

after this detouring. Here, AAsclepius can easily determine

the load rate of the PRs and private backbone after traffic de-

touring because the traffic monitoring system built in Huawei

Cloud (§ 2.1) shares its visibility to traffic volume between

any PoP and any AS to AAsclepius. Second, if the checking

result is safe, the detouring controller then collects all IP pre-

fixes of victim-AS j from PRs in PoPi+1 rather than PoPi, so

as to guarantee that the PRs in PoPi+1 can route the detoured

traffic to the destination IP address. Third, the detouring con-

troller passes the collected IP prefixes of victim-AS j and the

IP addresses of PRs in PoPi+1 to the BGP injector in PoPi.

In PoPi, the BGP injector maintains a BGP connection with

each DR. Fourth, the BGP injector generates corresponding

BGP routes for the received IP prefixes of victim-AS j. For

these routes, the local_pref7 is set to a very large value (e.g.,
1000), and the next_hop8 is set to the received IP addresses of

PRs in in PoPi+1. Fifth, in PoPi, the BGP injector announces

the generated BGP routes to all DRs. By setting local_pref
to a large value, the generated routes can override the original

routes, and then the victim traffic will be detoured to egress at

PoPi+1. Once victim-AS j has been identified as not suffering

from faults continuously for 10 minutes by the fault reporter

in PoPi (§ 4.3), the detouring controller will then inform the

BGP injector in PoPi to withdraw the corresponding routes,

so as to detour the victim traffic back.

6.2 Circumventing Inbound Faults
Rationale: For every inbound fault associated with one

victim-AS j and PoPi, the traffic from victim-AS j to PoPi
is the victim traffic. Similarly, we decide to detour the victim

traffic to ingress at PoPi+1. However, the PoP at which the

victim traffic ingresses is directly selected by ISPs, not the

CSP. To address this issue, we can change the BGP announce-

ment of PoPi, and leverage BGP to detour the victim traffic.

In order for the QoS monitor to continuously monitor exist-

ing faults to provide guidance on when to detour the victim

traffic back, the change of the BGP announcement should not

involve the prefixes assigned to the QoS monitor.

Workflow: The workflow of detouring victim traffic proceeds

as follows. First, the detouring controller performs the safety

checking similar to that in circumventing outbound faults.

Second, In PoPi, the detouring controller informs the BGP

injector to announce the dominating prefixes of PoPi to all

PRs. Note that the BGP injector needs to prepend multiple

duplicate AS’es to the AS_path of these prefixes. In this

way, after BGP converges, the victim traffic will be routed to

ingress at PoPi+1. Note that the dominating prefixes of PoPi
are also announced by the other PoPs with multiple duplicate

AS’es prepended to their AS_path (§ 2.1). We should ensure

that PoPi+1 prepends relatively less duplicate AS’es to the

AS_path of these prefixes.

Discussion: A major risk of changing the BGP announce-

ment at PRs is that it detours not only the victim traffic, but

also all the other inbound traffic of PoPi (we call them inno-

cent traffic). The latency of innocent traffic will inevitably

degrade. Currently, considering the inevitable side effects,

we currently disable AAsclepius to execute automatic detour-

ing for inbound faults. AAsclepius only notifies the network

operators of inbound faults, and provides an API for traffic

detouring.

7The BGP local preference attribute is the second BGP attribute that can

be used to choose the exit path for an AS.
8The BGP next hop attribute is the next hop IP address that is used to

reach a certain destination.
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6.3 Discussion
We first discuss the benefits of identifying fault direction,

which is the key novelty of AAsclepius. Then, we discuss

the potential downsides in the additional path asymmetry

introduced by AAsclepius.

Benefits of identifying fault direction: Identifying fault di-

rection can help minimize impacted traffic during traffic de-

touring. Because the start point of outbound path (cloud →
client) is under control, to circumvent outbound faults, we

can accurately determine outbound traffic requiring traffic

detouring. Because the start point of inbound path (client

→ cloud) is beyond control, to circumvent inbound faults,

we must change BGP announcement, and all inbound traffic

is impacted. Therefore, with fault direction, we can reroute

traffic accordingly to minimize impacted traffic.

Negligible downsides in introducing path asymmetry: Ac-

cording to RFC 3349 [25], the additional path asymmetry

introduced by AAsclepius during detouring victim traffic

may degrade performance of TCP traffic. Nevertheless, path

asymmetry is a common phenomenon in the Internet (87%

path-tuples show path asymmetry [26]). AAsclepius has been

running for years, without customers complaining about per-

formance degradation. Further, some prior works (Meta Edge-

Fabric [12]/ Microsoft CASCARA [27]) also introduce addi-

tional path asymmetry as they switch transit-providers for bet-

ter performance or cost-effectiveness. Therefore, we conclude

that the additional path asymmetry should have negligible

impact on traffic performance.

7 Evaluation
We first present the deployment status of AAsclepius (§ 7.1).

Then, we present the performance of monitoring subsystem,

diagnosing subsystem, and detouring subsystem (§ 7.2-7.4).

In addition, we select several typical faults as case studies to

illustrate the workflow of AAsclepius (see Appendix A).

7.1 Deployment Status
We have fully deployed AAsclepius on a large scale in our

country. In August 2020, we start to run AAsclepius for just

some provinces. After a month of testing, we start to run

AAsclepius for the whole country. So far, AAsclepius has

been running stable for two years. AAsclepius has diagnosed

thousands of faults and circumvented more than two hundred

middle faults. In 2021 and 2022, AAsclepius protects Huawei

Cloud from major accidents. Our SRE team identifies network

faults that cause more than five VIP customers to experience

more than 5% packet loss rate for 10 minutes as major acci-

dents. Major accidents typically last several hours, involving

tens of AS’es, with (i) construction-related optical cable cuts,

(ii) router failures, and (iii) traffic congestion being main root

causes. For example, in August 2022, an outbound fault (may

lead to major accident) affecting three provinces began at

20:57, resulting in a packet loss rate of up to 40%. AAscle-

pius executes traffic detouring at 21:04 (within 8 minutes)

Figure 10: Average packet loss rate vs. time.

to circumvent the middle fault, and the fault finally ended at

22:30.

7.2 Performance of Monitoring Subsystem
We present the performance of the monitoring subsystem in

three major PoPs in December 2021. First, we present the

trend of packet loss rate and the distribution of victim-AS’es

in different hours. Then, we present the distribution of fault

duration of victim-AS’es. The following figures present data

aggregated over 31 days in December.

Average packet loss rate vs. time (Figure 10): For the three

major PoPs, we calculate the average packet loss rate of all

IP*s in different hours. First, we find that the trend of the

packet loss rate in each PoP is similar. This is possibly be-

cause the middle network in our country is adequately pro-

visioned and well engineered, and thus the packet losses are

mainly contributed by the client network. Because each IP*

shares similar client paths in different PoPs, its packet loss

rates in different PoPs are also similar, and thus the average

packet loss rate in each PoP shares similar trends. Second,

we find that the packet loss rate sharply increases to the peak

at 0:00/24:00. It is possibly because ISPs in our country usu-

ally update routes and maintain network devices at this time,

which is usually accompanied by network faults such as BGP

misconfigurations, leading to the increase of average packet

loss rate. Third, we find that the average packet loss rate in

PoP1 is slightly higher than that in PoP2 and PoP3. We sug-

gest this is because that the middle network PoP1 connected

to usually has a relatively higher load.

Distribution of victim-AS’es vs. time (Figure 11): For each

PoP, we count the distribution of victim-AS’es occurring in

different hours. First, similar to the packet loss rate, we find

that the distribution of the occurrence of victim-AS’es in each

PoP is similar. Second, we also find that victim-AS’es are

more likely to occur at 0:00/24:00. Third, we find that the

distribution of the occurrence of victim-AS’es is positively

correlated with the trend of packet loss rate. We suggest this

is because a higher packet loss rate implies poorer network

quality, which means more faults and thus more victim-AS’es.

Fault duration of victim-AS’es (Figure 12): Similar to Fig-

ure 4, we further present the distribution of fault duration of

victim-AS’es in each PoP. We also find that the distribution is

quite similar in each PoP. Considering that each PoP shares

similar network quality, we can set unified parameters for

each PoP to ease maintenance.
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Figure 11: Distribution of victim-AS’es vs. time.

Figure 12: CDF of fault duration of victim-AS’es.

7.3 Performance of Diagnosing Subsystem
We present the performance of the diagnosing subsystem

in three major PoPs in December 2021. First, we present

the fraction of each category of faults. Then, we present the

distribution of each category of faults in different hours. The

following figures present data aggregated over 31 days in

December.

Fraction of each category of faults (Figure 13): We count

the fraction of each category of faults in each PoP. We find

that the fractions in each PoP are similar: more than 50%

of the faults are client faults, about 25% are fake faults, less

than 15% are middle faults. It is possibly because the middle

network in our country is well engineered and adequately

provisioned, so that middle faults occur less frequently. We

find that the fraction of outbound faults is far larger than

that of inbound faults. The results show that outbound faults,

inbound faults, and bidirectional faults account for 7%, 1%,

and 2%, respectfully. We suspect this is because there is much

more user download traffic than user upload traffic in the

middle and client network, and thus the outbound paths are

more likely to be congested.

Distribution of each category of faults vs. time (Figure 14):
We count the distribution of each category of faults occurring

in different hours. Similar to the distribution of victim-AS’es

occurring in different hours (see Figure 11), we find that faults

are more likely to occur at 0:00/24:00.

Potential misclassifications: Misclassifications are unavoid-

able. When there is a false positive (a non-middle fault is

classified as a middle fault), AAsclepius may execute useless

traffic detouring and increase the latency. When there is a false

negative (a middle fault is classified as a non-middle fault),

AAsclepius may not reduce the packet loss rate of victim

traffic and receive complaints from customers. Because most

network faults occur beyond our control, we can hardly obtain

ground truth and misclassification rate. Nevertheless, AAscle-

pius can reduce packet loss rate in most traffic detouring (see

Figure 13: Fraction of each category of faults.

Figure 14: Distribution of each category of faults vs. time.

Figure 16) and has protected cloud from major accidents for

years, indicating an extremely low misclassification rate.

7.4 Performance of Detouring Subsystem
We present the performance of the detouring subsystem in

three major PoPs in December 2021. We first present the

response time of AAsclepius to middle faults. We then present

the effect of traffic detouring on the packet loss rate and

latency of victim traffic. The results show that the detouring

subsystem is fast and effective. Note that we currently disable

AAsclepius to execute automatic detouring for inbound faults,

and thus all traffic detouring in this section is for outbound

faults.

Evaluation criteria: In order to evaluate the detouring sub-

system, we deploy VM agents in VMs in Huawei Cloud to

perform VM monitoring. Similar to QoS agents, VM agents

also send ICMP probes to each IP*. Because the probes sent

from VMs are routed the same as the cloud traffic, we regard

the performance of VM monitoring as the QoS, and use it to

evaluate the effect of traffic detouring.

Response time to middle faults (Figure 15): We define the

response time to a middle fault as the interval between the

time its associated victim-AS transits from healthy-state to

victim-state and the time the detouring subsystem reports the

traffic detouring is executed. We find that the response time to

all middle faults is within 8 minutes. Typically, the monitoring

subsystem takes 3∼5 minutes to identify and report a victim-

AS; the diagnosing subsystem takes 3∼4 minutes to identify

its category and direction; the detouring subsystem takes less

than 30 seconds to execute the traffic detouring.

Packet loss rate optimization (Figure 16): For each middle

fault, we compare the average packet loss rate of its associ-

ated victim-AS in VM monitoring within 5 minutes before

and after the corresponding traffic detouring is executed. We

find that each traffic detouring reduces the packet loss rate

by 7.0% on average. There are only less than 10% traffic

detouring degrading the packet loss rate by less than 0.5%.
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This is possibly because that the middle faults have already

disappeared when the traffic detouring is executed.

Latency variation (Figure 17): For each middle fault, we

compare the average latency of its associated victim-AS in

VM monitoring within 5 minutes before and after the cor-

responding traffic detouring is executed. We find that each

traffic detouring slightly degrades the latency by 1.9ms on

average. This is reasonable because traffic detouring usually

degrades the latency when no fault occurs, and the degradation

has already been weakened by the middle faults.

Figure 15: CDF of response time to middle faults.

Figure 16: CDF of packet loss rate optimization.

Figure 17: CDF of latency variation.

8 Related Work
Fault monitoring and diagnosis at Internet scale: Based

on the measurement methods, existing fault monitoring and

diagnosis solutions can be mainly classified into three cat-

egories: 1) active solutions which send probes to the Inter-

net [14, 28–30]; 2) passive solutions which monitor ongoing

connections [12, 13, 15, 17, 31, 32]; 3) hybrid solutions which

combine active and passive solutions [1, 11, 16, 18, 19, 33].

Among these solutions, BlameIt [11] (hybrid), Entact [14]

(active), Edge fabric [12] (passive), Espresso [13] (passive),

and CPR [15] (passive) are most related to our application

scenarios. BlameIt uses its passive measurement data to mon-

itor faults and identify the fault category in the first phase,

and further triggers impact-prioritized probes to localize the

faulty AS for middle faults with the largest impacts in the

second phase. However, BlameIt does not identify the fault di-

rection, and is therefore distinguished from AAsclepius. The

other solutions above do not diagnose faults but support traffic

engineering, and we will cover them in the next paragraph.

Traffic engineering: There are substantial traffic engineering

solutions, most of which are dedicated to optimizing CDN per-

formance. A related kind of solutions select egress path and

ingress point that a client should be directed to as a function

of path performance [12–16,34,35]. Among them, Entact [14]

measures path performance by sending probes to different

IP /24 prefixes through alternate paths. Edge Fabric [12] and

Espresso [13] passively measure path performance in differ-

ent IP /24 prefixes by directing a small amount of flows to

alternate paths and tracking their performance. Similar to

AAsclepius, Espresso leverages Google’s private backbone,

B4 [36], and thus can route traffic to egress at distant PoPs.

Through deployment in the kernel, CPR [15] even provides

path failover at connection granularity. However, all the listed

traffic engineering solutions optimize their traffic performance

by selecting alternate outbound paths based on end-to-end

measurement, and thus can only handle outbound faults. In

contrast, AAsclepius detours traffic based on the category

and the direction of the faults, and thus can handle both in-

bound and outbound faults. Therefore, these solutions are

distinguished from AAsclepius. AAsclepius is also comple-

mentary to these solutions, as it can provide fine-grained fault

category and fault direction information, which is useful for

CDN performance optimization. Other solutions include IP

anycast [37], co-located DNS and proxy servers [38], end-user

mapping with EDNS [39], etc. [40].

Solutions in datacenters: Network faults in datacenters have

been studied over decades, and researchers have provided

various solutions [41–63]. These systems work excellently in

data centers, but have not been extended to Internet scale.

9 Conclusion
Network fault is a widespread phenomenon in the Internet,

which could harm the QoS of Huawei Cloud. Existing works

do not identify fault direction. In this paper, we propose a

fully automatic system, namely AAsclepius, to monitor and

diagnose network faults, and detour victim traffic to circum-

vent middle faults. The key novelty of AAsclepius, PathDe-

bugging, achieves identifying the directions of middle faults.

AAsclepius has proven itself to be mature and reliable in two

years of production deployment, and we consider extending

AAsclepius to IPv6 network. Although the core methodology

applied to IPv4 network can still be applied to IPv6 network,

the main difficulty in the extension is how to efficiently find

active IP addresses of high quality for QoS monitoring in the

IPv6 address space which is much more larger than IPv4, and

we are seeking for the solution.

Acknowledgment
We would like to thank the anonymous reviewers and shep-

herd Reto Achermann, for their help in improving this paper.

This work is supported by Key-Area Research and Develop-

ment Program of Guangdong Province 2020B0101390001,

National Natural Science Foundation of China (NSFC) (No.

U20A20179).

666    2023 USENIX Annual Technical Conference USENIX Association



References

[1] Amogh Dhamdhere, David D Clark, Alexander Gamero-

Garrido, Matthew Luckie, Ricky KP Mok, Gautam Aki-

wate, Kabir Gogia, Vaibhav Bajpai, Alex C Snoeren,

and Kc Claffy. Inferring persistent interdomain conges-

tion. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages

1–15, 2018.

[2] Rodérick Fanou, Francisco Valera, and Amogh Dhamd-

here. Investigating the causes of congestion on the

african ixp substrate. In Proceedings of the 2017 Inter-
net Measurement Conference, pages 57–63, 2017.

[3] Matthew Luckie, Amogh Dhamdhere, David Clark,

Bradley Huffaker, and KC Claffy. Challenges in in-

ferring internet interdomain congestion. In Proceedings
of the 2014 Conference on Internet Measurement Con-
ference, pages 15–22, 2014.

[4] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.

Understanding network failures in data centers: mea-

surement, analysis, and implications. In Proceedings of
the ACM SIGCOMM 2011 Conference, pages 350–361,

2011.

[5] Athina Markopoulou, Gianluca Iannaccone, Supratik

Bhattacharyya, Chen-Nee Chuah, Yashar Ganjali, and

Christophe Diot. Characterization of failures in an oper-

ational ip backbone network. IEEE/ACM transactions
on networking, 16(4):749–762, 2008.

[6] Gianluca Iannaccone, Chen-nee Chuah, Richard Mortier,

Supratik Bhattacharyya, and Christophe Diot. Analysis

of link failures in an ip backbone. In Proceedings of
the 2nd ACM SIGCOMM Workshop on Internet measur-
ment, pages 237–242, 2002.

[7] Ratul Mahajan, David Wetherall, and Tom Anderson.

Understanding bgp misconfiguration. ACM SIGCOMM
Computer Communication Review, 32(4):3–16, 2002.

[8] Nick Feamster and Hari Balakrishnan. Detecting bgp

configuration faults with static analysis. In Proceedings
of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation-Volume 2, pages 43–56,

2005.

[9] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and

Stefan Savage. California fault lines: understanding the

causes and impact of network failures. In Proceedings of
the ACM SIGCOMM 2010 Conference, pages 315–326,

2010.

[10] Monia Ghobadi and Ratul Mahajan. Optical layer fail-

ures in a large backbone. In Proceedings of the 2016 In-
ternet Measurement Conference, pages 461–467, 2016.

[11] Yuchen Jin, Sundararajan Renganathan, Ganesh Anan-

thanarayanan, Junchen Jiang, Venkata N Padmanabhan,

Manuel Schroder, Matt Calder, and Arvind Krishna-

murthy. Zooming in on wide-area latencies to a global

cloud provider. In Proceedings of the ACM Special In-
terest Group on Data Communication, pages 104–116.

2019.

[12] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan

Katz-Bassett, Harsha V Madhyastha, Italo Cunha, James

Quinn, Saif Hasan, Petr Lapukhov, and Hongyi Zeng.

Engineering egress with edge fabric: Steering oceans of

content to the world. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communi-
cation, pages 418–431, 2017.

[13] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve

Padgett, Matthew Holliman, Gary Baldus, Marcus Hines,

Taeeun Kim, Ashok Narayanan, Ankur Jain, et al. Tak-

ing the edge off with espresso: Scale, reliability and

programmability for global internet peering. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 432–445, 2017.

[14] Zheng Zhang, Ming Zhang, Albert G Greenberg, Y Char-

lie Hu, Ratul Mahajan, and Blaine Christian. Optimiz-

ing cost and performance in online service provider

networks. In NSDI, pages 33–48, 2010.

[15] Raul Landa, Lorenzo Saino, Lennert Buytenhek, and

João Taveira Araújo. Staying alive: Connection path

reselection at the edge. In NSDI, pages 233–251, 2021.

[16] Matt Calder, Ryan Gao, Manuel Schröder, Ryan Stew-

art, Jitendra Padhye, Ratul Mahajan, Ganesh Anantha-

narayanan, and Ethan Katz-Bassett. Odin: Microsoft’s

scalable fault-tolerant cdn measurement system. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 501–517, 2018.

[17] Brandon Schlinker, Italo Cunha, Yi-Ching Chiu,

Srikanth Sundaresan, and Ethan Katz-Bassett. Internet

performance from facebook’s edge. In Proceedings of
the Internet Measurement Conference, pages 179–194,

2019.

[18] Rupa Krishnan, Harsha V Madhyastha, Sridhar Srini-

vasan, Sushant Jain, Arvind Krishnamurthy, Thomas An-

derson, and Jie Gao. Moving beyond end-to-end path

information to optimize cdn performance. In Proceed-
ings of the 9th ACM SIGCOMM conference on Internet
measurement, pages 190–201, 2009.

[19] Ming Zhang, Chi Zhang, Vivek S Pai, Larry L Peterson,

and Randolph Y Wang. Planetseer: Internet path failure

monitoring and characterization in wide-area services.

In OSDI, volume 4, pages 12–12, 2004.

USENIX Association 2023 USENIX Annual Technical Conference    667



[20] Anukool Lakhina, Mark Crovella, and Christiphe Diot.

Characterization of network-wide anomalies in traffic

flows. In Proc. ACM IMC, 2004.

[21] Ajay Anil Mahimkar, Zihui Ge, Aman Shaikh, Jia Wang,

Jennifer Yates, Yin Zhang, and Qi Zhao. Towards au-

tomated performance diagnosis in a large iptv network.

ACM SIGCOMM Computer Communication Review,

39(4):231–242, 2009.

[22] Partha Kanuparthy and Constantine Dovrolis. Pythia:

Diagnosing performance problems in wide area

providers. In 2014 USENIX Annual Technical Con-
ference (USENIX ATC 14), pages 371–382, 2014.

[23] Anukool Lakhina, Mark Crovella, and Christophe Diot.

Diagnosing network-wide traffic anomalies. ACM SIG-
COMM computer communication review, 34(4):219–

230, 2004.

[24] Junchen Jiang, Rajdeep Das, Ganesh Ananthanarayanan,

Philip A Chou, Venkata Padmanabhan, Vyas Sekar, Esb-

jorn Dominique, Marcin Goliszewski, Dalibor Kukoleca,

Renat Vafin, et al. Via: Improving internet telephony

call quality using predictive relay selection. In Proceed-
ings of the 2016 ACM SIGCOMM Conference, pages

286–299, 2016.

[25] Hari Balakrishnan, V Padmanabhan, Godred Fairhurst,

and Mahesh Sooriyabandara. Rfc3449: Tcp perfor-

mance implications of network path asymmetry, 2002.

[26] Wouter De Vries, José Jair Santanna, Anna Sperotto,

and Aiko Pras. How asymmetric is the internet? a study

to support the use of traceroute. In Intelligent Mech-
anisms for Network Configuration and Security: 9th
IFIP WG 6.6 International Conference on Autonomous
Infrastructure, Management, and Security, AIMS 2015,
Ghent, Belgium, June 22-25, 2015. Proceedings 9, pages

113–125. Springer, 2015.

[27] Rachee Singh, Sharad Agarwal, Matt Calder, and

Paramvir Bahl. Cost-effective cloud edge traffic en-

gineering with cascara. In NSDI, pages 201–216, 2021.

[28] Lin Quan, John Heidemann, and Yuri Pradkin. Trinocu-

lar: Understanding internet reliability through adaptive

probing. ACM SIGCOMM Computer Communication
Review, 43(4):255–266, 2013.

[29] Ítalo Cunha, Pietro Marchetta, Matt Calder, Yi-Ching

Chiu, Bruno VA Machado, Antonio Pescapè, Vasileios

Giotsas, Harsha V Madhyastha, and Ethan Katz-Bassett.

Sibyl: a practical internet route oracle. In 13th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 16), pages 325–344, 2016.

[30] Harsha V Madhyastha, Tomas Isdal, Michael Piatek,

Colin Dixon, Thomas Anderson, Arvind Krishnamurthy,

and Arun Venkataramani. iplane: An information plane

for distributed services. In Proceedings of the 7th sympo-
sium on Operating systems design and implementation,

pages 367–380, 2006.

[31] Thomas Holterbach, Edgar Costa Molero, Maria Apos-

tolaki, Alberto Dainotti, Stefano Vissicchio, and Laurent

Vanbever. Blink: Fast connectivity recovery entirely in

the data plane. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19),
pages 161–176, 2019.

[32] Venkata N Padmanabhan, Sriram Ramabhadran, and

Jitendra Padhye. Netprofiler: Profiling wide-area net-

works using peer cooperation. In International Work-
shop on Peer-to-Peer Systems, pages 80–92. Springer,

2005.

[33] Vasileios Giotsas, Christoph Dietzel, Georgios Smarag-

dakis, Anja Feldmann, Arthur Berger, and Emile Aben.

Detecting peering infrastructure outages in the wild. In

Proceedings of the conference of the ACM special in-
terest group on data communication, pages 446–459,

2017.

[34] Hongqiang Harry Liu, Raajay Viswanathan, Matt Calder,

Aditya Akella, Ratul Mahajan, Jitendra Padhye, and

Ming Zhang. Efficiently delivering online services

over integrated infrastructure. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 16), pages 77–90, 2016.

[35] Vytautas Valancius, Bharath Ravi, Nick Feamster, and

Alex C Snoeren. Quantifying the benefits of joint

content and network routing. In Proceedings of the
ACM SIGMETRICS/international conference on Mea-
surement and modeling of computer systems, pages 243–

254, 2013.

[36] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon

Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,

Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-

rience with a globally-deployed software defined wan.

ACM SIGCOMM Computer Communication Review,

43(4):3–14, 2013.

[37] Ted Hardie. Rfc3258: Distributing authoritative name

servers via shared unicast addresses, 2002.

[38] Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick

Holt, Jie Liu, Yingying Chen, and Oleg Surmachev. Fas-

troute: A scalable load-aware anycast routing architec-

ture for modern cdns. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
15), pages 381–394, 2015.

668    2023 USENIX Annual Technical Conference USENIX Association



[39] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Tor-

res. End-user mapping: Next generation request routing

for content delivery. ACM SIGCOMM Computer Com-
munication Review, 45(4):167–181, 2015.

[40] David Chou, Tianyin Xu, Kaushik Veeraraghavan, An-

drew Newell, Sonia Margulis, Lin Xiao, Pol Mauri Ruiz,

Justin Meza, Kiryong Ha, Shruti Padmanabha, et al.

Taiji: managing global user traffic for large-scale inter-

net services at the edge. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 430–

446, 2019.

[41] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-

tonin Bas, Advait Dixit, and Lawrence J Wobker. In-

band network telemetry via programmable dataplanes.

In ACM SIGCOMM, volume 15, 2015.

[42] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang

Li, Gianni Antichi, Minian Yu, and Michael Mitzen-

macher. Pint: Probabilistic in-band network telemetry.

In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication, pages 662–680, 2020.

[43] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C

Snoeren. Passive realtime datacenter fault detection and

localization. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages

595–612, 2017.

[44] Arjun Roy, Rajdeep Das, Hongyi Zeng, Jasmeet Bagga,

and Alex C Snoeren. Understanding the limits of pas-

sive realtime datacenter fault detection and localization.

IEEE/ACM Transactions on Networking, 27(5):2001–

2014, 2019.

[45] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh,

and Minlan Yu. Microscope: Queue-based performance

diagnosis for network functions. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 390–403, 2020.

[46] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.

Flowradar: A better netflow for data centers. In NSDI,
2016.

[47] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.

Lossradar: Fast detection of lost packets in data center

networks. In Proceedings of the 12th International on
Conference on emerging Networking EXperiments and
Technologies, pages 481–495, 2016.

[48] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao,

Shi Bai, Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen

Shen, Yongqing Xi, et al. Flow event telemetry on pro-

grammable data plane. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication,

pages 76–89, 2020.

[49] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,

Vyas Sekar, and Vladimir Braverman. One sketch to

rule them all: Rethinking network flow monitoring with

univmon. In Proceedings of the 2016 conference on
ACM SIGCOMM 2016 Conference. ACM, 2016.

[50] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi

Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve

Uhlig. Elastic sketch: Adaptive and fast network-wide

measurements. In Proceedings of the 2018 ACM SIG-
COMM Conference. ACM, 2018.

[51] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang,

Li Chen, Shiyi Liu, Naiqian Zheng, Ruixin Wang, Hanbo

Wu, Yi Wang, et al. Lightguardian: A full-visibility,

lightweight, in-band telemetry system using sketchlets.

In NSDI, pages 991–1010, 2021.

[52] Kaicheng Yang, Yuhan Wu, Ruijie Miao, Tong Yang,

Zirui Liu, Zicang Xu, Rui Qiu, Yikai Zhao, Hanglong Lv,

Zhigang Ji, and Gaogang Xie. Chamelemon: Shifting

measurement attention as network state changes. In

Proceedings of the 2023 ACM SIGCOMM Conference.

ACM, 2023.

[53] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng

Zhu, and Yungang Bao. Omnimon: Re-architecting

network telemetry with resource efficiency and full ac-

curacy. In Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and
protocols for computer communication, pages 404–421,

2020.

[54] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong

Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,

Bin Pang, Hua Chen, et al. Pingmesh: A large-scale

system for data center network latency measurement

and analysis. In ACM SIGCOMM CCR, volume 45.

ACM, 2015.

[55] Masoud Moshref, Minlan Yu, Ramesh Govindan, and

Amin Vahdat. Trumpet: Timely and precise triggers in

data centers. In Proceedings of the 2016 conference on
ACM SIGCOMM 2016 Conference. ACM, 2016.

[56] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,

Hongqiang Harry Liu, Jitu Padhye, Boon Thau Loo,

USENIX Association 2023 USENIX Annual Technical Conference    669



and Geoff Outhred. 007: Democratically finding the

cause of packet drops. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), pages 419–435, 2018.

[57] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf

Schuster, and Geoff Outhred. Taking the blame game out

of data centers operations with netpoirot. In Proceedings
of the 2016 ACM SIGCOMM Conference, pages 440–

453, 2016.

[58] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and

Boon Thau Loo. Burstradar: Practical real-time mi-

croburst monitoring for datacenter networks. In Pro-
ceedings of the 9th Asia-Pacific Workshop on Systems,

pages 1–8, 2018.

[59] Xin Wu, Daniel Turner, Chao-Chih Chen, David A

Maltz, Xiaowei Yang, Lihua Yuan, and Ming Zhang.

Netpilot: Automating datacenter network failure miti-

gation. In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures,
and protocols for computer communication, pages 419–

430, 2012.

[60] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,

Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,

Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry

in large datacenter networks. In Proceedings of the
2015 ACM Conference on Special Interest Group on
Data Communication, pages 479–491, 2015.

[61] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,

Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.

Netbouncer: Active device and link failure localization

in data center networks. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
19), pages 599–614, 2019.

[62] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-

ster, Jennifer Rexford, and Walter Willinger. Sonata:

Query-driven streaming network telemetry. In Proceed-
ings of the 2018 conference of the ACM special interest
group on data communication, pages 357–371, 2018.

[63] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.

Simplifying datacenter network debugging with path-

dump. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), pages 233–

248, 2016.

670    2023 USENIX Annual Technical Conference USENIX Association



A Real-world Case Studies
To better illustrate the workflow of AAsclepius, we present

several typical faults as case studies.

Figure 18: A typical outbound fault.

Figure 19: A typical inbound fault.

Figure 20: A typical bidirectional fault.

A typical outbound fault: Figure 18 plots the packet loss

rates of QoS monitoring, debug monitoring9, and VM moni-

toring during a typical outbound fault. The monitoring sub-

system identifies a victim-AS at 14:00 at the first time, and

reports the fault at 14:03. The diagnosing subsystem then

identifies its fault category as a middle fault. The loss rate

of debug monitoring keeps about 10%, which is similar to

that of QoS monitoring. Therefore, the diagnosing subsystem

identifies the middle fault as an outbound fault. The detouring

subsystem detours the victim traffic at 14:08, and we can see

the loss rate of VM monitoring suddenly decreases to almost

0%. In summary, the packet loss rate of VM monitoring de-

creases from up to 12.5% to almost 0% within 8 minutes. The

outbound fault ends at 15:07, and the diagnosing subsystem

detours the traffic back at 15:17, which is not plotted here.

A typical inbound fault: Figure 19 plots the packet loss rates

of QoS monitoring, debug monitoring, and VM monitoring

during a typical inbound fault. The monitoring subsystem

identifies a victim-AS at 16:17 at the first time, and reports

9We call the monitoring process performed by debugging agent in PathDe-

bugging as debug monitoring for short.

the fault at 16:20. The diagnosing subsystem then identifies its

fault category as a middle fault. The packet loss rate of debug

monitoring keeps less than 1%. Therefore, the diagnosing

subsystem identifies the middle fault as an inbound fault. As

we disable the automatic detouring for inbound faults, this

fault is not circumvented, and the packet loss rate of VM

monitoring keeps similar to QoS monitoring.

A typical bidirectional fault: Figure 20 plots the packet

loss rates of QoS monitoring, debug monitoring, and VM

monitoring during a typical bidirectional fault. This fault is a

large-scale fault involving tens of victim-AS’es, and we just

present one of them. The monitoring subsystem identifies

the victim-AS at 20:57 at the first time, and reports the fault

at 21:00. The diagnosing subsystem then identifies its fault

category as a middle fault. The packet loss rate of the debug

monitoring keeps around 15%, which is about 10% lower

than that of the QoS monitoring. Therefore, the diagnosing

subsystem identifies the middle fault as a bidirectional fault.

The detouring subsystem detours the outbound traffic at 21:09,

and the packet loss rate of VM monitoring decreases from

about 20% to 10%. Due to the large scale of this fault, network

operators manually detour the inbound traffic at 21:11, and the

packet loss rate of VM monitoring decreases to less than 1%

at 21:20. In summary, the packet loss rate of VM monitoring

decreases from 30% to less than 1% within 20 minutes.
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Jiesheng Wu
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Abstract
The TCP remains the workhorse protocol for many modern

large-scale data centers. However, the increasingly demand-
ing performance expectations—led by advancements in both
hardware (e.g., 100Gbps linkspeed network) and software
(e.g., Intel DPDK support)—make the kernel-based TCP
stack no longer a favorable option. Over the past decade,
multiple parties have proposed various user-stack TCP stacks
offering things-as-usual TCP support with significant perfor-
mance improvement. Unfortunately, we find these proposals
may not function well in the field, especially when subjected
to large-scale deployments.

In this paper, we present LUNA, a user-space TCP stack
widely deployed at Alibaba Cloud. We elaborate on the de-
sign tradeoffs, emphasizing three unique features in thread,
memory, and traffic models. Further, we share our lessons
and experiences learned from the field deployment. Exten-
sive microbenchmark evaluations and performance statistics
collected from the production systems indicate that LUNA
outperforms kernel and other user-space solutions with up to
3.5× in throughput, and reduce up to 53% latency.

1 Introduction
At Alibaba Cloud, we follow a “compute-storage disaggre-
gation” philosophy to enable the frontend computing servers
(a.k.a Elastic Computing Service) and backend storage ser-
vices (e.g., Elastic Block Storage, EBS) to evolve and scale
separately. Initially, we adopted kernel TCP to connect com-
puting servers to the storage servers for high compatibility
and out-of-the-box usability.

However, advancement in hardware, including ultra-low
latency (ULL) NVMe SSDs and high linkspeed networks
(e.g., 100Gbps to 200Gbps), have significantly raised users’
expectations for cloud storage systems. Kernel TCP is no
longer a suitable option to deliver satisfactory performance,
as it cannot fully leverage these benefits, and can lead to
high tail latency and low single-core throughput. Moreover,
kernel TCP can impose the well-known "data center tax" (e.g.,
consuming 70% of its CPU cycles in the kernel) [6, 20, 22].

Back in 2017, we started to notice such mismatches be-
tween the inefficient kernel TCP stack and the growing ca-
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pabilities of new devices. We then began to look for an al-
ternative solution to connect the frontend servers to backend
storage systems. We explored the possibilities of replacing
TCP with other protocols, such as Remote Direct Memory Ac-
cess (RDMA), or leveraging hardware offloading (e.g., TCP
Offload Engines). In fact, we have successfully deployed
RDMA within our backend storage systems and achieved the
expected performance gains [14]. Moreover, we have also de-
signed a UDP-based protocol and leveraged Data Processing
Units (DPUs) to accelerate one of our services, EBS [29].

Yet, interconnecting frontend and backend for all services
is a different story. First, it requires inter-DC support to let
storage services to be accessed from geo-distributed availabil-
ity zones—not well supported by RDMA back then. More-
over, the interconnection network needs to provide compat-
ibility and legacy support for various services, thereby pro-
hibiting a complete overhaul with both the protocol altered
and specialized hardware installed.

It is user-space TCP to the rescue. We noticed that a se-
ries of work, from both academia and industry, had demon-
strated great performance potentials (e.g., saturating 40Gbps
with IX [7]) by moving the TCP from the kernel to the user
space [7, 9, 20, 21, 32]. More importantly, user-space TCP
solutions provide a familiar programming model to the upper-
level applications and offer legacy support by nature.

Unfortunately, we are unable to shoehorn existing user-
space TCP solutions onto our production systems. First, these
stacks normally use separate threads for application logic and
the TCP processing (e.g., IX [7] and mTCP [20]), thereby
incurring high communication overhead and impacting our
Service Level Objectives (SLOs). Second, these solutions
usually follow a copy-based memory model (e.g., mTCP and
VPP [9]), aggravating memory bandwidth bottlenecks. Third,
existing solutions require exclusively ownership of the NICs,
thus preventing legacy support for kernel traffic.

In this paper, we present LUNA, a user-space TCP stack
in Alibaba Cloud. We have successfully deployed LUNA in
the field for more than 5 years and enable it to be the de-facto
transport layer for all new servers in Alibaba Cloud since its
release. Similar to previous practices (e.g., mTCP [20] and
IX [7]), LUNA runs in a LibOS mode, operates in a shared-
nothing architecture between threads and leverages DPDK
user-space driver support.
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Compared to previous practices, there are also three unique
features in thread, memory and traffic models help LUNA
successfully serve as an alternative to the kernel TCP. First,
LUNA uses the run-to-completion (r2c) thread model. In
each thread, LUNA packs both the application logic and TCP
stack together, and process them with an event loop in each
thread. Under this design, LUNA can significantly reducing
the context switch overhead. Second, LUNA supports full
data-path zero copy for both send and receive buffers based on
a user-space slab subsystem. The zero-copy buffer effectively
reduces the overhead from data movement. Third, LUNA can
collaborate with kernel TCP stack to provide legacy support.
We orchestrate the two types of traffic in the same NIC by
utilizing Flow Bifurcation and SR-IOV to reserve certain
ranges for user-space traffic.

We extensively evaluate LUNA against kernel TCP and
two other user-space TCP implementations (mTCP [20] and
VPP [9]) in a series of microbenchmarks. Results show that
LUNA can outperform kernel and other user-space TCP stacks
with up to 3.5× in throughput and reduce latency by up to
53%. Also, we compare performance between LUNA and
kernel in the field across three representative scenarios. The
field statistics show that LUNA could reduce latency by up to
50% and/or improve throughput by up to 50%.

The rest of the paper is organized as follows. We introduce
the network architecture and the corresponding requirements
at Alibaba Cloud (§2). We discuss the motivations behind
LUNA in §3. We present the LUNA overview (§4) and three
features in thread (§5), memory (§6) and traffic model (§7)
designs. We further conduct series of evaluations on both
microbenchmarks and field deployment (§8). We end this
paper with several lessons we learned from deployment (§9)
and a short conclusion(§10).

2 Background
2.1 Alibaba Cloud Storage Network Architecture

Alibaba Cloud offers various storage services, such as Elastic
Block Storage (EBS), Object Storage Service (OSS), and
Cloud Tablestore Service (OTS). In Figure 1, we illustrate
the typical three layers of a service, including the interface,
the function, and the persistence. In a nutshell, the interface
layer comprises a set of servers to relay users’ requests from
the Internet (e.g., OSS and OTS) or the virtual stack within
computing instances (e.g., vhost for EBS) to the function
layer. The users’ requests are further parsed and processed
by the function layer (e.g., the BlockServers of EBS) before
finally being sent to the persistence layer (i.e., Chunkstore
Server, the storage engine of our distributed file system Pangu)
for storage or retrieval. We use Pangu [25], an HDFS-like
distributed file system developed by Alibaba Cloud, as the
persistence layer.

Our cloud architecture adheres to a “compute-to-storage
disaggregation” philosophy. This allows the computing
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Figure 1: Alibaba Cloud storage network architecture. VM: Virtual
Machine; BA: Block storage interface Agent; OS: Object storage
interface Server; TS: Tablestore interface Server; BS: Block stor-
age function Server; KVS: OSS Key-Value Server; TE: Tablestore
Engine; CS: Pangu distributed file system Chunkstore Server.

servers—hosting the interface layer and virtual machine in-
stances subscribed by the users—and backend storage sys-
tems (i.e., the function and persistence layers) to scale and
evolve at different paces. In this case, we can divide our net-
works into two scopes, the frontend network and the backend
network (see Figure 1). In the frontend network, we primarily
use TCP. The backend network normally follows a two-layer
Clos topology of Point of Delivery (PoD) and utilizes TCP or
RDMA [14]. We focus on the frontend network in this paper.

2.2 Requirements for Our Networks

Following hardware evolution. With an ever-increasing user
base, we are always in the process of expanding our fleet to
accommodate more users and offering better performance.
To achieve such goals, cloud vendors like us usually seek
help from hardware advancement. For example, there are
two aspects of recent development that fundamentally change
the landscape of our data center networks. First, the network
linkspeed has jumped from 10Gbps to 50Gbps and, more re-
cently, 200Gbps. Moreover, high-throughput and low-latency
storage devices become readily accessible. For example, off-
the-shelf products, such as Intel P5800 [19] and Samsung
Z-NAND SSD [36], can achieve up to 6GB/s throughput with
around 10 microseconds latency. The combination of the two
provides opportunities but also drastically raises the users’
expectations of the cloud storage services.

Inter-DC access. A major difference between frontend and
backend network is that the former needs to support comput-
ing servers accessing the storage servers from different clus-
ters, data centers or even geographically far-apart availability
zones. On the contrary, supporting the latter is relatively
straightforward—normally a two-layer Clos of PoD.

Legacy support. Over the years, the sizes and types of our
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Figure 2: Different network stacks’ performance in an offline RPC
microbenchmark. a) RPC latency CDF with a single core; b) Maxi-
mal throughput and multi-core scalability.

storage services have been rapidly growing. Consequently,
many outdated servers, while functioning, do not offer certain
functionalities (e.g., DPDK-ready NICs), thereby may still
require classic kernel traffic support.

3 Motivation & Related Work
In this section, we revisit the motivations behind LUNA. Al-
though LUNA was initiated back in 2017, we believe the
many observations and related work that inspired LUNA re-
main valid today and may even be strengthened over time.

3.1 Revisiting Kernel TCP

The kernel TCP was (in 2017) and may still remain to be a
popular choice for large-scale clusters for its ease of usage
and compatibility. However, it has become evident that the
kernel TCP can no longer meet the performance demands of
data centers (e.g., charging expensive data center tax due to
kernel interruptions and memory copies) [6,22,33]. Here, we
examines the kernel TCP performance via a microbenchmark.

We set up knb (Kuafu Network Benchmark)—an internal
network stack benchmark that emulates the RPC services
in the datacenters—to evaluate the kernel TCP latency and
throughput. In this test, the client node sends a RPC request
with 4KB messages to the server, measures the latency when
receiving the RPC response with the same message size from
the server, and then sends out the next request. (See § 8 for
knb detailed usage.)

From Figure 2, we can see that the kernel TCP performance
is far from our SLOs. Specifically, Figure 2(a) indicates the
median basic RPC latency of kernel TCP has already reached
50µs. In stark contrast, our high-performance class EBS
requires end-to-end response latency to be 100µs [3]. Fig-
ure 2(b) further shows that the kernel network stack on a sin-
gle core could only provide a maximum of 600Mbps through-
put. Moreover, Figure 2(b) also reveals that the performance
issue of the kernel TCP cannot be resolved by allocating more
cores. A possible reason is that the kernel overhead—such
as inter-core competition—increases with the scaling of CPU
cores.

3.2 Beyond Kernel TCP
Since the kernel TCP can be inefficient for the modern data
center networks, it becomes urgent to explore possible al-
ternatives. In general, there are three types of solutions: 1)
developing new protocols, 2) moving TCP stack to user space,
and 3) hardware offloading.

First, researchers have been proposing new transport layer
protocols to replace TCP [4, 13, 16, 30]. pFabric [4] assigns
priorities to packets based on the flow size, and tends to dis-
card lower-priority packets in the switch when the buffer is
full, thereby achieving both high throughput and low flow
completion time. pHost [13], Homa [30] and NDP [16] lever-
age receiver-driven traffic control where the sender’s sending
rate is limited by the tokens sent from the receiver side. As
each receiver has a global view of the incoming traffic, the
receiver-driven protocols can achieve high bandwidth and
low latency, and avoid the in-cast issue. For instance, Homa
achieves less than 15µs for short messages on a 10 Gbps
network running at 80% load. Moreover, these new protocols
can eliminate the head-of-line blocking issue in TCP due to
its byte-streaming nature.

Moreover, there are multiple work explore building a user-
space TCP stack, such as mTCP [20], IX [7], ZygOS [35],
TAS [23] and F-Stack [1]. These proposals usually lever-
age the user-space NIC drivers such as DPDK [2] to directly
access packets from the NIC queues, and optimize the perfor-
mance with techniques such as polling, batching [7,20], cache
planning [23], lock-free [7], and zero-copy buffers [7,24]. The
user-space network stacks minimize the overhead from the
kernel, and demonstrate significant performance gain under
the hardware advancement. For example, IX could achieve
one-way latency of 5.7µs and fully utilize the 40Gbps band-
width with 8 cores.

Third, there are several attempts aim to resolve the network
performance issues with hardware assistance. For example,
offloading TCP processing entirely [8,37,38] or partially [31]
to specific devices can significantly improve packet process-
ing performance and reduce the CPU overhead. RDMA [15]
offloads traffic control and data movement to hardware, thus
bypassing the CPU and achieving microsecond-level latency.

3.3 Our Choice
Among the available options, we chose to build a user-space
TCP stack (i.e., LUNA) based on two aspects of reasons.
Inter-DC access and legacy support. Recall that, unlike
the backend network, the frontend network needs to provide
inter-DC access support (e.g., connecting computing servers
from geo-distributed availability zones to storage servers).
Therefore, we did not choose RDMA because it did not sup-
port inter-DC communication back then. Further, designing
and deploying a new transport protocol (with hardware of-
floading) may also be rather challenging due to the required
support for legacy software/hardware (e.g., sharing the NICs
with kernel TCP traffic).
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Table 1: Characteristics of existing user-space TCP

kernel
collaboration

zero-copy
high

throughput
low

latency
mTCP
VPP ✓
IX ✓ ✓ ✓
LUNA ✓ ✓ ✓ ✓

Engineering effort. Note that enabling inter-DC access over
RDMA or providing legacy support with the new protocol is
still achievable but can be time-consuming. For example, the
intra-region RDMA solution was not proposed until 2021 and
a recent paper further discusses their strenuous effort on real-
izing wide-area RDMA accessing at Azure Cloud [5]. Back
in 2017, we did have a rather tight timetable. Therefore, we
chose user-space TCP stack solution to avoid designing/de-
bugging the protocol and/or hacking support for legacy hard-
ware. In fact, it only takes us 9 months to build LUNA from
scratch to deployment. Later on, we have gradually added
various optimizations and patches over the next five years
(§ 9).

3.4 Why Not Just Use Existing Solutions?
Once we decided to use a user-space TCP stack for the fron-
tend network, the next question is—“should we employ exist-
ing user-space TCP solutions or should we build our own?"
Owning to the following reasons or concerns, we chose to
develop a new user-space TCP stack, called LUNA.

High packet processing overhead. The microsecond-scale
Service Level Objectives (SLOs) place significant pressures
on packet processing speed within the network stack. Sev-
eral existing user-space TCP solutions (e.g., mTCP and IX)
delegate TCP protocol processing and application logic to
separate threads for better portability. Meanwhile, others (e.g.,
VPP and TAS [23]) assign network and application processing
to different cores for better scaling. Such partitioning could
slow the processing speed due to context switch overhead or
inter-core communication. For example, in Figure 2(a), we
further profile the mTCP and VPP with the microbenchmark
in §3.1. The results indicate that VPP suffers high latency,
mainly introduced by the CPU cycles waste, and inter-core
communication overheard.

Expensive memory copying. Data movement contributes
a large proportion of datacenter tax. In a typical cloud stor-
age service test on the 50Gbps network, memory copy can
consume up to 12.5% CPU cycles, severely impacting the
end-to-end latency (see §8). When the bandwidth grows to
100Gbps or more, the memory copy will take more than 40%
CPU cycles, and further incur the memory bandwidth bottle-
neck problem. However, for user-space network stacks with
a traditional IO path like mTCP [20] and VPP, there are two
copy operations on the both receive and send paths (i.e., from
user to TCP receive/send buffer and between TCP buffer to

··
·

··
· NIC

TCP/IP

App1 process App2 process

Kernel

ARP
Route

Luna

TCP/IP
netlink
sync

Thread 1 Thread 2 Thread 3

Zbuf
slab

··
·

··
·

··
·

TCP/IP TCP/IP

App
logic

App
logic

App
logic

Figure 3: LUNA architecture

the packet). Figure 2(b) shows that, mTCP could not fully
utilize the 50Gbps network bandwidth even with 16 cores.
Our further analysis concludes that the memory copying does
consequence with excessive overhead. One reason that most
user-space TCP solutions do not support zero-copy buffer is
that the traditional BSD-like socket interface would introduce
inevitable memory copy between the application and TCP
buffer for isolation.

Supporting kernel traffic. Our storage services are deployed
across multiple clusters consisting of several generations of
machines. For many servers, their hardware are not capable of
running user-space networks (e.g., lack of hugepages support).
Moreover, many applications (such as monitoring agents)
still rely on the kernel TCP. However, many user-space TCP
stacks [1,7,20,23] demand to exclusively own the entire NIC,
thus could not collaborate with applications relies on kernel
network stack on the same machine.

Implementation quality. Many existing user-space TCP
works are research-oriented and thus can have various com-
patibility or performance issues. For instance, VPP is not
well-compatible with Mellanox NICs when applying flow
director filters. IX requires a particular Linux kernel version
to run as it relying on the Dune kernel module, and also only
provides drivers to the Intel NICs of outdated versions. Hack-
ing into these problems will take an unexpected amount of
engineering effort with rather limited community support.
Hence, building a new user-space TCP from scratch can be
actually more time-saving.

4 LUNA

4.1 Overview
LUNA is a high-performance user-space TCP/IP network
stack that powers the frontend network in nearly all Alibaba
Cloud Storage Services. Figure 3 shows that LUNA supports
both kernel and user-space IO paths. LUNA leverages NIC
multi-queues to separate user-space traffic from the kernel’s.
The u/ser-space IO path bypasses the kernel by leveraging the
DPDK’s user-space driver [2] to poll packets from the NIC
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queues, processes them with a customized TCP/IP network
stack, and interacts with applications mainly through an RPC
library. The user-space IO path follows a run-to-completion
mode, which runs iterations to complete both packet process-
ing and application logic in a single thread on each core, and
shares nothing between cores. LUNA separates kernel traffic
and user-space traffic with NIC’s hardware support. In this
case, the kernel traffic for traditional applications remains un-
affected. LUNA leaves the control plane (i.e., ARP table and
route table management) to the kernel, and uses the netlink
interface to access the route information.

4.2 Similar Design Choices
LUNA shares several similarities with existing work in the
data path and the architecture. Here, we will discuss our
rationales behind these design choices.
LibOS mode. LUNA operates in a LibOS mode, similar to
the mTCP [20] and F-stack [1]. In this setup, the application
and LUNA run in the same process and share the memory
address space. Alternatively, one can run the network stack
in the separate process, and communicate via shared memory.
In this case, if there is only one network process in every
server to serve different application processes, it is called the
Microkernel mode (e.g., Google Snap [27]). Another solution
is to have one network stack process for each application
process, known as the Sidecar mode.

Although microkernel-based solutions at the industry level
were not widely popular back in 2017, we later—after the
launch of LUNA—have observed several instances adopting
this approach. One notable example is Snap [27]—a user-
space network stack deployed in Google’s datacenter. One
prerequisite for Snap is to closely follow the weekly release
cycle of the network stack in Google Cloud. As a result,
to avoid service interferences, the support transparent/live
upgrade becomes indispensable. For microkernel-based solu-
tions, enabling transparent/live upgrade is rather straightfor-
ward as the network stack is an independent process. Further,
to achieve high efficiency, Snap also adopts Google’s Pony
Express transport protocol and one-side operation.

LUNA does not adopt the Microkernel or Sidecar mode
due to performance concerns because both modes require fre-
quent inter-process communication, incurring high runtime
overhead. Note that LUNA still uses TCP for the transporta-
tion layer (see§3) and thus can not fundamentally modify
the protocol like Pony Express or adopt one-side operation
for high performance. We are aware that LibOS mode lacks
live/transparent upgrade support as the network stacks with
LibOS mode have to be compiled with the application code
together. From our perspective, this disadvantage is accept-
able as the TCP protocol is rather mature (i.e., not requiring
frequent changes) and our storage services have periodical
upgrading schedules. Hence, LUNA can just follow storage
service upgrading roadmaps.
User-space NIC driver. Like most kernel-bypass network

systems [1, 7, 10, 20, 21, 23, 32, 35], we build LUNA with
DPDK [2] for its rich development kits and active community
support. LUNA leverages DPDK’s PMDs (Poll Mode Drivers)
to directly access packets from the NIC queues. We also uti-
lize DPDK’s hugepage management, and data structures like
hash map and mbuf. Further, as there are several genera-
tions of NICs in our cloud, the user-space driver provides
a convenient way to communicate with them in a uniform
interface.

Share-nothing architecture. To exploit the parallel process-
ing capability of multi-core systems, like many previous de-
signs [7, 20], LUNA runs the threads in a share-nothing mode.
Each core processes its own traffic divided by the NIC’s
multi-queue technique, and finishes related application-layer
processing on the same core. LUNA does not use a dispatcher
mode (like TAS [23]) or load balancing (like task-stealing in
Shenango [32]) due to cache efficiency and synchronization
overhead (e.g., from lock and atomic operations) concerns.
Note that there is already a service-level load balancing in-
side applications. The share-nothing architecture improves
multi-core scalability, as the system can simply allocate more
cores to applications to improve performance. Moreover, run-
to-completion LibOS avoids the potential CPU cycles waste
in dispateched mode as the user-space network stack has to
keep polling the NIC queues.

TCP stack. As discussed in § 3, LUNA uses TCP as the
transport layer protocol. LUNA implements TCP according to
RFCs [28, 34], and supports congestion control, flow control,
RTT estimation, and SACK. LUNA is compatible with other
standard TCP stacks like Linux kernel network stack.

4.3 Unique Features
To better serve our systems in the field, LUNA also includes
unique features from the following aspects:

Thread model. LUNA uses a run-to-completion thread model
to run network and application-layer processing in the same
thread. We use this design to improve the performance, and
avoid risks in scheduling (e.g., thread-hang) with the charac-
teristics of our storage service workloads (§ 5).

Memory model. LUNA supports a full data-path zero-copy
buffer on receive and send end, aiming to minimize the data
movement overhead. LUNA realizes its full-stack zero-copy
with the aid of a user-space slab subsystem. This subsys-
tem introduces little overhead and maintains the traditional
programming model.

Traffic model. LUNA collaborates with kernel network stack,
to offer the legacy applications with kernel TCP support, and
to leverage kernel TCP for the control plane (e.g., ARP).
LUNA uses the Flow Bifurcation and SR-IOV support to
reserve a certain port range for user-space traffic, so that there
is no interference with kernel traffic. The kernel network
stack directly processes the control plane messages such as
ARP requests and responses, and manages the control plane
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states. LUNA can obtain control plane information via netlink
interface.

5 Thread Model
Figure 4 shows that LUNA uses a run-to-completion (r2c)
thread model that encapsulates application logic and network
stack processing in a single thread. During runtime, LUNA
employs an event loop for each thread. Between threads,
LUNA keeps a share-nothing isolation. Moreover, LUNA
supports applications to use both kernel network stack and
user-space IO path (§ 7), and the two types of traffic could be
processed in the same thread.

5.1 Run-to-complete model
We assign varying numbers of cores to LUNA based on the ser-
vice type. For instance, in a block server (i.e., the functional
layer of EBS), LUNA can utilize 8 cores, while a comput-
ing server (from ECS) typically employs only 4 cores. Each
core initiates one thread and shares nothing with the other.
Moreover, each thread uses an event loop to manage data
processing.

LUNA offers two distinct r2c modes—–inline-r2c and
batch-r2c—–each tailored for different scenarios. In both
r2c modes, LUNA starts the loop after receiving a fixed num-
ber of packets (called a batch) from the corresponding NIC
Rx queue. Then, LUNA processes the packets based on the

type of r2c mode.
For batch-r2c, Figure 5(a) shows that LUNA processes the

received packets one at the time through the TCP/IP stack,
and then adds a read event to the event queue for every packet
with TCP payload. These read events would be immediately
processed by application after the LUNA has processed all
the received packets in this round. Then, the RPC framework
invokes the callback functions registered to each event, gen-
erates the response messages, and sends the messages to the
send buffer. After all the events are processed, LUNA adds the
protocol headers for the messages in the send buffer, forwards
them to the NIC, and starts the next round.

For inline-r2c, Figure 5(b) demonstrates that LUNA also
processes the packets one by one. However, LUNA avoids
adding event to the event queue, and instead immediately in-
vokes the registered callback function, generates the response
along with the protocol headers for the packets, and send
them out. In short, inline-r2c will process every packet to
completion.

Obviously, inline-r2c eliminates the overhead from event
enqueue and dequeue, and improves the cache locality,
thereby providing better performance. However, inline-r2c
also requires a new programming model and forces the upper-
layer application to use a zero-copy raw-packet-like read-
/write interface. Moreover, inline-r2c is only available in
LibOS model as the application-layer code has to co-locate
with the network stack. In contrast, batch-r2c works in a more
traditional epoll-like or libev-like programming model, and is
compatible with a traditional BSD-Socket-like interface. In
practice, we deploy inline-r2c on performance-oriented ser-
vices like EBS, and use batch-r2c for services such as object
store due to compatibility concerns.

The r2c design can significantly reduce the overhead and
improve performance. First, there is no context switch be-
tween application and stack processing. Second, as the net-
work stacks receive a fixed-sized batch of packets from NIC in
each iteration, it allows the upper-layer application to handle
them in a timely fashion (i.e., no need for buffering packets).
Hence, CPU could get most data from the L1 and L2 cache
directly, especially in inline-r2c. Moreover, as there are few
buffered packets, the DDIO will not fill up the Last Level
Cache (LLC), and further improves the cache hit rate [11].

5.2 Discussion

The risks of r2c model. R2c model could significantly im-
prove performance. However, it is not favored by many user-
space TCP stacks. A primary reason is that r2c model may
be stuck at application level, causing severe tail latency and
packet drop in NIC queues. LUNA adopts the r2c design
because the logics in our storage services (i.e., applications)
is rather simple and stable. Moreover, another safeguard is
that our applications also adopt flow control and can avoid
burst traffic by limiting the number of concurrent connections
and in-flight requests. Hence, with relatively simple logic at
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the application level and flows throttled, it is unlikely for the
requests to be stuck in the application level and cause packet
drop. Note that it is still possible for a thread in LUNA to get
stuck by various exceptions (e.g., application bugs, burst in-
cast load, etc.), resulting in dropping packets and TCP/RPC
timeouts.

Unsuitable scenarios for r2c model. The LUNA’s r2c design
is not always suitable for all scenarios. In OSS service, we
discover that dedicating multiple cores to polling for run-to-
completion is not reliable because there are other services
on the same machine that should be guaranteed with a large
number of cores. Therefore, LUNA dedicates only one core
for NIC IO and protocol processing, and places application
logic to other threads on the other cores. The application
thread will block the event-poll when there is no more events
to avoid wasting CPU cycles on unnecessary polling.

6 Memory Model
LUNA achieves full-stack zero-copy to mitigate the overhead
associated with frequent data movement. A straightforward
approach to realize end-to-end (i.e., from NIC to TCP, and ap-
plication) zero-copy is to only transfer the memory addresses
of the read/write buffers. This is challenging for user-space
TCP due to three factors. First, the lifecycle (and status) of a
buffer is different from the application to the network. The
application typically frees or reuses the buffer after dispatch-
ing it to the network stack, whereas the network stack must
retain the buffer until it receives “acks”. Second, the NIC re-
quires the physical memory address while applications use the
virtual address. Third, the traditional BSD-socket APIs and
socket-oriented programming models are designed with copy
semantics for the isolation between the user space and kernel
space. To overcome these challenges, in LUNA, we build a
user-space slab system, called Zbuf , to provide cross-layer
memory lifecycle management and address translation.

6.1 Zbuf

User-space slab subsystem. Zbuf works as a user-space
slab subsystem that pre-allocates memory chunks for users.
Figure 6 shows the structure of Zbuf . We can see that Zbuf re-
serves several hugepages allocated from the DPDK’s memory
address space and divides them into multiple 2MB memory
zones. The header of each memory zone records the meta
information such as the physical address. memory zone is
further split into objs, which could be directly allocated by the
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zbuf
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Figure 7: The LUNA receive and send path with zero-copy.

users (i.e., applications). The metadata of objs (denoted as ctx
in Figure 6) is co-located with objs in the same memory zone,
right after zone metadata. All objs within the same memory
zone share the same size but the sizes can be different from
one memory zone to another (e.g., 2KB vs. 4KB in Figure 6).

Obj lifecycle management. Zbuf uses a reference counter to
manage the lifecycle of each obj. The counter is set to 1 after
initialization. Afterward, the counter increases by 1 whenever
the corresponding obj is replicated and decreases by 1 each
time the obj is freed. The obj will be put back to the free-list
of the memory zone once the count reaches 0.

Metadata and physical address translation. Translating
the virtual address to the physical address and parsing the
metadata are straightforward in Zbuf . For example, consider
a user allocating a 4KB obj. The user then generates a 2KB
string str within the obj, and the virtual address of str is
addr. When the user sends str to the network stack, it would
increase the reference count of the corresponding obj. Zbuf
first compares addr with the address range of contiguous
memory zone. By getting the offset of addr to the start of
memory zone area and dividing the offset with 2MB, Zbuf
could get the index of the memory zone which obj belongs
to. As the memory zone metadata records the start address
of contiguous obj and the size of each obj, the user could
directly get the index of the obj containing the str, and get the
obj meta data from the obj meta array. Therefore, the users
could directly make replicas or free the objects inside the
objs, but do not need to manage the obj. Since the metadata
of memory zone records the physical address of itself, the
physical address of str could be calculated by adding the
offset of str to the memory zone. When the str is going to
be sent to the NIC, LUNA can calculate the physical address
following the same procedures above.

6.2 Full-stack Zero-copy
With the support of Zbuf , LUNA provides full-stack zero-
copy on data receiving and sending. Moreover, upper-layer
applications could still use the traditional programming model
except for a few minor changes. Now, we use Figure 7 to
illustrate the procedures on both ends.

On the receiving end, LUNA registers obj addresses to
NIC receive queue, so that the NIC will deliver the received
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packet data to the obj through DMA (①). The network stack
processes the packet with network protocols (②) and delivers
the pointer to the readable payload (marked as p1 in figure 7)
to the upper-layer application with an RPC interface (③). The
application could directly free the payload after finishing the
message processing (④). Zbuf will locate the related obj and
free it by decreasing the reference count.

On the send data path, application first allocates a writable
buffer from the Zbuf , or reuses the memory space of the re-
ceived data, and then directly writes data to the buffer (⑤).
The content (marked as p2 in figure 7) is directly sent to
LUNA’s TCP send queue, and the send API automatically
increases the reference count of the related obj (⑥), to avoid
the obj to be freed by the application after sending. LUNA al-
locates a new segment to generate the packet header (⑦ ), and
sends out the header and content as a whole packet together
through the DPDK interface (⑧). Moreover, if the application
wants to multicast the data (typical in cloud storage service),
it just needs to send out the same data segment multiple times,
and Zbuf will accordingly increase the reference count of the
obj. And the obj stored in the LUNA’s send buffer will be
freed after receiving the acknowledge packet.

6.3 Discussion

Alternative solutions. There are also other design choices to
achieve end-to-end zero copy. One is to pass the pointers of
the read/write buffers between the application and network
stack. However, adopting this practice requires the appli-
cation to fundamentally alter the programming model and
manage the buffer at application layer. For cloud services,
it can be rather difficult as there are multiple applications
developed by various developer teams. Another approach is
to leverage mmap to avoid copying large size messages [24],
which could maintain the programming model and standard
BSD-socket API format. However, the mmap call can intro-
duce considerable overhead of additional system calls [24].

7 Traffic Model
7.1 Traffic Split
LUNA uses Flow Bifurcation mechanism [18] (supported by
NIC’s flow-director) and SR-IOV functionalities to separate

kernel network traffic from the user-space network traffic,
thereby offering legacy support. LUNA establishes the hard-
ware filtering by setting the mask to the destination port of
TCP packets on each machine. LUNA routes the incoming
TCP packets with certain destination ports to the specific vir-
tual functions, which are then processed in user space. The
TCP packets that do not align with the port filters and the
not-TCP packets would still be accepted and processed by the
kernel network stack.

LUNA uses different flow-director filter rules for clients
and servers. On the client side, LUNA reserves the port from
61440 to 65535 for the user-space traffic, and allocates con-
tiguous sub-ranges of the port number to different LUNA
applications. The sub-range within an application are fur-
ther divided into ranges for different Rx queues which are
processed by the corresponding LUNA threads.

For instance, LUNA could reserve TCP port numbers be-
tween 61440 to 63487 to APPA, and write the flow-direct filter
rules to direct dest port between 61440 to 62463 to T hread1
in APPA. Then LUNA can direct TCP ports between 62464
to 63487 to T hread2 in APPA. On the server side, LUNA first
uses flow-director rules to direct TCP packets with the same
destination port as the application-listening port to the corre-
sponding application. Moreover, the RPC layer over LUNA
will establish full-mash connection for all thread peers be-
tween each client node and server node. Hence, LUNA on the
server side can simply hash all connections to different server
threads according to the source TCP port for load-balance
scheduling. For example, the TCP destination port of 1234
is directed to APPA, and uses the lowest 2 bits of the TCP
source port to hash the packets to the 4 threads of APPA. Each
client thread initializes connections with typical host ports to
establish a connection with every server thread, and selects a
connection for each RPC request for load balancing.

Further, although LUNA is compatible with standard TCP
stacks in the design and implementation, LUNA avoids di-
rectly communicating with the kernel network stack. In other
words, LUNA only supports kernel-to-kernel and LUNA-to-
LUNA traffic, and does not permit kernel-to-LUNA connec-
tion (or reverse). The reason for this choice is that LUNA
implements a tailored TCP for the datacenter environment
to optimize the performance (§ 9), and there are different
versions of LUNA running in different datacenter applications.
If we use LUNA to directly communicate with kernel network
stack, we have to verify and evaluate the communication
among all versions of kernels and the LUNA. Therefore, this
introduces extra verification costs every time updating the
kernel or modifying the kernel network configuration.

7.2 Thread Model Support
When the applications need to communicate with different
clusters through both kernel and user-space IO paths, LUNA
will process them in the same thread, so that the applica-
tions don’t need to manage the requests separately. In every
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iteration, after finishing the user-space run-to-completion pro-
cessing, LUNA will get a batch of events from kernel’s epoll
framework by calling epoll_wait(), and handle the events by
calling the callback function registered by the application.
LUNA calls epoll_wait() with non-blocking, and limits the
batch size of kernel events to prevent user-space IO path from
starving.

7.3 Control Plane
As LUNA only processes the TCP packets, the control plane
packets (e.g. ARP and ICMP requests) are sent to the kernel
network stack, and the kernel also manages the control plane
states (e.g. ARP table and route table).

LUNA gets the control plane information with netlink, a
rather infrequent behavior. LUNA initializes a netlink socket
which dumps the ARP table and route table in the kernel, and
wait event through linux epoll. When there are any variations
in these two tables, the kernel will send messages to the
netlink socket and raise epoll events. Then this would invoke
LUNA to receive the update message and update the control
plane information managed in user space.

Delegating the control plane to the kernel brings two ben-
efits. First, LUNA could focus on the transport layer and
leverage the well-developed kernel control plane implemen-
tation. This also enables the LUNA to evolve independently
without worrying about keeping up with changes in the con-
trol plane. Second, this allows LUNA to fast recover from
the system failures, as the just-restarted LUNA could simply
regain the control plane information stored in the kernel.

7.4 Discussion

Alternative solutions. There are several approaches to col-
locating user-space traffic within kernel network stack. The
first one is to separate different NICs (or different ports of the
same NIC) for user-space traffic and kernel network traffic.
Unfortunately, this can severely waste bandwidth. Another
approach is to receive all the packets using the user-space
TCP and then re-dispatch certain filtered packets back to the
kernel via KNI (Kernel NIC Interface). This solution can also
impact the performance and crash the whole network service
when the failure occurs in user-space network stack.

Complex filtering rules. LUNA splits the traffic according
to the TCP ports to collaborate with the legacy applications
and employs share-nothing design between cores for high per-
formance. However, the traffic splitting is limited by the NIC
hardware capabilities. The commodity NICs (e.g., Intel and
Mellanox NIC cards) provide limited flow director support,
i.e., setting masks to certain fields of the packet headers (e.g.,
IP address and TCP/UDP port number).

In LUNA design, one application keeps the same listening
port for all server threads to cater the existing programming
models. And the LUNA RPC framework establishes full-mash
connection channels between every thread of each peer node
for load balancing. Therefore, LUNA has to write multiple

flow director filter rules to the NIC to spray the traffic to
different Rx queues, and the number of rules increases dra-
matically when the number of LUNA threads is not a power
of 2. For instance, when a machine running 12 LUNA threads
communicate with a peer node running 6 LUNA threads, this
will lead to 160 traffic filter rules on both nodes, imposing
significant overhead onto the packet receiving, and resulting
in packet drops.

One simple approach to solve this problem is to assign
different listening ports for each LUNA thread. However,
this also requires modification of the application logic. A
more practical way is to reserve range of the port numbers
with flow-director, and perform build-in hash-based RSS to
establish the connections to different LUNA queues. Yet,
this feature is not supported by the commodity NICs when
the LUNA was developed. Once the flow bifurcation rule is
deployed, we have to provide legacy support for previous
versions for compatibility. As a result, LUNA still requires
complex filtering rules at the moment.

8 Evaluation
8.1 Microbenchmark Evaluation
8.1.1 Experiment Setup

We first evaluate with microbenchmarks in the emulated
client-server environment to compare LUNA against other
candidates including kernel TCP, mTCP and VPP. Both client
and server machine are equipped with an Intel(R) Xeon(R)
CPU E5-2682 v4 @ 2.50GHz CPU with 128GB DRAM
each. We connect the client with server through a Mellanox
ConnectX-4 Lx NIC with 2× 25Gbps network port, and uti-
lize both the port for a total 50Gbps bandwidth.

For the kernel network stack, we use Linux 4.19, and bind
all traffic to the certain CPU cores to optimize the perfor-
mance. We download the latest versions of mTCP and VPP,
and modify them to fit our environment. For VPP, we use half
of the cores for the VPP threads processing network pack-
ets, and use the rest cores for application logics. As for the
common hardware offloading, we enable both tso and lro for
Linux kernel, and enable tso for LUNA. For mTCP, tso is not
supported, and lro is not supported by default. For VPP, we
failed to enable lro and tso on our cx4 NIC with default driver
after a series of attempts. And the MTU is 1,500 bytes for all
the systems.

We use knb, a datacenter network microbenchmark, to eval-
uate the performance of LUNA and the rest. knb emulates the
RPC workloads in the datacenter, and evaluates the network
stack performance at both client and server side. knb runs a
configured number of threads at client and server, and builds
long-lived TCP connection between every client and server
thread, similar to most data center RPC frameworks. Then,
the knb client will send requests with configurable message
size to the server. Afterwards, the server send back the re-
sponse with the same message size on each request, and the
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(msg_size=4KB, #core=4)

client will send another request when it receive a response.
The number of in-flight requests on each connection could be
controlled with the variable iodepth.

8.1.2 Experiment Results

Throughput We first evaluate the throughput under different
message sizes. Here, we set LUNA with both the copy mode
(backed by batch-r2c) and the zero-copy mode (backed by
inline-r2c). In this experiment, we allocate 8 cores for each
candidate, and limit iodepth to 1 (i.e., only one request on
each connection, and do not send next request until receiving
the response). The Figure 9 shows the result. LUNA with
zero-copy can fully utilize the bandwidth when the message
size grows to 4K, a typical size in our storage services. The
throughput of LUNA is 3.5× of kernel, and outperform mTCP
and VPP by 50%. The mTCP and VPP do not fully utilize
the bandwidth in these experiments. For mTCP, its perfor-
mance is limited by the heavy overhead from copy and context
switch. As for VPP, when the packet size is small, it shows
a similar performance with kernel network stack, mainly as
a result of wasted CPU cycles on idle polling. When packet
size grows larger, VPP shows a even worse performance than
Linux kernel (possibly due to lro and tso are not enabled in
VPP).

We also evaluate the throughput under different setups of
iodepth as RPCs in datacenters are always concurrent on the
same connection. In this experiment, we dedicate 4 cores for
each candidate (commonly seen in servers of the interface
layer), and set the message size to be 4KB. Figure 10 shows
that the throughput grows with the increasing of iodepth.
Moreover, the zero-copy version of LUNA can saturate the
bandwidth with an iodepth of 16. LUNA provides 2× through-
put than mTCP and kernel network stack.

Latency We then evaluate the latency of the network stacks,
and show the results in Figure 11. In this experiment, we
allocate one core for VPP network worker thread and one
core for knb application thread. Then, we use a single core
when test other network stacks. We set the iodepth as 1 (i.e.,
no backlog blocking latency) and set the message size to be
4KB. The result shows that, LUNA with zero-copy reduces
the 99th percentile latency by 25% than LUNA with copy, and
reduce 70% latency than the kernel network stack.

Multi-core scalability. In Figure 12, we evaluate the multi-
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Figure 13: Performance of distributed-storage service for a public
cloud OLTP service, collecting tracing data within 1 hour.

core scalability of the tested network stacks. In this experi-
ment, we limit the iodepth to be 1, and set the message size to
be 4KB. We can see that LUNA shows a near linear multi-core
scalability, and full-utilize the bandwidth with 8 cores with
zero-copy. mTCP shows relatively good multi-core scalabil-
ity as it also uses the share-nothing architecture. Yet, it still
could not fully saturate the bandwidth due to the performance
limitation. The kernel network stack and VPP show a sim-
ilar multi-core scalability because there are extra inter-core
communication overhead and contention over locks between
different cores.

8.2 LUNA Performance in the Field
In this section, we will introduce the performance of LUNA
with the datacenter storage services in the wild, and make
comparison with the traditional kernel network stack. Since
LUNA has been deployed in Alibaba Cloud storage service for
more than 5 years, most servers that require high-performance
are running on LUNA instead of kernel network stack. There-
for, we only show the performance comparisons in the ser-
vices that still have legacy nodes running the kernel network
stack.

EBS for OLTP. OLTP (On-Line Transaction Processing) ser-
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Figure 14: Performance data of distributed-storage service for a
public cloud video transcoding service, collecting tracing data within
1 hour.

vice generate typical latency-sensitive workloads for the cloud
storage system. Under such workloads, the IO throughput
of the storage are usually not very high, but have rather de-
manding requirements on latency. Here, we show the LUNA
deployment in a storage cluster serving a public cloud OLTP
service. In these clusters, there are several generations of
machines. The LUNA is only deployed to the server nodes
that meet the hardware requirements, and still use the kernel
network stack in the other legacy server nodes. Note that
this cluster uses different network stack IO path only in the
frontend network communicating with the block servers, but
uses the same version of the backend network and the chunk
servers.

In figure 13, we demonstrate the performance of the
distributed-storage IO which is captured by the hypervisor-
level monitoring during 1 hour. We can see that LUNA outper-
forms the kernel network stack with both 50% lower end-to-
end average latency with similar end-to-end throughput. This
gain mainly benefits from the thread model design and zero-
copy support therefor reduces the processing and queueing
delay. Note that the workload over LUNA has larger IO block
sizes as they are from different customers, thereby higher
pressure on the delay.

EBS for video transcoding. Here, we show LUNA perfor-
mance on another EBS cluster which serves a public cloud
video transcoding service. In this scenario, the datacenter
application requires both high throughput and low latency.
This cluster also uses both LUNA and kernel network stacks to
communicate with blockserver agents (BAs) in the frontend
network. Similarly, the backend network shares the same
backend network and chunk server (CS) architecture. all the
server nodes share the same workloads. We also collect and
compare the user-layer performance data at the hypervisor.
Figure 14 indicates that, when the service node with LUNA
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Figure 15: OTS response latency comparison before and after an
architecture upgrade, collected from several typical instances.

and kernel network stack have the similar user-level IO la-
tency, LUNA provide about 50% higher IO throughput than
the kernel network stack.
TABLE STORE. LUNA is deployed in TABLE STORE, a
NoSQL database service of Alibaba Cloud. TABLE STORE
provides storage and real-time access to massive structured
data. Here, we collect and compare the performance data
between two generations of the TABLE STORE architecture,
named V1.0 and V2.0. The workload remains unchanged
after the architecture upgrade. The architecture evolution
mainly includes using LUNA user-space network to replace
the Linux kernel at both the frontend network and the backend
network, and using the user-space file system to replace the
Linux ext4. In our offline estimation, LUNA contributes 30%-
50% to the total performance gain. Figure 15 shows that,
TABLE STORE service instances upgraded to V2.0 reduce the
end-to-end latency by 50% to 68%.

9 Lessons From Deployment
Portability. We believe there are four levels of portability.
• Kernel-based applications do not need any code changes to

use the new stack (e.g., LOS [17]).
• The application needs to replace the APIs while keeping

the same API formats and semantics.
• The API formats are different but the programming model

and the API logic stay the same (e.g., change malloc/free
to create/destroy).

• Redesign the entire programming model and the API logic.
Our lesson is that, to achieve extremely high performance,

refactoring legacy application (i.e., programed with the kernel
network stack) is inevitable. However, as a fundamental com-
ponent of datacenter software codebase, the network stack is
often widely used and serves various kinds of applications.
Hence, changing the programming model is unacceptable. In
this case, we would recommend a user-space network stack
to obtain portability between 2) and 3).

In Alibaba Cloud storage, the applications attach to the
network through an RPC framework which is also supported
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Figure 16: Performance microbenchmark of different congestion
control algorithms tested in Alibaba Cloud cloud storage network.

by the network group, and programed in a libevent-like model,
so adapting to the batch-r2c and inline-r2c does not require
any change to the programming model. However, in order
to achieve zero-copy at both receive and send side, LUNA
provides io-vector-oriented receive/send APIs which directly
describe the addresses and lengths of the readable/writable
buffers of each RPC call. Therefore, the applications with
zero-copy have to change the receive/send API formats.
Nonetheless, the data buffers can be allocated or freed as
if they are allocated from the heap through the Zbuf APIs
with the same formats.

TCP tailoring. With a relatively simple environment as the
datacenter network, we can tailor the implementation of TCP
to achieve better performance. For example, LUNA imple-
ments a straightforward yet high-performance TCP fast path
for the packets arriving in order. Note that out-of-order pack-
ets are not common in the datacenter. In our practice, we
found that simply using NewReno [12] could deliver satisfy-
ing congestion controlling in many services and does not rely
on any novel hardware features (Figure 16). Additionally, we
also use HPCC [26] for the communication between VMs in
the computing cluster to improve tail latency.

Fast recovery from the failures. For high availability, the
network stack should fast recover from the failures such as
switch flips and black holes. In our services, applications
use LUNA via an RPC framework, which detects connection
failure and tries to reconnect the peer node through different
network links, e.g., another NIC port, or ToR switch. Further,
LUNA also improves the failure recovery procedures based
on the characteristics of the datacenter environment. For
example, the network distance of every two nodes in our
cluster is no more than 4 switch hops. As a result, LUNA
could set a tighter timeout threshold, e.g. 4 milliseconds.
Currently, the longest recover time for LUNA is guaranteed to
be less than 2 seconds.

Alibaba Cloud storage network evolution. The evolution
of LUNA is driven by service. Back in 2017, Alibaba Cloud
planned to launch a high-performance ESSD service—the
first elastic block storage service achieving both 1M IOPS
and 100µs latency—around early 2018. With the release date
within a year ahead, we therefore chose user-space TCP stack
solution to avoid designing/debugging the protocol and hack-

ing support for legacy hardware. It only takes us 9 months to
build LUNA from scratch to deployment.

In the initial release, LUNA still uses socket-like APIs and
requires data copy from the application to the network stack
on the send path. Later, to support the bare-metal servers,
LUNA needs to run on a Data Processing Unit (DPU) which
has rather limited resources. Therefore, we designed a new
RPC framework which removes the RPC serialization stage,
supports the inline-r2c thread model (§ 5) and the zero-copy
IO on both ends (§ 6). Note that this also requires the EBS
to change the programming model to use io-vector-oriented
APIs with Zbuf for zero-copy, and co-design with LUNA’s
flow control to adopt the inlined-r2c thread model.
The upper bound of LUNA. In this paper, we discussed
that LUNA can efficiently utilize 50Gpbs NICs. However, for
even higher bandwidth (e.g., 200 to 400Gbps), the LUNA’s
run-to-completion with a shallow buffer may lead to NIC
queue overflow and packets dropping. Moreover, when the
message size is 4KB, LUNA needs at least 8 cores to saturate
the 100Gbps network bandwidth. Therefore, for adopting
a high linkspeed network, we believe leveraging hardware
acceleration becomes necessary. Additionally, while TCP
can use multi-path transmission with Multipath TCP, the
head-of-line blocking problem in TCP and its limitations
in failure-recovery have still led us to design a new protocol
specifically for high-performance cloud storage. Our recent
effort, called Solar [29], which involves using a new transport
layer protocol co-designed with the DPU exemplifies this
point.

10 Conclusion
In this paper, we describe LUNA, a user-space TCP stack at
Alibaba Cloud storage network. We discuss our efforts in
building LUNA with a focus on the thread, memory and traffic
model. Apart from introducing LUNA, we have also covered
various design tradeoffs and lessons from the last five years
of development. We hope the experiences shared in this paper
shall benefit practitioners from both academia and industry.

Acknowledgments
The authors thank our shepherd Yizhou Shan and the anony-
mous reviewers for their feedback. We also thank the EBS,
Pangu, AIS Fushionnet, OSS and OTS teams for their tremen-
dous help on the LUNA project. This research was partly
supported by Alibaba Innovation Research, Alibaba Research
Fellow and NSFC(62102424) program.

684    2023 USENIX Annual Technical Conference USENIX Association



References
[1] F-stack. http://www.f-stack.org/.

[2] Intel DPDK. https://www.dpdk.org/.

[3] Aliyun. EBS product. https://www.aliyun.com/
product/disk.

[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McK-
eown, B. Prabhakar, and S. Shenker. pfabric: mini-
mal near-optimal datacenter transport. In D. M. Chiu,
J. Wang, P. Barford, and S. Seshan, editors, ACM
SIGCOMM 2013 Conference, SIGCOMM 2013, Hong
Kong, August 12-16, 2013, pages 435–446. ACM, 2013.
https://doi.org/10.1145/2486001.2486031.

[5] W. Bai, S. S. Abdeen, A. Agrawal, K. K. Attre,
P. Bahl, A. Bhagat, G. Bhaskara, T. Brokhman, L. Cao,
A. Cheema, R. Chow, J. Cohen, M. Elhaddad, V. Ette,
I. Figlin, D. Firestone, M. George, I. German, L. Ghai,
E. Green, A. Greenberg, M. Gupta, R. Haagens, M. Hen-
del, R. Howlader, N. John, J. Johnstone, T. Jolly,
G. Kramer, D. Kruse, A. Kumar, E. Lan, I. Lee, A. Levy,
M. Lipshteyn, X. Liu, C. Liu, G. Lu, Y. Lu, X. Lu,
V. Makhervaks, U. Malashanka, D. A. Maltz, I. Marinos,
R. Mehta, S. Murthi, A. Namdhari, A. Ogus, J. Padhye,
M. Pandya, D. Phillips, A. Power, S. Puri, S. Raindel,
J. Rhee, A. Russo, M. Sah, A. Sheriff, C. Sparacino,
A. Srivastava, W. Sun, N. Swanson, F. Tian, L. Tom-
czyk, V. Vadlamuri, A. Wolman, Y. Xie, J. Yom, L. Yuan,
Y. Zhang, and B. Zill. Empowering azure storage with
RDMA. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
49–67, 2023.

[6] L. A. Barroso, M. Marty, D. A. Patterson, and P. Ran-
ganathan. Attack of the killer microseconds. Commun.
ACM, 60(4):48–54, 2017. https://doi.org/10.
1145/3015146.

[7] A. Belay, G. Prekas, A. Klimovic, S. Gross-
man, C. Kozyrakis, and E. Bugnion. IX: A
protected dataplane operating system for high
throughput and low latency. In 11th USENIX
Symposium on Operating Systems Design and
Implementation, OSDI ’14, Broomfield, CO,
USA, October 6-8, 2014., pages 49–65, 2014.
https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/belay.

[8] H.-C. Chiang, Y.-P. Dai, and C.-Y. Wang. Full hardware
based tcp/ip traffic offload engine (toe) device and the
method thereof, Jan. 12 2010. US Patent 7,647,416.

[9] Cisco. VPP. https://fd.io/gettingstarted/
technology/.

[10] H. M. Demoulin, J. Fried, I. Pedisich, M. Kogias,
B. T. Loo, L. T. X. Phan, and I. Zhang. When idling

is ideal: Optimizing tail-latency for heavy-tailed dat-
acenter workloads with perséphone. In SOSP ’21:
ACM SIGOPS 28th Symposium on Operating Systems
Principles, Virtual Event / Koblenz, Germany, October
26-29, 2021, pages 621–637, 2021. https://doi.
org/10.1145/3477132.3483571.

[11] A. Farshin, A. Roozbeh, G. Q. M. Jr., and D. Kos-
tic. Reexamining direct cache access to optimize
I/O intensive applications for multi-hundred-gigabit
networks. In A. Gavrilovska and E. Zadok, ed-
itors, 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020, pages 673–689.
USENIX Association, 2020. https://www.usenix.
org/conference/atc20/presentation/farshin.

[12] S. Floyd, T. Henderson, and A. Gurtov. The newreno
modification to tcp’s fast recovery algorithm. Technical
report, 2004.

[13] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal,
S. Ratnasamy, and S. Shenker. phost: distributed
near-optimal datacenter transport over commodity net-
work fabric. In F. Huici and G. Bianchi, editors,
Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT
2015, Heidelberg, Germany, December 1-4, 2015,
pages 1:1–1:12. ACM, 2015. https://doi.org/10.
1145/2716281.2836086.

[14] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng,
B. Li, Y. Wu, S. Liu, L. Yan, F. Feng, Y. Zhuang,
F. Liu, P. Liu, X. Liu, Z. Wu, J. Wu, Z. Cao,
C. Tian, J. Wu, J. Zhu, H. Wang, D. Cai, and J. Wu.
When cloud storage meets RDMA. In J. Mickens
and R. Teixeira, editors, 18th USENIX Symposium
on Networked Systems Design and Implementation,
NSDI 2021, April 12-14, 2021, pages 519–533.
USENIX Association, 2021. https://www.usenix.
org/conference/nsdi21/presentation/gao.

[15] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye,
and M. Lipshteyn. RDMA over commodity ethernet at
scale. In M. P. Barcellos, J. Crowcroft, A. Vahdat, and
S. Katti, editors, Proceedings of the ACM SIGCOMM
2016 Conference, Florianopolis, Brazil, August 22-26,
2016, pages 202–215. ACM, 2016. https://doi.
org/10.1145/2934872.2934908.

[16] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W.
Moore, G. Antichi, and M. Wójcik. Re-architecting
datacenter networks and stacks for low latency and high
performance. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2017, Los Angeles, CA, USA, August
21-25, 2017, pages 29–42. ACM, 2017. https://doi.
org/10.1145/3098822.3098825.

USENIX Association 2023 USENIX Annual Technical Conference    685

http://www.f-stack.org/
https://www.dpdk.org/
https://www.aliyun.com/product/disk
https://www.aliyun.com/product/disk
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1145/3015146
https://doi.org/10.1145/3015146
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://fd.io/gettingstarted/technology/
https://fd.io/gettingstarted/technology/
https://doi.org/10.1145/3477132.3483571
https://doi.org/10.1145/3477132.3483571
https://www.usenix.org/conference/atc20/presentation/farshin
https://www.usenix.org/conference/atc20/presentation/farshin
https://doi.org/10.1145/2716281.2836086
https://doi.org/10.1145/2716281.2836086
https://www.usenix.org/conference/nsdi21/presentation/gao
https://www.usenix.org/conference/nsdi21/presentation/gao
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3098822.3098825


[17] Y. Huang, J. Geng, D. Lin, B. Wang, J. Li, R. Ling,
and D. Li. LOS: A high performance and compatible
user-level network operating system. In Proceedings of
the First Asia-Pacific Workshop on Networking, APNet
2017, Hong Kong, China, August 3-4, 2017, pages
50–56, 2017. https://doi.org/10.1145/3106989.
3106997.

[18] Intel. Flow-bifurcation. https://doc.dpdk.org/
guides-18.08/howto/flow_bifurcation.html.

[19] Intel. Intel 5800x. https://www.intel.com/
content/www/us/en/products/docs/memory-
storage/solid-state-drives/data-center-
ssds/optane-ssd-p5800x-p5801x-brief.html.

[20] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mtcp: a highly scalable user-level
TCP stack for multicore systems. In Proceedings of
the 11th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2014, Seattle,
WA, USA, April 2-4, 2014, pages 489–502, 2014.
https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/jeong.

[21] K. Kaffes, T. Chong, J. T. Humphries, A. Be-
lay, D. Mazières, and C. Kozyrakis. Shinjuku:
Preemptive scheduling for µsecond-scale tail la-
tency. In 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2019,
Boston, MA, February 26-28, 2019., pages 345–360,
2019. https://www.usenix.org/conference/
nsdi19/presentation/kaffes.

[22] S. Kanev, J. P. Darago, K. M. Hazelwood, P. Ran-
ganathan, T. Moseley, G. Wei, and D. M. Brooks. Profil-
ing a warehouse-scale computer. In D. T. Marr and D. H.
Albonesi, editors, Proceedings of the 42nd Annual
International Symposium on Computer Architecture,
Portland, OR, USA, June 13-17, 2015, pages 158–169.
ACM, 2015. https://doi.org/10.1145/2749469.
2750392.

[23] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Kr-
ishnamurthy, and T. E. Anderson. TAS: TCP accelera-
tion as an OS service. In Proceedings of the Fourteenth
EuroSys Conference 2019, Dresden, Germany, March
25-28, 2019, pages 24:1–24:16, 2019. https://doi.
org/10.1145/3302424.3303985.

[24] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang. Socks-
direct: datacenter sockets can be fast and compati-
ble. In Proceedings of the ACM Special Interest Group
on Data Communication, SIGCOMM 2019, Beijing,
China, August 19-23, 2019, pages 90–103, 2019.

[25] Q. Li, Q. Xiang, Y. Wang, H. Song, R. Wen, W. Yao,
Y. Dong, S. Zhao, S. Huang, Z. Zhu, H. Wang, S. Liu,
L. Chen, Z. Wu, H. Qiu, D. Liu, G. Tian, C. Han,
S. Liu, Y. Wu, Z. Luo, Y. Shao, J. Wu, Z. Cao, Z. Wu,

J. Zhu, J. Wu, J. Shu, and J. Wu. More than capac-
ity: Performance-oriented evolution of pangu in al-
ibaba. In 21st USENIX Conference on File and Storage
Technologies (FAST 23), pages 331–346, 2023.

[26] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng,
L. Tang, Z. Cao, M. Zhang, F. Kelly, M. Alizadeh,
and M. Yu. HPCC: high precision congestion con-
trol. In J. Wu and W. Hall, editors, Proceedings of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2019, Beijing, China, August 19-23, 2019,
pages 44–58. ACM, 2019. https://doi.org/10.
1145/3341302.3342085.

[27] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,
S. Gribble, N. Kidd, R. Kononov, G. Kumar, C. Mauer,
E. Musick, L. E. Olson, E. Rubow, M. Ryan, K. Spring-
born, P. Turner, V. Valancius, X. Wang, and A. Vah-
dat. Snap: a microkernel approach to host network-
ing. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP 2019, Huntsville,
ON, Canada, October 27-30, 2019, pages 399–413,
2019.

[28] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. Tcp
selective acknowledgment options. Technical report,
1996.

[29] R. Miao, L. Zhu, S. Ma, K. Qian, S. Zhuang, B. Li,
S. Cheng, J. Gao, Y. Zhuang, P. Zhang, R. Liu, C. Shi,
B. Fu, J. Zhu, J. Wu, D. Cai, and H. H. Liu. From luna to
solar: the evolutions of the compute-to-storage networks
in alibaba cloud. In F. Kuipers and A. Orda, editors,
SIGCOMM ’22: ACM SIGCOMM 2022 Conference,
Amsterdam, The Netherlands, August 22 - 26, 2022,
pages 753–766. ACM, 2022. https://doi.org/10.
1145/3544216.3544238.

[30] B. Montazeri, Y. Li, M. Alizadeh, and J. K. Ousterhout.
Homa: a receiver-driven low-latency transport protocol
using network priorities. In S. Gorinsky and J. Tapol-
cai, editors, Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2018, Budapest, Hungary, August 20-25,
2018, pages 221–235. ACM, 2018. https://doi.
org/10.1145/3230543.3230564.

[31] Y. Moon, S. Lee, M. A. Jamshed, and K. Park. Acceltcp:
Accelerating network applications with stateful TCP of-
floading. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
77–92, Santa Clara, CA, Feb. 2020. USENIX Associa-
tion.

[32] A. Ousterhout, J. Fried, J. Behrens, A. Belay,
and H. Balakrishnan. Shenango: Achieving high
CPU efficiency for latency-sensitive datacenter work-
loads. In 16th USENIX Symposium on Networked

686    2023 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1145/3106989.3106997
https://doi.org/10.1145/3106989.3106997
https://doc.dpdk.org/guides-18.08/howto/flow_bifurcation.html
https://doc.dpdk.org/guides-18.08/howto/flow_bifurcation.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/3302424.3303985
https://doi.org/10.1145/3302424.3303985
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/3544216.3544238
https://doi.org/10.1145/3544216.3544238
https://doi.org/10.1145/3230543.3230564
https://doi.org/10.1145/3230543.3230564


Systems Design and Implementation, NSDI 2019,
Boston, MA, February 26-28, 2019, pages 361–378,
2019. https://www.usenix.org/conference/
nsdi19/presentation/ousterhout.

[33] J. Ousterhout. It’s time to replace tcp in the datacenter.
arXiv preprint arXiv:2210.00714, 2022.

[34] J. Postel et al. Transmission control protocol. 1981.

[35] G. Prekas, M. Kogias, and E. Bugnion. Zygos:
Achieving low tail latency for microsecond-scale net-
worked tasks. In Proceedings of the 26th Symposium
on Operating Systems Principles, Shanghai, China,
October 28-31, 2017, pages 325–341, 2017. https:
//doi.org/10.1145/3132747.3132780.

[36] Samsung. Samsung z-nand ssd. https://
semiconductor.samsung.com/ssd/z-ssd/.

[37] R. Shashidhara, T. Stamler, A. Kaufmann, and S. Peter.
Flextoe: Flexible TCP offload with fine-grained paral-
lelism. In A. Phanishayee and V. Sekar, editors, 19th
USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2022, Renton, WA, USA,
April 4-6, 2022, pages 87–102. USENIX Association,
2022. https://www.usenix.org/conference/
nsdi22/presentation/shashidhara.

[38] Z. Wu and H. Chen. Design and implementation of
TCP/IP offload engine system over gigabit ethernet.
In Proceedings of the 15th International Conference
On Computer Communications and Networks, ICCCN
2006, October 9-11, 2006, Arlington, Virginia, USA,
pages 245–250. IEEE, 2006. https://doi.org/10.
1109/ICCCN.2006.286280.

USENIX Association 2023 USENIX Annual Technical Conference    687

https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://semiconductor.samsung.com/ssd/z-ssd/
https://semiconductor.samsung.com/ssd/z-ssd/
https://www.usenix.org/conference/nsdi22/presentation/shashidhara
https://www.usenix.org/conference/nsdi22/presentation/shashidhara
https://doi.org/10.1109/ICCCN.2006.286280
https://doi.org/10.1109/ICCCN.2006.286280




RubbleDB: CPU-Efficient Replication with NVMe-oF

Haoyu Li1, Sheng Jiang1, Chen Chen1, Ashwini Raina2, Xingyu Zhu1, Changxu Luo1, and Asaf Cidon1

1Columbia University, 2Princeton University

Abstract
Due to the need to perform expensive background compaction
operations, the CPU is often a performance bottleneck of
persistent key-value stores. In the case of replicated storage
systems, which contain multiple identical copies of the data,
we make the observation that CPU can be traded off for spare
network bandwidth. Compactions can be executed only once,
on one of the nodes, and the already-compacted data can be
shipped to the other nodes’ disks, saving them significant
CPU time. In order to further drive down total CPU consump-
tion, the file replication protocol can leverage NVMe-oF, a
networked storage protocol that can offload the network and
storage datapaths entirely to the NIC, requiring zero involve-
ment from the target node’s CPU. However, since NVMe-oF
is a one-sided protocol, if used naively, it can easily cause
data corruption or data loss at the target nodes.

We design RubbleDB, the first key-value store that takes
advantage of NVMe-oF for efficient replication. RubbleDB
introduces several novel design mechanisms that address the
challenges of using NVMe-oF for replicated data, including
pre-allocation of static files, a novel file metadata mapping
mechanism, and a new method that enforces the order of
applying version edits across replicas. These ideas can be
applied to other settings beyond key-value stores, such as dis-
tributed file and backup systems. We implement RubbleDB
on top of RocksDB and show it provides consistent CPU
savings and increases throughput by up to 1.9× and reduces
tail latency by up to 93.4% for write-heavy workloads, com-
pared to replicated key-value stores, such as ZippyDB, which
conduct compactions on all replica nodes.

1 Introduction
To provide high availability, disk-based key value stores are
often replicated on multiple machines [2,21, 22, 25,35, 43]. A
standard architecture for replicating key-value stores is that
each machine runs a local key-value instance, and a replication
layer controls which replica gets shipped to each instance.

However, key-value stores spend a significant portion of
their computing resources on background compaction op-

erations, which rebalance and garbage-collect the data on
disk. For example, in the case of log-structured merge trees
(LSM trees), the standard disk-based key-value store de-
sign [2,4,8,22,41], previous work has shown that compaction
can consume up to 45% of CPU in production workloads, and
by avoiding compaction, key-value stores can increase their
throughput by up to 2× [12]. We have reproduced these ex-
periments and find that with RocksDB, compaction consumes
up to 72% of the total CPU cycles.

This leads to the simple observation that, in the case of
replicated key-value stores, where each node sees identical
commands, the compaction operations conducted on each
machine that stores the replica of the data represent redun-
dant effort. Therefore, we can design an architecture, where
a primary node conducts compaction operations locally, and
then ships the already-compacted files to the secondary nodes
that store the data copies, thereby significantly reducing their
CPU consumption.

However, such an approach has two important drawbacks.
First, it increases the amount of network traffic because not
only do the regular operations need to be replicated, but also
the compacted files. Fortunately, network traffic in modern
datacenters is often underutilized; for example, cluster traces
from Alibaba [1] and Snowflake [47] show that 50-–75% of
network capacity consistently remain idle. Therefore, reduc-
ing CPU consumption at the expense of additional network
traffic is often a desirable trade-off. Second, shipping the files
from the primary to the secondary nodes still requires some
processing from both: at the extreme, if both ends use TCP,
then shipping the files will incur the cost of processing the
TCP packets on both ends, as well as the cost of traversing
the storage stack on the secondary nodes.

To address the second problem, we turn to NVMe-oF, a
networked storage protocol that minimizes CPU costs at sec-
ondary nodes. NVMe-oF extends the NVMe protocol to al-
low one server to access a disk of a remote server directly,
with minimal involvement of the remote server’s CPU. Even
better, most commodity datacenter NICs support offloading
the entire NVMe processing at the remote server, by allow-
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ing the remote NIC to talk directly to the NVMe storage
device. Therefore, if we use NIC-offloaded NVMe-oF, the
secondary’s host CPU will not be involved at all in processing
the incoming replicated files, thereby completely eliminating
all of its CPU costs due to compaction.

However, using NVMe-oF to replicate files across storage
nodes creates two challenges. First, since the remote node’s
local file system (e.g., ext4) is not involved in writing the files,
it is not aware of the updated file and its location, has no way
to read it, and may even accidentally overwrite it. Second, the
key-value application running on the remote node must also
be synchronized with the incoming files. Its application-level
in-memory data structures must be updated to find and read
data from new files that were updated on its local storage
device, and it must not read data from stale files that were
deleted in the compaction process.

In this work, we introduce RubbleDB, the first distributed
storage system that leverages offloaded NVMe-oF for efficient
replication. The key contributions underlying RubbleDB’s
design are mechanisms that provide both file system synchro-
nization and application synchronization at the remote node,
so it can safely and correctly read data that was written to it
via NVMe-oF.

In order to simplify file system synchronization, we make
the observation that modern SSD-based datacenter storage
systems [4, 8, 9, 16, 35] write data in large immutable (and
often fixed-sized) chunks, and do not allow in-place updates.
Therefore, RubbleDB pre-allocates all on-disk data on all
nodes as fixed-sized fixed-location files. RubbleDB maintains
a file map that stores the mappings between the file names
and the pre-allocated file locations, and indicates whether a
file contains live or stale data. When a new file is replicated,
it is sent to a pre-allocated location that does not contain a
live file. When a file is deleted in the compaction process, it is
simply marked as stale in the map, and is not actually deleted.

For application-level synchronization, RubbleDB needs to
keep the secondaries’ in-memory data structures synchro-
nized, so when they read data from disk, they read the most
up-to-date object versions. To do so, RubbleDB ensures that
changes made to the in-memory data structures in the sec-
ondary nodes will be consistent with the compactions exe-
cuted by the primary node. It also carefully synchronizes the
deletion of objects flushed from disk or memory, in order
to avoid accidentally deleting objects that were processed
out-of-order in the secondary nodes.

Our evaluation demonstrates that RubbleDB consistently
leads to significant CPU and I/O bandwidth savings com-
pared to a baseline, which represents the architecture of sys-
tems such as Meta’s ZippyDB [17, 43] or CockroachDB [42],
which run compaction on all nodes in a replication group.
These savings enable RubbleDB to consistently achieve the
same or higher throughput than the baseline across the entire
YCSB suite [20], as well as on five traces from Twitter’s key-
value cache clusters [49]. In particular, RubbleDB provides a

speedup up to 1.9× and a tail latency improvement of up to
93.4%. We also show that RubbleDB consistently provides
higher performance in different scenarios, including different
replication factors, different numbers of RocksDB instances
per physical server, and different types of storage devices.

While in this paper we focus on the particular use case of a
replicated key-value store, we believe our design ideas are ap-
plicable to other common storage applications with primary-
backup replication, such as replicated file systems [16, 26, 34,
48] and disaster recovery and backup services [38].

2 Background and Motivation
This section lays out the background and motivation for the
paper. §2.1 provides background information on the most
common data structure for disk-based key value stores, the
log structure merge tree (LSM tree), and demonstrates that
background compaction operations in LSM trees consume
significant CPU. §2.2 provides a primer on the NVMe-oF
protocol and then shows the performance benefit of using
NVMe-oF for storage replication with a microbenchmark.

2.1 The High Cost of Compactions
LSM trees. LSM trees [37] are a popular data structure
for disk-based key-value stores, which powers many modern
key-value stores, such as RocksDB [8], LevelDB [4] and
WiredTiger [9]. Since small random writes significantly hurt
SSD (and HDD) performance, the main design goal behind
LSM trees is that data written to disk is always written in
large contiguous chunks and is never updated in-place.

As a representative system for LSM trees, we provide a
primer on how RocksDB, a popular key-value store works. In
RocksDB, to avoid small random writes to disk, all incoming
data writes are batched in memory, in a data structured called
the MemTable. Each entry in the MemTable has a sequence
number that enables key versioning. MemTables can be ac-
tive, which means that they are mutable and can be updated
with new incoming updates, and immutable, which means
they are waiting to be flushed and cannot be updated further.
Eventually, the immutable MemTables get flushed to disk and
written using a format called sorted string table (SST) files,
which are composed of sorted key-value pairs. SST files are
composed of blocks, each of which can be a data block or a
metadata block. The metadata blocks include index blocks
whose entries point to the keys at the start of each data block.

SST files are organized hierarchically into levels (L0, L1,
..., LN), where the “upper levels” (e.g., L0 is “higher” than
L1 in the hierarchy) store the more recently updated versions
of each key-value pair. Data from the MemTable is flushed
into L0, which stores files with overlapping key ranges, while
the files in lower levels (L1,...,LN) have non-overlapping key
ranges.

A key feature of LSM tree-backed stores is background
compaction, which periodically scans multiple SST files from
two adjacent levels, combines them into a single file, and
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flushes the new file into the lower level. In this process,
deleted and overwritten keys are discarded, freeing up space
for new data. Compactions are necessary not only for freeing
up space on disk, but also for reducing the number of I/Os
required on average to read data from the LSM tree [37].

To reconstruct the LSM tree after a failure, RocksDB per-
sists a log containing changes to the tree, e.g., deletion or
generation of SST files. RocksDB records such changes using
version edits, where a version represents the current set of SST
files in the tree. For example, a version edit may record the
removal of stale SST files and the generation of new merged
files. Although compaction jobs run in parallel, they produce
version edits in a serializable order because RocksDB protects
the tree status with a mutex.

CPU consumption of compactions. Compactions are ex-
pensive and can affect the performance of the key-value store.
A compaction job requires reading the data of all the files
involved in the compaction (often involving tens of MB of
data or more), sorting them, and writing them back to disk.

As an example, we measure the CPU time consumed by
compactions by running a microbenchmark (described in
§5.2) on a replicated 3-node key-value store, where each
node conducts compaction locally, under a data ingestion mi-
crobenchmark (YCSB load [20]). In this workload, 72% of
CPU time was dedicated solely for compaction jobs! Due to
their high cost of compactions, there is a large body of work
on reducing their resource consumption in single-node LSM
trees [12,13,29,32,39], e.g., by delaying them, synchronizing
them with incoming requests, or optimizing the LSM tree
data structures and parameters to reduce their cost.

Saving compaction CPU and I/O bandwidth in replicated
key-value stores. Our focus is orthogonal to these single-
store optimizations: we make the observation that in settings
where the same data is replicated on a set of R key-value
stores, we do not have to run R identical compaction jobs
across all nodes, which are essentially performing the same
exact computation. Therefore, compaction can occur only
once (on the primary node), and the already-compacted SST
files can be shipped to the secondary nodes, which hold the
backup copy of the data.

Such an approach has the potential to significantly reduce
CPU consumption on the secondary nodes, since they no
longer need to issue read and write I/O and sort the compacted
data, the latter of which typically consumes the most CPU
during compaction jobs [12, 13, 29]. In addition, this would
eliminate the compaction read I/O of secondary nodes, since
they would not need to read the files that need to be merged by
the compaction job, but it would not eliminate the secondary’s
write I/O, since the new file would still have to be written
back to the disk. Finally, it would also reduce the memory
pressure on the secondary nodes due to compaction.

However, executing compactions only on primary nodes
has a price. The primary cost of this approach is increased
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Figure 1: NVMe-oF overview.

network bandwidth and NIC resource consumption, since now
not only the “regular” incoming read/write requests need to be
replicated, but also the post-compaction SST files. Fortunately,
in many datacenters the network is often underutilized: for
example, in traces from Alibaba [1] and Snowflake [47], 50–
75% of the network capacity is idle. In addition, the primary
node would consume some additional CPU in shipping the
files to the secondary nodes’ disks.

Therefore, since this approach involves a trade-off primar-
ily between minimizing CPU consumption on the secondary
nodes and increasing total network bandwidth, we seek to
ship the SST files with a protocol that will minimize CPU
usage on the secondary nodes. To this end, we turn to NVMe-
oF, a state-of-the-art networked storage protocol supported
by Linux and modern NICs, which can be run without the
involvement of the secondary nodes’ CPU.

2.2 Motivation for Using NVMe-oF
NVMe-oF primer. NVMe-oF is an extension of the NVMe
protocol for networked storage. NVMe-oF allows an appli-
cation to directly access a storage device that is connected
to a remote server, using the NVMe protocol. Figure 1 de-
picts the flow of an NVMe-oF request. The host (left side of
the diagram) is the server that initiates the request, and the
target is the remote server and the SSD connected to it. The
NVMe-oF request is initiated by an application on the host,
which issues a system call, and subsequently traverses the
entire OS storage stack, treating it as a regular local NVMe
request, until it reaches the NVMe driver.

Take a write request as an example (Figure 1): the userspace
application issues a WRITE() system call on the file located
on an NVMe-oF mounted disk (step 1), then just like a normal
local I/O, it goes through the Linux Virtual File System (VFS)
to find the inode, which maps the physical sectors on the disk
and is then submitted to the block layer (step 2) where it
gets batched by the I/O scheduler, and is dispatched to the
host-side NVMe driver (step 3).

The host and target drivers maintain multiple I/O queues
for exchanging the NVMe-oF capsule, which is a data struc-
ture that contains essential information needed for an NVMe
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gRPC + WRITE() NVMe/TCP NVMe/RDMA
Throughput 1028 MB/s 2986 MB/s 3748 MB/s
CPU 155% 135% 50%

Table 1: Comparison of throughput and CPU consumption of 1 MB
writes with different protocols. NVMe-oF (via TCP or RDMA) is
much more efficient than replicating through userspace.

communication between the host and the target. The NVMe
driver handles this request by constructing a corresponding
NVMe-oF command within a capsule, mapping data and meta-
data from the memory, and submitting it to one I/O queue.
The capsule is then forwarded to the relevant network stack
(step 4) depending on the fabric type (TCP, RDMA, etc.)
and is then forwarded to the target. For NVMe/TCP, the cap-
sule is embedded in TCP packets and contains both data and
metadata, while for NVMe/RDMA, the target and the host ex-
change the capsule using two-sided RDMA operations. With
NVMe/RDMA, the capsule records the memory address of
the data buffer in the host and the target consequently reads
that portion of memory using a one-sided RDMA read.

On the target (step 5), after the driver extracts the NVMe-oF
command and user data from the network packet, it generates
the block layer request and submits it to the block layer for
I/O scheduling (step 6a). The target’s NVMe driver, at last,
receives the I/O request from the block layer (step 7) and
writes the user’s data to the local NVMe SSD through the
PCIe bus (step 8).

In the past few years, major NIC model lines (e.g., NVIDIA
ConnectX, Broadcom Stingray, Intel IPU) have supported
completely offloading the NVMe-oF target datapath to the
NIC, and allowing the NIC to directly write the data to the
NVMe device. This offers an alternate datapath that bypasses
the target’s CPU completely (step 6b). When the NIC attached
to the target receives an NVMe capsule from the host, it
executes the NVMe request and directly writes data on the
NVMe SSD via DMA.

Potential benefit of NVMe-oF for replication. Popular
distributed storage systems (e.g., CockroachDB [42] and
Ceph [48]) often use an RPC (e.g., gRPC [3]) to send data
from the primary to the secondary node, which in turn is
written locally to the SSD (e.g., with a WRITE() system call).

We compare the throughput and CPU usage of this
userspace-based baseline with two NVMe-oF protocols
(NVMe/RDMA, which stands for NVMe-oF over RDMA
and NVMe/TCP, which stands for NVMe-oF over TCP), in
a microbenchmark that writes 1 MB data chunks over the
network in a closed loop, with two servers using the same
experimental setup on CloudLab [40] described in §5.1. In
the experiment, each server contains one primary node that is
writing to a secondary node on the second server, with a total
of 256 available cores. The aggregate results are shown in
Table 1. The result shows that the throughput of gRPC with
WRITE() is only 34% of the throughput NVMe/TCP while the
CPU usage is 20% higher. In addition to the more complex
logic in the RPC framework, the userspace stack requires ex-

tra user-kernel boundary crossings and context switches when
the data buffer is delivered to the userspace application from
the TCP/IP stack in the kernel and then written to the local
file which incurs a kernel trap. NVMe/TCP, on the other hand,
processes the data write completely in the NVMe driver in the
kernel, therefore saving a substantial amount of CPU cycles
in each write request, thereby increasing the throughput. In
addition, NVMe/RDMA outperforms NVMe/TCP due to the
elimination of unnecessary copying and CPU bypassing.

3 Challenges
Substituting a userspace replication protocol with NVMe-oF
introduces challenges at two different layers: at the file system
level and the application level.

File system inconsistency. NVMe-oF introduces inconsis-
tency at the file system level. A naive way to ship files through
NVMeoF is to simply allocate a new file on the remote disk
and write to it. However, in such a scheme, the secondary node
will not even see the new SST files in its file system. This is
because the SST files are created in the primary’s file system,
and NVMe-oF only forwards NVMe commands, which get
executed below the file system layer in the secondary node’s
storage stack (see Figure 1). So, the primary and secondary
nodes may see different files systems on the same NVMe
disk. Even worse, the data sent by the host could accidentally
overwrite data in physical blocks at the secondary that it is
not supposed to access, since the local file system of the target
may have changed its file-to-block mapping.

Application inconsistency. Even if the target’s file system
is synchronized with the host’s view, NVMe-oF introduces
inconsistency at the application level. Since the persistent
key-value store maintains in-memory data structures (e.g., to
buffer writes), these data structures may not be synchronized
between the primary and the secondary, leading to data loss. In
particular, in RocksDB, there will be discrepancies between
the primary and secondary node within their MemTables,
which store the values of recently-written data in memory.

Figure 2 shows an example where discrepancies in the pri-
mary and secondary’s MemTables cause data loss in the sec-
ondary. Consider the case where there is one active MemTable
(MemTable 1), which is nearly full and only has capacity for
one more object (Figure 2a). Now consider that two objects
(A and B) arrive concurrently. Both primary and secondary
use two threads to process incoming requests, and in this case
RocksDB does not provide any guarantee on the order that the
writes will be processed. In the primary, object A is written
before B, and is therefore written to MemTable 1, which is
sealed and marked inactive, while object B is written to the
newly active MemTable 2. Next, the primary forwards objects
A and B to the secondary, but the secondary applies them in
the opposite order due to non-deterministic thread scheduling:
B is written to MemTable 1, and A is written to MemTable 2.
Consequently, the secondary’s MemTable 1 stores different
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Figure 2: An example of inconsistency across node MemTables.

data than the primary’s MemTable 1 (Figure 2b).
Now, the primary flushes MemTable 1 to disk, causing it

to delete the objects stored in MemTable 1 from memory. If
it then ships the new SST file to the secondary, and instructs
it to also delete it to delete MemTable 1 as well, this will
result in the loss of B at the secondary, because B will not be
stored neither in its MemTables, nor on its disk (Figure 2c).
In this case, the reason for the data loss is due to the fact
that thread scheduling across the nodes in a non-deterministic
fashion, so operations are applied in a different order, causing
discrepancies.

Making matters worse, even if we had a way to force sec-
ondary nodes to process requests in the same order as the
primary, the content of the MemTables would still diverge.
This is because RocksDB’s MemTables store their data using
randomized skip lists, which will cause MemTables in differ-
ent nodes to contain a different number of entries and become
full at different times.

4 Design and Implementation
We present the design and implementation of RubbleDB, and
explain the key mechanisms that allow RubbleDB to address
the inconsistencies introduced by replication via NVMe-oF.

RubbleDB is a replicated key-value store, composed of
a set of RocksDB instances, with a replication layer on top.
RubbleDB uses chain replication [45] to provide strong con-
sistency and fast recovery. The client only communicates with
the replicator layer, which is in charge of dispatching requests
to the proper primary node (in case of write) or tail node (in
case of a read) and of handling failure recovery. Figure 3
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Figure 3: RubbleDB overview.

depicts the overall architecture of RubbleDB. There are N
clients and K replication groups, and in between sits the repli-
cator layer. Replication groups contain R RocksDB instances
or nodes, one of which is the primary, and the others are sec-
ondaries. Only the primary performs flush or compaction jobs.
Therefore, in addition to replicating client write requests, the
primary node also ships compacted SST files via NVMe-oF,
assuming sufficient network bandwidth is available. If the
network becomes congested, RubbleDB can fall back to local
compaction on all replicas. Specifically, RubbleDB compares
the latencies of shipping SST files and local compaction. If the
former is consistently greater over a time period, RubbleDB
falls back to regular compaction. Different replication groups
store disjoint key spaces. By default, the R replicas are stored
on R different random servers. In the future, we plan to sup-
port other more sophisticated data placement policies [18,19].
We intentionally keep each replication group small (by default
10 GB), so the recovery load can be spread across multiple
nodes in the cluster when a server or disk fails. It is worth
noting that we assume no dishonest or malicious node (e.g.,
we assume all nodes operate under a single organization in a
single data center). Next, we discuss the design details of the
two main key components of RubbleDB: the replicator layer
and replication groups.

4.1 Replicator Layer
To provide a clean key-value interface from users and hide
the complexity of dealing with the replication protocol, Rub-
bleDB uses a replicator layer as a proxy layer between users
and replication groups. Users simply send regular RocksDB
requests to and receive results from the replicator layer, which
transparently handles the replication protocol. The replicator
thus has two roles: 1) routing requests to a replica of the group
that contains the requested key-value pairs and 2) detecting
and recovering from any failed replicas.

Different replication groups contain separate key spaces. To
route requests, the replicator maintains a metadata table that
records the key space and network addresses for each replica
group. Once it receives a request, the replicator first looks up
the group number in the metadata table. Next, according to
the replication protocol, it forwards the request to a specific
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replica within that group. The replicator also sends heart
beat messages to every replica periodically to confirm its
health. If it does not receive any replies from a replica after a
time threshold, the replica is assumed to have failed, and the
replicator starts the recovery process.

In Figure 3 foreground data flows are represented by a solid
arrow, while background flows are dashed. The figure only
shows the background requests belonging to replication group
1, which is replicated across servers 1, 2 and M. Clients first
send requests to the replicator (step 1), who after consulting
the metadata table forwards the requests to replication group
1 (step 2). Following the chain replication protocol [45], write
requests (e.g., put and update) go to the head (step 2.a), while
reads (e.g., get and scan) go to the tail (step 2.b). In the case
of writes, the primary (head) replicates the write request to
the next secondary in the chain (step 3), which applies the
write and then replicates it to the next node in the chain (step
4). When the tail node completes a request (read or write), it
will reply to the replicator (step 5), which finally returns the
results to the client (step 6).

It is important to note that the replicator is only a logically
centralized component that orchestrates traffic and recovery.
To prevent the replicator from being a performance bottleneck
or a single point of failure, it can be implemented as a dis-
tributed fault-tolerant cluster [17, 42]. We leave this direction,
as well as other aspects of the replicator’s design, such as
dynamic load balancing and dynamic key-space partitioning,
for future work.

4.2 Replication Groups
Each node within a replication group is a small RocksDB
instance, composed of a primary node (head of the chain) and
a chain of secondary nodes, which store the backup copies
of the data. Figure 4 presents how a primary interacts with
one of its secondary nodes. Solid and dashed arrows represent
foreground and background operations, respectively. Write
requests are executed from the head replica (the primary) to
the tail (steps 1-3). Read requests are omitted in Figure 4
because they are only sent to the tail secondary node.

Steps I-III show how RubbleDB avoids background com-
paction jobs in secondaries. In step I, flush and compaction
jobs happen normally in the primary (triggered by filled
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Figure 5: Primary ships SST files to pre-allocated slots.

MemTables or upper-layer SST files). These jobs change the
primary’s LSM tree in three ways: 1) deletion of the data be-
ing compacted (both in-memory immutable MemTables and
on-disk SSTs, depicted with dashed rectangles in Figure 4),
2) creation of compacted SSTs (dashed rounded rectangles),
and 3) modification of the LSM tree version (information
recording current SST files in the tree). RubbleDB ensures
that the same changes also occur in the secondaries by ship-
ping both compacted SSTs and version edits over the network
(step II). Shipping the compacted SST file addresses 2), so
the secondary only needs to delete the original obsolete SST
files according to the version edits and update its own LSM
tree version (step III).

However, it is not trivial to guarantee the correctness of
steps II and III due to the challenges described in §3. In §4.2.1
we discuss how RubbleDB solves the challenge of file system
inconsistency, while in §4.2.2 we describe how RubbleDB
addresses application inconsistency.

4.2.1 File Pre-allocation

As the primary and secondary nodes mount their own local
file systems (e.g., ext4) on top of the same storage device,
each local file system will not be aware of changes made by
the other file system, e.g., file creation. To ensure that shipped
SST files are visible to secondary nodes, RubbleDB uses
file pre-allocation. Before running, secondary nodes allocate
many pre-allocated file slots, which we call a file pool on their
local storage devices, after which, the primary mounts these
devices. So both sides will be aware of the file pool in their
local file systems. During runtime, the primary ships an SST
file to a secondary by writing the content to a fixed-sized slot
in the pool with direct I/O (to make sure the file gets written
to disk and bypasses the primary’s local buffer cache). Thus,
only the data blocks of the slot file are updated and the inode
remains unchanged. The secondary can also read the content
with direct I/O after the file is written.

Note that this means that secondary and primary nodes
cannot rely on the buffer cache to cache hot data blocks from
disk. Fortunately, RocksDB (and most other key-value stores)
implements its own userspace-based cache, the block cache,
which can replace the operating system’s buffer cache.

There are four practical issues with this pre-allocation
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scheme: 1) determiming the size of slot files, 2) managing
slot files in the pool, 3) avoiding dynamic file remapping by
the local file systems, and 4) ensuring that RocksDB will cor-
rectly point to the pre-allocated files even when it changes
file names. We discuss each issue below.

File size. To guarantee that the primary can find a slot to
ship SST, secondaries need to allocate a sufficient number of
file slots for every possible file size. Fortunately, key-value
stores like RocksDB typically store data in more or less fixed-
sized (or size-capped) files. Moreover, the number of SST files
in each layer of an LSM tree is also limited by compaction.
For example, by default in RocksDB, the size of an SST file
is 64 MB and the maximum number of SST files is 4448. In
this case, a secondary would need to create 4448 64 MB file
slots. In our implementation we use a fixed-size file that is
slightly larger (17 MB) than the target file size of RubbleDB’s
RocksDB instances (16 MB), since files may occasionally
exceed the target size. When files are smaller than the fixed
size of the slot, the remainder of the slot is zero-padded.

Slot management. The primary acquires slots in the pool
before shipping SST files to secondaries. Similarly, when
deleting an SST file post compaction, the corresponding slot
is released. We design a file map to track the mapping between
slots and SST files and to indicate whether a slot contains a
live SST file. Both the primary and secondary nodes have
a copy of the map. It is necessary for secondaries to own a
map copy because once the primary fails, one of them will be
chosen as the new primary.

In a flush or compaction job, the primary first acquires
empty slots in its file map and then executes the compaction.
After shipping the compacted files to the secondary nodes, it
sends the map updates to all secondaries with the version edits,
so the same updates are applied in all the secondary nodes.
After receiving the updates, the secondary marks the slots
of the old files, whose space can be overwritten, as released,
and it updates the primary’s file map to notify it about the
slot release. The reason slots are released by secondary nodes
is to avoid the case where the primary node releases a slot,
and then acquires it again before the secondary node was
notified of the slot release, which would be viewed by the
secondary as an illegal operation, where a new file overwrites
an already-acquired slot.

File remapping. The pre-allocated file slots’ mappings
from file offset to physical block address may change over
time. Various reasons can cause remapping, including dy-
namic volume management, file system extent adjustment,
etc.. To minimize interference from the file system and vol-
ume management, RubbleDB uses a dedicated and static disk
partition for the file pool in each secondary node. The par-
tition is mounted as read-only in the secondary, since the
secondary never writes to its SSD drive, and read-write in the
primary node. In case of a crash, where a secondary needs to
become a primary, it remounts with read-write mode.
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Figure 6: Partially-ordered writes using MemTable ID.

Renaming RocksDB names each SST file with a unique
integer, e.g., 002023.sst. This leads to another issue of pre-
allocating slot files: their fixed file names. Because the sec-
ondary mounts the partition as read-only, it cannot rename the
slot files to the RocksDB format. To address this issue, Rub-
bleDB creates a symbolic link from a file with the RocksDB-
defined name to the slot file, so the RocksDB instance on
secondary can correctly access its read-only file pool.

Multiple groups. If there are multiple replication groups,
primary nodes from different groups will acquire slots con-
currently. To avoid contention, RubbleDB creates a dedicated
SST pool (and map) for each group. Recall that since each
pool sits on a different disk partition, there are no concurrent
writers to a file in RubbleDB.

Figure 5 summarizes the file replication workflow. Before
the replication group is formed, a disk partition is created for
the file pool on each secondary. The primary and secondary
mount the partition as read-only (step 1) and read-write (step
2), respectively. Suppose that the primary node generates SST
file i in a flush job, it first queries the file map for an empty
slot j to ship the SST file (step 3). Next, the content of SST
file i is written in slot j with direct I/O (Step 4). The data
of slot j will be transferred to the secondary node’s SSD via
NVMe-oF. At the end of the flush job, the primary sends the
mapping between file i and slot j to the secondary (step 5),
so the secondary knows how to create the correct symbolic
link (step 6) and update its file map copy (step 7).

4.2.2 LSM Tree Synchronization

Flush and compaction jobs are essentially performing merge
sort and do not change the actual state of RocksDB from
the client’s perspective1. These merge sorts contain inputs:
MemTables and SST files to be merged in the case of flush
and compaction, respectively, while the output is always SST
files that will be written to disk. This property implies that the
inputs and output of a flush or compaction job must contain
the same set of live key-value pairs. Primary nodes naturally
satisfy this requirement since they execute compaction lo-
cally. However, secondary nodes sometimes have mismatched
sets of inputs and output live key-value pairs when applying
version edits. Recall from the example in Figure 2, in the
secondary node, the input to the flush job (MemTable 1) has

1Although stale data will be discarded during compaction jobs, it is al-
ready ignored by RocksDB since read requests fetch the most recent data.
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different live objects from the output (SST 1). Consequently,
the secondary node loses B while redundantly storing two
copies of A.

To guarantee the data consistency of secondary nodes, they
need to ensure that the inputs and outputs of every version
edit contain the same set of live objects before applying it.
However, comparing all objects across multiple MemTables
or SST files is very costly. Instead, RubbleDB forces a partial
order of requests and total order of version edits. These two
ordering techniques synchronize the secondary nodes’ LSM
trees with the primary’s. We describe them below.

Partially-ordered writes. Figure 6 describes how Rub-
bleDB addresses the MemTable discrepancy issue discussed
in the example in Figure 2 by ordering write requests with
MemTable ID. In the primary, after an object is inserted to
the active MemTable, each write request is returned with the
ID of that MemTable (step 1). The primary tags each write
request with this MemTable ID and forwards it to the sec-
ondary (step 2, the subscripts are the IDs). With the IDs, the
secondary now knows to which MemTable the primary wrote
each request. The secondary follows the same order as the
primary, by maintaining a request buffer to cache out-of-order
requests. For example, even if the secondary scheduled thread
2 before thread 1, it will fail to write B2 to MemTable 1 as its
tag (2) does not match with the MemTable ID (1) (step 3). So,
thread 2 will store the request B2 in the request buffer (step 4).
When thread 1 executes, A1 it will be written to MemTable 1.
Therefore, MemTables 1 on both the primary and secondary
nodes will have the same set of objects, which will not cause
data loss like in Figure 2c. Last, every time RocksDB switches
to a new MemTable, each thread in a secondary checks the
buffer to execute any request that can be applied correctly to
the MemTables, i.e. its tag is equal to the ID of the active
MemTable (step 5).

This scheme represents a partial order because secondary
nodes only sort write requests belonging to different MemTa-
bles. Write requests that have the same MemTable ID as the
primary’s MemTable have identical tags and can execute in
any order. This does not affect the correctness when all up-
dates in a MemTable have unique keys because MemTables
(skip lists in RocksDB by default) and flush or compaction
jobs (merge sorts) will sort them anyway. However, in the case
where there are updates for the same key, as both MemTables
and flush or compaction only select the most recent update,
the secondary has to maintain the same order among those
different updates. RubbleDB achieves such an order by fur-
ther splitting the key space among threads. For example, all
updates of key A will be handled by primary’s thread 1 in
Figure 6. Then, RubbleDB relies on in-order request delivery
(e.g., streaming RPC) to ensure those updates arrives at a
single thread of the secondary in the same order.

Totally-ordered version edits. Partially ordering writes
only guarantees that the secondary nodes eventually have the

same live objects in their MemTables as the primary node.
However, due to request buffering, updates applied on the
secondary nodes may lag the primary, so the same MemTable
ID in a secondary node may have fewer entries than the one
in the primary. Such lag introduces challenges when apply-
ing version edits in secondaries. Back to Figure 6, suppose
that at time t, the version edit (add SST 1, del MemTable

1) arrives at the secondary but the request A1 has not been
executed. Applying the version edit at time t may allow the
client to read A1, even if it has not been written. This breaks
the consistency guarantee of chain replication, which requires
that a client can only read a value after it has received an
acknowledgment that the value has been written successfully.

To avoid the scenario above, we have to ensure that the
sets of live objects in the inputs and outputs of each version
edit in the secondary are the same. We exploit the fact that
in RocksDB flush or compaction jobs generate version edits
in a serializable order (the current version is protected by
a mutex) even though they run in parallel. So, the primary
node tags version edits with sequence numbers to indicate
their order, and the secondary nodes maintain a counter and
a buffer for version edits. The counter is incremented every
time the secondary applies a version edit. The secondary
checks two conditions before applying an edit: 1) whether
the sequence number is equal to the counter and 2) whether
its inputs are ready. The latter is checked for flush jobs only,
since the inputs of a compaction are always ready if it passes
step 1) (i.e. the previous flush or compaction job has finished).
A MemTable is ready only when it becomes immutable (full).
If either of the two conditions fails, the version edit is cached
in the buffer, which is regularly checked by all threads.

With these two ordering techniques, RubbleDB synchro-
nizes the LSM tree state in a replication group and addresses
the challenge of application inconsistency.

4.3 Implementation Details
We implement RubbleDB using RocksDB 6.14.0 and gRPC
1.34.0, comprising a total of about 900 and 4000 lines of Java
and C++ code, respectively. Each replica in RubbleDB is a
RocksDB instance, and different parts of the system communi-
cate with each other using streaming gRPC calls. To simulate
concurrent clients, we modify YCSB to issue requests as
batches to our replicator in an open loop. We open-source all
the code on GitHub2.

5 Evaluation
We seek to answer four evaluation questions:

Q1: How does RubbleDB’s SST file replication affect the CPU,
network, and disk I/O usage of RubbleDB? (§5.2)

Q2: How does the replication mechanism of RubbleDB affect
its performance under different workloads? (§5.3)

2https://github.com/lei-houjyu/RubbleDB
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Workload Composition
YCSB Load 100% inserts
YCSB A 50% Read, 50% Update
YCSB B 95% Read, 5% Update
YCSB C 100% Read
YCSB D 95% Read, 5% Insert
YCSB E 95% Scan, 5% Update
YCSB F 50% Scan, 50% Read Modify Write
YCSB G 100% Update
Twitter Cluster 2 100% Get
Twitter Cluster 15 100% Set
Twitter Cluster 19 75% Get, 25% Set
Twitter Cluster 27 85% Get, 15% Set
Twitter Cluster 31 6% Get, 94% Set

Table 2: Workload Characteristics

Baseline RubbleDB
Time spent Primary Secondary Primary Secondary
Compaction 979 976 987 0

Requests 376 390 397 401
Total 2723 1786

(a) Replication factor = 2

Baseline RubbleDB
Time spent Primary Secondary Primary Secondary
Compaction 1319 2759 1375 0

Requests 535 990 570 1176
Total 5603 3121

(b) Replication factor = 3

Baseline RubbleDB
Time spent Primary Secondary Primary Secondary
Compaction 1713 5455 1846 0

Requests 692 1930 745 2254
Total 9790 4845

(c) Replication factor = 4

Table 3: CPU time (s) breakdown under YCSB load, with a co-
location factor of 1 and different replication factors.

Q3: Does the utility of NVMe-oF change as a function of the
available storage resources? (§5.3)

Q4: How fast can RubbleDB recover from failures? (§5.4)

5.1 Experimental Setup
Setup. We conduct all experiments on CloudLab [24, 40].
Unless otherwise specified, replication groups run on mul-
tiple r6525 servers and clients run on one c6420 machine
with the replicator. Each r6525 server has two 32-core AMD
7543 CPUs at 2.8 GHz, 256 GB DDR4 memory, a 1.6 TB
Dell Enterprise SSD, and a dual-port Mellanox ConnectX-6
100 Gb NIC. By default, RubbleDB uses the Mellanox NIC’s
NVMe-oF offload feature. A c6420 server has two 16-core
Intel Xeon Gold 6142 CPUs at 2.6 GHz and 384 GB DDR4
Memory. The OS is Ubuntu 20.04 LTS with a Linux version
of 5.4.0. We configure NVMe-oF target offloading following
NVIDIA’s official guide [7].

RocksDB configuration. We intentionally keep each key-
value instance small, so that if an instance fails there will be a
relatively small amount of data to re-replicate. Therefore, we
use 16 MB SST files and MemTables and an L0 of size 64 MB,
so the LSM tree will contain 64 GB data at most. Direct I/O
is enabled with a 2 GB block cache. We run DB instances

Baseline RubbleDB
Read Write Read Write

R = 2 163.7 185.6 94.6 206.6
R = 3 241.4 274.4 97.8 309.9
R = 4 343.3 387.5 101.7 410.7

Table 4: The read and write I/O (GB) on one node, with co-location
factor of 1 and different replication factors.

Baseline RubbleDB
gRPC NVMe-oF gRPC NVMe-oF

R = 2 34.5 0 34.5 105.7
R = 3 57.2 0 57.3 211.1
R = 4 80.0 0 80.1 314.7

Table 5: The total network traffic (GB) via gRPC and NVMe-oF
on one node, with co-location factor of 1 and different replication
factors.

on each server within a cgroup with 4 physical cores. The
number of background threads is therefore set to 4 (number
of cores). All other parameters remain default.

Benchmark. We evaluate RubbleDB on all YCSB [20]
workloads and five Twitter production traces [49]. Table 2
summarizes the workloads’ read-write ratio. Four clients con-
currently access all replication groups.

Baseline. For an apples-to-apples comparison, the baseline
is a replicated RocksDB system, which is configured identi-
cally to RubbleDB, except that it does not replicate SST files,
and does not include the various mechanisms RubbleDB uses
to support NVMe-oF replication (e.g., buffering at the sec-
ondary nodes, processing version edits in-order). The baseline
here would represent the standard approach of replicated key-
value stores, such as ZippyDB [17,43] and CockroachDB [42],
where each node compacts its data independently.

Evaluation metrics and terms. We use two primary eval-
uation metrics: throughput per core, which represents CPU
efficiency, and tail latency. We use two knobs replication fac-
tor (R) and co-location factor (C) to indicate the numbers of
replication groups (K), servers (M), and replicas in our exper-
iments. We define C = K

M and fix M = R , so, K =C×R. For
example, a replication factor of 3 and co-location factor of 2
means that on 3 servers (M = 3) exist 6 RocksDB instances
(K = 2×3) (2 primaries and 4 secondaries).

5.2 Performance Breakdown (Q1)
We run the YCSB load workload with a co-location factor of
1 and replication factors of 2, 3, and 4 in this section to collect
CPU, disk, and network statistics.

CPU savings. Table 3 presents the amount of CPU time the
baseline and RubbleDB spend performing compaction and
handling incoming requests. Handling requests includes both
reading and writing data from RocksDB, as well as handling
the incoming RPCs (i.e. via gRPC), buffering data on the
secondary nodes, and applying version edits.

As expected, the secondary nodes on RubbleDB consume
no CPU cycles executing compactions, while in the baseline
system, each secondary node consumes roughly the same
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Figure 7: YCSB throughput as a function of replication factor with a co-location factor of 1.

Load A B C D E F G
YCSB Workload

0

20000

40000

60000

80000

100000

120000

Th
ro

ug
hp

ut
 p

er
 C

or
e 

(o
p/

s)

15
57

6

14
90

0

25
91

6

29
35

6 43
43

7

38
56 14

21
6

94
6823

28
2

15
90

9

25
85

0

29
41

2 47
11

8

38
52 14

34
8

10
34

0

Baseline
Rubble

(a) Replication factor = 2.

Load A B C D E F G
YCSB Workload

0

20000

40000

60000

80000

100000

120000

Th
ro

ug
hp

ut
 p

er
 C

or
e 

(o
p/

s)

15
70

2

16
53

6 36
97

0

44
80

3 60
01

0

57
35 15

85
3

99
37

26
80

8

18
48

2 37
42

4

44
74

9

71
10

5

58
07 17

66
9

11
33

4

Baseline
Rubble

(b) Replication factor = 3.

Load A B C D E F G
YCSB Workload

0

20000

40000

60000

80000

100000

120000

Th
ro

ug
hp

ut
 p

er
 C

or
e 

(o
p/

s)

15
96

6

17
24

5

47
01

4 59
84

8 72
59

5

76
87 16

58
6

99
36

30
11

0

19
36

8

47
64

7

58
71

2

89
85

3

78
50 18

64
4

11
44

8

Baseline
Rubble

(c) Replication factor = 4.

Figure 8: YCSB throughput as a function of replication factor with a co-location factor of 2.

amount of CPU cycles as the primary (there are R− 1 sec-
ondary nodes per primary). Under R=2, 3, and 4, the primary
node of RubbleDB consumes 0.8%, 4.2%, and 7.8% more
compaction CPU than the primary node of the baseline, re-
spectively. This is because the primary has to send compacted
SST files and version edits to each secondary node. The over-
head increases with the number of secondary nodes.

In terms of handling regular requests, the primary node of
RubbleDB consumes slightly more CPU (up to 7.7%) than the
baseline’s primary node, because it tags every write request
with a MemTable ID. The secondary nodes of RubbleDB
consume up to 18.8% more CPU than the baseline’s, because
of the need to buffer incoming requests and version edits.
All in all, due to the reduction in the compaction load of the
secondary nodes, RubbleDB spends 34.4%, 44.3%, and 50.5%
less time processing the same workload than the baseline with
R=2, 3, and 4, respectively.

I/O savings. Table 4 reports the amount of data read and
written by one node. Since we run the YCSB load work-
load and disable the write-ahead log, the I/O is caused by
compaction. In RubbleDB, only the primary performs com-
paction, which reads the inputs files and ships compacted
SST files to every secondary. Therefore, RubbleDB’s read
I/O keeps nearly constant, 98.0 GB on average, while its
write I/O grows with the replication factor proportionally,
averagely R×103.1 GB. Both the read and write I/O in the
baseline, however, increases with the replication factor be-
cause all nodes perform compaction. So, RubbleDB saves
more read I/O with a higher replication factor, up to 44.2%
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Figure 9: Throughput on (a) Twitter cluster traces with a replication
factor of 3 and co-location factor of 1, and (b) YCSB using Optane
SSD with a replication factor of 2 and co-location factor of 2.

when R = 4. There is a modest increase (12.9% at most) in
write I/O due to the padding of SST files in RubbleDB, which
increases the amount of data that is written for each SST file.
We leave reducing the overhead of padding to future work.
Network overhead. Table 5 presents both the gRPC and
NVMe-oF traffic. The former consists of forwarding key-
value requests and version edits, while the latter includes
shipping SST files. The network overhead in RubbleDB in-
cludes: (a) sending version edits by gRPC and (b) shipping
SST files via NVMe-oF. We approximate (b) by calculating
the total volume of shipped SST files. From Table 5, (a) is
negligible, and (b) is close to the compaction write I/O.

5.3 End-to-end Performance (Q2, Q3)
Throughput with YCSB. Figures 7 and 8 compare the
throughput per core of RubbleDB with the baseline under
the load and YCSB workloads, with a co-location factor of
1 and 2, respectively. RubbleDB consistently provides the
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Figure 10: 99% Latency of YCSB A with replication factor of 3 and
co-location factor of 1.

same or higher throughput per core compared to the baseline,
and has a higher relative speedup for workloads with a high
percentage of writes.

As the replication factor increases, RubbleDB provides
higher relative gains. For example, under the load workload
with a co-location factor of 2, a replication factor of 4 (Fig-
ure 7c) yields a speedup of 1.9×, while the speedup of R = 2
is 1.5×. The reason is that with higher replication factors, the
baseline spends more secondary cores cycles per replication
group executing compactions, while RubbleDB experiences
a very marginal increase in the primary’s CPU consumption
(due to the need of shipping SST files to additional secondary
nodes). Therefore, with a higher replication factor, RubbleDB
has the ability to marshal more available CPU cycles belong-
ing to the freed up secondary node cores, in order to process
more incoming requests. In addition, RubbleDB achieves
higher absolute throughput and speedup with a co-location
factor of 2. The reason is that with more co-located replica-
tion groups, RubbleDB is better able to utilize the CPU, since
there are more available pending tasks to execute at any given
time.

Throughput with Twitter traces. We measure RubbleDB’s
throughput on five Twitter traces3 with different read-write ra-
tios, including cluster 2, 15, 19, 27, and 31 [49]. As Figure 9a
shows, for write-heavy traces, RubbleDB provides a speedup
of 1.7× and 1.4× in clusters 15 and 31, respectively. For
cluster 19 and 27, which are ready-dominant, RubbleDB still
achieves a 1.3× speedup. These results are largely consistent
with the YCSB results.

Tail latency. RubbleDB provides better tail latency than the
baseline when there are many compactions. Prior work has
shown that compaction jobs interfere with request processing,
leading to high tail latencies [12, 13]. Since RubbleDB sig-
nificantly reduces the overall compaction load, as a result, it
decreases the chance that compactions interfere with regular
requests.

Figure 10 shows the 99th percentile latency under the
YCSB A workload with 3 replicas and a co-location factor
of 1, RubbleDB reduces 99th percentile latency of updates
and reads by 11.5%-92.1% and 18.4%-93.4%, respectively.

3We sample 30GB records from the traces as we have 3 replication groups
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Figure 11: Throughput when a node fails under YCSB load.

The absolute latency is high because our system uses a batch
size of 1,000 in evaluation, which means each replica returns
a reply after processing all 1,000 requests in a batch. Since
write requests go though all replicas sequentially, the update
latency will be 3× higher than read latency. We also observe
one data point (updates at 40 Kop/sec) showing 14.2% tail
latency degradation. This is because out-of-order writes will
be cached in the request buffer. Such queuing overhead only
appears under light compaction pressure.

Object size. By default, YCSB uses 1 KB objects. When
we run YCSB with smaller objects, which are typical in many
datacenter settings [11, 17, 49] RubbleDB consistently pro-
vides even higher speedups, because a larger fraction of CPU
time is spent on compacting data. For example, under YCSB
load with a replication factor of 3 and co-location factor of
1, RubbleDB exhibits a 1.6× speedup with 100 B objects
compared to a 1.5× speedup with 1 KB objects.

Different storage devices. We try to understand whether
a different type of storage device affects RubbleDB’s perfor-
mance. To this end, we run RubbleDB and the baseline on
two d750 servers from CloudLab, each of which use Intel
Optane SSD P5800X, an SSD with single-digit µs average
latencies.We run the experiment with a replication factor of
2 and co-location factor of 2. We are only able to run this
experiment with two servers, because of the low availability
of Optane SSD on CloudLab.

The results are presented in Figure 9b. Interestingly, the
usage of low-latency storage does not materially affect Rub-
bleDB’s speedup. While the absolute throughput numbers
for read-heavy workloads are higher (for an apples-to-apples
comparison compare this experiment with Figure 8a), in the
load workload the results are nearly identical. The reason is
that while Optane SSD has much better latency than the enter-
prise SSD we use in the other experiments, its bandwidth is
relatively similar, and in the case of LSM trees, write through-
put will be determined by disk I/O bandwidth rather than
I/O latency, since disk writes are sequential and large. We
conclude that RubbleDB provides speedups on very different
types of storage devices.

5.4 Recovery Performance (Q4)
To test RubbleDB’s recovery from failure, we run a 3-node
setup with a single replication group, and kill one of the tail
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secondary nodes. We follow the recovery algorithm in [45],
which designates the “middle” secondary node as the new tail.
We plot the throughput over time in Figure 11. As the figure
shows, due to the nature of chain replication RubbleDB is
still able to service requests throughout the period when the
node is down. In total, it takes about a minute and a half for
the cluster to get back to its full throughput capacity.

6 Related Work

We split the related work into two categories: (a) replicated
key-value stores, (b) systems that share data with different
protocols, e.g., NVMe-oF and RDMA.

Replicated key-value stores. The typical design of repli-
cated key-value stores and databases, such as ZippyDB [17,22,
43], CockroachDB [42], MongoDB [6] and Cassandra [31],
is to implement a replication layer on top of multiple single-
instance key-value stores, such as RocksDB [8], LevelDB [4]
and WiredTiger [9]. In all these systems, all nodes that store
up backup copies of data perform their own compactions,
leading to high CPU and disk read I/O consumption.

There are several prior systems that do some form of com-
paction offloading. Ahmad et al. [10] propose offloading large
compactions in HBase to a remote compaction server in or-
der to reduce load on the primary nodes serving incoming
requests. Hailstorm [14], separates the storage and compute
layers, and offloads compaction to nodes that have a low load
in a peer-to-peer fashion. Both of these systems allow shifting
the computational load of compactions from an overloaded
node to an underloaded one, but unlike RubbleDB do not
reduce the total compaction load on the cluster by running
compaction only once for replicated data.

Closer to RubbleDB, Tebis [46] is a replicated key-value
store that reduces CPU consumption by avoiding compacting
data multiple times for each replicated chunk of data. How-
ever, Tebis has several major design differences from Rub-
bleDB and therefore faces different challenges. First, Tebis’
design is based on a key-value architecture that separates keys
from values [33]. Therefore, secondaries need to rewrite all
the pointers in the indices. Due to the choice of key-value sep-
aration, Tebis cannot be applied to standard key-value stores
that do not separate keys from values, such as RocksDB, Lev-
elDB or WiredTiger. In addition, while key-value separation
provides significant gains with large objects, it can degrade
performance for small object workloads, which are common
in datacenters [11, 17, 49]. Second, in Tebis, only the primary
processes requests, whereas secondary nodes merely store
replicated SST files. So, Tebis does not encounter the appli-
cation inconsistency issue in RubbleDB. Third, instead of
NVMe-oF, Tebis uses RDMA with local writes to ship SSTs,
which cannot leverage the offloading feature of the NIC. Also,
Tebis does not need to deal with inconsistencies caused by
the file system.

Storage systems that use NVMe-oF. Several systems use
NVMe-oF to access data from remote blocks [5, 15, 27], but
only allow each application instance to exclusively access
their SSDs. Therefore, these systems do not allow a primary
node to replicate to a secondary node’s disk directly over
NVMe-oF. In other words, unlike RubbleDB, in order to repli-
cate data, these systems require the primary to go through the
entire application software stack of the secondary nodes.

Storage systems that use RDMA. Similar to NVMe-oF,
the RDMA protocol allows one host to access the other hosts’
memory without the CPU involvement of the target. There are
a large number of in-memory systems that exploit RDMA for
faster operations [23,28,35,44]. While both one-sided RDMA
and NVMe-oF may introduce synchronization challenges
at the target, the challenges are different, since NVMe-oF
operates directly on block storage, potentially introducing
corruptions to the local file system at the target.

Shared file systems. Shared file systems [26, 36, 48] pro-
vide users across different servers with a consistent view of
a file system. However, providing a consistent file system
abstraction across multiple nodes can come at a significant
performance and scalability cost [30]. Since replicated key-
value stores do not require a full synchronized file system
interface across nodes, running them over a distributed file
system would incur unnecessary overhead.

7 Conclusions
This work explores how to utilize NVMe-oF, a CPU-efficient
networked storage protocol, for a common storage use case,
replication. The main challenge in using NVMe-oF for repli-
cation is that data might need to be read by the target node in
parallel to the replication process, introducing inconsistency
both at the file system and application level. We demonstrate
how such inconsistencies can be addressed in the context of
a replicated LSM tree-based key-value storage system, Rub-
bleDB, using two primary mechanisms: file pre-allocation
and application data structure synchronization. We believe
our ideas can be applied in other common storage settings,
such as distributed file systems (e.g., HDFS [16], Ceph [48])
and for storage or application backup. In addition, with the
trend of NIC accelerators becoming more powerful in contrast
with the plateauing of CPU performance, we anticipate using
NVMe-oF for common storage operations will become even
more attractive in the future.
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Abstract
NoSQL cloud database services are popular for their
simple key-value operations, high availability, high scala-
bility, and predictable performance. These characteristics
are generally considered to be at odds with support for
transactions that permit atomic and serializable updates
to partitioned data. This paper explains how transactions
were added to Amazon DynamoDB using a timestamp
ordering protocol while exploiting the semantics of a key-
value store to achieve low latency for both transactional
and non-transactional operations. The results of experi-
ments against a production implementation demonstrate
that distributed transactions with full ACID properties
can be supported without compromising on performance,
availability, or scale.

1 Introduction

Application developers have come to rely on database
transactions for dealing with failures and concurrency in
a distributed system. ACID (atomicity, consistency, isola-
tion, and durability) properties simplify the development
process. Transaction atomicity ensures that sequences of
operations can be executed without worrying about fail-
ures leaving a partial result. Transaction isolation ensures
that the developer can write their code without worrying
about interference from concurrently executing applica-
tion instances that read and write shared data.

Despite their utility, NoSQL databases have not gen-
erally supported transactions. NoSQL databases such as
key-value stores emerged as an alternative to relational
databases with a strong emphasis on scalability and per-
formance, especially for customers moving their core
data into the cloud. Core features of relational databases,
including SQL queries and transactions, were sacrificed
to provide automatic partitioning for unlimited scalabil-
ity, replication for fault-tolerance, and low latency access
for predictable performance.

Amazon DynamoDB [9] (not to be confused with Dy-
namo [8]) powers applications for hundreds of thousands
of customers and multiple high-traffic Amazon systems
including Alexa, the Amazon.com sites, and all Amazon
fulfillment centers. In 2022, over the course of Prime
Day, Amazon systems made trillions of calls to the Dy-
namoDB API, and DynamoDB maintained high availabil-
ity while delivering single-digit millisecond responses
and peaking at 105.2 million requests per second. When
customers of DynamoDB requested ACID transactions,
the challenge was how to integrate transactional opera-
tions without sacrificing the defining characteristics of
this critical infrastructure service: high scalability, high
availability, and predictable performance at scale.

In designing the transaction protocol for DynamoDB,
we chose to build transactions differently from other sys-
tems and cloud services. The DynamoDB transaction
design has the following unique combination of capabili-
ties:

Transactions are submitted as single request. Transac-
tions have commonly been introduced into the database
application programming interface (API) with two op-
erations that begin and end a transaction (such as BE-
GIN and COMMIT in PostgreSQL). These operations
serve to delimit the sequence of database operations that
are performed within the transaction. The downside of
such an abstraction is that there might be a long time
between when an application starts a transaction and
when it completes its work by committing the transac-
tion. In a multi-tenant service, long-running transactions
are undesirable as they tie up system resources on servers
that manage data for multiple applications. Instead, Dy-
namoDB transactions comprise a set of operations that
are submitted as a single request and either succeed or
fail without blocking. Like other DynamoDB operations,
transactions provide predictable performance at scale,
which is an architectural tenet for DynamoDB.

Transactions rely on a transaction coordinator while
non-transaction operations bypass the two-phase coor-
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dination. Requiring individual Gets and Puts to use the
full transaction coordination and commit protocol would
have had too great of a performance impact on these fre-
quent operations. Thus, all non-transaction operations in
DynamoDB are executed directly on the storage servers
for the data being accessed, while still being serialized
with respect to multi-item transactions.

Transactions update items in place. Increasingly,
multi-version concurrency control (MVCC) is employed
in database services so that read-only transactions can
access old versions of the data while transactions that
write data produce new versions. DynamoDB does not
support multiple versions of the same item, and adding
multi-version concurrency control would have entailed
major changes to the storage servers, required version
retention policies, and introduced additional storage costs
that would need to be passed on to our customers. The im-
plication of a single-version store for transaction process-
ing is that read-only and read-write transactions might
conflict.

Transactions do not acquire locks. While two-phase
locking is used traditionally to prevent concurrent trans-
actions from reading and writing the same data items, it
has drawbacks. Locking restricts concurrency and can
lead to deadlocks. Moreover, it requires a recovery mech-
anism to release locks when an application fails after
acquiring locks as part of a transaction but before that
transaction commits. To simplify the design and take ad-
vantage of low-contention workloads, DynamoDB uses
an optimistic concurrency control scheme that avoids
locking altogether.

Transactions are serially ordered using timestamps.
Techniques for ordering transactions based on times-
tamps [4] were devised decades ago. The basic idea is
that each transaction is assigned a timestamp that defines
its position in the serial order. As long as transactions
appear to execute at their assigned time, serializability is
achieved. A key innovation in the DynamoDB transaction
design is extending timestamp ordering to accommodate
and exploit the semantics of a key-value store.

This paper presents the DynamoDB transaction API.
It also gives examples of how transactions may be used
in practice. Furthermore, it illustrates the path of a trans-
action through the service, describes optimizations to
timestamp ordering for workloads with a mix of trans-
actions and singleton operations on a key-value store
and, it reports the results of experiments run on a produc-
tion system, demonstrating predictable performance and
scalability.

Operation Description

PutItem
Inserts a new item or replaces an old
item with a new item.

UpdateItem
Updates an existing item or adds a
new item to the table if it doesn’t
already exist.

DeleteItem Deletes an item from the table
GetItem Reads the item with a given key

Table 1: DynamoDB CRUD APIs for items

2 DynamoDB Application Programming
Interface

2.1 Key-value store
DynamoDB [9] is a fully managed NoSQL database
service that provides fast and predictable performance
at any scale. DynamoDB was motivated by the lessons
learned from Dynamo [8] and shares most of the name
but little of its architecture. Customers create tables that
can grow to virtually any size. A DynamoDB table is
a collection of items, and each item is a collection of
attributes. Each item is uniquely identified by a primary
key. DynamoDB provides a simple interface to store or
retrieve items from a table or an index.

2.2 Read and write operations
Table 1 contains the primary operations available to
clients for reading and writing items in DynamoDB ta-
bles. Since DynamoDB is a key-value store, the most
common operations used by applications are for read-
ing an item (GetItem), inserting (PutItem), updating
(UpdateItem), and deleting (DeleteItem) an item with
a given key. These last three operations are collectively
called writes. A write operation can optionally specify a
condition that must be satisfied to be successful.

2.3 Transactional operations
As shown in Table 2, DynamoDB provides two oper-

ations for performing transactions: TransactGetItems
for read transactions and TransactWriteItems for
write transactions. These operations are submitted
as a single request and either succeed or fail im-
mediately without blocking. TransactGetItems and
TransactWriteItems are executed in a serializable or-
der with respect to other DynamoDB operations.
TransactGetItems retrieves the latest versions of

items from one or more tables. Since it conceptually
reads all of the items at a single point in time, the re-
turned values are from a consistent snapshot. DynamoDB
rejects the TransactGetItems request if a conflicting
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//Check if customer exists
Check checkItem = new Check()

.withTableName("Customers")

.withKey("CustomerUniqueId")

.withConditionExpression("attribute_exists(CustomerId)");

//Update status of the item in Products
Update updateItem = new Update()

.withTableName("Products")

.withKey("BookUniqueId")

.withConditionExpression("expected_status" = "IN_STOCK")

.withUpdateExpression("SET ProductStatus = SOLD");

//Insert the order item in the orders table
Put putItem = new Put()

.withTableName("Orders")

.withItem("{"OrderId": "OrderUniqueId", "ProductId" :"BookUniqueId", "CustomerId"
:"CustomerUniqueId", "OrderStatus":"CONFIRMED","OrderCost": 100}")

.withConditionExpression("attribute_not_exists(OrderId)")

TransactWriteItemsRequest twiReq = new TransactWriteItemsRequest()
.withTransactItems([checkItem ,putItem , updateItem]);

//Single transaction call to DynamoDB
DynamoDBclient.transactWriteItems(twiReq);

Listing 1: DynamoDB Write Transaction Example

Operation Description

TransactGetItems
Reads a set of items from
a consistent snapshot and
returns their values

TransactWriteItems

Performs a set of writes
that include PutItem, Up-
dateItem, and DeleteItem
operations and optionally
a set of conditions

CheckItem
Checks that the latest
value of an item matches
the condition

Table 2: DynamoDB Transaction APIs

operation is in the process of modifying any item being
read.
TransactWriteItems is a synchronous and idempo-

tent write operation that allows multiple items to be cre-
ated, deleted, or updated atomically in one or more tables.
TransactWriteItems uses a client request token to
guarantee idempotency. The transaction may optionally
include one or more preconditions on current values of
the items. DynamoDB rejects the TransactWriteItems
request if any of the preconditions are not met.

To motivate the need for multi-table write transactions
with preconditions, consider an online marketplace appli-
cation. The application stores data in three DynamoDB

tables - Customers, Products, and Orders. Upon reg-
istration, every customer receives a unique identifier that
is used as a key in the Customers table which stores cus-
tomer information such as customer id, customer billing
and shipping address. The Products table contains infor-
mation about the products, such as their price and avail-
ability; each product is uniquely identified by its product
identifier. Orders are stored in the Orders table where
each order has a unique identifier. A successful order
requires the customer account to be verified, the product
to be available and marked as sold, and the order itself to
be created. These operations should be performed atomi-
cally as a single transaction. Listing 1 gives an example
of a transaction that purchases a book. This transaction
verifies that the customer account exists without updating
any attributes in the Customers table using CheckItem,
verifies the book is in stock, and marks the product as sold
in the Products table using UpdateItem, and creates an
entry in the Orders table using PutItem.

3 Transaction execution

3.1 Transaction routing

All operations sent to DynamoDB reach a fleet of front-
end hosts called request routers. Request routers authenti-
cate each request and route the request to the appropriate
storage nodes based on the key being accessed. The map-
ping of key-range to storage nodes is maintained in a
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Figure 1: DynamoDB Transactions high-level architecture

metadata subsystem.
Similar to non-transactional requests, each transaction

operation initially is received by a request router. The
request routers performs the needed authentication and
authorization of the request and forwards it to a fleet
of transaction coordinators. Any transaction coordinator
in the fleet can take responsibility for any transaction.
The transaction coordinator breaks the transaction into
item-level operations and runs a distributed protocol in
which the storage nodes for these items participate. Fig-
ure 1 illustrates the high-level diagram of the components
involved in the execution of a transaction.

3.2 Timestamp ordering
Timestamp ordering [4, 13] is used to define the logi-
cal execution order of transactions. Upon receiving a
transaction request, the transaction coordinator assigns a
timestamp to the transaction using the value of its current
clock. To handle the overall transactions load, there are a
large number of transaction coordinators operating in par-
allel, and different transaction coordinators assign times-
tamps to different transactions. As long as transactions
appear to execute at their assigned time, serializability is
achieved.

Once a timestamp has been assigned and preconditions
checked, the storage nodes participating in the transac-
tion can perform their portions of the transaction without
coordination. Each storage node independently is respon-
sible for ensuring that requests involving its items are
executed in the proper order and for rejecting conflicting
transactions that cannot be ordered properly.

Although serializability holds even if the transaction
coordinators do not have synchronized clocks, more ac-
curate clocks result in more successful transactions and
a serialization order that complies with real time. The
clocks in the coordinator fleet are sourced from the AWS
time-sync service [1], thus keeping them closely in sync

(within a few microseconds). However, even with per-
fectly synchronized clocks, transactions can arrive at stor-
age nodes out-of-order due to message delays in the net-
work, failures and recovery of transaction coordinators,
and other system issues. Storage nodes deal with transac-
tions that arrive in any order using stored timestamps.

3.3 Write transaction protocol
A two-phase protocol ensures that all of the writes within
a transaction are performed atomically and in the proper
order. To achieve atomicity, the transaction coordinator
prepares all items in the first phase. In the second phase, if
all the storage nodes accept the transaction, then the trans-
action coordinator commits the transaction and instructs
the storage nodes to perform their writes. If any of the
storage node cannot accept the transaction, then the trans-
action coordinator will cancel the transaction. Listing
2 shows the pseudo code for the TransactWriteItem
protocol.

To implement timestamp ordering for write trans-
actions, DynamoDB records the timestamp of the
write operation with every item. All write opera-
tions including singleton writes and writes within
TransactWriteItems update the item timestamp.

Storage nodes also persist per-transaction metadata
for each in-flight transaction, including the transaction’s
identifier and timestamp. This metadata is attached to
items that are part of the transaction and remain with the
items during partition-related changes, such as split. This
ensures that such changes do not interfere with transac-
tions and can happen in parallel. This information about a
transaction is updated and checked during the two-phase
protocol and can be discarded once the transaction has
completed.

In the prepare phase of the protocol, the transaction co-
ordinator sends a message to the primary storage nodes
for the items being written. This prepare message in-
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Figure 2: Two-phase protocol

TransactWriteItem(TransactWriteItems input):
#Prepare all items
TransactionState = PREPARING
for operation in input:

sendPrepareAsyncToSN(operation)

waitForAllPreparesToComplete()

#Evaluate whether to commit or cancel the
transaction
if all prepares succeeded:

TransactionState = COMMITTING
for operation in input:

sendCommitAsyncToSN(operation)
waitForAllCommitsToComplete()
TransactionState = COMPLETED
return SUCCESS

else:
TransactionState = CANCELLING
for operation in input:

sendCancellationAsyncToSN(operation)
waitForAllCancellationsToComplete()
TransactionState = COMPLETED
return ReasonForCancellation

Listing 2: TransactWriteItem protocol

cludes the transaction timestamp, transaction ID, and the
operation that the transaction intends to perform on the
item. The storage node accepts the transaction if all of
the following criteria are true for every local item that is
part of the transaction:

• All preconditions on the item are met.

• Writing the item would not violate of any of the
system restrictions such as exceeding the maximum
item size.

• The transaction’s timestamp is greater than the
item’s timestamp indicating when it was last writ-
ten.

• The set of previously accepted transactions that are
attempting to write the same item is empty.

Listing 3 shows the pseudo code for prepare phase of
the TransactWriteItem protocol. Note that these last
two conditions are correct but over restrictive and can be
relaxed as discussed in the next section.

If the transaction is accepted by all the participating
storage nodes, then the transaction coordinator will com-
mit the transaction. If the transaction is not accepted by
any of the participating storage nodes, then the transac-
tion coordinator will cancel the transaction. After the
decision has been made to commit the transaction, each
participant storage node performs the desired writes on
its local items and records the timestamp of the trans-
action as the items’ last write timestamp. Items for
which a precondition was checked but that are not being
written also have their timestamps updated. Listing 4
shows the pseudo code for commit/cancel phase of the
TransactWriteItem protocol.

After all participant storage nodes have executed the
commit or cancellation, the transaction coordinator re-
sponds to the request router with a “completed” message
and whether the transaction successfully committed. The
request router forwards this response to the customer.

Items that have been deleted require special handling
since, once they are deleted, there is no longer a last write
timestamp. Instead of maintaining tombstones for deleted
items, which would incur both a high storage cost and
garbage collection cost if items are frequently created and
deleted, DynamoDB stores a partition-level max delete
timestamp. When an item is deleted, if the deleting trans-
action’s timestamp is greater than the current max delete
timestamp, then the max delete timestamp is set to the
transaction’s timestamp. When a storage node receives a
prepare message for a write to a non-existent item, it com-
pares the new transaction’s timestamp against the maxi-
mum delete timestamp to decide whether to accept or re-
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def processPrepare(PrepareInput input):
item = readItem(input)

if item != NONE:
if evaluateConditionsOnItem(item , input.conditions)

AND evaluateSystemRestrictions(item , input)
AND item.timestamp < input.timestamp
AND item.ongoingTransactions == NONE:

item.ongoingTransaction = input.transactionId
return SUCCESS

else:
return FAILED

else: #item does not exist
item = new Item(input.item)
if evaluateConditionsOnItem(input.conditions)

AND evaluateSystemRestrictions(input)
AND partition.maxDeleteTimestamp < input.timestamp:

item.ongoingTransaction = input.transactionId
return SUCCESS

return FAILED

Listing 3: TransactWriteItem protocol - Prepare phase

ject the transaction. Storing the max delete timestamp at
a partition level provides a correct and efficient solution.
In the current approach, transactions may be cancelled in
instances where they would not have been cancelled if
tombstones were maintained for deleted items. Though
in practice, an insignificant percentage of transactions
are cancelled due to the transaction’s timestamp being
lower than the partition’s maximum delete timestamp.

3.4 Read transaction protocol

Read transactions are also performed using a two-phase
protocol, though in a different manner from write trans-
actions and from other systems. The standard timestamp
ordering scheme maintains a read timestamp on each
item. Updating this timestamp for operations in a read
transaction would have turned every read into a more
costly write operation on persistent, replicated data. To
avoid this latency and cost, DynamoDB devised a two-
phase writeless protocol for executing read transactions.

In the first phase of the protocol, the transaction co-
ordinator reads all the items that are in the transaction’s
read-set. If any of these items are currently being writ-
ten by another transaction, then the read transaction is
rejected; otherwise, the read transaction moves to the sec-
ond phase. In its response to the transaction coordinator,
the storage node not only returns the item’s value but also
its current committed log sequence number (LSN). The
current committed LSN of the item is the sequence num-
ber of the last write that the storage node performed and
acknowledged to the client. The LSN increases monoton-
ically.

In the second phase, the items are read again. If there

have been no changes to the items between the two
phases, namely the LSNs have not changed, then the
read transaction returns successfully with all of the item
values that were fetched. In the case where an item has
been updated between the two rounds of the protocol, the
read transaction is rejected.

In both failure and success cases, the storage node re-
turns the LSN. By doing so, the transaction coordinator is
able to redrive another round of reads for all items with-
out having to restart the entire transaction. In the event
that the item is being prepared by a write transaction, the
storage node simply rejects the read.

3.5 Recovery and fault tolerance

Since DynamoDB automatically recovers from storage
node failures, such failures are of no concern to the trans-
action protocol. If a storage node that is the primary for
an item fails, then leadership will fail over to another
storage node that is part of that item’s replication group.
The metadata about transactions that had been accepted
by the previous primary node is persistently stored and
replicated within the group, and so is immediately avail-
able to the new primary. Transaction coordinators when
continuing the transaction protocol are not even aware
that they may be communicating with a different set of
participating storage nodes.

Transaction coordinator failures are of greater concern.
Transaction coordinators can fail because of hardware or
software issues. To ensure atomicity of transactions and
that transactions complete in the face of failures, coor-
dinators maintain a persistent record of each transaction
and its outcome in a ledger. A recovery manager peri-
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def processCommit(CommitInput input):
item = readItem(input)

if item == NONE
OR item.ongoingTransaction != input.transactionId:
return COMMIT_FAILED

applyChangeForCommit(item , input.writeOperation)
item.ongoingTransaction = NONE
item.timestamp = input.timestamp
return SUCCESS

def processCancel(CancellationInput input):
item = readItem(input)

if item == NONE
OR item.ongoingTransaction != input.transactionId:

return CANCELLATION_FAILED

item.ongoingTransaction = NONE

#item was only created as part of this transaction
if item was created during prepare:

deleteItem(item)

return SUCCESS

Listing 4: TransactWriteItem protocol - Commit/Cancel phase

odically scans the ledger looking for transactions that
have not yet been completed (and for which a reason-
able amount of time has passed since the transaction
was received). Such stalled transactions are assigned to
a new transaction coordinator who resumes executing
the transaction protocol. In the case where a transaction
coordinator is incorrectly determined to have failed and
its transaction reassigned, it is okay for multiple coordi-
nators to be finishing the same transaction at the same
time since duplicate attempts to write an item are ignored
by its storage node.

When the transaction has been fully processed, a com-
pleted record is written to the ledger indicating that no
further work is required. Information about a transaction
can be purged from the ledger when it has been com-
pleted, though retaining these records turns out to be
useful for monitoring and debugging.

The transaction ledger is a DynamoDB table with
transaction identifiers as the key. Multiple recovery man-
agers regularly scan the ledger in parallel for stalled trans-
actions that must be resumed. Each recovery manager
starts its scan of the table from a random key and scans
up to thousands of transactions.

Storage nodes also invoke recovery when local items
have stalled transactions. If a storage node receives a
write or read for an item that is already being written by
another transaction, then it checks to see if the pending
transaction on the item may have stalled. If the accepted

transaction has a timestamp that is older than some thresh-
old, the storage node sends a message with the key for
the item and the pending transaction id. The recovery
manager receiving this message checks the ledger for
the state of the transaction and, if the transaction has not
been completed, resumes its execution.

4 Adapting timestamp ordering for key-
value operations

The classic timestamp ordering concurrency control
scheme [4, 13] can be extended with novel optimizations
when applied to a key-value store where reads and writes
of individual items are mixed with multi-item transac-
tions. Individual key get and whole item put operations
can be added to an ordered execution history, while allow-
ing for increased concurrency and the ability to execute
operations out of order. We have implemented some of
these techniques in DynamoDB and others we plan to
integrate as we hear more feedback from our customers.
This section describes our innovations on timestamp or-
dering along with the benefits.

Reads to individual items can always be performed
successfully even if there is a prepared transaction that is
attempting to write that item. A get operation that is not
part of a transaction is routed directly to a storage node
that is responsible for the key of the item being read, by-
passing transaction coordinators. The contacted storage
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node immediately returns the latest stored value regard-
less of whether a prepared transaction may later overwrite
the item. Implicitly, this get operation is assigned a read
timestamp that is later than the write timestamp on the
stored item and before the commit timestamp of the pre-
pared transaction. In other words, the read is serialized
between the last completed write and the pending trans-
action.

Writes to individual items can be performed immedi-
ately and serialized before any prepared transactions in
many cases. Non-transactional put requests are also di-
rectly routed to the storage nodes for the item being writ-
ten. The primary storage node assigns a write timestamp
that is earlier than the timestamps of any transactions
in the prepared state. Note that a prepared transaction
has not yet performed its intended write to the item, and
thus it is okay for a received put to jump ahead of such
a transaction in the serialization order. The same holds
for individual modify and delete operations that are re-
ceived directly by storage nodes. The outcome of such
operations will likely be overwritten by a prepared trans-
action if and when it commits. There is one case where
a single-item write cannot jump ahead of a previously
prepared transaction, namely when a condition on the
item had been checked during the process of preparing
the transaction and the newly received write operation
may violate that condition. For example, suppose that a
write transaction is attempting to withdraw 100 dollars
from a bank account and it includes a pre-condition to en-
sure that the current balance contains sufficient funds. If
this transaction is in the prepared state, and its condition
has been verified, then the system cannot allow another
withdrawal that reduces the balance below 100 dollars
to jump ahead of the prepared transaction. Nor can the
system permit the item to be deleted. In general, it is
challenging for storage nodes to determine whether a pre-
viously checked arbitrary condition might be violated by
a newly received write. However, doing so for common
conditions, like numerical bounds checking, could sub-
stantially reduce rejected write operations in contentious
workloads.

Writes to individual items can be performed immedi-
ately or delayed and serialized after any prepared trans-
actions in other cases. Even if a newly arriving single
item write operation violates a checked condition for a
prepared transaction, the storage node need not reject the
write. The storage node can buffer the write operation
until the transaction completes. Note that an already pre-
pared transaction is expected to commit or cancel quickly.
Waiting for the transaction is not likely to add significant
delay to new write operations and the added delay is
typically less than rejecting the write and requiring the
client to resubmit it. Once the transaction is completed, a
queued write operation can be assigned a later timestamp

and serialized after the transaction. As a further optimiza-
tion, if the storage node receives a put or delete operation
that has no precondition, then this operation can be as-
signed a write timestamp that is later than that of any
previously prepared transactions and can be performed
immediately. If and when a prepared transaction with an
earlier timestamp commits, its writes will be ignored.

Write transactions can be accepted even with an old
timestamp. If a write operation that is part of a transac-
tion arrives at a storage node that has already performed
a write (either an individual put or transactional put op-
eration) with a later write timestamp, this transaction
can still be accepted and enter the prepared state. If this
transaction is committed, its write operation is ignored
with the observation that, even if performed earlier, it
would have been completely overwritten by the later put
operation. This argument does not hold if the last write
was a modify operation that partially updated the item’s
contents. The benefit of accepting a transaction with an
old timestamp, although it has no effect on some items
being written, is that the transaction may contain write
operations on other items that are allowed to complete.

Multiple transactions that write the same item may
be prepared at the same time. A storage node that has
already prepared a transaction can accept a second trans-
action that is attempting to write the same item. That
is, for any given item, a series of transactions that are
writing the item may enter the prepared state before any
of those transactions commit and perform their writes. If
the transactions contain put operations that fully over-
write the item’s contents (or delete operations), then
the transactions can actually commit in any order as long
as the put (or delete) of the transaction with the latest
timestamp is the last one to be performed. Transactions
with modify operations that perform partial updates must
execute in their assigned timestamp order since the final
value of the item depends on the sequence of execution.

Read transactions can be executed in a single round
rather than using a two-phase protocol. A transaction
that reads multiple items could complete in a single phase
as follows. Suppose that storage nodes supported a vari-
ant of the GetItem operation, called GetItemWithTimes-
tamp, that takes a read timestamp as a parameter in ad-
dition to a primary key. This GetItemWithTimestamp
operation returns the latest value of the item if its last
write timestamp is earlier than the given read timestamp
and if any prepared transactions have later timestamps,
and otherwise rejects the request. When presented with a
new read transaction, the transaction coordinator assigns
a timestamp for the transaction and calls GetItemWith-
Timestamp in parallel for each item that is being read.
The coordinator buffers the item values that are fetched.
If none of the storage nodes reject the get call for having
an old timestamp, then the coordinator returns the set of
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buffered values as the response to the read transaction
call; otherwise, it returns an exception. This approach
is optimistic in that a concurrent write to any one of
the items being read could cause the transaction to be
rejected. While conceptually simple, there is a subtle po-
tential problem with this approach, namely the storage
node could later accept a write with a timestamp that is
earlier than that of the previously executed read transac-
tion. That could cause a subsequent read-only transac-
tion to not be serializable with respect to a previously
executed transaction. This is a well-known issue with
timestamp ordering and is avoided by having storage
nodes maintain a timestamp recording when each item
was last read in addition to the last write timestamp. Stor-
age nodes would then require future write transactions
to have timestamps that are later than both the previous
read and write timestamps on all items being written.

Transactions that write multiple items in a single par-
tition can be executed in a single round rather than using
a two-phase protocol. If all of the items that are being
written in a transaction happen to reside in the same par-
tition, and hence are stored on the same storage nodes,
then the transaction does not require separate prepare and
commit rounds. Since there is only one primary storage
node participating in the transaction, it can perform all
of the pre-condition checks that are required to accept
the transaction and then immediately perform the write
operations. The contacted storage node informs the trans-
action coordinator whether the transaction completed
successfully.

5 Experiments

This section presents our findings about the performance
of transaction requests along various dimensions, such as
request rate, transaction size, and contentious workloads.

5.1 Comparison of latencies for varying
throughput of transactions

We conducted an experiment that scaled up the transac-
tion request rate while maintaining the same number of
operations per transaction to demonstrate that scale has
a minimal effect on the latency of transactions in Dy-
namoDB. There were three workloads in this experiment:
one with fifty percent writes and fifty percent reads, one
with one hundred percent reads, and one with one hun-
dred percent writes. A uniform key distribution and an
item size of 900 bytes were used in these tests. Workloads
were scaled from 100 thousand to 1 million operations
per second. Note that 1 million operations per second are
not same as 1 million transactions per second, as each
transaction consists of 3-operations. Figure 3 and Fig-
ure 4 shows the 50th and 99th percentile performance of

Figure 3: Comparison of TransactGetItems latencies
for varying throughput

Figure 4: Comparison of TransactWriteItems laten-
cies for varying throughput

TransactGetItems and TransactWriteItems opera-
tions for each workload. With the increase in throughput,
both TransactGetItems and TransactWriteItems
exhibit negligible variances at P50. The latency increases
slightly at P99 as the request rate increases; this is due
to increased java garbage collection on the transaction
coordinators when the load is heavier.

5.2 Comparison of latencies for varying
number of operations per transaction

We conducted an experiment to evaluate the impact of
transaction size on performance by varying the number
of read and write operations per transaction while main-
taining a constant total number of operations. The same
uniform key distribution and items of 900 bytes were
used as the previous test. Workloads ranged from access-
ing 3 to 100 items per transaction at a constant rate of 1
million items per second.

Figure 5 and Figure 6 show the performance of the
read and write transactions for the various workloads at
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Figure 5: Comparison of latencies for varying number of
operations per TransactGetItems request

Figure 6: Comparison of latencies for varying number of
operations per TransactWriteItems request

the 50th and 99th percentiles. As the number of opera-
tions in each transaction increases, so does the latency.
Although reads and writes to items within a transaction
are processed in parallel, the latency of the transaction
request is determined by its slowest operation. Trans-
actions that involve a greater number of operations are
more likely to experience a slow read or write. Addition-
ally, the latency of TransactWriteItems is determined
by the time it takes to persist the request to the ledger.
Larger requests take longer to write to the ledger. Also,
large transactions result in a larger message payload for
the request, which takes longer to travel over the network
between the request router and transaction coordinator.

5.3 Comparison of latencies for transac-
tions vs non-transactions

To examine the performance of transactions vs
non-transactional requests to DynamoDB, we con-
ducted an experiment comparing the performance
of single operation transactional reads and writes

Figure 7: Comparison of latencies for GetItem vs single
operation TransactGetItems request

Figure 8: Comparison of latencies for PutItem vs single
operation TransactWriteItems request

against non-transactional singleton reads and writes.
For this experiment, we ran tests that submitted
100 thousand requests per second for each of the
following DynamoDB APIs; TransactWriteItems
(transactional write), TransactGetItems (transactional
read), PutItem (singleton non-transactional write), and
strongly consistent GetItem (singleton non-transactional
read). Each request accessed a 900 byte item using the
same uniform key distribution that was used in the previ-
ous experiment.

Figure 7 shows the performance of single operation
transactional vs non-transactional reads at the 50th and
99th percentile. Latency for read transactions is slightly
less than 2x the latency for non-transactional reads, on
account of the two consistent reads that are required as
part of the TransactGetItems protocol.

Figure 8 shows the performance of single operation
transactional vs non-transactional writes at the 50th and
99th percentiles. Latency for write transactions is about
4x the latency of non-transactional writes. This is as a
result of the two-phase write protocol being executed
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Figure 9: Cancellation rates for workloads with con-
tention index = 0.001

on each TransactWriteItems request, with additional
overhead being added for writing and checkpointing the
transaction state to the Transaction Ledger.

5.4 Comparison of cancellation rate for
varied contentious workloads

To examine the performance of transactions on con-
tentious workloads, we ran an experiment with a fixed
pool of hot items while scaling up throughput. Contention
arises when multiple transactions are concurrently try-
ing to access the same items(which are referred to as
hot items). In this context, a contention index [16] refers
to the fraction of hot items that are accessed by a given
transaction. For these experiments, throughput was scaled
from 10 thousand to 100 thousand transactions per sec-
ond with a fixed contention index of 0.001, which indi-
cates that each transaction accesses one of one thousand
hot items [16]. The experiments ran with three differ-
ent workloads: workload A consists of write transactions
only, workload B consists of 50% write transactions +
50% read transactions, and workload C consists of trans-
actions + non-transactions operations (25% write transac-
tions, 25% read transactions, 25% non-transaction writes,
25% non-transaction consistent reads). Each transaction
accesses 10 items with one of the items being from the
hot item pool and the remaining 9 items being from a
much larger set of keys. For non-transaction reads and
writes, each item is chosen from the hot item pool. For
each test, we measured the cancellation rate, which is the
percentage of requests that were rejected because of a
conflict with another transaction on a given item.

Figure 9 reports the cancellation rates for the work-
loads with contention index = 0.001. For all workloads,
the cancellation rate increases with the transaction re-
quest rate. As each item can only be acted upon by a
single transaction at a time, the level of contention and
the cancellation rate rise when more transactions include

Figure 10: Cancellation rates for workload B with con-
tention index = 0.001. Note: each request type represents
an equal portion of total traffic

Figure 11: Cancellation rates for workload C with con-
tention index = 0.001. Note: each request type represents
an equal portion of total traffic

operations on the pool of hot items. Workload A, write
transactions only, had the highest rate of cancellations for
all transaction requests rates. Comparatively, workload B,
with 50% write transactions and 50% read transactions,
had about half the cancellation rate as workload A at all
levels of throughput. The cancellation rates are lower for
workload B as read transactions cannot be the source of
conflict.

A TransactGetItems operation will be cancelled (re-
jected) if any item being read has a write transaction
in progress or if the item has changed between the two
phases, but will not trigger a cancellation of any other op-
eration. Moreover, figure 10 highlights that read and write
transactions were cancelled at similar rates for workload
B at all throughput levels with both types of transactions
only getting cancelled if there was an ongoing write trans-
action on the targeted item.

Workload C had the lowest cancellation rates at all
throughput levels, as a result of having fewer sources of
conflict than the other workloads. Figure 11 provides a
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breakdown of cancellation rates by operation type for
workload C. GetItem (non-transaction reads) had no
cancellations at all throughput levels as they are seri-
alizable with transactions and do not get rejected; if a
GetItem request is received while a write transaction is
in progress on a given item, the GetItem will read the cur-
rent item value without conflict. Both UpdateItem (non-
transaction writes) and TransactWriteItems (write
transactions) have comparable cancellation rates as these
requests will only be cancelled because of a conflict if
there is an ongoing TransactWriteItems operation on
the targeted items. Finally, TransactGetItems (read
transactions) had the highest cancellation rate of any
operation during this test since read transactions execute
optimistically and conflict with any concurrent write.

6 Related work

A growing number of NoSQL databases have added sup-
port for transactions in recent years. Each of these sys-
tems choose different tradeoffs, resulting in a variety of
isolation levels, expressiveness, and relationships with
non-transactional writes [3, 5, 12, 14–17].

Many of the systems use a two-phase commit protocol
that is similar to DynamoDB’s protocol. G-store [7] and
L-store [11] are two examples of systems that propose an
alternative to two-phase commit protocols. They avoid
the two-phase commit protocol by co-locating all the
keys of the transaction on the node that processes the
transaction and executing the transaction on that single
node.

Some systems use locks [2,16] for concurrency control,
while others use timestamps. Different systems use vari-
ous sources of time, including precise clocks [5], local
nodes’ clocks, and hybrid logical clocks [10]. Granola [6]
is an example of system that uses both locks and times-
tamps for concurrency control; a transaction is executed
either in locking mode or timestamp mode.

7 Conclusion

Adding transactions to DynamoDB without impacting
the scale, availability, durability and predictability that
customers have come to expect was a daunting task. In-
stead of the limited form of transactions provided in previ-
ous systems, customers asked for full ACID transactions
updating multiple items from different partitions of the
same table or across different tables. Working backwards
from customer scenarios informed us that long running
transactions were not required and that the workloads
were not highly contentious. We designed transactions as
single-shot operations with optimistic concurrency con-
trol using timestamp ordering to ensure that transactions

are both serializable and scalable. This work shows that
transactions implemented in a replicated and partitioned
NoSQL database can be achieved with high scalability,
high availability, and predictable performance.

8 Acknowledgements

DynamoDB transactions have been greatly influenced by
the invaluable feedback of our customers, driving us to
innovate on their behalf. We are fortunate to be accom-
panied by an exceptional team throughout this journey.
We express our appreciation to Shawn Bice, Andrew Cer-
tain, Raju Gulabani, Amit Gupta, Rishabh Jain, Vaibhav
Jain, Nate Riley, Tony Petrossian, Amit Purohit, Julien
Ridoux, Rashmi Krishnaiah Setty, Stefano Stefani, Ben-
jamin Wood, Ming-Chuan Wu, and the entire DynamoDB
team for their contributions that have been instrumental
to the success of this project. We are grateful to the anony-
mous reviewers and our shepherd, Leonid Ryzhyk, for
their invaluable contributions in refining this paper. Spe-
cial thanks to Chris Andreson, Darcy Jayne, and Murat
Demirbas for going the extra mile to provide valuable
assistance.

References

[1] Keeping time with amazon time sync ser-
vice. https://aws.amazon.com/blogs/aws/keeping-
time-with-amazon-time-sync-service/.

[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,
and C. Karamanolis. Sinfonia: A new paradigm
for building scalable distributed systems. In Pro-
ceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, pages
159–174, New York, NY, USA, 2007. ACM.

[3] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khor-
lin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and
V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services.
2011.

[4] P. A. Bernstein and N. Goodman. Timestamp-based
algorithms for concurrency control in distributed
database systems. In Proceedings of the Sixth In-
ternational Conference on Very Large Data Bases -
Volume 6, VLDB ’80, pages 285–300. VLDB En-
dowment, 1980.

[5] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan,
H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,

716    2023 USENIX Annual Technical Conference USENIX Association



S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szyma-
niak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’12, page 251–264, USA, 2012. USENIX As-
sociation.

[6] J. Cowling and B. Liskov. Granola:{Low-
Overhead} distributed transaction coordination.
In 2012 USENIX Annual Technical Conference
(USENIX ATC 12), pages 223–235, 2012.

[7] S. Das, D. Agrawal, and A. El Abbadi. G-store: a
scalable data store for transactional multi key ac-
cess in the cloud. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 163–174,
2010.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
highly available key-value store. SIGOPS Oper.
Syst. Rev., 41(6):205–220, oct 2007.

[9] M. Elhemali, N. Gallagher, N. Gordon, J. Idziorek,
R. Krog, C. Lazier, E. Mo, A. Mritunjai, S. Peri-
anayagam, T. Rath, S. Sivasubramanian, J. C. S. III,
S. Sosothikul, D. Terry, and A. Vig. Amazon Dy-
namoDB: A scalable, predictably performant, and
fully managed NoSQL database service. In 2022
USENIX Annual Technical Conference (USENIX
ATC 22), pages 1037–1048, Carlsbad, CA, July
2022. USENIX Association.

[10] S. S. Kulkarni, M. Demirbas, D. Madappa, B. Avva,
and M. Leone. Logical physical clocks. In Inter-
national Conference on Principles of Distributed
Systems, pages 17–32. Springer, 2014.

[11] Q. Lin, P. Chang, G. Chen, B. C. Ooi, K.-L. Tan,
and Z. Wang. Towards a non-2pc transaction man-
agement in distributed database systems. In Pro-
ceedings of the 2016 International Conference on
Management of Data, pages 1659–1674, 2016.

[12] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and notifi-
cations. In 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 10),
2010.

[13] D. P. Reed. Implementing atomic actions on decen-
tralized data (extended abstract). In Proceedings of
the Seventh ACM Symposium on Operating Systems
Principles, SOSP ’79, pages 163–, New York, NY,
USA, 1979. ACM.

[14] K. Ren, D. Li, and D. J. Abadi. Slog: Serializable,
low-latency, geo-replicated transactions. Proceed-
ings of the VLDB Endowment, 12(11), 2019.

[15] R. Taft, I. Sharif, A. Matei, N. VanBenschoten,
J. Lewis, T. Grieger, K. Niemi, A. Woods, A. Birzin,
R. Poss, et al. Cockroachdb: The resilient geo-
distributed sql database. In Proceedings of the 2020
ACM SIGMOD International Conference on Man-
agement of Data, pages 1493–1509, 2020.

[16] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: Fast distributed
transactions for partitioned database systems. In
Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data, SIG-
MOD ’12, pages 1–12, New York, NY, USA, 2012.
ACM.

[17] M. Tyulenev, A. Schwerin, A. Kamsky, R. Tan,
A. Cabral, and J. Mulrow. Implementation of
cluster-wide logical clock and causal consistency
in mongodb. In Proceedings of the 2019 Interna-
tional Conference on Management of Data, pages
636–650, 2019.

USENIX Association 2023 USENIX Annual Technical Conference    717





Prefix Siphoning: Exploiting LSM-Tree Range Filters For Information Disclosure

Adi Kaufman∗

Tel Aviv University
Moshik Hershcovitch∗

Tel Aviv University & IBM Research
Adam Morrison

Tel Aviv University

Abstract
Key-value stores typically leave access control to the sys-

tems for which they act as storage engines. Unfortunately,
attackers may circumvent such read access controls via tim-
ing attacks on the key-value store, which use differences in
query response times to glean information about stored data.

To date, key-value store timing attacks have aimed to dis-
close stored values and have exploited external mechanisms
that can be disabled for protection. In this paper, we point out
that key disclosure is also a security threat—and demonstrate
key disclosure timing attacks that exploit mechanisms of the
key-value store itself.

We target LSM-tree based key-value stores utilizing range
filters, which have been recently proposed to optimize LSM-
tree range queries. We analyze the impact of the range fil-
ters SuRF and prefix Bloom filter on LSM-trees through a
security lens, and show that they enable a key disclosure tim-
ing attack, which we call prefix siphoning. Prefix siphoning
successfully leverages benign queries for non-present keys
to identify prefixes of actual keys—and in some cases, full
keys—in scenarios where brute force searching for keys (via
exhaustive enumeration or random guesses) is infeasible.

1 Introduction
Key-value stores serve as the storage engines of many cloud
and enterprise systems, from object caches [44,46,47] through
stream processing [6,14,54] to database systems [2,29,31,41].
Performance of these modern data intensive systems often
depends on their key-value storage engine’s performance [51].
Consequently, research on key-value stores overwhelmingly
focuses on efficiency: from I/O efficiency of writes [20, 21],
point queries [18, 19], and range queries [45, 65] to memory
efficiency [24, 43], energy efficiency [5], multi-core scalabil-
ity [37, 58], and reducing I/O write amplification [51].

But systems also depend on their key-value storage engine
for the security of stored data. This dependency is not obvious,
because key-value stores typically provide only a dictionary
abstraction without access control mechanisms [16,30,38,40],
leaving access control to the system. Systems enforce access
control by mediating user accesses to the key-value store,
often based on access control lists (ACLs) stored as value
metadata in the key-value store. While this approach blocks
users from directly making unauthorized queries, users may

∗Both authors contributed equally to this research.

still be able to indirectly glean information about restricted
data if the key-value store is vulnerable to timing attacks [11].

A timing attack exploits differences in query response times
to glean information about stored data. A system using a
key-value store that is vulnerable to timing attacks can it-
self become vulnerable to such attacks, because the system’s
query response time depends on the storage engine’s response
time, making differences in key-value query response times
manifest as differences in the system’s response times.

To date, key-value store timing attacks [55, 56] have aimed
to disclose stored values. We point out, however, that key dis-
closure is also a security threat. In some systems, keys can
explicitly contain secret data. For example, database systems
that use key-value storage engines (e.g., CockroachDB, Yu-
gabyteDB, or MyRocks) encode rows (or subsets of rows)
onto keys [7,26,28,32]. This makes key disclosure equivalent
to database data disclosure. Keys may also be implicitly secret,
with users expecting them to be hard to obtain. For instance,
in object storage systems, such as Amazon S3, identifying
valid keys may create an insecure direct object reference vul-
nerability [48], which enables attackers to probe access to the
objects associated with the disclosed keys.

Unfortunately, resilience to timing attacks is not a goal in
existing key-value efficiency work—in fact, such resiliency
can be at odds with improved performance. In this paper,
we demonstrate this trade-off: we analyze key-value store
performance mechanisms through a security lens and show
that they enable a key disclosure timing attack.

We focus on write-optimized key-value stores based on log-
structured merge (LSM) trees [49], which are in widespread
use [12,13,15,18,20,22,30,37,42,51,57,60]. In these designs,
data in secondary storage consists of multiple immutable
files called SSTables. LSM-trees can efficiently sustain write-
intensive workloads, but queries may require multiple I/Os
to search the many SSTables [49, 57]. LSM-trees minimize
unnecessary I/Os by issuing the I/O only if the queried key
is likely to be in the SSTable. Likelihood is determined by
querying an in-memory filter [10], which space-efficiently
approximately represents the SSTable’s contents. Specifically,
filter queries can make “one-sided” errors: if the queried key
is present in the SSTable, then the filter always returns true;
but for a small fraction of non-present keys, the filter might
return a false positive response.

Standard filters can answer point (single-key) queries [8,
10,33], but do not support range queries of the form “does the

USENIX Association 2023 USENIX Annual Technical Conference    719



SSTable contain a key in range [X ,Y ].” Consequently, LSM-
tree range queries must search the many SSTables, performing
multiple superfluous I/Os [65]. To address this problem, re-
cent work has proposed range filters, which are filters that
support range queries in addition to point queries. Range
filters such as SuRF [65] and RocksDB’s prefix Bloom fil-
ter (PBF) [25] compactly store some or all prefixes of each of
the SSTable’s keys, and leverage this information to answer
range and point queries.

From a security perspective, however, we show that cer-
tain range filters enable a key disclosure timing attack on
LSM-trees. We describe an attack framework, called prefix
siphoning, which exploits general range filter characteristics
present in both SuRF and PBF. Prefix siphoning successfully
leverages benign point queries for non-present keys to iden-
tify prefixes of actual keys—and in some cases, full keys—in
scenarios where brute force searching for keys (via exhaustive
enumeration or random guesses) is infeasible.

Prefix siphoning targets systems with the common design
paradigm of storing a key’s ACLs as part of its value [1, 4],
which means that to check access permissions, the system’s
query handling always tries to read the queried key’s value
from the key-value store. Prefix siphoning exploits this prop-
erty to determine if a random key is one on which the LSM-
tree’s filter returns a false positive. This is possible because
whether the filter returns true or false can be determined by
the attacker observing the query’s response time, as the fil-
ter’s response decides whether the LSM-tree performs I/Os.
For range filters meeting our characterization, finding a false-
positive key implies that the false-positive key shares a prefix
with some stored key. Prefix siphoning then performs further
point queries—tweaking the queried key—to maximize the
length of the disclosed prefix. Prefix siphoning can some-
times subsequently perform a limited enumeration search to
fully identify the stored key. Our prefix siphoning implemen-
tation performs multiple such steps concurrently, ultimately
extracting multiple keys or prefixes.

We evaluate prefix siphoning against SuRF and PBF analyt-
ically as well as empirically and demonstrate its feasibility in
practice. For example, we successfully use prefix siphoning to
extract 64-bit stored keys from a RocksDB [30] datastore em-
ploying SuRF in minutes, whereas brute force search of this
key space is infeasible. Our analysis and evaluation also quan-
tify the cost of prefix siphoning, showing that it effectively
reduces the key search space size by multiple orders of mag-
nitude. For instance, SuRF prefix siphoning requires ≈ 10 M
queries to disclose a key from a 50 M 64-bit key dataset—
implying a 40992× reduction of the key search space size.

Our results draw attention to the security vs. performance
trade-offs in key-value store design, and encourage practition-
ers and researchers to evaluate the security impact of their
work. We hope that our characterization of vulnerable range
filters will spur research on more secure filters.

2 Background

This section provides background on key-values stores (§ 2.1),
LSM-trees (§ 2.2), and filters (§ 2.3).

2.1 Key-value stores
A key-value store exposes a dictionary-like abstraction with
the following operations.

• put(k,v). A put stores a mapping from key k to value v. If
key is already present in the store, its value is updated.

• get(k). The get() (or point query) returns the value associ-
ated with the requested key.

• range_query(k1,k2). A range query returns all key-value
pairs falling within the given range.

Due to their simple and general abstraction as well as high
performance, key-value stores serve as the storage engines
for many, more complex systems. Examples of such systems
include database systems (e.g., Cassandra [42], MongoDB [2],
and MySQL [3]) and storage systems (e.g., CEPH [1]).

2.2 LSM-based data stores
The log-structured merge (LSM) tree [49] is a popular choice
as the core storage structure for write-optimized key-value
stores, which must sustain write-intensive workloads. An
LSM-tree consists of levels, each of which contains multiple
immutable static sorted table (SSTable) files storing key/value
pairs. Two SSTs at the same level never overlap in the key
range they store, but SSTables at different levels may overlap.

A put request inserts the key-value pair into an in-memory
buffer called the Memtable, which is the LSM-tree’s only
mutable storage object. Once the Memtable fills up, its data
is flushed to secondary storage as an SSTable file. The LSM-
tree periodically performs compaction, where it unifies SSTs
between levels to eliminate duplicate (stale) key-value pairs.

A get query searches for the target key in a top-down man-
ner: first in the Memtable and subsequently in the relevant
SSTable (if it exists) in each level. Searching an SSTable re-
quires I/Os to read it from secondary storage. Once the key is
found, its value is returned and the query completes.

However, this design penalizes queries, which may require
multiple I/Os to search many SSTables [49, 57]. In particular,
a get() for a non-present key (not associated with any value)
searches every level before failing. This not only increases
the query response time, but may “thrash” the page cache by
reading in many SSTables which will not be accessed later.

LSM-trees minimize unnecessary I/Os by issuing the I/O
only if the queried key is likely to be in the SSTable. Like-
lihood is determined by querying an in-memory filter (de-
scribed in § 2.3), which space-efficiently approximately rep-
resents the SSTable’s contents. The LSM-tree only reads an
SSTable from secondary storage if its filter returns true for
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the queried key. As a result, most non-present key queries can
respond without performing I/Os.

Likewise, a range filter (§ 2.3.1) can answer both point
and range queries with one-sided errors. Using a range fil-
ters instead of a standard filter enables an LSM-tree to avoid
superfluous I/Os also for range queries, which can improve
range query throughput by orders of magnitude [45].

2.3 Filters
A filter [10] is a data structure used to approximately repre-
sent a set D a of keys. A filter can be immutable or dynamic.
An immutable filter is provided D upon its creation and can
subsequently only be queried. A dynamic filter learns D dy-
namically, via insert operations.

Responses for filter queries allow “one-sided” errors: if
k ∈ D, then a query for k returns true; but for a fraction of
keys k ̸∈ D, a query for k might answer true instead of false.
We say k is a positive/negative key if a filter a query for k
answers true or false, respectively. A positive key k is a false
positive if k ̸∈ D. We also say that the filter passes positive
keys and rejects negative keys.

Filters are compared by their space efficiency and false-
positive rates. Space efficiency is measured in bits per key.
The false-positive rate (FPR) of a filter is the probability
over keys not in D of being a false positive. I.e., FPR =
FP/(FP+NK), where FP is the number of false-positive
keys and NK is the number of negative keys. Filters typically
have configurable FPRs, with lower FPRs requiring more bits
per key for increased accuracy [8, 10, 33].

Bloom filters A Bloom filter [10] is a widely-used dynamic
filter (e.g., the default filter of RocksDB). It consists of an
m-bit array and j hash functions H1, . . . ,H j. The parameters
m and j determine the filter’s FPR and space. Insertion of key
k sets the bits indexes H1(k), . . . ,H j(k). A query for k returns
true if and only if all bit indexes H1(k), . . . ,H j(k) are set.

2.3.1 Range filters

A range filter is a filter that also supports range queries with
one-sided error: a query for [a,b] returns true if there exists
k ∈ D∩ [a,b], but might also return true if D∩ [a,b] is empty.

3 Motivation: avoiding key disclosure

We observe that keys stored in a key-value storage engine
can contain sensitive data. It is therefore desirable that users
are not able to efficiently discover stored keys that they are
not authorized to access. Of course, users can always guess
such keys and check if their queries return an authorization
error, but such brute force searches are infeasible on large key
spaces. The goal is for brute force search to be the only attack
option, i.e., to block more efficient key extraction attacks.

Explicitly secret keys Some systems encode secret data in
stored keys, which makes key disclosure equivalent to dis-
closure of the encoded data. For example, database systems
such as CockroachDB, YugabyteDB, and MyRocks store ta-
ble rows as values in a key-value storage engine, with the
associated key consisting of the table’s id and the row’s pri-
mary key (one of the cell values). The motivation for this
technique is that it enables the database system to perform
efficient primary key lookups using key-value store range
queries [7, 26, 28, 32].

Implicitly secret keys In many cases, keys are tacitly as-
sumed to be secret or, at least, hard to guess. One example of
implicitly secret keys are object identifiers. Many web appli-
cations and object storage systems maintain object id-to-value
mappings in a key-value store. Key disclosure thus allows
attackers to probe access to the associated objects, resulting in
an insecure direct object reference vulnerability [48]. While
objects typically have ACLs, users often neglect to configure
these ACLs. This is not a hypothetical concern: for instance,
there are numerous scanning tools for “open” (unprotected)
Amazon S3 objects [9, 23, 50, 53, 61, 62], and open S3 objects
have led to exfiltration of employee information, personal
identification information, and other sensitive data [27].

4 Threat model
We consider a high-level system, such as a database system or
object store, that utilizes a key-value storage engine to respond
to user queries. Key ACLs are stored as part of the value
associated with the key. As the high-level system performs
key-value queries to satisfy a user’s query, it checks the ACL
of each key it accesses by inspecting the key’s value. If the
user is not authorized to read a key, the system returns a failure
response to the user.

The attacker’s goal is to identify keys stored in the system’s
key-value storage engine. The attacker cannot compromise
the system (e.g., to run attack code) and cannot eavesdrop on
requests performed by other users and/or on their responses.
The attacker can only interact with the system by making
requests via its interfaces, such as a representational state
transfer (REST) API [34, Chapter 5].

We assume that the attacker can craft their requests in a
way that causes the high-level system to make key-value store
point queries for arbitrary keys (i.e., chosen by the attacker)
while processing the request. For simplicity, we refer to this
process as the attacker “querying the key-value store.”

We make no assumption about the attacker’s physical loca-
tion with respect to the attacked system. We only assume that
the attacker can observe microsecond-level timing differences
in the response times of queries for different keys. Prior work
has shown that this assumption is true for attacks over both
local and wide area networks. For instance, Crosby et al. were
able to measure a difference of 20 µs over the circa 2009 In-
ternet (and 100 ns over a local area network) [17]. This ability
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can be improved in specific cases. When attacking a system
hosted in the public cloud, for example, the attacker can turn
themselves into a local-area attacker by placing themselves in
the datacenter hosting the target. Moreover, systems that pro-
cess different requests concurrently (e.g., HTTP/2 servers) are
vulnerable to concurrency-based timing attacks [36], which
can observe timing differences of 100 ns over the Internet.

5 Prefix siphoning
Prefix siphoning is a general template for conducting timing
attacks, extracting partial or full keys, on systems that use
an LSM-tree based storage engine with a certain type of
vulnerable range filter (for both point and range queries). The
class of vulnerable range filters contains the filters SuRF [65]
and RocksDB’s prefix Bloom filter (PBF) [25].

Prefix siphoning exploits range filters that respond to point
queries based on key prefix information, which exists to sup-
port range queries—i.e., filters where range query support
affects the point query implementation. Accordingly, prefix
siphoning is based only on point queries and does not per-
form range queries. Henceforth, therefore, the term “query”
always refers to a get() point query. We leave exploring at-
tacks against range queries to future work.

In the following, we describe the attack’s high-level
ideas (§ 5.1), characterize the class of vulnerable filters (§ 5.2),
and present the attack template (§ 5.3). We describe instantia-
tions of the attack against SuRF and PBF in §§ 6–7.

Notation We treat keys as sequences of symbols over an
alphabet Σ (e.g., bytes). When x denotes a key or a set, then
|x| refers to the number of symbols or elements, respectively,
that x contains.

5.1 High-level ideas
Prefix siphoning exploits an inherent trait of filter use in LSM-
trees: that whether a key “passes” the filter determines if the
LSM-tree searches the SSTable for the key to satisfy a query.
This means that for SSTable files that do not reside in the OS
page cache, the filter’s output for a key significantly affects
the LSM-tree’s query response time. If the filter returns false
for the key, the response is satisfied with only main memory
access; otherwise, the LSM-tree needs to perform I/Os to read
SSTables from secondary storage. Even for fast storage such
as NVMe devices, the difference in query response times
between these two cases is enough to affect the system’s
overall response time in an attacker-measurable way.

This basic filter trait suffices to mount an “approximate
membership test” timing attack. The attack simply queries
for the target key k and measures the response time. If the
response time is fast (i.e., k is rejected by the filters), then k is
definitely not stored in the LSM-tree. Otherwise (i.e., k passes
some filter), then k is likely in the LSM-tree. The key k might
also be a filter false positive and not exist in the LSM-tree,
which occurs with a probability bounded by the filter’s FPR.

Prefix siphoning starts by randomly generating keys until
it finds a key that “passes” the membership test above. For
random keys, passing the test overwhelmingly means that the
key is a filter false positive. Crucially, it takes just hundreds
of attempts to find a false-positive key, because filters are
typically configured for FPRs of a few percents for space
efficiency reasons [65].

Our main observation is that in vulnerable range filters, a
false-positive key likely shares a prefix with some stored key
k, whereas negative keys (rejected by the filter) do not (at least
with high probability). The crux of a prefix siphoning attack is
an algorithm exploiting this trait to identify the shared prefix
k′ through O(|k|) further queries for modified keys iteratively
derived from the initial false-positive key.

The revealed prefix of k can already contain sensitive in-
formation. But if the system’s query responses distinguish
between failures due to target key non-presence and lack of au-
thorization, prefix siphoning can fully extract k by performing
brute force search of the unknown suffix, thereby extending
the revealed prefix to k.

Of course, a system whose responses distinguish between
non-present and unauthorized keys is also vulnerable to “brute
force” key guessing or enumeration attacks based using the
above “membership test” primitive. But such attacks are in-
feasible for many key spaces (e.g., 64-bit or string keys). The
point of prefix siphoning is to narrow down the search space
by exploiting vulnerable range filters. Moreover, prefix si-
phoning extracts key prefixes even if the target system’s re-
sponses do not reveal whether a key is non-present or unau-
thorized, whereas the “membership test” primitive cannot.

5.2 Vulnerable range filter characterization
We denote an instance of the filter by F and the set of keys
it represents by D. A range filter is vulnerable to prefix si-
phoning if it has the following characteristics, denoted C1–C2.
They say that a false-positive key κ likely shares a prefix with
some key from D and that an attacker can efficiently identify
this prefix by making queries for keys derived from κ.

C1 If κ is a false-positive key for F , then with high probabil-
ity, κ shares a prefix with some k ∈ D.

C2 There exist the following probabilistic algorithms, which
work by querying the system:

1. FindFPK(): Using an expected constant number of
queries, outputs a random false-positive key κ.

2. IdPrefix(κ): Given a false-positive κ, uses O(|κ|)
queries to identify the shared prefix k′ that κ shares
with some key k ∈ D, if such a prefix exists; otherwise,
the output is unspecified.

The FindFPK and IdPrefix algorithms are specific to the
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range filter design, and need to be developed by the attacker.1

We refer to designing such algorithms for a range filter as
instantiating the attack against that filter.

C2 implies existence of a timing attack, and is therefore
formally sufficient to characterize the vulnerability. In prac-
tice, however, our attack instantiations rely on fundamental
properties of filter use in LSM-trees. To highlight this aspect
of the attacks, we explicitly capture these properties in C3.

C3 1. A get(k) query’s response time is measurably lower if
k misses in every filter than if k hits in some filter.

2. The filter’s FPR is small but non-negligible (e.g., 1%
or 0.1%).

C3(1) implies that it is possible to distinguish negative
from positive keys using query response times. It is trivially
true because LSM-trees employ filters to speed up queries
for which SSTable searching is superfluous, such as filter
misses. Our attacks in this paper exploit microsecond-level
time differences between queries satisfied completely from
main memory and those that require I/O to secondary storage.
(There remain time differences between queries that read an
in-memory SSTable residing in the OS page cache and those
that do not, due to a filter miss. We leave exploiting such
smaller time differences to future work.)

C3(2) implies that generating keys uniformly at random
will generate a false-positive key with hundreds to thousands
of attempts, on average. It holds because in practice, filters
are typically configured with small but non-negligible FPRs
(e.g., 0.5%–5%), as negligibly small FPRs blow up the filter’s
memory consumption [65].2

5.3 Prefix siphoning template
Prefix siphoning consists of two phases. First, a preliminary
phase learns to distinguish queries of negative and positive
keys (§ 5.3.1). The second phase consists of multiple rounds,
each of which extracts a key or key prefix (§ 5.3.2). Rounds
are run concurrently (see § 9).

5.3.1 Learning to distinguish positive from negative keys

The attack starts with a preliminary phase that builds a distri-
bution of query response times, which is used by the second
phase to distinguish positive from negative keys.

The distribution is built by measuring response times of
multiple get() requests for random keys. With large key
spaces, such random keys are mostly negative keys, but a
small (though non-negligible) fraction will be positive (due
to C3). Such positive keys are overwhelmingly likely to be
false positives, but that does not matter for this step, which

1Existence of FindFPK and IdPrefix is required in addition to C1 because
a filter satisfying only C1 may not allow an attacker to extract the prefixes.

2Prefix siphoning can still be performed for exponentially low false pos-
itive rates, but its cost (in terms of number of queries needed) increases
proportionally to the decrease in the false positive rate.

is only concerned with distinguishing negative from positive
keys, regardless of whether the positive output is correct.

The expected distribution observed is a bimodal distribu-
tion, with peaks corresponding to the average response time of
negative and positive keys. From this distribution, the attacker
can derive a cutoff value that likely distinguishes negative
(fast) from a positive (slow) queries.

5.3.2 Extracting keys

This phase consists of multiple rounds, each of which extracts
a key. Each round consists of three steps: 1 finding a false-
positive key κ, 2 identifying the prefix that κ shares with
some stored key k, and, when possible, 3 extending the prefix
to extract k. Rounds are run concurrently (§ 9).

Step 1 and 2 simply invoke the attacker’s FindFPK and
IdPrefix algorithms, respectively. These steps are actually the
“meat” of the attack, and we later describe their instantiations
for SuRF (§ 6) and RocksDB’s prefix Bloom filter (§ 7).

Whether step 3 is possible depends on the properties of the
attacked system (and this is why it is not part of the vulnerable
range filter characterization). If the system’s query responses
distinguish between failures due to target key absence and
lack of authorization, then the attacker can extend the revealed
prefix k′ with some symbol sequence α and query for the key
k′ α. The response will indicate lack of authorization if and
only if k′ α is a valid key. The attacker can thus iterate over
all possible suffixes until k is found. Because k is not known
to the attacker, they must first try all possible single symbol
extensions, then all two symbol extensions, and so on. This
process requires O(|Σ||k|−|k′|) queries, which can be several
orders of magnitude less than a full-key brute force search.
Crucially, step 3 only attempts to extend “long” prefixes, for
which extension is feasible. Other prefixes are discarded.

Rationale for step decomposition For fixed-length keys, it
might seem that the IdPrefix algorithm (step 2 ) for identify-
ing the prefix is superfluous. After all, given that κ shares a
prefix with some stored key k, the attacker can enumerate all
possible suffixes from the end to the beginning, until identify-
ing k. For example, suppose keys are 14-character strings and
the attacker has found a false-positive key manchestercars
because it shares the prefix manchesterc with the stored
key manchestercity. Without knowing (or caring about)
the shared prefix, the attacker can start querying for
manchestercara, manchestercarb, . . ., manchestercaaa,
manchestercaab, and so on—all of which fail due to key
absence—until reaching manchestercity, which will fail
due to lack of authorization. As before, this process requires
O(|Σ||k|−|k′|) queries and so it theoretically achieves the same
results directly, without requiring an IdPrefix algorithm.

Why, then, is existence of an IdPrefix algorithm defined as
one of the characteristics of a vulnerable filter? The answer
is that without knowledge of the prefix, the attacker cannot
efficiently schedule their work in step 3 . They cannot dis-
tinguish a small suffix space (as in the example above) from
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a huge space—e.g., if the false-positive key only shared the
prefix m with manchestercity.

The IdPrefix algorithm protects us from the above pitfall.
By identifying the shared prefix, it enables the attacker to
decide whether to try and extend the prefix to a full key. More-
over, when multiple rounds execute concurrently, the attacker
can collect many prefixes and then prioritize extending the
longest ones.

6 SuRF prefix siphoning

Here, we instantiate a prefix siphoning attack against LSM-
trees employing the SuRF [65] range filter. § 6.1 summarizes
SuRF and § 6.2 shows that it is vulnerable to prefix siphoning.

6.1 SuRF primer
The succinct range filter (SuRF) [65] is the first proposed
general range filter. Like the LSM-tree SSTables it approxi-
mates, SuRF is an immutable structure. SuRF can speed up
LSM-tree range queries by 5×, but it imposes a modest cost
on point queries due to having higher FPRs than a Bloom
filter [65].

At a high level, SuRF is a pruned trie. A trie is a tree data
structure that stores keys sorted according to the lexicographic
order of Σ. Each edge is labeled with a symbol and each node
corresponds to the concatenation of all edge labels on the path
to that node. Each leaf thus corresponds to a key and each
internal node to a key prefix (Figure 1(a)). An internal node
can also correspond to a key (if the key set is not prefix-free),
which is indicated by one of its fields. For space-efficiency,
SuRF uses a succinct trie representation.

SuRF further saves space by pruning the trie. The basic
SuRF variant (SuRF-Base) stores the minimum length key
prefixes that uniquely identify each key, i.e., shared key pre-
fixes plus the symbol following the shared prefix of each key
(Figure 1(b)). SuRF’s pruning results in a space-efficient but
only approximate representation of the key set.

Both point and range queries are satisfied from the pruned
trie structure. A get(k) returns true (possibly erroneously)
if and only if the path induced by k terminates at a node
associated with a key. For example, in Figure 1(b), BLOOD
is a false positive. Range queries rely on the trie’s ordered
structure. For example, to check if the SuRF contains a key k∈
[a,b], the query finds the node corresponding to the smallest
key ≥ a. If it corresponds to a key > b, the query returns false;
otherwise, it returns (possibly erroneously) true.

SuRF variants to reduce FPR SuRF-Base’s FPR is data-
dependent, i.e., depends on the key set. Compare, for ex-
ample, two sets of 26 keys: A = {xα |x ∈ A, . . . ,Z} and
B = {αx |x ∈ A, . . . ,Z}, where α is some long string. For
A, SuRF’s FPR is nearly 100%, as any key except A, . . . ,Z is
a false positive. But for B, the FPR is extremely small, as only
keys that begin with α pass the filter.

Figure 1: Trie and SuRF variants over the key set BLUE, BLACK, and
BLOND. (Figure adapted from [65].)

To improve the FPR, SuRF offers variants that augment
SuRF-Base’s pruned structure with a few bits per leaf of
information about the leaf’s suffix. These bits reduce the FPR
by allowing queries to reject keys that share a prefix with
the stored key but have a different suffix, in exchange for
increasing per-key memory consumption.

SuRF-Hash (Figure 1(c)) hashes the leaf’s key and stores
n bits from the hash value, where n is configurable. SuRF-
Real (Figure 1(d)) stores the first m bits of the key’s suffix,
where m is configurable.

6.2 Vulnerability of SuRF
Every SuRF variant has the characteristics defined in § 5.2.
C3(1) holds trivially. C3(2) holds empirically: SuRF-Base
has an FPR of 4% for random 64-bit keys and SuRF-Hash
reduce this FPRs to ≈ 0.1% [65]. C1 holds because in every
SuRF variant, every false-positive key κ shares a prefix with
some stored k—C1 holds with probability 1.

To show that C2 holds, we describe how to efficiently find a
false-positive key (§ 6.2.1) and how to identify the prefix that
it shares with a stored key (§ 6.2.2). We assume the ability
to check if a key is a filter positive or negative key based on
measuring query response times. The implementation of this
check is described in § 9.

6.2.1 Finding a false-positive key (FindFPK)

For SuRF, our FindFPK algorithm simply generates queries
for uniformly random keys until it detects a positive response,
based on the cutoff determined in the attack’s preliminary
learning phase (§ 5.3.1). Due to C3, this step is expected to
terminate with a few hundreds to thousands of attempts.

We refer to the random positive key found as a false-
positive key, because that is the overwhelmingly likely event.
However, the attack still works if, unbeknownst to the attacker,
the found key is actually a true positive key.

6.2.2 Identifying a shared prefix (IdPrefix)

For a false-positive key κ, let k = k(κ) be the stored key whose
shared prefix k′ with κ is the longest among all stored keys.
We write κ = k′α and k = k′β. Our algorithm will output k′.

SuRF-Base/Real To find k′, we exploit SuRF’s structure,
namely that any key starting with a proper prefix of k′ is a
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negative key. Let κ = κ1 . . .κn. We repeatedly remove the
last symbol from the key, iteratively checking if the keys
κ1 . . .κn−1,κ1 . . .κn−2, . . . are negative or positive keys. These
keys will be positive until we remove a symbol from k′. Thus,
the key checked before a negative key is found is k′.

If the attacked system does not support variable-length
keys, removing symbols is not possible. In this case, instead
of removing symbols, we change them. We iteratively check
if the keys κ1 . . .κ

′
n,κ1 . . .κ

′
n−1κn . . . are negative or positive

keys, where κ′
i ̸= κi. Similarly to before, if the first negative

key found is κ1 . . .κ
′
j . . .κ

′
n then k′ = κ1 . . .κ j.

Overall, the number of requests made is O(|κ|).

SuRF-Hash SuRF-Hash complicates the attack, because
modifying κ’s suffix can change its hash value, leading to a
key that is rejected by SuRF despite sharing the prefix k′. To
address this problem, we assume SuRF’s hash function hash
is public knowledge. (This is a reasonable assumption, be-
cause the hash function’s purpose is to reduce the FPR and not
for security.) We perform essentially the same algorithm(s)
as for SuRF-Base/Real, but we only query each modified key
κ′ if hash(κ′) = hash(κ). We are still essentially assured to
find keys to query, because SuRF-Hash stores only a small
subset of the hash bits, for space-efficiency reasons. For ex-
ample, with the recommended 4 hash bits [65] and using 8-bit
symbols, on average 1 in 16 symbols tried will yield a hash
collision and thus a key usable by the IdPrefix algorithm.

Similarly, when trying to extend an identified prefix to a full
key (step 3 in § 5.3.2), we can skip querying any candidate
key whose hash does not match the false-positive key’s hash.

7 Prefix Bloom filter prefix siphoning
This section instantiates prefix siphoning against LSM-trees
using the prefix Bloom filter (PBF) [25]. We describe the PBF
in § 7.1 and show its vulnerability in § 7.2.

7.1 Prefix Bloom filter primer
The PBF is a Bloom filter-based range filter that supports
range queries for ranges expressible as fixed-prefix queries.
While PBFs do not provide general range queries, they are
currently deployed in real-world key-value stores such as
RocksDB [30] and LittleTable [52].

A PBF consists of a Bloom filter and a predetermined prefix
length, l. When a key k is inserted into the PBF, both k and
its l-bit prefix are inserted into the Bloom filter.

PBF range queries must be for ranges of the form “all keys
starting with α,” where α is an l-bit string. They are answered
by querying the Bloom filter for α. If this query responds false,
the dataset does not contain keys within the target range.

The PBF answers point queries by querying the Bloom
filter for the queried key. We remark that if the high-level
system does not prioritize point query efficiency, the PBF
can be configured to only store key prefixes. In this case,
the PBF implements a point query for key k by querying its

Bloom filter for k’s l-bit prefix. This option reduces the PBF’s
memory consumption but increases the FPR of point queries.
This PBF configuration does not affect the success of our
attack, so we do not discuss it further.

7.2 Vulnerability of the PBF
The PBF has the characteristics defined in § 5.2. As with
SuRF, C3(1) holds trivially. C3(2) holds because the PBF’s
FPR is based on its Bloom filter’s FPR.

The PBF has an important property: it not only has the
usual Bloom filter false positives caused by hash collisions
but also has what we call prefix false positives. These occur
when a PBF point query falsely returns positive for an input
κ that is an l-bit prefix of a dataset key, simply because the
Bloom filter stores both dataset keys and their l-bit prefixes.
This property implies that C1 holds: with probability 1−FPR,
an l-bit false-positive is actually the prefix of some stored key.

To show that C2 holds, we need only describe how to find
prefix false positives (§ 7.2.1). Finding them makes the IdPre-
fix algorithm of C2 trivial: given an l-bit false positive κ, it
outputs κ.

7.2.1 Finding l-bit false-positive keys (FindFPK)

The FindFPK algorithm first determines the length of key
prefixes stored in the PBF, l, and then proceeds to guess prefix
false positives. Crucially, finding l needs to be performed only
once per attack. That is, when running the attack’s rounds
concurrently (§ 9), we run this step only once.

Once l is known, generating queries for uniformly random
l-bit strings will find false-positive keys, similarly to the SuRF
attack’s FindFPK (§ 6.2.1). Given a set of false positive l-bit
keys thus found, an expected fraction of p/2l will be prefix
false positives, where p is the number of distinct l-bit pre-
fixes of dataset keys. The remaining false positives will be
hash-collision Bloom filter false positives. Because we can-
not distinguish between the two types of false positives, the
attack’s later steps must try to extend all of them to full keys.

The crux of the FindFPK algorithm is to identify l. To this
end, we rely on the PBF property that made it vulnerable in
the first place. For any prefix length l′ ̸= l, the probability
of an l′-bit key being a false positive is exactly the filter’s
FPR. Only for l-bit keys will we observe a “bump” in the
probability of a random l-bit key being a false positive, due
to the presence of prefix false positives.

Accordingly, the FindFPK algorithm first generates j
queries for uniformly random keys of length l′, for every
non-trivial prefix length l′ (e.g., l′ ≥ 3). It observes the frac-
tion of false positives found and deduces that l is the length l’
for which the fraction of false positives found is maximal.

8 Complexity analysis
The key factor determining prefix siphoning’s effectiveness
is the probability of FindFPK (step 1 in § 5.3.2) guessing
an exploitable key k, which is a false positive whose longest
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shared prefix with stored keys is of length l, where l is a
predetermined constant for which extending k into a full key
is feasible (step 3 ).

The full version of this paper [39] includes a theoretical
analysis of the SuRF and PBF attacks, which is omitted here
due to space constraints. We analyze the case of uniformly
random keys, which is the worst case for our attack. (If the
key distribution is skewed, then (1) the guessing and full-key
extraction steps can incorporate this knowledge; and (2) the
prefixes SuRF stores are longer, so our attack will identify
longer prefixes and thus extend them to full keys faster.)

The analysis derives the probability of FindFPK guessing
an exploitable key. This determines the expected number
of queries to guess an exploitable key or, equivalently, the
number of keys we ultimately expect to extract after investing
G guesses in FindFPK. These values also allow comparing
the cost (in queries) of prefix siphoning to brute force search.

Under the realistic constraint that |D| ≪ 2l , where D is the
dataset (e.g., |D|= 500 M and l = 40), we find that (1) prefix
siphoning becomes more effective with growth in dataset
size and better FPR—i.e., as the LSM-tree becomes more
effective, so does prefix siphoning; and (2) prefix siphoning
takes several orders of magnitude fewer queries to extract a
key than an exhaustive brute force search.

9 Implementation issues

In previous sections, we assume the attacker can check if a
key is a filter positive or negative key, based on measuring
query response times. Here, we describe our implementation
of this check.

The basic idea is simple. Prefix siphoning’s preliminary
phase (§ 5.3.1) derives a response time cutoff. Keys whose
query response time is below this cutoff are considered nega-
tive; otherwise, they are considered positive. However, this
cutoff only distinguishes between queries satisfied from mem-
ory and those involving I/Os. Once a query for a false-positive
key completes, the I/O it performs reads the relevant SSTable
into the in-memory page cache. Future queries for false-
positive keys covered by this SSTable will thus get satisfied
from memory.

To overcome this problem, we exploit the fact that the
attack targets some production system, which is assumed
to sustain heavy I/O load due its legitimate operation. This
property implies that if the attacker waits after performing a
false positive query, the SSTable brought in will be evicted
from the page cache due to legitimate I/O traffic.

Unfortunately, waiting for even a few seconds after every
query would make the attack impractical. We solve this chal-
lenge by performing attack rounds in a concurrent, breadth-
first manner, as described below, instead of working depth-
first (finding a false-positive key and proceeding to identify
its prefix and then to extract the full key).

Step 1 of § 5.3.2 (FindFPK execution) generates N ran-

dom keys (false positive candidates) and measures a four-
query average response time for each key to identify false-
positive keys. The averages are computed in a breadth-first
manner: there are four iterations, each of which performs one
query for each key. Waiting for page cache evictions is done
only between each iteration.

Step 2 (IdPrefix) similarly executes iteratively, interleav-
ing the next step of IdPrefix for each false-positive key in each
iteration, until all invocations output a prefix. Again, waiting
for page cache evictions is only done between iterations.

Step 3 (key extraction) likewise interleaves the searches
extending each prefix. We optimize step 3 ’s general-case
brute force suffix search by leveraging the fact that step 2
outputs a set of prefixes. This enables us to discard short
prefixes, so that step 3 only attempts to extend prefixes where
the suffix search is feasible.

The interleaved execution of each step can be sped up us-
ing multi-core parallelization by assigning each core a subset
of the N random keys, false-positive keys, or prefixes when
executing step 1 , 2 , and 3 , respectively, in the above de-
scribed manner. This results in linear speedup (in the num-
ber of cores) of step execution time. Our implementation
parallelizes step 3 , whose execution time dominates the
attack (§ 10.2.2), over 16 cores and leaves the other steps
single-threaded.

10 Evaluation
In this section, we evaluate prefix siphoning attacks on SuRF
and PBF in RocksDB. We demonstrate the attack’s feasibil-
ity, successfully mounting it against a full-fledged RocksDB
key-value store employing SuRF (§ 10.2).3 We empirically
analyze the SuRF attack’s efficiency and sensitivity to data
store size and filter FPR (§ 10.3). Consistent with our theoret-
ical analysis, we find that the attack becomes more effective
with growth in dataset size and better FPR—i.e., as the LSM-
tree becomes more effective, so does prefix siphoning. Finally,
we demonstrate the attack against the PBF (§ 10.4).

10.1 Experimental setup
Both clients and the attacked key-value store run on the same
server. However, the time differences we exploit can be mea-
sured over the network using prior techniques (see § 4).

We use a server with two Intel Xeon Gold 6132 v6 (Sky-
lake) processors, each of which has 14 2.6 GHz cores with two
hyperthreads per core. The server is equipped with 192 GB
DDR4 DRAM and two 0.5 TB NVMe SSDs. The server runs
Ubuntu 18.04 and code is compiled with GCC 4.8.

RocksDB setup We use a version of RocksDB modified by
the SuRF authors to employ SuRF [65]. The target RocksDB
instance uses the NVMe devices as secondary storage. We
use Linux cgroup to limit RocksDB’s available DRAM to

3We use the SuRF’s authors’ implementation, https://github.com/
efficient/SuRF.
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2 GB. This configuration emulates an industrial-scale, I/O
heavy key-value store setup, in which storage capacity far
exceeds DRAM capacity.

The RocksDB engine stores 64-bit keys and 1000-byte
values and the SuRF-Real variant. Unless noted otherwise,
we use a datastore of 50 M uniformly random keys (generated
using SHA1). We invoke RocksDB LSM-tree compaction
after populating the datastore. We do this to emulate the
compaction that naturally occurs in a real workload due to
insertions, because our experiments perform only get()s.

Background load In all experiments, we emulate a realistic,
loaded system by running 32 threads that constantly perform
get() queries for random keys, with 50% of the queries target-
ing stored keys and 50% targeting non-present keys.

10.2 RocksDB+SuRF-Real key extraction
We implement the attack as described in § 9. § 10.2.1 eval-
uates the attack’s first phase (§ 5.3.1), demonstrating that
query response times can be used to distinguish negative from
positive keys in practice, even in the presence of heavy back-
ground load. § 10.2.2 evaluates the attack’s second phase,
which extracts full keys, and compares it to a brute force
search.

10.2.1 Negative/positive query time differences

In this phase, the attacker performs 10 M get() queries for ran-
domly generated keys to build the response time distribution.
Table 1 shows the distribution of response times in terms of
5 microsecond buckets. The distribution is extremely skewed
toward values < 25 µs, which our attack therefore assumes
are associated with negative keys.

To validate this assumption, Figure 2 visualizes the distri-
bution while breaking the response times by queried key type
(negative or false-positive). This breakdown is presented for
analysis purposes; it is not available to the attacker. For read-
ability, we present the breakdown in two ways. Figure 2(a)
shows only the buckets ≥ 25 µs, which are otherwise dwarfed
by the lower end of the distribution. We show both the number
of keys (blue) and false-positive (green) keys in each bucket,
and the percent of false-positive keys in each bucket (orange).
Figure 2(b) shows the entire distribution, but bucket sizes (Y
axis) are percentages instead of absolutes. For each bucket,
we report the number of keys in the bucket as well as the
percentage of false positives (out of all positives).

Figure 2(a) shows that the vast majority of false positive
queries have a response time of 25–35 µs. Conversely, Fig-
ure 2(b) shows that this response time range contains over
50% of the false-positive keys. Overall, these results show
that picking a cutoff point of 25 µs for distinguishing a neg-
ative from positive key—which is done based only on the
distribution’s shape, without knowledge of key types—yields
a good distinguisher.

Bucket range % of responses
(microseconds)

< 5 0.77%

5 - 10 88.3%

10−15 7.65%

15−20 0.53%

20−25 0.05%

≥ 25 2.7%

Table 1: Distribution of query response times.

25 75 125 175 225 275 325
Response Time (Microseconds)

0
50

100
150
200
250
300
350

# 
Ke

ys

Total # Keys
# FP Keys

0

20

40

60

80

100
% FP Keys

(a) Buckets ≥ 25 µs: Absolute number
of queried keys

0 50 100 150 200 250 300 350
Response Time (Microseconds)

0

20

40

60

80

100

%
 P

er
ce

nt
ag

e

% Keys in Bucket
% FP Keys in Bucket

(b) All buckets: Percentage of queried
keys.

Figure 2: Breakdown of query response time distribution.

10.2.2 Key extraction

The attack executes as described in § 9; specifically, wait
is set to 20 seconds and each step is executed in a parallel,
breadth-first manner, to minimize the amount of time spent
waiting for page cache evictions. The attacker generates a
set of 10 M random keys to find false-positive keys (step 1
of § 5.3.2). The attacker next identifies the prefix each false-
positive key shares with a stored key (step 2 ). Finally, the
attacker discards every prefix of length < 40 bits and attempts
to extend the remaining prefixes into full keys (step 3 ).

Figure 3 shows the number of keys extracted as a function
of the number of total number of get() requests issued by
the attack (aggregated over steps 1 – 3 ). The figure also
compares the attack to an idealized attack, which uses internal
RocksDB debugging counters to accurately determine the
filters’ responses for each queried key, instead of relying on
query response times.

Because the idealized attack never incorrectly classifies a
key, it identifies more false positives than the actual attack in
step 1 . It thus requires more queries in step 2 to identify
the shared prefixes of the keys provided to step 2 , as there
are more of them. Consequently, the idealized attack begins
step 3 later (in terms of queries) than the actual attack, which
is why its line is “shifted” compared to actual attack. For this
reason, the idealized attack also requires more queries overall.
Ultimately, however, the actual attack extracts only 74 fewer
keys than the idealized version.

The idealized attack is also faster (in real time) than the ac-
tual attack, because it does not require waiting for page cache
evictions. The actual attack’s key extraction rate is ≈ 10 min-
utes/key, while the idealized attack achieves 0.2 minutes/key.
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Figure 3: Actual vs. idealized prefix siphoning against SuRF-Real:
Number of keys extracted as attack progresses.

attack step # queries (millions) queries/total (%)
1 Find false positives 10M 0.35%

2 Identify prefixes 0.025M 0.0009%

3 Extract keys 2581M 91.68%

Wasted 224M 7.9%

Table 2: Attack queries per stage. Wasted queries futilely attempt to
extend an incorrectly identified prefix into a full key.

Table 2 shows a breakdown of the (actual) attack’s queries
across all three steps. The bulk of the attack is spent on
step 3 , extending prefixes into full keys. Our later anal-
ysis (§ 10.3.2) explains this number. The table also re-
ports wasted queries, which are issued when the attack fu-
tilely tries to extract a key from an incorrect prefix, which
was misidentified due to incorrectly classifying a key as a
false-positive (based on its query response time). Additional
wasted queries (not shown) are spent identifying prefixes of
length < 40 bits in steps 1 – 2 , which are then discarded.
While over 90% of prefixes identified by steps 1 – 2 are dis-
carded, this waste is negligible, as they are discarded before
the most expensive step.

Comparison to brute force We further evaluate a brute
force attack, that randomly guesses keys until a stored key is
found. We allow this attack to run for 10× more time than
the prefix siphoning experiment—but it fails to guess a key.
Unsurprisingly, brute force search for a large key space is
infeasible.

SuRF-Hash vs. SuRF-Real SuRF-Hash complicates the
attack. Compared to SuRF-Real with the same per-key space
budget, SuRF-Hash replaces key bits (SuRF-Real’s suffix bits)
with hash value bits. This means that possible prefixes to iden-
tify are shorter and that the filter’s FPR is lower, making the
number of false positives identified in step 2 lower. On the
other hand, as discussed in § 6.2.2, when identifying the pre-
fixes and performing key extraction, the attacker can use the
false-positive key’s hash value to ignore definitely incorrect
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Figure 4: SuRF-Hash vs. SuRF-Real: Moving average of queries per
extracted key as a function of attack progress (measured in queries).

guess—potentially improving the attack’s efficiency.
To evaluate this trade-off, we compare idealized attacks

against the same dataset, with RocksDB using either SuRF-
Real with 8-bit suffixes or SuRF-Hash with 8-bit hashes. Thus,
in SuRF-Hash, the suffix search space when extracting a key
256× larger than in SuRF-Real, but the attacker will ignore
255/256 of its guesses on average. To compensate for SuRF-
Hash’s lower FPR, the initial false-positive key search of the
SuRF-Hash attack uses 3× the number of candidate keys
used for SuRF-Real. Figure 4 therefore compares the attacks’
amortized cost, in terms of a moving average of queries per
extracted key as a function of attack progress.4 The SuRF-
Hash attack’s extra initial queries (for finding false positives)
manifest as the peak of the per-key cost, when all these extra
queries are amortized across only a handful of keys. The extra
cost is eventually amortized away, into a per-key cost of 12 M
vs. 10 M queries for SuRF-Hash vs. SuRF-Real, respectively.
For this similar cost, the SuRF-Hash attack extracts 2490 keys
vs. 2171 keys for the SuRF-Real attack.

10.3 Attack analysis
This section analyzes the attack’s efficiency (§ 10.3.1) and sen-
sitivity to data store size (§ 10.3.2) and filter FPR (§ 10.3.3).

10.3.1 Efficiency

Figure 5 shows the attack’s efficiency, measured as average
get()s per extracted key as a function of attack progress. We
compare across three 50 M random 64-bit key sets to show
the results are not a function of the specific key set.

The average number of queries per extracted key converges
to about 9 M ≈ 223. This indicates that the attack extracts
keys with roughly the work required to search a 23-bit space—
40992× better than a brute force search of the full key space
(264/50 M≈ 238.4). The attack also extracts a substantial num-
ber of keys (375, 419, and 423 keys).

4I.e., the Y axis reports the number of get()s issued divided by the number
of keys extracted up to the current X-axis point.
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Figure 5: Attack efficiency: average number of get()s per extracted
key as attack progresses.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Get Requests (Billions)

0

50

100

150

200

250

300

350

# 
Ex

tra
ct

ed
 K

ey
s

Data size 10M
Data size 20M
Data size 30M
Data size 40M
Data size 50M

Figure 6: Idealized attack against SuRF-Real: Number of keys ex-
tracted for different dataset sizes.

10.3.2 Sensitivity to dataset size

To evaluate the attack’s sensitivity to the dataset size, we
progressively shrink our original 50 M key set into smaller
subsets of size c ·10 M keys for c ∈ [1,5]. We then perform an
idealized attack against the system with each dataset, but using
the same set of random keys for step 1 , so any difference in
attack behavior can related only to the datastore size and not
the key distribution.

Figure 6 shows the number of keys extracted as the attack
progresses. Prefix siphoning is more effective as the dataset
size increases: it extracts ≈ 100 keys from the 10 M dataset,
but almost 400 keys from the 50 M dataset.

10.3.3 Sensitivity to SuRF FPR

We show that prefix siphoning becomes more effective as
SuRF’s FPR improves, i.e., the attack becomes more harmful
to the system as SuRF becomes more productive to the sys-
tem. To demonstrate this effect, we compare idealized attacks
against the same dataset, with RocksDB using either SuRF-
Base or SuRF-Real. SuRF-Base stores shared key prefixes,
padded to the next full byte (which adds 1–8 bits to the prefix).
SuRF-Real does the same, plus stores a byte from the key’s
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Figure 7: SuRF-Real vs. SuRF-Base: Moving average of queries per
extracted key as a function of attack progress (measured in queries).
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Figure 8: Idealized prefix siphoning against PBF (l = 40 bits).

unique suffix, and thereby improves its FPR (see § 6.1).
We carry out the attacks against each SuRF variant using

the same initial random key set, used to identify false-positive
keys. Figure 7 reports the attack’s amortized cost (queries per
extracted key) as the attack progresses.

In both cases, the attack has similar efficiency of ≈ 10 M
queries per extracted key, as evident from the similar slope of
the two lines. However, the attack is more successful against
SuRF-Real, where it extracts 420 keys, than against SuRF-
Base, where is extracts 21 keys. The reason for the improved
effectiveness is that SuRF-Real’s extra key byte storage makes
an initial false-positive key much more likely to have a prefix
length of > 40 bits, resulting in more false positives making
it to step 3 .

The situation is similar with SuRF-Hash, which further
improves the FPR over SuRF-Real (Figure 4). As mentioned
in § 10.2.2, the idealized SuRF-Hash attack extracts 2490
keys vs. 2171 keys for the idealized SuRF-Real attack.

10.4 RocksDB+PBF key extraction
We evaluate an idealized prefix siphoning attack against
RocksDB’s PBF. We use a dataset of 50 M uniformly random
64-bit keys. We configure the PBF to store prefixes of length
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l = 40 bits and to consume 18 bits/key (which is roughly the
space usage of SuRF in our experiments).

Step 1 (FindFPK) perform 1 M queries for uniformly
random 40-bit keys, which result in 457 false-positive keys.
The attack then attempts to extend these false positives into
full keys. It eventually extracts 46 keys, which matches the
expected number of prefix false positives observed in 1 M
random guesses (1M · 50M/240 = 45.4). Figure 8 plots the
attack’s amortized cost (queries per extracted key) as the at-
tack progresses. The PBF attack makes 160 M queries per
extracted key, which is 20× more queries/key than the SuRF
attack, but still three orders of magnitude better than a brute
force search. The reason for this difference is that the PBF at-
tack wastes effort trying to extend Bloom filter false positives
that are not prefix false positives.

11 Mitigation
Here, we discuss approaches for mitigating prefix siphoning
attacks. Unfortunately, every potential solution constitutes
some trade-off, whether in query performance, memory effi-
ciency, complexity, or other system aspects.

System-level approaches A system can block prefix si-
phoning attacks by only querying its key-value storage engine
for keys the requesting user is allowed to access. This ap-
proach requires re-architecting the system so that a key’s
ACL is kept outside of the key-value store. In addition, a sys-
tem can rate limit user requests, thereby slowing down prefix
siphoning attacks. This approach is viable only if the system
is not meant to handle a high rate of normal, benign requests.

Key-value store mitigation A key-value engine can block
prefix siphoning by maintaining separate filters for point and
range queries for each SSTable file. Unfortunately, this ap-
proach will double filter memory consumption. In addition,
it will not block attacks that target range queries (which we
believe are possible, and are currently exploring).

Filter-level mitigation A natural mitigation is for key-value
stores to employ non-vulnerable range filters. Like the sepa-
rate filter approach described above, this mitigation carries
the risk of being vulnerable to future extensions of prefix
siphoning to range queries.

In addition, the properties that make a range filter non-
vulnerable to point query-based prefix siphoning may limit its
utility in practice. For example, Rosetta (Robust Space-Time
Optimized Range Filter) [45] is a range filter that does not
conform to our vulnerable range filter characterization (§ 5.2),
but it lacks support for variable-length keys, which are impor-
tant in practice.

Rosetta uses Bloom filters for SuRF-like prefix-based fil-
tering. Rosetta assumes a bound on the possible key length
in bits, L. A Rosetta instance consists of L Bloom filters,
B1, . . . ,BL. When a key k is inserted into the filter, each i-bit
prefix is inserted into the i-th Bloom filter Bi. A Rosetta point

query thus simply queries BL, making Rosetta non-vulnerable
to prefix siphoning.

The Rosetta paper does not specify how variable-length
keys are handled. Its design is clearly incompatible with such
keys if there is no predetermined bound on their size. Even
if such a bound exists (and can thus be used for L), Rosetta
requires every key to be padded to L bits, so that point queries
function correctly. This requirement significantly increases
the filter’s memory consumption.

Encrypted key-value stores Disclosed keys reveal no sen-
sitive information if they are stored encrypted in the stor-
age engine. However, encrypting key-value pairs requires
re-architecting the entire system so it can query on encrypted
data [63, 64]. Most if not all deployed key-value stores do not
support such encryption.

12 Related Work

Key-value store timing attacks Existing key-value store
timing attacks aim to disclose stored values. These attacks
work by exploiting external mechanisms such as memory
deduplication [55] or memory compression [56], which can
be disabled for protection. In contrast, prefix siphoning ex-
ploits a mechanism of the key-value store itself, which can-
not be disabled for protection without suffering significant
throughput degradation and additional I/O traffic.

Storage engine timing attacks Timing attacks mostly tar-
get cryptographic software rather than storage engines. Fu-
toransky et al. [35] extract private keys from a MySQL
database with a timing attack, but the attack relies on in-
sertions of attacker-chosen data. Wang et al. [59] show a
practical timing attack on a multi-user search system, such as
Elasticsearch.

13 Conclusion

This paper shows that certain range filters make LSM-trees
vulnerable to novel prefix siphoning timing attacks, which
exploit differences in query response times to reveal keys and
prefixes of keys stored in the LSM-tree. Our results show that
key-value store performance improvements may trade security
in exchange, and encourage practitioners and researchers to
evaluate the security impact of their work. We also hope
that our characterization of vulnerable range filters will spur
research on more secure filters.
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Abstract
The OS kernel is at the forefront of a system’s security. There-
fore, its own security is crucial for the correctness and in-
tegrity of user applications. With a plethora of bugs contin-
uously discovered in OS kernel code, defenses and mitiga-
tions are essential for practical kernel security. One important
defense strategy is to isolate user-controlled memory from
kernel-accessible memory, in order to mitigate attacks like
ret2usr and ret2dir. We present EPF (Evil Packet Filter): a new
method for bypassing various (both deployed and proposed)
kernel isolation techniques by abusing the BPF infrastructure
of the Linux kernel: i.e., by leveraging BPF code, provided by
unprivileged users/programs, as attack payloads. We demon-
strate two different EPF instances, namely BPF-Reuse and
BPF-ROP, which utilize malicious BPF payloads to mount
privilege escalation attacks in both 32- and 64-bit x86 plat-
forms. We also present the design, implementation, and evalu-
ation of a set of defenses to enforce the isolation between BPF
instructions and benign kernel data, and the integrity of BPF
program execution, effectively providing protection against
EPF-based attacks. Our implemented defenses show minimal
overhead (< 3%) in BPF-heavy tasks.

1 Introduction

The security of a computer system can only be as good as
that of the underlying OS kernel. The kernel provides a rel-
atively simplistic abstraction for programs to build on top
of, and mediates their access to system resources. Hence, the
confidentiality and integrity of user programs rely solely on
the security of the OS kernel itself. Yet, the kernel is hard
to defend, due to its unique execution model, and the sheer
size and complexity of its code. With the development of
automated kernel-code testing tools, such as syzkaller [13],
thousands of bugs have been found across different OSes [12].
It is even pointed out that bugs are discovered faster than they
are fixed [113]. The abundance of errors and vulnerabilities
in OSes amplifies the importance of protection mechanisms
that reduce the exploitation potential of kernel vulnerabilities.

Standard defenses, such as W^X [6] and ASLR [6], are
also adopted by the Linux kernel, aiming to stop and miti-
gate code-injection- [64] and code-reuse-based [40] attacks.
More specifically, these defenses aim to limit the attacker’s
ability to successfully mount an attack. However, attacks such
as ret2usr [68], which completely encode their payloads in
userspace, indicate that kernel exploitation is made signifi-
cantly easier by the relatively weak separation between the
kernel and userspace (as opposed to a user application, such
as web server, where the interface between it and the clients
is much more well-defined and limited). Similarly, protection
mechanisms like SMEP [112] try to stop kernel attacks by
limiting the attacker’s ability to encode attack payloads in a
kernel-accessible manner (more attacks and defenses in this
direction are discussed in Section 2.1).

In this paper, we explore the possibility of abusing the
BPF infrastructure in the Linux kernel—more specifically,
by leveraging BPF programs as attack payloads. We have
identified three properties that make BPF programs a promis-
ing candidate for such a task. First, BPF programs can be
created by unprivileged users, and contain memory contents
chosen by the user (such that they can be used to encode ma-
licious contents). Second, BPF programs can be created in
large amounts, such that during exploitation valid references
to them can be constructed (e.g., by just guessing) with good
probability. Third, BPF programs are created by users, but
“consumed” by the OS kernel. Access to such payloads cannot
be prevented by existing, strong kernel-user isolation mecha-
nisms (e.g., XPFO [67]), because they cannot be differentiated
from regular data that the kernel operates upon.

Yet, unlike previous techniques where the payload con-
tent is encoded inside regions acting effectively as “byte
buffers”, a BPF programs’s in-memory representation has
a non-trivial structure. To address this problem, we develop
special code-reuse strategies, dubbed as EPF, to utilize pay-
loads with the constraints introduced by the corresponding
BPF structure. BPF programs can aid exploitation because
they are not strongly-isolated from normal kernel data.
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And to defend against such EPF-style attacks, we develop
a set of defenses that enforce strong BPF-to-kernel isolation.
Recognizing the fact that BPF is essentially a “virtual architec-
ture”, we follow a roadmap similar to that of isolating native
code from pure data: (1) BPF code should not be read or
written as regular, kernel data; (2) regular kernel data should
not be executed as BPF code; and (3) BPF code should not
be reused as semantically different BPF code.

To summarize, we make the following contributions:

• We introduce a novel, high-volume, undefended method
to inject payloads in kernel space for aiding the exploita-
tion of memory errors in kernel code, and we create
systematic techniques to utilize them in different archi-
tectures. Our methods enable attacks that bypass state-
of-the-art defenses that focus on enhancing kernel-user
isolation.

• We develop defenses against exploitation that (ab)uses
the BPF infrastructure by enforcing strong isolation be-
tween BPF code and regular kernel data, and the integrity
of BPF execution under attack.

• We evaluate both our attacks and defenses. We create
exploits using our techniques on four different real-world
vulnerabilities. We integrate our defenses into Linux
kernel and demonstrate low overhead (< 3%) on BPF-
heavy tasks.

2 Background

2.1 Kernel Exploitation and Defense
Exploitation is the process of tampering with a victim system/-
software codebase by abusing vulnerabilities in it [95].
In the case of operating systems (OSes), because OS ker-
nels are typically written in memory- and type-unsafe lan-
guages, like C, C++, and ASM, the most common approach
to their exploitation entails abusing memory errors in kernel
code [73,74,88,96]. In general, two are the dominant exploita-
tion strategies (re: memory errors): code-injection [64] and
code-reuse [40]. Code-injection leverages memory corrup-
tion vulnerabilities to place malicious code (i.e., shellcode)
in the victim’s address space before corrupting control data
(e.g., return address, function pointers, dispatch tables) to
steer execution to it. In contrast, code-reuse stitches together
existing (i.e., benign) code snippets, in an out-of-context man-
ner, to perform the respective (malicious) computation.

In addition to the above, there exist kernel-specific exploita-
tion techniques that address unique challenges of the OS ker-
nel setting. Throughout the evolution of kernel attacks and de-
fenses, regarding memory errors, the ability to create attacker-
controlled, exploit-time-accessible payloads has been at the
forefront of the subject matter. For example, in ret2usr [68]
attacks, the adversary first corrupts a code pointer, and then
diverts the control flow to userspace code, tricking the kernel

into executing malicious (shell)code with elevated privileges.
Alternatively, a different flavor of such an attack employs
code-reuse techniques (e.g., ROP [100]) with payloads placed
in userspace [74, 77]. An essential property of ret2usr-like
attacks is the placement of their payload (e.g., shellcode or
code-reuse payload) in userspace.

To provide protection against exploits that follow the
ret2usr approach, various defenses focus on stopping the re-
spective payloads from being accessible. CPU features such
as SMEP [112], SMAP [49], PXN [2], PAN [7], as well as soft-
ware solutions such as kGuard [68], PaX’s KERNEXEC [89]
and UDEREF [90, 91], were introduced to prevent userland
code/data from being executed/accessed freely by the OS
kernel. Seeking new ways to provide payloads for exploiting
kernel vulnerabilities, without accessing userspace, in the past
we proposed to (ab)use the implicit memory sharing between
userspace and the kernel: i.e., the physmap region [67].

For performance reasons, modern OS kernels keep a con-
tinuous mapping of the physical memory (or part of it) in
kernel space, which naturally contains user-controlled con-
tent. In such attacks, dubbed ret2dir, the adversary tries to
allocate enough physical pages containing the respective pay-
load, and through the implicit sharing of physmap, the payload
will be utilized/accessed in a later stage via code injection
or reuse. To defend against ret2dir-based attacks, we intro-
duced the concept of XPFO (eXclusive Page Frame Own-
ership) [67]. XPFO prevents the kernel from accessing any
memory page that houses userland content, using a kernel
(physmap-resident) address. Again, the defense impedes the
attackers’ ability to access their payload.

In this work, we show that unintended access and implicit
sharing are not the only reliable sources of payload injection.
As it turns out, the ability to “push” BPF programs [83] in
kernel space provides the attacker with enough control over
the contents of kernel memory, to the extent that BPF can
be used as an arbitrary payload-encoding mechanism. As
BPF programs are designed to live in, and used by, the OS
kernel, such payloads bypass all defenses that rely on the
strong isolation of kernel- from user-space [66].

2.2 BSD Packet Filter
Design and Usage The BSD Packet Filter (BPF) [83] was
originally designed for filtering packets during network moni-
toring: by providing the kernel with “instructions” regarding
how to filter packets, before delivering them to a monitor-
ing process in userspace, BPF eliminates unnecessary data
copying and context switching. The design and implementa-
tion of the Linux Socket Filter (LSF; i.e., our main subject
of study) [60] was inspired heavily by BPF. However, it has
recently evolved into a generic utility, acting as a universal
in-kernel virtual machine [46]: its execution is strictly sand-
boxed, and no unintended side-effects escape confinement.
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A wide range of kernel components, and applications,
make use of the expressiveness and security provided
by BPF. Docker [10], Firefox [9], and Chromium [1], as
well as automated system call (syscall) filtering schemes,
like sysfilter [52], Confine [55], and Chestnut [42], use
seccomp-BPF [80] to specify syscall filtering policies. In
addition, BPF programs can be attached to Kprobes (kernel
probes) [105], giving rise to powerful kernel tracing tools [38],
while BPF-based networking frameworks are developed to
enable agile packet processing [15,78]. Lastly, BPF programs
have also been proposed to be used in FUSE (Filesystem in
USErspace) [34] to reduce context switching overheads.
Features Two different flavors of BPF exist in Linux: classic
BPF (cBPF); and extended BPF (eBPF). Internally, cBPF
is converted to eBPF, and therefore only a single execution
engine (for eBPF) exists nowadays [70]. cBPF programs are
used for socket filtering (setsockopt), and syscall filtering
(prctl, seccomp), while eBPF programs are managed with
the bpf syscall, allowing kernel subsystems to implement
different methods for attaching/invoking eBPF code.

cBPF is similar to the original BPF, with two general-
purpose registers and 16 (addressable) scratch memory slots,
all of which are 32-bit wide. In contrast, eBPF has 10 general-
purpose, 64-bit registers, and is equipped with a set of helper
functions to access either eBPF maps (i.e., a family of key/-
value store data structures) or other, internal functionality
(like getting the current process-ID or generating random
numbers) [3]. eBPF maps can be made accessible from multi-
ple eBPF programs or user processes [4].

Both cBPF and eBPF specify a RISC-like instruction set,
allowing: (a) loading and storing operations (re: immediate
values or scratch memory slots); (b) moving values between
registers; (c) performing arithmetic and logical operations;
and (d) branching. To guarantee termination, there is no in-
direct branching, and the branch instructions can only jump
forward. In addition, eBPF provides specific instructions for
invoking helper functions and other eBPF programs. JIT (Just-
In-Time) compiling for eBPF [45] instructions, down to ma-
chine code, allows for performance gains [99], compared to
using the eBPF interpreter. Lastly, popular tools have also
added support for eBPF. LLVM supports BPF as a backend
since v3.7 [81], so that developers can choose to write BPF
programs using a syntax similar to C. Similarly, BCC [61] and
libbpf [8] are frameworks that allow developers to easily
create and interact with loaded BPF programs.
Security The isolation between the BPF runtime and OS
kernel is crucial for the security of the latter. For perfor-
mance reasons, BPF favors static, ahead-of-time checking
(over dynamic, runtime checking), when enforcing such iso-
lation. The static checker for cBPF ensures the following
properties: (1) jumps (i.e., branches) do not go backwards;
and (2) scratch space accesses target initialized locations only.
Any program that cannot be statically verified by the checker
is rejected. In case of packet filtering, the validity of access to

a packet cannot be determined statically, as packet sizes may
differ at runtime. Hence, such accesses will be translated to
calling helper functions, and bounds are enforced at runtime.

The checker for eBPF is more complex [84]. Same as the
cBPF checker, it needs to make sure that control flow does not
go backwards. It also validates, and replaces, eBPF map and
helper function references, and analyzes register value types,
such that the corresponding operations lead to predictable
memory accesses to safe locations. The verifier is known to be
prone to errors, such as incorrect value range analysis [16, 17,
21] and insufficient protection against speculative execution-
related vulnerabilities [19, 22]. Hence, the unprivileged bpf
syscall is disabled by default [48] (defconfig in x86 Linux),
while distributions are adopting a “on/off” choice [51, 106].

BPF has also been used as aid in the exploitation of tran-
sient execution vulnerabilities [72], as well as in settings that
involve limited memory corruption capabilities (wrt spatial
ranges and/or value choices) [63, 107]. Concerns regarding
the former have led to removing the interpreter entirely, and
always using JIT-compiled BPF, in certain settings, in order
to reduce the risk of Spectre-like attacks (i.e., via CONFIG_-
BPF_JIT_ALWAYS_ON [103]). However, BPF JIT comes with
its own set of security concerns.

First, because BPF JIT provides fine-grain control of na-
tive code (i.e., instructions) in kernel space, it is favored by
specific transient-execution attacks [32, 71] (against the OS
kernel). Second, it has been shown that the JIT engine can
be used to facilitate code injection [82, 98], and hardening
techniques such as constant blinding [36] and code-offset ran-
domization [53] are added to counter these attacks. Lastly,
the JIT compiler itself also suffers from errors. Nelson et
al. [86] proposed the use of formal methods to ensure the
correctness of JIT compilation, in which they report 82 bugs,
demonstrating the difficulty of developing a correct (BPF) JIT
compiler. The above issues have made the choice between
the BPF interpreter and JIT compiler a difficult one, because
both sides come with different security trade-offs. Notably,
defconfig in x86 Linux, as well as popular distributions,
like Debian, choose to keep the BPF interpreter compiled-in,
which is what we assume in this work.

3 Threat Model

3.1 Adversarial Capabilities
We consider an attacker who is a local, unprivileged Linux
user, aiming at escalating their privileges. More specifically:
Unprivileged Access The attacker is able to perform anything
an unprivileged user can, like executing arbitrary code in
userspace, invoking syscalls, accessing the filesystem, and
interacting with OS interfaces (procfs [14], sysfs [11]).
BPF Functionality The attacker has the ability to push cBPF
programs in kernel space. First, BPF should be enabled in
the kernel. This is true for any Linux kernel compiled with
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network support, because the BPF subsystem is turned on by
CONFIG_BPF, which is selected by CONFIG_NET [104]. Sec-
ond, the attacker should have access to the BPF infrastructure,
which is always the case because the setsockopt, seccomp,
and prctl syscalls are not privileged. Third, the interpreter
needs to exist in kernel code, which means that CONFIG_-
BPF_JIT_ALWAYS_ON should be off (§2.2). We do not require
the bpf syscall being available to the attacker, which can be
used to create eBPF programs. Actually, the unprivileged bpf
syscall is disabled in all major distributions [51, 106].

Memory Errors We also assume that the attacker has ac-
cess to a (at least one) memory corruption vulnerability in
kernel code, and that by abusing this vulnerability they are
able to overwrite code and data pointers, either in a temporal
(e.g., use-after-free [23, 24]) or spatial (e.g., out-of-bound
access [27, 28]) manner. We do not assume any error, or bug,
in the BPF interpreter, verifier, or JIT compiler. Although the
correctness of these components is challenging [25, 26, 86],
this is something orthogonal to our attack(s)/EPF.

3.2 Hardening Assumptions

On the kernel side, we assume that W^X [6] is enforced,
such that code injection is not possible. In addition, we con-
sider that the kernel is hardened against ret2usr attacks, using
SMEP [112]/PXN [2] and SMAP [49]/PAN [7]. Furthermore,
we assume that no implicit memory sharing can take place be-
tween userland processes and the OS kernel, and hence ret2dir
attacks are not attainable. Note that this is a strong assump-
tion, as currently Linux does not employ a comprehensive
defense against ret2dir, like XPFO [67]. We also assume that
the page tables are protected against tampering with page ta-
ble integrity mechanisms, such as PT-Rand [50] or xMP [94].
Lastly, kernel ASLR [54] is orthogonal to our attack(s); if
deployed, EPF leverages known techniques to bypass it (§7).

4 Evil Packet Filter

We use the term EPF (Evil Packet Filter) to refer to a set of
attacks that (ab)use the BPF infrastructure for injecting mali-
cious payloads in kernel space. EPF allows bypassing existing
isolation mechanisms [7, 49], which prevent user-controlled
content from aiding kernel exploitation (§3.2). Due to the
nature of the in-memory representation of BPF programs,
making use of them as an attack vector is quite challenging.
First, we describe certain design/implementation details of
BPF, how BPF programs are created, what malicious con-
tent can be “hidden” in them, and how an attacker can locate
them. Then, we describe two EPF-based attacks: BPF-Reuse
(EPF v1—variant 1) and BPF-ROP (EPF v2—variant 2).

code jt jf k

0 16 24 32 64

code dstsrc imm

0 16128 32 64

off

Figure 1: Fields and their sizes (in bits) in cBPF (top) and
eBPF (bottom) instructions. Green regions are the parts of the
instruction that can be controlled by an attacker.

4.1 Linux BPF Internals
BPF-code Management cBPF programs are primarily cre-
ated via setsockopt, prctl, and seccomp, which can be
used to “push” (cBPF) filtering code in kernel space; eBPF
code can be copied in kernel space using the bpf syscall.

Both cBPF and eBPF programs are represented using the
same data structure: that is, struct bpf_prog. We refer to
this data structure as the “BPF program”; BPF programs
pushed by setsockopt, prctl, and seccomp are considered
‘cBPF’, while those copied in kernel space by bpf are ‘eBPF’.
struct bpf_prog is always page-aligned when allocated.
After a cBPF program is loaded into kernel space, the cBPF
instruction array is duplicated, and stored separately—we
call this instruction array as the original cBPF code. This
code is referenced from struct bpf_prog by a member
pointer orig_prog, allowing the corresponding process to
retrieve the original cBPF code later (if needed). Then, the
cBPF code is statically verified for safety, and translated in-
place, becoming a verified BPF program (§2.2). Notably, the
verification of cBPF programs is different from the one of
eBPF programs, and after the cBPF instructions are translated
to eBPF instructions, they are not verified again.

Lastly, a verified BPF program goes (optionally) through
the process of being JIT-compiled (when /proc/sys/net/-
core/bpf_jit_enable = 1), while the memory permis-
sions of pages that host the BPF program become read-only.
Data Structures The BPF program data structure (in the case
of cBPF) consists of a header, which includes a pointer to
the interpreter function, and a pointer to the original cBPF
code, and an array of instructions. After verification, the array
of instructions contains only eBPF code, due to the in-place
cBPF⇝eBPF translation. (We refer to this array as the eBPF
code. Notice that, internally, both cBPF and eBPF programs
are represented with eBPF code.) BPF programs are allocated
from the vmalloc region, whereas the original cBPF code is
duplicated using kmalloc and lives in physmap [67].

In cBPF instructions (Figure 1, top), the code field is the
opcode, defining the respective operation; jt and jf are two
fields used for specifying where to jump if a predicate is true
or false; and k is used for encoding immediates. Similarly,
in eBPF instructions (Figure 1, bottom), both src and dst
encode a number between 0–10, corresponding to one of the
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Corrupted Code Pointer

Corrupted Data Pointer

BPF Interpreter

BPF Program

...
...

...

eBPF Code

BPF Program

eBPF Code

BPF Program

eBPF Code

Original cBPF Code

Original cBPF Code

Original cBPF Code

Figure 2: Memory layout during an EPF v1 (BPF-Reuse) at-
tack. The corrupted code pointer points to the BPF interpreter
function, and, at the time of its invocation, its argument points
to one of the malicious BPF programs.

10 general-purpose registers or the frame pointer; the off
field is used by memory load/store instructions, and jump
instructions, to specify the offset of such operations; and imm
stores the value of instructions that require an immediate.
Payload-encoding Challenges Ideally, the attacker would
like the memory region they control to be of arbitrary size and
content. However, this is not the case for BPF. Both cBPF and
eBPF instructions correspond to 8 bytes, and not all bytes can
take arbitrary values, because some of them have restrictions
due to verification or translation. Only imm and k can be
used in an unconstrained manner, and therefore we will only
use these fields for EPF purposes—this corresponds to every
other 4 bytes in the {c, e}BPF instruction array. Other fields
can be partially-controlled or are only controllable iff the
BPF program is constructed in a specific way. Hence, more
fine-grain control is also possible (see Figure 1), but this is
something that we do not explore for mounting an EPF attack.
BPF-code Spraying Although an attacker can control parts
of a BPF program’s content (both in the case of translated
eBPF code and the original cBPF code), they still need to
create reliable references to such BPF instructions. This can
be achieved by spraying: i.e., saturating kernel space with
BPF programs, and, as a result, a randomly-chosen location
will likely contain (malicious) BPF code [67]. Both cBPF
and eBPF code are page-aligned, and hence no additional
care is needed to locate memory offsets within a page. In
the Linux kernel, all allocated objects can be found in the
physmap region, which maps the whole RAM.

b4 07 00 00 79 11 00 00 b4 07 00 00 bf 17 00 00 b4 07 00 00 0f 27 00 00 b4 07 00 00
code regs off imm

R7 = 0x1179
code regs off imm

R7 = 0x11bf
code regs off imm

R7 = 0x270f

code regs off imm

R1 = *(u64*)R1
code regs off imm

R7 = R1
code regs off imm

R7 += R2

Figure 3: A snippet of the same eBPF code interpreted from
different offsets (above vs. below).

During our experimental evaluation (§6.2), we discovered
that setsockopt is the most effective spraying apparatus: it
can be used to saturate ≈80% of all RAM, if the attack can
utilize both the translated eBPF code and the original cBPF
code, or ≈40% when only one of the two can be used.
BPF Interpreter The interpreter function receives two argu-
ments: a context pointer and an (eBPF) instruction pointer.
Context is the input to the BPF program—for example, in
packet filtering, context points to the respective network
packet. The value of the context pointer is loaded onto eBPF
register R1. (The interpreter will not use this value unless it
is used by the BPF program.) The second argument points
to the eBPF code that is assumed to be verified. Hence, the
interpreter does not validate any (eBPF) operation during
execution. Because of its expressiveness, and relatively few
side-effects, the interpreter is useful, as a code-reuse target as
we will demonstrate in our EPF v1 (BPF-Reuse) attack.

4.2 EPF v1 (BPF-Reuse)

As we explained earlier (§4.1), an attacker can reliably control
a large portion of kernel space, by (ab)using the BPF infra-
structure, but they can only inject arbitrary values on every
other 4-byte word—and thus cannot encode traditional code-
reuse (e.g., ROP) payloads, which would require controlling
8 consecutive bytes in 64-bit platforms, like x86-64. However,
the Linux kernel contains a powerful subsystem that can be
leveraged to perform malicious computations with relatively
sparse memory control: i.e., the BPF interpreter.

Figure 2 depicts the memory layout during an EPF v1 (BPF-
Reuse) attack. First, the attacker encodes their payload in valid
BPF programs, and sprays them in kernel space. Then, us-
ing a memory corruption vulnerability, they overwrite a code
pointer and redirect the control flow to the BPF interpreter.
By carefully choosing the respective code-pointer value, the
attacker can control the context in which the (overwritten)
code pointer will be invoked, thereby allowing them to spec-
ify an arbitrary eBPF instruction to start the interpretation
from (i.e., by selecting/controlling the second argument of
the invoked function), when the control flow is redirected to
the BPF interpreter. Finally, since the attacker has sprayed
BPF programs in kernel memory, they can easily find their
payload in the direct mapping (i.e., physmap) region, with
high probability (see Section 6.2).

Eventually, the problem becomes: Can the attacker embed
malicious eBPF code inside a benign BPF program, which
escalates their privilege upon execution?
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R0 = R0 ^ R0 /* R0 = {0} */
R1 = R1 / R1 /* R1 = {1} */
R0 += R1 /* R0 = {1} */
R0 += R0 /* R0 = {10} */
R0 += R0 /* R0 = {100} */
R0 += R1 /* R0 = {101} */
R0 += R0 /* R0 = {1010} */
R0 += R1 /* R0 = {1011} */

Listing 1: Register-only BPF instructions that load the value
11 (1011 in binary) onto register R0. (Values in comments are
shown in binary.)

The answer is positive. The attacker can offset the eBPF
instruction pointer by, say, 4 bytes during the attack, so that the
imm fields will be in the original locations of code, dst, src,
and off. A snippet of our eBPF payload is shown in Figure 3.
When executed normally, it is an array of instructions that load
immediates. However, when executed from a +4b offset, the
semantics of that instruction stream are completely different.
In what follows, we explain how one can perform different
computations under the aforementioned model.
Arithmetics and Register Manipulation All instructions
that do not use immediates, such as those moving values, or
doing arithmetic, between registers, can be embedded into the
imm field, as unused immediates are ignored by the interpreter.
All unaligned instructions shown in Figure 3 do not use any
immediates. If the attacker wishes to use constant values, they
first need to load the constant into a register, and then perform
the respective operation(s) with registers. Loading arbitrary
constants into a register, without using the imm field, can be
done solely with arithmetic operations.

Despite not being able to encode arbitrary numbers into
imm, the attacker can load a non-zero value into a register.
Then, say, div a register by itself, which leaves the value 0x1
in the register, or xor a register with itself, resulting in a 0x0
value. Similar to Listing 1, starting from R0 = 0x0 and R1 =
0x1, any constant can be obtained by repeatedly adding R0 to
itself, and (optionally) adding R1 to R0.
Control Flow Register-based comparisons and jumps can be
encoded as usual because they do not use immediates—so
conditionals can be done easily. Looping is also possible in
malicious eBPF code. off field is a signed 16-bit value: it is
signed because the ld and st instructions can use negative
offsets for memory accesses. The eBPF verifier statically
checks for non-negative offsets in jumps, but at runtime the
interpreter does not check for this property (§2.2).
Memory Access ld and st instructions can directly access
the whole kernel memory. Normally this does not create a se-
curity issue because of the (register) range analysis performed
by the static checker, which ensures that no such instruction
will be performed on a register that (potentially) points outside
of the desired bounds. However, similar to branching offsets,
this property not enforced at runtime by the interpreter.

By combining the three aforementioned techniques, the
attacker can embed malicious eBPF code inside a benign BPF
program. With a piece of unverified eBPF code operating
in kernel memory space, there are different ways to escalate
privilege. In our exploits, we chose to locate init_task, a
global symbol that is placed in the same linked list with all
task_structs. Then, we iterate over all processes until we
find the attacking process. Lastly, we overwrite the credentials
of the attacking process with those of init_task, giving the
attacking process the highest privilege.
Combining eBPF and cBPF When spraying BPF programs,
the RAM can be filled close to full, but not with only the
translated eBPF code. The original cBPF code, the user pro-
cess, the sockets created to attach the BPF programs to, and
the JITed eBPF (if enabled), also reside in physical memory
and compete for space. It is possible to encode payloads in
both eBPF code and in the original cBPF code, and greatly
increase the effectiveness of spraying, which translates to a
higher probability of successful exploitation.

The problem is that although the allocations are always
page-aligned, eBPF code and cBPF code do not start from
the same offset within their respective pages. For example, in
Linux v5.10, the eBPF code starts at a 0x38b offset, within
its page, while cBPF code starts at the beginning of the page.
This can be mitigated by using a technique similar to a NOP-
sled [30]: the attacker encodes malicious eBPF instructions
inside benign instructions by offsetting the starting point by
4 bytes. Hence, in the example above, the attacker can start
the malicious eBPF code with 7 (=0x38/8) instructions that
are xor R9, R9; these instructions have no effect on the
malicious functionality. However, if the attacker now aims
at byte 0x3c within a random page, they will be hitting a
memory location that contains either eBPF or cBPF code.

4.3 EPF v2 (BPF-ROP)

Although the memory layout of eBPF code forbids the at-
tacker from embedding 64-bit pointers, it is still possible to
do so on 32-bit platforms. This facilitates ROP [100] (or, in
general, code-reuse [35, 40, 57]) attacks. We will demonstrate
this on x86 by introducing EPF v2 (BPF-ROP). To initiate,
say, a ROP attack, the attacker usually needs to overwrite a
code pointer with a stack-pivoting gadget [93], moving the
stack pointer to the payload, which is an array of code point-
ers pointing to other gadgets. An immediate strategy would
be to use the eBPF code as the payload. Doing so would
encounter two challenges: (a) not every 4 bytes can encode
return addresses, and (b) such a stack would be read-only.

Since the attacker has control only over every 4 other bytes,
some gadgets would make %esp point to the gaps in between.
If the execution hits a ret instruction in this case, it will crash
the kernel and terminate the attack. More specifically, if a
gadget does not move the stack pointer by +4X bytes, where
X is an odd number, then the attack will fail.
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Access Type Regular Data
BPF Programs

Aligned Unaligned

Normal Access Allowed BPF-ISR BPF-ISR
BPF Execution BPF-NX Allowed BPF-CFI

Table 1: How regular memory accesses and BPF-code fetches
are hardened by our defenses.

To overcome this, EPF v2 filters gadgets based on how they
move the stack pointer. Namely, the attacker can use gadgets
that have the form: ...; pop %reg; ret, where the pop
instruction offsets the return address to a correct location.

EPF v2 divides a ROP (or code-reuse) attack into two
stages. The first stage uses stack lifting gadgets only, and boot-
straps a new ROP payload for the second stage, at a writable
memory area (preferably in the original stack). This strategy
requires simpler semantics for the more restricted first stage
ROP, which makes gadget-finding much easier. For example,
the following is a set of gadgets that can be used to boot-
strap a new ROP payload: (1) pop %edx; pop %ecx; pop
%ebx; ret, (2) dec %eax; pop %ebp; ret, and (3) mov
%ecx, (%eax); pop %ebx; ret. Assuming %eax points to
a writable region, gadget (1) can load a constant in the BPF
filter into register %ecx, and gadget (2) can move that value to
the future stack; then gadget (3) moves the future stack pointer
further down for the next value. In the second stage, the at-
tacker can use arbitrary gadgets. There are a lot of options
once the attacker reaches this point. A common practice is
to invoke commit_creds(prepare_kernel_cred(0)) [88].
The ROP representation of the above, in x86 Linux, is
just three addresses on the stack: a gadget to clear %eax,
the address of prepare_kernel_cred, and the address of
commit_creds. (This would not be able to execute during
the first stage, as it would require a writable stack.)

5 Hardening BPF against EPF-style Attacks

5.1 Goals and Objectives

Our attacks (EPF v1 and v2) have demonstrated design weak-
nesses in the BPF infrastructure on Linux. Specifically, they
reveal the weak separation between BPF programs and reg-
ular kernel memory: arbitrary kernel objects can be used in
lieu of eBPF instructions in BPF-Reuse (EPF v1); and BPF
code is used as native code pointers in BPF-ROP (EPF v2).
More importantly, the problem is exacerbated by the weak
runtime checks performed by the eBPF interpreter.

Taking inspiration from hardening native code, we propose
to enforce the following properties (shown in Table 1):

➀ Prevent regular kernel data from being used as eBPF
instructions. From the perspective of the BPF exe-
cution engine, this is analogous to data being non-

1 u64 bpf_interpreter(struct bpf_prog *prog)
2 {
3 ...
4 enter_bpf_mode();

5 check_bpf_cfi(prog);
6 initialize_context();
7 mask = prog->mask;
8 ...
9 insn = prog->insns;

10 select_insn:
11 tmp_insn = *insn;
12 check_bpf_nx(insn);

13 check_bpf_mode();

14 tmp_insn = unmask(tmp_insn, mask);
15 execute_bpf_insn(tmp_insn);
16 if (finished) {
17 goto done;
18 }
19 else {
20 insn++;
21 goto select_insn;
22 }
23 done:
24 leave_bpf_mode();
25 return result;
26 }

Listing 2: Pseudocode of the BPF interpreter, instrumented
with our defenses against EPF.

executable [6]. Without this guarantee, we cannot realis-
tically enforce any property on BPF programs, since they
can be counterfeited using regular data. This property
stops BPF-Reuse that utilizes the original cBPF code.

➁ Ensure that BPF execution starts from benign ad-
dresses. This is similar to control-flow integrity (CFI) on
native code [29]. Since all BPF jumps have hard-coded
offsets, no indirect branching is possible. The only way
to divert the intended BPF control flow is to start from
an unintended/unaligned address. This property stops
BPF-Reuse that utilizes eBPF code.

➂ Prevent eBPF instructions from being used as regular
(control) data. By isolating BPF programs from regular
kernel data, regardless of the amount of BPF programs
created, the kernel cannot be misled to access malicious
payloads that are embedded inside BPF programs. This
property stops BPF-ROP attacks.

Besides the above security goals, we also want the respec-
tive code changes to incur negligible runtime overhead.

5.2 Design
Shown in Listing 2 is a pseudocode implementation of the
BPF interpreter; colored lines correspond to our defenses.
BPF-NX To achieve objective ➀, we reserve a region in the
kernel’s address space that is used exclusively for allocating
BPF programs (not cBPF code, as it is not interpreted).
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The interpreter can tell the difference between eBPF code
and normal data by just checking an address range (ln. 121).
The check is performed for every eBPF instruction load,
which is analogous to how a CPU enforces that the instruc-
tions are fetched from an executable page. Such frequent
checking is required because in a code-reuse attack, the at-
tacker might branch to the middle of the interpreter and bypass
any one-time check outside of the main execution loop. In
such scenarios, we still need the interpreter to reject instruc-
tions from invalid memory ranges.
BPF-CFI Objective ➁ is essentially defending against code-
reuse attacks in BPF programs. BPF-CFI is challenging since
we cannot simply check the alignment of the eBPF instruc-
tions. Although our attack uses unaligned eBPF instructions
for simplicity, it can still be dangerous to even start executing
aligned eBPF instructions from the middle of the eBPF code,
because the static verifier’s security guarantees only hold for
executions starting from the beginning of the eBPF code. So
the interpreter needs to make sure that the instruction array
begins from the correct position in the eBPF code. We add
such a check at the beginning of the interpreter (ln. 5).

However, this is not enough. The integrity of the control-
flow [29] of the whole interpreter (function) is also necessary.
Otherwise, the security check can just be skipped by lever-
aging a code-reuse attack that starts the execution from the
“middle” of the interpreter. Kernel-level CFI [47, 85] incurs
some non-negligible overhead, because it protects all code,
and cannot be scaled down to protect selected parts of the
kernel. Instead, we introduce a sentinel variable that is not
corruptible by normal execution. The sentinel is used to en-
sure the control-flow integrity of the interpreter. The sentinel
is set at the start (ln. 4), indicating that the interpreter is prop-
erly executed; at the end (of the interpretation) the sentinel is
cleared (ln. 24). The interpreter checks the sentinel on each
eBPF instruction fetch (ln. 13) to ensure control-flow integrity.
If the control flow enters the interpreter without going through
the correct entry point (i.e., the beginning of the function), it
will be caught before any eBPF instruction is executed.
BPF-ISR To achieve objective ➂, an obvious solution is
to make use of the separation we have done in BPF-NX:
whenever the rest of the kernel wants to access normal data,
check whether the data lives in a BPF region.

However, it would be inefficient to instrument every mem-
ory access the kernel makes. Instead, we adopt the idea of
ISR (Instruction Set Randomization), a defense originally de-
signed to counter code injection [33, 65, 101]. ISR is suitable
in this case as it is very easy to implement in a software-based
interpreter. Every time the attacker tries to allocate a BPF
program, the in-memory representation is chosen randomly
from one of 232 possibilities. Under normal BPF execution,
the mask is extracted at the beginning (ln. 7), then used to
unmask every instruction during interpretation (ln. 14).

1All line numbers in this section refer to Listing 2.

The attacker can no longer benefit from tricking kernel code
into accessing BPF programs as normal memory because the
content is randomized and unpredictable.

5.3 Implementation

We implemented our defenses in x86-64 Linux.
BPF-NX In 64-bit Linux, there exist gaps in the kernel’s ad-
dress space that are not used. We reserve a 512GB unused
region exclusively for BPF programs (struct bpf_prog).
Originally, the BPF programs are allocated using vmalloc,
which is a wrapper function around __vmalloc_node_range,
whose parameters indicate the target range in which the mem-
ory is allocated from. vmalloc uses a fixed range, specified
by VMALLOC_START and VMALLOC_END. To allocate in our re-
served eBPF region, we add our own wrapper bpf_vmalloc
that calls __vmalloc_node_range with the proper range. A
small change to the page fault handler is also needed, be-
cause of the lazy propagation of changes in kernel page tables.
The BPF program region needs to be handled similarly to
vmalloc, where its page table entries are populated on-fault.
BPF-CFI We implement the sentinel variable using the AC
flag in RFLAGS. This flag is the switch for SMAP: turning
off the flag allows the CPU in supervisor mode to access
user data. We assume that the interpreter itself is benign and
does not need the protection against unintended user-space
memory accesses. The sentinel variable is set by “turning off”
SMAP, and cleared by turning it on. This way, the sentinel
variable can easily be checked by an access to a user memory
page. During kernel initialization, a dedicated memory page
is marked as a user-mode page, and reserved for the access
check. At the beginning of the interpreter, we execute the
instruction clac to disable SMAP. Whenever the interpreter
fetches an eBPF instruction, it also reads from the user-mode
page, verifying that SMAP is indeed disabled. And at the end,
the interpreter executes stac to re-enable SMAP.

For the check re: the starting point of the eBPF instruc-
tion array, we added 8 0xff bytes in struct bpf_prog as
a magic number, which eBPF instructions cannot forge. By
checking that this exists at the correct position inside the BPF
program header, we assert that it is the right starting point.
BPF-ISR To implement ISR in the eBPF interpreter, we add a
new field mask in struct bpf_prog to store the mask value
for each BPF program. After a BPF program is initialized, all
the pages are changed to read-only. Right before the permis-
sion change, we choose a random 4-byte value as mask, and
xor the imm field in every eBPF instruction with our mask.
This ensures that the memory content can not be arbitrarily
chosen by the attacker. Since original cBPF code is also stored
inside kernel memory, naturally it needs to be masked too.
We do not mask the rest of the eBPF instructions because the
attacker does not have much control over them. Lastly, the
interpreter unmasks each instruction in the stack during the
execution of the eBPF instructions.

742    2023 USENIX Annual Technical Conference USENIX Association



CVE Vulnerability Type Context Method

CVE-2021-43267 Heap overflow Process EPF v1
CVE-2017-7308 Heap overflow Process EPF v1
CVE-2016-8655 Use-after-free Interrupt EPF v1
CVE-2017-7308 Heap overflow Process EPF v2
CVE-2017-6074 Use-after-free Process EPF v2
CVE-2016-8655 Use-after-free Interrupt EPF v2
CVE-2013-2094 Arbitrary write Process EPF v2

Table 2: List of vulnerabilities exploited with EPF.

6 Evaluation

To evaluate EPF (§4), and the set of defenses we developed
against it (§5), we used a host armed with a 16-core 3.7GHz
Intel Xeon W-2145 CPU and 64GB RAM, running Ubuntu
18.04 LTS (64-bit).

In our evaluation we focused on the following questions:

• RQ1: Are EPF attacks realistic?

• RQ2: How effective is EPF-based payload injection?
How does it compare to other methods?

• RQ3: How much overhead does our set of defenses
against EPF introduce?

6.1 Effectiveness of EPF (RQ1)

To demonstrate the feasibility of EPF-style attacks, we applied
BPF-Reuse and BPF-ROP on existing Linux vulnerabilities
with publicly-available exploits (see Table 2).

For BPF-Reuse (EPF v1) we chose 3 vulnerabilities. CVE-
2021-43267 and CVE-2017-7308 are heap overflow bugs; our
exploit dereferences an overwritten code-pointer in process
context. CVE-2016-8655 is a use-after-free bug; a controlled
function-pointer is dereferenced in interrupt context. Our pay-
load loops through the linked list of all task_structs and
changes the credentials on the one with the proper pid, using
the interpreter (§4.2)—as a result, our strategy works in both
contexts. This shows the expressiveness and versatility of
EPF-based exploitation.

For BPF-ROP (EPF v2) we chose 4 vulnerabilities that
also cover interrupt and process contexts with different
types of vulnerabilities; 3 vulnerabilities happen in pro-
cess context, and the respective payloads are setup to
invoke commit_creds(prepare_kernel_cred(0)) (§4.3),
whereas for the interrupt context scenario, the ROP payload
marks the memory page(s) that host the BPF program itself
as executable, and transfers control to (x86) shellcode that in
encoded as valid BPF instructions. With native shellcode em-
bedding, we also employ the same strategy of looping through
active processes and performing privilege escalation.
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Figure 4: Effectiveness of spraying using different syscalls.

6.2 Spraying Effectiveness (RQ2)
We measured the effectiveness of EPF-based spraying and
compared it to other methods. We found reasonable candi-
dates for our comparison. Namely, we chose syscalls as spray-
ing aids using the following three criteria:

• Syscalls with variable-sized arguments: In this case, we
aim to find syscalls that copy variable-sized data into the
kernel. This is done by filtering out syscalls that have a const
pointer as argument, accompanied by a size_t or integer
argument specifying the array size. This set includes add_key
and readv (representing all vectorized I/O syscalls).

• Syscalls returning writable file descriptors: In this case,
we aim to find syscalls that create file descriptors, which
can later be used together with syscalls such as write to
inject data into the kernel. As a result this set includes pipe,
bpf, socket, and landlock_create_ruleset. The latter is
not available in latest Debian (v11), and bpf is disabled for
unprivileged users by default, so we exclude them.

• Multiplexed syscalls: In this case, we manually inves-
tigated syscalls with multiplexed arguments (e.g., ioctl,
fcntl) and tried to find semantically similar syscalls for
spraying. This set includes setsockopt and seccomp.

All our experiments took place on a Debian v11 (bullseye)
VM, running on the benchmarking host, with its RAM size
set at 1, 2, 4, 8, 16, and 32GB, respectively. Specifically, we
first start a monitor process, which then forks a sprayer pro-
cess and communicates with it via a set of Unix pipes. When
the latter stops consuming additional memory, the monitor
will spawn a new sprayer. For each method, the probabil-
ity that the attacker can locate one of the sprayed objects
is denoted as success rate. Lastly, the respective spraying
method can bypass strong kernel-user isolation mechanisms
(like XPFO [67]), unless we mention otherwise. As shown in
Figure 4, creating cBPF (using setsockopt or seccomp) is
among the most efficient methods.
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setsockopt and seccomp We are using setsockopt
with SO_ATTACH_FILTER to attach cBPF programs to sock-
ets, and SECCOMP_MODE_FILTER to attach cBPF programs to
processes. These two methods do not have quotas/limits set
from the underlying kernel. In fact, if we keep allocating
cBPF programs, the system will invoke the OOM-killer and
try to reclaim memory at some point. If both the translated
eBPF programs and the original cBPF copies are utilized (as
described in Section 4.2), setsockopt can take up to 70%
of all physical memory, while seccomp can take up to 34%;
otherwise, the ratios reduce to 35% and 17%, respectively. In
conclusion, spraying cBPF programs has a 70% or 35% suc-
cess rate depending on the mode used, and the data structure
allows controlling every 4 other bytes.
msgsnd The msgget syscall creates message queues for
SysV-based IPC, and msgsnd adds messages to such queues.
The maximum memory occupied by the messages is 500MB,
regardless of the RAM size. The probability of locating
sprayed content is 3%–24% (depending on the total RAM
size) with continuous control over the sprayed region.
semget The semget syscall creates (SysV) semaphores. By
generating 32K sets, each with 32K semaphores, the total
limit will be reached. Each semaphore takes up 64 bytes of
kernel memory, so the semaphores can consume ≈60GB of
memory. But, a significant drawback of this approach is that
of the 64-byte data structure only the semaphore variable can
be controlled by the attacker, which is only 4 bytes. Therefore
semget is not realistically useful.
pipe We create 20K Unix pipes for each sprayer process,
and write exactly one page of content into each. This method
can fill up to 60% of the total physical memory. Since the
memory used to store pipes is page-aligned, this translates to
60% success rate, with complete attacker control. However,
the sprayed content can be easily isolated using strong kernel-
user separation mechanisms (e.g., XPFO).
mq By default, an unprivileged user can have 800KB of data
stored in-kernel using POSIX message queues. The attacker
will have less than 1% chance of locating the sprayed ob-
jects. Additionally, the sprayed content can also be isolated
by strong kernel-user separation mechanisms, like XPFO.
socket We use the following strategy to spray with TCP
sockets: for each process, create one TCP socket, send mes-
sages until it blocks, and then spawn as many processes as
possible until socket creation fails. UDP sockets are differ-
ent; they do not block with failed sending. Hence, we send
until the occupied memory in /proc/net/sockstat does
not change. In both cases, we are able to spray about 10% of
the physical memory. This method has 10% success rate and
allows for complete control over the sprayed region.
readv and add_key readv gives the attacker less than 2%
success rate, controlling 6 out of every 8 bytes, while the total
amount of memory that can be allocated by add_key is 20K
bytes. So the success rate of the latter is less than 1%.

6.3 Hardening Overhead (RQ3)

We mainly evaluate our defenses on syscall filtering [80],
socket filtering, and XDP [78] skb mode.
Syscall Filtering sysfilter [52] is an automated syscall
filtering tool. It analyzes an application, creates the set of
syscalls that the application needs, and then enforces it us-
ing seccomp-bpf. We evaluate the overhead our defenses
incur on Nginx and Redis, when hardened by sysfilter,
with no BPF-JIT, and the SSB mitigation disabled (by setting
SECCOMP_FILTER_FLAG_SPEC_ALLOW [80]). The network re-
quests in each test are sent over the loopback (lo) device.
Both packages are installed from Ubuntu’s repository.

To benchmark Nginx, we used wrk [56] with 2 running
threads, each performing 128 connections, for 1 minute con-
tinuously. Nginx is configured to have 2 working processes.
To maximize the time spent on BPF execution, we picked
the smallest size of requested file from sysfilter, which is
1KB. Additionally, we manually inspected the CPU utiliza-
tion, ensuring it was close to 100%. To benchmark Redis, we
used memtier [97], spawning 2 worker threads, each with
128 clients, running for 1 minute continously. The ratio be-
tween GET and SET operations was set to 10:1, and each data
object was 32 bytes. Again, we also made sure that the CPU
utilization was close to 100%. Our results are shown in Fig-
ure 5. Our defenses introduce an additional 1.8% throughput
decrease on Nginx, and 1.5% on Redis.
Socket Filtering We focus on the usage of socket filtering,
similar to a traffic monitoring scenario. A simple traffic gen-
erator will send UDP packets in a tight loop, with a body size
of 64 bytes to the DUT (device under test); and on the DUT
there is a server that receives them. Both machines have 1GbE
NICs, and the sending speed is tuned to be slightly higher than
the processing capability of the DUT. We use small packets
because large packet sizes will mask the BPF processing time.

To simulate a traffic monitor, we attach a raw socket to
the ethernet interface and call setsockopt to attach a cBPF
filter on the raw socket. We use a set of 6 different filter rules,
similar to previous network monitoring studies [111], with
some changes: (1) the rules are slightly modified to make
sure our packets go through the maximum possible execution
paths; and (2) we also modify the return instruction to always
reject packets and not spend any time reading them, resulting
in all overhead showing up on the receiving end.

The cBPF filters are described in the following (PCAP):
1. "" (empty expression that allows everything)

2. "ip"

3. "ip src net 10.116.70.0/24 and dst net
10.0.0.0/8"

4. "ip src or dst net 192.168.2.0/24"

5. "ip and udp port (10 or 11 or 12 or 13 or 14)"

6. "ip and (not udp port (80 or 25 or 143)) and not
ip host ..." (32 IPv4 addresses)
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The results are shown in Figure 6; there is a 0.5%–3%
reduction in the respective throughput.
XDP Since all cBPF programs are executed as eBPF pro-
grams, our defense affects interpreted eBPF programs too.
XDP uses eBPF programs to passthrough, drop, re-transmit,
or re-route incoming packets. In our experiment, we run XDP
in skb mode, which executes eBPF programs when packet
handling enters the device-agnostic part of the kernel, as the
other modes require specific hardware. The experiment setup
is the same as for socket filtering. To demonstrate the per-
formance impact on eBPF programs, we run XDP programs
(shown below) from the Linux source tree, similar to previous
works [39, 59]. The XDP programs will intercept and run on
every incoming packet generated by the UDP client.

• xdp1: Parse the IP header, count incoming packets and
update a counter in a BPF map, then drop the packets.

• xdp2: Same as xdp1, but re-transmit the packets.

• xdp_adjust_tail: Change incoming packets into
ICMP packets and send them back, keeping a total count
in a BPF map.

• rxq_info(drop): Count incoming packets for each re-
ceive queue and drop them.

• rxq_info(tx): Count incoming packets for each re-
ceive queue and re-transmit them.

We tuned the traffic generator to send at a higher rate than
the maximum throughput. Additionally, we pinned the NIC
interrupts to one CPU core and manually verified that CPU uti-
lization was close to 100%. The results are shown in Figure 7:
we observed 0%–3% throughput degradation.

7 Discussion

BPF-CFI Considerations To implement BPF-CFI we uti-
lize the AC flag, and, as we mentioned in Section 5.3, this flag
also controls SMAP. We chose this approach because SMAP
was designed to accommodate low-overhead switching.

However, this also means that during the execution of the
BPF interpreter SMAP cannot prevent the interpreter from in-
correctly accessing userspace data. At first glance this might
be a security loss, but in fact the impact is very minimal.
Firstly, this is a confined attack surface that is relatively easy
to maintain, instead of a complicated invariance to be re-
spected across the whole kernel codebase. Secondly, SMAP
is designed to stop the kernel from incorrectly accessing user-
controlled data during an attack, but the semantics of BPF pro-
grams already grant the interpreter access to user-controlled
content such as BPF maps [5], context metadata, and more. In
conclusion, SMAP does not provide notable security gains in
the BPF interpreter context, while our defense provides better
overall security by re-purposing this extension.

KASLR Bypass Although KASLR [54] is sometimes by-
passed by arbitrary memory disclosure vulnerabilities, much
weaker primitives exist that circumvent KASLR, including
bounded memory disclosure vulnerabilities [18, 20, 44] and
side-channel attacks [41, 58, 62, 76]. By spraying, our attacks
can locate attacker-controlled objects within the heap. If the
attacker deploys one of the methods to de-randomize KASLR,
then they can find where the heap is located at. Combining
these two capabilities, our attacks can work exactly the same
as they would without KASLR.

8 Related Work

BPF JIT Spraying BPF JIT spraying [82, 98] is an ex-
ploitation technique that takes advantage of the BPF’s JIT
engine generating predictable code. By carefully crafting and
spraying the JITed code, the attacker can control a piece of
code in kernel context, which effectively nullifies defenses
against ret2usr such as SMEP and PXN, and re-enables at-
tacks that redirect control flow to user-controlled code—JITed
BPF code. BPF-Reuse and BPF-ROP utilize the BPF pro-
gram data structure itself and aim to control memory content.
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Thereby turning BPF programs into a mechanism for inject-
ing payloads for code-reuse attacks. Importantly, the targeted
features and the goals of BPF JIT- vs. EPF-based spraying
are completely different. Moreover, BPF JIT spraying is al-
ready defended against in recent Linux kernel [79], whereas
BPF-Reuse and BPF-ROP bypass all existing isolation mech-
anisms, including XPFO [67], which is not yet deployed in
mainline Linux.

eBPF-based Speculative Type Confusion Kirzner et
al. [71] pointed out that the eBPF verifier performs exten-
sive analyses, and safety checks, to ensure the execution of
eBPF programs is sandboxed, but they did not take into ac-
count speculative execution paths. As a result, some eBPF
programs deemed safe by the verifier can be vulnerable to
transient execution attacks and leak confidential kernel data.
The root cause is addressed by adding analyses that account
for possible speculation [37]. Our attacks are possible due to
a different underlying reason: BPF programs are a type of
user-controlled memory object that cannot be easily isolated
from the rest of kernel data, and they can be created in bulk.

Other Popular Kernel Exploitation Techniques In the
post-ret2usr era, where defenses such as SMEP, SMAP, PXN,
and PAN are present, kernel exploitation has evolved to allow
for creating addressable payloads at exploitation time. Apart
from ret2dir [67], which is discussed in Section 2.1, there are
also two other popular strategies to bypass ret2usr defenses.
The first strategy is careful heap manipulation that combines
heap fengshui [102, 108] with elastic objects (systemized and
termed by Chen et al. [43]), which results in disclosing the
address of the user-controlled memory object that will become
the attack payload. The strategy is used by some real-world
exploits [87, 92], and takes advantage of the predictability
of the heap layout, whereas EPF abuses the design of BPF
functionality. The second strategy is calling functions inside
the kernel, which can disable protection mechanisms. It is
used by real-world exploits [75], as well as automated exploit
generation frameworks [110]. The drawback is that it relies
on how defense features are implemented.

After the payload is placed in kernel space, there are sev-
eral ways to actually realize privilege escalation. One pop-
ular method is to overwrite the modprobe_path global vari-
able [69], substituting an attacker-controlled binary to be exe-
cuted with root privilege (instead of /sbin/modprobe). This
is used by exploit authors and the CTF community [109,114].
Another method is ret2bpf (termed by Jin et al. [63]), which
is popular in ARM kernel exploits [31] because it does code-
reuse using the BPF interpreter, significantly simplifying the
search for code gadgets. It tricks the kernel to use attacker-
controlled memory as BPF instructions, essentially doing
“BPF-code injection”, which notably can be defended against
by BPF-NX. ret2bpf has similarities to BPF-Reuse, but,
most importantly, it differs in the method of supplying the

attack payload: ret2bpf requires the attacker to have the abil-
ity to create a payload in kernel space, whereas BPF-Reuse
solves exactly this problem (i.e., payload injection).

9 Conclusion

In this paper, we have shown that BPF, a kernel subsystem
that allows unprivileged users to push data structures, freely,
onto the kernel address space, is inherently susceptible to
attack-payload injection. We developed two attacks, BPF-
Reuse (EPF v1) and BPF-ROP (EPF v2), and demonstrated
how to inject certain payloads. Further, we showed the prac-
ticality, and effectiveness, of our attacks by combining them
with real-world vulnerabilities to exploit the Linux kernel.
We also developed comprehensive defenses that enforce the
stronger isolation between BPF code and normal kernel data,
and the integrity of BPF program execution, thwarting the
abuse of the BPF infrastructure. Our defenses were evaluated
on tasks that result in heavy BPF usage, and were shown to
have negligible overhead.

Availability

Our prototype implementation of BPF-{NX, CFI, ISR} and
the exploits we ported to EPF are available at:
https://gitlab.com/brown-ssl/epf
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Abstract
Virtual machines (VMs) are used for consolidation, isolation,

and provisioning in the cloud, but applications with large

working sets are impacted by the overheads of memory ad-

dress translation in VMs. Existing translation approaches

incur non-trivial overheads: (i) nested paging has a worst-

case latency that increases with page table depth; and (ii) par-

avirtualized and shadow paging suffer from high hypervisor

intervention costs when updating guest page tables.

We describe translation pass-through (TPT), a new mem-

ory virtualization mechanism that achieves near-native per-

formance. TPT enables VMs to control virtual memory trans-

lation from guest-virtual to host-physical addresses using

one-dimensional page tables. At the same time, inter-VM

isolation is enforced by the host by exploiting new hardware

support for physical memory tagging in commodity CPUs.

We prototype TPT by modifying the KVM/QEMU hyper-

visor and enlightening the Linux guest. We evaluate it by em-

ulating the memory tagging mechanism of AMD CPUs. Our

conservative performance estimates show that TPT achieves

native performance for real-world data center applications,

with speedups of up to 2.4× and 1.4× over nested and shadow

paging, respectively.

1 Introduction
Virtualization plays a central role in cloud stacks. Many aca-

demic and industry efforts strive to bring its performance

closer to that of native (bare-metal) execution [19, 23, 27, 29,

37, 51, 55, 68]. Nevertheless, memory address translation in

virtual machines (VMs) introduces non-trivial performance

overheads. Worse, these overheads are expected to grow as

applications move to larger working set sizes [26, 45], and

architectures evolve to use deeper page tables to support more

physical memory [1].

Memory translation in VMs (also known as guests) is

performed using one of two approaches, each with its own

benefits and drawbacks. In nested paging (see Fig. 1a), as

supported by Intel EPT [51] and AMD nPT [19], VMs self-

manage page tables without involving the hypervisor (also

known as the host). Nested paging, however, introduces over-

heads during address translation: it virtualizes guest physical

addresses by combining guest page tables with an additional

nested page table controlled by the hypervisor. This results

in up to 6× more page table entry references than a native

system [19] – the MMU must issue up to 24 memory accesses

to the page tables, as opposed to 4 in a native system.

In contrast, shadow paging (see Fig. 1b) achieves near-

native translation performance. However, the guest page table

management becomes costly: the hypervisor synchronizes

each guest page table with a host (or shadow) page table,

which directly translates guest virtual addresses (GVAs) to

host physical addresses (HPAs). This avoids the translation

overheads of nested paging, but introduces expensive VM

exceptions to keep the page tables synchronized — often in

an application’s critical path.

Despite sophisticated optimizations in today’s systems,

such as lazy page table shadowing [61] and partial walk

caches [32], we observe that workloads see up to 2.4× and

1.4× slowdowns due to nested and shadow paging, respec-

tively (see §6). These overheads are expected to grow in future

systems: applications with larger working set sizes [26, 45]

will have higher TLB miss rates; emerging workloads such

as function-as-a-service (FaaS) and Kata containers [34] rely

heavily on process creation inside VMs, adding to page ta-

ble management overheads; and upcoming CPUs will feature

deeper page table hierarchies, resulting in quadratic increases

in nested page table traversal overheads [1].

We explore a new approach to memory address translation,

translation pass-through (TPT), which enables near-native

virtual memory performance in VMs. With TPT, VMs directly

control translations to their assigned physical memory, with-

out the extra level of indirection of nested paging, and without

the hypervisor interventions of shadow paging during guest

page table modifications. TPT is enabled by new functionality

in commodity CPUs for physical memory protection using

memory tags, e.g., in AMD SEV-SNP [60] to support confi-

dential computing features [22]. Our key observation is that

this new type of physical memory protection can be leveraged
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by hypervisors to efficiently enforce memory isolation be-

tween VMs, while allowing the VMs to manage direct guest-

virtual to host-physical address translation (see Fig. 1c). Thus,

TPT offers a new, more efficient point in the design space

across hardware-virtualized, paravirtualized, and shadow vir-

tual memory management.

TPT’s gains in memory translation performance come from

the fact that one-dimensional page walks in guest VMs, com-

bined with hardware memory protection checks, are faster

than the two-dimensional page walks using nested paging.

Prior work [6, 7, 16] has shown that the overheads of tag

checks can be hidden by performing them in parallel with

memory accesses and translation. Recent performance results

on AMD SEV-SNP CPUs with physical memory tags [60] cor-

roborate the low-performance overhead for real-world work-

loads. In contrast, a nested page table walk requires extra steps

that are inherently sequential, making it harder to optimize.

To realize TPT, we make the following contributions:

(1) VM isolation with hardware memory protection. TPT

leverages MMU support to maintain the host’s physical

memory frame permissions using tags. By setting per-VM

frame tags, we can safely allow VMs to manage direct guest-

physical-to-host-physical page tables: the hypervisor ensures

that a VM can only access host frames assigned to it, regard-

less of the host physical addresses in the VM’s page tables

(“Hypervisor” and “HW” layers in Fig. 1c). Existing AMD

CPUs with SEV-SNP already support the host frame per-

missions we need for TPT; we cannot use SEV-SNP as-is

because frame tags are coupled with nested paging and expen-

sive memory encryption, but we would require only simple

hardware changes: adding two registers to configure TPT, and

enabling the frame tag functionality separately from the rest

of SEV-SNP.

(2) Selective user-space translation. Enabling TPT for an

entire VM would require a fundamental redesign of the boot

process, memory management, and I/O in the guest OS. Fortu-

nately, TPT’s performance benefits are largest for user-space

applications with large working sets, but are less so for small

working-set applications or kernel-space (see §3). The guest

OS thus enables TPT only in user-space execution of some

processes, which are dynamically identified to take advantage

of it. We achieve this by introducing a new type of TPT page
table with GVA-to-HPA translations that are checked against

the VM’s host frame permissions, whereas guest kernel code

and other non-TPT-enabled processes use the traditional non-
TPT page table (similar to how PTI works [58]). This sup-

ports incremental deployments in which TPT and non-TPT

processes and VMs co-exist on a host and with minimal guest

OS changes, which simplifies the deployment of TPT.

(3) Hypervisor-compatible extensions. We describe a design

for TPT that is compatible with existing hypervisors. TPT

only requires modest changes to the KVM interface: it ex-

poses the physical memory map to enlightened guests, and
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Figure 1: Existing (nested, shadow) and proposed pass-

through paging approaches (GVA/GPA mean guest vir-

tual/physical address; HVA/HPA mean host virtual/physical

address; PW means page walk.)

extends the guest pvops backend in Linux to seamlessly in-

corporate the extra TPT page tables. Our design permits the

hypervisor to retain control over guest physical memory with-

out introducing performance penalties: the hypervisor can use

existing memory ballooning techniques, and can forcibly re-

claim host frames from uncooperative VMs. To support host

frame reclamation and VM migration, the guest OS keeps a

pair of synchronized TPT and non-TPT page tables, which

we call dual page tables, for each TPT-enabled process; using

pvops in the guest OS keeps synchronization transparent and

with low overhead. Since a dual page table is always kept in

sync, the hypervisor can force any guest process to utilize its

non-TPT page table while a host frame reclamation or VM

migration is underway.

We implement TPT using a Linux guest and KVM/QEMU

hypervisor. We evaluate our TPT prototype using a commod-

ity x86–64 CPU — which does not perform any host frame

permission check, but can execute applications much larger

than a traditional CPU simulator —, and assume an optimized

MMU implementation that executes permission checks in

parallel with page table traversal. We also model the perfor-

mance of a naive MMU implementation where operations are

executed in sequence by injecting additional delays in page

table walks, and discuss how both approaches reasonably

model the overheads that we should expect from a hardware

implementation such as is contained in SEV-SNP.

Our results show that an optimized TPT implementation

achieves native performance, and is 2× and 1.2× faster than

nested paging and shadow paging, respectively, on a PageR-

ank benchmark. Even with a naive MMU implementation,

TPT exhibits a geometric mean slowdown of only 3% over

native execution for a series of typical cloud workloads, in-

cluding Memcached and kernel compile.

The TPT implementation is available as open source soft-

ware at https://github.com/acsl-technion/TPT.
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2 VM Address Translation
We discuss the properties of current memory virtualization

approaches (§2.1) and motivate the opportunities offered by

new hardware protection mechanisms in recent CPUs (§2.2).

2.1 Memory virtualization approaches

Current VMs use one of the three following mechanisms:

Shadow paging uses hypervisor-managed shadow page ta-
bles, shown in Fig. 1b, that directly translate a guest virtual

addresses (GVA) to host physical addresses (HPA). The guest

maintains its own page tables, but the hypervisor forces the

MMU to use shadow page tables for address translation.

Shadow paging thus offers native translation performance

with a one-dimensional page walk.

The hypervisor typically write-protects guest page tables,

such that every guest write to a guest page table traps into

the hypervisor to update the shadow page table [4]. Modern

implementations thus need to trap on guest page table writes

and on privileged guest instructions, such as TLB flushes.

Despite elaborate optimizations [61], shadow paging suffers

from these high intrinsic costs for page table manipulation.

The performance of page table manipulation is critical for

some workloads, such as function-as-a-service (FaaS). With

FaaS, process initialization is on the critical path of function

invocations, which includes page table manipulations [25].

To achieve strong isolation, FaaS runtimes are commonly

deployed in VMs, e.g., Kata containers [34,52], which makes

page table management a performance-critical operation.

Paravirtualization of MMUs, e.g., in Xen-PV [14], predates

hardware virtualization extensions. It can be seen as a variant

of shadow paging in which traps are replaced by explicit

hypercalls in the guest OS, used to request changes to the

hypervisor-managed GPA-to-HPA page tables.

Paravirtualized page tables, however, are costly: hypercall

overheads are of the same magnitude as the traps in shadow

paging, requiring context switches between VMs and the hy-

pervisor. While paravirtualization can batch modifications to

reduce overheads, lazy shadow paging can achieve similar

benefits. Therefore, only older hypervisors used paravirtual-

ized page tables by default [12,14], newer ones use optimized

shadow paging and nested paging [13, 66, 73, 75].

Nested paging is a hardware-accelerated approach that per-

forms GVA-to-HPA translation using two hierarchies of page

tables: (i) guest (VM-controlled) page tables and (ii) host

(hypervisor-controlled) page tables (see Fig. 2). The guest

page tables translate GVA-to-GPA (guest physical addresses);

the host ones translate GPA-to-HPA. Every GPA in a guest

page table requires a GPA-to-HPA translation by the MMU.

This procedure is called two-dimensional page walks [19].

A two-dimensional page walk multiplies the number of

memory accesses per address translation. In the worst case, a

single translation must access m levels of the guest page table

(horizontal dimension in Fig. 2), where the GPA of each level
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is first translated by accessing n levels of the host page table

(vertical dimension), plus n and m accesses to the contents of

the respective page tables: nm+n+m memory accesses in

total (e.g., 24 memory access in existing x86–64 processors

using 4 KB pages, where m = n = 4).

Several studies have reported that the overheads of two-

dimensional page walks may account for over 30% of appli-

cation execution time [19, 57]. With the growth in working

set sizes and deeper radix page tables [1], this could lead to a

quadratic increase in memory virtualization overheads.

Translation overheads can be reduced by using huge pages

on the host and/or guest page tables. This bypasses part of

the page walk, as shown in the dotted lines in Fig. 2. Their

use, however, is not always feasible and may lead to under-

utilization of memory due to internal fragmentation [54].

Hardware partial walk caches target similar optimizations

but are typically less effective due to their reliance on spatial

and temporal reuse [32].

Despite its higher translation costs, nested paging is of-

ten the preferred virtualization approach, because it enables

guests to perform page table updates without hypervisor inter-

vention while remaining compatible with full virtualization.

2.2 Hardware memory protection

Physical memory protection, recently introduced in commod-

ity CPUs, offers a new hypervisor-controlled mechanism for

memory isolation across VMs [60, 64]. AMD SEV-SNP [60]

is one example of such technology, which utilizes both mem-

ory encryption and physical memory tagging to enhance VM

isolation; other architectures, e.g., RISC-V, also offer mecha-

nisms for physical memory protection [71].

In AMD SEV-SNP, the MMU checks each host physical

memory access against a host frame permission table (called

RMP) that identifies which VM can access each host frame.

The RMP is a physically-contiguous array of memory that

contains one entry per host frame. Each entry has a unique

identifier of the VM that the host frame is assigned to. Since

the MMU checks every HPA against the RMP, this ensures

that VMs only access HPAs assigned to them.
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RMP checks only happen during a TLB miss, and AMD’s

implementation has various optimizations to reduce their over-

head: (1) RMP entries can be cached as regular data when

accessed by the MMU during a page walk, minimizing RMP

memory accesses (page table entries can be cached too); and

(2) cache lines are extended with their RMP entry to eliminate

RMP lookups on cached data.

To decide if it is possible to leverage such hardware mem-

ory protection features to accelerate address translation and

page table manipulation in VMs, we can consider existing

AMD SEV-SNP deployments. SEV-SNP is integrated into

Microsoft’s Azure cloud platform, and recent performance

results show a low overhead for SEV-SNP-enabled VMs [48].

Since SEV-SNP performs both host frame tagging and cache

line encryption, with the latter dominating performance over-

heads [49], using just host frame tagging as part of memory

translation should have an even lower overhead (see §5.4).

3 Translation Pass-Through Design

Our design goals and key insights for TPT are as follows:

Native performance. Our solution should offer efficient trans-

lation in both current and future systems, where we expect ex-

isting memory virtualization approaches to not scale (see §2).

Our insight is that, unlike the quadratic overhead of nested

paging, VM translation with host physical memory tagging

adds a single access to the tag for each page table level. Prior

work has shown that such overheads can be largely hidden at

the micro-architectural level [6, 7, 16] (see §5.4), and exist-

ing commercial results seem to indicate the same [48]. Thus,

we make a choice to use tagged physical memory to achieve

native translation performance in VMs.

Compatibility with hypervisors/guests. To facilitate adop-

tion, our solution should avoid major changes to existing hy-

pervisors and guest OSs. Achieving this is challenging, as

memory translation is deeply ingrained in hypervisor and

guest OS implementations. Paravirtualization is often used

in virtualized environments in which full hardware virtualiza-

tion is too complex to implement or too expensive [30,50,59].

Nevertheless, a fully paravirtualized memory management in-

terface, such as Xen-PV [74], would require extensive changes

to the guest OS, including the boot sequence, I/O layer, and

kernel memory management.

To sidestep this complexity, our observation is that TPT’s

translation approach can be confined to user-space applica-

tions, which experience the highest gains. It can be enabled

dynamically for each guest process at runtime. As we show

in §5.2, TPT is not expected to benefit kernel performance.

By limiting TPT use to user-space, we avoid changes to I/O

management, guest system boot or guest memory manage-

ment, and maintain compatibility with existing hypervisor

interfaces and host memory management features, such as

VM migration or host frame reclamation.
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3.1 Design overview

Fig. 3 shows the main components of our TPT prototype. As

a starting point, we assume that the guest OS and hypervisor

use nested paging by default; however, our design is general

and also applicable to shadow paging (e.g., Linux supports

both) or a hybrid system [27, 50]. Further, we assume the

availability of hardware memory protection using host frame

tags as used internally in AMD SEV-SNP (see §2).

By default, every guest process has a single non-TPT page

table (as usual; see “Virt App” in Fig. 3), until the TPT proto-

type enables TPT on that process. At this point, the guest OS

constructs and maintains dual page tables for that process, by

keeping both a TPT and non-TPT page table in sync (see “TPT

App”). We could instead have one or the other depending on

whether we enabled TPT on each process, but maintaining

dual page tables is inexpensive (evaluated in §6.3), keeps

change complexity low, and makes host frame revocation sim-

ple to implement: e.g., during host frame reclamation or VM

migration, the hypervisor can force all processes to use their

non-TPT page table until the guest OS has “repaired” the

corresponding TPT page tables (see § 3.2, 3.4 and 4.2).

The guest OS uses the non-TPT page table as the canonical

representation of address translation. It only maintains a TPT

page table for user-mode execution of processes for which it

explicitly requested TPT (step 1 ). When running with TPT,

the guest updates both page tables, thus keeping them in sync.

To populate the TPT page table, the guest OS retrieves GPA-

to-HPA translations from the “guest address map” (step 3 ).

The guest address map is a data structure used by a VM to

know the mapping between its GPAs and the corresponding

HPAs. The hypervisor maintains one guest address map for

each VM, maps it as a read-only guest physical memory range

when a VM boots, and updates it each time the hypervisor

changes a guest-to-host physical memory assignment for that

VM (step 4 ). This approach minimizes changes to the hy-

pervisor since we can reuse GPA faults and existing balloon

drivers to manage host frames, and to update the correspond-

ing guest address map and host frame permission table.

756    2023 USENIX Annual Technical Conference USENIX Association



The design of dual page tables assumes that each hardware

thread has registers pointing to both page tables (TPT and

non-TPT), and that the hypervisor may force a VM to use its

non-TPT page tables despite also having TPT page tables. We

describe the necessary hardware extensions in §4.

3.2 Dual page tables in the guest OS

Every hardware thread has hardware support to access the

dual page tables, by using separate page table pointer registers.

This ensures compatibility: non-TPT VMs require no changes

at all, and TPT-enabled VMs boot without changes — i.e., no

TPT page-table is used. A TPT VM then dynamically enables

TPT by providing a TPT page table, and can also disable it.

The guest OS enables TPT on a per-process basis, and for

user-level code only, where TPT is most effective (see §5.2).

TPT can be activated for a process based on an explicit user

request. One could extend this with automated runtime poli-

cies, although this is out of the scope of this paper; e.g., by

monitoring performance metrics such as TLB-miss rates, RSS

values, and page-walk cycles.

The guest OS always operates on the canonical non-

TPT page table, with its GVA-to-GPA translations, to avoid

changes on existing components such as memory manage-

ment abstractions and algorithms, e.g., to perform reverse

virtual address lookups. Each time a non-TPT page table is

modified, the guest OS efficiently reflects the changes to the

corresponding TPT page table, if any. Entries in a TPT page

table take the canonical GPA and translate it to the correspond-

ing HPA using the added guest address map in step 3 , which

provides “GPA→HPA” translations specific to this VM.

3.3 Page walks and host frame permissions

The hypervisor assigns a unique identifier to each VM, which

is used in the host frame permissions table to mark which host

frames are assigned to each VM. When the MMU traverses

a TPT page table, it raises an exception into the hypervisor

whenever the tag for the VM does not match that of an ac-

cessed host frame.

Note that a 4-level page walk in TPT incurs up to 9 mem-

ory accesses, but allows micro-architectural optimizations to

hide permission checks (see §5.4). If we instead look at a

5-level page table, nested paging goes from 24 to 35 memory

accesses, but TPT only goes from 9 to 11 memory accesses,

highlighting the advantage of TPT when moving to upcoming

architectures with larger physical memory spaces [1].

The behavior of a non-TPT page table is unchanged (see

“GVA→GPA” in Fig. 3): a TLB miss triggers a traversal from

the MMU, which performs a two-dimensional traversal when

using a nested page table set by the hypervisor.

3.4 Host frame management in the hypervisor

The hypervisor tracks GPA→HPA assignments as usual: guest

accesses to an unassigned guest frame trigger allocation and

mapping into a host frame, i.e., via guest access to an un-

mapped page in the EPT.

These host frame assignments are captured by the hyper-

visor’s TPT memory manager (“TPT-MM” in step 4 ). It

then updates the host frame permissions used by the MMU in

step 2 and the per-VM guest address map used by the guest

OS in step 3 (see §4.2 for more details).

The hypervisor reclaims host frames from a VM by using

the existing balloon driver. When frames are released to the

hypervisor, the latter updates the guest address map and host

frame permissions accordingly, followed by the invalidation

of the TLB entries using existing mechanisms – nested paging

uses instruction INVEPT in x86–64, whereas shadow paging

uses a reverse map to invalidate individual pages.

In some cases, the hypervisor must forcibly reclaim host

frames without guest OS cooperation (e.g., the VM is unco-

operative or its balloon driver is slow to respond). We design

a protocol between the guest OS and hypervisor to handle

this case: (1) the hypervisor forcibly disables the use of TPT

page tables on that VM and injects a “TPT status” exception

onto it. Since the guest has dual page tables, the processor

will exclusively use the non-TPT page tables; (2) the hypervi-

sor reclaims any host frames it needs from the VM as usual,

removes them from the guest address map, and resets the

host frame permissions; (3) the hypervisor resumes guest OS

execution; (4) the guest OS gets the injected interrupt and

“repairs” the affected page tables to ensure that they do not

use the reclaimed host frames; and (5) the guest OS issues a

hypercall to notify the hypervisor it can re-enable TPT.

VM migration is handled similarly. The hypervisor dis-

ables TPT during migration and notifies the guest OS upon

completion by injecting the “TPT status” exception. At this

point, the guest OS repairs its TPT page tables based on the

new guest address map contents, and re-enables TPT.

Note that this protocol is only needed for TPT-enabled

guest processes, which we expect to be a small fraction of

all VMs and guest processes. It also only triggered in already

expensive cases, such as forceful host frame reclamation, and

VM migration. Failure to unmap reclaimed host frames is not

a security issue: the VM does not have access to such frames

through the host frame permissions, and guest access to an

unassigned frame results in an exception in the hypervisor,

which can allocate a new frame or terminate the VM.

3.5 I/O host frames and pass-through devices

The host frame permission table only covers the system’s

main memory address range, which prevents support for pass-

through devices on TPT processes (e.g., a DPDK application

with VM device pass-through [2, 24]).

To support such additional physical memory address ranges,

TPT includes new privileged address range registers, which

are configured by the hypervisor to grant a VM access to the

selected ranges (selected during VM boot). These ranges are

assigned to the executing VM, and the hypervisor exposes

their HPAs through the guest address map. This mechanism

operates similarly to x86 MTRRs [32] and AMD’s IORRs [8].
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Name Description

TPT-cr3 Root TPT page table location (zero disables TPT)

cpuid leaf Discovery for TPT support

tag_{base,end} MSR w/ physical addr. of host frame permissions table

VMCS TPT-tag Tag associated with VM (zero disables TPT)

VMCS TPT-IORR Address range regs. for VM permissions to HPA ranges

TPT-fault Exception for invalid permission access

TPT_enable Hypercall to request TPT enable

TPT_status Hypervisor-injected int. to signal TPT status change

TPT_addrmap Virtual PCIe device with guest address map

Table 1: TPT interface added to CPU (Guest ISA (top); hy-

pervisor ISA (middle); guest/hypervisor interface (bottom).)

4 Implementation
We implement a prototype of TPT for Linux 5.16 that con-

sists of 1,700 lines of code (LoC) for the guest OS extensions,

500 LoC in the KVM hypervisor, and 700 LoC in QEMU

to configure and start VMs (counted using CLOC [21]). Our

prototype targets x86-64, but most changes are architecture-

agnostic. Table 1 summarizes the changes visible at the ISA

and guest/hypervisor interface, where VMCS identifies the

VM hardware configuration fields. In particular, dual page

tables are implemented by setting both cr3 and the new

TPT-cr3 (which can be disabled by the hypervisor by set-

ting VMCS field TPT-tag to zero).

4.1 Hypervisor extensions

Our hypervisor is based on Linux KVM/QEMU and supports

shadow and nested paging by default.

Host frame permissions. The host frame permission table

is located in contiguous host physical memory, spanning as

many entries as frames in the host physical memory range.

With 32-bit tags (already used by AMD SEV-SNP [60]), that

corresponds to a 0.1% memory overhead.

The table is configured by the hypervisor, which

sets registers tag_{base,end} (similar to AMD

RMP_{BASE,END} [8]). In addition, the hypervisor pro-

vides a unique TPT identifier for each VM in VMCS field

TPT-tag (checked against host frame permission table

entries), or sets it to zero to disable TPT (e.g., when migrating

a VM or forcing page reclamation).

Extra memory ranges are permissioned by the hypervisor

via VMCS TPT-IORR (e.g., for user-level device passthrough;

see §3.5), which are used when the requested address is out-

side the DRAM’s physical address space.

Guest address map. The hypervisor generates a mapping for

every VM to translate the VM’s GPAs to their corresponding

HPAs. Upon booting the VM, the hypervisor constructs the

guest address and maps it as a read-only guest physical mem-

ory range in the VM. Each map is an array in the host virtual

memory that covers the guest physical memory range and

extra pass-through device ranges assigned to the VM (con-

figured via QEMU). This map is exposed as a virtual PCIe
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Figure 4: Dual page tables in guest OS (Changes in non-TPT

page tables are synchronized to TPT page tables via pv_ops.)

device to VMs (TPT_addrmap), and the size of each map entry

is 8 B per 4 KiB frame, resulting in 0.2% memory overhead.

We extend KVM’s tdpmmu [63] to update the guest ad-

dress map’s contents when modifying GPA mappings without

allocating hypervisor memory on unmapped guest sub-ranges.

4.2 Guest OS extensions

The guest OS changes are largely restricted to a new TPT-

specific paravirtualization backend. The new features are ac-

tivated when the guest OS kernel detects TPT support by

the hypervisor (via a new cpuid leaf, configured by the hy-

pervisor). After the discovery of TPT, the guest OS maps

the TPT_addrmap device as a write-back (cacheable) memory

range as its guest address map.1

To enable TPT for a process, the guest user writes to a new

procfs entry, which triggers the construction of dual page

tables. After the TPT page table has been created, the kernel

puts the TPT page table into the new TPT-cr3 register to

activate it when a process is rescheduled.

Dual page tables. Our guest OS maintains dual page tables,

shown in Fig. 4, and the TPT page tables only cover addresses

accessible in user-mode. The guest disables TPT every time

it enters kernel-mode and re-enables it when exiting back into

user-mode by writing into TPT-cr3 (similar to existing PTI

logic [58]). Note that the regular cr3 register always points

to the non-TPT page table, in case the hypervisor forcibly

disables TPT (see §3.4 and §4.3).

To synchronize the dual page tables, the guest patches the

page table operations via a new pv_ops backend when it de-

tects TPT support. pv_ops is an existing Linux kernel API

that abstracts core kernel operations in a guest OS to work op-

timally across different hypervisors, and is used by default on

1We modify the kernel’s iomap to support cacheable accesses with the

right PAT [56] memory attributes. Note that the virtual device’s contents are

backed by host memory.
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Figure 5: MMU logic to select TPT/non-TPT translation

most VMs. These core operations include page table manipu-

lations, and the overhead of enabling this API is negligible –

Linux leverages dynamic code patching to optimize calls to

the hypervisor backend selected at boot time.

Every page table modification on a vanilla Linux guest

uses GVAs and GPAs and goes through the pv_ops mecha-

nism. TPT’s pv_ops backend performs all requested changes

as usual on the non-TPT page tables, but also synchronizes

changes to user-accessible addresses with the corresponding

TPT page table. Maintenance of dual page tables is therefore

transparent to the guest kernel, and requires no more than 3

additional memory accesses to update the TPT page tables.

First, the necessary GPA-to-HPA translation is retrieved from

the guest address map. Next, the TPT page table entry is

located by accessing the extended mapping field in struct
page of the non-TPT page table. Finally, the TPT page table

entry is updated with its new HPA value.

In most cases, the guest OS accesses a GPA before mapping

it into a page table (e.g., when zeroing it), ensuring that a trans-

lation is available in its guest address map. In the few cases

in which a GPA is not allocated to a HPA, the guest touches

the page to force its presence, going through the pre-existing

guest physical memory page-in logic of the hypervisor.

Huge page support. TPT supports huge page translation

optimizations, which are used if a page is huge on both the

guest and the host (note that the same happens with nested

and shadow paging). Our backend adds 12 pv_ops functions

to support TPT with huge pages.

4.3 MMU extensions

Fig. 5 shows how the hardware extensions for TPT work on

a TLB miss. If TPT-cr3 is supplied by the guest OS and the

VMCS TPT-tag has not been zero-ed by the hypervisor (dis-

abling TPT), the MMU uses the TPT approach for translation;

otherwise, it falls back to using the VM’s regular page table

walk, e.g., via nested paging, as shown in the figure.

With TPT, the MMU takes each address in the page table

from TPT-cr3 as a HPA. The MMU obtains the HPA’s as-

signed tag from the host frame permission table. It extracts the

frame number from the HPA and uses it to index into the per-

mission table. If the retrieved value matches the VMCS field

TPT-tag (cached in an internal register), the MMU continues

to the next page table level; otherwise, it raises a TPT-fault
exception in the hypervisor. If the HPA falls into any of the

VMCS TPT-IORR ranges, the MMU considers the HPA valid

before accessing the host frame permission table.

Note that various micro-architectural optimizations are pos-

sible to perform host frame permission checks during TPT

page table traversals, which are discussed in §5.

5 Discussion
Next, we discuss design alternatives, the limitations of the

design, and how different design choices relate to them.

5.1 TPT with Xen-PV

TPT is not based on Xen-PV [74] due to performance and

compatibility considerations.

To update guest page tables, Xen-PV employs a mechanism

called direct-paging that exposes the GPA-to-HPA mappings

per guest, similar to TPT’s guest address map. However, un-

like the TPT model, Xen-PV guests must perform costly hy-

percalls to update their own page tables. Xen-PV also requires

all guest code to execute in ring-3, which introduces hyper-

call and VM traps to execute privileged guest instructions.

Furthermore, Xen-PV exposes a machine-wide HPA-to-GPA

mapping to all of its guests, which is required for page table

management operations, and thus reduces inter-VM isolation.

From a compatibility perspective, TPT’s KVM-based de-

sign is non-disruptive and allows gradual adoption: TPT’s

hypervisor supports both TPT and non-TPT guests, and TPT

guests can run on non-TPT hypervisors (without TPT’s ben-

efits). TPT supports full hardware-based virtualization, and

provides a modular and adaptable implementation.

5.2 Impact of TPT on kernel-mode

Our guest OS prototype uses TPT page tables during user-

mode execution only. This is because Linux kernel-mode

accesses have very small translation overheads: it maps all

kernel memory using 1 GiB pages [28], making TPT’s bene-

fits in kernel mode marginal. In addition, kernel-mode TPT

support would be more complex and intrusive: e.g., kernel

mode has a linear map for the entire physical address space,

and handles physical addresses, such as DMA and contiguous

memory allocator (CMA), making the addition of two physi-

cal addressing modes (GPA and HPA) more cumbersome. We

leave the exploration of kernel-mode TPT to future work.

We quantify the potential impact of kernel-mode support

for TPT by measuring the performance of randomly accessing

100 GiB of memory in kernel-mode. We compare shadow

paging (with direct GVA-to-HPA translations) and nested

paging (with 1 GiB guest kernel pages) and confirm that TPT

would provide limited benefits: nested is only 9% and 3%

slower than shadow paging when using typical 4 KiB and

2 MiB host pages, respectively, whereas we see overheads of

1.5×–2.5× with the same random access pattern in a user-

space application (which does not use 1 GiB pages).
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5.3 Impact of TPT on memory de-duplication

By using a single, per-VM tag, TPT cannot support memory

de-duplication across TPT processes on different VMs (e.g.,

via Linux KSM [9]). The same problem exists in AMD SEV-

SNP, but is less severe in TPT because only TPT-enabled

processes are subject to this limitation: all other processes

and kernel-mode pages can still benefit from KSM. It would

also be possible to change the hardware to assign multiple

TPT-tag values to a single VM, and use tag mismatch excep-

tions to soft-multiplex a larger number.

5.4 Host frame permission check performance

TPT uses per-VM tags to check host frame permissions, some-

thing that is inspired by AMD’s SEV-SNP [60]. TPT’s hard-

ware extensions are feasible with minor changes to AMD’s

SEV-SNP (described §4.3). Similar changes can be applied

to other existing and upcoming architectures that support effi-

cient host memory tag checks such as CHERI [72], RISC-V

with PMP [71], and Arm [10, 33].

A naive MMU implementation would perform page table

walks and host frame permission checks in sequence, issuing

up to 9 memory accesses – a 2.7× improvement over the

24 accesses of nested paging. In practice, there are several

micro-architectural optimizations to hide tag accesses and

checks: (i) partial walk caches will skip intermediate host

frame permission checks; (ii) tags can be embedded into the

data they describe to avoid accesses; (iii) tags can be cached to

reduce access times; and (iv) host frame permission accesses

and checks can be overlapped with page table traversal. More

specifically, AMD SEV-SNP embeds host frame tags into the

data they tag within the cache hierarchy (reducing the number

of accesses), and caches the tag table’s contents in the regular

cache hierarchy (reducing access latency). Note that some

MMU implementations already use the L2$ to cache page

table entries, and others have evaluated using a separate tag

cache [33]. An optimized MMU implementation would hide

permission check accesses by executing them in parallel to

page table traversal, which can continue speculatively.

5.5 Security considerations

A malicious or faulty guest in TPT could produce page tables

in which any of their levels point to an HPA not assigned to

the executing VM (defined as an “incorrect HPA” from here

on). An instruction that accesses memory through an incorrect

HPA is never committed, but speculatively executing page

table walks and permission checks in parallel could lead to

potential side-channel attacks, where the page walker logic is

used to prime cache lines not assigned to the executing VM.

Single-VM case. We can terminate any such VM that accesses

incorrect HPAs, thus avoiding data leakage within a multi-

core VM (e.g., to prime/probe cache lines separately).

Inter-VM case. Leakage could happen across colluding VMs:

one VM may use the page walker to prime a cache line based

on confidential data, and the other VM uses a prime/probe

side-channel attack based on the line primed by the first

VM [43, 78]. This is a super-set of the single-VM case above.

Such inter-VM side-channels already exist in current sys-

tems, since the micro-architectural mechanisms are the same.

We can use VM termination, together with existing mitiga-

tions to resolve them, and therefore enable aggressive host

frame permission check implementations: (1) immediate VM

termination ensures that a channel has minimal bandwidth,

and an operator can throttle VM creation when frame tag mis-

match exceptions rise; (2) integrating VM tags into the cache

hierarchy, as done by SEV-SNP, links permission checks and

cache accesses, reducing the window of vulnerability to a

single memory access (every page table walk access is tag-

checked when the cache line is loaded); and (3) existing

mitigation techniques are applicable to TPT, such as cache

partitioning [42], or controlling the flow of micro-architectural

information during speculative execution [36, 76].

Note that the guest address map exposes HPAs set by the

hypervisor in response to memory usage of all VMs. This

could be used as a side or covert channel between VMs, but

the same is valid for memory ballooning or guest physical

memory paging. The same, existing mitigations should be

applied in all three cases, such as event frequency modulation.

6 Evaluation
Our evaluation demonstrates the performance gains of TPT

over traditional virtualization mechanisms. To evaluate our

TPT prototype, we conduct a functional emulation of its hard-

ware capabilities on a commodity x86–64 machine, and as-

sume that VMs only map and access their assigned pages.

Our evaluation platform cannot enforce frame tag checks

in hardware, and we instead model the performance impact

of the frame tag check hardware for two extreme points in

the micro-architectural implementation space of the MMU

(see TPT-opt and TPT-naive below). Using this approach,

we assess the end-to-end impact of the proposed approach

on large-scale workloads, since traditional CPU simulators

would make their evaluation unfeasible. While AMD SEV-

SNP already implements frame tag checks, we were unable

to repurpose it to more directly evaluate TPT; this is because

frame tag checks are coupled with nested paging and memory

encryption, both of which introduce substantial overheads that

we could not isolate.

6.1 Experimental methodology

Testbed. We use a server with 2× Intel Xeon Silver 4216 CPU

and 512 GiB of memory (2× 256 GiB DDR4 2,933 GHz). It

has an SR-IOV capable NIC (Mellanox ConnectX-4 Lx),

which exposes dedicated virtual functions (VFs) for the host

and VMs. Intel virtualization support (VT-x) and Intel virtual-

ization for direct I/O access (VT-d) are enabled for VMs to

have direct access to their dedicated VFs (using vfio-pci
pass-through). Hyperthreading is disabled, the frequency gov-

ernor is set to “performance”, and “turbo” is disabled for
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stable results. Both VMs and hypervisor run Ubuntu 20.04

with Linux kernel 5.16. VMs are managed by QEMU with

KVM acceleration, have 16 vCPUs with 156 GiB of memory,

and each vCPU is pinned to a separate physical core.

We use NUMA node 0 to evaluate both native and vir-

tualized executions. NUMA node 1 executes client agents

(without virtualization) for workloads that require requests

over the network, which are passed to the physical NIC, and

routed via the NIC’s internal switch to the correct VF.

Hardware emulation and performance modeling. We emu-

late the proposed hardware extensions for TPT on the x86-64

platform in two ways:

(1) Host frame tag checks. Our base results execute on the

commodity machine “as-is” and assume an optimized MMU

implementation where host frame permission checks have no

performance impact (TPT-opt below). This is a reasonable

approximation as SEV-SNP has micro-architectural optimiza-

tions to hide the latency of host frame permission accesses

(see §5.4), whereas traversal and check operations can be exe-

cuted in parallel without compromising security (see §5.5).

We also model the performance of a naive MMU imple-

mentation where traversals and checks execute sequentially

(TPT-naive below), resulting in an extra memory access on

every page-walk cache miss. We obtain a conservative perfor-

mance estimate of the naive MMU implementation by placing

TPT page tables on a different NUMA node from the one with

executing cores; this effectively doubles the access latency,

from 81 ns to 161 ns, respectively, according to MLC [69]. A

similar technique was used to model larger latencies in prior

works [40,77]. This is a reasonable approximation on existing

hardware since SEV-SNP avoids tag accesses by extending

cache lines, and hides tag accesses by caching them (others

have also proposed separate caches to avoid capacity con-

flicts [33]). Note that we cannot model the added memory

bandwidth consumed by tag accesses, but other tagged sys-

tems show overheads below 2% on most applications, and as

low as 8% in the worst case [33].

(2) MMU walker logic. Current platforms lack the necessary

hardware for registers cr3 and TPT-cr3 and the additional

MMU logic we propose to manage them, as shown in Fig. 5.

We therefore emulate these extensions in software; we modify

the hypervisor to intercept cr3 operations in TPT processes,

select between cr3 or TPT-cr3, and enable EPT or TPT trans-

lation modes, respectively.

We add support in KVM for per-vCPU EPT control, and

patch the guest OS PTI [58] assembly thunks to perform the

following hypercalls when executing TPT processes:

(i) Kernel-to-user: disable EPT on the vCPU, set the guest’s

cr3 to TPT-cr3, intercept and emulate guest cr3 reads to

return the guest’s original cr3 value (sometimes performed

in exception handling during guest execution).

(ii) User-to-kernel: enable EPT on the vCPU, restore the

guest’s original cr3 value, and disable cr3 read interception.

Figure 6: Relative slowdown for different translation mech-

anisms over native 4K
4K in memory access micro-benchmark

(Lower is better.)

With a hardware implementation, the decision to use cr3
or TPT-cr3 would be performed by hardware with negligible

cost. However, our software emulation has additional over-

heads for performing the additional hypercalls (via VMCALL
and VMEXIT), which may dominate execution time on system

call- or interrupt-heavy workloads (PTI is also only enabled

for TPT).

We therefore report execution times after subtracting the

software emulation overheads (time spent on new hypercalls

performing EPT and cr3 manipulations) from the application

execution time. Note that most benchmarks do not invoke the

hypercalls during the evaluation phase, and thus we do not re-

move the emulation overhead in such cases. For experiments

that need the emulation hypercalls, such as the page table ma-

nipulation micro-benchmarks, we configure them to execute

in a single physical CPU to maintain modeling correctness.

Configurations. We evaluate TPT’s performance against the

following system configurations:

(a) Native: Native execution, which serves as our ideal, upper

bound on performance.

(b) Shadow: VM with shadow paging.

(c) EPT: VM with nested paging using Intel’s extended page

tables (EPT) mechanism.

(d) TPT-opt: VM with an optimized TPT implementation.

(e) TPT-naive: VM with a naive TPT implementation.

We evaluate each of the configurations under differ-

ent host/guest page sizes: (1) 4K
4K : guest OS uses base

pages (4 KiB), and host backs VM with base pages (4 KiB);

(2) 4K
2M : guest OS uses base pages (4 KiB) and host backs

VM with huge pages (2 MiB); and (3) 2M
2M : guest uses huge

pages (2 MiB) by enabling transparent huge pages (THP), and

host backs VM with huge pages (2 MiB).

6.2 Memory translation

We create a single-thread memory micro-benchmark to assess

TPT’s impact on memory performance under different scenar-

ios. Our benchmark allocates a 100 GiB buffer to serve as the

target for memory read operations at a 64-bit granularity.

First, we evaluate the performance of sequential and ran-
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Shadow EPT TPT-opt TPT-naive

18.8× 5× 6.68× 6.68×

Table 2: Relative slowdown for different translation mecha-

nisms over native 4K
4K when manipulating the guest page table

using mprotect (Lower is better.)

dom memory accesses. Fig. 6 shows the relative slowdown

of the evaluated system configurations over the native exe-

cution time. TPT-opt’s performance matches that of Native,

regardless of the memory page size, under both sequential and

random access patterns. This is expected, as TPT-opt elimi-

nates all virtualization-induced memory translation overheads

due to its use of direct GVA-to-HPA page tables.

We also observe that EPT has the worst performance under

the random access pattern due to its two-dimensional page

walk on each TLB miss. Huge pages reduce, but do not elimi-

nate the overhead of EPT, as the page walk is shortened due

to the smaller size of the two-dimensional page walk [47].

TPT-naive only underperforms in random memory ac-

cesses under the 4K
4K configuration, where it exhibits a 1.25×

relative slowdown over TPT-opt and Native. This is the result

of the longer page walk duration on TLB misses, but it is still

2× faster than EPT under the same configuration.

Shadow exhibits a slowdown of 1.41× and 1.25× over Na-

tive for sequential and random memory accesses, respectively.

The overheads stem from the extra time spent in the hyper-

visor due to page faults, which cause expensive VMEXITs.

Although the guest OS page tables are populated, the shadow

page tables are maintained by the host and updated lazily and

on-demand: accesses to newly-mapped pages incur a page

fault that is handled by the hypervisor, which in turn updates

the shadow page tables and resumes guest execution.

Conclusions: TPT-opt exhibits native performance, outper-

forming both Shadow and EPT.

6.3 Page table management overheads

Raw page table manipulation. We evaluate the performance

of page table modification under all configurations, as each

incurs overheads from different sources. We measure the time

taken to downgrade a single page from read-write to read-only

via the mprotect system call.

Table 2 shows the results, normalized to Native execution.

Shadow exhibits a slowdown of more than 18× over Native,

as downgrading permissions in the page tables require TLB

invalidations that are trapped by the host to amend the shadow

page tables. EPT does not require interventions by the host

and incurs a slowdown of 5× for a single page permission

modification. This is the result of a single TLB entry invalida-

tion in the guest (using instruction INVLPG), which invalidates

all paging-structure translation caches of the current context,

including the partial-walk caches (PWC) [8, 32, 47]. We cor-

roborate this finding by observing an increase in the number

of cycles the hardware page table walkers are active under the

Figure 7: Spawn micro-benchmark for different translation

mechanisms (Higher is better.)

Workload Description RSS

kcbench Kernel compilation benchmark (v4.19) [35] 1 GiB

XSBench Monte Carlo neutron transport algorithm [65] 99 GiB

Canneal Optimization for chip design (PARSEC [20]) 109 GiB

GUPS Random integer updates in memory (HPCC [44]) 129 GiB

PR Page Rank (GAPBS [17]) on kron graph2 72 GiB

BFS BFS Algorithm (GAPBS) on kron graph 70 GiB

CC CC Algorithm (GAPBS) on kron graph 70 GiB

Memcached Facebook ETC [11] (3×108 keys; mut. client [39]) 108 GiB

Table 3: Application workloads and memory footprint

EPT configuration over Native (not shown).

TPT-opt exhibits a small overhead over EPT due to the ad-

ditional operations to keep dual page tables in sync. Note that

TPT-opt is also subject to the same cache invalidation over-

heads triggered by INVLPG, and TPT-naive has no additional

overheads because page table contents are always accessed

via non-TPT page tables in kernel space.

We perform the same experiment to measure the perfor-

mance of mapping anonymous memory, by evaluating the

mmap system call with the MAP_POPULATE flag. We do not ob-

serve a performance difference between the configurations, as

the majority of time is spent on physical memory allocations

and zeroing page contents.

TPT’s extra logic to manipulate dual page tables has a

small performance impact, and does not affect the end-to-end

results on our evaluated applications (see §6.4). Such low

overheads to synchronize modifications across page tables

are corroborated by prior work [3, 53].

Process spawning. We evaluate the performance of Spawn

from the Unixbench benchmark suite [67]. Spawn is a

fork/wait-type workload, which measures the number of times

a process can fork and reap a child that immediately exits.

Fig. 7 shows that EPT, TPT-opt, and TPT-naive are sub-

jected to the adverse effects of PWC flushes as the fork
system call performs TLB invalidations. The additional oper-

ations in TPT (maintaining dual page tables) lead to a 1.06×
slowdown over EPT. In comparison, shadow incurs a 5.18×
slowdown over EPT due to VMEXITs induced by TLB invali-

dation and page faults.

2Kron graph [38] scale: 229, average degree: 16
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Figure 8: Relative slowdown on applications benchmarks over native 4K
4K (Lower is better.)

Figure 9: Memcached throughput-latency for different trans-

lation mechanisms (Lower is better.)

Conclusions: TPT enables substantially faster page table ma-

nipulations compared to Shadow by eliminating VMEXITs. It

exhibits higher page table manipulation costs over EPT and

native, but they have negligible impact on end-to-end applica-

tion performance, as shown in §6.4.

6.4 Application benchmarks

We evaluate TPT on the application benchmarks listed in Ta-

ble 3, which are commonly used to evaluate of data centers

workloads [27, 53]. All benchmarks, apart from Memcached

and kcbench, execute with 8 threads. We execute Memcached

with a single thread because we do not have enough client

cores to saturate more server threads. For maximum perfor-

mance, Memcached uses the VMA [41] library for user-level

I/O. We evaluate kcbench with a single thread because we

need to model performance in the face of emulation hypercalls

(as explained in §6.1).

Fig. 8 shows the relative slowdown of all the evaluated con-

figurations over Native 4K
4K . TPT-opt matches the performance

of Native for all workloads, under all page size configurations.

EPT exhibits significant slowdowns in workloads with ran-

dom memory accesses, such as GUPS and PR. Overheads

for Shadow are apparent in workloads that perform memory

mappings, such as process spawning (kcbench), and dynamic

memory allocation with page table modifications (CC and

GUPS). TPT-naive exhibits a slowdown only on GUPS with

the 4K
4K configuration, of 1.25×. GUPS is a random mem-

ory access benchmark, which correlates with our previous

results for the random access micro-benchmark in Fig. 6. The

geometric mean of the slowdown for TPT-naive is of just 3%.

Huge pages reduce the virtualization overheads of both

EPT and Shadow, as well as improve the performance of Na-

tive execution, because they reduce TLB misses and page

walk costs. Huge pages substantially decrease overheads in

EPT as they reduce the number of steps on each dimension of

the walk. EPT, however, still exhibits noticeable slowdowns

with huge pages over TPT-opt and Native. Shadow’s over-

heads with huge pages decrease, as 2 MiB mappings, com-

pared to 4 KiB ones, induce less VMEXITs to sync the shadow

page tables with the guest’s page table mappings.

Memcached. We single out the Memcached benchmark, be-

cause it is latency-sensitive. Fig. 9 shows the throughput-

latency graph of the 99th percentile of Memcached serving

Facebook’s ETC requests, with an SLA of 500 μs (following

previous work [18]). Although the ETC access distribution is

skewed, the keys are small in size and randomly distributed.

This affects the overall access distribution of the workload,

which exhibits a random memory access pattern.

EPT performs the worst due to the random memory ac-

cesses. Shadow, Native, and TPT-opt perform similarly in

both page size configurations. This is expected because no

new memory allocations occur during the measured portion of

the workload. TPT-naive under the 4K
4K configuration crosses

the SLA with 4% lower throughput than TPT-opt. The mean

latency exhibits the same behavior as the 99th percentile, al-

though the knee of the curves occurs at a higher throughput.

Conclusions: The performance of TPT matches Native, and

systematically outperforms Shadow and EPT on all bench-

marks where page table management or memory access per-

formance dominates, respectively, even with huge pages.

6.5 Impact of 1 GiB huge pages

We now evaluate the same applications in §6.4 with EPT 2M
1G ,

using 1 GiB host pages (typically unfeasible in a production

system). The applications in Fig. 8 with 1 GiB pages only

show a 2.5% speedup (geometric mean) compared to our

previous EPT 2M
2M results, which would correspond to a 1.16×

slowdown over Native and TPT-opt. In turn, Memcached’s

throughput only increases by 2.5% with 1 GiB pages, which
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corresponds to a 1.04× slowdown over TPT-opt and Native.

Conclusions: Unlike TPT, 1GiB huge pages do not eliminate

nested paging overheads completely.

6.6 Memory overheads

Guest. Non-TPT processes have no memory overheads, but

TPT processes incur a small overhead to hold the TPT page

tables. The TPT page tables only map the user space pages

of the process and do not map the entire system memory and

kernel space. A process with a sequential memory mapping of

n pages incurs an additional (1−� page_size
2MiB �) · � n

236 �+� n
227 �+

� n
218 �+ � n

29 �. For example, a mapping of 1 GiB with 4 KiB

pages incurs an extra 2 MiB-worth of TPT page tables.

Host. TPT’s guest address map requires 8 B of host memory

per GFN to hold the HFN. Therefore, a 64 GiB VM consumes

256 KiB or 128 MiB of host memory if the host utilizes 2 MiB

or 4 KiB pages respectively (less than 0.2% in both cases).

Conclusions: TPT only adds small memory overheads in

guests and hosts, making it practical for adoption.

7 Related Work
Prior work either attempts to improve existing virtualization

mechanisms [27, 31, 46, 50, 53, 70], thus inheriting their short-

comings, or introduces invasive hardware changes, potentially

changing the behavior of VMs compared to native execu-

tion [5–7, 15, 19, 23, 45, 55, 62].

Hardware-based virtualization. DVMT [6] proposes a soft-

ware MMU architecture where applications/VMs can use their

own address translation structures. DVMT also uses tag-based

frame protection for isolation, but retains a two-dimensional

translation approach in VMs, albeit with customizable trans-

lation structures on each dimension.

Sha et al. [19] propose new paging schemes for processors

with software MMUs. The schemes reduce the page walk cost

in nested paging by incorporating flat nested page table [5],

or reduce the cost of updating guest page tables in shadow

paging by intercepting TLB flushes. However, it introduces

a software MMU and constraints to guest physical address

space size, making it difficult to apply to modern machines

and large memory sizes, respectively.

Several studies propose to redesign paging structures. Com-

promis [23] uses direct segments, but requires the reservation

of variable-length physical memory areas for segments, which

significantly compromises the flexibility of memory manage-

ment in hypervisors. Chang et al. [55] propose to flatten 2

levels of page tables to reduce the cost of page walks by half.

This approach increases the cost and complexity of managing

page tables, and its cost reduction is limited. Nested Elastic

Cuckoo Page Tables [62] utilize hashed page tables to reduce

the nested page walk cost. However, replacing the existing

radix page tables with hashed page tables requires significant

changes to existing software and hardware ecosystems.

Caching and prefetching are also effective at hiding trans-

lation latency. Thomas et al. [15] explored new MMU caches,

including today’s partial walk caches in AMD and Intel pro-

cessors. ASAP [45] reduces address translation latency by

storing multiple page tables contiguously and introducing a

hardware prefetcher for page walks. Caching does not fully

eliminate the memory translation costs, and prefetching can

result in mispredictions and numerous memory accesses to

the page table when accessing large virtual memory areas.

MMU caches and prefetching are directly applicable to TPT.

Improving virtualization. Agile paging [27] combines

shadow and nested paging to reduce the hypervisor inter-

vention cost on page table updates. It requires more memory

accesses per TLB miss than native machines and TPT.

On-demand virtualization [31] enables virtualization dy-

namically to migrating bare-metal machines, and disables

virtualization after the migration. This approach only applies

to bare-metal machine migration, and cannot be generalized:

it does not support more than a single VM in a bare-metal

machine, and cannot enforce isolation between the VM and

the hypervisor, because it relies on identity mappings (1:1)

for nested translation between the VM and the hypervisor.

8 Conclusions
TPT is a new approach to memory virtualization, which

achieves near-native translation performance for memory-

intensive applications in VMs. In TPT, VMs regain control

over their translation structures, while maintaining memory

isolation across VMs by leveraging emerging physical mem-

ory protection technologies. TPT is compatible with both

TPT and non-TPT guests, and can be selectively applied to

processes running within any TPT-aware VM.
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Efficient Memory Overcommitment for I/O Passthrough Enabled VMs
via Fine-grained Page Meta-data Management

Yaohui Wang, Ben Luo, Yibin Shen
Alibaba Group

Abstract
In virtualization systems, guest memory overcommitment

helps to improve the utilization of the host memory re-
source. However, the widely adopted I/O passthrough tech-
nique makes this task not intuitive since the hypervisor must
avoid DMA (Direct Memory Access) failures when the I/O
device accesses the guest memory. There already exist sev-
eral solutions, for example, IOPF (I/O Page Fault) can fix
DMA failures by allowing page fault triggered from the I/O
device side, vIOMMU and coIOMMU avoid DMA failures
by monitoring the DMA buffers in the guest. However, these
solutions all face the performance concerns introduced by the
memory backup/restore mechanism, i.e., memory swapping.
Some free page based methods (e.g., Ballooning, Free Page
Reporting, Hyperupcall) are free from memory swapping,
but they either are not DMA-safe or introduce high guest
communication overhead. In this paper, we propose V-Probe,
a high-efficiency approach to achieve memory overcommit-
ment for I/O passthrough enabled VMs. Using fine-grained
page meta-data management, V-Probe allows the hypervisor
to inspect and reclaim guest free pages actively and efficiently
while guaranteeing DMA-safety. Experiments show that, for
both memory reclamation and reallocation, the overhead of
V-Probe is in the scale of microseconds, which is faster than
Ballooning and IOPF based methods by two orders of magni-
tude. And our micro-benchmark and macro-benchmark show
that V-Probe limits the performance impact of memory over-
commitment to a low level.

1 Introduction

In virtualization systems, the total memory size of a VM
(Virtual Machine) is commonly constant while it is running,
but the working set of memory (i.e., memory accessed ac-
tively) inside a VM is usually a subset of the total mem-
ory [11, 17, 36, 42, 47]. This results in the inefficiency of
memory resource utilization [28, 39]. Memory overcommit-
ment [4,6,7,9,19,26,37,40,44] helps to mitigate this problem.

It reclaims cold memory (i.e., memory not accessed recently)
from a VM, and reallocates the memory to other VMs on
demand to increase memory utilization.

However, the widely adopted I/O passthrough technique [3,
5, 12, 15, 26, 27, 41], which significantly reduces the overhead
of I/O virtualization [1, 21, 24], requires the hypervisor to
keep a fixed memory mapping for the VM during its life cy-
cle to avoid potential DMA failures [4, 26, 40]. This highly
limits the ability of memory overcommitment since the mem-
ory reclamation will change the memory mapping of a VM
dynamically (Section 2).

Previous work tries to solve the contradiction between I/O
passthrough and memory overcommitment in two different
ways. The first is to introduce the IOPF (I/O Page Fault)
mechanism [25, 26, 34]. It allows an I/O device to notify the
hypervisor by triggering page faults when the target DMA
buffer does not reside in the main memory. After the hyper-
visor repairs the IOPT (I/O Page Table) entry for the faulted
IOVA (I/O Virtual Address), the device can replay the pre-
viously failed DMA request. The second is to monitor the
guest DMA buffers using the PV (Para-virtualization) tech-
nique [4, 10, 11, 40, 44]. Such solutions include vIOMMU [4]
and coIOMMU [40]. They use frontend drivers in the guest
to inform the hypervisor with DMA buffer alloc/free events.
With such knowledge, the hypervisor always keeps the mem-
ory mapping of the DMA buffers and thus prevents DMA
failures.

Although the above solutions allow memory overcommit-
ment to coexist with the I/O passthrough technique, they face
several deficiencies. The first is the compatibility issue, which
makes them currently less practical. For example, the IOPF
solution requires designated hardware which is not widely
supported by hardware manufacturers. And the coIOMMU
solution needs changes to the guest OS and is still not sup-
ported by off-the-shelf OSes (e.g., the Linux upstream). But
even though the compatibility issue can be fixed over time (by
evolving the hardware/software), the second issue – perfor-
mance issue – is unavoidable. When doing memory reclama-
tion/reallocation, these solutions need to backup/restore the
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memory content using memory swapping [6, 20, 29, 30, 32].
The overhead it introduces not only slows down the mem-
ory reclamation process, but may also cause performance
oscillations to the VM and hurts the VM’s SLO [6, 49, 50].

While memory swapping is costly, reclaiming guest free
pages [44,45] is a good way to eliminate such overhead, since
the content in free pages is meaningless. But because of the
semantic gap in virtualization systems, free page reclamation
methods usually rely on the communication with the frontend
driver running inside the guest to obtain the knowledge of
guest free pages. The guest communication introduces extra
overhead and increases the response time for the memory
reclamation requests (Section 5.1.2). The recently proposed
free page inspecting method – Hyperupcall [7] – helps to
eliminate such overhead. When doing memory reclamation,
Hyperupcall allows the hypervisor to actively invoke the guest
injected eBPF functions to inspect guest free pages. How-
ever, guaranteeing DMA-safety is a challenging task with this
method. In Hyperupcall, since the guest is agnostic to the
hypervisor’s memory reclamation actions, it may allocate a
free page, whose underlying physical page is reclaimed by
the hypervisor, as a DMA buffer. Such behavior cannot be
perceived by the hypervisor, so it does not have a chance to
repair the memory mapping for the DMA buffer, which will
further cause DMA failures (Section 2.2.3).

In this paper, we propose V-Probe to address the perfor-
mance and DMA-safety challenges of memory overcommit-
ment for I/O passthrough enabled VMs. V-Probe targets guest
free pages to eliminate the costly overhead of memory swap-
ping. Inspired by Hyperupcall [7], V-Probe uses guest injected
helper functions to detect guest free pages actively, which
avoids the communication overhead with the guest. But in-
stead of using eBPF, V-Probe uses raw binary helper functions.
This avoids the complex eBPF dependencies in the guest OS
required by Hyperupcall. Such simplicity makes the deploy-
ment of the method easier. V-Probe uses the SFI (Software
Fault Isolation) technique [13, 31, 38, 43, 48], which performs
strict rule-based instruction-level checks to the injected binary,
to prevent malicious code. Using fine-grained page meta-data
management, V-Probe not only manages the memory map-
ping of the reclaimed free pages but also monitors their cor-
responding page meta-data. This allows V-Probe to react to
guest memory allocation events and prevent potential DMA
failures. Experiments show that the overhead of V-Probe is
in the scale of microseconds. Compared to Ballooning and
IOPF, it is faster by two orders of magnitude in both mem-
ory reclamation and reallocation. Our micro-benchmark and
macro-benchmark show that V-Probe limits the performance
impact of memory overcommitment to a low level.

We summarize our contribution as follows:

• We conduct a systematical study of previous VM mem-
ory overcommitment methods and characterize these
methods in different aspects to provide an overview.

• We propose V-Probe, an efficient memory overcommit-
ment method that targets guest free pages and guarantees
DMA-safety for I/O passthrough enabled VMs.

• We evaluate the overhead of V-Probe, and assess its
performance in both micro-benchmark and macro-
benchmark tests. Results show that V-Probe achieves low
overhead and limits the performance impact of memory
overcommitment to a low level.

2 Motivation

2.1 I/O Passthrough & DMA-safety

Figure 1: The address translation for CPU and I/O devices in
modern hardware architectures. Page faults in the I/O device
side will trigger DMA failures.

I/O passthrough, which allows the guest OS to directly
interact with the underlying hardware, is widely used in virtu-
alization systems [15,16]. Using I/O passthrough, a peripheral
device can directly access the guest memory through DMA
without the intervention of the CPU. It significantly decreases
the overhead of guest I/O operations and is also required
by the emerging high-performance RDMA (Remote Direct
Memory Access) applications [22, 23, 46]. This makes I/O
passthrough an irreplaceable part of virtualization systems
like the public cloud.

In the same way that the CPU MMU (Memory Manage-
ment Unit) needs a page table to translate GPA (Guest Physi-
cal Address) to HPA (Host Physical Address), devices’ DMA
requests rely on the IOPT to translate IOVA (I/O Virtual Ad-
dress, it is usually the same as GPA) to HPA. On the CPU side,
if the accessed GPA does not have a valid page table entry,
then a page fault will be triggered. The hypervisor will try to
fix the memory mapping in the page table, and then resume
the guest OS execution from where it triggers the page fault.
On the device side, to add IOPF support, the device needs
the ability to replay the once failed DMA request after the
hypervisor fixes the invalid IOPT entry. But unfortunately,
most off-the-shelf devices do not support such mechanism.
So they require that all DMA requests must always succeed
or they will result in DMA failure and crash of the guest OS
(Figure 1). This implies that an I/O passthrough enabled VM
has no tolerance to IOPT entry missing [4, 25, 26, 40].
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Table 1: The characteristics of the memory reclamation methods from different dimensions.

Methods DMA-safety
Hardware

Compatibility
Guest

Compatibility
Main

Overhead
IOPF DMA-safe Dedicated hardware No requirements Memory swapping

vIOMMU DMA-safe General hardware Frontend driver Memory swapping
coIOMMU DMA-safe General hardware Frontend driver Memory swapping
Ballooning DMA-safe General hardware Frontend driver Guest communication

Free Page Reporting DMA-unsafe General hardware Frontend driver Guest communication
Hyperupcall DMA-unsafe General hardware eBPF tool-chain Extremely low overhead

In memory overcommitment, the MMU page table entry
and the IOPT entry of the reclaimed page will both be invali-
dated after memory reclamation. As the hypervisor is agnostic
to whether a page is used for DMA in the guest, the reclaimed
page may be a DMA buffer. When a DMA request targeting
the reclaimed DMA buffer arrives, the missing IOPT entry
will cause DMA failure. To avoid potential DMA failures, the
hypervisor needs to disable memory overcommitment, and
statically pin the entire memory of a VM, i.e., keep a fixed
memory mapping for the VM during its life cycle.

2.2 Related Work
We discuss existing memory reclamation methods in the as-
pect of DMA-safety. We also characterize them in other im-
portant dimensions like compatibility and performance. We
summarize them in Table 1.

2.2.1 I/O Page Fault

IOPF [25, 26, 34] is a hardware feature. When DMA failure
occurs, IOPF allows a device to generate a page fault excep-
tion to the CPU, and replay the DMA request after the OS
repairs the memory mapping. So by using IOPF, memory
overcommitment is guaranteed to be DMA-safe.

As IOPF is transparent to the guest, it has no requirements
for the guest OSes. However, it faces the issue of poor hard-
ware compatibility as it requires designated hardware devices.
Although the PCIe specification [34] has been extended to
support IOPF since 2009, with the extensions of ATS (Ad-
dress Translation Service) and PRI (Page Request Interface),
the practice of such standard moves slowly. Currently, few
off-the-shelf I/O device supports IOPF. Although manufactur-
ers like AMD and Arm have introduced ATS and PRI to their
SoC design [2, 8], the absence of PCIe devices that supports
IOPF makes the IOPF call chain incomplete.

Even though the hardware compatibility issue can be
fixed over time, the performance issue is unavoidable.
Memory overcommitment depending on IOPF needs to
backup/restore the memory content when doing memory
reclamation/reallocation using memory swapping. Memory
swapping introduces I/O overhead since the contents of the
reclaimed memory are usually stored in storage media which

is much slower than the main memory. Another method of
memory swapping is memory compression. It introduces CPU
overhead since the compress/decompress process is a heavy
computing task. The overhead of memory swapping not only
slows down the hypervisor’s reaction to memory reclamation
requests, but also causes performance oscillation to the VM
and degrades the VM’s SLO, especially when a VM faces a
burst memory pressure and triggers a large number of page
faults in a short time.

Meanwhile, the hypervisor’s memory reclamation mech-
anism may also conflict with the memory reclamation in-
side the guest – The same memory page may be reclaimed
twice, once by the guest and once by the hypervisor. In
such a case, the guest’s access to the memory page will trig-
ger page faults twice, once trapped to the guest kernel and
once to the hypervisor. This is the so-called double paging
anomaly [14, 18, 33, 44] which introduces extra overhead to
memory reclamation.

2.2.2 Monitoring DMA Buffers

Another way to avoid DMA failure is to monitor DMA buffer
allocations in the guests. It implies two parts. First, when the
hypervisor reclaims a guest page, the monitor tells whether it
is a DMA buffer. Second, when the guest allocates a DMA
buffer whose underlying page is reclaimed, the monitor noti-
fies the hypervisor to fix the memory mapping in time. It is a
software solution and does not rely on designated hardware.

vIOMMU [4] is one such solution. It exposes an emulated
IOMMU (Input-output Memory Management Unit) to the
guest and enables the hypervisor to intercept, monitor, and
act upon DMA remapping operations. coIOMMU [40] is an-
other one. It decouples the memory protection and pinning
functionality in vIOMMU, which significantly improves the
performance. But coIOMMU needs extensive changes to the
guest OS, which results in the guest OS compatibility issue.
At the same time, although monitoring guest DMA buffers
guarantees DMA-safety, it still faces similar performance is-
sues as the IOPF solution because of the need for memory
swapping when doing memory reclamation/reallocation.
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Figure 2: The free memory proportion of 10,000 VMs ran-
domly sampled from the Alibaba cloud in one week period.
The X-axis is the time, the Y-axis is the sum of the VMs’
free memory size divided by the sum of the VMs’ occupied
memory size.

2.2.3 Free Page Reclamation

Free page reclamation targets on guest free pages. The quan-
tity of guest free pages is considerable. Figure 2 shows the
free memory proportion statistics of 10,000 VMs randomly
sampled from the Alibaba cloud in one week period. As it
shows, about 25.3% of the VMs’ memory is free and this
proportion is stable over time. At the same time, reclaiming
free pages helps to eliminate the memory swapping overhead,
since the contents of free pages are meaningless.

Ballooning [44] is a classical PV method that targets guest
free page reclamation. It contains a frontend driver running
in the guest, and a backend driver running in the hypervisor.
The frontend driver can "inflate" to occupy the guest free
pages and report them to the hypervisor, then the backend
driver can reclaim those pages. The reclaimed GPA area is
not allocatable in the guest until the hypervisor reallocates
new pages for it. This can prevent reclaimed GPA areas to be
used as DMA buffers, and thus avoids DMA failures.

However, the communication overhead between the fron-
tend and backend drivers (Section 5.1.2) brings performance
issues. Similar to the overhead introduced by memory swap-
ping (Section 2.2.1), the communication overhead may also
slow down the hypervisor’s reaction to memory reclamation
request, and cause VM performance oscillation [7, 9, 37].

Except for Ballooning, there are also other methods target-
ing free page reclamation. Free Page Reporting [45] allows
the guest to report its free pages to the hypervisor periodically.
And Hyperupcall [7], allows the hypervisor to inspect guest
free pages without guest intervention. However, guaranteeing
DMA-safety using these methods is a challenging task. As the
memory reclamation action in these methods is transparent
to the guest, the guest may allocate a free page, whose under-
lying physical page is reclaimed, as a DMA buffer. But the
hypervisor will not be notified by this action, thus it does not
have a chance to repair the memory mapping. So following
DMA requests addressing this page will fail and cause DMA
failures. Figure 3 illustrates the scenario. On the other hand,
Free Page Reporting faces the problem of timeliness. Its fron-

Figure 3: In guest free page reclamation, the hypervisor is
agnostic to the DMA buffer allocation in the guest, and fol-
lowing DMA requests will cause DMA failures.

tend driver initiates the reporting procedure with a fixed delay
(2 seconds in Linux’s implementation) after the guest releases
a high-order page. So the hypervisor’s memory reclamation
request may fail even if there are unreclaimed free pages in
the guest.

3 Approach

3.1 Design Goals
Based on our analysis in Section 2, we set our design goals
as follows:

• DMA-safety: I/O passthrough is playing an irreplace-
able part in today’s virtualization systems since it sig-
nificantly improves the guest I/O performance. The de-
sign should avoid DMA failures to make it safe for I/O
passthrough enabled VMs.

• Hardware Compatibility: The design should not rely
on IOPF as IOPF needs designated hardware. This en-
sures the solution is available for a large amount of ex-
isting hardware.

• Guest Compatibility: The design should be compatible
with a wide range of commodity guest OSes. This makes
sure the solution can be easily deployed to existing soft-
ware systems.

• Low Overhead: The overhead of the solution should be
as low as possible. This not only decreases the hyper-
visor’s reaction time for memory requests and enables
the hypervisor to take more aggressive memory reclama-
tion decisions, but also limits the performance impact on
the VMs and guarantees high VM SLO (Service-level
Objective).

According to the summary in Table 1, memory reclama-
tion methods that are unaware of the guest page alloca-
tion status (IOPF, vIOMMU, coIOMMU) require memory
backup/restore for every reclaimed page, which introduces the
overhead of memory swapping. However, obtaining knowl-
edge of guest free pages usually needs communications to the
frontend driver in the guest (Ballooning, Free Page Report-
ing), which introduces communication overhead. Hyperupcall
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achieves low overhead, but it faces two challenges. First, as
mentioned in Section 2.2.3, Hyperupcall is not DMA-safe. Al-
though discarding guest communication makes the execution
of Hyperupcall fast, this also means the guest is agnostic to the
reclamation status of its free pages. The guest may allocate
a reclaimed free page as a DMA buffer and the hypervisor
is not notified by such behavior. It may not have a chance
to fix the memory mapping before the DMA request arrives.
Second, Hyperupcall relies on the complex toolchain of eBPF
and needs modifications to the underlying LLVM compiler.
This increases the deployment complexity of Hyperupcall,
especially when adapting the toolchain to a variety of guest
OSes in the public cloud.

Solving these challenges brings us to the solution of V-
Probe. V-Probe is inspired by Hyperupcall. Like Hyperupcall,
V-Probe allows the hypervisor to actively reclaim guest free
pages without guest intervening. But V-Probe improves the
programming model of Hyperupcall to overcome its complex-
ity. More importantly, V-Probe proposes a novel fine-grained
page meta-data management technique to guarantee DMA-
safety.

3.2 V-Probe Overview

Figure 4 illustrates how V-Probe works. It contains three
parts: (1) V-Probe injector, (2) V-Probe data manager, and (3)
memory reclamation routine. Next, we will explain each part
in detail.

3.2.1 V-Probe Injector

The V-Probe injector is a guest module. It only runs one time
just after the guest finishes starting up. During its execution, it
accomplishes two tasks: (1) page meta-data layout registration
and (2) helper function registration.

In operating systems, like Linux, each physical page has
a corresponding piece of page meta-data to record its usage
state, e.g., the reference count or the allocation status. And
such meta-data is usually organized statically and continu-
ously in ranges of the physical memory. In page meta-data
layout registration, the guest first detects the GPA ranges
where the page meta-data resides. Then it passes this infor-
mation to the hypervisor through the registration API that
V-Probe provides. As the hypervisor is aware of how GPA is
translated to HPA, it can access the guest page meta-data pre-
cisely after obtaining the knowledge of guest page meta-data
GPA ranges.

But only having access to the guest page meta-data is not
enough, the hypervisor needs to understand the meanings
of the bytes in it. So we need the helper functions which
can parse the page meta-data. In helper function registration,
the guest compiles the source codes of helper functions to
hardware native binaries and injects them to the hypervisor
through the registration API of V-Probe. As the formats of

page meta-data can be different among guest OSes, the helper
functions are guest-specific and need to be dynamically com-
piled in the guest.

3.2.2 V-Probe Data Manager

The V-Probe data manager runs in the hypervisor. It provides
registration APIs for the V-Probe injector. The registered
helper functions and page meta-data layout information are
stored here. They help to recognize the status of each page in
the guest when performing memory reclamation.

Since the hypervisor will directly call the helper functions
via the injected binary code, we need a verifier to guarantee
their integrity, i.e., to prevent harmful codes injected from
malicious guests. As the use case of the helper functions
in V-Probe is limited to parsing guest page meta-data, the
logic of the helper functions should be very simple. So the
verifier uses strict rule-based restrictions to verify the injected
binaries, which protects the hypervisor from security attacks
without rejecting honest codes.

The V-Probe data manager also stores the information of
the reclaimed memory set. Each record in the set represents
a reclaimed guest memory area. Its content contains two di-
mensions: the reclaimed GFN (Guest Frame Number) range,
and the GPA range for the corresponding page meta-data.
This information is useful for page refaulting, which will be
explained in the next subsection.

3.2.3 Memory Reclamation Routine

The memory reclamation routine is the core logic to reclaim
free pages from the guest. Its execution is triggered by system
events, like periodic timers, or memory pressure. After the
preparation of the previous steps, the hypervisor can scan and
parse guest page meta-data to inspect the status of each page.

V-Probe solves the DMA-safety problem via fine-grained
page meta-data management. As shown in Figure 5, when
reclaiming guest free pages, V-Probe not only invalidates the
free pages’ mapping in the MMU page table and the I/O
page table but also modifies the page meta-data mapping in
the MMU page table to read-only. The reclaimed memory
set in V-Probe data manager will record the reclaimed GFN
range, along with the GPA range of the corresponding page
meta-data.

When the guest memory management system is going to
allocate a page inside the reclaimed GFN ranges, it will first
write to the corresponding page meta-data, e.g., change the
free flag. This will trigger a page fault on the CPU side as
we have changed the memory mapping of the page meta-data
to read-only after reclamation. The page fault notifies the
hypervisor. Then the hypervisor looks for the corresponding
record in the reclaimed memory set and recovers the memory
mappings for both the pages and the page meta-data. This
mechanism gives the hypervisor the chance to recover the
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Figure 4: The design overview of V-Probe. It contains three parts: V-Probe injector, V-Probe data manager, and the memory
reclamation routine. The V-Probe injector registers helper functions and page page-meta layout information to the V-Probe data
manager. The code and data are used by the memory reclamation routine to inspect guest page status and reclaim free pages. The
details of the design are explained in Section 3.2.

(a) Memory mapping before free page reclamation.

(b) Memory mapping after free page reclamation.

Figure 5: Memory mapping status before and after free page
reclamation. During free page reclamation, V-Probe not only
invalidates the page table entries for the reclaimed pages but
also modifies the mapping of the page meta-data to read-only.
This gives the hypervisor the chance to recover the memory
mapping before the guest uses the page.

memory mapping before the guest uses the page, and thus it
prevents DMA failures.

4 Implementation

In this section, we introduce the implementation details of
V-Probe, which includes four parts: meta-data registration,
helper function registration, memory reclamation routine, and
page fault handler. We also explain the synchronization prob-
lem we face in V-Probe and how we solve this issue.

Our implementation of V-Probe is based on Linux, whose
source code can be easily touched and modified. The hardware
architecture is based on x86_64. The CPU we use is Intel®
Xeon® Platinum 8163 CPU.

4.1 Meta-data Registration
The meta-data of pages in Linux is usually defined as type
struct page. There are three kinds of struct page organization
models in Linux, decided by one of the three compile con-
figurations: CONFIG_FLATMEM, CONFIG_DISCONTIGMEM and
CONFIG_SPARSEMEM_VMEMMAP. But no matter what the con-
figuration is, the struct page data is organized linearly in
ranges of continuous memory in the guest physical address
space. V-Probe injector detects the struct page layout, indi-
cating each struct page memory range with two dimensions:
(1) the start and end GPA of the struct page memory range,
and (2) the start and end GFN that are managed by the range
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of struct page. V-Probe injector registers the information to
the hypervisor, then the hypervisor can locate the struct page
of each guest GFN.

4.2 Helper Functions Registration

(a) The source code and compiled binary of the helper function page_free.
This function is used to parse whether a guest page is free. The function
it calls (PageBuddy) is a Linux built-in function. The size of the compiled
binary is only 17 bytes.

(b) The source code and compiled binary of the helper function page_order.
This function is used to parse how many free pages are adjacent to this page.
The function it calls (page_private) is a Linux built-in function. The size of
the compiled binary is only 5 bytes.

Figure 6: The source codes and their compiled binary of the
two helper functions in V-Probe.

V-Probe relies on the helper functions to parse guest struct
page and obtain the status of the pages. They are injected from
the guest to the hypervisor after the guest finishes starting up.
Since the formats of struct page vary from guests OSes, the
helper functions need to be dynamically compiled in the guest.

Linux uses the buddy system [35] to manage free pages.
It organizes free pages as blocks, and the size of one block
is the order of 2. A buddy system block is identified by the
leading struct page in the block, and it also records the order
of the block. By parsing the struct page, i.e., testing a specific
bit or reading a specific field in it, we can decide whether a
struct page is the leading one in a block, and get the order
of the free page count in this block. In Linux, two kernel
built-in functions, PageBuddy and page_private, help to do
the parsing.

The two helper functions used in V-Probe are shown
in Figure 6b: (1) page_free, which wraps the function
PageBuddy, and (2) page_order, which wraps the function

page_private. These two helper functions are short and sim-
ple, and the sizes of their binary code are also small: 17 bytes
for page_free and 5 bytes for page_order. The definition
of the helper functions requires the noinline decorator, to
ensure they are not compiled to inline functions and can be
called by the hypervisor in a function manner.

To avoid harmful codes injected from malicious guests, we
need a verifier to guarantee the integrity of the helper function
binary. We apply SFI to implement the verifier. As the logic
of the helper functions used in V-Probe are very simple, sim-
plified yet strict checking rules in SFI are enough to protect
the hypervisor from security attacks without rejecting honest
codes. These rules are as follows:

• Register rdi is read-only, register rax is read-write.
Other registers are not allowed to be used.

• The function can only read a limited range of memory,
which is usually the size of the guest struct page, pointed
by the parameter stored in the rdi register.

• The function can not write to any main memory.

• No branch instruction or privileged instruction is al-
lowed.

• The last instruction must be retq.

• The length of the binary is less than 64 bytes.

The above rules protect the hypervisor from being compro-
mised by the injected code for two reasons. First, they make
sure the helper functions obey the convention of a function
call, and no branch nor privileged instructions are allowed.
This implies the instructions inside the call will be executed
sequentially, and the execution will finally return to the caller.
Second, during the function call’s execution, the accesses to
registers and memory are strictly limited to avoid any host
memory corruption. But note that these rules are highly re-
lated to the Intel X86_64 architecture. They need to be re-
designed on other CPU platforms.

4.3 Memory Reclamation Routine
The memory reclamation routine is triggered by host events
(like the memory pressure), and its execution is controlled
by the hypervisor. Algorithm 1 shows the pseudocode of
the procedure. It has two input parameters, GUEST , and
MIN_ORD, which respectively indicate the target guest we
try to reclaim memory from and the minimum order we
want. The procedure iterates through each GFN in the guest
(Line 2) and uses the two helper functions registered before,
GUEST.PAGE_FREE and GUEST.PAGE_ORD, to check
whether the guest page is free and what is the order in the
buddy system (Lines 6-7). If it meets our requirements (Line
8), then we try to reclaim the corresponding pages (Lines
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Algorithm 1 The procedure of memory reclamation

Input: GUEST , MIN_ORD
Output: SUCCESS/FAIL

1: procedure MEMORYRECLAMATION
2: for each GFN in GUEST do
3: if GFN is reclaimed then
4: continue
5: SP← struct page of GFN in GUEST
6: FREE← GUEST.PAGE_FREE(SP)
7: ORD← GUEST.PAGE_ORD(SP)
8: if FREE and ORD≥MIN_ORD then
9: Lock MUTEX

10: Make the struct page GPA range read-only
11: SP′← struct page of GFN in GUEST
12: FREE ′← GUEST.PAGE_FREE(SP′)
13: ORD′← GUEST.PAGE_ORD(SP′)
14: if FREE ′ and ORD′ ≥MIN_ORD then
15: GFNst ← GFN
16: GFNen← GFN +(1 << ORD′)
17: RANGE← [GFNst , GFNen)
18: Unmap EPT in RANGE
19: Unmap IOMMU in RANGE
20: Add RANGE to the reclaimed set
21: Release reclaimed pages to hypervisor
22: Unlock MUTEX
23: return SUCCESS
24: Make the struct page GPA range read-write
25: Unlock MUTEX
26: return FAIL

9-25). The core reclamation logic makes the struct page GPA
range read-only (Line 10), invalidates the memory mapping
in EPT (Extended Page Table) and IOMMU page table for
the reclaimed GFN range (Lines 15-19), adds this range to
the reclaimed set (Line 20), and finally, releases the reclaimed
pages to the hypervisor (Line 21). Algorithm 1 uses the mutex
(Line 9) and the page status double check logic (Lines 11-
14) to avoid synchronization problems, which will be further
explained in Section 4.5.

4.4 Page Fault Handler

Since we have modified the EPT mapping of the struct page
GPA range to read-only for the reclaimed GFNs, when the
guest tries to allocate these pages, it will write to the corre-
sponding struct page to modify the bytes of page status flags.
Thus a page fault is triggered. The pseudocode of the page
fault handler is shown in Algorithm 2. It has two input param-
eters: GUEST and GPA, which respectively indicate the guest
and the accessed GPA that triggers the page fault. First, it calls
GetReclaimedRange to find the reclaimed memory range re-

Algorithm 2 The procedure of page fault handler

Input: GUEST , GPA

1: procedure PAGEFAULTHANDLER
2: Lock MUTEX
3: RANGE← GetReclaimedRange(GUEST , GPA)
4: PAGES← pages reallocated for RANGE
5: Map RANGE to PAGES in EPT
6: Map RANGE to PAGES in IOMMU
7: Remove RANGE from the reclaimed set
8: Make the struct page GPA range read-write
9: Unlock MUTEX

10: return

Input: GUEST , GPA
Output: RANGE

11: procedure GETRECLAIMEDRANGE
12: for each RANGE in the reclaimed set of GUEST do
13: SPst ← the start struct page GPA in RANGE
14: SPen← the end struct page GPA in RANGE
15: if SPst ≤ GPA≤ SPen then
16: return RANGE

sponsible for GPA (Line 3). Then it allocates pages (Line 4),
remaps the EPT and IOMMU page table for this range (Lines
5-6), removes the range from the guest’s reclaimed memory
set (Line 7), and resumes the EPT mapping of the struct page
GPA range to read-write (Line 8).

Function GetReclaimedRange is simplified as a loop for
ease of demonstration. We use the rbtree (Red-black Tree),
which is an implementation of the binary search tree in Linux,
to optimize the performance of memory range inserting, delet-
ing, and searching.

4.5 Synchronization Problem
One challenge for the reclamation process is the synchro-
nization problem: the guest may allocate the pages while we
are reclaiming them, and the status of the guest struct page
may change from "free" to "allocated" within the memory
reclamation routine, which may cause inconsistency in the
system.

Figure 7 show two cases to illustrate how the mutex and
double-checking in Algorithm 1 (Lines 9-14) and Algorithm 2
(Line 2) avoids the racing conditions. In reclaim 1⃝, if the
guest allocates the free pages after the Hypervisor makes the
corresponding struct page GPA range read-only, it will trigger
page fault and the mutex will prevent the page fault handler
to fix the memory mapping before the hypervisor finishes
reclamation. This guarantees the atomicity of the memory
reclamation process and the page fault handling. In reclaim
2⃝, if the guest allocates the free page before the Hypervisor

776    2023 USENIX Annual Technical Conference USENIX Association



Figure 7: Two cases to illustrate how V-Probe solves the
synchronization problem.

makes the corresponding struct page GPA range read-only, the
double-checking will detect such behavior and skip the page,
so as to avoid the inconsistency of the page status knowledge.

5 Evaluation

In this section, we conduct experiments to evaluate V-Probe
in different aspects. First, we evaluate V-Probe’s overhead in
memory reclamation and reallocation tasks. Then we evaluate
its impact on workload performance using both the micro-
benchmark and macro-benchmark.

The experiments are based on the hardware architecture of
Intel® Xeon® Platinum 8163 CPU. The hypervisor is based
on QEMU and KVM. And the memory allocator manages the
underlying memory of guest VMs in 2MB granularity. The
guests in our experiments run Linux OS, each equipped with
2 CPU cores and 4GB main memory.

We use Ballooning and the IOPF based method for com-
parison. For simplicity, we will call the IOPF based method
as IOPF in the following explanation. For memory recla-
mation and reallocation tasks, we compare V-Probe with
both Ballooning and IOPF. For micro-benchmark and macro-
benchmark tests, we only use IOPF for comparison. We do
not use Ballooning for these benchmarks because the frontend
driver of Ballooning will hold the reclaimed free pages and
make them unallocatable in the guest. So if the memory usage
of the task does not exceed the remaining allocatable memory
in the guest, the performance will be the same as the base-
line with no memory reclamation. On the other hand, if the
memory usage of the task exceeds the remaining allocatable
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Figure 8: The time cost of V-Probe, Ballooning and IOPF to
reclaim (reallocate) 2MB memory from (to) the guest. We run
sysbench CPU workloads in the guest to emulate the guest’s
CPU stress.

memory in the guest, the guest will kill the task because of
the OOM (Out of memory) error.

We reclaim 30% of the server’s memory at the beginning
of the each benchmark test. In practice, to avoid host memory
insufficiency, the memory reclamation policies need to limit
the quantity of memory reclaimed from each guest and the
quantity of memory that can be reused by other VMs. 30% of
memory reclamation is an extremely high value in practice.
In this configuration, the benchmark results reveal the perfor-
mance impact limit of V-Probe in a real-world environment.

Since IOPF is not commonly supported by off-the-shelf I/O
devices, we implement IOPF by ourselves using FPGA-based
SmartNIC. The storage media we use for memory swapping
is a hard disk drive, with 250MB/s I/O throughput. Notice
that other methods relying on memory swapping (vIOMMU,
coIOMMU) share similar results with IOPF.

5.1 Overhead
5.1.1 Data Registration

The overall data registration process takes less than 1 second.
The main overhead comes from the helper function compi-
lation and page meta-data layout detection within the guest.
The overhead of data transferring is small as the size of the
registered data is only 232 bytes in our implementation, which
includes the binaries of the helper functions, the page meta-
data layout information, and the extra API-related fields. Also,
as the helper functions are simple and small, the verification
cost is negligible. Data registration only runs one time after
the guest finishes starting up, and its overhead will not impact
the following memory reclamation procedure.

5.1.2 Memory Reclamation and Reallocation

We evaluate the overhead of V-Probe in the memory recla-
mation (reallocation) task by measuring the time it takes to
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reclaim (reallocate) 2MB memory from (to) the guest. For
memory reclamation, the cost refers to the time elapsed be-
tween the initiation of the memory reclamation request and
the moment the hypervisor releases the reclaimed memory
back to the host. For memory reallocation, the cost refers
to the time elapsed between the initiation of the memory
reallocation request and the point at which the hypervisor
establishes the new memory mapping.

We use Ballooning and IOPF for comparison. Dur-
ing memory reclamation (reallocation), we run sysbench
CPU workloads in the guest to emulate the guest’s CPU
stress. Specifically, we run the command ’sysbench cpu
-threads=$(nproc) -time=0 run’ in the guest to make
all of the CPUs busy. We also assess the performance of Bal-
looning when the guest OS is idle, in order to determine the
upper limit of its performance. For each measurement, we run
the operation 10 times and present the average value as the
result.

We will take the memory reclamation task as an example to
analyze the experiment results. The memory reallocation task
shares a similar analysis. As Figure 8 shows, V-Probe takes
only 0.09ms to reclaim 2MB memory on average, while Bal-
looning and IOPF take 6.07ms and 6.88ms respectively. We
analyze the reasons why V-Probe is two orders of magnitude
faster than the other two methods as follows:

• Ballooning relies on the communication with the fron-
tend driver running in the guest when reclaiming mem-
ory from it. The communication introduces a large delay,
especially when the guest is busy with CPU intensive
tasks, which reduces the chance for the thread of the
frontend driver to gain CPU time slice. The overhead
of communication (5.79ms) occupies 95.4% of the total
overhead (6.07ms) when using Ballooning to reclaim
2MB memory. Even if the CPU is not busy in the guest,
the communication overhead (0.53ms) also occupies
65.4% of the total overhead (0.81ms).

• IOPF relies on memory swapping to avoid guest memory
corruption. Memory swapping introduces a large over-
head of disk I/O (8.95ms), which occupies 98.8% of the
total overhead (9.06ms).

• When triggered by events, V-Probe can use the injected
helper functions to inspect the guest free pages actively,
without the time-consuming communication with the
guest. At the same time, since the reclaimed pages are
free memory in the guest and do not contain valuable
data, V-Probe does not need memory swapping, which
avoids the disk I/O overhead.

The memory overhead of V-Probe’s reclamation process
is also small. For each reclaimed memory range, we allocate
a 64B data structure to maintain the necessary data, which
includes the start/end GPA of the struct page and the physical
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Figure 9: The TCP throughput of the baseline, V-Probe, and
IOPF.

page, and other data-structure-specific fields. The overhead is
64B/2MB = 0.031‰ for a 2MB area and 64B/4MB = 0.015‰
for a 4MB area.

5.2 Micro-benchmark
The micro-benchmarks in our evaluation include TCP
throughput and UDP latency, as these two metrics are critical
for many important applications (e.g., file servers, databases,
and key-value stores). The evaluation requires a client-server
experiment setting. We measure the performance impact of
V-Probe on these metrics when a large amount of memory is
reclaimed from the server side and high memory footprint is
triggered by the network stream. We compare V-Probe with
the baseline (i.e., no memory is reclaimed from the guest) and
IOPF.

Although there exist many network performance bench-
mark tools (e.g., netperf ), they only focus on the efficiency
of the network stack and have a low memory footprint, which
means they cannot cover the logic of the memory refault logic
(i.e., trigger page fault and reallocate memory). So we design
and implement our own micro-benchmarks, which have a high
memory footprint while measuring the TCP throughput and
UDP latency.

5.2.1 TCP Throughput

To evaluate TCP throughput, we run a client and a server in
two separate VMs, both equipped with 2 CPU cores and 4GB
main memory. The server serves a 4GB file and the client
will download the file when running the experiment. 30% of
the server’s memory is reclaimed at the beginning of the test.
When the client downloads the file, the server will read the
file from the disk to the in-memory page cache. As Linux
drops the page cache in an on-demand manner, the server
will fill the memory with the page cache until the memory
is insufficient. This implements a high memory footprint of
the experiment and will trigger page refault in the serve. We
record the download speed as the TCP throughput.

Figure 9 shows the throughput changes over time in differ-
ent settings. As the figure shows, the throughput fluctuation
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Figure 10: The CDF of the UDP latency when applying the
baseline, V-Probe and IOPF.

of the baseline and V-Probe are smaller than that of IOPF.
The minimum throughput of the baseline, V-Probe and IOPF
are 97MB/s, 93.1MB/s, and 85.8MB/s respectively. And the
average value is 100.2MB/s, 99.8MB/s, and 97.5MB/s respec-
tively. These results show that V-Probe may degrade the TCP
throughput slightly compared with the baseline, but it is much
better than IOPF.

5.2.2 UDP Latency

To evaluate UDP latency, we run a client and a server in two
separate VMs, both equipped with 2 CPU cores and 4GB
main memory. 30% of the server’s memory is reclaimed at
the beginning of the test. The logic of the UDP server is quite
simple: It listens on a port, accepts a UDP connection request,
allocates a 2MB buffer and accesses it, then sends a response
back to the client. This is to simulate a UDP application with
a high memory footprint. Allocating and accessing buffers
may cause page faults and page reallocations if the underly-
ing memory is reclaimed by the hypervisor. The UDP client
records the latency of each request as the results.

Figure 10 shows the CDF (Cumulative Distribution Func-
tion) of different settings. The 90th percentile latency of the
baseline, V-Probe and IOPF is 0.23ms, 0.39ms and 6.55ms
respectively, and the 99th percentile latency is 1.36ms, 2.43ms
and 8.27ms respectively. The overhead of V-Probe is 69.6%
and 79.4% in the 90th and 99th percentile latency, respectively,
when compared to the baseline. However, it significantly out-
performs IOPF, which introduces approximately 27X and 5X
overhead in the 90th and 99th percentile latency.

5.3 Macro-benchmark
We use Redis, a widely used in-memory key-value database
as the macro-benchmark to evaluate V-Probe. We run a client
and a server in two separate VMs, both equipped with 2 CPU
cores and 4GB main memory. At the beginning of the experi-
ment, we remove all the data from the Redis server database
and reclaim 30% memory from the server. The client runs
redis-benchmark, the official Redis benchmark tool, to con-
tinuously send SET commands to the server. The SET com-
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Figure 11: The Redis QPS when applying baseline, V-Probe,
and IOPF.

mand will randomly write key-value pairs to the in-memory
database. There are 1,000,000 random keys, and the value size
of each SET operation is 2KB. We record the QPS (queries
per second) and the operation latency during the test. We only
test the SET workload because V-Probe is a free-page-based
method, and data insertion is necessary to trigger guest page
allocation, and thus necessary to trigger V-Probe’s memory
reallocation. If we use the GET workload to evaluate V-Probe,
the data in Redis will always stay in the main memory, with no
page fault or memory reallocation operations will not utilize
the functionality of V-Probe.

Figure 11 shows the QPS over time in the different set-
tings. As it shows, the result of V-Probe (12.55K) is close
to the baseline (12.56K). And the result of IOPF (12.31K)
is about 2% lower than the other two. For the tail latency of
each operation (not shown in the figure), the baseline and
V-Probe exhibit a 99.99th percentile latency of 1ms, while
the IOPF exhibits a noticeably higher 99.99th percentile la-
tency of 7ms (the precision of the latency data is limited to
the redis-benchmark tool). This indicates the Redis perfor-
mance while applying V-Probe for memory reclamation is
close to the case with no memory reclamation and better than
applying IOPF.

6 Discussion

6.1 Compatibility

In this paper, we present a Linux-based implementation of
V-Probe which is highly straightforward for two reasons.
First, the V-Probe injector, including the helper functions, is
lightweight (140 LOC (Lines of Code)), and it is dynamically
compiled after the startup of the guest. This means that the
V-Probe injector does not need to change for different releases
of the Linux kernel. Second, V-Probe does not hack any API
in the guest OS. This implies that V-Probe does not enforce
any changes on the guest OS and retains full compatibility for
guest OSes.

V-Probe relies on the continuous arrangement of the guest
page meta-data. Accordingly, while in this paper we examine
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a Linux-based implementation of V-Probe, the adoption of V-
Probe is similar in Unix-like OSes that use a similar memory
management mechanism to Linux. For example, FreeBSD
uses ranges of struct vm_page (like struct page in Linux) to
arrange the page meta-data and uses the buddy system to
manage them.

V-Probe introduces about 1,300 LOC to the hypervisor, as
the logic of V-Probe on the hypervisor side is much more
complex. But this does not impact the practice of V-Probe as
most of the cloud providers use customized hypervisors, and
V-Probe can be easily integrated into these software systems.

V-Probe introduces high hardware compatibility as it only
relies on the basic virtualization features of the CPU. These
features are widely supported by popular CPU platforms such
as Intel, AMD, Arm, and RISC-V. Furthermore, V-Probe does
not rely on IOPF which is not commonly supported by off-
the-shelf I/O devices.

6.2 Fine-grained Page Meta-data Management
Using fine-grained page meta-data management, V-Probe can
effectively avoid DMA failures in I/O passthrough enables
VMs. At the same time, the idea of fine-grained page meta-
data management can also be combined with other free page
reclamation methods to avoid DMA failures. For example,
in Free Page Reporting, except for the free pages, the guest
can also report the page meta-data to the hypervisor. So by
managing the access mode of the guest page meta-data’s GPA
range, Free Page Reporting can avoid DMA failures in the
same way V-Probe does. But unlike V-Probe, which uses
helper functions to inspect guest free pages without notifying
the guest, these methods rely on the frontend drivers to obtain
the guest page status, which means the guest communication
overhead is unavoidable.

6.3 Threats to Validity
There are two threats to the validity of our work. First, this
paper defines and examines an example implementation of the
V-Probe design that is specific to Intel X86_64 architecture
and Linux-based OSes. Therefore, architecture-based and OS-
based assumptions of this example implantation would need to
be adjusted when moving to other architectures and OS types.
However, since V-Probe relies on the continuous arrangement
of the guest page meta-data, V-Probe may not apply to the
OSes that use different ways to arrange the page meta-data.

Second, when reclaiming free pages, V-Probe needs to mod-
ify the memory mapping for the page meta-data GPA range.
But since memory mapping is by the granularity of pages,
the meta-data should reside on the same physical page. So V-
Probe can only reclaim continuous free pages in batches. As a
result, guest free page fragmentation may weaken the memory
reclamation effect of V-Probe. But free page fragmentation in
the guests is usually caused by high memory pressure, which

suggests the system not to reclaim memory from them. Also,
this problem can be mitigated by the memory compaction
functionality in the guest OS.

7 Conclusion

In this paper, we conduct a systematic survey of previous
VM memory reclamation methods and analyze their relation-
ship with the widely deployed I/O passthrough technique.
Based on the analysis, We propose V-Probe, a non-intrusion
and efficient approach to achieve memory overcommitment
for I/O passthrough enabled VMs. Using fine-grained page
meta-data management, V-Probe enables the hypervisor to
actively inspect and reclaim the guest free pages while guar-
anteeing DMA-safety. We implement V-Probe and evaluate
its efficiency in different aspects. Experiment results show
that the overhead of V-Probe is on the micro-second scale and
it has low performance impact on the guest workload. It also
has high compatibility with different hardware platforms and
a wide range of Linux kernel releases, which simplifies the
deployment.
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Abstract
Latency predictability of storage is one important QoS

target of the public clouds. Although modern storage virtual-
ization techniques are devoted to providing fast and scalable
storage for clouds, these works usually concentrate exclu-
sively on giving high IOPS throughput without eliminating
the device-level interference between multi-tenant virtualized
devices and providing latency predictability for cloud tenants
when the cloud infrastructures virtualize millions of the cur-
rent commercially-available but unpredictable NVMe SSDs.

To resolve this issue, we propose a novel local storage vir-
tualization system called LPNS to provide latency-predictable
QoS control for hybrid-deployed local cloud storage, includ-
ing virtualized machines, containers, and bare-metal cloud
services. The OS-level NVMe virtualization LPNS designs re-
liable self-feedback control, flexible I/O queue and command
scheduling, scalable polling design, and involves a determin-
istic network calculus-based formalization method to give
upper bounds to virtualized device latency. The evaluation
demonstrates that LPNS can achieve up to 18.72× latency
optimization of the mainstream NVMe virtualization with
strong latency bounds. LPNS can also increase up to 1.45×
additional throughput and a better latency bound than the
state-of-the-art storage latency control systems.

1 Introduction
Storage virtualization [23, 63] is critical to optimize lim-
ited hardware utilization and simplify storage management
by providing consistent and straightforward I/O manage-
ment interfaces in cloud systems. Since NVMe devices de-
ployed in cloud platforms are usually inadequately utilized
in terms of throughput [34, 35, 52], most previous works con-
centrated exclusively on achieving high-throughput targets,
including software-level virtualization such as SPDK [25]
and MDev-NVMe [55], the hardware-assisted virtualization
such as the direct pass-through [70] and Single Root I/O Vir-
tualization (SR-IOV) [14], and hardware/software co-design
researches such as LeapIO [41] and FVM [37]. However,

when more latency-critical businesses, in addition to the
throughput-intensive businesses, have been migrating to the
public cloud [12] for performance benefit, a fundamental con-
tradiction between predictable latency and efficiency of the
device sharing occurs when cloud platforms integrate stor-
age virtualization: On the one hand, cloud service providers
(CSP) tend to oversubscribe infrastructures by sharing them
among multiple tenants to achieve better Input/Output Op-
erations Per Second (IOPS) performance and higher energy
efficiency [28, 44, 45]. On the other hand, the latency-critical
tenants expect exclusive performance to ensure the latency
bound of their services without worrying about interference
from other guest machines that share the same NVMe SSD,
i.e., latency-predictable Quality of Service (QoS).

The mainstream storage solutions can usually ensure high
total throughput [25, 37, 41, 55, 57, 70] or fair bandwidth shar-
ing [21, 71] but lack support for latency performance isola-
tion between multi-tenant virtualized storage. For example,
we quote a contention scenario where two virtual machines
(VM1, VM2) share one Optane P5800X SSD [24] by using
SPDK, and we use Figure 1 to show how the interference
between these VMs hurts the average latency performance.
In VM1, an IOPS-lightweight but latency-sensitive workload
runs with a service level of agreement (SLA) at 30µs latency,
while VM2 generates a throughput-intensive workload every
10 seconds as a competitor. Unfortunately, VM1 suffers a
severe performance thrashing of over 250% additional latency
as the workload weight of VM2 fluctuates, missing the SLA
during its running time. The reason for this phenomenon is
that the general storage controller naively handles all hard-
ware queues used by different processes in a round-robin
fashion [66], so the hardware queues are saturated with the
I/O commands of the workload w2, resulting in a long queue
operation time and unpredictable latency of w1.

In order to solve the performance interference issue and pro-
vide latency-predictable QoS, we propose LPNS, an NVMe
virtualization solution that provides latency-predictable virtu-
alized storage in NVMe virtualization and sharing scenarios.
LPNS replaces the original static I/O queue allocation be-
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Figure 1: The workload w1 in the VM1 interfered by intensive
workloads w2 in the VM2 sharing the same SSD. The w1’s
average latency misses the 30µs SLA.

tween hardware and virtualized devices with dynamic queue
scheduling. LPNS introduces a fine-grained I/O command
scheduling to throttle the competing throughput-intensive
workloads to constrain the latency of latency-sensitive work-
loads. Moreover, we have pioneered the introduction of deter-
ministic network calculus [5, 38] into LPNS to provide math-
ematical modeling for the latency predictability of virtualized
storage, giving a definite latency bound by abstracting the
arrival/service curves for storage systems. The experiments
show that LPNS can guarantee the latency-predictable QoS
and achieve up to 11.57/18.72× latency optimization over the
SPDK/SR-IOV by eliminating the device-level interference.
LPNS can also achieve better latency bounds (50µs) than the
state-of-the-art mechanism K2 [48] (80µs) for real-world I/O
trace on P5800X and increase up to 1.45× additional total
throughput over K2 (1.61GB/s, equivalent to 47.66% of the
maximum throughput of a P5800X SSD).

To sum up, we make the following contributions:
(1) We analyze the device-level latency interference of the

commercially-available but unpredictable NVMe SSDs, and
we argue the significance of overcoming this interference
from the OS-level storage virtualization design aspects.

(2) We design LPNS, the first OS-level NVMe virtualiza-
tion solution with latency-predictable QoS enhancement for
unpredictable NVMe SSDs in clouds. LPNS designs a self-
feedback mechanism that adaptively provides predictable la-
tency according to the workload distributions of multi-tenant
VMs. LPNS involves deterministic network calculus to verify
the latency upper bound.

(3) We implement LPNS based on mediated pass-through
to enhance the original Linux NVMe driver in providing
latency-predictable QoS for hybrid-deployed local virtual-
ized and cloud-native storage. All the CSPs can directly use
the OS-level LPNS to provide latency-predictable NVMe stor-
age virtualization and sharing without hardware modification
and purchase costs.

(4) The evaluations prove the effectiveness of the latency-
predictable QoS control of LPNS, compared with previous
storage virtualization and other latency QoS control solutions.

The rest of the paper is organized as follows: Section 2 in-
troduces the technical backgrounds of NVMe, cloud storage,
and network calculus. Section 3 introduces the motivation for
designing scalable and latency-predicable cloud storage virtu-
alization. Section 4 describes the design and implementation

of LPNS. Section 5 demonstrates the evaluation results of
LPNS. Section 6 introduces the related works, and Section 7
concludes this paper.

2 Background and Motivation

2.1 NVMe Storage
The NVMe SSDs are now widely used in public clouds. The
NVMe specification [51] is an efficient and scalable interface
designed for high-performance SSDs. NVMe supports up to
65,535 I/O queues whose depth can be up to 65,535. Specifi-
cally, each queue pair contains a submission queue (SQ) and a
completion queue (CQ). During each I/O execution, the host
OS stores IO commands into the SQ and rings the doorbell,
and the completion messages are placed into the correspond-
ing CQ by the SSD controller. With the high-parallel SQ/CQ
interaction between the host and the SSD controller, NVMe
SSDs can obtain high throughput and micro-second-level la-
tency advantages over the traditional interfaces [9], wherein
both throughput and latency are extremely significant and
mutually restrictive QoS targets of the cloud storage systems.

2.2 Local NVMe Storage for Cloud Services
For better performance and resource utilization, public cloud
infrastructures usually adopt two types of solutions to manage
their millions of NVMe SSDs. One is running cloud instances
or workloads directly on the native servers and using the local
storage; another is providing efficient data access to a remote
storage pool or dedicated storage servers [36, 41, 46].

However, not all cloud services prefer remote storage so-
lutions, for example, Elastic Compute Services (ECS). We
infer there are three main reasons: (1) The remote storage
performance is influenced not only by the storage system but
also by network devices, which introduces an additional bot-
tleneck of latency performance incurred by the network. (2)
Remote storage uses expensive network devices, incurring
additional purchase costs to cloud infrastructures and finally
hurting the interests of the cloud tenants. (3) Cloud tenants
may lease the bare-metal servers or services to customize
their own distributed computing and storage clusters, which
conflicts with the remote storage architectures.

In contrast, the local storage technique route can provide
fast and cheap storage for the public clouds with the widely-
used storage virtualization [7, 25, 37, 55, 57, 70]. For example,
MDev-NVMe [55] proposes a novel I/O queue pass-through
of NVMe hardware queue resources to achieve near-native
performance for cloud instance storage. Moreover, local stor-
age virtualization is more flexible in providing QoS guaran-
tees for cloud services, especially the latency-sensitive ser-
vices that suffer the performance unpredictability of network
systems. Therefore, in this paper, we aim to provide latency-
predictable virtualized storage services by following the local
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storage virtualization technique route.

2.3 Deterministic Network Calculus

Deterministic Network Calculus (DNC) [38] is used to cal-
culate theoretical worst-case performance guarantees for net-
works of queues and schedulers, which is commonly used
for communication networks to provide predictable latency
in typical deterministic queuing systems [13, 40, 59, 65, 69].
The theory’s three basic concepts are suitable for providing
predictable-latency performance in NVMe virtualization: the
arrival curve, the service curve, and the virtual delay. The
arrival curve expresses the upper bounds of the number of
events that come from the sources over any time. The ser-
vice curve refers to the guarantee of flows offered by the
system and describes the service capability of the system. For
a definite system, if the arrival curve and service curve are
determined, the virtual delay referring to the delay that an
event arriving at a particular time will suffer, can be deduced.
The deterministic network calculus proves that the maximum
horizontal distance between a workload’s arrival curve and
service curve is a tight worst-case bound on latency.

According to the NVMe specification and the I/O per-
formance and behavior of the commercial-available NVMe
SSDs, we can make a performance assumption that the pro-
cessing capability of the modern NVMe SSD is stable and
constant at most of their working time except during garbage
collection and the SSDs serve the I/O command process-
ing in First-In-First-Out (FIFO) policies. Moreover, for the
multi-tenant virtual devices sharing the same NVMe SSD,
we assume that throughput-intensive workloads can use the
maximum queue depth and latency-sensitive processes use a
queue depth of 1. The arrival curve refers to the actual IOPS
of VM workloads, which determines the commands rate of
multiple-tenant workloads that the SSD receives. The service
curve guarantees the least command rate that the SSD can
process during a busy period. The virtual delay is precisely
the I/O latency of the latency-sensitive workload, which is the
focus of our attention for latency-predictable QoS in storage
virtualization.

3 Motivation
The clouds aim to provide latency-predictable Storage QoS
for VMs so their virtual storage devices can have a latency
bound for storage I/O operations. However, state-of-the-art
storage virtualization [14, 25, 37, 41, 55] cannot solve the
device-side latency interference issue and cannot provide
latency-predictable QoS. The device-side latency interfer-
ence refers to a phenomenon that the guarantee for the VM
with latency-predictable QoS fails when multiple VMs with-
out latency-predictable QoS run throughput-intensive work-
loads and compete for the same underlying NVMe SSD, in-
curring the latency deterioration, unbounded latency, and the

miss of latency QoS (or SLA) just like the Figure 1 example.
However, even the state-of-the-art NVMe virtualization

techniques (including SPDK, SR-IOV, and MDev-NVMe) ne-
glect the importance of eliminating performance interference
in multi-tenant storage-sharing scenarios. The more intensive
the competitor’s workload is, the more severe performance
interference happens. We use MDev-NVMe and SPDK vhost-
blk to share one Intel Optane P5800X SSD into two virtu-
alized devices. We also use one SR-IOV-capable Samsung
PM1735 to build two VFs and use MDev-NVMe as a compar-
ison. In the test cases, VM1 runs a latency-sensitive workload
(an FIO [26] random read or write benchmark with iodepth=1,
numjobs=1), with a growing-intensive 4K random write work-
load in VM2 by increasing the numjobs and iodepth param-
eters of FIO. We separately show the latency performance
of the latency-sensitive workload of VM1 in Figure 2, which
shows that there is an up to 4.7× latency overhead in MDev-
NVMe, 16.5 × overhead in SPDK, and up to 6.1× overhead
in SR-IOV over the VM1 workload.
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Figure 2: Latency interference between two virtualized de-
vices with the state-of-the-art NVMe virtualization. (If VM1
monopolizes one P5800X, the read/write latency of the VM1
workload is 11.9/13.1µs with MDev and 11.9/13.3µs with
SPDK. If VM1 monopolizes one PM1735, the read/write la-
tency is 71.9/17.6µs on MDev and 74.9/19.9µs with SR-IOV.)

We further analyze the latency distribution of different I/O
phases of NVMe virtualization. We choose MDev-NVMe as
a representative to virtualize a P5800X and summarize the
results in Table 1. We find that the VM1’s average latency
on the NVMe controller grows from 62.5% to 93.0% of the
total latency with the increasing IOPS of the VM2 workload.
This phenomenon proves that more severe I/O congestion
happens when more commands from the competitor work-
loads simultaneously arrive at the SSD controller and savagely
preempt the resources, causing a worse latency bound to the
latency-sensitive workloads. Since the hardware/software co-
designed virtualization [37, 41] usually attaches standard and
unpredictable NVMe SSDs to an accelerator card, we can
deduce that these solutions still meet this device-side latency
interference and fail to reach latency-predictable QoS.

To overcome the device-level latency interference, we aim
to design latency-predictable QoS control for NVMe virtu-
alization. Previous works (summarized in Table 2) usually
redesign the Flash Translation Layer (FTL) in the SSD con-
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Table 1: VM1 latency distribution in different phases

I/O phase
VM2 IOPS 50K 250K 500K

Guest OS submit commands 2.8% 1.9% 1.1%
Virtual SQ 1.9% 1.9% 0.8%

Physical SQ 1.4% 1.1% 0.4%
SSD controller 62.5% 80.1% 93.0%

Virtual CQ 23.0% 10.2% 2.9%
Virtual Interrupt handling 8.4% 4.8% 1.7%

troller [29,31,53,66] or introduce additional logic into the host
software stack [21,48,71] to achieve reliable high-throughput
or fair-bandwidth QoS control. FinNVMe [54] local NVMe
virtualization designs fine-grained queue-level scheduling
to achieve state-of-the-art throughput-oriented QoS control
for virtualized devices. For predictable latency, Prioritymeis-
ter [74] automatically and proactively configures workload
priorities and rate limits to provide tail Latency QoS for shared
networked storage. K2 [48] uses work-constraining schedul-
ing to trade reduced throughput for lower latency bound,
which is the state-of-the-art latency QoS control among the
previous solutions [15, 22, 29, 30, 33, 36, 50, 61, 64] for native
storage. However, Prioritymeister and K2 lack the customized
design for NVMe virtualization in multi-tenant cloud storage
systems. Moreover, K2 sacrifices too much throughput (up to
2.27GB/s, equivalent to 47.66% of the maximum throughput
of the P5800X SSD in Section 5 experiments) when reaching
predictable latency.

Table 2: Storage resource sharing and scheduling systems.
Systems Virtualization

Optimized
QoS
Control

Predictable
Latency

VirtIO [57], SPDK [25] PV ✗ ✗

MDev-NVMe [55] MPT ✗ ✗

FinNVMe [54] MPT ✓ ✗

WA-BC [29], LeapIO
[41], FVM [37]

SR-IOV ✓ ✗

AutoSSD [31], FIOS
[53], FLIN [66]

N/A ✓ ✗

K2 [48] N/A ✓ ✓

MQFQ [21], D2FQ [71] N/A ✓ ✗

LPNS (Our work) MPT ✓ ✓

*PV: Para-Virtualization. MPT: Mediated Pass-through.

4 LPNS Design and Implementation

4.1 System Overview

Motivated by the analysis of device-side latency interference,
we aim to provide predictable latency and overcome the in-
terference problems from the aspect of the OS-level NVMe
virtualization design. The QoS levels of different VMs should
be determined at initialization and can only be changed when
storage service tenants agree. Since the strict predictabil-
ity generalizing the notion of isolation comes at the overall
throughput expense, we should give an upper bound to the
latency of NVMe virtualization under definite system settings
with a slight total throughput loss of the SSD.
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Figure 3: The system architecture of LPNS.

Scalable architecture. We briefly introduce the LPNS ar-
chitecture in Figure 3. LPNS is designed based on mediated
pass-through [27], which has been proven to be excellent in
both performance and scalability [54, 55, 67]. LPNS is imple-
mented as a kernel module to provide virtualized storage with
full NVMe features to guest VMs, and it can coexist and coop-
erate with the original nvme.ko module (the NVMe driver) to
support the hybrid deployment of host processes, contain-
ers, VMs on each single NVMe SSD. So it is cheaper, more
flexible, and user-friendly for cloud vendors to use LPNS than
SR-IOV-capable SSDs or the hardware/software co-designed
solutions. Specifically, LPNS designs a performance detector,
a queue scheduler, and a command scheduler for predictable
latency enhancement, and it provides a flexible polling mech-
anism for better virtualization scalability.

Full virtualization. LPNS inherits the advantages of phys-
ical I/O queues pass-through and active I/O polling from the
previous NVMe mediated pass-through solution [55]. LPNS
supports full virtualization and does not modify the guest
drivers. In the hypervisor (kernel module), the hardware I/O
queues (HWQs) can be directly passed-through to VMs, so
I/O commands from VMs can be stored in the HWQs through
fast I/O paths. The hypervisor maintains a virtual IOMMU
structure in shared memory for translating the GPA (Guest
Physical Address) of different virtual devices into the IOVA
(IO virtual address) of the underlying SSD. Cloud vendors
can create partitions and bind each partition with a virtualized
storage device with the hypervisor, and the hypervisor can
easily do LBA translation between guest and host OS based
on the partition information.

Self-feedback QoS control. LPNS has the ability to dis-
tinguish QoS targets of VMs to provide latency-predictable
QoS. The hypervisor gives each virtual storage a tag when
creating the VM to recognize if the workload from this VM
should be provided with a predictable latency guarantee 1.
LPNS can periodically trigger resource scheduling between
VMs based on runtime performance detection. We place a

1We use SVM to represent the VM with latency-predictable QoS guaran-
tees, and use IVM to represent the VM without latency-predictable QoS.
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performance probe in the polling thread to periodically col-
lect the index, submission, and completion timestamps of all
virtual I/O commands, along with real-time submission and
completion command counts. With these statistics, LPNS can
calculate the primary execution time of every command and
the average latency within a time interval for the scheduler to
enhance predictable latency and build an entire self-feedback
QoS control system. Specifically, we choose 10 ms as a mon-
itoring interval and 200 ms as a scheduling period in the
current implementation.

Flexible and scalable polling. LPNS uses polling threads
to process I/O commands and poll the virtual SQ (VSQ) tail,
the HWQs, and the virtual CQ (VCQ) head of all VMs for
better I/O performance. To reach a balance between perfor-
mance optimization and CPU overhead, LPNS can arrange
only one polling thread for all IVMs, and the thread can fully
utilize the high throughput ability of the NVMe SSD; or ar-
range one dedicated polling thread for each SVM to reach a
predictable latency (performance discussed in §4.5). All the
polling threads are adaptively triggered on or off according to
runtime workload detection of the VMs to reduce unnecessary
CPU overhead.

Hardware queue pools (§4.2.) LPNS designs an I/O queue
scheduling mechanism with a dynamic queue allocation to
achieve a flexible mapping and multiplexing of hardware I/O
queue resources. All HWQs are organized into a queue pool
as two types of queues, wherein the 1-1 HWQs are exclusive
queues for one single VM, and the 1-N HWQs are the shared
queues for multiple VMs. The hypervisor implements an
HWQ scheduler as a global controller for the HWQ resources.
The queue scheduler can periodically schedule the 1-N HWQs
between VMs for better virtualization scalability.

I/O command throttling (§4.3.) We implement a virtual
I/O command throttling mechanism in the LPNS hypervisor
to control the I/O path of each VM and eliminate the device-
level latency interference at the OS level. The polling threads
can perform the throttling between VMs from the global view.
Specifically, the hypervisor provides an interface to adjust the
threshold for command throttling, which can control the I/O
rate received by the hardware at each scheduling period to
reach predictable latency guarantees. The I/O command throt-
tling follows the constraint of deterministic network calculus.

4.2 Scalable I/O Queue Handling

Since previous NVMe virtualization solutions usually use
static I/O queue shadowing between virtualized devices and
the hardware SSD, the total number of HWQs exposed by the
SSD will limit the maximum number of VMs sharing the same
underlying SSD. To increase the virtualization scalability,
LPNS supports the flexible remapping between HWQs and
virtual queues (VQ). Specifically, LPNS can allocate any
number of the HWQs (but less than the maximum number
of HWQs exposed by the SSD controller) from the nvme.ko

kernel module into a Hardware Queue Pool for I/O queue
scheduling, and the rest HWQs can be used by the native
applications and containers.

We design an I/O queue scheduler to manage the Time
Division Multiplexing (TDM) [16] of the HWQs in the Hard-
ware Queue Pool. We abstract the HWQs of the pool into
two types: 1-1 HWQs and 1-N HWQs. An 1-1 HWQ refers to
an HWQ that can only be bound to one VQ. The 1-N HWQs
refer to the I/O queues to maintain the necessary I/O capa-
bilities for the other multiple VQs. The total number of 1-1
and 1-N HWQs should be configured when the host system
initializes the LPNS module. Specifically, the configuration
will not directly change the priority of these HWQs, so it can
still work when using the NVMe Weighted-Round-Robin-
with-urgent-priority (WRR) feature of the HWQs.

When multiple SVMs and IVMs share the same underlying
SSD, LPNS only assign 1-1 HWQs to the SVMs for better
latency performance, so the number of 1-1 HWQs should not
be less than the number of total VQs owned by all the SVMs.
The queue scheduler can schedule the idle 1-1 HWQs and all
the 1-N HWQs among the other IVMs.

Since LPNS can monitor and collect real-time performance
and workload data of VMs in each period, the I/O queue sched-
uler follows a hierarchical workload-aware HWQ schedul-
ing policy wherein it takes the QoS target and runtime work-
loads of VMs as the algorithm inputs. The scheduling mainly
consists of a hierarchical VQ weight calculating phase and an
HWQ switching phase. During each scheduling period, the
scheduler first respectively calculates the weight of VQs of
all VMs. For any SVM VQ, the weight is set as 0 or the top
weight, depending on if this VQ is empty or not. For the VQs
of IVMs, their weights are equal to the number of their back-
logged commands so that VQs with heavier workloads can
get higher priority to be drained quickly. The HWQ switch-
ing phase works after the weight updating phase. It sorts
the weights of all VQs in descending order, and those high-
priority VQs will first use 1-1 HWQs, and the low-priority
VQs will be bound to 1-N queues. After switching, the I/O
queue scheduler will sleep until the next period.

When one 1-1 HWQ needs to switch to a new VQ, it may
still have unfinished commands from the former VQ. Direct
forwarding of these stranded commands in VSQs will cause
an I/O error because the completion message cannot be han-
dled correctly. So we design a seamless switching mechanism
in the I/O queue scheduler. Specifically, LPNS extends the
virtual NVMe command structure with an index of the VM
to enable the HWQs to interact with different VQs from dif-
ferent VMs simultaneously in the seamless switching. When
we want to unbind a 1-1 HWQ from a VQ, the VQ should be
bound to another backup 1-N HWQ before the commands in
the 1-1 HWQ are executed by the SSD. During the switching,
both the 1-1 HWQ and the backup 1-N HWQ can write back
the completion information into the original VCQs. Specifi-
cally, the VCQ should be locked to ensure data consistency
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when two HWQs access the same VCQ simultaneously. The
seamless switching operations run in the background, and
each VQ can continuously send commands to an HWQ with-
out the perception of queue scheduling operations until a new
HWQ-VQ binding relationship is established. So it will not
disturb the high-parallel fetch of I/O commands from VMs.

4.3 I/O Command Throttling

We design a fine-grained I/O command throttling in LPNS
and involve a deterministic network calculus to provide a
latency bound of the I/O command for multi-tenant shared
virtualized storage. Network calculus has been proven effec-
tive in providing latency control for shared network storage
systems in previous research, such as Prioritymeister [74]. In
our LPNS, we use deterministic network calculus to help to
solve the intensive resource and performance competition for
different virtual devices sharing the same SSD so that a stor-
age hypervisor can directly eliminate the device-level latency
interference from the OS and virtualization layer by schedul-
ing queue resources between different virtual devices and
control the I/O command throttling inside a kernel module.

The deterministic network calculus gives a definite bound
to the command latency by abstracting the arrival and ser-
vice curves for storage systems. We can fix the I/O block
size to the most widely-used 4K for simplification of the pre-
dictable latency deduction. The arrival curve expresses the
upper bounds of the number of events from the sources over
any time. It refers to the I/O command submission rate by
all VMs in our system. The service curve refers to the guar-
antee of flows offered by LPNS wherein it describes the I/O
capability of the NVMe devices. The service curve may be
modified by internal functions (like garbage collection and
block relocation) of SSDs, so we simplify the mathematical
model of LPNS by concentrating on the normal working time
without triggering internal functions. And we believe LPNS
can cooperate with some future SSDs, such as AutoSSD [31],
that try to control the tail latency inside the SSD controller
so that LPNS can provide a more robust latency-predictable
storage virtualization on the future NVMe SSDs. Once the
arrival and service curve of an NVMe SSD is determined, we
can deduce the virtual delay at a particular time t, which is
the latency bound of SVMs in LPNS virtualization.

Arrival Curve. If the total command submission rate of
an intensive VM exceeds θ times the slowest submission rate
of a VM with predictable latency QoS guarantee, its I/O will
be suspended. The polling threads in the hypervisor of LPNS
can trigger the suspension based on the command count of
each VM recorded by the performance detector. Using this
I/O command throttling threshold is incredibly effective in
guaranteeing the latency stability of the VMs with predictable
latency guarantees because we can control the command sub-
mission rate precisely as we expect. Suppose there are j
VMs with intensive workloads co-running with i VMs run-

ning latency-sensitive workloads whose IOPS is p and its
command queue depth d , the real-time total command sub-
mission rate sent to the SSD hardware is:

v = p · ( j ·θ+ i), (1)

where the I/O command submission rate v of LPNS is propor-
tional to the IOPS of latency-sensitive workloads.

Similarly, we can get the number of commands b that the
sources can send at one time:

b = d · ( j ·θ+ i). (2)

Then we formulate the arrival curve of LPNS as:

α(t) = v · t +b = (p · ( j ·θ+ i)) · t +d · ( j ·θ+ i). (3)

Service Curve. The service curve is straightforward be-
cause the processing capability of the NVMe SSD is constant
(according to the types of NVMe SSDs). We use R to rep-
resent the parallel speed of which the hardware processes
random write commands per second (since most SSDs has
lower random write performance than random read), and Lh
to represent the minimum completion latency of an I/O com-
mand. So the service curve is:

β(t) = R · t +Lh. (4)

Latency Upper Bound. Call ∆(t) = inf{τ ≥ 0 : α(t) ≤
β(t + τ)}. Let h(α,β) be the supremum of all values of ∆(t),
then the virtual delay for all t satisfies: L(t)<= h(α,β). Given
the arrival curve and service curve of LPNS above, we deduce
the upper bound of latency Lmax as (according to [5, 38]):

Lmax ⩽ b/R+Lh = d · ( j ·θ+ i)/R+Lh, (5)

where we let Ω = j ·θ+ i to control the predictable latency
performance of a latency-sensitive workload p and the total
submission rate (which can finally decide the total throughput)
on each type of the NVMe SSDs. Specifically, LPNS can
adaptively change the θ parameter with the numbers of VMs
(i and j) when the performance detector checks if each VM
generates active I/O operations when the Ω is determined.

The choice of threshold Ω is essential to the effect of throt-
tling in the real-world system. A smaller Ω value can pro-
vide better predictability, but it restricts the throughput of
the VMs running throughput-intensive workloads without
predictable latency requirements. So the most proper alterna-
tive of Ω should be figured out by the optimal upper limit of
the hardware processing speed, which needs to be specified
and updated by the system administrator because different
NVMe SSD may have various R/W performances. Moreover,
the requirements for the latency QoS level of each latency-
sensitive workload can be stricter and looser in practice, so
as the constraints for Ω. Therefore, LPNS can let VMs intro-
duce a tenant-defined latency target in advance and help to
tune the Ω parameter. And the decision-maker can increase
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or decrease Ω by comparing the detected latency with the
target during the running time for a better trade-off between
throughput and predictable latency. In the evaluation section,
we will verify the effectiveness of this latency bound through
adequate experiments on different types of NVMe SSDs.

4.4 Latency-Predictable I/O Processing

We use Figure 4 to represent how LPNS enhances latency-
predictable I/O processing of the SVMs. The left part of this
figure shows the I/O path of a VM with the latency-predictable
QoS (the SVM). The LPNS module maintains the shadow
I/O queue data structure (directly corresponding to the virtual
queue) for each virtual storage in the shared memory between
the host kernel and QEMU, which can store I/O commands
from guest SQs and generate completion messages into the
guest CQs. When guest applications generate I/O operation on
the virtualized storage (❶), the command will be stored in the
shadow I/O queue. The polling thread will immediately poll
the head of the queue (❷), and translate the DMA and LBA
addresses in commands, store it into the 1-1 HWQ, and finally
ring the hardware doorbell register. (❸) - (❺) represents the
process that the SSD controller fetches command, generates
DMA, and stores the completion messages into HWQs. The
polling thread will continuously check if the doorbell register
of the hardware CQs updates to accelerate the I/O operation
instead of waiting for the SSD controller to inject interrupts
(❻). And the polling thread will compose the completion
message of the VMs and store the message into the shadow
queue (❼), and inject a virtual interrupt into the VM. Finally,
the guest VM driver can complete the I/O operation (❽).
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Figure 4: I/O work flow of LPNS virtualized storage.

The right part of Figure 4 shows that the IVMs get the
HWQ resources from HWQ scheduling, and the polling thread
can throttle the command distribution from the VQ to HWQ
(where ❾ replaces the ❷). With the I/O path designs, the
intensive workloads in these VMs will not hurt the latency of
the VM with the predictable latency guarantees because of
the device-level latency interference.

4.5 Discussion
Polling effectiveness. We discuss the polling effectiveness of
LPNS by comparing the throughput of LPNS with MDev-
NVMe, SPDK, and SR-IOV when multiple VMs share a
P5800X/PM1735 SSD. Figure 5 demonstrates the total
throughput where increasing numbers of VMs running an
FIO workload with the “numjobs=1, iodepth=1" parameters
share the same NVMe SSD. The results prove that LPNS can
fully utilize the P5800X or PM1735 for multiple IVMs with
only one polling thread and provide better scalability than
MDev-NVMe, SPDK, and SR-IOV.
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Figure 5: Polling effectiveness for high throughput (SPDK
and LPNS both use one polling thread shared by all VMs.)

We also run an FIO test with “numjobs=1 or 4, iodepth=1"
on the host OS and inside a VM with MDev-NVMe, SPDK
and SR-IOV. Figure 6 demonstrates how one dedicated polling
thread can achieve promising and near-native average latency.
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Figure 6: One dedicated polling thread for one SVM.

Performance overhead. In the self-feedback QoS control,
each polling thread uses a two-phase array to achieve real-
time performance data feedback for the SVMs. While the
thread reads data from one phase of the array for computation,
the probes record current I/O data into the other phase. It is
lock-free, and only a writing-array operation is added into the
origin command execution time. So the performance over-
head of our self-feedback mechanism is negligible. Figure 5
and 6 prove that the active polling in LPNS can ensure no
utilization overhead of the total IOPS and near-native idle
latency performance for SVMs.

Resource overhead. (1) The choices of the performance
detection are critical for resource overhead. The detection ex-
acerbates kernel memory consumption because tens of thou-
sand of commands can occupy hundreds of KBs of memory to
store the performance data. Therefore, we cut the one-period
detection into 10 ms intervals (much shorter than the schedul-
ing period), we can calculate the average command latency
for each interval, and finally sum up the results of a whole
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period so we can reduce kernel memory overhead. (2) The
polling threads in LPNS can be adaptively turned into an idle
status when there are no I/O operations generated from the
guest machines in a recent 500 ms. When performance detec-
tion finds there are burst I/O operations, LPNS will turn on
the polling thread immediately. This helps reduce the CPU
overhead of polling.

Limitation. The deterministic network calculus of LPNS
needs tunning when cloud workloads use different NVMe
SSDs or block sizes instead of the most commonly-used 4K.
Also, for the SSDs whose random write IOPS is much lower
than random read, the deterministic network calculus will be
more strict to provide latency bound, and LPNS may sacrifice
more throughput performance than when running LPNS on
SSDs with equivalent random read and write performance,
such as Intel Optane NVMe SSDs.

5 Evaluation

In this section, we evaluate LPNS on different NVMe SSDs
and compare LPNS with several famous related works.

Firstly, we want to compare LPNS with mainstream NVMe
virtualization solutions. We start with the following NVMe
virtualization mechanisms: MDev-NVMe, VirtIO, SPDK with
vhost-blk interfaces, and SR-IOV 2.

We also compare LPNS with state-of-the-art QoS control
systems, MQFQ, D2FQ, and K2. Specifically, (1) we build a
K2 kernel module with its source code [68]; (2) We implement
MQFQ with 1125 Lines of Code according to the description
in [21] since the original source [20] is no longer accessible.
(3) We modify 19 lines of the D2FQ source codes [62] for
bug fixing according to the description in [71].

5.1 Experiment Setup

Hardware configuration. We evaluate LPNS on two servers.
One server has two 20-core Intel Xeon Gold 6248 CPUs
(2.5GHz), 384GB DDR4 memory, and one 400GB Optane
P5800X SSD [24]. Another server has two 20-core Intel Xeon
Gold 6230 CPUs (2.1GHz), 128GB DDR4 memory, and one
1.6TB SR-IOV-capable Samsung PM1735 SSD [58]. The
parameters Ω we choose for the P5800X and PM1735 are
190 and 100 (the choices are discussed in §5.5.)

System configuration. We implement LPNS based on
Linux kernel 5.0.0. The two host servers run a Ubuntu 18.04.3
LTS 64bit OS and boot VMs with the same OS image version
based on KVM/QEMU. There are different numbers of SVMs
and IVMs in micro and real-world benchmarks. Each VM has
4 VCPUs, 4GB memory, 40GB virtual NVMe storage, and
4VQs equal to the number of VCPUs. Each virtual storage is
created on a logical partition of the SSD, and the VM uses

2The hardware/software co-designed FVM [37] and LeapIO [41] are not
open-sourced and available.

the original NVMe driver of Linux. In all experiments, the
total number of HWQs used for virtualization is less than the
total number of VQs to mimic a resource shortage scenario
in the real-world cloud environments.

Workload configuration. The micro-workloads are gen-
erated by FIO [26], which is widely used in both industry
and research. The FIO version is 3.1, and libaio is selected
as the default I/O engine. We set the I/O mode as Direct
I/O. We set the block size of random read/write as 4K. In
application benchmarks, we first replay the webuser service
of open-sourced production systems at Florida International
University (FIU) [6]. We also use YCSB [8] as another ap-
plication benchmark and choose RocksDB [3] to test the I/O
performance of K-V store. The YCSB version is 0.17.0, and
we use the embedded RocksDB database of YCSB [2].

5.2 Micro Benchmarks
In the micro benchmarks, we let one SVM to share a P5800X
SSD with one or multiple IVMs on LPNS, MDev-NVMe,
SPDK with vhost-blk, and VirtIO. We also compare LPNS
with MDev-NVMe and SR-IOV on a PM1735. In each test
case, the SVM runs the lightest FIO workloads in a general
sense by setting both the two standard decisive FIO parame-
ters “numjobs" and “iodepth" as 1 (n1d1). The other IVMs
run throughput-insensitive workloads as competitors, and we
let their workloads grow from as light as the SVM to heavy
enough to reach the throughput limit of the SSD by increas-
ing the “numjobs" and “iodepth" parameters. We observe the
latency of the “n1d1" workload in the SVM when the SVM
faces serious interference.

The micro benchmark results are demonstrated in Figure
7. Firstly, we let one SVM (VM1) and IVM (VM2) to share
one underlying P5800X or PM1735 SSD and show the perfor-
mance results in Figure 7a to 7d. The bar charts in the upper
part of the sub-figures represent the latency performance of
the FIO n1d1 workload in VM1, and the tables in the lower
part are the throughput of the competitor workloads of VM2
in the same test cases. We also let one SVM (VM1) and mul-
tiple (2-7) IVMs to share the same SSD and demonstrate the
latency of the VM1 workload in Figure 7e.

P5800X. We let the VM1 and the VM2 share one P5800X
SSD, and the performance of 4K random read and write
test cases are depicted in Figure 7a and 7b. Optane SSDs
use 3D XPoint technology [17] (the most advanced storage
medium), and their hardware controllers usually have stable
storage service capability in latency and throughput, which is
more friendly to latency-predictable systems. Because Optane
SSDs also have similar random read and write performance,
the results shown in Figure 7a and 7b have similar features.

LPNS can bound the latency of VM1 workload at a low
level (less than 25 µs) in both 4K random read and write cases.
LPNS can only sacrifice the throughput of VM2 workload
within 7.0% of MDev-NVMe and within 8.2% of SPDK when
VM2 runs n464 or n832 cases, and in most cases, the sacrifices
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are less than 1%. Moreover, LPNS successfully eliminates
the device-level interference observed in Figure 2.

n1d1 n2d1 n4d1 n4d2 n4d4 n4d8 n4d16 n4d32 n4d64 n8d32

LPNS 11.86 12.33 13.25 13.29 15.4 22.85 23.14 23.17 23.68 21.48

MDev 13.63 14.03 14.75 15.35 17.58 26.1 48.34 57.86 60.46 63.91

SPDK 15.05 16.29 17.99 17.8 22.17 27.86 42.29 66.39 206.72 248.68

Virtio 91.58 46.21 52.81 48.87 52.53 51.95 54.31 52.49 55.47 53.06

1
1

.8
6

0

1
2

.3
3

0

1
3

.2
5

0

1
3

.2
9

0

1
5

.4
0

0

2
2

.8
5

0

2
3

.1
4

0

2
3

.1
7

0

2
3

.6
8

0

2
1

.4
8

0

1
3

.6
3

1
4

.0
3

1
4

.7
5

1
5

.3
5

1
7

.5
8

2
6

.1
0

4
8

.3
4

5
7

.8
6

6
0

.4
6

6
3

.9
1

1
5

.0
5

1
6

.2
9

1
7

.9
9

1
7

.8
0

2
2

.1
7

2
7

.8
6

4
2

.2
9

6
6

.3
9

2
0

6
.7

2

2
4

8
.6

89
1

.5
8

4
6

.2
1

5
2

.8
1

4
8

.8
7

5
2

.5
3

5
1

.9
5

5
4

.3
1

5
2

.4
9

5
5

.4
7

5
3

.0
6

0
100
200
300
400
500

V
M

1
 A

ve
ra

ge
 

La
te

n
cy

 (
μ
s) LPNS MDev SPDK Virtio

249 480 902 1410 2045 2194 2186 2152 2168 2179

253 484 902 1412 2053 2257 2311 2315 2317 2323

209 412 764 1203 1796 2198 2290 2339 2361 2368

72.8 89.4 287 424 548 584 577 594 541 560

V
M

2
 

B
an

d
w

id
th

 
(M

B
/s

)

(a) One SVM & One IVM, 4K random read (P5800X).

n1d1 n2d1 n4d1 n4d2 n4d4 n4d8 n4d16 n4d32 n4d64 n8d32

LPNS 13.45 14.4 14.79 16.01 18.32 23.78 24.55 24.33 24.49 23.65

MDev 15.22 15.88 16.68 18.66 19.96 26.88 36.41 48.41 57.06 66.69

SPDK 16.29 17.53 17.99 20.55 22.17 27.86 42.29 66.39 171.88 239.11

Virtio 88.29 72.8 84.4 63.25 59.4 58.44 64.2 67.79 66.89 81.32
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(b) One SVM & One IVM, 4K random write (P5800X).

n1d1 n2d1 n4d1 n4d2 n4d4 n4d8 n4d16 n4d32 n4d64 n8d32
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(c) One SVM & One IVM, 4K random read (PM1735).

n1d1 n2d1 n4d1 n4d2 n4d4 n4d8 n4d16 n4d32 n4d64 n8d32

LPNS 18.29 19 20.47 22.81 28.07 42.06 65.67 67.27 66.56 66.22

MDev 17.59 18.42 20.54 23.02 28.11 41.43 69.3 124.42 211.07 217.57

SRIOV 19.91 19.49 23.1 26.36 31.31 44.44 67.43 94.25 135.72 121.06
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(d) One SVM & One IVM, 4K random write (PM1735).
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Figure 7: The average latency of LPNS compared with the
other NVMe virtualization on P5800X and PM1735.

In MDev-NVMe and SPDK, the increasing throughput of
the competitor workload in VM2 will lead to latency deteriora-
tion of the VM1 workload. For example, when using n4d64 or
n8d32 parameters, LPNS can reach up to 11.57/2.98× latency
optimization over SPDK/MDev-NVMe. The main reason is
that their polling threads cannot provide strong performance
isolation between different virtualized devices to overcome
latency interference. VirtIO can obtain stable average latency

and better latency bound for VM1 than SPDK, but the VM1
latency and VM2 throughput are not comparable with LPNS
because VirtIO is generic virtualization for block devices and
not optimized for NVMe.

Figure 7e shows that LPNS can provide latency-predictable
QoS with promising scalability for the SVM when we in-
crease the number of IVMs from 2 to 7. The latency results of
VM1 are very stable and low, and bounded by 50 µs, which can
achieve up to 7.40× latency optimization of MDev-NVMe.

Figure 8 demonstrate the tail latency of the n8d32 test
cases in Figure 7a and 7b. LPNS can reach up to 3.84/6.70×
optimization of 99.9th/99.99th 4K random read tail latency
of SPDK and 3.73/9.96× optimization of 99.9th/99.99th 4K
random write tail latency of SPDK.
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Figure 8: Tail Latency of micro benchmarks on P5800X .

PM1735. We let the VM1 and the VM2 share one PM1735
SSD, and the performance results are shown in Figure 7c and
7d. These results show that LPNS can provide better latency
than MDev-NVMe and SR-IOV in all cases and achieve up
to 3.27× latency optimization. Moreover, when we increase
the number of IVMs from 2 to 7 on PM1735, the IVMs cause
serious latency interference on the VM1 when using SR-IOV.
LPNS can bound the VM1 workload’s latency under 90µs,
with up to 18.72× latency optimization over SR-IOV. To
be mentioned, the throughput performance loss of IVMs on
PM1735 is worse than P5800X, which is less than 7.07% in
the 4K random write cases, but up to 31.11% in the 4K random
read cases. The main reason is that the random read service
capability of the PM1735 controller is much better than the
random write, and LPNS must choose a more conservative
configuration to ensure latency-predictable QoS but incur
more throughput loss.

In general, LPNS can perform better in both latency bound
and low throughput loss than VirtIO. LPNS can provide ultra-
low latency and ensure latency-predictable QoS compared to
MDev-NVMe, SPDK, and SR-IOV.

5.3 Real-world I/O trace Replay
In the real-world I/O trace replay, we run a webuser workload
in the SVM(s) and let the SVM share one Optane P5800X
and PM1735 SSD with one or multiple IVMs running inten-
sive workloads (FIO 4K random write with numjobs=4 and
iodepth=32). The raw data of the latency-sensitive webuser
server comes from [6]. We extract the throughput and the pro-
portion of reading and writing operations from the raw data.
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The running time of each webuser test case is 2000 seconds,
and we report latency results every 10 seconds.

0

200

400

600

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Baseline LP MDEV SPDK SRIOV K2M32 K2M16 K2M8 MQFQ D2FQ

0

50

100

150

200

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Baseline LP SRIOV K2M32R

ea
l-

w
o

rl
d

 w
o

rk
lo

ad
 L

at
en

cy
 (
μ
s)

Time Stamp (seconds)

(a) Samsung PM1735.

0
200
400
600
800

1000
1200

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Baseline LPNS K2M32 K2M16 MDEV SPDK K2M8

10

20

30

40

50

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Stamp (seconds)Baseline LPNS K2M32 K2M16R

ea
l-

w
o

rl
d

 w
o

rk
lo

ad
 L

at
en

cy
 (
μ
s)

(b) Intel Optane P5800X.

Figure 9: The latency of real-workload webuser on LPNS,
MDev-NVMe, SPDK, MQFQ, D2FQ, and K2 with 32, 16,
and 8 max_inflight when 4 VMs share one NVMe SSD (VM1
is an SVM and VM2-4 are IVMs), compared with a baseline
that only VM1 monopolizes the NVMe SSD. The lower-part
charts in the figures are the enlargement of the data from the
red boxes of the upper-part charts.

We choose MDev-NVMe and SPDK with vhost-blk as the
representative of the state-of-the-art virtualization, and we
design eight groups of experiments with different numbers of
SVM (s) and IVM(s), including “1SVM & 1IVM" to “1SVM
& 6IVM", “2SVM & 2IVM", and “3SVM & 1IVM".

We choose K2, MQFQ, and D2FQ for comparison. Since
LPNS, MDev-NVMe, and SPDK can prove near-native la-
tency for each virtualized storage and K2, MQFQ, and D2FQ
are not designed for NVMe virtualization, we deduce that this
latency performance comparison are typical and persuasive.
We build the K2 module and insmod k2-scheduler into the
original 4.15.0-175-generic kernel of the public Ubuntu 18.04
system. We implement MQFQ and D2FQ in a Linux 5.3.10
kernel. We run the same real-world webuser workloads and
intensive FIO random write workloads on the host OS, just
like inside the SVM(s) and IVM(s). We use the ionice [10]
commands to give the webuser a high priority for latency QoS
control on K2, MQFQ, and D2FQ scheduler. Specifically, we
configure the max_inflight parameters of K2 as 32, 16, and
8, and the parameters of MQFQ and D2FQ are set as default
values according to the papers.

Latency fluctuation. We firstly choose the “1 SVM & 3
IVMs" cases on PM1735 and P5800X as a typical example
of all the cases to show the overall latency control effects
of the related works compared with a baseline where only
VM1 running the webuser monopolizes the entire SSD. We

demonstrate the latency results of the webuser in Figure 9.
On both PM1735 and P5800X SSD, the latency of LPNS

can nearly coincide with the baseline fluctuation line, and it
successfully ensures the webuser’s latency-predictable QoS.
SR-IOV and K2 can also provide better latency performance
than MQFQ, D2FQ, and SPDK because the main purpose
of MQFQ and D2FQ is to reach a fair queue scheduling and
SPDK does not involve reliable performance isolation. On
P5800X, K2 with max_inflight=32 can successfully bound
the latency within 50µs. However, SR-IOV and K2 cannot
bound latency within 50µs level as LPNS does on PM1735.

Latency interference elimination. We count the latency
distributions of the eight groups of LPNS and K2 (providing
better latency bound effect in the example case) in Figure 10
with box charts.
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Figure 10: The latency distribution results of test cases where
different numbers of SVMs and IVMs share one P5800X SSD
on the LPNS system or on a system using K2.

In general, LPNS can bound the latency by 50 µs in all
the test cases. K2 can bound the latency by 50 µs when there
are small numbers (1∼4) of IVMs. However, the outliers
of latency results in the box chart prove that the latency
of VM1 webuser workload grows over 50 µs on K2 with
max_inflight=32 when there are more than 5 IVM as competi-
tors. When there are more SVM but less IVM (for example,
Figure 10c and 10d), K2 with max_inflight=32 or 16 can
effectively bound the latency by 50 µs just as LPNS does.

Throughput sacrifice. Figure 11 demonstrates the total
throughput of the IVM(s) that compete for resources with the
SVM in the “1SVM & 1IVM" to “1SVM & 6IVM" cases.
We choose the maximum throughput of the P5800X as the
baseline. LPNS throughput loss to MDev-NVMe is 18.46%
in average and less than 19.88%. Figure 11 also proves that
LPNS can reach latency-predictable QoS with less throughput
loss of the IVMs than K2 when multiple VMs share the one
SSD. For example, when there are 6 IVMs (or 6 native inten-
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sive workloads), LPNS can increase up to 1.45 × additional
total throughput over K2 with max_inflight=32 (equivalent to
47.66% of the maximum throughput of the P5800X SSD.)
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Figure 11: The total throughput of the one to six IVMs (or
native workloads) on LPNS and K2 (max_inflight=32) in
Figure 10a and 10b (MDev-NVMe as the baseline).

We deduce that LPNS will be an excellent choice to achieve
their latency-predictable QoS with less sacrifice of the SSD
maximum throughput when cloud vendors want to increase
the scalability of virtualized devices on each single SSD with
heavier over-subscription of storage resources.

5.4 YCSB Key-Value Store on RocksDB
We use the YCSB to generate K-V store workloads on the
RocksDB databases in one SVM, and use several IVMs run-
ning intensive FIO random read/write workloads to generate
serious interference and demonstrate that LPNS can provide
latency-predictability for K-V store applications. Specifically,
we build an ext4 [1] file system on the virtualized NVMe
storage device in the SVM to run the RocksDB database. We
run the generic configuration of YCSB from the workloada
to workloadf, which uses Zipfian [18] distributions. We set
up 20M requests on 4GB database by enlarging the “record-
count” and “operationcount”.

Figure 12 demonstrates the average latency performance
results of YCSB benchmarks on the RocksDB databases, in-
cluding the baseline where the benchmark monopolizes the
entire P5800X SSD, or using MDev to support 1SVM +3IVM,
or using LPNS to support 1SVM +3IVM. In the six YCSB
tests, LPNS can efficiently reduce the latency interference
from the IVMs and provide promising average latency perfor-
mance for the Read, Update, Insert, or Scan operations. For
example, the YCSB-A and YCSB-B workloads are identi-
cal mix Read and Update operations, which will bring chal-
lenges to the latency QoS control systems. The results prove
that LPNS can achieve up to 7.41 × latency optimization of
MDev-NVMe in the YCSB-B workloads. In YCSB-C, E, and
F, MDev-NVMe and LPNS can provide latency similar to the
monopolized baselines. We infer the reasons: YCSB-C is a
100% read case, which is very friendly to the cache systems,
so it is not seriously interfered by the device-level congestion;
YCSB-E and YCSB-F are more performance-critical about
the computation ability of the K-V store databases, so the
storage system is not a performance bottleneck in these cases.

In Table 3, we count the tail latency results of YCSB-A
and YCSB-B benchmarks of MDev-NVMe and LPNS from
Figure 12. From these results, we can find that LPNS can

0

100

200

300

400

500

A
ve

ra
ge

 L
at

en
cy

 (
μ

s)

YCSB Test Workload A-F

Monopolized Baseline MDev 1SVM +3IVM LPNS  1SVM +3IVM

Figure 12: The average latency of YCSB A to F workloads.

achieve up to 4.44 × optimization of the 95th tail latency and
up to 4.27 × optimization of the 99th tail latency compared
with MDev-NVMe, which can provide the most advanced
tail latency among the traditional NVMe virtualization in the
Section 5.2 experiments.

Table 3: YCSB tail latency in YCSB-A and YCSB-B
Read Update

MDev LPNS MDev LPNS

YCSB-A P95 (us) 419 242 453 260
P99 (us) 896 366 934 399

YCSB-B P95 (us) 907 204 961 225
P99 (us) 969 317 1060 358

With these experimental results, we imply that LPNS can
provide latency-predictable QoS for the latency-sensitive ap-
plications such as the K-V store databases in cloud services.

5.5 Predictability Trade-off
We discuss the trade-off between latency and throughput to
guide the choice of the proper predicted value, which refers
to the value of the I/O command scheduling parameter Ω in
LPNS. The Ω value is related with the hardware SSD and can
be flexibly determined by the cloud storage administrators to
make an optimal alternative according to the hardware and
workload scenarios. We observe the latency performance of
SVM and the total throughput of IVMs to evaluate the effect
of different Ω values and choose the proper Ω.

Figure 13 plots the latency of VM1 (SVM) and total
throughput of IVMs at different Ω values on the P5800X
and PM1735 SSDs. We use the dot lines to indicate the la-
tency performance and bars to indicate the total throughput
performance.
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Figure 13: Performance trade-off for different SSDs.

On P5800X, the R is 800K IOPS (0.8 iopµs) and Lh of
the workload is 11.05 µs (measured when there is only one
workload that monopolizes the SSD). When we choose Ω as
10, the latency can be bounded within 23.55µs according to
Eq. 5, which matches the results in Figure 13a.
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However, when Ω is smaller than 160, keeping decreasing
Ω can not significantly improve the latency, but the throughput
will continue to decline. When Ω is larger than 240, keeping
increasing Ω is also uneconomic because the throughput is
close to the ceiling while the latency is still growing. So an
appropriate Ω value must be between 160 and 240, depending
on the trade-off between the latency requirements and the
acceptability of bandwidth degradation. We choose 190 on
P5800X in all our experiments to bound the latency in micro
and application benchmarks and get a balance between the
latency bound (50µs) and the throughput sacrifice. With these
configurations, we use Figure 14 to prove that LPNS can
successfully bound the latency of the workload in Figure 1.
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Figure 14: Latency bounded within 30µs without SLA miss.

Compared with P5800X, it is more difficult to reach a
promising balance between latency and throughput on the
PM1735. The Ω parameter when Ω is smaller than 60, keep-
ing decreasing Ω can not significantly improve the predictable
latency but only decline the throughput. And when we choose
larger Ω, the latency grows faster than on P5800X. We finally
choose 100 as the Ω to provide an upper bound of latency at
100µs for the latency-sensitive workloads on PM1735. How-
ever, it will incur more serious throughput loss than using
LPNS on P5800X. And this will be one of our future work to
reach a better balance of latency prediction and throughput
by upgrading our design and implementation.

6 Related Work

Local NVMe virtualization. The state-of-art local NVMe
virtualization mechanisms include para-virtualization Vir-
tIO [57], a userspace NVMe driver VFIO [70], and SPDK [25],
MDev-NVMe [55], FinNVMe [54], FVM [37]. VirtIO is an
I/O para-virtualization framework, which provides an abstrac-
tion of a set of common simulation devices suffers from the
poor performance of virtualized devices. Fam Zheng [73]
used VFIO to implement the NVMe driver to work with the
modified user-space NVMe driver in Qemu. The SPDK is
a userspace and lockless NVMe driver that provides an ef-
ficient and scalable interface to access various storage de-
vices. MDev-NVMe uses mediated pass-through and the ac-
tive polling mode to achieve high I/O performance. FVM
implements a storage virtualization layer on an FPGA card
to offload virtualization overhead, and FVM can ensure high
throughput but incurs about 25% latency overhead over native
performance.

Storage QoS. Many researches concentrate on NVMe
resource sharing and scheduling by modifying the device
controller or host software stack [4, 11, 19, 32, 39, 42, 43, 56,
60, 72]. FIOS [53] achieves the fairness of resource shar-
ing through the per-task timeslices. AutoSSD [31] employs
a self-management mechanism to schedule device-internal
background jobs to prevent the SSD from falling into a critical
condition that causes long tail latency. PartFTL [49] splits
flash storage into separate read and write sets to ensure writes
never block reads. FLIN [66] is a lightweight transaction
scheduler using a three-stage scheduling algorithm to provide
fairness, implemented within the SSD controller firmware.
For performance isolation [15, 22, 30, 33, 36, 50, 61, 64] and
QoS, workload-aware budget compensation (WA-BC) [29]
provides a device-level scheduler with SR-IOV for perfor-
mance isolation and fairness among multiple VMs by penal-
izing noisy neighbors. Differentiated Storage Services [47]
propose an I/O classification architecture to close the gap
between computer systems and storage systems, and improve
end-to-end performance, reliability, and security of storage.
More recent schedulers have evolved to guarantee isolation
at OS-level without modification to the hardware. K2 [48]
is a lightweight and device-agnostic I/O scheduler for Linux
targeting NVMe-attached storage. Multi-Queue Fair Queue-
ing (MQFQ) [21] is a fair and work-conserving scheduler for
multi-queue systems. D2FQ [71] uses the device-side schedul-
ing feature (NVMe WRR) to reach low-CPU-overhead fair
queue scheduling.

7 Conclusion
In this paper, we propose LPNS, a latency-predictable NVMe
virtualization mechanism for local cloud storage. Based on the
mediated pass-through mechanism, LPNS retains high virtual-
ization performance with I/O queue and command scheduling.
To prove latency-predictable QoS, we model LPNS as a deter-
ministic queuing system and deduce the latency upper bound
referring to the deterministic network calculus. The evalua-
tions demonstrate that LPNS can achieve the goal of latency
predictability and prove to be an efficient cloud storage virtual-
ization mechanism. In our future work, we will also improve
the balance between latency prediction and throughput on
more types of NVMe SSDs, and we are devoted to integrat-
ing LPNS into a hardware/software co-designed solution to
offload overhead and improve scheduling efficiency.
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Abstract
Fast, byte-addressable persistent memory (PM) is becom-
ing a reality in products. However, porting legacy kernel file
systems to fully support PM requires substantial effort and
encounters the challenge of bridging the gap between block-
based access granularity and byte-addressability. Moreover,
new PM-specific file systems remain far from production-
ready, preventing them from being widely used. In this pa-
per, we propose P2CACHE, a novel in-kernel caching mecha-
nism to explore how legacy kernel file systems can effectively
evolve in the face of fast, byte-addressable PM. P2CACHE
exploits a read/write-distinguishable memory hierarchy upon
a tiered memory system involving both PM and DRAM.
P2CACHE leverages PM to serve all write requests for in-
stant data durability and strong crash consistency while using
DRAM to serve most read I/Os for high I/O performance.
Further, P2CACHE employs a simple yet effective synchro-
nization model between PM and DRAM by leveraging device-
level parallelism. Our evaluation shows that P2CACHE can
significantly increase the performance of legacy kernel file
systems – e.g., by 200x for RocksDB on Ext4 – meanwhile
equipping them with instant data durability and strong crash
consistency, similar to PM-specialized file systems.

1 Introduction
Rapid changes in storage technologies, ranging from rotating
hard disk drives (HDD) to NAND-based solid-state drives
(SSD), Non-Volatile Memory Express (NVMe) [9], and Stor-
age Class Memory (SCM) [10], play an essential role in driv-
ing the evolution of kernel file systems, such as Ext4 [35],
Btrfs [37], and XFS [24]. Features have been continuously
added to accommodate new and unique characteristics of
storage devices. Examples include I/O schedulers designed
for different types of storage media [21, 31, 39], concurrency
and scalability support for high-speed storage on multi-core
systems [17, 20], and the introduction of direct access mode
(DAX) for byte-addressable SCM [5, 22].

However, the evolution of kernel file systems hits a plateau
in light of emerging fast, byte-addressable storage [9, 10].
Kernel file systems are inherently built with the assumption

of slow, block-addressable storage devices (e.g., HDD/SSD)
sitting below. The layered in-kernel storage stack transforms
I/O requests from applications to block operations for storage
devices. As storage devices become faster, the overhead of the
layered storage stack becomes more significant. For example,
software contributes 50% of the read latency on a low latency
(3 us) NVMe SSD [45]. The software overhead becomes even
more dominant as storage devices become faster and closer
to the CPU. Intel’s Optane Persistent Memory [10] sitting on
the memory bus incurs read latency as low as ∼170 ns [44].

To address this pressing challenge, some approaches tended
to discard traditional kernel file systems. Indeed, a batch of
new file systems [5, 18, 19, 23, 27, 28, 40, 42, 43] has been
proposed – i.e., tailored for persistent memory (PM) [10] –
and achieved high I/O bandwidth, low I/O latency, and strong
crash consistency. Other approaches bypassed the kernel stor-
age stack by exposing PM or low-latency SSDs directly to
applications with userspace libraries [2] or file systems [32].
However, such new file systems and storage mechanisms may
take a long time to mature and become production-ready –
e.g., before having sufficient features and bug fixings.

We, instead, seek to answer the question: Can existing well-
tested, production-ready kernel file systems effectively evolve
to harness performance benefits and new characteristics of
emerging storage technologies, achieving the same properties
as those device-specialized file systems while requiring no
application modifications and radical system redesign?

To answer this question, we gather the main insights from
PM/SSD-specialized approaches that focus on minimizing
system software overhead. First, maximizing the performance
advantages of fast storage devices involves avoiding as much
work as possible in the critical path. For example, approaches
like SplitFS [27] and Strata [28] use a userspace library to
handle data (and metadata) operations directly, which are
then asynchronously processed by the kernel file system. Sec-
ond, fast storage devices, along with a lightweight journal-
ing/logging mechanism, can enable strong consistency with
little overhead. For instance, NOVA [43] ensures that each file
system update is synchronously persisted in an atomic manner.
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Third, PM or modern NVMe SSD, with the advent of the high-
speed CPU-to-device interconnect technology like Compute
Express Link [4], provide a memory-like, byte-addressable
interface [26], offering new design and optimization oppor-
tunities, including efficient handling of small writes for file
system updates without write amplification.

These insights lead us to reap fast, byte-addressable storage
for legacy kernel file systems with a novel in-kernel caching
mechanism, P2CACHE. P2CACHE exploits a new read/write-
distinguishable memory hierarchy within a tiered memory
system involving both PM and DRAM. P2CACHE leverages
fast PM to serve all write requests for instant data durability
and strong crash consistency while using DRAM to serve
most read I/Os for high I/O performance because DRAM’s
read performance remains significantly higher than PM.

P2CACHE first introduces a persistent cache located be-
low the VFS layer. The persistent cache uses PM to quickly
and synchronously persist/buffer file system metadata/data
updates, guaranteeing instant data durability and strong crash
consistency. The buffered operations are then asynchronously
applied to underlying kernel file systems via the existing I/O
interface, ensuring compatibility with kernel file systems. The
persistent cache is built upon a lightweight operation log that
captures minimal operations (i.e., file system updates from
the VFS) and records them in a write-ahead log. It leverages
PM’s byte-addressability to efficiently persist metadata/data
updates without costly, block-based Copy-on-Write (CoW)
(commonly used in PM-based approaches [19,23,43]) – by de-
coupling the copy operation from the write operation, where a
write operation (of any size) is synchronously recorded while
the data copy is performed asynchronously.

P2CACHE further advances the page cache to serve most
reads via faster but volatile DRAM. To allow the two caches –
namely, the persistent cache and page cache – to work collab-
oratively and efficiently, P2CACHE leverages “device-level”
parallelism. Specifically, we observe that the I/O latency of
writing data to both PM and DRAM (at the same time) is al-
most the same as that of writing data to PM only, because the
latency of the (extra) copy to DRAM is hidden (overlapped)
by the parallel-but-slower PM write. This leads us to adopt a
simple and effective inclusive cache model, where multiple
copies of the same data are stored across the tiered mem-
ory, and the topmost layer (i.e., DRAM) always contains the
latest version. The inclusive cache model simplifies the syn-
chronization between the two caches: For writes, P2CACHE
updates both caches; for reads, P2CACHE searches from the
page cache, persistent cache, and underlying file systems se-
quentially until it first finds the data.

The benefits of P2CACHE are manifold: (1) P2CACHE re-
quires no modifications to user applications, libraries, or ker-
nel file systems while leveraging fast storage technologies
to provide high I/O performance, high I/O concurrency, in-
stant data durability, and strong consistency for legacy kernel
file systems. Meanwhile, kernel file systems can still operate

with their own (slow) storage devices (e.g., HDD/SSD). (2)
P2CACHE does not provide complex file system functionali-
ties (e.g., maintaining in-memory/on-disk data structures or
disk block management). Instead, it focuses on efficiently
persisting and buffering file system updates using PM as
a persistent cache. It is extremely lightweight and enables
legacy kernel file systems to achieve higher performance than
PM-specialized file systems (e.g., NOVA [43]). (3) Unlike
existing PM-based approaches that fully bypass DRAM (or
page cache), P2CACHE leverages DRAM to maximize I/O
performance – i.e., although PM has similar write latency as
DRAM, there is a considerable latency gap for reads (e.g., 3x
slower [44]). (4) Persistently buffering file system operations
(i.e., metadata/data) enables new system optimizations. For
example, P2CACHE accelerates the performance of a cold-
start file system (e.g., after re-mounting or recovering from
a system crash) by quickly re-building its in-memory cache
(e.g., dentry cache) from the persistent cache.

We have implemented P2CACHE as a Linux kernel mod-
ule interfacing with the VFS layer. Our evaluation with mi-
crobenchmarks and applications shows that the read/write-
distinguishable memory hierarchy allows P2CACHE to signif-
icantly increase the performance of legacy file systems (e.g.,
Ext4) by up to 200x for RocksDB [1] while providing instant
data durability and strong crash consistency. P2CACHE also
achieves higher I/O performance than existing PM-specialized
file systems, e.g., by up to 70% for RocksDB to NOVA [43].

2 Motivation
2.1 Fast Storage and Interconnect
Enabled by new storage technologies, such as 3D XPoint [12],
NVMe SSDs over the PCIe bus achieve much higher band-
width (e.g., 8 GB/s under the 70/30 mixed read/write case)
and lower latency (e.g., as low as 3µs) [45] than before.

Further, byte-addressable persistent memory (PM) has been
commercially available in a DIMM package on the memory
bus, e.g., Intel Optane DC persistent memory [10]. PM al-
lows programs to directly access data in non-volatile memory
from the CPU using load and store instructions. PM offers
approximately an order of magnitude higher capacity than
DRAM (e.g., 8x capacity in Optane DIMMs) and within an
order of magnitude performance of DRAM [44] (e.g., as low
as 80 ns for write latency and 170 ns for read latency).

Despite Intel discontinuing its Optane product, the storage
community is actively embracing high-speed CPU-to-device
interconnect technologies [11], such as Compute Express Link
(CXL) [4]. CXL provides a more general, unified interface to
disaggregate various types of storage devices (e.g., DRAM,
PM, and PCIe devices) directly to the CPU. CXL has the
potential to offer a memory-like, byte-addressable alterna-
tive (i.e., via load and store instructions) to PCIe storage’s
block interface with minor modifications [26]. We envision
that this trend will continue – storage devices will be increas-
ingly faster with higher bandwidth and lower latency and offer
byte-addressability via a memory-like interface. Although our
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Figure 1: I/O performance comparisons for writes between cases with the combination of (1) distinct file systems: EXT4,
EXT4-DAX, tmpfs, and NOVA; (2) journaling mode: no journal (NJ), data order (DO), and data journal (DJ); (3) storage medium:
SSD, PM, and DRAM; and (4) various I/O sizes: 1 KB, 4 KB, 16 KB, 64 KB, and 256 KB.

work focuses on DIMM-based PM, it sheds light on bridging
the gap between (1) byte-addressability, (2) a user-friendly
and backward-compatible programming interface in PM and
future CXL memory, and (3) the inherent differences between
PM and traditional DRAM-based memory.

2.2 Kernel File Systems
Kernel file systems [7, 24, 29, 35, 37] have undergone continu-
ous development and evolution, with the addition of features,
bug fixes, and improvements in performance and reliability.
For example, Ext4, the default general-purpose file system in
most Linux distributions, was initially released in 2001.

The in-kernel storage stack converts I/O requests from ap-
plications into block operations that are persisted to storage
devices through multiple software layers – i.e., the virtual
file system (VFS), kernel file systems, generic block layers,
journaling, and device drivers. While the layered design of
the storage stack works well with slow underlying storage
devices, such as HDD/SSD, it introduces nontrivial software
overhead that becomes more pronounced as storage devices
become faster. For example, in the case of low latency (3 us)
NVMe SSD, software contributes 50% to read latency [45].
Our study on faster devices confirms this observation. Obser-
vation 1: The in-kernel storage stack becomes the dominant
storage bottleneck, rendering traditional kernel file systems
unable to fully explore the potential of fast storage devices.
As depicted in Figure 1 (a), (b), and (d), Ext4 demonstrates
only a marginal improvement in I/O performance (for writes)
with PM (or even DRAM 1) compared to SSD, despite the
considerably faster speeds of PM/DRAM over SSD.
Virtual file system: Not all in-kernel storage layers contribute
equally to the storage software overhead. The VFS, sitting
atop the storage stack, incurs less than 10% of the overall
software overhead [45]. Further, tmpfs, a lightweight ker-
nel file system that works atop DRAM, achieves the highest
performance (Figure 1(e)), indicating that a thin file system
beneath the VFS can still leverage the benefits of fast storage
media. On the other hand, the VFS implements key file system
abstractions (e.g., inodes to represent metadata of on-disk

1We used DRAM to emulate fast storage devices.

files/directories) and functionalities (e.g., pathname lookup
to locate a file/directory given a path name and dcache to
cache such mappings in DRAM for quick lookup), commonly
used by underlying file systems. Observation 2: A storage
layer (e.g., a persistent cache or page cache) – sitting below
the VFS – can reuse VFS’s rich functionality while being slim.
Page cache: Because traditional disk accesses (e.g., HDD or
SSD) are significantly slower than DRAM accesses, the oper-
ating system (OS) keeps frequently-accessed disk blocks in a
dedicated region of DRAM, namely the page cache. The page
cache reduces the number of disk accesses and speeds up I/O
performance. However, as data updates are first applied to the
page cache and later flushed to the storage, data modifications
may not immediately reflect in the backing storage in case of
sudden system crashes or power losses. This could cause an
on-disk file system to enter an inconsistent state [34].
Journaling: To provide consistent and recoverable updates
for metadata and/or data, kernel file systems often use jour-
naling techniques. For example, Linux Ext4 employs the jour-
naling block device version 2 (JBD2) [15], which implements
a write-ahead log to record updates to a journal area before
applying them to the corresponding file system locations.
In the event of system failures, it replays the journal to re-
store the file system to a consistent state. JBD2 operates with
three journaling modes: writeback, ordered, and data modes,
providing trade-offs between performance and consistency.
In writeback and ordered modes, only the metadata is jour-
naled. However, the ordered mode (i.e., the default option)
imposes an ordering requirement that data must be completed
before the associated metadata is committed. This ordering
constraint ensures stronger file system consistency than write-
back, albeit with increased journaling latency [36]. On the
other hand, the data mode journals both data and metadata,
offering the highest level of consistency at the expense of the
highest performance overhead.

Observation 3: Journaling places a serious impediment to
the high performance of kernel file systems and can offset the
performance benefits provided by the page cache. Figure 1
(a) and (b) show that in the ordered journal mode, the write
performance under SSD and PM drops by ∼20% compared
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to the “no journal mode”. The “data mode” substantially
diminishes the write performance to only ∼10% of the no
journal mode for SSD and ∼30% for PM. It is because (1)
journaling requires writing metadata/data twice2: one to the
log area and one to the file system location; though journaling
is performed asynchronously, it can be frequently invoked by a
background thread, competing for system resources with user
applications. (2) JBD2 operates at the block level beneath the
file system layer, recording all modified metadata/data blocks
in a block unit within the journal area, even if only a small
portion of the metadata/data blocks is modified (i.e., the small
write case) – causing write amplification. (3) JBD2 journals
all file system updates with a single kernel thread, limiting
its scalability. In addition, the existing journaling scheme
cannot ensure instant data durability. Instead, it relies on an
explicit synchronous operation from users (e.g., fsync() or
fdatasync()) for instant data durability.

2.3 Related Work
A large body of work has been recently proposed to exploit
performance benefits and unique characteristics of fast storage
technologies. We categorize them as two groups:
PM-specialized file systems: Many PM-specialized file sys-
tems have been studied [5, 18, 19, 23, 27, 28, 40, 42, 43].
They are tailored for the fast, byte-addressable PM to ad-
dress challenges in write ordering and update atomicity, pro-
viding various levels of data/metadata consistency. For in-
stance, BPFS [19] leveraged shadow paging for metadata/data
consistency; PMFS [23] used journaling for metadata up-
date atomicity, while performing in-place update for data
(no atomicity and consistency); and NOVA [43] adopted a
per-inode log-structured file system that offers synchronous
persistence. Figure 1 (f) shows that NOVA achieves higher
performance than Ext4 with the data journal mode (i.e., EXT4-
DJ in Figure 1 (b)), while ensuring strong consistency. User-
level PM-specialized file systems have been proposed to miti-
gate the overhead of system calls: Aerie [40] implemented a
POSIX-like file system in userspace; Strata [28] appended up-
dates to a userspace per-process log; and SplitFS [27] used a
userspace library to handle data operations while still relying
on the kernel-level file system to handle metadata operations.

Observation 4: the process of adapting existing storage
systems to PM-specialized file systems remains in its early
days. Making any of those projects production-ready needs
substantial effort (and years) to achieve a combination of high
performance, strong consistency, and comprehensive data pro-
tection. In addition, PM-specialized file systems unanimously
bypass DRAM. While eliminating DRAM simplifies system
design by allowing direct access to PM and avoiding synchro-
nization complexity between PM and DRAM, it results in
sub-optimal I/O performance. For example, the read latency
of Intel Optane PM is 2x-3x higher than that of DRAM, while

2Although P2CACHE also writes metadata and data twice, it has a very
lightweight design with low overhead.
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Figure 2: Overview of P2CACHE.

the write bandwidth is only 1/6 [44]. Further compounding
this situation, PM-specialized file systems usually trade I/O
performance for write atomicity and consistency, for exam-
ple, via log-structured file system techniques (cumbersome to
reads) or shadow paging (causing write amplification) [19,43].
Figure 1 (f) shows that using Copy-on-Write (CoW) in NOVA
to ensure data consistency incurs nontrivial overhead and
proves detrimental to small writes (e.g., 1 KB).
PM-enhanced file systems: A straightforward approach for
traditional block-based kernel file systems to adopt PM is to
extend them with Direct Access (DAX), such as Ext4-DAX
and XFS-DAX [5]. DAX-enabled kernel file systems bypass
the page cache and perform reads/writes directly to PM. How-
ever, DAX-enabled file systems still operate at the block level
and cannot explore PM’s byte-addressability and its perfor-
mance benefits. Figure 1 (c) shows that Ext4-DAX in the
data-order mode achieves less than 50% of the performance
of NOVA. Further, Ext4-DAX lacks support for the data jour-
nal mode and does not provide strong crash consistency.

Mostly related to P2CACHE, efforts that explored the non-
volatile nature of PM in building a cache layer have been
conducted [30, 38]. They united either the journaling and
caching [30] or the storage and caching [38] functionalities
into a single cache layer. However, they are limited due to
(1) like PM-specialized file systems, they eliminate DRAM
despite its significant performance benefits for reads; (2) they
only focus on caching data, while metadata operations remain
on the slow path. Note that metadata can take up more than
50% of file system operations [3]; (3) they remain working at
the block level (e.g., block-based CoW for data journaling or
read-modify-write for partial writes), failing to leverage the
byte-addressability of PM. Observation 5: It is vital to have an
OS caching approach that recognizes both data and metadata
and distinct characteristics between PM and DRAM.

3 P2CACHE
We introduce P2CACHE, a novel in-kernel caching mecha-
nism. The goal of P2CACHE is to enable the key properties
of PM-specialized file systems for legacy kernel file systems,
including instant data durability, strong consistency, high per-
formance, and high concurrency while requiring no modifi-
cations to user applications, libraries, and kernel file systems.
As illustrated in Figure 2, the key idea behind P2CACHE is to
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exploit a read/write-distinguishable memory hierarchy within
the tiered PM/DRAM system, where P2CACHE leverages fast
PM to serve all write requests for instant data durability and
strong crash consistency, while relying on DRAM to handle
most read I/Os for high performance. P2CACHE comprises
two key kernel components: a persistent cache (Section 3.2)
and a page cache (Section 3.3). Based on the observations in
Section 2, P2CACHE adopts the following key design choices.

3.1 Design Overview
A read/write-distinguishable memory hierarchy: We share
the same observation as [41] that the (modern) storage hi-
erarchy is not a hierarchy given the advent of fast, byte-
addressable storage like PM. Unlike a traditional hierarchy
where all I/O requests are first handled by the upper perfor-
mance layer(s) and then consumed by the lower capacity
layer(s), P2CACHE distinguishes read and write operations in
the PM/DRAM memory hierarchy with the goal to allow PM
to handle all write requests while DRAM to serve most read
I/Os because (1) P2CACHE must persist each update in PM for
instant data durability and strong crash consistency; and (2)
DRAM’s read performance is significantly higher than PM.
To achieve this, P2CACHE employs the following read/write
strategies: (1) All writes are directed to PM, with a copy of
the data modification also made in DRAM. It ensures that
both PM and DRAM have the same data version. (2) Reads
are first served from DRAM. If not found, P2CACHE searches
PM and underlying file systems. While P2CACHE writes data
to both PM and DRAM, it leverages device-level parallelism
with little performance degradation – the latency of each data
copy to DRAM is hidden by the parallel (slower) PM write.
A lightweight operation log: To harness the high perfor-
mance of PM, P2CACHE minimizes the operations in the criti-
cal path that involves PM. As shown in Figure 2, P2CACHE’s
persistent cache resides at an early I/O layer, just below the
VFS to leverage its general file system abstractions and func-
tionalities while being slim. The role of the persistent cache
is to capture all file system updates from the VFS (e.g., data
overwrites/appends and metadata updates) and quickly, atom-
ically persist them in an operation log stored in PM.
A PM-optimized logging mechanism: P2CACHE’s operation
log in PM consists of two log areas: one for metadata updates
and one for file data updates. First, P2CACHE uses fixed-sized
log entries (e.g., 64 bytes) to record metadata updates in the
metadata log area. For data updates, P2CACHE uses different
strategies: (1) For unaligned overwrites (i.e., covering one or
spanning across two partial data blocks), P2CACHE directly
appends the data to the end of its metadata update log entry
for fast persistence. (2) For aligned overwrites (i.e., cover-
ing one or multiple contiguous full data blocks), P2CACHE
allocates free data blocks in the file data log area to store
the data. (3) For data appends, P2CACHE simply stores the
appended data at the end of its data blocks in the file data
log area (allocating additional blocks, if necessary). This ap-
proach ensures data consistency by never overwriting any old
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Figure 3: The layout of one CPU core’s PM space.
data before the commit stage and avoiding the costly CoW
operations commonly employed in other PM-based solutions.
Fast reads via in-DRAM indexes: While P2CACHE’s per-
sistent cache benefits writes, it challenges reads. For exam-
ple, a read operation may involve data scattered across var-
ious locations, and P2CACHE may even create “holes” in
the data blocks (in PM and/or DRAM) due to partial over-
writes that are not aligned with the block size. To ensure fast
reads, P2CACHE leverages in-DRAM indexes to facilitate data
search, including indexes for (1) log entries in PM’s metadata
log; (2) data blocks in PM’s file data log area; (3) data blocks
in the page cache; and (4) partial-write slots in the page cache.
These indexes enable the rapid assembly of read content, even
when it is distributed across multiple storage media. Impor-
tantly, these indexes reside exclusively in DRAM and can
be quickly reconstructed from the persistent cache, such as
during a system reboot or recovery.

3.2 Write-centric Persistent Cache
To achieve high performance, it is crucial to defer “writes” to
slow storage for as long as possible. This is precisely why
most kernel file systems employ DRAM-based caches, such
as dcache for metadata and the page cache for file data, to
expedite I/O operations. As depicted in Figure 2, P2CACHE
introduces a new OS component, a PM-based persistent cache,
positioned beneath the VFS and above any legacy kernel file
systems. It interfaces with the VFS to efficiently persist up-
dates to file system data and metadata, ensuring crash consis-
tency and quickly responding to user applications. Meanwhile,
P2CACHE relies on mature, well-tested underlying kernel file
systems for data organization and management – i.e., the per-
sisted metadata/data update operations in the persistent cache
are eventually flushed back to underlying file systems.

3.2.1 Layout of PM
Operation log: P2CACHE’s persistent cache captures and
records file system operations related to writes (i.e., meta-
data/data updates) in a PM-backed write-ahead operation log
(WAL). As illustrated in Figure 3, a WAL is implemented
as a circular buffer consisting of fixed-size log entries. As
there are two types of operations, directory operations and
file operations, P2CACHE builds two WALs: the directory
write-ahead-log (dWAL) and the file write-ahead-log (fWAL).
To improve the concurrency of P2CACHE, each CPU core has
its own WALs to log updates on that core independently.
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VFS Interface
Directory create(), link(), unlink(), symlink(), mkdir(), rmdir(),

mknod(), update_time(), setattr(), rename()
File write(), write_iter(), fsync(), flush()

open() (access time might need to updated)

Table 1: Interface exposed by VFS for metadata/data updates.
Algorithm 1 Atomically persisting file system updates
1: function PERSISTENCE(operation)
2: log_entry := create_a_log_entry(operation);
3: if is_directory_op then
4: write_to_dWAL(log_entry);
5: else
6: write_to_fWAL(log_entry);
7: data_persistence(log_entry); //Section 3.2.3
8: end if
9: update_in_DRAM_indexes(); //Section 3.3.2

10: sfence();
11: update_log_tail();
12: sfence();
13: end function

PM space management: P2CACHE partitions the PM space
into n groups, where n is the number of CPU cores. Each
group is further divided into two main areas: the metadata
log area for storing dWALs and fWALs and the file data log
area for storing data updates, as depicted in Figure 3. In sys-
tems with multiple PM DIMMs, P2CACHE employs the inter-
leaved mode, which distributes contiguous data blocks across
the DIMMs in an interleaved manner. The management of
PM space allows P2CACHE to achieve high concurrency: (1)
P2CACHE-related tasks can be independently handled on dif-
ferent cores; (2) Sequential reads/writes can be concurrently
served by multiple PM DIMMs. While file and directory op-
erations can be processed by different cores and stored across
multiple WALs, these operations are inherently ordered by
their time of occurrence. Each operation log entry in the WAL
contains a timestamp, as depicted in Figure 3. This guarantees
that logged operations are later consumed by the underlying
file system in the exact order in which they were issued by
user applications. P2CACHE relies on the VFS to prevent con-
flicts arising from concurrent updates to the same directory
or file (via the per-inode read-write lock). For example, while
one thread is writing data to a file, all other threads attempting
to read from or write to the same file must wait. As a result,
writes to the same file are recorded sequentially across the
WALs, and their orders are determined by their timestamps.

3.2.2 Durability and Crash Consistency
Instant metadata/data durability: Using the PM-backed
operation log, P2CACHE first ensures instant data/metadata
durability. Any metadata/data updates are captured by the
persistent cache and synchronously persisted in the WALs.
P2CACHE captures these updates via the VFS-exposed inter-
face as listed in Table 1. For each update, one or more log
entries are synchronously created to store such an update oper-
ation in either the dWAL or the fWAL for metadata durability.
If the operation involves the file data update (e.g., write()),

new data should also be synchronously stored for data dura-
bility (more details in Section 3.2.3). Note that achieving in-
stant metadata/data durability in traditional kernel file systems
requires user applications to explicitly invoke synchronous
operations, such as fsync() or fdatasync(). For example,
most database systems use fsync() to ensure immediate data
durability. In contrast, with P2CACHE’s instant data durabil-
ity, (1) those fsync() issued by legacy applications can be
immediately returned; (2) P2CACHE-aware applications can
eliminate fsync(); the return of a file operation indicates
that both metadata and data have been persisted.
Strong crash consistency: P2CACHE further provides strong
crash consistency similar to PM-specialized file systems [43].
P2CACHE achieves this by ensuring that each file operation is
atomic – i.e., updates made by the operation are committed
in an all-or-none fashion. As described in Algorithm 1, for a
metadata update, P2CACHE appends the operation to the end
of the dWAL/fWAL by creating a log entry (size of 64 bytes).
Then, P2CACHE atomically updates the log tail to commit the
metadata update. For a data update, P2CACHE first appends
the operation in the fWAL. Depending on the type of the
writes (partial or full-block), P2CACHE stores the file data
either to the fWAL by creating log entries or in the file data log
area by allocating free data blocks (Section 3.2.3). Finally, the
log tail will be updated to commit the data update. Note that
as Optane PM only guarantees atomicity for an 8-byte update,
ensuring the atomicity of updates larger than 8 bytes (e.g.,
metadata/data updates) requires P2CACHE to atomically move
the log tail to the end of the dWAL/fWAL, thus committing
the update. To ensure correct write ordering and prevent the
tail update from occurring before the metadata/data update,
P2CACHE uses two sfence instructions: one after WALs or
file data are written, and one after the log tail is updated.

Compared to in-kernel file system journaling (e.g., JBD2),
which offers “relaxed” consistency, P2CACHE’s strong consis-
tency provides the following benefits: (1) Each file operation
mostly involves updating a small log entry (e.g., 64 bytes),
which is much lightweight, whereas JBD2 needs a complex
transaction operation involving multiple (4 KB) blocks, such
as a journal header, multiple descriptor blocks, and a journal
commit block. (2) Since the logs in P2CACHE are committed
to PM, they are persistent. As PM has a much larger capacity
(than DRAM), persisted data can stay for quite a long time.
Hence, P2CACHE can defer “writes” to the underlying slow
file systems and storage devices as long as possible. (3) Once
operations are asynchronously consumed by the underlying
file system, many optimizations can be employed, such as co-
alescing repeated writes and removing obsolete data, similar
to [28]. (4) As shown in Section 4, P2CACHE (though with
strong consistency) achieves much higher performance than
legacy kernel file systems (with relaxed consistency) because
P2CACHE significantly mitigates software overhead.

While P2CACHE can implement “relaxed” consistency by
placing WALs in DRAM first and asynchronously flushing
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them back to PM, its current focus lies in providing strong
(synchronous) consistency to kernel file systems. Further,
P2CACHE does not support atomic mmap, as “mmapped” I/Os
bypass the VFS and access “mmapped” files directly via
load/store instructions. Currently, P2CACHE relies on user
applications to achieve instant data durability and strong con-
sistency for mmap, while a modified (or new) mmap interface
for update atomicity is our ongoing investigation.

3.2.3 Fine-grained, Highly-efficient Data Logging
Compared to metadata, persisting data operations can incur
much higher overhead. To mitigate such overhead, P2CACHE
invents a fine-grained, highly-efficient data logging mecha-
nism that leverages PM’s byte-addressability.

To ensure consistency, one should never overwrite old data
before committing its new update. Otherwise, if a crash hap-
pens in the middle of an overwrite, it may corrupt the old
data, causing inconsistency. To consistently persist a file data
update, an intuitive approach is to allocate free data blocks in
PM for storing the new file data, record the addresses of these
blocks, and finally commit the data update. Up to this point,
the data blocks that store old data can be released. Reclaiming
these blocks can be done asynchronously (Section 3.4).

Note that if the updated file data aligns perfectly with one
or multiple block boundaries (e.g., 4 KB), no data copying
is required. In this case, the new file data blocks simply re-
place the old data blocks once the update is committed. If the
updated file data does not align with the data blocks, partial
updates are involved. Existing approaches [19, 23, 43] use a
CoW strategy to copy the old data to a new data block and
then apply the partial updates. Unfortunately, this approach
leads to write amplification and long write latency.

P2CACHE addresses this issue by decoupling (and delaying)
“copy” from “write” in a CoW operation, named decoupled
CoW. Decoupled CoW distinguishes writes of different sizes.
As depicted in Figure 3, there are two types of partial writes:
(1) For a small partial write (< 2KB, assuming a block size
of 4 KB), P2CACHE first appends the write operation log
entry to the end of the fWAL and then directly appends the
data content after the log entry. Finally, P2CACHE atomically
updates the log tail to the end of the data content to commit
the update. (2) For a large partial write (≥ 2KB and < 4KB),
P2CACHE instead allocates a free block to store the content of
the partial write. Similar to NOVA [43], P2CACHE employs a
red-black tree for tracking and allocating free blocks.

In both the aforementioned cases, P2CACHE does not copy
the old data in the write path, neither does it in the read path
– P2CACHE devises an approach to efficiently assemble dis-
tinct partial updates during reads (Section 3.3.2). P2CACHE
performs data copying to convert a partially updated block
to a full block at any later time. For instance, when reclaim-
ing space in PM (Section 3.4), P2CACHE copies small partial
writes from the fWAL to their data blocks in the file data log
area, or fills the missing portion in the data block of the large
partial write with old data. If such data blocks do not exist
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Figure 4: Device-level parallelism: The I/O latency of writing
data to both PM and DRAM (i.e., one sfence after two writes:
one to PM, and one to DRAM) is almost the same as that of
writing data to PM only (i.e., one sfence after each PM write).

in PM, a read-modify-write (RMW) operation is invoked to
copy the required data from the underlying file system.

The decoupled CoW approach allows P2CACHE to quickly
persist partial updates by leveraging PM’s byte-addressability.
Real-world I/O traces show that a significant number of par-
tial updates, ranging from 30% to 90% [33], commonly exist.
In addition, by distinguishing writes by their sizes, P2CACHE
ensures that it requires copying at most half a block of data
(e.g., 2KB with a block size of 4KB): P2CACHE either copies
the data of small partial writes (< 2KB) to their data blocks
or the unmodified portion of old data (< 2KB) to the data
blocks of large partial writes (> 2KB). Section 4 demonstrates
that P2CACHE, with the fine-grained data logging mecha-
nism, achieves much higher performance for small writes
than NOVA [43], a leading PM-specialized file system.

3.3 Read-centric Page Cache
P2CACHE advances the page cache to handle most read I/Os
in the tiered PM/DRAM hierarchy. P2CACHE’s page cache is
a separate implementation other than the native page cache.
It does not impact the behaviors of non-P2CACHE supported
kernel file systems, which still access the native page cache.
To allow the persistent cache and P2CACHE’s read-centric
page cache to work efficiently without comprising strong con-
sistency, P2CACHE employs a simple-and-effective inclusive
cache model to exploit device-level parallelism.

3.3.1 Inclusive Cache Model
Similar to traditional caching mechanisms, P2CACHE strives
to maximize the hit ratio of the DRAM-based page cache.
P2CACHE employs an inclusive cache model where multi-
ple copies of the same data can be stored across the tiered
memory, and the topmost layer (i.e., DRAM) always con-
tains the latest data version. It works as follows: (1) Given
a write access, it will be persisted by the persistent cache
(Section 3.2.2); meanwhile, a data copy will be made to the
page cache before committing the update in PM. In this way,
P2CACHE allows the page cache to always have the latest
version of all cached data. (2) Given a read access, P2CACHE
searches from the page cache (in DRAM), then the persistent
cache (in PM), and finally the underlying file system until
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Figure 5: Fast read assembling via in-DRAM indexes.

it finds the data. For a page cache miss (e.g., the first time
read or due to page eviction), the required data must be trans-
ferred either from the persistent cache or the underlying file
system to the page cache, but data are never moved from the
underlying file system to the persistent cache. (3) P2CACHE
uses LRU for cached page replacement, though other policies
also apply. Evicted (dirtied) pages are dropped because any
modifications have been recorded in the persistent cache.

Although P2CACHE involves “double writes” for each data
update, these two writes can be performed in parallel as
they target separate devices: one for PM and one for DRAM.
P2CACHE can benefit from device-level parallelism. Figure 4
shows that the bandwidth (and latency) under “double writes”
(i.e., writing to DRAM and PM at the same time) is very
close to the “single-write” case (i.e., writing to PM only),
indicating that the slower PM hides the latency of the extra
data copy to DRAM as long as these two writes overlap each
other. This way, P2CACHE trades DRAM’s bandwidth for
simple synchronization between the two caches leading to
a simplified read path. Note that DRAM has a much higher
write bandwidth than PM (e.g., 6x [44]). Similar to the native
page cache, P2CACHE’s page cache only uses “idle” DRAM
and can grow/shrink. As all data on DRAM are in sync with
PM, when the system memory pressure is high, the DRAM
used by P2CACHE can be reclaimed for other applications.

3.3.2 Fast Reads
While P2CACHE’s data logging (Section 3.2.3) greatly sharp-
ens the write path, it brings new challenges to the read path
due to: (1) While an operation log is efficient for updates,
but not anymore for searching data (in the event of a page
cache miss); (2) Decoupled CoW could leave holes in a page
cache’s data block – i.e., regions that are neither written by
applications nor fetched from PM or underlying file systems.

In-DRAM indexes: To address these challenges, P2CACHE
uses in-DRAM indexes. P2CACHE leverages Linux kernel’s
XArray – a memory-efficient, parallelizable treed data struc-
ture that performs lookups without locking – to create four per-
inode, in-DRAM indexes (Figure 5) to track ① data blocks
in the page cache; ② partial-write slots in the page cache; ③
log entries in the fWAL; and ④ data blocks in PM’s file data
log area. In consequence, in the write path, before committing

a data update, P2CACHE needs to insert the mapping informa-
tion – between the updated data range and the log entry in the
fWAL – in index ③. If a data block in the file data log area
or the page cache has been allocated, index ④ or ① should be
updated. If such an update involves a partial write, the offset
and length of the partial write should be stored in index ②.
Assembling data for reads: With these in-DRAM indexes,
the data content of a read request, specified by offset and
length, can be quickly assembled as follows:

First, P2CACHE uses the offset to query its per-inode
index ① to check whether the data has been fully cached in
the data block(s) of the page cache. If so, P2CACHE returns the
data of the requested length to user applications directly (e.g.,
case 1 in Figure 5). Otherwise, P2CACHE uses the 2-tuple key
{offset, length} to query index ② to check whether one
or more partial slots in the range of the requested data exist
in the page cache (e.g., case 4 & 5). If the aggregated partial
slots do not cover the whole requested data, P2CACHE moves
to the persistent cache for the missing slots (e.g., case 4 & 5).

P2CACHE uses the same 2-tuple key {offset, length}
to query index ③ to get all log entries belonging to the queried
data range, some of which may contain small partial writes
(e.g., case 5). Further, by providing the offset, P2CACHE
retrieves the data block(s) stored in the file data log area
via index ④ (e.g., case 2 & 4). Then, P2CACHE copies the
needed (missing) data slots – from the combined small partial
writes (from the fWAL) and large partial writes (from PM’s
data blocks) – to the page cache (e.g., case 2, 4 & 5). If,
unfortunately, there are still uncovered “holes” (e.g., case 3 &
4), P2CACHE contacts the underlying file system for reading
the needed data blocks to the page cache, taking longer time.

3.4 System Recovery and Digest
Rebuilding cache: P2CACHE updates the log tail to commit
operation-related records (Algorithm 1), indicating that all
records preceding the log tail are considered valid. In case
of a system crash or system remount, P2CACHE discards any
uncommitted records in the operation log (WALs). During
system recovery/remount, to facilitate fast reads, P2CACHE
needs to scan the logs and build (1) two in-DRAM indexes,
i.e., index ③ and index ④ (Section 3.3.2) and (2) a hash ta-
ble (i.e., dCache). The process of scanning and building is
considerably quick because logs are typically small (no data
scanning is needed) and stored in fast PM. Table 2 shows
that given a practical setup – for instance, with 10 thousand
opened directories/files and 1 million log entries (typically
multiple updates target one directory/file) – P2CACHE uses a
single core to recover index ③ within 33 ms while less than 17
ms to rebuild dCache. Moreover, the recovery of in-DRAM
indexes can be made in parallel due to the design of per-core
WALs – the time to rebuild ③ drops to 14 ms with 8 cores.
Digesting cache: P2CACHE applies cached operations in PM
to underlying file systems asynchronously via the existing I/O
interface, namely the digest process [28]. The large capacity
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# of log entries/files 104 105 106 107

Rebuild dCache (ms) 16.52 95.57 904.84 8009.02
Rebuild index ③ (ms) 0.89 4.44 32.92 320.50

Table 2: Time to rebuild dCache and in-DRAM indexes.
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Figure 6: P2CACHE filling-up time: P2CACHE operates on a
512-GB PM, while the kernel file system (Ext4) runs upon
one 2-TB SSD. A (sequential) write-intensive workload from
Filebench [6] with 8 threads continuously issues I/O requests
of various sizes at maximum speed. The PM’s speed deter-
mines the cache fill-up time (the solid line), while the SSD’s
speed determines the digestion time (the dashed line). The
digest process can merge adjacent write requests in the per-
sistent cache and create large sequential I/Os writing to SSD.

of PM provides more flexibility to P2CACHE by preventing the
contention between the digest process and the normal working
process. P2CACHE digests operations during system idleness
upon two conditions: the usage of PM space is high (e.g., more
than 80%) or the number of log entries is large (e.g., more
than 10 million). During the digest process, P2CACHE relies
on the return of fsync (after each operation) to ensure that
metadata/data has been persisted and committed. A system
crash may also occur during digest; P2CACHE simply re-
applies uncommitted operations. Similar to [28], P2CACHE
applies optimizations to coalesce multiple updates to the same
file/directory during the digest process.
Filling cache: Given that (1) PM is generally faster than
the storage devices on which the underlying kernel file sys-
tems operate (e.g., HDD/SSD) and (2) the speed of the digest
process is mainly limited by the kernel file system’s storage
devices, the persistent cache of P2CACHE can reach its full
capacity. As a concrete example, Figure 6 shows the time
required to fill up the persistent cache. When the persistent
cache is full, P2CACHE’s current strategy is to throttle fore-
ground I/O threads till the digest process reclaims enough
space from PM (e.g., 20%). We note that as long as the aver-
age I/O rate is lower than the speed of the kernel file system’s
storage devices – or the fill-up time (the solid line in Figure 6)
exceeds the digestion time (the dashed line) – the digest pro-
cess can write back data timely. In practice, the occurrence
of P2CACHE reaching PM’s full capacity is expected to be
less frequent because (1) PM could be large (further CXL can
aggregate even larger PM), and (2) I/O requests in a produc-
tion environment arrive at moderate rates [38], typically lower
than the speed of the kernel file system’s storage devices.

4 Evaluation
We have implemented P2CACHE as a Linux kernel module
with ∼2000 lines of kernel code. P2CACHE is available at
https://github.com/YesZhen/P2CACHE. As an indepen-
dent kernel module, P2CACHE can be easily (un-)loaded with-
out modifying other kernel components. P2CACHE has passed
all the test cases (∼7,000) of Linux official POSIX file system
test suite [13], demonstrating P2CACHE’s POSIX compliance.

We have evaluated the effectiveness of P2CACHE. Results
from microbenchmarks demonstrate that (1) P2CACHE accel-
erates metadata operations by ∼200x against kernel file sys-
tems (e.g., Ext4 with fsync) and 3.5x against PM-specialized
file systems (e.g., NOVA). (2) P2CACHE yields much higher
write performance, particularly for small, partial writes – e.g.,
by 6.8x than NOVA and 1,000x than Ext4 (with fdatasync)
for 1 KB writes. (3) P2CACHE can leverage the DRAM-based
page cache to achieve higher read performance – by 1.5x than
NOVA. The performance benefits brought by P2CACHE fur-
ther contribute to the improved application-level performance
– e.g., by 72% to NOVA for RocksDB’s insert operations.
Experimental setup: The experiments were conducted on an
ASUS RS700-E10-RS12U server equipped, with two 12-core
Intel Xeon Gold 5317 processors (3.0 GHz and 18M Cache)
with 2 NUMA nodes each with 256 GB DRAM. Hyperthread-
ing was disabled while turbo boost was enabled. We installed
four 128 GB (totaling 512 GB) Intel Optane 200 series persis-
tent memory for each NUMA node and one 2-TB Samsung
PM883 SSD. Since our focus is not on the NUMA effect, all
experiments were conducted on one NUMA node.

We evaluated P2CACHE on the Linux kernel 5.4, compar-
ing it with (1) two kernel file systems, Ext4 and XFS, both
operating on the SSD with the default metadata journaling
mode and the data journaling mode for Ext4 (i.e., Ext4-DJ);
(2) two PM-enhanced file systems, Ext4-DAX [5] and XFS-
DAX [25], operating on PM; and (3) one PM-specialized
file system, NOVA [43] (in strict mode) also operating on
PM. We tested P2CACHE atop Ext4 as the underlying kernel
file system, though P2CACHE can run atop any kernel file
system. We evaluated P2CACHE with both microbenchmarks
and real-world applications. We have developed our own mi-
crobenchmarks to delicately generate desired I/O requests and
patterns to test various design aspects of P2CACHE. We se-
lected three representative real-world applications for testing:
Filebench [6], RocksDB [1], and MinIO [14].

4.1 Microbenchmarks
Metadata operations: We first show how P2CACHE benefits
metadata operations. We chose the six most complex ones
in Figure 1, i.e., create, link, mkdir, rename, rmdir, and
unlink. For each type of metadata, our micro-benchmark
kept issuing the operations sequentially – i.e., the subsequent
one was issued upon the completion of the previous one.

Figure 7a shows that P2CACHE significantly accelerates
the speed of all six metadata operations compared to all other
cases, except for tmpfs. For example, for the most complex
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Figure 7: P2CACHE significantly accelerates metadata operations as against other cases except for TMPFS.
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Figure 8: P2CACHE accelerates data operations, especially for small, partial writes, as against other cases.
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Figure 9: Comparisons of performance for reads.

operation rename (i.e., involving multiple inodes), P2CACHE
achieves ∼4x the performance of NOVA and Ext4 (in terms
of operations/second). It is because P2CACHE keeps the criti-
cal path (involving PM) extremely short by simply storing a
log entry that represents the rename operation in the dWAL.
In contrast, NOVA requires the creation of multiple logs and
updates to multiple log entries, while Ext4 involves more oper-
ations (i.e., first unlink and then link). As another example,
P2CACHE enhances the performance of mkdir by a factor
of 12x and 6x compared to Ext4 and Ext4-DAX. Figure 7a
also shows that the performance gap between P2CACHE and
tmpfs is narrow – tmpfs is an extremely simple kernel file
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Figure 10: Scalability test with 4 KB append operations.

system that works upon DRAM. P2CACHE is mostly within
80% the performance of tmpfs; P2CACHE even outperforms
tmpfs for create (1.3x) and mkdir (1.25x). The main rea-
son lies in that, instead of using the default heavyweight “in-
ode_init_always” function, P2CACHE implements its opti-
mized one by initializing (fewer) needed fields. Again, as a
caching mechanism, P2CACHE can be lighter than full-fledged
file systems, even including tmpfs.

Figure 7b shows a strong consistency scenario by issuing
fsync after each metadata operation. Note that P2CACHE
and NOVA provide strong consistency in nature; they re-
turn fsync without any action. With strong consistency, ex-
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Figure 11: Performance comparisons of using real-world applications (a) Filebench, (b) RocksDB, and (c) MinIO.

cept for P2CACHE, NOVA, and tmpfs, the performance of
all other approaches drops significantly, where P2CACHE out-
performs them by up to 200x. Noticeably, the performance
of P2CACHE and NOVA drops with fsync (Figure 7b) com-
pared to the case without fsync (Figure 7a). It is because the
fsync system call (though a no-op) incurs higher software
overhead. As all the approaches rely on VFS’s dCache for
caching metadata, they achieve the same performance for
read-related metadata operations (not listed).

Data operations: Next, we demonstrate how P2CACHE ben-
efits data operations. Figure 8a shows that in most cases
P2CACHE significantly outperforms other PM-based ap-
proaches in write performance – under both append (i.e.,
sequentially writing to the end of a file) and overwrite
(i.e., sequentially overwriting existing content) – due to its
lightweight design for the write path. Particularly, P2CACHE
achieves high performance for partial writes (e.g., for 100
bytes, 1 KB, and 2 KB) due to its fined-grained, highly-
efficient data logging mechanism (Section 3.2.3). For exam-
ple, the performance of append (for 1 KB) under P2CACHE
is 7.8x, 3.7x, and 3.9x as high as NOVA, Ext4-DAX, and
XFS-DAX. Note that, only P2CACHE and NOVA provide
strong consistency, while Ext4-DAX and XFS-DAX only pro-
vide metadata consistency. Even with strong consistency, in
many cases (except for the 100B case for append and 1KB
& 2KB cases for overwrite), P2CACHE achieves higher per-
formance than kernel file systems (Ext4 and XFS), where
the append and overwrite operations are directly applied to
DRAM-based page cache. It indicates that P2CACHE greatly
reduces software overhead. The reason that the 100 B append
case does not perform as well as other partial-write cases (e.g.,
1 KB and 2 KB) lies in that the I/O size of 100 bytes is not
aligned with PM’s physical media access granularity, i.e., 256
bytes, causing write amplification and inefficiency [44].

Similarly, Figure 8b shows a strong consistency scenario
by issuing fdatasync after each append or overwrite op-
eration. The performance gap between P2CACHE and others
(except NOVA) widens significantly – e.g., P2CACHE outper-
forms Ext4/XFS by more than 1,000x and Ext4-DAX/XFS-
DAX by more than 10x for small writes. The poor perfor-
mance of the kernel file systems is due to (1) slow SSD and

Metadata/data ops Initial state Steady state Steady/initial

CREATE 259,697 300,778 +15.8%
LINK 290,852 276,509 -4.9%
MKDIR 274,165 308,090 +12.4%
RENAME 273,929 250,650 -8.5%
RMDIR 422,855 376,619 -10.9%
UNLINK 544,964 513,720 -5.7%
Append (100 B) 1,417,632 1,428,365 +0.8%
Append (64 KB) 114,357 128,625 +12.5%
Overwrite (100 B) 2,266,327 2,297,884 +1.4%
Overwrite (64 KB) 118,416 132,006 +11.5%

Table 3: Performance comparisons between the initial and
steady states: metadata (Mops); data (IOPS).

(2) high overhead of file system journaling (Section 2.2).
For P2CACHE’s read performance, we tested Case 1 and 5,

as listed in Figure 5. For Case 1, where all data was cached in
the page cache, we measured the performance of sequential
reads with various I/O sizes ranging from 100 B to 64 KB. For
Case 5, where partial data was stored in DRAM and partial
data was in PM, we randomly created numerous 1 KB or 2 KB
“holes” in the data blocks of the page cache (averaging one
hole per 4 KB) and measured the performance of sequential
reads with the I/O size of 4 KB.

Figure 9 shows that, for case 1, P2CACHE achieves the
same (or slightly better) performance as (than) those which
can leverage the DRAM-based page cache, e.g., Ext4, Ext4-
DJ, and XFS. However, the difference is that P2CACHE also
provides strong consistency, while others do not. In contrast,
P2CACHE outperforms other PM-related approaches that by-
pass the page cache, e.g., by 1.5x compared to NOVA (for 4
KB reads). For case 5, P2CACHE quickly assembled each 4
KB read from both DRAM and PM (Section 3.3.2). However,
the read performance was limited by the slower device – e.g.,
PM. For example, P2CACHE achieves the same read perfor-
mance as NOVA, Ext-DAX, and XFS-DAX – the PM’s speed
limited the read performance.
Steady-state performance: We studied the steady-state
performance by first simulating a steady-state scenario of
P2CACHE through running a mix of metadata/data operations
until the persistent cache gradually reaches its 60% capacity
with around 1 million files. We then measured the perfor-
mance by running the above six metadata operations and
append/overwrite data operations with strong consistency
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(fsync or fdatasync after each operation) and compared
the steady-state performance with that of the “initial state”,
where the persistent cache is empty. Table 3 demonstrates that
the performance variation mostly falls within 15%.
Concurrency and scalability: We measured the scalability
of P2CACHE by running an increasing number of concurrent
threads accessing different files on separate cores (up to 12 as
one NUMA node has 12 cores). The results in Figure 10 show
that both P2CACHE and NOVA scale well as the number of
threads increases until they reach the peak PM performance
(for 4 KB appends). P2CACHE achieves peak performance
much faster than NOVA due to, again, its lightweight design.
Consistency checks: We developed a consistency checker
to empirically generate test cases to examine whether the
strong consistency property provided by P2CACHE holds. The
checker added “crash points” along P2CACHE’s persistence
path (Algorithm 1) with three cases (1) inserting the crash
point before the first sfence; (2) between the two sfences;
and (3) after the second sfence. For Case 1, the operation
should not be atomically persisted as the log tail is not up-
dated; for Case 3, the operation should be persisted as the
log tail is updated; for Case 2, the operation may or may
not be persisted. The checker examines that if the operation
is persisted, the final state should match the expected state
(a priori knowledge), while if the operation is not persisted,
nothing should be recorded (i.e., none or nothing). For all the
microbenchmark tests, we also used the checker to perform
consistency checks without observing any violations. We note
that such consistency checks are incomplete and unable to
explore all possible test cases. We leave the investigation of a
more comprehensive method in future work.

4.2 Real-world Applications
Filebench: To evaluate the performance of P2CACHE with
real-world applications, we first selected three Filebench
workloads [6]: (1) a write-intensive workload, fileserver (1:2
read/write ratio); (2) a read-intensive workload, webproxy
(5:1 read/write ratio); and (3) a read/write balanced workload,
varmail (1:1 read/write ratio). For all cases, the average read
size was 1 MB, and the average write size was 16 KB. We
added another type of write with the I/O size of 1 MB for
fileserver. We fixed the thread number to 8 for all cases.

Figure 11 (a) shows that P2CACHE consistently outper-
forms other PM-based approaches (e.g., NOVA, Ext4-DAX,
and XFS-DAX), especially for read-intensive test cases, e.g.,
webproxy and varmail, due to P2CACHE’s read/write distin-
guishable memory hierarchy which leverages both PM and
DRAM. For example, P2CACHE outperforms NOVA by 60%
for webproxy and 20% for varmail. P2CACHE achieves lower
performance than Ext4 for fileserver with intensive write op-
erations, as Ext4 leverages faster DRAM-based page cache
while P2CACHE persists data in slower PM for writes. How-
ever, Ext4 does not provide strong consistency. P2CACHE
outperforms Ext4-DJ (with data journaling enabled) by 10x.
RocksDB: We then used db_bench [1] – RocksDB’s official

benchmark tool – to evaluate P2CACHE for RocksDB (a key-
value store). RocksDB’s architecture is highly concurrent for
reads but not for writes [8]. Therefore, for writes, we focused
on a single-threaded synchronous case by randomly inserting
10 million records to RocksDB; for reads, we focused on a
multi-threaded random case with 8 threads to randomly read
10 million key-value records from RocksDB. We prepared
a dataset with 10 million records. We fixed the key size to
20 bytes and evaluated two value sizes – 100 B and 1KB – a
common case in RocksDB.

Figure 11 (b) shows that P2CACHE outperforms all other
approaches for small writes (i.e., insert) – e.g., by ∼72% to
NOVA,∼33x to Ext4-DAX, and∼200x to Ext4. Note that, the
extremely poor performance of Ext4 (though using the native
page cache) is due to (1) synchronous insert operations, which
persist data on slow SSD; and (2) read-modify-write caused
by unaligned writes (e.g., 100 B or 1 KB are not aligned with 4
KB block size). As we purposely conducted the tests of reads
after insert to have all records stored in the page cache, all
the approaches (e.g., P2CACHE, Ext4, Ext4-DJ, and XFS) that
can leverage the page cache achieve the same performance –
higher than PM-based approaches that bypass DRAM.
MinIO: Last, we evaluated P2CACHE using an object stor-
age, MinIO [14]. Compared to the above applications (e.g.,
RocksDB and Filebench), MinIO’s software I/O path is much
longer with extra data management (e.g., data checksum
and placement). We used MinIO’s official benchmark tool
warp [16] with three workloads: put, get, and mixed (45%
get, 30% stat, 15% put, and 10% deletion operations). We used
log2 to distribute object sizes – i.e., objects are distributed in
equal numbers for each doubling of the size.

Figure 11(c) shows that P2CACHE and NOVA achieve the
same performance under all cases and outperform other ap-
proaches by a range between 5% (over Ext4-DAX/XFS-DAX
for get) and 10x (over Ext4/Ext4-DJ for get). We observed
that software overhead from MinIO became dominant; neither
P2CACHE nor NOVA can exploit the full capacity of PM.
5 Conclusions
We have presented P2CACHE, an in-kernel caching mecha-
nism, which harnesses performance benefits and unique char-
acteristics of fast, byte-addressable PM for legacy kernel file
systems. P2CACHE works upon a read/write-distinguishable
memory hierarchy that leverages PM to persist writes and
DRAM to handle reads, thus equipping kernel file systems
with the key properties similar to PM-specialized file sys-
tems, including instant data durability, strong consistency,
high concurrency, and high performance. Our evaluation with
both microbenchmarks and applications shows that P2CACHE
significantly increases the performance of legacy kernel file
systems, and even higher than PM-specialized file systems.
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A Artifact Appendix

Abstract
The artifact contains the source code of P2CACHE required to
reproduce the results and figures presented in the paper. The
code is designed to work upon Intel Optane PMem 200 series.
To facilitate the reproduction of the results, we provide a col-
lection of scripts for compiling and installing P2CACHE, exe-
cuting the experiments, collecting logs, and creating graphs.
More details are available in the “README.md” file.

A.1 Description & Requirements
A.1.1 How to access

• Link: https://github.com/YesZhen/P2CACHE.git
• Artifact license: GNU GPL V3.0
• Artifact version: v0.0

A.1.2 Dependencies

For information on the hardware/software requirements
needed to run P2CACHE, please refer to “README.md”.

A.1.3 Benchmarks

The experiments are carried out using several third-party
benchmarking tools and applications, including FxMark,
Filebench, db_bench/RocksDB, and warp/MinIO.

A.2 Testbed Setup
For instructions on how to set up and configure the test ma-
chine, please refer to the “README.md” file.

A.3 Evaluation
A.3.1 Major Claims

We summarize the major claims (Cx) in the paper as follows.

• (C1): P2CACHE accelerates metadata operations, e.g., by
∼200x against kernel file systems (e.g., Ext4) and ∼3.5x
against PM-specialized file systems (e.g., NOVA).

• (C2): P2CACHE achieves much higher write performance
especially for small, partial writes, e.g., by 6.8x than NOVA
and 1,000x than Ext4 (with fdatasync) for 1 KB writes.

• (C3):P2CACHE can leverage DRAM-based page cache to
achieve high read performance, e.g., by 1.5x than NOVA.

• (C4): The performance benefits brought by P2CACHE fur-
ther contribute to improved application-level performance –
e.g., by 72% to NOVA for RocksDB’s insert.

A.3.2 Experiments

To reproduce the results presented in this paper, please refer to
the “README.md” file and follow the instructions provided
in the “Reproduce results from the paper” section.

Experiment (E1): Metadata Operations (without fsync)
Expected outcome. E1 produces the results as shown
in Figure 7a, which illustrates that P2CACHE significantly ac-
celerates the speed of all six metadata operations (i.e., create,
link, mkdir, rename, rmdir, and unlink) when compared
to all other approaches (i.e., Ext4, Ext4-DJ, XFS, Ext4-DAX,
XFS-DAX, and NOVA), except for tmpfs.

Experiment (E2): Metadata Operations (with fsync)
Expected outcome. E2 creates the results of Figure 7b. It
demonstrates a strong consistency case by issuing fsync after
each metadata operation. Except for P2CACHE, NOVA, and
tmpfs, the performance of all other approaches (i.e., Ext4,
Ext4-DJ, XFS, Ext4-DAX, XFS-DAX) drops significantly.

Experiment (E3): Write Operations (no fdatasync)
Expected outcome. E3 generates the results as depicted
in Figure 8a. It shows that in most cases (across various I/O
sizes), P2CACHE outperforms other PM-based approaches
(i.e., NOVA, Ext4-DAX, and XFS-DAX) for two write operations:
append and overwrite.

Experiment (E4): Write Operations (with fdatasync)
Expected outcome. E4 produces the results as depicted
in Figure 8b. It demonstrates a strong consistency scenario
by issuing fdatasync after each append or overwrite op-
eration. P2CACHE outperforms all other approaches in terms
of higher append and overwrite performance.

Experiment (E5): Read Operations
Expected outcome. E5 creates the results as demonstrated
in Figure 9. It shows that P2CACHE achieves the same (or
slightly better) performance as (than) those which can lever-
age the DRAM-based page cache (i.e., Ext4, Ext4-DJ, and
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XFS). Further, P2CACHE outperforms all other PM-based ap-
proaches (i.e., NOVA, Ext4-DAX, XFS-DAX) in terms of higher
read performance.
Experiment (E6): Scalability
Expected outcome. E6 generates the results in Figure 10,
showing that both P2CACHE and NOVA scale well as the num-
ber of threads increases until reaching the peak performance,
whereas P2CACHE achieves the peak faster than NOVA.
Experiment (E7): Application: Filebench
Expected outcome. E7 produces the results as shown
in Figure 11(a). It runs three workloads with Filebench, which
are fileserver, webproxy, and varmail. The results show
that P2CACHE consistently outperforms other PM-based ap-
proaches (i.e., NOVA, Ext4-DAX, and XFS-DAX) in terms of
higher application-level performance (operations/second).
Experiment (E8): Application: RocksDB
Expected outcome. E8 creates the results in Figure 11(b). It
shows that for the insert operations (with sizes of 100 B
and 1 KB), P2CACHE outperforms all other approaches. All
the approaches (i.e., P2CACHE, Ext4, Ext4-DJ, and XFS) that
can leverage page cache achieve similar read performance –
slightly higher than other PM-based approaches that bypass
DRAM (i.e., NOVA, Ext4-DAX, and XFS-DAX).
Experiment (E9): Application: MinIO
Expected outcome. E9 produces the results in Figure 11(c).
The results show that P2CACHE and NOVA achieve the
same performance under all test cases and outperform
other approaches (e.g., Ext4, Ext4-DJ, Ext4-DAX, XFS, and
XFS-DAX).
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Abstract
LSM-based storage systems are widely used for superior write
performance on block devices. However, they currently fail
to efficiently support secondary indexing, since a secondary
index query operation usually needs to retrieve multiple small
values, which scatter in multiple LSM components. In this
work, we revisit secondary indexing in LSM-based storage
systems with byte-addressable persistent memory (PM). Exist-
ing PM-based indexes are not directly competent for efficient
secondary indexing. We propose PERSEID, an efficient PM-
based secondary indexing mechanism for LSM-based storage
systems, which takes into account both characteristics of PM
and secondary indexing. PERSEID consists of (1) a specifi-
cally designed secondary index structure that achieves high-
performance insertion and query, (2) a lightweight hybrid
PM-DRAM and hash-based validation approach to filter out
obsolete values with subtle overhead, and (3) two adapted op-
timizations on primary table searching issued from secondary
indexes to accelerate non-index-only queries. Our evaluation
shows that PERSEID outperforms existing PM-based indexes
by 3-7× and achieves about two orders of magnitude per-
formance of state-of-the-art LSM-based secondary indexing
techniques even if on PM instead of disks.

1 Introduction

Log-Structured Merge trees (LSM-trees) feature outstanding
write performance and thus have been widely adopted in mod-
ern key-value (KV) stores, such as RocksDB [22] and Cassan-
dra [1]. Different from in-place update storage structures (e.g.,
B+-Tree), LSM-trees buffer writes in memory and flush them
to storage devices in batches periodically to avoid random
writes, which enables high write performance and low device
write amplification. Besides high write performance, many
database applications also require high-performance queries
on not only primary keys but also other specific values [11],
thus necessitating secondary indexing techniques.

∗Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).

LSM-trees’ attributes make it challenging to design effi-
cient secondary indexing. Modern LSM-based storage sys-
tems typically store a secondary index as another LSM-
tree [47] (e.g., a column family in RocksDB [44]). How-
ever, designed for block devices and optimized for write per-
formance, LSM-trees are not competent data structures for
secondary indexes which require high search performance.
First, since secondary indexes usually only store primary keys
instead of full records1 as values, KV pairs in secondary in-
dexes are small. LSM-trees’ heavy lookup operations are
inefficient for these small KV pairs. Second, secondary keys
are not unique and can have multiple associated primary keys.
LSM-trees’ out-of-place write pattern will scatter these non-
consecutive-arrived values (i.e., associated primary keys) to
multiple pieces at different levels. Consequently, query oper-
ations need to search all levels in the LSM-based secondary
index to fetch these value pieces. Besides the device I/O over-
head, LSM-trees have non-negligible overheads of CPU and
memory (i.e., indexing and Bloom filter) [17, 20, 34].

Moreover, the consistency of secondary indexes is another
issue in LSM-based storage systems. As an LSM-based pri-
mary table adopts the blind-write pattern to update or delete
records (appends new data without checking old data, versus
read-modify-write in B+-Trees) for high write performance,
it is unable to delete the obsolete entry in a secondary index
without acquiring the old secondary key. Consequently, when
querying a secondary index, the system should validate each
entry by checking the primary table before returning the re-
sults to users, which introduces many unnecessary but expen-
sive lookups on the primary table for obsolete entries. Some
systems fetch old records when updating or deleting records
to keep secondary indexes up-to-date synchronously [9, 44],
whereas this method discards the blind-write attribute and
thus degrades the write performance.

Though many efforts have been made to optimize these
predicaments [36, 40, 47, 50], they are difficult to solve the
problems discussed above well, sacrificing either write per-

1For clarity, we use record to refer to a KV pair in the primary table, and
entry to refer to a KV pair in a secondary index.
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formance of the LSM-based storage systems or query perfor-
mance of the secondary index.

As secondary indexing demands low-latency queries and
the KV pairs of secondary indexes are small, we argue that
leveraging persistent memory (PM) to provide a new solution
for secondary indexing is promising. PM has many attractive
advantages such as byte-addressability, DRAM-comparable
access latency, and the ability of data persistency, which is
well suited to secondary indexing. Though there are many
state-of-the-art PM-based indexes [13, 25, 31, 33, 37, 38, 45,
46, 61, 62], none of them are designed for secondary index-
ing. Without considering the non-unique feature of secondary
indexes and consistency in LSM-based KV stores, simply
adopting existing general PM-based indexes as secondary
indexes can overshadow their performance.

In this work, we propose PERSEID, a new persistent
memory-based secondary indexing mechanism for LSM-
based KV stores. PERSEID contains PS-Tree, a specifi-
cally designed data structure on PM for secondary indexes.
PS-Tree can leverage state-of-the-art PM-based indexes and
enhance them with a specific value layer, which considers the
characteristics of both PM and secondary indexing. The value
layer of PS-Tree works in a manner of blended log-structured
approach and B+-Tree leaf nodes, which is both PM-friendly
and secondary-index-friendly. Specifically, new values are
appended to value pages for efficient insertion on PM. During
the value page split, multiple values (i.e., associated primary
keys) that belong to the same secondary key are reorganized
to store continuously for efficient querying.

Moreover, PERSEID retains the blind-write attribute of
LSM-based KV stores for high write performance without sac-
rificing secondary index query performance. This is achieved
by a lightweight hybrid PM-DRAM and hash-based valida-
tion approach in PERSEID. PERSEID uses a hash table on
PM to record the latest version of primary keys. However,
multiple random accesses on PM still incur high latencies.
Thus, PERSEID adopts a small mirror of the validation hash
table on DRAM which only contains useful information for
validation. During validation, the volatile hash table absorbs
random accesses to PM, and thus reduces the validation over-
head. The small volatile hash table not only saves DRAM
memory space but also reduces cache pollution.

PERSEID has a fairly low latency of index-only query2

However, the overhead of non-index-only queries is still dom-
inated by the LSM-based primary table. Therefore, we further
propose two optimizations for non-index-only queries in PER-
SEID. First, as querying the primary table issued by the sec-
ondary index is an internal operation, we can locate KV pairs
with additional auxiliary information much more efficiently,

2Index-only query is a common query technique: Users create a covering
index that contains specific columns required by queries to avoid the cost
of reading the primary table [5, 7, 44]. A non-index-only query searches the
secondary index by secondary key to get primary keys and then retrieves full
records from the primary table.

reducing cumbersome indexing operations. By matching the
tiering compaction strategy [19, 41], we can further bypass
Bloom filter checking. Second, as one secondary index query
may need to search for multiple independent records in the
primary table, we parallelize these searching operations with
multiple threads. Since search latencies on the LSM-based
primary table may vary largely, we apply a worker-active
manner on parallel threads to avoid load imbalance among
threads and improve utilization.

We implement PERSEID and evaluate it against state-of-
the-art PM-based indexes and LSM-based secondary indexing
techniques on PM. The evaluation results show that PERSEID
outperforms exiting PM-based indexes by 3-7× for queries,
and achieves about two orders of magnitude higher perfor-
mance of state-of-the-art LSM-based secondary indexing tech-
niques even if on PM instead of disks, while maintaining the
high write performance of LSM-based storage systems.

In summary, this paper makes the following contributions:

• Analysis of the inefficiencies of LSM-based secondary in-
dexing techniques and existing PM-based indexes when
adopted as secondary indexes for LSM-based KV stores.

• PERSEID, an efficient PM-based secondary indexing mech-
anism, which includes a secondary index-friendly structure,
a lightweight validation approach, and two optimizations
on primary table searching issued from secondary indexes.

• Experiments that demonstrate the advantage of PERSEID.

2 Background

2.1 Log-Structured Merge Trees

The LSM-tree applies out-of-place updates and performs se-
quential writes, which achieves superior write performance
compared to other in-place-update storage structures.

The LSM-tree has a multi-level structure on storage and
each level comprises one or several sorted runs. The size of
Level Ln is several times (e.g., 10) larger than Level Ln−1.
Each sorted run contains sorted KV pairs and is further par-
titioned to multiple small components called SSTables. In
LSM-trees, new key-value pairs are first buffered into a mem-
ory component called a MemTable. When the MemTable fills
up, it turns into an immutable MemTable and gets flushed
to storage as a sorted run. Since sorted runs have overlap-
ping key ranges, a query operation needs to search multiple
sorted runs. To limit the number of sorted runs and improve
search efficiency, LSM-trees conduct compaction periodically
to merge several components and remove obsolete KV pairs.

Two typical compaction strategy and their variants are
commonly used in LSM-trees [19, 41]: The leveling strat-
egy [22, 24] only allows each level (besides L0) to have only
one sorted run; The tiering strategy [48, 54] allows each level
(besides L0) to have multiple sorted runs to reduce the write
amplification. Compared with leveling strategy, tiering strat-
egy has a much smaller write amplification ratio and thus
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Figure 1: Stand-alone secondary indexing in LSM-based sys-
tems with Synchronous strategy and Validation strategy [47].
The shaded entries indicate that they are invisible in the index.

higher write performance. However, since query operations
need to search multiple sorted runs in each level, LSM-trees
with tiering strategy have much lower read performance.

2.2 Secondary Index in LSM-based Systems

Many applications require queries on specific values other
than primary keys. Without an index based on specific values,
database systems need to scan the whole table to find relevant
data. Thus, secondary indexing is an indispensable technique
in database systems. For example, in Facebook’s database
service for social graphs, secondary keys are heavily used,
such as finding IDs who liked a specific photo [11, 44]. In
this work, we mainly discuss stand-alone secondary indexes,
which are separate index structures apart from the primary
table and are commonly used in database systems [47]. A
stand-alone secondary index maintains mappings from each
secondary key to its associated primary keys. As secondary
keys are not unique, a single secondary key can have multiple
associated primary keys.

Consistency strategy. Since LSM-based KV stores update
or delete records by out-of-place blind-writes, maintaining
consistency of secondary indexes becomes a challenge in
LSM-based storage systems. There are two strategies to han-
dle this issue, Synchronous and Validation.

For Synchronous strategy, whenever a record is written in
the primary table, the secondary index is maintained syn-
chronously to reflect the latest and valid status (e.g., Aster-
ixDB [9], MongoDB [4], MyRocks [44]). For example, as
shown in Figure 1(a), when writing a new record { p2→s1
} (p denotes the primary key, s denotes the secondary key,
and other fields are omitted for simplicity) into the primary
table, the storage system also fetches the old record of p2
to get its old secondary key s2. Then the storage system in-
serts not only a new entry { s1→p2 } but also a tombstone to
delete the obsolete entry { s2→p2 } in the secondary index.
Nevertheless, this strategy discards the blind-write attribute
and thus degrades the write performance which is the main
advantage of LSM-based KV stores.

By contrast, as shown in Figure 1(b), Validation strategy

only inserts the new entry { s1→p2 } but does not main-
tain the consistency of obsolete entries in secondary indexes
(e.g., DELI [50], and secondary indexing proposed by Luo et
al. [40]). However, secondary index query operations need to
validate all relevant entries by checking the primary table to
filter out obsolete mappings. Though previous work proposed
some approaches to reduce the validation overhead, their ben-
efits are limited. For example, DELI [50] lazily repairs the
secondary index along with compaction of the primary table.
Luo et al. [40] propose to store an extra timestamp for each
entry in the secondary index and use a primary key index
that only stores primary keys and their latest timestamp for
validation. The primary key index is validated instead of the
primary table. However, since the primary key index is also
an LSM-tree, though it filters out unnecessary point lookups
on the primary table, it still requires point lookups on itself.

Index type. As a secondary key can have multiple associ-
ated primary keys, LSM-based secondary indexes have two
types surrounding this issue, including composite index and
posting list [47]. The key in a composite index (i.e., composite
key) is a concatenation of a secondary key and a primary key.
The composite index is easy to implement and adopted by
many applications [16, 44, 47]. However, it turns a secondary
lookup operation into a prefix range search operation.

The posting list stores multiple associated primary keys in
the value of a KV pair. When a new record is inserted, there
are two update strategies. Eager update strategy conducts
read-modify-write, fetching the old posting list and merging
the new primary key to the posting list. Lazy update strategy
blindly insert a new posting list which only includes the new
primary key. It leaves posting lists merging to compaction.
However, a secondary lookup needs to search all levels to
fetch all relevant entries.

Limitations. Even though there are multiple strategies,
types, and optimizations, LSM-based secondary indexes have
to sacrifice either the write performance of storage systems or
the secondary index query performance, which results from
the incompatibility of inherent attributes of LSM-trees and
characteristics of secondary indexes.

2.3 Persistent Memory
Persistent Memory (PM), also called Non-Volatile Mem-
ory (NVM) or Storage Class Memory (SCM), provides sev-
eral attractive benefits for storage systems, such as byte-
addressability, DRAM-comparable access latency, and data
persistency. CPUs can access data on PM directly with
load and store instructions. Compared to DRAM, PM has
a much larger capacity and lower cost and power consump-
tion. In addition to DDR bus-connected PM (e.g., Intel Optane
DCPMM), the recent high-bandwidth and low-latency IO in-
terconnection, Compute Express Link (CXL) [3, 29], brings a
new form of SCM, CXL device-attached memory (e.g., Sum-
sung’s Memory-semantic SSD [8]).

However, PM also has some performance idiosyncrasies.
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For example, the current commercial PM hardware (i.e., In-
tel Optane DCPMM) has physical media access granularity
of 256 bytes, leading to high random access latency (about
3× of DRAM) and write amplification for small random
writes, which needs to be considered when designing PM
systems [14, 51, 53, 55, 57, 60]. These idiosyncrasies should
be more obvious on CXL device-attached memory due to the
physical media characteristics (e.g., flash page in CXL-SSD).

3 Motivation

Though recent work introduces some techniques to optimize
secondary indexing in LSM-based systems, we find that the
performance of LSM-based secondary indexing is still unsat-
isfactory due to the incompatibility of inherent attributes of
LSM-trees and characteristics of secondary indexing. On the
one hand, LSM-tree is not a competent data structure for sec-
ondary indexes, since the characteristics of secondary indexes
exacerbate the deficiency of LSM-tree’s read operations: (1)
KV pairs are usually small in secondary indexes, to which
LSM-tree’s cumbersome lookup operations are unfriendly;
(2) Secondary keys are not unique and can have multiple val-
ues, which LSM-tree’s out-of-place update will exacerbate
the query inefficiency. On the other hand, the blind-write at-
tribute of LSM-based primary tables makes the consistency
of secondary indexes troublesome.

Therefore, this motivates us to find a better solution for
secondary indexes in LSM-based storage systems. As PM pro-
vides attractive features such as byte-addressability, DRAM-
comparable access latency, and data persistency, we argue
that it is promising to provide secondary indexing with PM.

Though there are many state-of-the-art PM-based index
structures, they are not specifically designed for secondary
indexes. To adopt them as secondary indexes (e.g., support the
multi-value feature), naive approaches include the composite
index or using a conventional allocator to organize posting
lists (§2.2). However, simply adopting these naive approaches
to use existing PM-based indexes as secondary indexes will
overshadow their superior advantages.

Why not use a PM-based composite index? Though this
method is straightforward and easy to implement in LSM-
based systems, it is not ideal for tree-based persistent indexes.
First, when adding or removing a primary key for a secondary
key, a value update operation turns into a new composite key
insert or delete operation for composite indexes. Insert and
delete operations are more expensive than update operations
in a PM-based tree index because they may cause shift oper-
ations or structural modification operations (SMO). Second,
composite indexes store every pair of mappings as an indi-
vidual KV pair, expanding the number of KV pairs, which in-
creases the height of the tree index and thus degrades its query
performance. Third, storing the same secondary keys repeat-
edly in multiple composite keys wastes PM space, which can
be a dominant overhead for some real-world databases [59].

DRAM MemTable

LSM Primary Table
($4.2) PS-Tree

(Secondary Index)

($4.3) Hybrid Hash Tables
(Validation)

PM SSD

Query

Validate
Search ($4.4)

(optional)

Figure 2: The overall architecture with Perseid.

Why not use a conventional allocator? One may use a con-
ventional allocator, such as a log-structured approach or a slab-
based allocator, to allocate space for values out of the indexes.
Nevertheless, they are not suitable for values of secondary
keys. The log-structured approach is friendly to PM for its
sequential-write pattern. One may use the log-structured ap-
proach to append new values in the log and use pointers to link
associated values belonging to the same secondary key. How-
ever, it will scatter values (primary keys) associated with the
same secondary key and thus reduce the query performance
due to poor data locality. Slab-based allocators are widely
used for volatile memory, but they are not suitable for PM and
secondary indexes. First, these general-purpose allocators usu-
ally have high overheads on PM since they conduct expensive
mechanisms for crash consistency (e.g., logging) and perform
many small writes on their metadata which is necessary for
recovery [6]. Second, slab-based allocators have low mem-
ory utilization due to the memory fragmentation issue [49],
which cannot be eliminated by restarting on PM [18]. These
issues are more severe for secondary indexes. In secondary
indexes, the value of a secondary key is changed by inserting
or removing primary keys, which means the value size (the
total size of associated primary keys) changes constantly. This
characteristic not only needs frequent reallocation but also
exacerbates the fragmentation issue.

Our experiments (§5.2) show that these naive approaches
on PM-based indexes lead to several times performance degra-
dation. It thus motivates us to explore a new PM-based sec-
ondary indexing mechanism for LSM-based KV stores. In
addition, an efficient validation approach is required to retain
the blind-write attribute of LSM-based KV stores.

4 Perseid Design

4.1 Overview

Motivated by the analysis above, we propose PERSEID, a PM-
based secondary indexing mechanism for LSM-based storage
systems, which overcomes traditional LSM-based secondary
indexes’ deficiencies. Figure 2 shows the overall architecture
of an LSM-based storage system with PERSEID.
• PERSEID contains a PM-based secondary index, PS-Tree,

which is both PM and secondary index friendly: by adopting
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log-structured insertion, PS-Tree achieves fast insertion on
PM; by storing primary keys which associate to the same
secondary key closer and further rearranging them adjacent,
PS-Tree supports efficient query operations (§4.2).

• PERSEID retains the blind-write attribute of the LSM
primary table for write performance without sacrificing
query performance by introducing a lightweight hybrid PM-
DRAM and hash-based validation approach. The validation
approach contains a persistent hash table to record version
information of primary keys, and a volatile and lite hash
table to absorb random accesses to PM. (§4.3).

• To accelerate non-index-only queries, PERSEID adapts two
optimizations on primary table searching issued from sec-
ondary indexes. PERSEID filters out irrelevant component
searching with sequence numbers and parallelizes primary
table searching in an efficient way (§4.4).

4.2 PS-Tree Design

PERSEID introduces PS-Tree, a PM-based secondary index,
which is designed considering the multi-value feature and PM
characteristics. We first present PS-Tree’s structure (§4.2.1),
and then describe its operations (§4.2.2).

4.2.1 Structure

The overall structure of PS-Tree is shown in Figure 3.
PS-Tree consists of two layers, SKey Layer for indexing sec-
ondary keys and PKey Layer for storing values. Specifically,
the SKey Layer resembles a normal in-memory index and
can leverage an existing high-performance PM-based index
(e.g., P-Masstree [33, 43] and FAST&FAIR [25]). The PKey
Layer stores variable-number values (i.e., primary keys and
other user-specified values) of secondary keys in a manner of
blended B+-Tree leaf nodes and log-structured approaches,
which combines the advantages of the two approaches. The
value of a secondary key in the SKey Layer is a pointer, which
points to corresponding primary keys in the PKey Layer. Each
pointer is a combination of the address of the PKey Page and
an offset within the page.

In the PKey Layer, primary key entries (PKey Entries) are
stored in PKey Pages. Each PKey entry has an 8-byte metadata
header and a primary key. The header consists of a 2-byte size,
a 1-bit obsolete flag, and a 47-bit sequence number (SQN) of
the primary key. The SQN is internally used for multi-version
concurrency control (MVCC) in LSM-based KV stores [22,
24]. Each new record (including updates and deletes) in the
primary table gets a monotonically increased SQN. PERSEID
leverages the SQN mechanism to guarantee data consistency
among the primary table and secondary indexes, and also for
validation which will be described in §4.3. PKey Pages are
aligned to PM physical media access granularity (e.g., 256
bytes of Intel Optane DCPMM [57]). PS-Tree inserts PKey
Entries into PKey Pages in a log-structured manner to reduce
the write overhead and ease crash consistency on PM.

KP1 KP2 … KPn

PKey Page

KP1 KP2 … KPn

PKey Page PKey Page

SKey
Layer

PKey
Layer

Inner
nodes

Leaf
nodes

GH PE1 PE2 GH PE1

PKey Group

Figure 3: The structure of PS-Tree. KP: Key Pointer pair,
GH: Group Header, and PE: PKey Entry.

Nevertheless, traditional log-structured approaches scatter
different values of the same secondary key in the log, result-
ing in poor data locality and degraded query performance.
To improve data locality, PS-Tree stores PKey Entries of
contiguous SKeys in the same PKey Page, similar to the leaf
node in a B+-Tree. Furthermore, during the PKey Page split,
PS-Tree rearranges PKey Entries that belong to the same
secondary keys to store continuously as a PKey Group. Each
PKey Group has an 8-byte Group Header and one or multiple
PKey Entries. The lower 48 bits of a group header are the
address of the previous PKey Group of the same secondary
key or null if the current group is the last one. Thus all PKey
Groups belonging to one secondary key are linked as a list.
The remaining 16 bits store the number of total entries and
the number of obsolete entries in the group.

4.2.2 Basic Operations

PS-Tree considers features of both secondary indexing and
persistent memory. Compared with DRAM, PM has limited
write bandwidth and the write amplification issue. Therefore,
PS-Tree adopts log-structured insertion and copy-on-write
split for efficient writes and lightweight crash consistency
mechanisms. To avoid high latencies of multiple random ac-
cesses of multiple values on PM during query operations,
PS-Tree reorganizes values of the secondary index and con-
ducts lazy garbage collection during the PKey Page split.

Log-structured Insert. Algorithm 1 describes the process
of the insert operation. First, PS-Tree searches for the SKey
and its pointer in the SKey Layer. From the pointer, PS-Tree
locates the previous PKey Group and the corresponding PKey
Page (Line 1-3). If the SKey is not found, then the PKey Page
is located from the pointer of the previous SKey which is just
smaller than this new SKey (Line 5).

Second, PS-Tree appends a new PKey Group in that PKey
Page (Line 11-12). The new PKey Group contains one entry
with the new PKey and other values if specified, and the header
points to the previous PKey Group if exists.

Third, the new pointer of the SKey (i.e., the address of
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Algorithm 1: Insert(SKey sk, PKey pk, Slice val, Se-
qNumber seq)

1 search for the leaf_node and pointer ptr of sk in SKey Layer;
2 if ptr ̸= NULL then // found sk
3 pkey_page = pointer.pkey_page;
4 else
5 pkey_page = leaf_node→get_prev_pkey_page(sk);
6 end
7 if pkey_page is full then
8 pkey_page split;
9 goto Line 1;

10 end
11 construct a PKeyGroup pg with pk, val, seq, and ptr;
12 new_ptr = pkey_page→append(pg);
13 leaf_node→upsert(sk, new_ptr);

the new PKey Group) is updated or inserted in the SKey
Layer (Line 13). Thus, the insert request usually performs
an update operation in the SKey Layer. PKey Entries of a
secondary key are always linked in the order of recency to
facilitate query operations which usually require the most
latest entries [11, 47].

Search. The search operation in PS-Tree starts with
searching for the secondary key and its pointer in the SKey
Layer. Then, from the latest PKey Group indicated by the
pointer, primary keys and other user-specified values can be
retrieved in the order of recency. PERSEID adopts the Val-
idation strategy (§2.2) for its high ingestion performance.
Therefore, all primary keys are first validated before return-
ing. Obsolete PKey Entries are marked as obsolete by setting
their obsolete flags, which will be removed physically when
the PKey Page splits. The LSM-based primary table supports
MVCC by attaching one snapshot and using reference coun-
ters to protect components from being deleted [22, 24]. In
PS-Tree, we adopt an epoch-based approach: readers publish
their snapshot numbers during query operations, and obsolete
entries whose sequence number is larger than any reader’s
snapshot number are guaranteed not to be removed physically.

Update and Delete. PS-Tree has no update or delete op-
erations (from the point of view of secondary indexes rather
than the data structure). Since updating the primary key of
a record in the primary table is commonly not supported
in database systems, there is no need to update values (pri-
mary keys) in secondary indexes. With the Validation strategy,
PS-Tree does not delete the obsolete entries synchronously
with the primary table. PS-Tree leaves obsolete entry clean-
ing to garbage collection.

Locality-aware PKey Page Split with Garbage Collec-
tion. When a PKey Page does not have enough space for a
new entry, it splits into two new PKey Page in a copy-on-write
manner. Since insertions are performed in a log-structured
manner, the PKey Entries which belong to one SKey may

(a) Before Split

Leaf Node

PKey Page

(b) After Split

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

KPi KPj KPk ……

KPi KPj KPk ……

Group Header

Figure 4: An example of PKey Page split. PEs (PKey Entries)
with the same color belong to the same secondary key; PE in
gray are obsolete.

scatter discontinuously. Querying these entries may need mul-
tiple random accesses on PM. As PM has non-negligible read
latencies compared to DRAM (e.g., about 300 ns with In-
tel Optane DCPMM [57]), query operations can have high
overheads. Therefore, as shown in Figure 4, to improve local-
ity, PS-Tree reorganizes PKey Entries when the PKey Page
splits. PS-Tree rearranges PKey Entries belonging to the
same SKey in one PKey Group, so these entries are stored
continuously, and the storage overhead of the Group Header is
reduced since multiple PKey Entries share one Group Header.

Besides, entries not marked as obsolete in the current PKey
Page are validated by a lightweight approach (described in
§4.3) and obsolete entries are physically removed during re-
organization to reduce space overhead. Since a secondary key
may have many primary keys which occupy more than one
PKey Page, for those PKey Entries not in the current PKey
Page, PS-Tree lazily garbage collects them only when the
number of obsolete entries exceeds half of the number of to-
tal entries in that PKey Group. To support MVCC, PS-Tree
retains obsolete entries whose sequence number is larger than
the minimum snapshot number of concurrent readers. Ob-
solete entries may retain long if there exists a long-running
queries. PERSEID can be enhanced with similar techniques
in recent work [30, 35] to handle long-lived snapshots. After
rearranging valid entries to the new PKey Pages, pointers of
related SKeys are updated and the old PKey Page is freed.

Crash Consistency. PERSEID relies on the existing write-
ahead-log (WAL) of the LSM-based primary table to guaran-
tee atomic durability among the primary table and secondary
indexes. During recovery with WAL, PERSEID redoes uncom-
pleted operation to the PS-Tree.
PS-Tree also handles its own crash consistency issues.

Insert operations are committed only when the pointers in
SKey Layer are updated. If the system crashes before up-
dating pointers but after allocating a new PKey Page, then
the PKey Page is unreachable. After restart, a background
thread will scan the allocated pages and PS-Tree to find and
reclaim unreachable pages. Besides, PS-Tree allows concur-
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rent insertion in one PKey Page. A thread obtains the space to
write by compare-and-swap the tail pointer of the PKey Page.
Thus, the space may leak if any thread obtains it but does not
update the pointer in SKey Layer when the system crashes.
PS-Tree tolerates this situation and leaves these leakages to
page splitting which naturally reclaims these leaked spaces.

4.3 Hybrid PM-DRAM Validation
PERSEID adopts the Validation strategy (see §2.2) for high
write performance, which necessitates a lightweight validation
approach. Since update-intensive workloads are quite com-
mon nowadays [11, 12], if the validation approach is heavy,
validating a large number of obsolete entries brings no out-
comes but generates huge overhead.

PERSEID introduces a lightweight validation approach
based on the requirement of validation. PERSEID adopts a
hash table on PM storing version information for primary
keys. The hash table is indexed by the primary key and stores
its latest sequence number (§4.2.1). Nevertheless, even though
point lookups on a PM-based hash table are much faster than
on a tree, the validation time is comparable to the query time
of PS-Tree. This is because one secondary key has multiple
primary keys to validate, and PM has non-negligible random
access latency. Simply placing the hash table on DRAM will
occupy a large memory footprint. However, as validation only
needs to validate whether a version of a primary key is valid,
but not obtaining the specific latest version number, PERSEID
builds another volatile hash table on DRAM which only stores
versions for primary keys that have been updated or deleted.
In this way, PERSEID only needs to query the small volatile
hash table and thus the validation overhead is further reduced.

Figure 5 illustrates the hybrid PM-DRAM validation ap-
proach. The values in the hash tables consist of the sequence
number of the record (6-byte) and a 2-byte counter. The
counter is used to determine whether a primary key has obso-
lete versions. There is a slight difference in the counters of
the two hash tables. In the volatile hash table, each counter
indicates the number of logically existing entries related to a
primary key in the secondary index. By contrast, each counter
in the persistent hash table indicates the number of physically
existing entries in the secondary index. Next, we describe the
validation approach in detail according to operations.

Insert. When a new record (including update and delete)
is inserted into the primary table, the primary key is inserted
or updated with its sequence number into the persistent hash
table. If the persistent hash table does not contain this pri-
mary key before, its counter is set to one, which means this
primary key has only one version and no obsolete entries of
this primary key exist in the secondary index. For example
in Figure 5, at t2, key c is inserted for the first time, and it
is inserted into the persistent hash table. Otherwise, the pri-
mary key’s counter in the persistent hash table is increased by
one; besides, the primary key is inserted or updated with its
sequence number into the volatile hash table, and the counter
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Figure 5: Hybrid PM-DRAM hash-based validation.

in the volatile hash table is set to two if it’s an insertion or
increased by one if it’s an update. For example, when key c is
updated with a new version v2 at t3 in Figure 5, the entry in
the persistent hash table is updated and a new entry is inserted
into the volatile hash table.

Validate. The secondary index validates an entry by query-
ing the volatile hash table. Specifically, the entry is valid if
the sequence number of this entry matches the latest sequence
number stored in the hash table, or the hash table does not
contain the primary key which means there are no obsolete
entries of this primary key. Otherwise, the entry is not valid
and PERSEID marks the entry as obsolete and decreases the
counter of the entry in the volatile hash table by one. For
example, when key a is checked with an obsolete version v1
at t2 in Figure 5, the result is false, and then the counter is
decreased from 3 to 2. If the counter is decreased to 1, which
means all obsolete entries have been marked, the entry is re-
moved from the volatile hash table to restrict the hash table
size. For example, when key a is checked with an obsolete
version v2 at t3 in Figure 5, the counter is decreased to one,
the validation return false and the entry is removed. A rare
case is that the volatile hash table reports a new sequence num-
ber larger than the current reader’s snapshot number, which
means a concurrent writer has updated this primary key. In
this case, we cannot directly confirm whether this entry is
valid in this snapshot, so we have to validate it by the pri-
mary table. During validation for secondary index queries,
PERSEID only operate with the volatile validation hash table.
Thus, the validation overhead is quite small.

Garbage Collection. During the PKey Page split, entries
that are not marked as obsolete are also validated to remove
obsolete entries (§4.2.2). Since this step physically removes
obsolete entries, PERSEID decreases the corresponding coun-
ters in the persistent hash table. If a counter is decreased to
one, PERSEID removes the corresponding hash pairs from the
volatile hash table.

Recovery. When the system restarts from a crash or a
normal shutdown, the volatile hash table needs to be recov-
ered. PERSEID iterates the whole persistent hash table and
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inserts primary keys whose counter is greater than one into
the volatile hash table. Now the counters in the volatile hash
table are numbers of physically existing entries, which may
be larger than the actual numbers of logically existing en-
tries. Therefore, some false positive primary keys may exist
in the volatile hash table. However, this does not affect the
validation accuracy and these primary keys can be removed
by garbage collection.

4.4 Non-Index-Only Query Optimizations

Though the PERSEID significantly reduces the overhead of
secondary indexing, the overhead of non-index-only queries
(require full records) is still dominated by the LSM-based
primary table. Thus, PERSEID further introduces two opti-
mizations for non-index-only queries.

4.4.1 Locating Components with Sequence Number

A secondary index query operation may need to search the pri-
mary LSM table multiple times for all its associated records.
LSM-trees have mediocre read performance due to the multi-
level structure. Besides device I/Os, if data is cached in
memory or using fast storage devices, LSM-trees have non-
negligible overheads on probing components (i.e., indexing
and checking Bloom filters) [17, 20, 60]. Moreover, the read
performance gets worse with the tiering compaction strategy
since more components (SSTables) need to check and read.

Nevertheless, we find that many components are unnec-
essary to probe in searching processes issued from the sec-
ondary index. Previous work uses zone maps, which store the
minimum and maximum values of an attribute, to skip irrele-
vant data blocks or components during searching [9, 10, 47].
We found that this technique can also be used by secondary
indexes to search the primary table. Since we have already
recorded the sequence numbers of primary keys in the sec-
ondary index, the sequence number can be used as an addi-
tional attribute to skip irrelevant components. PERSEID builds
a zone map that records a sequence number range (i.e., the
minimum and maximum sequence numbers of records) for
each component (including MemTables).

Moreover, since tiering compaction does not rewrite SSTa-
bles in the higher level (except for the last level), for a range
partition, the sequence number ranges of different levels and
even different sorted runs are strictly divided. For primary
tables adopting the tiering strategy, with the primary key to
search SSTables horizontally and the additional sequence
number to search sorted runs vertically, PERSEID can locate
the exact component that contains the record directly. Besides,
since PERSEID already validates the version so it must exist
in the component, PERSEID can further skip the Bloom fil-
ter checking. Thus, the overheads on indexing and checking
Bloom filters are almost eliminated.

This optimization does not fit with leveling strategy per-
fectly. The sequence number ranges in different levels have

overlaps because compaction rewrites SSTables in the higher
level and generates new SSTables with blended sequence num-
bers from multiple levels. However, since most LSM-base
KV stores adopt the tiering strategy on L0 at least [22, 24],
this optimization is still effective to some extent.

4.4.2 Parallel Primary Table Searching

A single secondary key usually has multiple associated pri-
mary keys, and queries on these primary keys are indepen-
dent. Therefore, using multiple threads to accelerate primary
table searching is a natural optimization method. One naive
approach is to assign primary keys to each thread in a round-
robin fashion. However, point lookups on LSM-trees may
have a large latency gap, since some KV pairs can be fetched
from MemTable or block cache directly and others may reside
at a relatively high level and need several disk I/Os due to
Bloom filter false positives. The naive approach will result in
a load imbalance among parallel threads where some threads
have finished their tasks and become idle while others are still
stuck and there may still exist some unfinished tasks.

To avoid this situation, we apply a worker-active fashion.
PERSEID publishes primary keys into a shared queue as tasks,
and each parallel thread fetches one task from the queue. In
this way, though each thread may complete a different number
of tasks, parallel threads are fully utilized.

5 Evaluation

In this section, we evaluate PERSEID against existing PM-
based indexes with naive approaches and state-of-the-art
LSM-based secondary indexing techniques [40, 47]. After
describing the experimental setup (§5.1), we evaluate these
secondary indexing mechanisms with micro benchmarks to
show their performance on basic operations (§5.2). Then,
we evaluate these systems’ overall performance with mixed
workloads (§5.3) and recovery time (§5.4).

5.1 Experimental Setup
Platform. Our experiments are conducted on a server with
an 18-core Intel Xeon Gold 5220 CPU, which runs Ubuntu
20.04 LTS with Linux 5.4. The system is equipped with 64
GB DRAM, two 128 GB Intel Optane DC Persistent Memory
in AppDirect mode, and a 480 GB Intel Optane 905P SSD.
Compared Systems. We implement PS-Tree of PER-
SEID based on two typical PM-based indexes, a B+-Tree
FAST&FAIR [25] and a trie-like P-Masstree [33, 43]. We
compare PERSEID against the two original PM-based
indexes, and LSM-based secondary index (denoted as LSMSI)
approaches of LevelDB++ [47]. The compared PM-based
indexes are implemented as secondary indexes via the
composite index approach and the log-structured approach
(denoted as FAST&FAIR-composite, FAST&FAIR-log,
P-Masstree-composite, P-Masstree-log, respectively).
For the log-structured approach, we provide enough space
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Figure 6: Insert and upsert performance.

and disable garbage collection to avoid its influence and
present the ideal performance [51]. We enhance other
PM-based indexes with PERSEID’s hybrid PM-DRAM
validation approach (§4.3) and LSMSI with the primary key
index [40] (§2.2) for validation. For a fair comparison, we also
implement LSM-based secondary indexing approaches on
PM. We use PebblesDB [48], a state-of-the-art tiering-based
KV store, as the primary table.
Workloads. Since common benchmarks for key-value stores
such as YCSB [15] don’t have operations on secondary in-
dexes, as in previous work [36, 40, 47], we implemented a
secondary index workload generator based on an open-source
twitter-like workload generator [2] for evaluation. With this
generator, we generate several microbenchmark workloads
and mixed workloads. The primary key (e.g., ID) and sec-
ondary key (e.g., UserID) are randomly generated 64-bit in-
tegers. The key space of primary keys and secondary keys
is 100 million and 4 million, respectively. Thus the average
number of records per secondary key is about 25. The size of
each record is 1KB.
KV Store Configurations. For the primary table, according
to configuration tuning guide [23], MemTable size is set to
64 MB and the Bloom filters are set to 10 bits per key. As our
workloads will generate a primary table larger than 100 GB,
we set a 16-GB block cache for the primary table and a 1-GB
block cache for the LSM-based secondary index. Compres-
sion is turned off to reduce other influencing factors.

5.2 Microbenchmarks

In this section, we evaluate the basic single-threaded per-
formance and scalability of compared secondary indexing
mechanisms.

5.2.1 Insert and Update

The Insert workload (i.e., no updates) has 100 million unique
records. Figure 6(a) shows the average latency of insert op-
erations of each secondary index. PERSEID performs about
10-38% faster than the corresponding composite indexes, but
25% slower than the ideal log-structured approach without
garbage collection due to the page split overhead in PS-Tree.
The composite index approach results in inferior performance
as we analyzed in §3. Other approaches have higher perfor-
mance due to the sequential-write pattern.

The upsert workloads contain 100 million insert operations
and 100 million update operations. Operations are shuffled to
avoid all newer entries being valid in secondary indexes. In
the Uniform workload, both primary keys and secondary keys
follow a uniform distribution. In the Skewed-Pri workload,
primary keys follow a Zipfian distribution with the skewness
parameter 0.99, and secondary keys are selected randomly. In
the Skewed-Sec workload, secondary keys follow a Zipfian
distribution (parameter 0.99), and primary keys are uniform.
Thus, hot secondary keys have lots of associated primary keys,
which represent low-cardinality columns.

Compared with other secondary indexes, composite indexes
perform even worse in upsert workloads. This is because, with
additional upsert operations, composite indexes have more
KV pairs and larger tree heights. By contrast, PS-Tree and
the log-structured approach do not increase the number of KV
pairs in the index part.

5.2.2 Query

In this experiment, we evaluate the performance of index-only
queries of each system after loading the insert workload or
upsert workloads. Index-only query reflects the performance
of a secondary index itself and is a common query technique
(i.e., covering index [5, 7]) to avoid looking up the primary
table. We show two different selectivities by specifying limit
N (10 and 200) on return results. The most recent and valid
N entries are returned. For limit of 200, the actual average
number of returned entries per query is 25 and 142 for the
Skewed-Pri and Skewed-Sec, respectively.

Figure 7 shows the results of index-only query performance.
From the results, we have the following observations.

First, PM-based indexes have significantly lower latencies
than LSM-based secondary indexes. Putting LSMSI on PM
(LSMSI-PM) has very limited improvement, which is because
LSMSI already benefits from block cache and OS page cache.
Even so, LSMSI is still inefficient due to the high overhead
of indexing and Bloom filter checking. Besides, LSMSI has a
high overhead on validating the primary key index.

Second, PERSEID outperforms existing PM-based indexes
with the composite index and the log-structured approach
by up to 4.5× and 4.3×, respectively. The log-structured ap-
proach has poor locality since relevant values are scattered
across the whole log and require multiple random accesses to
fetch them all. Composite indexes are inferior due to the larger
number of KV pairs in the indexes and range-scan operations
as we analyzed in §3. They are especially inefficient under the
Skewed-Sec workload with a large limit (e.g., 200), where they
fetch a large number of entries and fail to enjoy the cache ef-
fect. By contrast, the performance of PERSEID is much more
stable across different workloads, owing to the locality-aware
design of PS-Tree. For a limit of 10, PM-based secondary
indexes benefit from higher cache hit ratios under the Skewed-
Sec workload, thus achieving better performance than other
upsert workloads. Composite indexes also occupy about 4×
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Figure 8: Index-only range query performance.

more PM space than PS-Tree, which is because they repeat-
edly store secondary keys and have more index nodes. In
addition, P-Masstree-composite has higher latencies than
FAST&FAIR-composite, because trie-based indexes are less
efficient than B+-Trees in range search since their leaf nodes
do not have sibling pointers pointing to neighbor nodes.

Third, under upsert workloads, all systems need to validate
more primary keys to exclude obsolete entries, which also
contributes to the higher overheads than under insert work-
loads. For LSMSI, since the primary key index needs multiple
heavy point lookups on LSM-trees, validating the primary
key index accounts for the lion’s share of the total cost of
an index-only query. LSMSI has lower latencies under the
Skewed-Pri workload than other upsert workloads since the
primary key index enjoys the data locality on primary keys.
By contrast, PERSEID (and other PM-based indexes) validates
on a volatile hash table, which takes up less than half of the
total cost. The overhead on PERSEID increased little due to
the locality-aware design of PS-Tree and the lightweight
validation approach.

5.2.3 Range Query

In the following experiments, we show results of the LSM-
based secondary index on PM (LSMSI-PM), and PM-based
secondary indexes based on P-Masstree as representatives.
We evaluate the range queries of these secondary indexes.
Each range query searches for 20 secondary keys and retrieves
5 latest associated primary keys of each secondary key.

The results are shown in Figure 8. Range queries need
to search more KV pairs from ten different secondary keys,
showing a more pronounced difference between these sec-
ondary indexes than low-limit query operations. PERSEID
outperforms LSMSI-PM, the Composite P-Masstree, and the
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Figure 9: Multi-threaded performance.

log-structured approach by up to 92×, 5.2×, and 1.6×, respec-
tively under the Skewed-Sec workload. Though LSMSI-PM
benefits from PM access latency and DRAM caching, it still
has a fairly high latency. This is because the range operation
in LSM needs to merge-sort multiple iterators of components.
The composite index needs to perform more range search
than PERSEID in the index since PERSEID groups primary
keys outside of the index.

5.2.4 Multi-threaded Performance

Figure 9 shows the multi-threaded performance of compared
secondary indexes. We take the results of Skewed-Pri and
Skewed-Sec workloads as representatives. For Skewed-Sec,
we show the result with the limit of 200, and the result
with the limit of 10 is similar to that of Skewed-Pri. For
upsert operations, PERSEID scales up to 24 threads, achiev-
ing 2.8× and 16× the upsert throughput of the compos-
ite P-Masstree and LSMSI-PM, and slightly slower than the
ideal log-structured approach. For query operations, PER-
SEID scales well and achieves 7× and 3× query through-
put of P-Masstree-composite and P-Masstree-log under
the Skewed-Sec workload due to the locality-aware design
of PS-Tree. LSMSI has poor scalability due to its coarse-
granularity lock and non-concurrent logging mechanism.
Though using the same index structure (P-Masstree), because
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Figure 10: Non-index-only query performance. The primary table time on +PAR only shows the time not covered by other parts.
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Figure 11: Non-index-only query performance on Leveling-
based LSM table.

the composite index turns update operations into insert op-
erations, the index operations limit its write scalability; and
because it expands the number of KV pairs and thus has a
bigger tree height, the increased index overhead limits its
query scalability. As for the log-structured approach, the poor
data locality restricts its query performance, especially for
large-range queries.

5.2.5 Non-Index-Only Query

We next evaluate the non-index-only query operations. Be-
sides the basic compared secondary indexes, we also enhance
them by applying the two optimizations (§4.4), sequence num-
ber zone map (+SEQ) and parallel primary table searching
(+PAR) sequentially. In this experiment, we use 4 threads
for parallel primary table searching. Figure 10 shows the
performance and time breakdown of non-index-only query
operations. Note that the breakdown of primary table time on
+PAR only shows the time not covered by the secondary index
and validation. PERSEID brings considerable improvements
against the LSMSI-PM, even if it has the two optimizations
applied. PERSEID outperforms LSMSI-PM by up to 62% and
2.3×, when without and with optimizations on primary table
lookups (the sequence number zone map and parallel primary
table searching), respectively.

Though the primary key index indeed reduces unnecessary
point lookup operations on the primary table for LSMSI-PM,
with advanced low-latency storage devices and sufficient
DRAM caching, it also has significant overhead. On the con-

trary, the hybrid PM-DRAM validation of PERSEID reduces
the primary table lookups with subtle extra overhead.

PERSEID’s optimizations on primary table searching can
also boost other compared secondary indexing. The zone
map improves the overall query performance of the KV store
with PERSEID by about 50%, and the parallel primary ta-
ble searching further improves by up to 3.1×. However, the
numbers are only 20-36% and up to 2.4× for LSMSI-PM, re-
spectively. This is because these optimizations only accelerate
the primary table lookups, but the LSMSI-PM still has huge
overheads. In addition, LSMSI-PM has to conduct the heavy
validation first then it can pass the lookup tasks to parallel
worker threads. Therefore, parallel threads cannot work ade-
quately for LSMSI-PM.

We also implement secondary indexes and conduct the
experiments on a leveling-based LSM primary table (Lev-
elDB [24]). Figure 11 shows the results of Skewed-Sec as an
example. The main difference is that the sequence number
zone map is less effective on leveling-based LSM primary
tables. However, the zone map is still effective when the limit
is small, since the latest few records stay in MemTables or
SSTables in lower levels like L0, and these components can
be filtered by sequence number with a high probability.

5.3 Mixed Workloads

Workload Operation Ratios
Upsert Get Index-Only Query Non-Index-Only Query

Write-Heavy 70% 10% 10% 10%
Balanced 45% 10% 25% 20%

Read-Heavy 20% 20% 40% 20%

Table 1: Mixed workloads description.

In this section, we evaluate PERSEID, the composite P-
Masstree, and LSMSI-PM under mixed workloads. The mixed
workloads consist of interleaved and various types of opera-
tions, which are more representative of real-world workloads.
Each workload has 40 million operations, containing both
Skewed-Pri and Skewed-Sec operations. Table 1 describes
these workloads’ traits. Each system is prefilled with 80 mil-
lion records before performing the workloads. We also enable
PERSEID’s optimizations on primary table searching (i.e.,
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Figure 12: Performance of mixed workloads.

the sequence number zone map and parallel primary table
searching) for all systems.

Figure 12 reports the average operation latencies every mil-
lion operations. At the beginning of the Write-Heavy work-
load and the Balanced workload, PM-based secondary in-
dexes have a spike in latency, which is mainly caused by
seek-driven compaction in the LSM primary table. PERSEID
outperforms LSMSI-PM significantly under different mixed
workloads. Even though the overhead of the primary table
dominates the whole operations, PERSEID still has visible
advantages against the other PM-based indexes. Note that
PS-Tree has much less capacity overhead than the composite
index. As we set the limit on return results to 10 for query
operations, the log-structured approach is not affected too
much by its poor data locality.

5.4 Recovery Time

We evaluate the recovery time of PERSEID and LSMSI-PM
after the Zipfian upsert workload that contains 200 million
upsert operations with a single thread. Since we only need
to recover the volatile validation hash table in PERSEID, it
takes 2.7 seconds to scan the persistent hash table and rebuild
the volatile hash table. By contrast, it takes 2.3 seconds and
1.4 seconds to recover the LSM-based secondary index and
the primary key index, respectively. Their recovery time is
mainly spent on rebuilding MemTables from logs and varies
with the size of MemTables.

6 Related Work

Secondary Indexing in LSM-based KV stores. Qader et
al. [47] conduct a comparative study on secondary indexing
techniques in LSM-based systems. They conclude and evalu-
ate several common secondary indexing techniques, including
filter-based embedded index, composite index, and posting
list. DELI [50] proposes an index maintenance approach that
defers expensive index repair to compaction of the primary
table. Luo et al. [40] propose several techniques for LSM-
based secondary indexes, improving data ingestion and query
performance. However, their techniques are mainly saving
random device I/Os for traditional disk devices which reduce
random reads at the cost of more sequential reads. Based

on key-value separation [39], SineKV [36] keeps both the
primary index and secondary indexes pointing to the record
values. Thus, secondary index queries can get records directly
without searching the primary index. However, SineKV has
to discard the blind-write attribute and maintain index consis-
tency synchronously. Cuckoo Index [32] enhances the filter-
based indexing with a cuckoo filter. However, as a filter-based
index, Cuckoo Index does not support range queries.

Though there are many proposed optimizations, LSM-
based secondary indexing is not efficient enough due to the
nature of LSM-trees. In this work, we revisit the design of the
secondary index with persistent memory.

PM-based indexes. There has been plenty of research on
high-performance PM indexes [13, 25, 31, 33, 42, 45, 46, 52,
56, 61]. These general-purpose indexing are not directly com-
petent for efficient secondary indexing.

Improving LSM-based KV stores with PM. There is
a lot of work optimizing LSM-based KV stores with PM.
NoveLSM [27] introduces a large mutable MemTable on
PM to lower compaction frequency and avoid logging. SLM-
DB [26] utilizes a B+-Tree on PM to index KV pairs on
disks; SSTables on disks are organized in a single level,
which reduces the compaction requirements. MatrixKV [58]
places level L0 on PM and adopts fine-granularity and paral-
lel column compaction to reduce write stalls in LSM-trees.
Facebook redesigns the block cache on PM to reduce the
DRAM usage and thus reduce the total cost of ownership
(TCO) [21,28]. Different from these efforts, this work revisits
the secondary indexing for LSM-based KV stores with PM.

7 Conclusion

In this paper, we revisit secondary indexing in LSM-based
storage systems with PM. We propose PERSEID, an effi-
cient PM-based secondary indexing mechanism for LSM-
based storage systems. PERSEID overcomes the deficiencies
of traditional LSM-based secondary indexing and existing
PM-based indexes with naive approaches. PS-Tree achieves
much higher query performance than state-of-the-art LSM-
based secondary indexing techniques and existing PM-based
indexes without sacrificing the write performance of LSM-
based storage systems. The prototype of PERSEID is open-
source at https://github.com/thustorage/perseid.
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Abstract
Persistent memory (PMEM) allows direct access to fast

storage at byte granularity. Previously, processor caches
backed by persistent memory were not persistent, compli-
cating the design of persistent applications and reducing their
performance. A new generation of systems with flush-on-fail
semantics effectively offer persistent caches, offering the po-
tential for much simpler, faster PMEM programming models.

This work proposes Whole Process Persistence (WPP), a
new programming model for systems with persistent caches.
In the WPP model, all process state is made persistent. On
restart after power failure, this state is reloaded and execution
resumes in an application-defined interrupt handler.

We also describe the Zhuque runtime, which transparently
provides WPP by interposing on the C bindings for system
calls in userspace. It requires little or no programmer effort
to run applications on Zhuque.

Our measurements show that Zhuque outperforms state
of the art PMEM libraries, demonstrating mean speedups
across all benchmarks of 5.24× over PMDK, 3.01× over
Mnemosyne, 5.43× over Atlas, and 4.11× over Clobber-
NVM. More important, unlike existing systems, Zhuque
places no restrictions on how applications implement con-
currency, allowing us to run a newer version of Memcached
on Zhuque and gain more than 7.5× throughput over the
fastest existing persistent implementations.

1 Introduction

Persistent memory (PMEM) exposes fast storage devices as
byte-addressable main memory, allowing the processor to
access persistent data via load and store instructions. The
durability of PMEM enables an application’s in-memory data
to survive across system reboots and unexpected power fail-
ures. It promises to realize a vision of high performance, data
persistence, a simple programming interface, and low storage
overhead at the same time.
∗The first two authors contributed equally to this work

However, building a system that realizes the promise of
persistent programming is not simple. The contents of CPU
caches do not survive power loss, and, since caches may delay
evicting a modified cache line, writes may not reach PMEM
in program order. This makes reasoning about the state of
memory after a crash extremely challenging.

Programming systems (e.g., libraries, programming mod-
els, language support, and compilers) to help address the chal-
lenges of persistent memory programming have proliferated
over the last decade. Broadly, three families of systems have
emerged: each takes a different approach to consistency, and
each faces significant challenges which bar widespread adop-
tion.

The first and largest family [50, 63, 68, 71] requires pro-
grammers to access persistent state only through well-defined
atomic operations (often called transactions). This provides a
clean notion of consistency: after recovery from crash, each
atomic section has either executed entirely or not at all. How-
ever, like all transactional memory models, this approach suf-
fers from serious weaknesses: it is fundamentally incompat-
ible with non-transactional synchronization, and has never
gained significant traction in real systems.

The second family of systems [6, 26, 30, 42] uses FASEs,
regions of code protected by locks, as atomic regions for
PMEM updates. Legacy code can run with minimal changes,
but these systems suffer from fundamental weaknesses arising
from complex locking schemes and external IO. As we will
show, addressing these weaknesses either cripples the system
or essentially reduces it to a transaction-based system.

The final family of systems takes the more dramatic step of
making everything in the system persistent via whole-system
persistence (WSP) [47]. WSP provides the conceptually sim-
plest programming model: Nothing much changes and, from
the program’s perspective, crashes never occur. WSP faces
two major challenges: First, making all of memory persistent
has until recently been infeasible, because regularly flushing
volatile caches to PMEM creates enormous performance over-
heads. Second, making everything persistent would require
a far-reaching redesign of many system components, for an
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unclear benefit.

We think that WSP-style persistence is due for a renais-
sance: The advent of PMEM devices and platforms supporting
flush-on-fail semantics (e.g. eADR for NVDIMMs or GPF for
CXL devices) allows developers to treat caches as effectively
persistent [14, 29], removing the main performance argument
against WSP. Further, we believe that limiting the scope of
persistence to a process – yielding Whole Process Persistence
(WPP) – and providing well-defined, application-level seman-
tics for system failures combine to produce a programming
model that is fast, flexible enough to support legacy programs
and complex locking schemes, and easy for programmers to
use and understand.

WPP provides a simple abstraction to the process: its entire
memory is persistent and will survive a power outage. If a
power outage occurs, the process receives an OS signal after
restart notifying it of the crash. The process can install a
normal error handler for this signal which cleans up and exits,
or performs more complex application-specific recovery; by
default, program execution simply continues at the point of
failure.

This work makes the following contributions:

• We identify a fundamental limitation of FASE-based
PMEM systems.

• We introduce the WPP programming model, which treats
power failure as a recoverable exception.

• We build the Zhuque runtime which provides WPP and
describe its design and implementation.

• We provide experiments demonstrating the viability of
the WPP system and its performance improvements over
existing alternatives.

Zhuque is faster than existing PMEM programming sys-
tems. It is between 4.7× and 10.14× faster than PMDK [50],
Mnemosyne [63], Atlas [6] and Clobber-NVM [68] on
STAMP applications. Zhuque is also more flexible than these
systems: Since Zhuque is agnostic about the application’s
locking scheme, it can run the most recent version of mem-
cached, while those systems cannot. As a result, our Zhuque-
based persistent memcached is more than 7.5× faster than
any similar system. We also demonstrate Zhuque’s flexibil-
ity by running unmodified Python benchmarks with minimal
performance loss.

The rest of this paper is organized as follows. Section 2 pro-
vides some background on PMEM and associated software
systems. Section 3 describes fundamental limitations of prior
art necessitating the WPP model. We discuss the WPP design
and musl-based system implementation in Section 4 and Sec-
tion 5, respectively. Section 6 showcases the performance of
WPP. We discuss related work in Section 7 and conclude the
paper in Section 8.

2 Background

PMEM has introduced new possibilities for designing stor-
age systems: programs can have byte-addressable access to
terabytes of persistent data at near-DRAM latencies. How-
ever, utilizing PMEM in a both performant and programmer-
friendly manner remains a challenging problem.

This section begins by describing our machine model, and
then reviews existing general-purpose persistent memory pro-
gramming models and their limitations to motivate WPP.

2.1 Machine Model
WPP is designed for a multi-core, cache-coherent machine
equipped with PMEM (e.g. Intel DC Persistent Memory [28]
or persistent CXL.mem devices [53]), and supporting flush-
on-fail semantics, meaning that they provide a hardware guar-
antee that all in-flight and cached writes will reach PMEM in
the event of an external power failure (as opposed to a fault in
the machine or its onboard power supply). Such guarantees
are provided by eADR-compliant platforms and NVDIMMs,
and CXL platforms and devices supporting Global Persistent
Flush (GPF). eADR and GPF are similar solutions targeting
different device interfaces: the primary hardware requirement
for both is that the platform must store sufficient energy to
allow caches and internal device buffers to be drained to per-
sistence after a power failure [1, 53].

On x86 systems, both eADR and GPF require system
firmware to initiate and oversee the drain to persistence in
response to a System Management Interrupt (SMI) [1, 13, 14].
Upon receiving this interrupt, the processor retires all in-flight
instructions, drains all stores to the cache, and saves architec-
tural state (register file etc.) to a designated per-core memory
region before beginning execution of the SMI handler [16]. In
both GPF and eADR, this handler first flushes the processor
caches (and, for CXL, the caches of any CXL.cache device),
and then proceeds to flush the buffers on the PMEM devices
(NVDIMMs for eADR, CXL.mem devices for GPF) [1, 14].

2.2 Persistent Programming Models
Most existing persistent programming libraries rely on mark-
ing regions as failure-atomic, that is, all of the code region’s
effects will survive a failure or none will. Models differ in
whether regions are explicitly marked (transactional) or in-
ferred from locks (FASE-based). In addition, one work has
proposed making the whole system persistent.

2.2.1 Transactional Libraries

Transactional PMEM libraries expect the programmer to ex-
plicitly mark failure atomic sections. For concurrency, these
libraries either rely on off-the-shelf transactional memory
systems or require the use of their own locks. For example,
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NV-Heaps [9], Mnemosyne [63], and DudeTM [41] are built
on existing transactional memory (TM) systems, and imple-
ment their failure-atomicity techniques (e.g. redo or undo
logging) on top of those systems.

Meanwhile, transactional libraries that rely on locks gen-
erally expect transactions to acquire and release locks in a
conservative, strong strict two-phase locking pattern [51, 64],
that is: transactions acquire all locks at transaction begin,
transactions release all locks at transaction commit, and locks
are released in the order they are acquired. For example,
PMDK [50], Pangolin [71] and Clobber-NVM [68] require
applications to follow this lock pattern.

2.2.2 FASE-based libraries

Atlas [6] proposed the concept of failure-atomic sections
(FASEs) as an alternative to transactions. A FASE is a failure-
atomic operation which begins when a thread acquires its first
lock and ends when it holds none — importantly, the final
lock held may be different from the first lock. Because this
locking scheme allows updates to be visible to other FASEs
before a FASE commits, FASE-based libraries are required to
track dependencies between threads, and roll back dependent
FASEs in case of failure. Because FASEs are dynamically
formed at runtime, user annotation is not required for exist-
ing lock-based code. NVThreads [26], JUSTDO [30], and
iDO [42] follow this model.

2.2.3 Whole System Persistence

Instead of basing persistence on bounded sections of code,
whole-system persistence (WSP) [47] focuses on the persis-
tence of the entire system. WSP describes a system substan-
tially similar to eADR and GPF, where an interrupt at power
failure triggers the draining of volatile caches/buffers to per-
sistence. This model requires no annotation and avoids the
extra work done by transactional or FASE-based systems, but
requires that large amounts of state be made persistent at
the instant of failure, which until the advent of flush-on-fail
systems was not possible.

3 Limitations of Prior Art

In this section, we argue that the existing programming mod-
els for persistent memory, namely transactional or FASE-
based, necessitate an alternative path, especially when work-
ing with legacy code.

Fortunately, the emergence of persistent caches has enabled
our efforts to develop a revitalize a model that does not fit
either of these directions, namely, whole process persistence,
in which all process state is preserved at a power failure.

3.1 Limitations of Transactions

The fact that many failure atomicity libraries leverage transac-
tional memory is not surprising — transactions are commonly
leveraged for durability within databases and file systems.
When applied to (volatile) multi-threaded code, the transac-
tional memory programming model simplifies concurrency
by exporting to the programmer “single global lock” seman-
tics, that is, the programmer should simply protect groups of
accesses to shared data as “transactions,” each of which are
mutually exclusive. The transactional programming model
is in theory appealing as programmers need not worry about
data races on shared data, multiple locks, or parallel perfor-
mance. To this transactional programming model, many fail-
ure atomicity libraries add persistence: transactions become
both visible to other threads, and persistent, upon transaction
completion.

In practice, however, despite decades of research and dedi-
cated hardware support, (volatile) transactional memory has
failed to become a common programming paradigm for gen-
eral purpose multi-threaded code. Transactions generally mix
poorly with both other synchronization methods (locks, bar-
riers, condition variables, etc.) [4, 70] and IO [45, 52], tend
to incur significant performance overhead when compared
to fine grained locking [4, 19], and are incompatible with
legacy multi-threaded code [52], whose locking discipline
is rarely compatible without significant rewriting. Support
for transactional memory in C++, for example, remains ex-
perimental [45]. There is no indication that persistent trans-
actional memory systems will solve these problems, indeed,
they appear to perpetuate them.

Generally, the transactional programming model is ex-
ported to the programmer using a scoped transaction, (e.g.
transaction{}) and the library guarantees transactions will
execute mutually exclusively (e.g. PMDK’s C++ interface).
However, for PMEM, transactional libraries may syntactically
decouple mutual exclusion from failure atomicity due to lan-
guage limitations (e.g. PMDK’s C interface). In such an API,
the library expects the programmer to first explicitly acquire
the necessary locks to gain mutual exclusion before, subse-
quently, executing the transaction’s failure atomic contents.

Despite this apparent separation, a transactional PMEM
library’s programming model imposes hard limits on the lock-
ing discipline - it expects that all transactional updates are
mutually exclusive and isolated by the locking discipline.
This restriction effectively forces the application to use a
limited locking scheme such as single-global-lock or strong
strict conservative two phase locking to protect any failure-
atomic update. The programming model explicitly disallows
releasing or acquiring a lock while executing a failure-atomic
update.

For more complex locking schemes in which failure-atomic
writes are visible to other threads before they are committed,
the use of a FASE-based programming model is required,
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and is often necessary for legacy programs as, in general,
their existing synchronization fails to follow the restrictive
transactional requirements.

3.2 Limitations of FASEs

Despite being, at first appearances, more compatible with
legacy code, we argue the FASE-based model is also funda-
mentally flawed, or, at the very least, excessively permissive.
The FASE model defines a failure-atomic code region as a
“contiguous critical section,” that is, it defines a failure-atomic
code region as stretching from a thread’s first lock acquire
until the point where it holds no locks. While flexible with re-
spect to locking scheme, this model requires tracking runtime
dependencies between concurrently running failure-atomic
code regions, which may not be isolated from each other.
This permissiveness results in complicated and degenerate
scenarios for recovery.

As a contribution of this work, we demonstrate that, for
certain adversarial application patterns, any FASE-based sys-
tem will either fail to recover or collapse into a degenerate
case in which literally all program state must be logged for
recovery, including volatile data never accessed within failure
atomic regions — effectively, the FASE programming model
requires whole process persistence for correctness.

Theorem 3.1 (FASE Limitation) There exist applications
for which, in order to consistently recover from a crash, a
reasonably permissive FASE-based failure atomicity system
requires all volatile program state be available at recovery.

We prove this theorem by counterexample. This counterex-
ample (Figure 1) can emerge naturally where two threads com-
municate via shared variables and one executes IO, a common
pattern in event-based servers. In these servers, some threads
handle the IO socket (thread 2 in example), some threads are
application workers (thread 1), and they communicate via
shared flags to manage outstanding requests. Detecting this
pattern requires detailed reasoning about synchronization, and
therefore prevents the blind use of FASEs on applications.

In the remainder of this section, we describe the counterex-
ample and a brief sketch of our proof’s reasoning. A full proof
by contradiction, formal definitions, and additional discussion
incorporating related work can be found in Appendix A.

Figure 1 gives our adversarial application that breaks FASE-
based systems. In this example, two threads compute a fixed
series of four values for nonvolatile variable x. Thread 1 com-
putes the first value, Thread 2 the second and third, and Thread
1 the final, fourth value.

The two “tricks” of the code are that (1) the long FASE
executed by thread 1 (lines 6 through 22) spans the entire
example and (2) the third value of x, computed, but not as-
signed, outside of a FASE (line 39), is dependent on an access
to a large volatile array Q.

1 lock_t lock0, lock1, lock2;
2 bool cond1 = false, cond2 = false;
3 int Q[] = rand(); // large random volatile array
4 nvm<int> x = 0; // x resides in nvm

5 void thread1{
6 lock0.lock();
7 x = (int s1=f1(x));
8

9 lock1.lock();
10 cond1 = true;
11 lock1.unlock();
12

13 bool w = true;
14 while(w){
15 lock2.lock();
16 if(cond2)
17 {w = false;}
18 lock2.unlock();
19 }
20

21 x = (int s4=f4(x));
22 lock0.unlock();
23 }

24 void thread2{
25 bool w = true;
26 while(w){
27 lock1.lock();
28 if(cond1){
29 w = false;
30 x =(int s2=f2(x));

31 }
32 lock1.unlock();
33 }
34

35 int in;
36 printf("x=%d", s2);
37 scanf("%d",&in);
38 /∗∗∗∗∗/
39 int s3 = f3(s2,in,Q);
40

41 lock2.lock();
42 x = s3;
43 cond2 = true;
44 lock2.unlock();
45 }

Figure 1: FASE counterexample

Recovery of this example presents an unsolvable prob-
lem. First, we note that Thread 1’s long FASE, due to failure-
atomicity semantics, forces recovery to recover either to the
very beginning of the program or the very end. However, both
options are impossible for a crash at line 38, just before x’s
third value is computed. At this point, thread 2 has already
issued IO, so rolling back program state at recovery is in-
consistent with the external world. However, rolling forward
from this point requires the computation of the third value of
x, which is dependent on an arbitrarily sized volatile array (Q).
Since Q can be of any size, it can be replaced, without loss
of generality, with any or all of the program’s volatile state,
effectively requiring whole process persistence.

Our proof requires failure atomicity systems to be “reason-
ably permissive,” by which we mean that this counter example
can be expressed as valid input for the system. Systems that
restrict locking to two-phase-locking (e.g. [50,68]) or a single,
semantic, global lock (i.e. transactional memory [63]) avoid
this counterexample by prohibiting the locking pattern. Of
course, by the same token, this restriction hampers their utility
for legacy code, which rarely follows such a strict locking
discipline.

The FASE programming model may be fixable by prohibit-
ing situations like the counter-example. Simple (but undesir-
able) solutions include prohibiting all volatile accesses or all
IO in the program. Alternatively, we could try to prohibit the
precise counter-example problem by targeting the interplay
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Figure 2: Virtual memory in Zhuque. The runtime modifies
the backing store based on the mapping type, but the interface
presented to the userspace application does not change.

between FASE dependencies, volatile accesses, and IO. One
potential approach to achieve this involves a specification that
disallows volatile accesses concurrently with a FASE execu-
tion. However, formally defining this specification is tricky,
and formally verifying the proper use of FASEs is almost
certainly undecidable through the halting problem. Notably,
the requirement of a transactional locking scheme (e.g. strict,
strong conservative 2PL) would also prevent the counterex-
ample by explicitly disallowing its locking discipline.

To our knowledge, all existing FASE-based systems (e.g. [6,
26,30,42]) are “reasonably permissive” and would both accept
this code as valid input and fail to recover correctly on it.

4 Design

Whole process persistence (WPP) is our answer to the limita-
tions of transaction- and FASE-based programming models.
In WPP, the in-memory state of an individual process is made
persistent with, in simple cases, no modification to the ap-
plication, primarily by interposing on the creation of virtual
memory mappings (see Figure 2). WPP is designed for sys-
tems with flush-on-fail support, so we expect the contents of
the process’s PMEM-backed cache lines to survive a power
failure. When the process is restarted after a power failure,
it receives an OS signal, which it can ignore or handle with
a signal handler. If no signal handler is installed, or if the
installed signal handler does not exit the program, each thread
continues execution at the point where it was interrupted by
the failure.

There are several benefits to this model over transactions
and FASEs. First and most importantly, WPP solves the prob-
lem described in Section 3 by discarding the concept of a
failure-atomic section. The visible effects of an instruction
on process state (that is, not including effects on OS state or
peripherals) are guaranteed to survive a failure at least from
the point at which they are visible to other threads. Second,
restarting at the point of failure removes the need to "redo"
or "undo" any writes at recovery, and with it the need to keep
a persistent log and incur the cost of extra writes to PMEM.

Third, no longer needing to define failure-atomic sections
either reduces the programmer’s burden directly, compared to
manually-annotated failure-atomicity systems, or allows them
to design concurrency schemes orthogonal to persistency with-
out incurring overhead, unlike FASE-based systems.

There are two requirements that must be satisfied in order
for an application to use WPP. The first is that its thread-
ing and virtual memory must be managed using a well-
defined API for those purposes (i.e., on POSIX: mmap(),
pthread_create(), etc). Any modern application targeting
a POSIX system would have to go out of its way in order to
violate this requirement.

The second is that applications must check error returns
from system calls and other mechanisms that access non-
process-private state, to detect failure-related errors beyond
the process boundary, such as an application using a file on a
filesystem that was not remounted after system restart. This
requirement is more onerous than the first, but in our experi-
ence a wide range of applications can be correctly restarted
without modification or special handling.

The principal challenge in implementing WPP is preserving
process state across a power failure. Continuing execution
after failure requires that the process’s virtual address space,
volatile architectural state, and relevant kernel-resident state
(e.g., the file descriptor table) are a) persistent or b) can be
resurrected along with the application.

The remainder of this section introduces Zhuque, our run-
time implementing WPP, and describes how it makes process
state persistent and restores that state after failure.

4.1 Overview

Zhuque provides WPP functionality by interposing on sys-
tem calls which allocate resources (memory, file descriptors,
threads), and by modifying the application startup process. In
order to do this, we modified libc, which provides C bind-
ings for system calls and implements the application startup
process. Zhuque also requires small changes to the kernel to
protect userspace context when failures occur in kernel mode
(see Section 5.3 for details).

Interposing on system calls allows Zhuque to ensure that all
application state which is normally volatile is instead stored in
PMEM, as shown in Figure 2. It also allows Zhuque to track
memory mappings and system calls so it can reconstruct the
program’s address space and re-create its kernel-resident state
after a failure. Remaining volatile architectural state (e.g., the
register file) is preserved by writing it to PMEM at failure.

When the application is resurrected after failure, Zhuque
restores the application’s address space, respawns its threads,
and each thread reloads its architectural state. Execution re-
sumes by calling the program’s power failure signal handler,
if it exists, and then resuming execution of each thread at the
point interrupted by power failure.
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4.2 Ensuring State Persistence

The first requirement that Zhuque must fulfill is ensuring
that all state required for continuing correct execution of a
program is preserved across power failures. This state can
be divided into three categories based on its storage location:
architectural state, memory state, and file state.

If a system supports flush-on-fail, it would be possible to
modify its firmware to write per-thread architectural state
(register file, floating-point configuration, etc.) to PMEM in
response to power failure. However, we do not have the ability
to modify that firmware, so we emulate it using userspace
signals (see heading Power Failure in Section 5.1). We also
save architectural state to PMEM on every kernel entry, in
case a failure occurs in kernel mode (see Section 5.3).

File state is either inherently persistent, if the file was
opened read-only or if changes have been written to disk,
or is buffered awaiting being written to disk, in which case it
is actually memory state and is handled as described below.

Automatically ensuring memory state is persistent is more
complex, and is one of the main innovations of this design.
Memory state itself can be divided into dynamic and static
memory.

Dynamic memory Programs conjure dynamically allo-
cated (heap) memory and thread stacks by calling anonymous
mmap() (often via malloc()). Zhuque interposes on mmap()
so that requests for anonymous memory return DAX-mapped
persistent memory backed by a runtime-managed PMEM file,
making heap and stack memory persistent.

Static memory Before an application binary is executed,
the loader uses mmap() to create memory regions to hold
code and static data (globals) from the application binary and
linked dynamic libraries. Zhuque treats these regions differ-
ently based on whether they are un/zero-initialized, or initial-
ized to non-zero values. The loader creates un/zero-initialized
regions with anonymous mmap(), so they are treated as dy-
namic memory.

Initialized static memory, however, actually takes up space
in the binary, and is loaded by mapping that region of the bi-
nary into memory as a private mapping. Thus, Zhuque trans-
forms any writable, private mapping backed by a file to a
writable, shared mapping that is backed by a PMEM file (see
Figure 2), which is populated with the initialization values
from the binary.

This mechanism also cleanly handles other outputs of dy-
namic loading, like relocations of position-independent code
and cross-binary symbol resolutions, since they also are stored
in writable, file-backed, private mappings.

4.3 Ensuring Correct Restoration

Having persisted the application’s state, we also have to en-
sure it can be restored correctly. Recovery must restore the

application address space, restore kernel-resident state, and
restore architectural state.
Application address space All of the PMEM-backed
memory mappings managed by Zhuque, as well as any other
mappings the application created with mmap(). Zhuque stores
the mapping table in a persistent memory file, and updates
it to match any changes to the address space as they occur,
so no action is required at failure to ensure this metadata is
persistent.

At recovery, restoring the virtual memory map to its previ-
ous state must be done first, because all other state to be
restored is stored in virtually mapped persistent memory.
Restoration consists of re-mapping each virtual memory re-
gion with the correct backing store and access permissions.
This restoration also replaces dynamic loading.
Kernel-resident state Any data required for continuing
execution that resides outside the address space (and architec-
tural state) of the process. The specific data varies depending
on operating system and implementation decisions: for in-
stance, Zhuque tracks the state of open Linux file descriptors
in PMEM and restores them at restart using system calls. We
discuss Zhuque’s handling of kernel-resident state in Sec-
tion 5.
Architectural state Any state stored in the processor itself
and directly accessible from software. This state is per-thread,
and since it includes the program counter and stack pointer
registers, restoring it is equivalent to restarting execution of
the thread (so it must be done last).

Zhuque manipulates the saved PC and stack so that the
thread resumes as if it had just called the application-defined
failure handler (if it exists), and then that handler returns to
the point interrupted by execution when it executes a RET
instruction. To avoid references to a thread which has not yet
been recreated, threads wait to restart execution after they are
created until all threads have been created.

5 Implementation

Zhuque is based on the musl implementation of the C standard
library runtime [46], plus a minor modification to the Linux
kernel (Section 5.3). Figure 3 depicts Zhuque’s place in the
runtime environment, and Figure 4 shows the changes to
control flow at initialization and termination. This section
describes the life cycle of a Zhuque process, describes how
Zhuque handles the userspace-kernel boundary, and finally
discusses some limitations of our prototype implementation.

5.1 Process Life Cycle
When Zhuque starts a process, it checks an environment vari-
able for a path to a directory which holds or will hold the
persistent state for that process. One file in the directory holds
the process’s global “process context”, a memory map of a C
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Figure 3: Zhuque architecture. User applications link to the
C APIs provided by musl libc, and we modify the implemen-
tation of the APIs and the arguments passed to the underlying
system calls. To protect against failures in kernel mode, we
save userspace context to PMEM on entry to the kernel.

structure. The directory also holds all other persistent memory
files allocated during the process’s life.

Zhuque takes control of the process after the dynamic
loader loads its own metadata using information provided
by the kernel (“loader bootstrapping”). If the context file is
present, then Zhuque takes steps to restart the process. If the
context file is missing, but the environment variable is set,
then it is a newly created Zhuque process (i.e., a clean start).
Clean start In the clean start case, Zhuque creates and ini-
tializes the process context file. Then, it records the locations
of the dynamic loader and the main binary in the mapping
table and remaps their static memory sections to memory
backed by a persistent file. This retroactive process is nec-
essary because our userspace runtime cannot interpose on
mappings created by the kernel.

Next, control returns to the loader and it loads the applica-
tion’s dynamically-linked dependencies. Our code intercepts
the loader’s calls to mmap() and mprotect() during this pro-
cess in order to record the mapping metadata and transform
any writable, private mappings into persistent memory re-
gions.

After loading is complete, control returns to Zhuque just
before main() executes. Zhuque copies main()’s arguments
into PMEM and runs it in a new thread with a persistent stack.
Power failure To save volatile architectural state (e.g. the
register file) to PMEM at failure, we propose repurposing
existing functionality. NVDIMM eADR and CXL GPF both
rely on a System Management Interrupt (SMI) to implement
the flush-on-fail process on x86 systems (see Section 2.1).
SMI handling saves volatile architectural state to a desig-
nated per-core region (the SMRAM) before beginning exe-
cution of the handler, and x86 allows the SMRAM to be
PMEM-backed [16]. However, the location of the SMRAM
is controlled by system firmware. Unfortunately, updates to

firmware must be signed by the manufacturer — the firmware
uses encryption to prevent modification by the end user [15],
so we were unable to make this change for our prototype.

Instead, to test Zhuque’s application support, we emulate
the SMI’s state save using userspace signals. If SIGPWR is
delivered while the process is executing, the volatile thread
receives it and sends a second signal to each thread. When
the kernel interrupts a thread to run the signal handler, it first
pushes the register file and other state needed to resume ex-
ecution onto the persistent thread stack. The handler body
saves the current stack pointer and some context not saved
by handler entry in PMEM, and then exits the thread directly,
preserving the contents of the stack. Thus, at recovery, we
have access to a persistent memory region containing a snap-
shot of volatile architectural state at failure, as if it had been
saved by an SMI.
Restart after failure On restart, the runtime opens the
context file, re-creates PMEM mappings, re-opens file de-
scriptors, and finally re-maps file-backed memory. If a file
descriptor was closed after being used to create a mapping, it
is temporarily re-opened while the mapping is restored.

After the virtual memory map and file set are re-established,
Zhuque restarts the execution of each thread from the point of
failure. Zhuque does this by starting each thread with the same
start routine, and the same initial stack pointer, so that the
bottom frames of the stack are overwritten with new frames
of the same size, and the contents of application frames are
preserved. From this entry routine, we use assembly to restore
architectural state, including setting the stack pointer and PC
to the addresses saved at failure. Execution resumes within
the runtime’s failure handler, which calls the user-defined
failure handler if present. If there is no user-defined handler,
or the handler does not exit the program, execution continues
at the point interrupted by the signal at failure.

5.2 Kernel-resident State
In order to preserve correctness in a userspace-only implemen-
tation, our runtime tracks and restores two pieces of kernel
state tied to the process: the file descriptor set and the thread
set.

To track the thread set, our runtime interposes on calls to
pthread_create(), wrapping the passed thread entry point
and arguments in our own entry point function (which itself is
wrapped in the musl entry point function). It also saves both
the Linux and pthreads identifiers for the thread; the Linux
ID is used at failure to signal each thread individually with
tgkill(), while the pthreads ID is the address of the thread
metadata, and is used at restoration to continue execution
at the point of failure. The Linux ID of a thread changes
when the process is restarted, while the pthreads ID does
not, because we restart threads at recovery with a modified
version of pthread_create()which uses an existing thread
metadata object rather than creating a new one.
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Figure 4: Zhuque runtime control flow. Zhuque modifies runtime startup and termination; application code is not modified.

To track the file descriptor set, Zhuque interposes on calls
which assign (e.g. open(), socket()), modify (e.g. fcntl(),
bind()), or release (i.e. close()) file descriptors and replays
them at restart, using dup() to patch any discrepancy in as-
signed descriptors. This approach is sufficient for sockets
with stateless protocols, epoll file descriptors, and simple
file accesses.

However, pipes and files require special handling: for reg-
ular files, we ensure that they will not be deleted between
failure and restoration by creating separate hardlinks to the
files and using those to reference the file, deleting them when
the program exits cleanly; we also open them without kernel
buffering (i.e. with O_SYNC) due to the limits of a userspace
implementation. And for pipes, we use the splice() fam-
ily of system calls to save and restore unconsumed contents
at failure/restoration. Support for restoring network sockets
is best-effort, and a more systematic approach to network
support under WPP is an interesting future extension of this
work.

5.3 Failures in kernel mode

When an application makes a system call, or is suspended
by an interrupt, the kernel will save the application’s volatile
architectural state on the suspended thread’s kernel stack and
restore it when application execution resumes. In our imple-
mentation the kernel stack is volatile, so we must save this
state in persistent memory to allow recovery if power failure
interrupts the kernel-mode operation.

To enable this, we added a prctl() operation to designate
a page as a redundant state save area. We added code on all
entries from user- to kernel-mode which checks whether such
a page has been provided, and if so saves the state there as
well as to the kernel stack. Accesses to the page must not fault:
since a page fault is itself an interrupt, a fault in interrupt entry
deadlocks the kernel. We found that there is no way (in our
test kernel version) to reliably prevent access to a filesystem
DAX page from faulting, so we use device DAX to provide
the save memory.

5.4 Limitations

There are two notable limitations of our implementation, nei-
ther of which is fundamental to the design.

Multi-process applications are not supported. Zhuque
currently has no support for persisting multiple processes in
the same process tree; if an application under our runtime
forks a new process while leaving the LD_RELOAD environ-
ment variable unchanged, the child process will crash when
it attempts to use the same context object as its parent. By
the same token, we make no attempt to preserve OS process
IDs across failures, so applications that save and retrieve their
PID after failure may find it invalid. Our runtime supports
unrestricted concurrency schemes, so we believe it would
be possible to extend it to support multi-process operation
by interposing on the creation and termination of processes,
similar to our approach to threads.

Some ASLR is not supported. Address space layout ran-
domization (ASLR) is a security technique which randomizes
the address of virtual memory mappings. Random addresses
returned by mmap()to userspace are not an obstacle, since
the randomization only occurs once under Zhuque. However,
Zhuque cannot prevent the kernel from mapping libc and
the application binary at a random location at restart, which
means that their static memory cannot be recreated at the
same locations when ASLR is enabled. It would be possible
to move those mappings after they are created, but since it
does not otherwise affect correctness or performance, and it
would add significant complexity to the startup process, we
chose not to implement this feature.

6 Evaluation

In this section, we evaluate Zhuque’s performance to provide
answers to the following questions:

• How much performance improvement does Zhuque pro-
vide for persistent applications compared to existing li-
braries?

• How much performance overhead does Zhuque incur
compared to native, volatile execution?

• What benefits does Zhuque provide by enabling zero-
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effort persistence?
Our experimental workloads include a set of micro-

benchmarks, a set of Python benchmarks, and three recover-
able applications.

6.1 Evaluation Setup
We compare against native application performance based on
musl and the performance of four popular PMEM libraries.

Musl [46] stands for the default (volatile) implementation
based on musl libc.

PMDK [50] is Intel’s failure atomicity library. It uses hy-
brid undo-redo log for both failure-atomicity [27] and mem-
ory allocation [55]. Atlas [6] also uses an undo logging-
based mechanism for failure-atomicity. It can automatically
infer failure-atomic region boundaries by analyzing lock be-
haviors in application code. Clobber-NVM [68] is a state-
of-the-art PMEM library. It records clobber_log and v_log
during runtime, and recovers an application by re-executing
any interrupted transactions. Mnemosyne [63] is a redo-log
based system. Instead of relying on locks in user applications,
Mnemosyne uses the C++ transactional memory model to
parallelize code.

To measure their performance with flush-on-fail semantics,
we removed the flushes and fences from all three comparison
libraries. These flush-on-fail (FoF) versions are used for all
experiments described below, unless otherwise noted.

We run the benchmarks on a platform with one 20-core
Intel Xeon Gold 6230 processor, running at 2.1 GHz. The plat-
form has a total of 96 GB of DRAM and 768 GB (6 ×128 GB)
of Intel Optane DC Persistent Memory directly attached to
the processor [28]. We configured our test machine such that
Optane DCPMM is in 100% App Direct mode [2]. In this
mode, software has direct, byte-granularity access to the Op-
tane DCPMM. Zhuque uses DAX-mapped [40] Ext4 files for
all PMEM allocations except the kernel state save area, which
uses device DAX for the reasons described in Section 5.3.
Unless otherwise noted, all Zhuque experiments are run on
the modified kernel with the state save area activated, while
all comparison software is run on an unmodified kernel of
the same version (Ubuntu kernel 4.15.0-169). Each data point
reported is the average over five runs.

We observed variations in memory usage across different
benchmarks, ranging from 20 MB to 1 GB. For all but two of
the Python benchmarks, the memory usage exceeds the Last
Level Cache (LLC) capacity of 30.25 MB.

As discussed in Section 5.1, we were unable to modify plat-
form firmware to direct the SMI state save to PMEM, because
firmware updates must be signed by the manufacturer [15].
However, since it only affects events at failure, we expect that
making this change would produce no measurable changes in
the steady-state performance results we report below.

We verified that, with Zhuque enabled, all benchmark ap-
plications restarted and ran to completion correctly after
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Figure 5: Measuring the overhead of Zhuque on ba-
sic operations. Performance values are normalized to the
Musl(original kernel) value.

randomly-timed simulated power failures.

6.2 Microbenchmarks
In our first experiment, we compare Zhuque’s performance
with the default (volatile) musl libc on a set of microbench-
marks from the libc-bench [37] benchmark suite which tests
the operations modified by Zhuque: thread creation and virtual
memory mapping. We implemented the latter within the libc-
bench test harness. Descriptions of the pthread_create()
benchmarks can be found in the libc-bench documenta-
tion [37]. The mmap() benchmarks are described below.

anon_slab creates a 16 MB anonymous mapping, writes
to every page, and then removes the mapping. anon_chunks
creates, writes to every page, and then removes 128 128 kB
anonymous mappings. file_slab creates a 16 MB file-backed
mapping, writes to every page, and then removes the mapping.
file_chunks creates, writes to every page, and then removes
128 128 kB mappings backed by a 16 MB file.
files_chunks creates, writes to every page, and then removes
128 128 kB mappings each backed by a separate 128 kB file.

We ran these benchmarks on four implementations:
Zhuque is Zhuque using DAX-mapped PMEM as the back-
ing store, running on modified kernel. Zhuque(original ker-
nel) is Zhuque without kernel modification. Zhuque on
DRAM uses non-PMEM files (loads and stores access the
DRAM page cache) as a backing store, but also saves kernel
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states. Musl(original kernel) is unmodified musl libc with
unmodified kernel. We report the results in Figure 5.

We observe that Zhuque introduces significant overheads to
modified operations, especially mmap() and munmap() – the
bottleneck for all of the poorly-performing microbenchmarks
is the allocation of new anonymous memory. The overhead is
per-operation, and does not depend on the size of the mapping.
This is not surprising: our modified versions still perform the
original operations, and are also required to modify userspace
data structures maintained by Zhuque in persistent memory,
often including a search whose time is linear in the number of
created mappings. As demonstrated by the results below, these
overheads do not translate to a significant slowdown on mac-
robenchmarks, because modifications of the virtual memory
map are rarely on an application’s critical path. In addition,
these overheads are a result of implementation choices, not
the fundamental design. We anticipate they would decrease
substantially in a kernel-based implementation of WPP.

6.3 Python Benchmarks
In this experiment, we ran nine Python benchmarks on the
musl and Zhuque configurations using the CPython inter-
preter. It demonstrates that Zhuque can run a wide range
of unmodified Python applications. We chose the first nine
benchmarks (out of 42), in alphabetical order, from version
1.0.0 of the Pyperformance benchmark [21] suite. Descrip-
tions of the benchmarks can be found in the Pyperformance

documentation [21]. We ran them in our own benchmark
framework, but did not modify the benchmarks themselves.
We also added dynamic thread stack support, not present in
vanilla musl, in order to support the large stack sizes required
by the interpreter. We report the results in Figure 6.

Most of the Python benchmarks perform competitively with
the musl versions. Those that perform worse generally incur
overhead from frequent random-access reads and writes to
data structures too large to fit in the cache, causing thrashing
and exposing the higher access latency of persistent memory
compared to DRAM.

6.4 Memcached
Memcached [44] is a widely-deployed key-value store. Early
versions (1.2.*) have been ported to Mnemosyne, PMDK,
and Clobber-NVM. We ran memcached-1.2.5 on Zhuque
unmodified.

We evaluate memcached performance with four types of
workloads: insertion-intensive (95% insertion / 5% search),
insertion-mostly (75% insertion / 25% search), search-mostly
(25% insertion / 75% search), and search-intensive (5% inser-
tion / 95% search). We use memslap [39] to generate a stream
of uniformly distributed memcached requests with 16-byte
keys and 64-byte values. As shown in Figure 7, Mnemosyne,
PMDK and Clobber-NVM can perform up to 1.76× faster
with flushes and fences removed. This result indicates that the
flush-on-fail semantics can benefit existing PMEM libraries.

Figure 8 presents the results of these experiments, using
Musl-based memcached-1.2.5 performance on DRAM as
baseline. We find Zhuque can always provide nearly 80%
of musl memcached performance. Across different thread
configurations, Zhuque provides up to 3.58×Mnemnosyne’s
throughput, 1.81× of PMDK’s throughput and 1.71× of
Clobber-NVM’s throughput.

Poor scalability is a well-known problem with early ver-
sions of memcached [20, 42]. Memcached went through a
rewrite of the synchronization framework to use fine-grained
locking across seven years of development and over thirty ver-
sions [31]. Many current (transactional) PMEM libraries have
strict requirements for applications’ concurrency schemes.
These requirements make converting recent versions of mem-
cached to run on PMEM a complicated and difficult process.
Zhuque places no restrictions on the locking scheme, so the
newest version (1.6.17) can run unmodified on Zhuque. By
simply running the newest version on Zhuque, we can provide
more than 7.5× performance of the best performant older ver-
sion of persistent memcached on the same workload, with the
same thread count.

6.5 Vacation and Yada
Furthermore, we evaluated the performance of the Vacation
and Yada applications from the STAMP benchmark suite [8],
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Figure 8: Zhuque Enables Newest Version of Memcached to Run on PMEM, Provides Significantly Better Performance

each targeting common PMEM applications such as, respec-
tively, KV-stores and graph workloads. Prior works [25,63,68]
provide readily available implementations of these applica-
tions built on top of existing PMEM libraries, with the excep-
tion of Yada - Mnemosyne.

We compare Zhuque with Musl, Mnemosyne, PMDK, At-
las and Clobber-NVM Vacation performance. Vacation is a
travel reservation system, consisting of tables updated concur-
rently using transactions that span multiple tables.

Prior implementations [25, 63, 68] persist the tables in
PMEM, and leave the client side in volatile memory. Zhuque
persists the entire vacation application, including both the
server tables and the client threads.

Figure 9 shows that Zhuque performs 10.8×, 4.8×, 3.7×
and 3.6× faster on Vacation than Mnemosyne, PMDK, At-
las and Clobber-NVM, respectively. The performance gain
comes from fewer logging writes and more efficient memory
management: Zhuque uses vanilla malloc(), while the other
libraries use either PMDK’s transactional allocator (PMDK,
Clobber-NVM) or a hand-written allocator (Mnemosyne, At-
las). The memory management efficiency problem is more
prominent on Yada, which implements Ruppert’s algorithm
for Delaunay mesh refinement [54].

7 Related Work

PMEM Software & Hardware. In the past decade, re-
searchers have designed many highly-optimized PMEM data
structures [7, 10, 22, 48, 62, 69]. They are designed to re-
duce the cost of persistent updates while ensuring failure-
atomicity. Because they are carefully designed by experts to

cope with PMEM characteristics, they usually provide good
performance. However, using and developing these data struc-
tures takes significant programming effort.

Because PMEM’s bandwidth is significantly higher than
traditional secondary storage, PMEM file systems [11, 33,
65, 67] aim to expose raw PMEM performance as much as
possible. It is easy for existing applications to use files on
these PMEM file systems, but they are not designed to solve
the same problem that Zhuque targets (failure-resilience of
the application’s in-memory data).

The architecture community has also sought better hard-
ware support for PMEM, often by allowing more permis-
sive (and thus performant) store ordering at the memory con-
troller [3,18,24,32,34–36,59]. Many of these systems demon-
strate dramatic performance gains in simulation, but none that
we are aware of are available in production.

General-purpose PMEM libraries. General-purpose
PMEM libraries aim to ensure failure-atomicity for appli-
cations which directly access PMEM, with low overhead and
minimal code changes.

Traditional undo-log systems [6, 9, 50] and redo-log sys-
tems [23, 63] write to a log alongside every visible update,
at least doubling each write. On non-flush-on-fail PMEM
machines, undo-logging usually requires expensive memory
fences at the end of each log write, while redo-logging needs
to redirect loads even if the machine supports flush-on-fail.

To avoid expensive synchronization between threads, some
undo/redo systems buffer writes in "shadow" copies of PMEM
data [5,17,41,43,66], at least doubling the amount of PMEM
required by the application. These systems still incur the write
amplification and read redirection costs of conventional log-
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ging, and with flush-on-fail semantics the synchronization
they are designed to reduce is no longer required at all. Com-
pared to these systems, Zhuque does not amplify or redirect
memory accesses, nor increase the size of the working set.

All these systems rely on either lock-inferred failure atomic
sections (FASEs) [6, 26, 30, 42, 66], classical transactions [5,
41, 43, 63], or programmer delineated transaction boundaries
with a restricted lock scheme [23, 50, 68] to identify failure-
atomic operations. In contrast, Zhuque is not concerned with
synchronization: it uses the same concurrency model as the
original application.

JUSTDO [30], iDO [42], and Clobber-NVM [68] recover
by resuming execution of the interrupted failure-atomic sec-
tion or re-executing interrupted transactions. These systems
are similar to Zhuque in that they also resume execution at the
point of failure, but they all restrict concurrency and require
manual annotation of atomic sections.
Single Level Stores. WPP transparently makes processes
persistent by providing continuous checkpointing, durability
guarantees for external observers of application IO (known
as external synchrony [49]), and POSIX compatibility. Single
level stores (SLS) [12, 38, 56–58, 60, 61] also provide persis-
tent address spaces to applications, but they suffer from high
overhead, rarely support external synchrony, and are often
hard to use due to custom APIs [57, 60].

The high overhead arises from checkpointing and, for some
systems, the enforcement of external synchrony. Checkpoint-
ing overhead is high because traditional storage devices are
far slower than DRAM, and SLSes usually amplify writes by
tracking memory modification at page granularity. To achieve
external synchrony, SLS systems must delay IO until data is
safely persisted. If checkpoints are too frequent, the commu-
nication delay can cause high overheads.

Because of the performance penalty of providing external
synchrony, most SLSes choose not to enforce it. The state-
of-the-art SLS system Aurora [61] points out the value of
external synchrony, but does not support it. Zhuque shows
that flush-on-fail semantics allow continuous checkpointing,

making external synchrony feasible and performant.

8 Conclusion

This paper has described Whole Process Persistence (WPP), a
programming model that treats power failure as a recoverable
exception. Zhuque, implementing WPP, transparently makes
applications failure-resilient by interposing on the POSIX-
specified APIs. Zhuque ensures process state survives power
failures, and allows for resumption of execution.

Compared with existing solutions, Zhuque greatly sim-
plifies the programming model. Our evaluation shows that
Zhuque significantly improves performance compared to
state-of-the-art, and tends to match original volatile appli-
cation performance on certain workloads.

Acknowledgments

This work was supported in part by the NSF/Intel Foundations
of Microarchitecture Program awards 2011213 and 2011212.
We would like to thank our shepherd Gaël Thomas and the
anonymous reviewers for their insightful feedback.

References

[1] eadr characteristics at failure. https://groups.google.
com/g/pmem/c/K35X70fzAMw/m/5qEhhzb8AAAJ,
2021.

[2] Alper Ilkbahar. Intel Optane DC Persistent Memory
Operating Modes Explained, 2018.

[3] Miao Cai, Chance C Coats, and Jian Huang. Hoop:
Efficient hardware-assisted out-of-place update for non-
volatile memory. In 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA),
pages 584–596. IEEE, 2020.

[4] Calin Cascaval, Colin Blundell, Maged Michael,
Harold W. Cain, Peng Wu, Stefanie Chiras, and Sid-

844    2023 USENIX Annual Technical Conference USENIX Association

https://groups.google.com/g/pmem/c/K35X70fzAMw/m/5qEhhzb8AAAJ
https://groups.google.com/g/pmem/c/K35X70fzAMw/m/5qEhhzb8AAAJ


dhartha Chatterjee. Software transactional memory:
Why is it only a research toy? Commun. ACM,
51(11):40–46, November 2008.

[5] Daniel Castro, Paolo Romano, and João Barreto. Hard-
ware transactional memory meets memory persistency.
In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 368–377, 2018.

[6] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud
Bhandari. Atlas: Leveraging locks for non-volatile
memory consistency. In Proceedings of the 2014 ACM
International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA ’14,
pages 433–452. ACM, 2014.

[7] Shimin Chen and Qin Jin. Persistent b+-trees in non-
volatile main memory. Proc. VLDB Endow., 8(7):786–
797, February 2015.

[8] Chi Cao Minh, JaeWoong Chung, C. Kozyrakis, and
K. Olukotun. Stamp: Stanford transactional applica-
tions for multi-processing. In 2008 IEEE International
Symposium on Workload Characterization, pages 35–46,
2008.

[9] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: Making persistent objects
fast and safe with next-generation, non-volatile mem-
ories. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’11, pages
105–118, New York, NY, USA, 2011. ACM.

[10] Nachshon Cohen, David T. Aksun, Hillel Avni, and
James R. Larus. Fine-grain checkpointing with in-cache-
line logging. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’19, pages 441–454. Association for Computing Machin-
ery, 2019.

[11] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better I/O through byte-addressable, per-
sistent memory. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles,
SOSP ’09, pages 133–146, New York, NY, USA, 2009.
ACM.

[12] George Copeland, Michael Franklin, and Gerhard
Weikum. Uniform object management. In Interna-
tional Conference on Extending Database Technology,
pages 253–268. Springer, 1990.

[13] Intel Corporation. Asynchronous event handling. In
CXL Type 3 Memory Device Software Guide, page 65.
June 2021. Revision 1.0.

[14] Intel Corporation. Gpf sequence. In CXL Type 3 Mem-
ory Device Software Guide, page 121. June 2021. Revi-
sion 1.0.

[15] Intel Corporation. Microcode update facilities: Update

signature and verification. In Intel 64 and IA-32 Ar-
chitectures Software Developer’s Manual, volume 3,
chapter 10.11, pages 10–36–10–37. March 2023. Order
No. 325462-079US.

[16] Intel Corporation. System management mode: Smram.
In Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, volume 3, chapter 32.4, pages 32–4–32–
9. March 2023. Order No. 325462-079US.

[17] Andreia Correia, Pascal Felber, and Pedro Ramalhete.
Romulus: Efficient algorithms for persistent transac-
tional memory. In Proceedings of the 30th ACM Sym-
posium on Parallelism in Algorithms and Architectures,
SPAA ’18, pages 271–282. Association for Computing
Machinery, 2018.

[18] Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, and
Vijay Nagarajan. Lazy release persistency. In Proceed-
ings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, pages 1173–1186. As-
sociation for Computing Machinery, 2020.

[19] Dave Dice, Alex Kogan, Yossi Lev, Timothy Merrifield,
and Mark Moir. Adaptive integration of hardware and
software lock elision techniques. In Proceedings of the
26th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’14, pages 188–197. Association
for Computing Machinery, 2014.

[20] David Dice, Virendra J. Marathe, and Nir Shavit. Lock
cohorting: A general technique for designing numa
locks. ACM Trans. Parallel Comput., 1(2), February
2015.

[21] Python Software Foundation. The python performacne
benchmark suite, 2021.

[22] Michal Friedman, Maurice Herlihy, Virendra Marathe,
and Erez Petrank. A persistent lock-free queue for non-
volatile memory. In Proceedings of the 23rd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’18, pages 28–40. Association for
Computing Machinery, 2018.

[23] Ellis R Giles, Kshitij Doshi, and Peter Varman. Soft-
wrap: A lightweight framework for transactional support
of storage class memory. In 2015 31st Symposium on
Mass Storage Systems and Technologies (MSST), pages
1–14. IEEE, 2015.

[24] Vaibhav Gogte, William Wang, Stephan Diestelhorst,
Peter M Chen, Satish Narayanasamy, and Thomas F
Wenisch. Relaxed persist ordering using strand persis-
tency. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages
652–665. IEEE, 2020.

[25] Swapnil Haria, Mark D. Hill, and Michael M. Swift.
Mod: Minimally ordered durable datastructures for per-
sistent memory. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-

USENIX Association 2023 USENIX Annual Technical Conference    845



PLOS ’20, pages 775–788. Association for Computing
Machinery, 2020.

[26] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy,
Kimberly Keeton, and Patrick Eugster. Nvthreads: Prac-
tical persistence for multi-threaded applications. In Pro-
ceedings of the Twelfth European Conference on Com-
puter Systems, EuroSys ’17, pages 468–482. Association
for Computing Machinery, 2017.

[27] Intel Corporation. Pmdk issues: introduce hybrid trans-
actions, 2017.

[28] Intel Corporation. Intel Optane DC Persistent Memory,
2019.

[29] Intel Corporation. eADR: New Opportunities for Per-
sistent Memory Applications, 2021.

[30] Joseph Izraelevitz, Terence Kelly, and Aasheesh
Kolli. Failure-Atomic Persistent Memory Updates via
JUSTDO Logging. In Proceedings of the Twenty-First
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’16, pages 427–442, New York, NY, USA,
2016. ACM.

[31] Joseph Izraelevitz, Lingxiang Xiang, and Michael L
Scott. Performance improvement via always-abort htm.
In 2017 26th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), pages
79–90. IEEE, 2017.

[32] Jungi Jeong and Changhee Jung. Pmem-spec: persis-
tent memory speculation (strict persistency can trump
relaxed persistency). In Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
517–529, 2021.

[33] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 494–
508, 2019.

[34] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen,
and Thomas F. Wenisch. High-performance transac-
tions for persistent memories. In Proceedings of the
Twenty-First International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’16, pages 399–411. Association for
Computing Machinery, 2016.

[35] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali
Saidi, Steven Pelley, Sihang Liu, Peter M. Chen, and
Thomas F. Wenisch. Delegated persist ordering. In The
49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-49. IEEE Press, 2016.

[36] Kunal Korgaonkar, Joseph Izraelevitz, Jishen Zhao, and
Steven Swanson. Vorpal: Vector clock ordering for
large persistent memory systems. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed

Computing, PODC ’19, page 435–444. Association for
Computing Machinery, 2019.

[37] Eta Labs. libc-bench, 2021.
[38] Charles R Landau. The checkpoint mechanism in

keykos. In [1992] Proceedings of the Second Inter-
national Workshop on Object Orientation in Operating
Systems, pages 86–91. IEEE, 1992.

[39] libMemcached.org. libMemcached, 2011.
[40] Linux Kernel Organization. Direct Access for Files,

2020.
[41] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai

Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.
Dudetm: Building durable transactions with decoupling
for persistent memory. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’17, pages 329–343. Association for
Computing Machinery, 2017.

[42] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee,
Michael L Scott, Sam H Noh, and Changhee Jung.
ido: Compiler-directed failure atomicity for nonvolatile
memory. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 258–
270. IEEE, 2018.

[43] Amirsaman Memaripour, Anirudh Badam, Amar Phan-
ishayee, Yanqi Zhou, Ramnatthan Alagappan, Karin
Strauss, and Steven Swanson. Atomic in-place updates
for non-volatile main memories with kamino-tx. In
Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys ’17, pages 499–512. Asso-
ciation for Computing Machinery, 2017.

[44] Memcached. http://memcached.org/.
[45] Transactional memory study group (SG5). Technical

specification for c++ extensions for transactional mem-
ory iso/iec ts 19841:2015, 2015.

[46] musl libc, 2021. https://musl.libc.org/.
[47] Dushyanth Narayanan and Orion Hodson. Whole-

system persistence with non-volatile memories. In Sev-
enteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS 2012). ACM, March 2012.

[48] Faisal Nawab, Joseph Izraelevitz, Terence Kelly,
Charles B Morrey III, Dhruva R Chakrabarti, and
Michael L Scott. Dalí: A periodically persistent hash
map. In 31st International Symposium on Distributed
Computing (DISC 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[49] Edmund B Nightingale, Kaushik Veeraraghavan, Pe-
ter M Chen, and Jason Flinn. Rethink the sync. ACM
Transactions on Computer Systems (TOCS), 26(3):1–26,
2008.

[50] pmem.io. Persistent Memory Development Kit, 2017.
http://pmem.io/pmdk.

[51] Yoav Raz. The principle of commitment ordering, or

846    2023 USENIX Annual Technical Conference USENIX Association

https://musl.libc.org/
http://pmem.io/pmdk


guaranteeing serializability in a heterogeneous environ-
ment of multiple autonomous resource mangers using
atomic commitment. In Proceedings of the 18th Inter-
national Conference on Very Large Data Bases, VLDB
’92, pages 292–312. Morgan Kaufmann Publishers Inc.,
1992.

[52] Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear.
Transactionalizing legacy code: An experience report
using gcc and memcached. In Proceedings of the 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’14, pages 399–412. Association for Computing
Machinery, 2014.

[53] Andy Rudoff, Chet Douglas, and Tiffany Kasanicky. Per-
sistent memory in cxl. In Proceedings of the 2021 SNIA
Persistent Memory + Computational Storage Summit,
April 2021.

[54] J. Ruppert. A delaunay refinement algorithm for quality
2-dimensional mesh generation. Journal of Algorithms,
1995.

[55] Steve Scargall. PMDK Internals: Important Algorithms
and Data Structures, pages 313–331. Apress, 2020.

[56] Jonathan S Shapiro and Jonathan Adams. Design evo-
lution of the eros single-level store. In USENIX An-
nual Technical Conference, General Track, pages 59–72,
2002.

[57] Jonathan S Shapiro, Jonathan M Smith, and David J
Farber. Eros: a fast capability system. In Proceedings of
the seventeenth ACM symposium on Operating systems
principles, pages 170–185, 1999.

[58] Eugene Shekita and Michael Zwilling. Cricket: A
mapped, persistent object store. Technical report, Uni-
versity of Wisconsin-Madison Department of Computer
Sciences, 1990.

[59] Seunghee Shin, James Tuck, and Yan Solihin. Hiding
the long latency of persist barriers using speculative exe-
cution. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA ’17, pages
175–186. Association for Computing Machinery, 2017.

[60] Frank G Soltis. Fortress Rochester: The Inside Story of
the IBM iSeries. System iNetwork, 2001.

[61] Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and
Ali José Mashtizadeh. The aurora operating system:
revisiting the single level store. In Proceedings of the
Workshop on Hot Topics in Operating Systems, pages
136–143, 2021.

[62] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy H. Campbell. Consistent and durable
data structures for non-volatile byte-addressable mem-
ory. In Proceedings of the 9th USENIX Conference
on File and Stroage Technologies, FAST’11, page 5.
USENIX Association, 2011.

[63] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In ASP-

LOS ’11: Proceeding of the 16th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, New York, NY, USA,
2011. ACM.

[64] Gerhard Weikum and Gottfried Vossen. Transactional
Information Systems: Theory, Algorithms, and the Prac-
tice of Concurrency Control and Recovery. Morgan
Kaufmann Publishers Inc., 2001.

[65] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A
file system for storage class memory. In Proceedings of
2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
pages 39:1–39:11, New York, NY, USA, 2011. ACM.

[66] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang,
and Mikel Luján. Pmthreads: Persistent memory threads
harnessing versioned shadow copies. In Proceedings
of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2020,
pages 623–637. Association for Computing Machinery,
2020.

[67] Jian Xu and Steven Swanson. {NOVA}: A log-
structured file system for hybrid volatile/non-volatile
main memories. In 14th {USENIX} Conference on File
and Storage Technologies ({FAST} 16), pages 323–338,
2016.

[68] Yi Xu, Joseph Izraelevitz, and Steven Swanson. Clobber-
nvm: Log less, re-execute more. In To appear in the Pro-
ceedings of International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2021.

[69] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. Nv-tree: Reduc-
ing consistency cost for nvm-based single level systems.
In Proceedings of the 13th USENIX Conference on File
and Storage Technologies, FAST’15, pages 167–181.
USENIX Association, 2015.

[70] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha,
Ali-Reza Adl-Tabatabai, and Hsien-Hsin S. Lee. Kick-
ing the tires of software transactional memory: Why
the going gets tough. In Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms and
Architectures, SPAA ’08, pages 265–274. Association
for Computing Machinery, 2008.

[71] Lu Zhang and Steven Swanson. Pangolin: A
fault-tolerant persistent memory programming library.
In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), pages 897–912, 2019.

A Proof

In this appendix, we provide a proof of theorem 3.1:

Theorem 3.1 (FASE Limitation) There exist applications
for which, in order to consistently recover from a crash, a
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reasonably permissive FASE-based failure atomicity system
requires all volatile program state be available at recovery.

A.1 Definitions
We begin by defining terms. By application we mean a multi-
threaded program, executed as a process. The process’s in-
ternal state consists of all its data, including heap, globals,
and stack. Some memory locations are designated nonvolatile,
their contents (the nonvolatile state) survive a power outage;
the remainder are volatile, and their contents (the volatile
state) are lost. The process may perform IO operations —
we term the set of IO operations performed by an executing
process its external state. The process, being multi-threaded,
contains code regions that execute while a lock is held, these
are termed critical sections.

If power is lost during process execution, its volatile state
is lost. The purpose of a failure atomicity system is to pro-
vide consistent recovery from a power outage. For consistent
recovery, the system selects a point in execution, termed the
recovery point. The recovery point is consistent with the ex-
ternal state; process execution from initialization through
the recovery point would generate the observed IO. For fail-
ure atomicity, the recovery point also lies outside all critical
sections. Consistent recovery of a process consists of select-
ing a valid recovery point and restoring the persistent state’s
contents to its values as of this point. If the power failure
interrupts a critical section, consistent recovery will involve,
for failure atomicity, chosing a recovery point outside the
critical section and undoing or redoing changes made within
the section.

We assume a powerful failure atomicity system which is
free, during pre-crash execution, to intercept the process at
any point and log data in nonvolatile memory. After a crash,
the system has access both to these logs and the process’s non-
volatile state — its task is to ensure that the nonvolatile state
is restored to a recovery point; consistent with IO operations
and outside any critical section. The failure atomicity system
must be reasonably permissive with respect to its program-
ming model — we require the system’s programming model
to support our adversarial example. To all our knowledge, all
existing FASE-based systems are “reasonably permissive”.

Figure 1 gives our counterexample. The “trick” is that
the long FASE executed by thread 1 (lines 6 through 22)
is dependent on non-FASE code executed by thread 2 that
contains both IO and accesses to large volatile data (lines 36
through 39).

A.2 Proof Sketch
We prove Theorem 3.1 by contradiction. We consider a pro-
cess executing the code sample in Figure 1 and suffering a
power failure on line 38. Suppose, for contradiction, there
exists a FASE system for which, given this situation, could

restore the program’s nonvolatile state to a recovery point
consistent with the external state and outside any critical sec-
tion. As thread 1, by construction, executes a critical section
(FASE) for its duration, our recovery point for thread 1 must
lie at line 6 or line 22 — all other points violate failure atom-
icity. We consider both options.

Suppose the recovery point lies at line 6 (i.e. recover x to
0), it is inconsistent with the external process state due to the
IO executed before the failure on lines 36 and lines 37, which
indicate that thread 2 (and therefore thread 1) have progressed
beyond this recovery point, leading to a contradiction.

Suppose the recovery point lies at line 22 (i.e. recover x
to s4). First we note that the value s4 has a true dependence
(read-after-write) on s3, and s3 has a true dependence on
both the inputed seed in and large volatile array Q. Since s3
cannot be computed before in is known, s3 must be computed
after the scanf on line 37 is executed. Since the failure can
interrupt the computation of s3 after the scanf, all inputs
to f3 must be preserved in nonvolatile storage for recovery.
However, since Q is an arbitrarily sized volatile array, Q can
be of any size and can be replaced, without loss of generality,
with any or all of the program’s volatile state, requiring the
failure atomicity system to preserve all volatile process state
and leading to a contradiction.

B Artifact Appendix

B.1 Abstract

This appendix describes the artifact submitted with this pa-
per. The artifact contains files to build a Docker image with
Zhuque installed as the system libc, and containing all bench-
marks and comparison PMEM systems evaluated in Section 6.
It also contains our patch against the Linux kernel necessary
for correct resumption, described in Section 5.3.

B.2 Scope

The artifact allows verification of the following claims:
• All performance results from Section 6, for both Zhuque

and comparison systems.
• Zhuque can successfully restart programs after an simu-

lated asynchronous failure, as described in Section 5.1.
• The kernel modification correctly saves userspace ar-

chitectural state to the redundant state save area, as de-
scribed in Section 5.3.

The artifact does not verify the following claims:
• The kernel modification is sufficient to protect against a

failure in kernel mode (we cannot simulate this type of
failure).

• The formal claims made in Section 3 about FASE-based
systems.
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B.3 Contents
The artifact is organized into these key directories (see
README for detailed listing):

• musl-src: Source code of Zhuque-musl.
• musl-src/src/psys: Zhuque core implementation.
• clobber-pmdk: Source code for comparison PMEM

systems and their versions of application benchmarks.
• apps: Zhuque/native implementations of application

benchmarks.
• pigframe: Materials to build and test our kernel modifi-

cation.

B.4 Hosting
This artifact is hosted in a Github repository at
https://github.com/georgehodgkins/Zhuque_artifact.
The commit ID for the current version is
ffc033972bb36adc23b7a4b8c8b2cc6d736bff53. See
README for build instructions.

B.5 Requirements
The only software required for the artifact is Docker on a
Linux kernel; the build process bootstraps all other dependen-
cies. Zhuque and most comparison applications can be run on
a system without PMEM, but only a system with PMEM can
fully reproduce the reported results. Zhuque was mostly de-
veloped against a rather old kernel version (4.15.18), and we
have sometimes observed unexpected behavior when running
on newer kernels.

We built and tested the artifact on the evaluation machine
described in Section 6. Our kernel modification targets the
Ubuntu kernel fork at version 4.15.0-169. The Docker image
is based on Alpine Linux 3.14.
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Energy saving is a crucial mission for data center providers.
Among many services, DNN training and inference are signif-
icant contributors to energy consumption. This work focuses
on saving energy in multi-GPU DNN training. Typically, en-
ergy savings come at the cost of some degree of performance
degradation. However, determining the acceptable level of
performance degradation for a long-running training job can
be difficult.

This work proposes ENVPIPE, an energy-saving DNN train-
ing framework. ENVPIPE aims to maximize energy saving
while maintaining negligible performance slowdown. EN-
VPIPE takes advantage of slack time created by bubbles in
pipeline parallelism. It schedules pipeline units to place bub-
bles after pipeline units as frequently as possible and then
stretches the execution time of pipeline units by lowering the
SM frequency. During this process, ENVPIPE does not mod-
ify hyperparameters or pipeline dependencies, preserving the
original accuracy of the training task. It selectively lowers the
SM frequency of pipeline units to avoid performance degra-
dation. We implement ENVPIPE as a library using PyTorch
and demonstrate that it can save up to 25.2% energy in single-
node training with 4 GPUs and 28.4% in multi-node training
with 16 GPUs, while keeping performance degradation to less
than 1%.

1 Introduction

Reducing carbon footprint is a worldwide mission. Ex-
perts estimate data centers take up 3% of the global carbon
emission, which is roughly equal to the worldwide airline in-
dustry [2]. To mitigate carbon emissions, data center providers
should actively explore energy-saving strategies for their op-
erations. One significant area to address is the energy con-
sumption associated with machine learning (ML) workloads,
which constitutes a significant portion of overall energy usage.
According to recent work, Google constantly spends 15%
of its total energy running ML workloads for the past three
years [22]. This study primarily focuses on energy saving in
the context of multi-GPU deep neural network (DNN) train-
ing, which is a prevalent method employed in modern ML
workloads.

There have been several approaches to save energy of GPU
workloads. Common methods use GPU Dynamic Voltage
and Frequency Scaling (DVFS), which seeks to identify the
optimal frequency for the Streaming Multiprocessor (SM)
clock or memory clock by balancing the tradeoff between
performance and energy consumption [3, 7, 9, 12, 17, 27–29].

Recently, Zeus [29], considers the batch size and power limit
to navigate the tradeoff between performance and energy con-
sumption. It automatically finds the optimal configuration
in recurring DNN training jobs based on the user-provided
energy-efficiency importance. Although effective, these ap-
proaches leave several limitations.

First, they may have side effects by modifying user-
provided hyperparameters. For example, Zeus adjusts the
batch size of a training job which can potentially compro-
mise statistical efficiency, even with optimally-tuned learning
rates [24]. This issue becomes particularly challenging in
non-recurring DNN training jobs where finding the batch size
and learning rate pairs that maintain statistical efficiency is
difficult. Second, it is difficult to determine how much perfor-
mance degradation is acceptable at the cost of saving energy.
Typically, the completion time of a training job varies and
is unpredictable. Therefore, ML practitioners may not know
how much delay they can accept. Furthermore, in a long-
running training task, even a small performance degradation
implies a significant delay. For instance, 10% degradation of
a month-running task translates to three days. Third, these
approaches primarily focus on individual GPU training jobs
and do not adequately address the energy consumption associ-
ated with large-model training. Large model training utilizes
multiple GPUs across multiple nodes with various parallelism
techniques.

This work proposes ENVPIPE1, a new energy-saving DNN
training framework. ENVPIPE focuses on large model train-
ing using multiple GPUs with pipeline parallelism. ENVPIPE
addresses the limitation of previous approaches with the de-
sign goals: No accuracy and performance degradation. With
the goals, users can run any DNN training jobs as if they run
them without ENVPIPE while saving energy under the hood.
To preserve the original accuracy, ENVPIPE does not modify
any user-provided hyperparameters such as batch size and
does not change data dependency while executing pipeline
units. ENVPIPE leverages the side-effect-free control knob
only, SM frequency, to save energy. To avoid performance
degradation, ENVPIPE utilizes pipeline bubbles inevitably oc-
curring when training large models with pipeline parallelism.
ENVPIPE selectively lowers SM frequency to reduce the en-
ergy consumption of pipeline units. This control stretches the
execution time of pipeline units, but ENVPIPE confines the
degree of each stretch up to the available slack time of the
bubbles, avoiding end-to-end performance degradation.

1Envelope + Pipeline Parallelism.
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This design idea is generally applicable to any DNN train-
ing job where layer-wise partitioning is feasible, enabling
training with pipeline parallelism across a large number of
GPUs. However, realizing the design idea is challenging due
to the following problems. i) To decide the value of SM fre-
quency, ENVPIPE needs to know the trend of clock speed
and training performance. The trend varies according to GPU
hardware, batch size, and the number of layers in a pipeline
stage. Offline profiling to obtain this information is impracti-
cal. Instead, ENVPIPE performs online profiling by sweeping
SM frequencies to obtain the energy-saving curve under the
given hyperparameters and GPU hardware. ii) How to sched-
ule pipeline units decides the amount of bubbles that can be
exploited. It is essential to ensure that a bubble exists after
a pipeline unit of which execution time is stretched while
ensuring that the next unit, which has data dependency, is
sufficiently distant to avoid overall performance degradation.

ENVPIPE is implemented as a library using the existing
ML framework. The ENVPIPE policy and mechanism are
clearly separated, so developers can easily add required APIs
to support a new ML framework. The current prototype of
ENVPIPE is implemented on the DeepSpeed [25] library and
uses the existing GPU device driver to control SM frequency.
We evaluate ENVPIPE in real-world workloads: BERT, GPT,
Megatron, and ResNet, and demonstrate the performance and
energy saving on two GPU hardware: V100 and RTX3090.
We perform evaluations of the workload in a single node (4
GPUs) and in multiple nodes (16 GPUs) and show that EN-
VPIPE saves energy up to 25.2% and 28.4% in single-node and
multi-node setups respectively while keeping performance
degradation to less than 1%.

This paper makes the following contributions:
• We present the design of ENVPIPE, a performance-

preserving energy-saving DNN training framework that
supports distributed training across multiple GPUs.

• ENVPIPE preserves the original statistical efficiency by not
modifying any user-provided hyperparameters and controls
only the side-effect-free control knob.

• We demonstrate ENVPIPE saves up to 25.2% and 28.4%
energy saving in single- and multi-node GPU servers with
less than 1% performance degradation.

The source code of ENVPIPE is available on https://
github.com/casys-kaist/EnvPipe.

2 Background

2.1 Large Model Training with Parallelism
Recent advancements in language models have focused on

increasing the number of parameters, achieving impressive
results on various challenging tasks such as language under-
standing, generation, and reasoning. Google’s Pathways Lan-
guage Model (PaLM), a 540 billion parameter model stacked
up with numerous transformer decoder layers, has shown
breakthrough results outperforming finetuned state-of-the-

art models on various natural language tasks [8]. However,
scaling up the model size comes with a cost of increased
memory footprint, making it challenging to fit on a single
GPU memory, even with the latest GPU like the NVIDIA
H100 with 80GB. To efficiently train extremely large mod-
els, there have been several efforts to combine various par-
allelism techniques such as data, tensor, and pipeline paral-
lelism [1, 11, 15, 16, 18–20, 30]

In this study, we focus on the pipeline parallelism [11, 15,
16, 18–20] which is a commonly used technique in training
large DNNs whose models cannot fit on a single GPU. With
pipeline parallelism, a model is vertically partitioned as evenly
as possible to each worker (e.g., GPU) as pipeline stages. For
transformer-based models such as GPT, each pipeline stage
can have the same number of transformer decoder layers,
balancing the execution time across the pipeline stages. To
increase pipeline efficiency, the input batch is partitioned
into multiple microbatches, and each worker handles the mi-
crobatches in a pipelined manner. There are two different
approaches to synchronizing model parameters: synchronous
and asynchronous. Synchronous pipeline parallelism (S-PP)
ensures strict weight update semantics by periodic pipeline
flushes. S-PP does not compromise the model’s convergence
but inevitably incurs pipeline bubbles which lower the train-
ing throughput 2. Asynchronous pipeline parallelism (A-PP)
relaxes weight update semantics and fully utilizes the pipeline
throughput in a steady state by continuously pipelining micro-
batches without any pipeline flushes. A-PP hurts the statistical
efficiency of the model and can fail to converge to the target
accuracy [5].

In this work, we target S-PP which preserves the origi-
nal statistical efficiency with strict weight update semantics.
Due to pipeline flushes after every training iteration, pipeline
bubbles are inevitable which lowers the pipeline throughput.
Previous studies [15, 16, 20] focused on reducing the bub-
bles in S-PP. Rather than perceiving bubbles as an obstacle
that slows down training, we consider pipeline bubbles as an
opportunity to save energy in large model training.

2.2 Energy Scaling Valley Trend in GPUs
As it is convenient for ML practitioners to make use of

GPUs rather than NPU-like accelerators for DNN workloads,
modern cloud and data centers are operating a huge number
of GPUs. However, when training DNN workloads, GPUs
incur a significant fraction (e.g. about 70% according to [10])
of total power consumption in the whole system including
other components such as CPU and DRAM. This high power
consumption of GPUs during DNN training underscores the
importance of optimizing their energy efficiency to reduce
the overall energy consumption of cloud and data centers.
To save energy in GPUs, previous studies [3, 7, 9, 12, 17, 27–
29] have utilized Dynamic Voltage and Frequency Scaling

2GPU remains idle in pipeline bubbles
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Figure 1: Energy scaling valley trend in modern GPUs

(DVFS) and focused on balancing performance and energy
efficiency. DVFS is a widely studied technique in traditional
CPUs to balance performance and energy consumption by
scaling voltage/frequency in CPU cores. Generally, scaling
down voltage/frequency saves energy but inevitably degrades
performance, and GPUs tend to show a more complex energy
scaling trend. Tang et al. [27] studied the energy scaling trend
of various DNN training on modern datacenter GPUs and
showed that energy saving is maximized on the middle-level
core frequency and the energy consumption curve shows a
valley trend when scaling core frequency.

We measure the training throughput and energy consump-
tion by scaling the SM frequency in three different GPUs
with various up-to-date DNN models in a single GPU training
scenario. We use NVML [21], a library provided by NVIDIA,
to adjust the SM frequency of GPUs. NVML can set the max-
imum limit of SM frequency and monitor the current energy
consumption. Figure 1 exhibits that energy consumption de-
creases when lowering the frequency, but from the middle
(e.g., 1350MHz and 1020MHz in RTX3090 and V100), this
trend changes oppositely. This is because the training time
is prolonged with lower SM frequency. Since energy con-
sumption is related to both current power usage and overall
execution time, if the end-to-end execution time increases at a
faster rate than the rate of decrease in current power usage, the
overall energy consumption increases. Thus, it is crucial to
find the optimal point of SM frequency to achieve energy sav-
ing since the frequency cannot be lowered below the optimal
point.

3 Energy-efficient DNN Training

This section describes the energy-saving problem of DNN
training and discusses key insights that motivate the design
of our system.

3.1 Objective and Constraints
DNN training is a complex and time-consuming process

that places a significant emphasis on achieving statistical effi-
ciency. Consequently, developing energy-efficient strategies
for DNN training is a challenging task that can potentially
lead to unintended side effects. In this section, we highlight
several constraints that are crucial for ensuring the robustness

of an energy-saving approach and mitigating any undesirable
side effects.
No accuracy degradation. Given that training jobs are often
already hyperparameter-searched, we do not modify any user-
provided hyperparameters to ensure that the final accuracy
after finishing the training is not compromised. Therefore, the
way to achieve energy saving in this work is in sharp contrast
to prior work that reduces energy consumption by changing
hyperparameters, which can affect the final converged accu-
racy. For example, Zeus [29] studies how different batch sizes
affect energy consumption when combined with a wide vari-
ety of GPU power scaling levels. The optimal combination
chosen in Zeus thus alters depending on hardware and energy
efficiency, which is the immediate consequence of the batch
size in use. Optimizing energy consumption in this way is
advantageous when users issue recurring DNN training jobs
or can provide a set of batch sizes and corresponding hyperpa-
rameters that promise model convergence regardless of choice.
Our target scenarios do not have that expectation from users.
So, we decide to use control knobs that preserve the training’s
original statistical efficiency, such as controlling GPU SM
frequency and dependency-aware pipeline scheduling.
No performance degradation. Given that curbing SM fre-
quency to save energy affects DNN training speed, e.g., time
taken to execute a single pipeline unit, we do not want to slow
down the end-to-end training performance in exchange for
energy savings for several reasons. First, from an ML prac-
titioner’s standpoint, it is difficult to determine how much
performance degradation is acceptable across a wide range
of training jobs. The completion time of a training job typ-
ically varies and remains unpredictable until the training is
completed. Additionally, even a minor performance degrada-
tion in a long-running training task can result in a significant
delay. For instance, a 10% slowdown in training time might
seem small, but it can translate to a three-day increase in the
duration of a month-long training job. Second, from a system
administrator’s standpoint, it is difficult to estimate an abrupt
increase in GPU requests caused by prolonged DNN training
jobs, which are already computationally expensive. Because
GPU resources are highly contended and shared, prolonged
DNN training jobs that occupy GPUs for extended periods
contribute to increased GPU contention, necessitating the al-
location of additional GPUs to alleviate resource bottlenecks.
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Figure 2: Comparison of two representative pipeline scheduling

Prior systems have centered on navigating the energy-
performance tradeoff while keeping energy and time min-
imum, i.e., Pareto optimality. Unlike these approaches, our
work primarily targets saving energy without sacrificing train-
ing time when training large models across multiple GPUs
with pipeline parallelism, one of the most commonly used
techniques in training large DNN models.

3.2 Insights

Our baseline model for distributed training, synchronous
pipeline parallelism (S-PP), inevitably incurs bubbles, as
shown in Figure 2. We selectively leverage these bubbles
only when the pipeline units preceding them do not have im-
mediate data dependencies. By reducing the SM frequency
in these units, we can extend their execution time without
necessarily delaying the start-up time of the subsequent units
that rely on their outputs. This approach enables us to achieve
energy savings while preserving performance. However, it is
important to constrain the extent of stretching in each unit
to a certain limit. This constraint ensures that no adverse
performance delays occur as a result of elongated pipeline
units.
Usable and unusable bubbles. Several S-PP designs have
been proposed to schedule pipeline units during forward-
backward computations of a single training iteration. Figure 2
shows the execution details of two representative S-PP de-
signs, GPIPE and 1F1B. The examples take four microbatches
on four GPUs. In both cases, each microbatch execution goes
through GPUs in order (GPU1→ GPU4) during the forward
pass (FP) and then in reverse order (GPU4→ GPU1) during
the backward pass (BP).

We observe that the performance-preserving energy-saving
opportunity differs significantly in these two S-PP exam-
ples. To better understand this, we classify bubbles into two
types: Unusable and Usable. A bubble is considered unus-
able when a stretched pipeline unit delays the overall training
time. In Figure 2(a), stretching the forward pipeline unit of
microbatch 4 (denoted as FP4) in GPU3 delays the start-up
time of FP4 in GPU4 because of the immediate depen-
dency caused by sending activation. This control delays the

overall execution of the total pipeline. Even though plenty
of bubbles are available after FP4 in GPU3, these bubbles
are considered unusable, and exploiting unusable bubbles to
save energy slows down training throughput, violating the
constraints defined in § 3.1.

On the contrary, a bubble is considered usable when a
stretched pipeline unit does not postpone the overall training
time. For example, in Figure 2(b), stretching the forward
pipeline unit of FP2 in GPU3 does not affect the execution of
the backward pipeline unit of microbatch 1 (denoted as BP1)
in GPU4 as these two units do not exhibit data dependency.
FP2 in GPU4 exhibits the data dependency for activation
communication, but it begins execution much later. We refer to
this type of dependency as far dependency. Consequently,
when utilizing the bubbles after FP2 in GPU3 for energy
saving, none of the pipeline units in GPU4 gets penalized.

Based on this observation, we seek to exploit as many us-
able bubbles as possible for maximizing energy saving with-
out performance degradation.

4 Design

4.1 Design Overview
This section presents the overview of our proposed system

called ENVPIPE. For a given DNN model and its hyperpa-
rameters, ENVPIPE automatically tunes the order of pipeline
units and generates an energy-saving plan controlling the SM
frequency without any manual efforts from users. First, EN-
VPIPE profiles the energy consumption of the DNN training
job for each pipeline stage to understand performance and
energy tradeoffs. Second, to increase the energy-saving oppor-
tunities, ENVPIPE reschedules the pipeline units elaborately,
increasing the amount of usable bubbles without breaking any
data dependencies between the pipeline units. Last, ENVPIPE
finds an optimal SM frequency for pipeline units on the non-
critical path to maximize energy savings without sacrificing
training throughput.

Figure 3 depicts the overview of ENVPIPE. ENVPIPE con-
sists of online profiler (§ 4.2), scheduler (§ 4.3), fre-
quency planner (§ 4.4), and execution engine. At its
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Figure 3: ENVPIPE Overview

core, ENVPIPE design clearly separates policy from mecha-
nism. ENVPIPE generates a performance-preserving energy-
saving plan by executing in the workflow of online profiler
→ scheduler→ frequency planner (policy). The execution
engine runs the energy-saving plan (mechanism).
Policy: Building the energy-saving plan. At first, ENVPIPE
runs the online profiler to construct the energy valley
curves for each pipeline stage when training the given DNN
model. Based on the online profiling result, ENVPIPE sched-
uler decides the best schedule of forward and backward
execution units, which creates plenty of usable bubbles. Us-
ing the scheduling decision, ENVPIPE runs the frequency
planner. It lowers the SM frequency of all pipeline units
inside the outermost path of the total pipeline (we call it enve-
lope) to the optimal value identified from the energy valley
curve. At this point, it is likely to degrade the training per-
formance because execution units inside the envelope are
stretched. To avoid performance degradation, ENVPIPE iden-
tifies the performance-critical path and reconfigures the SM
frequency (i.e., undo lowering SM frequency) of all units in
the performance-critical path to avoid performance slowdown.

After these steps are completed, ENVPIPE obtains the
energy-saving plan that specifies I) a schedule (placement) of
forward and backward pipeline units, and II) SM frequency
value of each pipeline unit, which achieves energy saving
without degrading performance.
Mechanism: Executing the energy-saving plan. The execu-
tion engine provides APIs for the online profiler and the
frequency planner. Internal APIs used in the ENVPIPE’s
execution engine are translated to ML platform-specific APIs
(e.g., PyTorch API calls). The engine includes HW control
APIs communicating GPU device driver to control SM fre-
quency.

ENVPIPE is implemented as a user-level library to invoke
APIs of underlying ML platforms, providing an easy-to-use,
platform-independent way to control multi-GPU pipeline
scheduling and energy consumption. In addition, due to this
clean separation of policy and mechanism, ENVPIPE can be
applicable to any ML platform by implementing required
APIs in the execution engine to support the ML platform 3.

3The current implementation supports PyTorch only

4.2 Fine-grained Online Profiling
As shown in Figure 1, energy consumption shows the valley

trend according to SM frequency. The form of valley curves
depends on GPU hardware, batch size, model architecture, and
the method of splitting the model for pipelining. Therefore,
ENVPIPE runs the online profiler to obtain the energy valley
curve from given DNN models, GPU hardware, and hyperpa-
rameters. For each pipeline stage, the online profiler sweeps
available ranges of SM frequency and measures energy con-
sumption to find the optimal SM frequency that maximizes
energy saving. The profiling steps are seamlessly integrated
into the training procedure, allowing ENVPIPE to continue
training with the weight version obtained from the profiling
steps. The energy valley curves for each pipeline stage are
generated within 100 steps and just 5 steps per frequency are
enough to detect the optimal point where the energy-saving
trend changes oppositely. Since training a model usually re-
quires thousands to millions of steps, the overhead of the
online profiler can be considered negligible. Note that the
SM frequency of a pipeline unit cannot be lowered below the
optimal energy-saving point which stretches the execution
time of the pipeline unit to about 20 - 25% in our GPU set-
tings. In addition, the online profiler measures the execution
time at maximum and optimal SM frequency’s forward and
backward pass, and available GPU memory, which is used in
the scheduling phase.

4.3 Scheduler: Utilizing Bubble

Design problems. As discussed in § 3.2, the scheduling of
forward and backward pipeline units determines the amount
of usable bubbles. When making scheduling decisions, it is
important to consider two key questions: 1) how to effectively
identify usable and unusable bubbles, and 2) how to optimize
the utilization of usable bubbles by scheduling pipeline units.
Identifying usable bubbles. To answer the first question,
we first need to identify pipeline units in the performance-
critical and non-critical paths. Figure 4(a) shows bubbles and
the performance-critical path (red boxes). It is important to
note that usable bubbles are placed after pipeline units of the
non-performance-critical paths. On the contrary, bubbles after
the pipeline units of performance-critical paths are unusable.
For example, if we stretch BP8 in GPU3 (★) which is on
the performance-critical path to use the following bubbles, it
will delay the start of BP8 in GPU2 (♠) causing performance
degradation in the overall pipeline execution.
Optimizing utilization of usable bubbles. To answer the
second question, we should consider the stretch limit of the
pipeline units. Recall that there is a limit for the pipeline unit
to get stretched because ENVPIPE does not set SM frequency
below the optimal point, which is usually about 20 – 25%
(§ 4.2). To optimize the utilization of usable bubbles, EN-
VPIPE should distribute the usable bubbles since a certain
group of bubbles at the front of the pipeline with a long idle
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Figure 4: ENVPIPE scheduling

time can be underutilized. For pipeline units to utilize the
usable bubbles at their best, the usable bubble must be evenly
distributed throughout the pipeline execution.

The ENVPIPE scheduler operates in two phases: initializa-
tion and rescheduling. During initialization, ENVPIPE em-
ploys a proven method for scheduling pipeline execution,
which has been successfully deployed in a wide range of envi-
ronments. Next, in order to enhance the utilization of usable
bubbles, ENVPIPE scheduler reschedules pipeline units in a
manner that evenly distributes these bubbles while preserving
the original data dependency between pipeline units.
Initialization. Among various existing approaches, we se-
lect one of the known methods that have the fewest units on
the performance-critical path because it contains more us-
able bubbles. As observed in § 3.2, for the 1F1B schedule,
pipeline units only along the outermost path (denoted as en-
velope) are on the performance-critical path. Therefore, we
select the 1F1B schedule, which has the minimum number of
pipeline units on the performance-critical path, as a starting
point and further reschedules the pipeline units based on this
initialization.
Rescheduling pipeline units. After initialization, ENVPIPE
reschedules pipeline units in order to reserve usable bubbles
right behind pipeline units and to distribute usable bubbles
among pipeline units. To save energy consumption, ENVPIPE
can stretch pipeline units up to the slack time made by the
following bubble. Figure 4(b) shows the result of schedul-
ing Figure 4(a). ENVPIPE moves FP units to upfront usable
bubbles (e.g., FP4, FP5, and FP6 in GPU2 ◇), generating
usable bubbles after backward units (e.g., BP3, BP4, and BP5
in GPU2△).

ENVPIPE can compute how many FPs can be rescheduled
and stretched by computing the available slack time of bub-
bles. When rescheduling the FP units, ENVPIPE considers the
following conditions. I) ENVPIPE never breaks the data de-
pendency for sending and receiving activations and gradients.
For instance, FP3 in GPU3 starts only after the activation is
sent from FP3 in GPU2. This is essential for preserving the
original data dependency of the pipeline execution. II) Be-
cause ENVPIPE moves forward units upfront, it needs to hold

Algorithm 1 Frequency Planner

1: while True do
2: ExecutePipelineStep()
3: criticalPath← FindCriticalPath()
4: if criticalPath ̸= outer envelope of total pipeline then
5: Recon f igureCriticalPath(criticalPath)
6: else
7: break
8: end if
9: end while

Figure 5: Frequency Planner Algorithm

additional activation generated by each forward unit, which
uses extra GPU memory. The memory used by activation
is freed after the corresponding backward unit consumes it.
The size of memory used by each activation is obtained by
the online profiler. Therefore, ENVPIPE computes available
memory to hold the activations and only reschedules a certain
number of forward units that can fit in the available memory
to avoid an out-of-memory error.

4.4 Frequency Planner: Minimizing Perfor-
mance Impact

Design problems. According to the scheduling decision, the
goal of the frequency planner is maximizing energy saving
while minimizing performance impact (less than 1%) by con-
trolling SM frequency. To achieve this, the system leaves the
SM frequency at its maximum for units on the performance-
critical path and lowers the frequency to its energy-optimal
value (obtained from the online profiler) for units not on
this path using the available slack time of usable bubbles.
However, this does not guarantee minimal performance degra-
dation, since not all bubbles can accommodate the stretched
pipeline units inside the envelope. So the question is how to
selectively reconfigure the SM frequency to minimize perfor-
mance impact. In addition, when reconfiguring the frequency
of units on the performance-critical path, it is possible that the
path may change. To prevent performance slowdowns, the sys-
tem must be able to efficiently identify the new performance-
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Figure 6: ENVPIPE frequency planning

critical path. This leads to the second design question: how
can the performance-critical path be identified quickly and
effectively?

Our strategy. Initially, ENVPIPE sets the energy-optimal SM
frequency to pipeline units on non-critical paths which is all
pipeline units inside the outer envelope of the total pipeline.
To achieve the design goal, ENVPIPE runs an iterative algo-
rithm as shown in Figure 5. Figure 6 illustrate the steps. After
executing a single pipeline step, at Line 3, the algorithm finds
the critical path of the executed pipeline (Initial of Figure 6).
Then, at Line 5, it reconfigures SM frequency of pipeline
units on the detected performance-critical path to avoid per-
formance slowdown (Iteration of Figure 6). It repeats the
find and reconfigure steps until the performance-critical path
becomes the outer envelope of the pipeline. The algorithm
stops when the critical path is identical to the outer envelope
(Termination of Figure 6). The termination condition of the
iterative algorithm ensures that the performance-critical path
is the same as that of running pipeline parallelism without us-
ing ENVPIPE while our frequency planner stretched as many
pipeline units as possible on the non-critical path.

Algorithm for finding the critical path. Figure 7 shows
the algorithm to identify the performance-critical path. The
algorithm incrementally builds the critical path backward.
current in Figure 7 is a cursor, pointing to pipeline units, and
moves backward. Initially, the cursor starts with the last unit
(BP8) in GPU1. The algorithm repeatedly updates the cursor
to point to the next pipeline unit to insert into the critical path
until the cursor reaches the starting unit (FP1) in GPU1. At
line 9, the algorithm decides the next pipeline unit to extend
the critical path backward. Figure 7(a) and (b) illustrates the
idea. Recall that the critical path consists of pipeline units
that delay the overall execution time when stretched. Thus,
we should find the pipeline unit that is affecting the start time
of the pipeline unit that the cursor is currently pointing at.
Let’s assume the current cursor points to BP8 in GPU1. The
algorithm finds the pipeline unit that is affecting the start time
of BP8 in GPU1 by comparing the slack time — the bubble
between BP7 and BP8 in GPU1 (tslack of current) — and the
dependency delay — spare time between the end of BP8 in
GPU2 and the start of BP8 in GPU1 (tdepdelay). If tslack of

8

7 8

8

7 8

Dependency Delay (tdepdelay)Bubble Slack Time (tslack)

(a) Critical path extend 

to current stage

(b) Critical path extend 

to next stage

GPU 1

GPU 2

GPU 1

GPU 2

Algorithm 2 Finding critical path

1: GPUID: e.g., GPU 1 - GPU 4
2: tslack: Slack time of the precedent bubble
3: tdepdelay: Delay between pipelineUnits with data depen-

dency
4: current ← last backward pipelineUnit in GPU 1
5: criticalPath.insert(current)
6: while current ̸= first forward pipelineUnit in GPU 1 do
7: n← GPUID of current
8: k← microbatchID of current
9: if tslack of current < tdepdelay then

10: current ← the previous pipelineUnit in GPU n
11: else
12: if current is forward pipelineUnit then
13: current ← pipelineUnit k in GPU (n−1)
14: else
15: current ← pipelineUnit k in GPU (n+1)
16: end if
17: end if
18: criticalPath.insert(current)
19: end while

Figure 7: Finding critical path

current < tdepdelay (Figure 7(a)), the precedent pipeline unit
of the same GPU is affecting the start time of BP8. So the
algorithm updates the cursor to BP7 in GPU1 to add to the
critical path. Otherwise, the pipeline unit that has the data
dependency from the next GPU is affecting the start of BP8.
Thus, the cursor is updated to BP8 in GPU2 and is added to
the critical path. After that, the algorithm repeats the same
step iteratively. The algorithm ends when the cursor reaches
the first forward unit in GPU1, which is the first pipeline unit
on the critical path that decides the starting time of the overall
pipeline execution step.
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Algorithm for reconfiguring critical path. ENVPIPE recon-
figures the pipeline units on the critical path by increasing a
small amount of SM frequency. The reconfiguration should
be done in small steps in an iterative way for two reasons.
First, by increasing the frequency in small increments, the
stretched execution time can be gradually shortened, likely
finding the point of fully utilizing the slack time of the us-
able bubbles. Second, due to the complex data dependencies
between pipeline units, the critical path may change after
reconfiguring pipeline units on the critical path. By recon-
figuring in small steps, it will be less likely to unnecessarily
increase the frequency of pipeline units on the non-critical
path, since the critical path may have changed during the
reconfiguration process.

The key question in the algorithm is identifying which
pipeline units on the critical path should be reconfigured. To
determine this, we use the observation of the trend in the
energy-scaling valley curve shown in Figure 1. From the opti-
mal point (minimum energy), as the SM frequency increases,
the energy consumption and performance increase at different
rates. Therefore, ENVPIPE defines the performance-energy
utility as the ratio of performance increase to energy increase
for a frequency increase. In general, the performance-energy
utility diminishes as it is further from the optimal point. Thus,
to maximize the utility, the system should prioritize reconfig-
uration of SM frequency close to the optimal point.

Using this observation, ENVPIPE takes a balanced ap-
proach. After finding the critical path, ENVPIPE finds the
pipeline units with the minimum SM frequency (i.e., closest
one to the optimal value) and increases their SM frequency.
This allows for the SM frequencies of all pipeline units on the
critical path to be balanced as much as possible. For compari-
son, the system also implemented a simple approach called
greedy. This approach selects pipeline units backwards from
the end of the critical path and reconfigures them until their
frequency is the maximum default frequency of a GPU. This
approach also achieves the performance goal by increasing the
SM frequency of pipeline units on the performance-critical
path, but not in a balanced way.

4.5 Discussions

4.5.1 Size of Bubble and Energy Saving

The size of the bubble highly influences the achieved en-
ergy saving. The opportunity to leverage pipeline bubbles
increases as the size of the bubble increases thus leading to
higher energy savings. Since ENVPIPE does not change the
user-provided hyperparameters, achieved energy saving may
differ according to the user-provided input or bubble-reducing
methods that were studied in previous S-PP works [15,16,20].
Number of microbatches. The size of the bubble gets amor-
tized over the number of micro-steps. Thus, as the number
of microbatches increases, the fraction of the pipeline bub-
ble decreases. For the portion of the bubble to be minimized,

the number of microbatches should be larger than the num-
ber of pipeline stages. However, increasing the number of
microbatches indefinitely is not possible because increasing
the number of microbatches leads to an increase in global
batch size. Even with a carefully tuned learning rate, there is
a maximum limit in global batch size to preserve the statis-
tical efficiency [24]. We show as a sensitivity study how the
number of microbatches affects energy saving.
Partition method of pipeline stages. The partition method
to split pipeline stages affects the size of pipeline bubbles.
Pipeline bubbles are minimized when the execution time
among pipeline stages is well-balanced, but it is not straight-
forward. Several partition methods are possible, but each of
them has its own pros and cons. First, the model can be par-
titioned by balancing the execution time of layers per stage.
By balancing the execution time of layers per stage, the size
of the bubble is minimized. However, balancing the execu-
tion time of layers may lead to memory imbalance among
pipeline stages. Second, stages can be partitioned by balanc-
ing the memory consumption of GPUs. Balancing the mem-
ory footprint across pipeline stages can provide advantages
in memory-constrained environments. However, because of
the imbalance of execution time among stages, the size of
the bubble increases. We evaluate how the stage partition
methods affect the energy saving in § 6.2.3 (Table 2).
Bubble-reducing methods. Our work stands apart from pre-
vious studies that aim to reduce bubbles in S-PP [15, 16, 20].
While these studies may reduce pipeline bubbles, the bub-
bles cannot be completely eliminated, so ENVPIPE can still
leverage the bubbles to save energy. Moreover, these bubble-
reducing methods have inherent drawbacks. For instance,
Merak [15] necessitates activation recomputation, leading to
additional performance overhead by repeated computations.
Chimera [16] proposes a bidirectional pipeline but with ad-
ditional memory consumption from weight parameters and
activations since a single stage needs to maintain weights
and activations that were originally maintained by two stages.
PTD-T [20] introduces an interleaved 1F1B pipeline schedule,
which reduces bubbles but adds communication overhead to
the scheduling process. In contrast, our approach in ENVPIPE
effectively utilizes bubbles without introducing these draw-
backs, offering a clear advantage in saving energy in pipeline
parallelism.

4.5.2 Energy Consumption of Bubbles

Readers may raise the following question, "Would a naïve
approach that just reduces the power consumption of bubbles
save more energy than ENVPIPE?" Even if one hypotheti-
cally assumes that the power usage of bubbles is reduced to
0W, ENVPIPE’s approach still demonstrates superior energy
savings. Figure 8 illustrates a simplified example comparing
the naïve approach and ENVPIPE. In the naïve approach, the
total energy consumption is 8.75J, where the forward unit con-
sumes 8.75J of energy while the bubble consumes 0J. On the
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Figure 8: Energy consumption of bubbles

other hand, in ENVPIPE’s approach where the forward unit is
stretched to exploit the bubbles, the total energy consumption
becomes 7.5J. The energy consumption of the stretched for-
ward unit is already lower than the naïve approach’s forward
unit since decreasing the SM frequency reduces the end-to-
end energy consumption of the forward unit. As demonstrated
in this example, even when the power usage of bubbles is re-
duced to 0W, ENVPIPE’s approach still has lower end-to-end
energy consumption. Furthermore, in RTX3090, we measure
that the power usage of bubbles is approximately 100W out
of 350W at the lowest SM frequency with P2 P-State.

4.5.3 Scaling with Data Parallelism
The common practice for training large models that cannot

fit in a single GPU is to combine pipeline parallelism with
data parallelism or tensor parallelism, allowing for sharded
models to fit within the constraints of a single GPU. We show
in the evaluation section that our performance-preserving
energy-saving approach with pipeline parallelism can easily
scale with data parallelism in multi-node training.

5 Implementation

We implement our prototype, ENVPIPE, on top of Deep-
Speed [25]. ENVPIPE’s HW controller to lock SM frequency
and DeepSpeed’s basic mechanism such as executing for-
ward/backward pass, send/receiving activations and gradients,
and reducing computed gradients are used for executing EN-
VPIPE’s performance-preserving energy-saving plan. In this
section, we introduce some important considerations when
utilizing the underlying mechanisms of ML platforms since
naïve usage of those mechanisms can lead to ineffective usage
of bubbles or performance degradation.

5.1 Asynchronous Communication
Activations and gradients must be transferred between

GPUs for the pipeline to be executed. When sending activa-
tions or gradients, communication needs to be asynchronous
(i.e. non-blocking) for pipeline units to effectively use bubbles.
If GPU communication is synchronous, idle time of bubbles
is wasted since blocking communication calls prevents the
next scheduled pipeline units to execute. When the source
GPU sends data to the target GPU, the communication gets
blocked until the target GPU receives the data and the next
scheduled pipeline units cannot be executed, thereby wast-
ing the opportunity to utilize pipeline bubbles. On the other
hand, for non-blocking asynchronous communication, when
the source GPU sends data to the target GPU, the source GPU
does not have to wait until the target GPU receives the data

10

Freq. change

10 10
(a) Unintended early 

      frequency change
(b) Syscall overhead (c) Precise control with 

  minimal overhead

Freq. change Freq. change

# (a) Unintended early frequency change
exec_forward_pass(0)
lock_gpu_clock(1300)
exec_forward_pass(1)

# (b) System call overhead
exec_forward_pass(0)
torch.cuda.synchronize()
lock_gpu_clock(1300)
exec_forward_pass(1)

# (c) Precise control with minimal overhead
exec_forward_pass(0)
torch.cuda.synchronize()
threading.Thread(lock_gpu_clock , args=(1300))
exec_forward_pass(1)

Figure 9: Precise SM frequency control

and can execute the next pipeline unit, effectively utilizing
pipeline bubbles.

NCCL’s default blocking p2p communication can be easily
changed to non-blocking communication by increasing the
NCCL buffer size with NCCL_BUFFSIZE environment vari-
able. NCCL buffer is used when communicating data between
pairs of GPUs. P2p send operation fills up the target GPU’s
buffer and the target GPU fetches data from the buffer in
FIFO for another send operation to fill the buffer. If the NCCL
buffer is full, send operation should wait until the buffer of tar-
get GPU has free space. If the NCCL buffer has enough free
space, p2p send operation can complete without waiting for
p2p recv operation to be called from target GPU. ENVPIPE
makes sure that NCCL buffer size is enough to handle all ac-
tivations and gradients to be communicated in a non-blocking
way to effectively use bubbles.

5.2 Precise SM Frequency Control

Controlling SM frequency from user space needs an ioctl
system call to the device driver which can induce overhead
lowering the training throughput. Also because of the asyn-
chronous CUDA programming model, ioctl calls on the
CPU side should be executed with precise synchronization
barriers between pipeline units for SM frequency to be con-
trolled at exact timing.

Figure 9 shows how precise SM control with minimal over-
head can be performed. In Figure 9(a), lock_gpu_clock()
is called between two forward executions without any syn-
chronization barrier. Because of the asynchronous CUDA
programming model, ioctl call gets executed on the CPU
side before the first forward execution completes, resulting
in an unintended early frequency change. In Figure 9(b), the
synchronization barrier is placed before lock_gpu_clock(),
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Model Microbatch Minibatch

Single-V100

BERT-336M 4 64
GPT-125M 2 32

Megatron-125M 4 64
ResNet-152 2 32

Single-3090

BERT-1.3B 4 64
BERT-3.9B 2 32
GPT-350M 4 64

Megatron-350M 4 64
Megatron-760M 4 64

Table 1: Model configuration for single-node training.

preventing unintended early frequency change. However, the
ioctl call on the CPU side with the default synchronous pro-
gramming model delays subsequent forward execution calls
and GPU remains idle until the ioctl call returns. In Fig-
ure 9(c), by executing lock_gpu_clock() in another thread,
subsequent forward execution on the GPU side can be concur-
rently executed with the ioctl call on the CPU side, perform-
ing precise frequency control with a minimal performance
impact.

6 Evaluation

Our evaluations focus on confirming our energy-saving de-
sign choices that preserve DNN training performance. Specif-
ically, we compare performance and energy consumption
for various scheduling strategies when training different, up-
to-date DNN models, including transformer-based language
models and CNN models, on both single-node and multi-node
training setups. To faithfully demonstrate the benefits of our
approach in challenging scenarios, we have all models parti-
tioned to balance execution time among pipeline stages, e.g.,
balancing the number of layers for transformer-based models.
This pipeline-balanced parallel execution provides high train-
ing performance, making the energy savings on top of it more
meaningful.

6.1 Methodology
Testbed setup. All experiments are performed on PyTorch
1.13. For single-node experiments, we use two different server
setups: Single-V100 and Single-3090. Single-V100 uses AWS
P3.8xLarge instance which has four NVIDIA Tesla V100
GPUs with 16GB of memory each, Intel Xeon E5-2686 v4
CPU (32 vCPUs), and 244GB of main memory, while Single-
3090 has four NVIDIA Ampere RTX3090 GPUs with 24GB
of memory each, Intel(R) Xeon(R) Gold 6326 CPU (64 vC-
PUs), and 256GB of main memory. For multi-node experi-
ments, our setup Multi-V100 uses two AWS P3.16xLarge
instances each with 8 NVIDIA Tesla V100 GPUs, Intel Xeon
E5-2686 v4 CPU (64 vCPUs), and 488GB of main memory.
So, Multi-V100 is equipped with a total of 16 V100 GPUs.
These cloud instances are connected to a 25Gbps Ethernet
network.

Benchmarks. We compare ENVPIPE with the following
energy-saving methods:
• Baseline: run all GPUs with maximum SM frequency.
• Uniform: run all GPUs with optimal SM frequency that

represents the minimum point in the energy valley curve.
• NoRecfg: ENVPIPE without reconfiguring critical path to

minimize performance impact.
Our single-node experiments are based on nine different mod-
els, as shown in Table 1. All models run with 16 microbatches,
while for Megatron-125M, ResNet-152, and BERT-3.9B, the
minibatch and microbatch size are reduced to fit in GPU mem-
ory. For multi-node experiments, we combine data parallelism
(DP) and pipeline parallelism (PP) in several different ways
across 16 GPUs. The number of microbatches for pipelining
changes according to the DP and PP dimensions while the
size of minibatch remains constant.
Metrics. Performance for all experiments is measured by
averaging the throughput of 30 training iterations after warm-
up and energy consumption is measured using the NVML
library 4 during the 30 training iterations.

6.2 Experimental Results

6.2.1 Single-node Energy Saving
Main results. We first compare ENVPIPE to Baseline, which
consumes the most energy among competing methods, to
highlight our ability to preserve performance. We measure
the throughput and energy consumption for the benchmarks in
Table 1 and present the results in Figure 10. The results show
that ENVPIPE consistently uses less energy than Baseline
while retaining the original training performance for all mod-
els, confirming its effectiveness. Specifically, for Single-V100,
ENVPIPE saves energy consumption by an average of 18.6%,
ranging from 12.1% to 25.2%. For Single-3090, ENVPIPE
saves energy consumption by an average of 12.8%, ranging
from 8.1% to 19.4%. Performance is mostly preserved, with
throughput only degrading less than 1% in all cases.
Analysis of energy saving. We next compare ENVPIPE to
other baselines by focusing on two models, BERT-1.3B and
GPT-350M, trained on Single-3090. The results from Fig-
ure 11 show that other naïvely designed strategies, such as
Uniform or NoRecfg, fail to meet our energy savings goal with-
out sacrificing performance. Specifically, in Uniform, as all
GPUs blindly scale SM frequency without considering per-
formance effects, both throughput and energy consumption
inevitably become the lowest. In NoRecfg, which does not
reconfigure the SM frequency, all pipeline units inside the
outer envelope are stretched to the largest extent. This strategy
also inevitably degrades performance since not all bubbles
can accommodate those stretched pipeline units inside the en-
velope. On the other hand, ENVPIPE allows for more adaptive
and effective use of pipeline bubbles, minimizing the impact
on performance.

4Energy consumption of GPUs (not entire system).
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Figure 10: Throughput and energy consumption of various DNN models in single-node training
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Comparison of reconfiguration policies. We now evalu-
ate two different reconfiguration policies for the frequency
planner of ENVPIPE, balanced (our default) and greedy, using
models trained on Single-V100. The results shown in Fig-
ure 12 demonstrate that for BERT-336M, GPT-125M, and
ResNet-152, the balanced method saves more energy than the
greedy method, with a range of 5.2 to 8.9%. However, the dif-
ference in energy savings is insignificant for Megatron-125M.
This is because the portion of pipeline bubbles (a measure of
how much time is spent by bubbles) is larger for Megatron
models due to additional computation on the loss computation
layer, which is insignificant in other models, leading to longer
execution times in the last stage of the pipeline. This por-
tion exists even though the model is evenly partitioned across
GPUs w.r.t. the number of transformer-based layers placed on
each GPU. In summary, the balanced method delivers more
benefits than the greedy method but exhibits different relative
effectiveness according to how bubbles are composed.
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Figure 13: Throughput and energy consumption of Megatron-1.3B
on Multi-V100

6.2.2 Multi-node Energy Saving

To study the efficacy of ENVPIPE under multi-node train-
ing, we examine the throughput and energy consumption of
Megatron-1.3B trained on Multi-V100. Training sweeps differ-
ent data parallel (DP) and pipeline parallel (PP) dimensions, as
shown in Figure 13. Achieving efficient memory utilization in
distributed training can be challenging when relying solely on
data parallelism. Due to memory constraints, training could
not be completed for DP8+PP2 and DP16+PP1. Also, we
omit DP1+PP16, i.e., single-way DP combined with 16-way
PP, since it is challenging to evenly split 24 transformer-based
layers in Megatron-1.3B over 16 pipeline stages. We thus
compare the throughput and energy consumption of Baseline
and ENVPIPE mainly for DP2+PP8 and DP4+PP4, and show
the results in Figure 13. ENVPIPE saves energy by 28.4%
for DP2+PP8 and 19.4% for DP4+PP4 compared to Baseline.
Similar to the single-node experiments, the throughput degra-
dation for both cases is less than 1%, indicating that ENVPIPE
can maintain its benefits when scaling to two or potentially
more GPU nodes.
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Figure 14: Sensitivity study of number of microbatches (M = num-
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6.2.3 Sensitivity Study
Different number of microbatches. We examine how chang-
ing the number of microbatches affects the effectiveness of
ENVPIPE on Single-V100. The results, shown in Figure 14,
reveal that the impact on energy savings differs between
Megatron-125M and other models (BERT-336, GPT-125M,
and ResNet-152). Megatron-125M model can save more en-
ergy when trained on a larger number of microbatches. This is
largely due to an imbalance in pipeline stages and a larger por-
tion of pipeline bubbles as compared to other models, which
can be effectively harnessed over a long sequence of pipelined
executions. However, for other models, increasing the num-
ber of microbatches does not result in further energy savings
because it quickly leads to amortized bubble sizes.
Stage partition methods. Transformer-based models, which
we have used for experiments thus far, are easy to partition in a
balanced manner because of their regular structures. However,
models like CNNs have non-regular structures, so different
partitioning methods with ENVPIPE can presumably offer
different benefits. To investigate this, we evaluate two differ-
ent partitioning methods, balancing execution time or mem-
ory footprint, using a popular CNN model, ResNet-152 on
Single-3090. Both methods are considered beneficial from the
perspective of system utilization, as they make training faster
or more memory-efficient. The results from Table 2 show that
balancing execution time leads to higher throughput, but the
energy savings between the two methods are similar. This is
because the stages at the front of the pipeline have more activa-
tions to store in memory, so shifting computation to the back
of the pipeline stage can balance memory usage but cause
an imbalance in computation between stages. Consequently,
there is not much computation left to stretch in the pipeline
stages at the front, limiting energy-saving opportunities.

7 Related Work

Pipeline parallelism. Bubbles in pipeline parallelism have
been considered as an obstacle that slows down training
throughput and previous studies focused on reducing the bub-
ble with new scheduling methods [15, 16, 20]. On the other
hand, ENVPIPE considers bubbles as an opportunity and lever-
ages bubbles to save energy.
Data center energy analysis. Recent studies focused on

Partition Method GPU Memory (GB) Perf. (sample/s) Energy (%)

Execution Time 7.5 / 7.1 / 6.1 / 3.8 20.5 83.1
Memory 6.9 / 5.0 / 6.0 / 5.0 14.2 84.4

Table 2: Comparison of partition method of pipeline stages

analyzing carbon emission and energy usage to measure the
environmental impact when training large models in datacen-
ters [14, 22, 23]. Treehouse [4] aims to reduce the carbon
intensity of datacenters from a software perspective by pro-
viding suites of resources to application developers to better
understand the trade-off between performance and carbon
emissions. Strubell et al. [26] emphasizes the importance of
quantifying the environmental cost of training neural network
models for NLP.
Improving energy efficiency with GPU DVFS. Previous
approaches to improve energy efficiency in GPUs have uti-
lized GPU DVFS techniques by characterizing the relation-
ship between performance and energy efficiency [6, 9, 13, 28].
Tang et al. [27] studied the energy scaling trend of various
DNN training jobs on modern datacenter GPUs. Zeus [29]
considers batch size as a new control knob for improving
energy efficiency on DNN training, navigating the energy-
performance tradeoff with Pareto optimality. Similarly, Batch-
sizer [17] considers batch size on DNN inference. Unlike
previous approaches, ENVPIPE saves energy by leveraging
only the side-effect-free control knob in multi-GPU training.

8 Conclusion

In this study, we propose ENVPIPE, a performance-
preserving energy-saving DNN training framework. ENVPIPE
saves energy with no accuracy and performance degradation
by leveraging bubbles in pipeline parallelism. ENVPIPE pro-
files the optimal SM frequency of each pipeline stage, sched-
ules pipeline units to make the best out of usable bubbles,
and selectively reduces the SM frequency of pipeline units
as much as possible with only a certain limit to avoid any
adverse performance delay. ENVPIPE can save energy up to
25.2% energy in single-node training with 4 GPUs and 28.4%
in multi-node training with 16 GPUs with less than 1% of
performance degradation.
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Abstract
As more apps embrace AI, it is becoming increasingly com-
mon that multiple Deep Neural Networks (DNN)-powered
apps may run at the same time on a mobile device. This paper
explores scheduling in such multi-instance DNN scenarios,
on general open mobile systems (e.g., common smartphones
and tablets). Unlike closed systems (e.g., autonomous driving
systems) where the set of co-run apps are known beforehand,
the user of an open mobile system may install or uninstall arbi-
trary apps at any time, and a centralized solution is subject to
adoption barriers. This work proposes the first-known decen-
tralized application-level scheduling mechanism to address
the problem. By leveraging the adaptivity of Deep Reinforce-
ment Learning, the solution is shown to make the scheduling
of co-run apps converge to a Nash equilibrium point, yielding
a good balance of gains among the apps. The solution more-
over automatically adapts to the running environment and the
underlying OS and hardware. Experiments show that the so-
lution consistently produces significant speedups and energy
savings across DNN workloads, hardware configurations, and
running scenarios.

1 Introduction

Deep Neural Networks (DNN) have attained remarkable suc-
cess in various tasks. Recent years have witnessed increasing
adoption of DNNs in mobile devices, thanks to the advance-
ment in DNN compression [11, 18, 19], the increasing con-
cerns on privacy, and the demands for real-time responses.

As more apps start to make use of AI, multiple DNN-
equipped apps may run on a mobile device at the same time.
For example, while a user is using her smartphone to exam-
ine some surveillance videos through a DNN-based object
detection module, she may be speaking to the DNN-powered
personal assistance app on her phone to take notes, while
her social media app may be running some DNN-based rec-
ommendation algorithm in the background. We call such a
co-run scenario multi-instance DNN executions.

Scheduling is important for multi-instance DNN execu-
tions, especially on resource-constrained systems. This paper
particularly focuses on the spatial aspect of scheduling, which
determines the placement of a DNN-based app on heteroge-
neous hardware units during each inference. It is critical for
the computing efficiency of DNNs. On one hand, DNNs are
computationally demanding, and their performance is heavily
influenced by the type, configuration, and availability of the
underlying computing resources. On the other hand, mod-
ern mobile devices (e.g., smartphones, tablets) are commonly
equipped with heterogeneous computing units. On a Samsung
Galaxy S21, for instance, there is one big "primary" CPU
core (ARM Cortex-X1), three medium-sized "performance"
CPU cores (Cortex-A78), four small "efficiency" CPU cores
(Cortex-A55), one Adreno 660 GPU, and other accelerators.
As a result, the speed and power consumption of a DNN run-
ning on the different computing units in a mobile device may
differ as much as several times as illustrated in Figure 1. Multi-
instance DNN executions further complicate the scheduling
of DNNs to the best computing units, due to the contentions
for computing resources by other co-running DNNs.

The objective of this work is to address such spatial schedul-
ing problems on open mobile devices. Here, open mobile
devices refer to mobile devices on which users can install
or uninstall arbitrary apps anytime. In contrast, some de-
vices (e.g., an autonomous driving system) are closed, where
the applications to install and run are predetermined. The
problem of multi-instance DNN scheduling also exists on
closed devices, and has been explored in some previous stud-
ies [4, 9, 14, 28]. But those studies assume that the set of
co-running apps are known beforehand and their schedules
are fully controllable by a central agent (e.g., OS), which is
not the case for open devices. Their solutions hence cannot
apply to the open devices. To the best of our knowledge, no
prior solutions have been proposed for multi-instance DNNs
scheduling on open mobile systems.

This work proposes the first-known decentralized
application-level adaptive spatial scheduler for multi-instance
DNNs on open mobile devices. Being decentralized means
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Figure 1: Standalone Profiling of Three DNN Networks. We profile the average power and inference time for different DNNs.
They have their own best option for delegation. Thread = i means the model is executed on the CPU with i threads. NNAPI low
power and fast single answer are two options that consider using GPU and accelerators.

that the spatial scheduling decisions are made by each applica-
tion rather than by a centralized agent (e.g., OS). This distinc-
tive design brings several benefits over centralized schemes:
It is easy to adopt without the need for OS modifications; it re-
quires no OS admin privileges; it preserves privacy and avoids
inter-app communications or app-OS special communications
and the associated overhead.

Specifically, the spatial scheduling considered in this work
includes the decisions on running a DNN on GPU or on CPU
and if on CPU how many CPU threads to use. We intention-
ally leave the temporal aspect of scheduling (i.e., at what time
an app runs or gets evicted) and priority management as they
are, because these tasks are what the OS is already taking care
of. We meanwhile ensure that the spatial scheduling method
can automatically adapt the scheduling decisions to the tem-
poral scheduling by the underlying OS. This design makes
the solution easy to adopt (as no OS modifications are nec-
essary), applicable across systems, and workable regardless
of what the other co-running apps are and what scheduling
policies they follow. It also retains the fairness guarantees and
starvation-avoidance provided by the underlying OS.

Our solution achieves these properties by leveraging the
adaptivity of Deep Reinforcement Learning (DRL) [17,20,25].
We develop a DRL-based scheduling library. It is decentral-
ized, working at the application level. Any app may call the
library to dynamically determine, for the next DNN inference,
whether CPU or accelerators is to be used, what modes (e.g.,
performance or power-efficiency modes) to use, and if CPU,
what is the best number of threads to launch. It requires no
direct knowledge about other apps. It gives recommendations
based on the current state of the executing environment and

the estimated rewards this application is expected to obtain for
each of the possible schedules—produced by a model learned
through the self semi-supervised approach of DRL.

By drawing on previous theoretical results on the Nash
equilibrium of RL, we provide discussions on the convergence
of the scheduling algorithm and the empirical evidences.

In a set of co-run scenarios formed by the subsets of nine
DNNs, the proposed solution improves the average latency
by as much as 4×, and saves the average energy consumption
by as much as 3× compared to Android NNAPI, the official
Android tool that automatically selects the computing units to
use for running a DNN. Experiments on a smartphone (Sam-
sung Galaxy S21) and a tablet (Samsung Tab S8+) show that
the benefits are consistently significant. Further experiments
show that the benefits remain even if those DNNs co-run with
uncontrolled apps (i.e., apps that do not employ the proposed
scheduling algorithm). The scheduling algorithm converges
quickly (within seconds) and adapts to the running environ-
ments automatically, making it an immediately adoptable
solution across mobile systems.

Overall this work makes the following main contributions:

• To our best knowledge, the solution in this work is the
first decentralized application-level adaptive scheduling
for multi-instance DNNs on open mobile devices.

• This work uncovers a set of novel insights: (i) It is pos-
sible for a scheduler to work effectively without direct
knowledge of other apps in multi-instance DNN schedul-
ing; (ii) the DRL-based scheduling is effective in adapt-
ing to the factors in the execution environment (OS, other
apps, priorities, etc.); (iii) the decentralized scheduling
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algorithm is quick in converging to a balance point.

• This work empirically evaluates the efficacy of the
proposed solution, showing that it consistently gives
significant speedups and energy savings across DNN
workloads, hardware configurations, and running sce-
narios (with or without uncontrolled apps, various back-
ground/foreground combinations).

2 Background

Reinforcement Learning and Deep-Q-Network Reinforce-
ment learning (RL) [20] is a machine learning approach in
which an agent learns from environmental feedback and a
series of decisions to maximize the total cumulative rewards
to stimulate better decision-making. Q-learning [27] is a type
of RL algorithm that seeks an offline policy to maximize the
expected total rewards across all steps. "Q" refers to the policy
function Q(S,A) that inputs a state and action pair and out-
puts a Q-value. Two typical Q-learning schemes are Q-table
and Deep-Q-network (DQN) [17]. DQN improves the limited
representation of the Q-table.

Q-table stores the state and action pairs with the estimated
Q-value. The Q-value of each step can be obtained by table
lookup. However, this approach only works when states and
actions are discrete values and the sets are small. In contrast,
DQN replaces the Q-table with a neural network (NN) as a
function approximator. Now, the sets of states and actions
can be large, and the state space can be continuous. In the
training phase, the loss function minimizes the squared error
between the target Q-value and the predicted Q-value given
by the NN. So the loss function of NN can thus be formulated
as follows: L = (Q(S,A)− (R+ γ∗max(Q(S′,A′))))2, where
R is the immediate reward for taking action A in state S, γ is
the discount factor (a value between 0 and 1 that determines
the importance of future rewards), and S′ and A′ are the next
state and the possible actions in that state, respectively.
Nash Equilibrium The Nash equilibrium is a concept in game
theory that describes the optimal behavior of players in a
game. It is a stable, self-enforcing, and Pareto optimal solu-
tion, where each player has chosen an optimal action, given
the other players’ actions. There are several methods for find-
ing the Nash equilibrium of a game, including using best
response functions and mixed strategies. The Nash equilib-
rium is a helpful tool for analyzing strategic interactions and
predicting players’ behavior in a game.

One way to find the Nash equilibrium is to use the best
response function, which maps each player’s action to the
action that maximizes their reward, given the actions of the
other players. The Nash equilibrium is then the set of actions
where each player’s action is the best response to the actions
of the other players. Another approach is to use a mixed
strategy, where players randomly choose their action with a
certain probability. The Nash equilibrium is then the set of

possibilities where each player’s mixed strategy is the best
response to the combined strategies of the other players.

3 Problem Statement and Research Questions

This section first provides a definition of the focused schedul-
ing problem, and then lists the important research questions.

3.1 Problem Definition
Given: A set of apps A that may execute on a device V , and
some of them may run at the same time. A = Ac∪Au, where,
each app in Ac contains some DNNs and employs a policy P
to decide the execution configuration of each of its DNNs,
while the apps in Au do not follow policy P. For each DNN,
there are K possible configurations which affect the usage of
CPUs and GPUs of the DNN differently.

Objective: Finding P such that the following is minimized:

∑
i∈Ac(DNN)

∑
j

Li, j ∗Wi, j

where, Li, j and Wi, j are respectively the latency and power
consumption of the jth inference of DNNi, Ac(DNN) is the
DNNs in the apps in Ac. We use the product of latency and
power to capture the common interest in both speed and
energy usage on mobile devices.

Constraints: (1) The scheduling policy P in an app cannot
access the information of another app (due to the isolation
enforced by mobile systems); (2) each app’s priority and
temporal scheduling are controlled by the underlying OS.

3.2 Design Considerations and Principles
The main aspect of scheduling focused in this work is the
execution configuration that affects the usage of computing
units—which is essential for the performance and power con-
sumption of DNN. The relevant factors include some that are
controllable at the application level, and some at the OS level.
For a DNN written in TFLite [3] (a popular development
framework for mobile AI), for instance, the application can
explicitly specify whether the DNN should run on CPU or
accelerators (e.g., GPU), and the number of CPU threads to
use. It may also call APIs in NNAPI [8] (the Android official
library for running DNNs) with either a performance mode or
an efficiency mode; the APIs will automatically determine the
CPUs or accelerators to be used for the DNN. We uniformly
regard such configurations as application-level controllable
configurations, which specifically include the explicit speci-
fication of computing units and CPU thread number and the
calls to other relevant libraries.

When a DNN runs with a certain configuration, the OS may
exert further influence on the usage of the computing units.
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For instance, if the application-level control sets the DNN to
run on a CPU with 2 CPU threads, the OS will ultimately
determine which two CPU cores the threads will run on. If
they are small cores, the speed may be much lower than on
medium cores.

We design our solution with the following principles:
(1) The scheduling should be decentralized, functioning

inside each application. This is because most of the relevant
factors are inside the app, and application-level solutions are
easier to adopt as they do not need changes to the underlying
OS.

(2) The scheduling should be able to adapt to the influence
of the underlying OS and other environmental factors (e.g.,
priorities of apps, background/foreground differences).

(3) The scheduler should work efficiently and adapt to
changes in the system agilely.

3.3 Research Questions

Creating a decentralized application-level scheduler on open
mobile systems has many differences from centralized
scheduling on closed systems and hence raises many new
questions. We summarize them into the following six open
research questions (RQ). They are gradually addressed in the
rest of this paper.

RQ1: How can the scheduler work effectively without
direct knowledge of other apps?

The apps on a smartphone may be developed by many
different authors. For security and privacy, open mobile sys-
tems typically impose strong isolations among apps. One app
cannot access the direct info of another app. How can the
scheduler work well under such a constraint?

RQ2: How can the solution deal with the effects of the
scheduler in the underlying OS?

OS influences the execution of the Apps: Ultimately, it is
the OS that allocates computing units and other resources to
each App and determines when an app runs and its priority
level. The OS schedulers differ from one version of OS to
another. We avoid demanding changes to the underlying OS
for easy adoption of our solution. The user-level scheduling
hence must be made adaptive to OS.

RQ3: Can decentralized scheduling converge to a good
result?

On an open mobile system, apps come and go, and the
workloads on the system may vary continuously. Without
the knowledge of other co-running apps, can decentralized
scheduling converge to good results?

RQ4: How fast can the decentralized scheduling learn
and adapt?

Machine learning-based decision models usually take time
to learn, but the dynamic nature of mobile systems demands
fast responses. Can decentralized scheduling meet the speed
needs?

RQ5: Can the solution work if there are uncontrollable
apps?

In real mobile usage scenarios, not all Apps will adopt the
same scheduling policy. The workload from uncontrollable
apps can be unpredictable. Can the proposed solution still
function well in the presence of such uncontrollable apps?

4 Decentralized DQN Scheduler

Algorithm 1: DQN Algorithm for each Apps
Input: Environment E; Replay Memory M; Exploration

Ratio ε; The parameters of Policy Network θ and
Target Network θ−; Discount Factor γ; Batch Size B;
Update Steps C; Huber loss function L

Output: Q(s,a; θ)
Initialize: Take observation from E and generate current

state s
1 while Inference start do
2 if rand() < ε then
3 Select action a randomly

4 else
5 Select action a← argmaxa Q(s,a; θ)

6 Run inference on a target defined by action a
7 When Inference ends, Calculate reward r
8 Observe from E and generate next state s′

9 Store transition (s, a, s′, r) to M
10 if M.size() > B then
11 Sample a mini-batch N from M
12 for each transition (s j, a j, s′j, r j) in N do
13 y j = r j + γ maxa′Q(s j,a′ : θ−)
14 Calculate Loss l j = L(y j,Q(s j,a j : θ))

15 Batch Update θ using SGD algorithm by loss vector
l

16 s← s′

17 i← i+1
18 if i mod C == 0 then
19 θ ← θ−

In this section, we introduce the design of the decentralized
scheduler, which also answers RQ1 and RQ2.

The design is based on deep reinforcement learning (DQN).
As Section 2 mentions, DQN is a deep reinforcement-learning
method. As a semi-supervised method, it requires no manual
labels, but actively explores the environment, learns the re-
lations between actions and rewards automatically, and uses
the learned model to predict the next suitable action. This
nature makes it a good fit for the dynamic environment in our
problem. In contrast, a DNN-based approach would require
offline labels of many training cases and be slow in adapting
to dynamic changes.

The DQN-based RL agent is also light-weighted and con-
verges fast. For the storage overhead, the total extra mem-
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Figure 2: The Structure of Decentralized DQN Scheduler. The figure shows three controllable DNN applications that have
their RL agent that selects actions (different code generation of the model). All of them collect system status as their RL agent
input state. Also, we include the co-running uncontrollable apps that do not contain RL agents inside.

ory footprint needed less than 250KB. For the computation
overhead, the inference time of the network only takes less
than 1ms and one training process only takes about 1ms to
2ms when three DQN agents co-running. In general real-time
constraints are 50ms for each inference, and those extra com-
putations overhead in each model can be neglected.

Figure 2 illustrates the role of the scheduler in a multi-
instance scenario. Other than the uncontrolled apps, each
DNN-based app contains a DQN agent for configurations.
They do not have access to other apps but can obtain the state
of the resource utilization of the whole system.

We define the learning procedure of our DQN-based agents
with States, Rewards, and Actions in the multi-DNN execution
environment as follows:
States We use the following variable to capture the static
and variance environment information. For static features, we
use the number of convolution layers, the number of fully-
connected layers, and the MAC operations of DNN models.
For environment variance information, we use the CPU uti-
lization, GPU utilization, and memory usage of co-run apps.
Rewards The reward function R is composed of three impor-
tant metrics: latency, power consumption, and deadline. It is
defined as follows:

R(Ls,a
i ,W a

i ,di) =

{
−1000 , if Ls,a

i > di
−Ls,a

i ×Powera
i , otherwise

where, Ls,a
i represents the latency of the inference of DNNi

with action a on state s, W a
i is the average power of the in-

ference of DNNi with action a, and di is the deadline for the
inference of DNNi.

Because (latency × power) can be regarded as the energy
consumption estimation, we call it Energy Factor in our pa-
per. Also, it is used as one of the metrics in our evaluation
(Section 6). The multiplication of power and latency gives a
linear relationship, with no skew towards either factor. For
instance, if the latency doubles, the entire reward function
doubles, and the same applies to power consumption. The
simple production form of the reward function avoids addi-
tional hyper-parameters. A large negative reward is used when
a deadline is passed to discourage missing deadlines.
Actions The action space involves the configurations that
can affect the usage of computing resources on the hardware.
In our study, we include six configurations as detailed in
Section 6.1.
Neural Networks DQN includes a policy neural network
and a target neural network inside, which learn about the
relations between states, actions and rewards. We want to
make the networks as simple as possible to control the runtime
overhead. So we adopt a model that only maintains two fully-
connected (FC) layers as our policy and target network. The
first FC layer input channel is 8, and the output channel is
100. The second FC layer input channel is 100, and the output
channel is 6. For the input, it is the vector of the state. Its
dimension is 8, which contains four CPU and GPU usage
pairs. The output is a vector that represents the q-values of
six actions.

The DQN agents go through an exploration and learning
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stage until they reach convergence. As listed in Algorithm 1,
at the start of each episode, each agent selects the action with
the maximum q-value generated by the policy network with
parameters θ and current state s but has some exploration
rate ε to select action randomly. Here, one episode is one
inference of the DNN model. After making the inference with
the selected action, the power consumption and latency are
collected to compute the reward r. Then, the agent observes
the environment and generates the updated state s′. One tran-
sition (s,a,s′,r) is then pushed into the replay memory M.
The training process starts when the replay memory M has
enough data. It goes as follows. It first samples a mini-batch
N from M. Then, it calls the target network to generate the
expected q-value y for each transition. After that, it uses the
Huber Loss function [10] to calculate the loss value between
the expected q-value and the current q-value output by the
policy network. The final step of the training process is to
update the parameters θ based on the loss value. In every C
episode, the parameters θ of the policy network are copied
to the target network as its new parameters. In the targeted
co-run scenario, each controllable App is equipped with a
DQN agent that is trained for scheduling its DNN inferences.

5 Convergence Discussion

This section discusses the convergence of the DQN-based
scheduling algorithm (RQ3). Prior works [6] generalize the
multi-agent Q-learning method as a general-sum stochastic
game and prove all reward functions in each agent are guaran-
teed to converge. Specifically, Hu and Wellman [13] present
an algorithm to solve the general-sum stochastic games, and
Bowling [6] strengthens the proof with further assumptions.

Their convergence theorem has four necessary assump-
tions, two of which are about exploration and the decay of
the learning rate, and are similar to those used in the Deep-
Q-Learning algorithm. It is assumed that they have been met.
The remaining two assumptions [6, 13] are as follows:

Assumption .1 A Nash equilibrium (π1
∗(s),π

2
∗(s)) for any

stochastic game (Q1
n,Q

2
n) satisfies one of the following prop-

erties:

1. The equilibrium is a global optimal.

2. The equilibrium receives a higher payoff if the other agent
deviates from the equilibrium strategy.

Assumption .2 The Nash equilibrium of all stochastic games
Qn(s), as well as Q∗(s) must satisfy property 1 in Assumption
1 or the Nash equilibrium of all stochastic games, Qn(s), as
well as Q∗(s) must satisfy property 2 of Assumption 1

Assumption 1 includes a property that states that there
exists a set of strategies for the agents, where each agent
individually obtains the highest possible payoff. This also
guarantees that this set of strategies forms an equilibrium

since no agents would gain from deviating from their chosen
strategy. Assumption 2 includes another property in which
the game’s Nash equilibrium is a "saddle point." This implies
that if an agent deviates from the equilibrium, the agent would
not gain, but other agents would, which makes no agent want
to deviate from the equilibrium.

Finding a globally optimal solution for the multi-agent
problem is known to be NP-hard [7]. However, by reaching
Nash equilibrium during convergence, RL can ensure that
each agent adheres to a strategy that gives a good payoff to
both itself and the other agents. Reflected in our scheduling
context, it means that all controllable Apps may adhere to
a strategy that helps meet their deadlines while minimizing
energy consumption. The achievement of Nash equilibrium
eliminates fairness concerns among controllable Apps, as
they all reach a stable state where each maximizes its benefits
within the given constraints.

Based on prior studies [6,13], it has been demonstrated that
a zero-sum stochastic game converges. Our scheduling prob-
lem for multi-DNN applications in this paper bears a resem-
blance to a zero-sum stochastic game. In our case, each agent
corresponds to our DQN agent for each controllable DNN
application. All DQN agents involved compete for limited
resources, such as CPU and GPU, with a maximum utilization
boundary. While our problem may not strictly adhere to all the
definitions of a stochastic game, we empirically demonstrate
its convergence under our circumstances in Section 6.

6 Evaluation

This section evaluates our decentralized application-level
adaptive scheduler (called DQN for short in this section) by
comparing it with three baseline scheduling methods that are
designed for single DNN execution: two static scheduling
settings used by Android Neural Networks API (NNAPI) [8]
(NNAPI LOWER_POWER that minimizes the power consump-
tion for each DNN and NNAPI FAST_SINGLE_ANSWER that
minimizes the inference latency for each DNN) and an of-
fline profiling-based scheduling method (Best Standalone
that based on offline profiling selects the best setting for each
individual DNN among all delegate settings introduced in
Section 6.1). This evaluation has three objectives as follows:
1) demonstrating that as the first decentralized DNN co-run
scheduling method, DQN outperforms all baseline scheduling
approaches that are designed for single DNN execution in
multiple representative DNN co-run scenarios (Section 6.2);
2) verifying DQN’s convergence and fast converging speed,
and studying the underlying reason why DQN outperforms
baseline scheduling methods by a reward convergence analy-
sis (Section 6.3); 3) proving DQN’s benefits remain even if the
DNNs co-run with uncontrolled apps with both predictable
and unpredictable workloads (Section 6.4).
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6.1 Evaluation Methodology

Benchmarks. Table 1 characterizes the nine DNN models
from various domains used in the evaluation1. All models
are in TensorFlow Lite [3] format. These DNN models form
three groups: Image, Audio & Image, and Video & Image
with three models in each group. Our evaluation runs models
in each group simultaneously to simulate the real-world DNN
co-run scenario. For example, Group 1 (G1) simulates an intel-
ligent camera running varied AI capabilities simultaneously,
pose detection (SinglePose), object detection (YOLO-v5),
and image classification (EfficientNet). Other groups sim-
ulate more complex scenarios with audio and image or video
and image co-processing. In addition, these DNNs have var-
ied model sizes, standalone latency, and power consumption,
representing three different cases: relatively balanced work-
loads, mild imbalanced workloads, and severe imbalanced
workloads, respectively. Therefore, they show different be-
haviors in the evaluation. Please find more discussions in
Section 6.2.

Table 1: Nine DNN Models Used in Our Evaluation. They
form three groups. DNN models in each group are executed
simultaneously.

Group Models Sizes (KB)

G1: Image
SinglePose [1] (SP) 9,154
YOLO-v5 [5] 7,428
EfficientNet [23] (ENet) 6,265

G2: Audio&Image
YamNet [24] 4,031
MobileNetv1 [12] (MNv1) 4,188
WDSR [29] 1,252

G3: Video&Image
Movenet [16] 24,440
Esrgan [26] 4,877
MobileNetv2 [21] (MNv2) 13,666

Table 2: Absolute Latency of DQN. This table reports the
absolute latency of DQN in Figure 3, Figure 6, and Figure 7.

Figure 3 Figure 6 Figure 7
(Uint: ms) Tablet Phone Tablet Phone Tablet Phone

G1: SP 8.5 10.7 35.0 32.5 32.1 34.4
G1: YOLOv5 331.1 397.1 591.9 318.7 542.4 446.6
G1: ENet 5.0 47.2 9.7 337.8 7.0 341.3
G2: YamNet 4.3 3.8 23.4 23.0 20.4 17.1
G2: MNv1 6.2 34.3 10.5 30.8 8.2 32.1
G2: WDSR 6.8 116.9 6.3 114.2 5.0 108.2
G3: Movenet 34.2 33.0 76.2 71.3 78.5 70.1
G3: Esrgan 62.3 61.5 64.6 75.2 94.4 69.8
G3: MNv2 40.2 25.2 80.2 42.5 17.1 35.4

Software settings.
Our evaluation considers two co-run scenarios: control-

lable DNN tasks co-run and uncontrollable tasks co-run. Con-
1These DNNs are collected from Tensorflow Hub [2] and GitHubs [22].

Table 3: Absolute Energy Factor of DQN. This table reports
the absolute energy of DQN in Figure 3, Figure 6, Figure 7.

Figure 3 Figure 6 Figure 7
(Uint: Joule) Tablet Phone Tablet Phone Tablet Phone
G1: SP 18.9 15.9 13.48 18.1 25.2 21.8
G1: YOLOv5 950.3 446.3 1.6k 365.1 1.5k 509.8
G1: ENet 9.8 122.3 16.8 67.9 13.8 69.6
G2: YamNet 7.7 7.0 17.4 39.9 52.5 33.5
G2: MNv1 11.3 58.9 12.5 57.4 19.8 64.9
G2: WDSR 11.0 41.7 10.7 58.2 11.2 35.3
G3: Movenet 48.0 19.3 73.3 26.6 59.3 29.5
G3: Esrgan 33.2 14.5 36.0 20.4 23.4 16.4
G3: MNv2 27.7 32.8 11.8 38.2 60.8 29.6

trollable DNN tasks refer to Apps that incorporate our RL
agents, while uncontrollable tasks refer to Apps that do not
involve our RL agent. Uncontrollable tasks may or may not
use DNNs.
Controllable DNN Tasks Co-Run. We build an Android demo
app with Java that can run each DNN individually. Users
can control this demo app to start and stop DNN infer-
ence. This demo app relies on TensorFlow Lite (TFLite) [3]
to run DNNs. Our evaluation employs multiple delegate
settings in TFLite to run DNNs: using 1, 2, 3, or 4 CPU
threads2, respectively, and using two NNAPI [8] modes,
LOWER_POWER or FAST_SINGLE_ANSWER, respec-
tively. Particularly, NNAPI is designed for accelerating Ten-
sorFlow Lite DNN execution on mobile devices with sup-
ported hardware accelerators including GPU, DSP, and NPU.
It automatically partitions a DNN model, maps each partition
to a processor, and calls corresponding kernel codes for that
processor. Thus, we can treat it as static offline scheduling for
each individual DNN. Our evaluation particularly employs
two NNAPI modes as the baseline, LOWER_POWER which min-
imizes the power usage, and FAST_SINGLE_ANSWER which
minimizes the inference latency. Besides them, our eval-
uation also employs an offline profiling-based scheduling
method as a baseline: Best Standalone that selects the
best setting (i.e., with the best energy factor defined as
power_consumption× latency) for each individual DNN
among all delegate settings (including using 1 to 4 CPU
threads and two NNAPI modes) based on offline profiling
results3.
Uncontrollable Tasks Co-Run. We select two widely used real-
world applications TikTok and Web Browser to experiment
with two popular user behaviors, watching social media video
and browsing web pages. Here we select the default web
browser in Android, Google Chrome as our target.

2The evaluated mobile chip has 8 CPU cores, but the Android OS only
allows background Apps to access the 4 small CPU cores. Thus, we make
it consistent throughout our evaluations: the foregrounds Apps access the 4
cores (prioritize to access the big core, medium core, then small cores), and
the background Apps access the 4 small cores.

3we profile the power values through the Android Developer API
"dumpsys batterystats".
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(a) Normalized Average Inference Time on Samsung Galaxy Tab S8+ (b) Normalized Energy Factor on Samsung Galaxy Tab S8+

(c) Normalized Average Inference Time on Samsung Galaxy S21 FE (d) Normalized Energy Factor on Samsung Galaxy S21 FE

Figure 3: Overall Comparison between DQN and Three Baselines on Three DNN Groups. Compare (a) normalized average
inference time and (b) rewards on Samsung Galaxy Tab S8+ and the same metrics (c) and (d) on Samsung Galaxy S21 FE when
each group co-running three DNN apps (* denotes this DNN runs in the foreground and the others run in the background).

Evaluation platforms. DQN is evaluated on two edge
devices: (1) Samsung Galaxy S21 FE 5G mobile phone,
equipped with Android 12 OS, and Qualcomm SM8350 Snap-
dragon 888 5G SoC with Octa-core CPU (1x2.84 GHz Cortex-
X1 & 3x2.42 GHz Cortex-A78 & 4x1.80 GHz Cortex-A55),
Adreno 660 GPU (Version 1), and Hexagon 780 DSP. Its
storage capacity is 128GB with 6GB RAM and its voltage
is 4.3V. (2) Samsung Tab S8+ tablet, equipped with An-
droid 12 OS as well, and Qualcomm SM8450 Snapdragon 8
Gen 1 SoC with Octa-core (1x3.00 GHz Cortex-X2 & 3x2.50
GHz Cortex-A710 & 4x1.80 GHz Cortex-A510), Adreno 730
GPU, and Hexagon DSP. Its storage capacity is 128GB with
8GB RAM and its voltage is 4.1V.

6.2 Overall DQN Scheduling Performance

This section evaluates DQN on the three groups of co-run
DNNs in Table 1 by comparing it with the three schedul-
ing baselines aforementioned: NNAPI LOWER_POWER, NNAPI
FAST_SINGLE_ANSWER, and Best Standalone. Figure 3
shows the comparison results, in which the x-axis shows the
three DNNs in each group and the average performance of
each group. It is worth noting that the star (*) before the DNN

name indicates that this DNN model is executed in the fore-
ground (and two other DNNs in the same group are executed
in the background) for this co-run4. We intentionally use this
setting to simulate the real-world Apps co-run on the Android
system (and bring the OS impact on the user-level scheduling
into account).

Figure 3 employs two metrics to compare our decentral-
ized DQN system with three baselines: average inference
latency (as shown in Figure 3a and Figure 3c) and energy
factor ( as shown in Figure 3b and Figure 3d). The energy
factor is defined as power_consumption× latency for each
inference, which is also used as our reward function in each
DQN agent, the lower the better. To improve the readability,
we normalize the results in Figure 3 by setting DQN perfor-
mance as 1. Table 2 and 3 summarizes the absolute values for
reference.

Figure 3 shows that for the average inference latency,
our decentralized DQN-based scheduler achieves up to 4×
speedup over two baselines of NNAPI (NNAPI LOWER_POWER
and NNAPI FAST_SINGLE_ANSWER), and 2.7× speedup over

4Android OS grants foreground and background Apps different priori-
ties/limitations, e.g., normally, background Apps have lower priority than
foreground ones, and background Apps cannot access the big core of CPUs.
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(a) YamNet at Foreground (b) WDSR at Foreground (c) MNv1 at Foreground

Figure 4: Reward Convergence Trend for the Three Apps Co-Run in G2. It reports DQN’s normalized reward trend to prove
DQN converges in different situations. It uses DNNs in G2 and places each DNN in the foreground.

Thread=1

Thread=2

Thread=3

Thread=4

NNAPI: Lower Power

NNAPI: FAST SINGLE ANSWER

Figure 5: Selected Action Convergence Trend. This figure shows the action selection through runs for co-running results in G1
(all of them are in the background). The action selection will be converged into one or two options.

Table 4: Selection Rates of Actions of Last 100 Runs of Figure 5.

Thread = 1 Thread = 2 Thread = 3 Thread = 4; NNAPI: LOW_POWER NNAPI: FAST_SINGLE_ANSWER
SinglePose 14% 75% 6% 1% 1% 3%
YOLO_v5 0% 1% 1% 0% 98% 0%
EfficientNet 0% 3% 0% 3% 0% 94%

Standalone Best action selection, respectively, for average
results of three co-running DNN groups (gray area). For
the energy factor, our decentralized DQN-based scheduler
achieves up to 3× energy saving over NNAPI LOWER_POWER
and NNAPI FAST_SINGLE_ANSWER, and 2.6× energy saving
over Standalone Best action selection, respectively, for av-
erage results of three co-run DNN groups. Comparing the
DQN performance across three groups, we can see that as
the workload imbalance increases (from G1 to G3), the ben-
efit of DQN over Best Standalone grows while its benefit
over both NNAPI schedulers drops. This is mainly because
Best Standalone partitions each DNN workload into more
processing units than NNAPI schedulers, so it reduces the re-
source competition caused by the workload imbalance. DQN
has a similar effect. Moreover, although the average inference
latency and energy factor vary for different groups (and each
DNN model) under various settings, our decentralized DQN-
based scheduler always performs better than baseline meth-
ods. These results prove that DQN is robust enough to deliver

high-quality scheduling results for various DNN applications
and environment settings (e.g., varied foreground/background
DNN settings, DNN structures/target domains, and executing
devices). The following sections further verify this claim.

6.3 Reward Convergence Analysis
This reward convergence analysis has three objectives: 1) to
verify the rewards of multiple agents converging empirically,
2) to measure the DQN convergence speed5, and 3) to study
why DQN outperforms baseline scheduling by analyzing its
trend of action selection.

We verify the convergence and measure the convergence
speed by taking Group 2 (in Table 1) as an example due to
the space limitation and other groups show similar trends.
Figure 4 shows the convergence trends of DQN training on
co-running three DNNs in Group 1 under three different set-

5Theoretical convergence proof only proves all DQN converges eventually
without showing the convergence speed.
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(a) Normalized Average Inference Time on Samsung Galaxy Tab S8+ (b) Normalized Energy Factor on Samsung Galaxy Tab S8+

(c) Normalized Average Inference Time on Samsung Galaxy S21 FE (d) Normalized Energy Factor on Samsung Galaxy S21 FE

Figure 6: Co-Run Three DNN Groups with Uncontrollable App TikTok. Compare (a) normalized average inference time and
(b) rewards on Samsung Galaxy Tab S8+ and the same metrics (c) and (d) on Samsung Galaxy S21 FE when each DNNs group
co-running with uncontrollable app TikTok that plays video posts on the foreground.

tings that place YamNet, WDSR, or MNv1 at the foreground,
respectively. The x-axis is the number of DQN inference
runs (which is equivalent to the number of DNN inference
runs), and the y-axis is the average action selection rewards of
100 times. Regardless of the environment settings, the DQN
agents can reach convergence within 800-1000 inference runs.
The scheduling time overhead for a single execution of the
DNN App includes the forward- and backward-propagation
phases of the DQN agent, which typically take 1.2 ms on
average and only contribute to 0.5-5% of the overall DNN
App execution time (which ranges 20-176ms). Additionally,
the energy overhead amounts to approximately 0.5-2% of the
DNN App execution. This convergence time is trivial com-
pared to the time required to profile and configure each model
manually.

We next study why the DQN agent can outperform the sin-
gle DNN scheduling baselines by analyzing its trend of action
selections. We take Group 1 (in Table 1) with SinglePose,
YOLOv5, and EfficientNet as an example this time. All
models run in the background, and the evaluation results are
shown in Figure 5. In addition, Table 4 shows the percentage
of action selection in the last one hundred runs to give an

insight into action selection after the model is converged.
Figure 5 and Table 4 offer us two key insights in DQN: first,

even though each DNN starts with multiple selections, their
decision is converged into one or two actions, and second, a
precise boundary exists between the actions only using CPU
and those cooperating with GPU. The regular pattern of the ac-
tion selection in the first insight implies that the DQN model
converges at the end, empirically proving that the multi-agent
DQN game converges (in another setting). The second insight
tells us that DQN can effectively avoid computing resource
contention. For example, when YOLOv5 and EfficientNet run
on GPUs, DQN is able to schedule SinglePose on CPUs, thus
preventing competition for the limited resource of accelera-
tors; while other baseline scheduling methods fail to do this,
resulting in GPU contention.

6.4 DQN Performance w/ Uncontrollable Apps

This section evaluates the performance of our decentralized
DQN scheduler under uncontrollable application co-running
situations. More specifically, we aim to 1) compare the perfor-
mance between our decentralized DQN scheduler and those
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(a) Normalized Average Inference Time on Samsung Galaxy Tab S8+ (b) Normalized Energy Factor on Samsung Galaxy Tab S8+

(c) Normalized Average Inference Time on Samsung Galaxy S21 FE (d) Normalized Energy Factor on Samsung Galaxy S21 FE

Figure 7: Co-Run Three DNN Groups with Uncontrollable App Web Browser (Google Chrome). Compare (a) normalized
average inference time and (b) rewards on Samsung Galaxy Tab S8+ and the same metrics (c) and (d) on Samsung Galaxy S21
FE when each DNNs group co-running with the uncontrollable app Google Chrome randomly browsing pages on the foreground.

baselines under the popular real-world Apps co-running cir-
cumstance, and 2) illustrate our DQN solution has strong adap-
tivity when co-running with Apps with dynamically changing
workloads.

Specifically, we simulate the real-world environment by si-
multaneously running DNNs and other apps with predictable
workloads (i.e., repeatedly playing a TikTok video post), and
unpredictable workloads (i.e., randomly browsing webpages
in a web browser, Google Chrome). Both TikTok and Google
Chrome run in the foreground, while DNNs (and their demo
applications) run in the background. TikTok and Google
Chrome require CPU and accelerators (e.g., GPUs), thus care-
ful workload scheduling of DNNs is desired if we would
like to achieve optimized system performance. To verify the
predictability of TikTok and the unpredictability of Google
Chrome, respectively, we use GPUWatch to monitor both ap-
plications’ execution and find that the major task, video pro-
cessing in Tiktok requires a stable amount of GPU resources,
while Google Chrome only consumes GPU resources when
users touch or swipe across the screen, resulting in irregular
GPU usage.

Figure 6 and Figure 7 compare DQN with all three

baselines aforementioned, NNAPI LOWER_POWER, NNAPI
FAST_SINGLE_ANSWER, and Best Standalone on two
platforms under two uncontrollable cases (more predictable
TickTok and more unpredictable Google Chrome), respec-
tively. Our decentralized DQN-based approach outperforms
all baselines for both cases in terms of both latency and
energy for all three groups of DNNs. For the Tiktok case,
DQN shows better performance because the DQN agent
has more convincing history data that can predict more
accurate action for the next step. The Google Chrome
case empirically proves that our decentralized DQN-based
approach is robust enough to handle DNNs co-run with an
app that has unpredictable workloads.

Compare with a Heuristic-Based Adaptive Method. To
confirm that simple heuristic-based adaptation is insufficient
for the scheduling problem, we implement a heuristic method
called "trial and set" (T&S). In T&S, each action performs X
(50 in our experiments) inference runs and selects the action
with the minimum observed online energy factor in subse-
quent inferences. We compare it with our DQN results on
G2 in each of three settings: three DNNs in G2 co-run (see
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Table 5: Comparisons with simple Heuristic-based adaptation. This table reports the average latency and energy factor for G2
in three co-run settings described in Figures 3, 6, and 7

.

Co-run Setting→ No other Apps With Web Browser With TikTok
DNN Apps ↓ Metrics ↓ T&S (X=50) DQN T&S (X=50) DQN T&S (X=50) DQN

YamNet Time (ms) 3.690 4.250 127.120 20.482 53.400 23.050
Energy Factor 0.461 0.502 15.890 3.392 4.429 2.707

SSD_MNv1 Time (ms) 8.260 6.170 191.740 8.248 60.670 30.860
Energy Factor 1.161 0.734 24.351 1.284 8.037 3.890

WDSR Time (ms) 126.290 6.750 56.320 5.042 142.000 114.220
Energy Factor 15.701 0.714 8.599 0.729 18.034 3.948

Avg. Energy Factor 5.774 0.65 48.840 5.405 10.166 3.514

Figure 3), G2 co-run with a predictable App (see Figure 6),
and G2 co-run with an unpredictable App (see Figure 7). Each
execution of the DNN-based app conducts 250 inferences in
total. Table 5 shows the results. The result shows that the
simple adaptation by T&S is insufficient for fitting the con-
tinuously changing execution environments. The schedules
it picks cause 3− 10× larger energy factors as well as fre-
quently substantial slowdowns compared to the results by
DQN.

7 Related Work

DNN workload under the stochastic runtime variance has
been addressed in Autoscale [15]. The authors propose a
lightweight scaling engine for DNN inference on a cloud-
edge environment. It applies an offline-trained Q-table that
observes DNN characteristics and runtime variance as states
and selects execution targets as action. It is, however, only for
single DNN execution.

Multi-tenancy DNNs [28] have been an active research
topic in recent years. NestDNN [9] proposes an efficient
scheduler that works with different model pruning ratios. The
scheduling decision is guided by the proposed minimum total
cost and minmax cost. The solution enhances the multi-DNN
inference accuracy and video frame processing rate while
reducing energy consumption. NeuOS [4] proposes a layer-
by-layer multi-DNN scheduler. At each layer boundary, the
system will determine the power configuration for each DNN
based on their deadlines. Band [14] presents a model analyzer
and scheduler to organize a multi-DNN workload on a het-
erogeneous platform. The model analyzer partitions multiple
DNN models into several subgraphs and dynamically desig-
nates them with an eligible execution target. The scheduling
decision is based on subgraph execution latency estimation
using their tensor size and FLOPS.

Those solutions are however all centralized approaches, as-
suming the set of DNNs is fixed and there is a central runtime
scheduler managing all the instances, making them inappli-
cable to the multi-instance DNN scheduling on open mobile
systems.

8 Conclusion

This paper proposes the first-known decentralized application-
level adaptive scheduler for multi-instance DNNs on open
mobile devices. It builds on DQN, a reinforcement learn-
ing algorithm that actively explores and learns the relations
between the states, actions, and rewards in a dynamic envi-
ronment. The exploration uncovers a set of insights. It shows
that it is possible for a decentralized scheduler to work ef-
fectively without direct knowledge of other apps in multi-
instance DNN scheduling. The DQN-based scheduling works
well regardless of the differences among underlying systems,
hardware, and execution settings. The algorithm is shown to
converge quickly and effective in improving co-run efficiency.
As an application-level solution, it is ready to be immediately
adopted across various mobile systems.
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Abstract
We present UnFaaSener, a lightweight framework that en-
ables serverless users to reduce their bills by harvesting non-
serverless compute resources such as their VMs, on-premise
servers, or personal computers. UnFaaSener is not a new
serverless platform, nor does it require any support from to-
day’s production serverless platforms. It uses existing pub/sub
services as the glue between the serverless application and
offloading hosts. UnFaaSener’s asynchronous scheduler takes
into consideration the projected resource availability of the of-
floading hosts, various latency and cost components of server-
less versus offloaded execution, the structure of the serverless
application, and the developer’s QoS expectations to find the
most optimal offloading decisions. These decisions are then
stored to be retrieved and propagated through the execution
flow of the serverless application. The system supports partial
offloading at the resolution of each function and utilizes sev-
eral design choices to establish confidence and adaptiveness.
We evaluate the effectiveness of UnFaaSener for serverless
applications with various structures. UnFaaSener was able to
deliver cost savings of up to 89.8% based on the invocation
pattern and the structure of the application, when we limited
the offloading cap to 90% in our experiments.

1 Introduction

Serverless computing [54] allows developers to quickly build
scalable, event-driven applications and pay for only what they
use. It also removes the provisioning and maintenance bur-
dens of the traditional cloud system. Developers have identi-
fied and embraced this game-changing cloud paradigm. Ac-
cording to Datadog’s June 2022 analysis of cloud user teleme-
try [33], more than 70% of organizations using AWS and over
50% of Azure and Google Cloud users have adopted server-
less offerings. A year prior, the serverless adoption numbers
for these three leading cloud providers were just above 50%,
35%, and 20%, respectively [32].

In addition to increased adoption, serverless applications
are also becoming increasingly complex. In 2019, the majority

of serverless applications were composed of just one function
and 80% had three or fewer functions [72]. Today, complex
serverless workflows are no more rare. A recent study of
open-source serverless projects has identified 31% of studied
applications to have workflow structures [35]. From 2019
to 2022 the popularity of serverless DAGs has grown by
6× at Azure [59]. The increased complexity of serverless
applications can be attributed to the maturation of serverless
offerings and the increased proficiency of developers.

With a developer-focused perspective, this work is moti-
vated by a relatively simple question: why should serverless
functions be bound to be executed within the serverless plat-
forms? If serverless functions are designed to be primarily
stateless, the serverless model disaggregates storage from
compute, the serverless isolation/virtualization mechanisms
are lightweight [17], and the model is event-driven, it begs
asking whether offloading execution of serverless functions
off the serverless platform can make economic sense.

Many organizations and development teams use serverless
offerings in conjunction with other cloud service types, such
as VMs or microservices’ containers [24, 36]. Reports from
different cloud providers indicate that the majority of VMs
in public clouds are heavily under-utilized [30, 44]. Despite
low VM utilization, public cloud providers have been able
to improve data center efficiency using advanced resource
oversubscription to co-locate many underutilized VMs with
predictable guarantees [30, 48, 55], or through dynamic ca-
pacity harvesting from those underutilized VMs to sell to
others [39,74,80]. Such strategies help the provider operate at
higher efficiency, but cloud users still have to pay for their full
static allocations. If a team is already paying an hourly rate
for renting a VM and that VM is not fully utilized, it could be
harnessed to run their own serverless functions. Additionally,
an organization may have on-premise computational capacity
that already incurs capital and operating costs, which can sim-
ilarly be leveraged to execute migratable serverless functions.

The merits of the proposed serverless function offloading
are clear, but determining when to migrate functions depends
on various factors. For example, offloading one or more func-
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tions in a latency-sensitive chain of short functions could lead
to QoS violations due to added network latency. In contrast,
for a serverless DAG with imbalanced branches, offloading
those executions off the critical path may be worthwhile if
the cost of data movement and added latency are acceptable.
While these examples focus on latency, some serverless appli-
cations, such as nightly builds, may have little to no latency re-
quirements, making offloading more viable. Ultimately, how
and when functions of a serverless application can be of-
floaded depends on a long list of factors. Serverless providers
do not have an incentive to enable such functionality as it
would negatively impact their profitability, and developers
would rather not deal with the complexity as it goes against
the serverless philosophy of freeing them from provisioning
concerns. We believe that there is real value to be delivered in
this junction by providing developers with a system that adap-
tively and transparently offloads their serverless functions to
their own alternative execution hosts.

We design and build UnFaaSener, the first holistic server-
less offloading system without any change to today’s
serverless platforms. This system performs adaptive of-
floading of a developer’s functions to their own alternative
hosts. UnFaaSener does this by dynamically considering
latency and cost implications of offloading as well as re-
source availability predictions on hosts against goals con-
veyed by the developer (e.g., saving maximum cost, or re-
specting a certain latency QoS). We build UnFaaSener to
use existing services on a popular serverless platform, and
run various serverless applications on it. It is available at
https://github.com/ubc-cirrus-lab/unfaasener.

2 Background

2.1 The Status Quo
Execution of serverless functions. Your serverless functions
run within the serverless platform you operate on. Depending
on the provider, your functions might be allocated to run in
lightweight VMs, containers, or other isolation abstractions
that themselves use dedicated allocations or internally har-
vested resources [86]. Interestingly, your functions will not be
allocated to any underutilized VMs that you already pay for.
If you have computational resources on a different cloud or
on-premise, those are not used to host your functions either. If
a developer decides to tap into these capacities to reduce their
serverless bill, they need to build their applications differently
and effectively do resource provisioning. This defeats the
purpose of using serverless in the first place.
Offloading to and from serverless. Serverless’s unparalleled
horizontal scaling and pay-per-use pricing model enables
cheap acceleration of bursty, massively parallel workloads.
Researchers have developed general purpose (e.g., gg [37])
and domain-specific frameworks (e.g., ExCamera [38] and
NumPyWren [73]) for this purpose. Offloading to serverless
is popular for edge [26, 52, 82] and network function virtual-

ization (NFV) [16,70,85] applications. Researchers have also
proposed offloading from serverless to the edge [41].

The idea of offloading from VMs to serverless has also
been proposed. Most of these works utilize serverless as a
backup when scaling out VMs [43, 47, 63, 84, 87], however,
some others simultaneously offload a small portion of traffic
to serverless [67]. As VMs are the primary deployment in
these works, the benefits of serverless functions, such as high
scalability can not be fully exploited, and the scope of the
applications is limited to the capacity of the VMs. To fully ex-
ploit serverless advantages, researchers have suggested hybrid
VM-serverless deployment of applications [56, 75]. In these
systems, however, a secondary custom scheduler is added be-
fore the serverless scheduler, which limits the scalability of
the system and comes with security concerns.

The systems mentioned earlier are not designed for re-
source harvesting. However, a number of works have pro-
posed modifying the serverless platform to offload serverless
on the harvested resources [78, 83, 86]. We identify this as a
limitation, as one cannot expect serverless providers to change
their platforms and reduce their profitability. Besides that, the
offloading will be limited to hosts located only within the
scope of the platform scheduler (same cluster, region, or zone
of the same cloud, depending on the provider’s architecture).
UnFaaSener is designed to work with existing serverless plat-
forms, without requiring any change. By harvesting the idle
resources of any host within or outside the cloud hosting
serverless functions, UnFaaSener opportunistically achieves
cost reductions for a wide range of general-purpose appli-
cations, from single functions to applications in a form of
complex DAGs (consisting of multiple branches, merging
points, and dynamic fan-out patterns).

2.2 The Serverless Cost Model
Understanding the serverless cost model is imperative for
building a mental model of how UnFaaSener offers cost sav-
ings. We provide a summary here and refer the reader to
related work for more detailed descriptions [57].
Capacity cost: Developers are required to set the mem-
ory size of their serverless functions. This indirectly sets
the CPU share, too, as the CPU-to-memory allocation ra-
tio is fixed in current serverless systems [21]. Multiplying
the execution time by the configured memory size deter-
mines the GB-seconds usage. There is a cost charged per
GB-seconds; e.g., $1.67×10−5 for AWS Lambda on x86 [3].
Some providers enforce a minimum execution time per invo-
cation (e.g., 100 ms for Azure Functions). Execution times are
also rounded-up; e.g., to the nearest 1 ms for Azure Functions
and to the nearest 100 ms for Google Cloud Functions.
Invocation cost: Each invocation also incurs a cost; e.g., $0.2
and $0.4 per million requests for Azure Functions and Google
Cloud Functions, respectively.
Free tier: Typically, serverless providers offer monthly free
tiers: AWS, Azure, and Google Cloud provide 400,000 GB-
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s per month. The free tier also includes no invocation cost
for the first 1 million requests in AWS Lambda and Azure
functions, and the first 2 million for Google Cloud Functions.
Saving cost by offloading: If a developer’s serverless usage
is low enough to fit within the monthly free tier offered by
cloud providers, they should not run UnFaaSener. Beyond
that, offloading functions to alternative hosts will eliminate
the capacity and invocation costs associated with it.

3 UnFaaSener Design Challenges

Let us decompose the sub-problems that need to be solved to
enable adaptive offloading of serverless functions to achieve
maximum cost reduction with minimum impact on latency,
and with no provider support:
1. Enabling flexible offloading (§4): The very first require-

ment is to enable partial offloading of requests for each
function of a serverless application to arbitrary hosts. The
solution should support various serverless applications,
ranging from those with a single function to complex work-
flows (typically DAGs).

2. Asynchronous Scheduler (§5): To deliver a practical solu-
tion, UnFaaSener’s design should satisfy the following:

(a) The system should work with no scheduling or load bal-
ancing support from the provider.

(b) As offloading is opportunistic, serverless execution
should be the default case to ensure high scalability and
low latency for the common case.

(c) The serverless platform should remain the end-point for
the incoming traffic to the application to enforce network-
based access control rules.

(d) Given that invocation patterns can be sporadic [72], con-
tinuously performing scheduling tasks on a dedicated
VM/container is not an option, as the incurred cost can
easily exceed the cost savings of function offloading.

We need a scheduling mechanism that resides outside the
serverless platform, is activated when necessary, invokes
the solver if needed for new decisions, and reflects the
offloading decisions to be used by functions.

3. Determining optimal offloading (§6): Optimal offloading
decisions depend on various factors such as application
structure, function resource requirements, execution times,
invocation patterns, host resource availability, communica-
tion latencies and costs. Additionally, the diverse range of
developers using public clouds and the variety of server-
less applications lead to different notions of optimality.
Optimizing for latency vs. cost, mean vs. tail, etc., should
all be expressible. A solver is required to take these inputs
and determine the host(s) for function execution.

4. Monitoring and prediction of hosts’ resource availabili-
ties (§7.1, §7.2): Considering the delays associated with
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Figure 1: UnFaaSener’s system diagram.

the distributed nature of UnFaaSener’s multi-node, or even
multi-cloud deployment, each host’s resource availability
should be forecasted with a high degree of confidence.

5. Managing execution-related tasks on the host side (§7.3):
Each host is responsible for various mechanical tasks, such
as pulling the function on a cold start, setting up an appro-
priate execution environment, enforcing resource limits,
executing the function, implementing keep-alive policies,
queuing incoming requests, and invoking the next function
on the appropriate host. While this aspect of the system
may not be particularly novel in terms of research, it is
crucial for the overall performance of the system.

Figure 1 provides an overview of UnFaaSener’s different
system components. In the next sections, we describe how the
design challenges stated earlier shaped our design decisions.
In total, UnFaaSener includes ∼6.3 K-SLOC: 5.4K lines of
Python, 0.8K lines of C++, and less than 100 lines of Shell.

4 Enabling Flexible Offloading
There is no universal approach to build and deploy a server-
less application with more than one function. One can either
use different messaging systems (e.g., AWS SNS), or rely
on higher level abstractions delivered by services such as
AWS Step Functions [5] and Google Workflows [10]. For
us, it is critical to compose the application in a way that
facilitates dynamically offloading arbitrary functions to user-
specified hosts. Additionally, complexities of offloading func-
tions to varying end-points, supporting dynamic DAG struc-
tures, or rate limiting should be kept hidden from the de-
velopers as much as possible. In this section, we explain
how UnFaaSener achieves these goals. We motivate and ex-
plain design decisions that let us inject offloading decisions,
propagate future decisions, and merge branches for DAGs.
Throughout the section, we will use a simple example (shown
in Figure 2) to demonstrate each implementation aspect.
Pub/Sub as the glue. Using a topic-based publisher/sub-
scriber (pub/sub) messaging pattern enables us to control
where each function has to be executed without changing
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Figure 2: DAG conversion to support dynamic offloading.

the serverless platform. To do so, UnFaaSener first assigns
a unique pub/sub topic to each offloading host (e.g., user’s
VMs) as a unique subscriber. Pub/sub’s flexibility enables
adding, removing, or hot-swapping hosts. This means an of-
floading host can be substituted by subscribing to the same
topic without modifying pub/sub topics. Second, a few lines
of code are inserted at the end of any non-terminal function to
enable publishing to serverless or to any specific offloading
host. We call this the routing epilogue. Finally, the routing
decision for each function needs to be delivered to its parent
function’s routing epilogue. To do this, UnFaaSener adds a
lightweight header function as the entry point of the DAG.
Its role is to communicate the routing decisions made by the
asynchronous scheduler to all functions by piggybacking the
decisions to the incoming invocation.

The availability of pub/sub services across major clouds
(e.g., AWS SNS and Google Pub/Sub) and strong support for it
in various programming languages was a major driving factor
for us to facilitate portability of UnFaaSener. Furthermore,
the use of pub/sub provides a degree of fault tolerance by
requiring subscriber acknowledgment. If no acknowledgment
is received within a set timeframe, pub/sub automatically tries
to resend the message. We evaluate pub/sub latency in §9.8.
Routing epilogue. The routing epilogue is a general code
snippet added to the end of all non-terminal functions in the
application. The code snippet in Figure 3 shows the routing
epilogue for a Python function. The routing epilogue adds
only a conditional statement in the critical path of execution,
resulting in negligible added latency compared to the regular
call to the subsequent function. Based on the routing character
sent to this function by the header function, the role of this
code piece is to route the invocation to a serverless endpoint or
to any offloading host. The former is encoded by a “0" char-
acter, and the latter is determined by the host ID embedded
in the character. This works as UnFaaSener names pub/sub
topics for offloading hosts to follow the same convention: e.g.,
hostTopic1, hostTopic2, etc.
Header function. As illustrated in Figure 2, UnFaaSener adds
a header function to the head of the DAG. The role of the
header is to generate the routing decisions to be used by the

1 ...
2 if (routing == "0"): # run next function in

serverless
3 topic = publisher.topic_path(projectID , "

F3")
4 publish_future = publisher.publish(topic ,

data=message , reqID=reqID , routing=
routingData.encode('utf -8'))

5 publish_future.result()
6 else: # offload next function to a host
7 hostNumber = ord(routing) - 64
8 hostTopic = "hostTopic" + str(hostNumber)
9 topic = publisher.topic_path(projectID ,

hostTopic)
10 publish_future = publisher.publish(topic ,

data=message , reqID=reqID , invokedFunction
="F3",routing=routingData.encode('utf -8'))

11 publish_future.result()

Figure 3: The routing epilogue appended to a function.

routing epilogue of non-terminal functions. It also takes care
of creating entities for the merging points, as described next.
Merge function. In a generic serverless DAG, a function may
have several predecessors. A challenge is dealing with prede-
cessors finishing at different times. Since serverless functions
are primarily stateless, we need to persist information sent
by predecessors. One way to solve this is using stateful func-
tions, such as AWS Step Functions [5] and Azure Durable
Functions [22], to join on predecessors. To provide a merging
mechanism that works for predecessors executed on differ-
ent hosts UnFaaSener uses a database; specifically, a NoSQL
database (Google Datastore) in our current implementation.

As shown in Figure 2, the header function creates a new
entity (data object) for each merging point in the Datastore
by passing the metadata containing the request ID, the num-
ber of branches, and the subsequent function to be invoked
after that merging point. The merge function, which is added
between the predecessors and the child function, is invoked
by each predecessor. It keeps track of the content and num-
ber of responses from the predecessors using the Datastore
entity. It determines the completion of the last predecessor by
comparing the number of times it was invoked by the same
request ID to the predecessor count stored for it by the header
function in Datastore. The merge function then triggers the
next function and removes that entity from the Datastore.
DAG description. The developer provides UnFaaSener with
a DAG description JSON file, which defines the structure
of the DAG. The code snippet in §A.2 shows the workflow
description for one of our benchmark applications.

5 Asynchronous Scheduler

In this section, we describe UnFaaSener’s scheduler and how
we address the challenges stated earlier in §3.
An asynchronous scheduler off the critical path. To ad-
dress challenges 2(a), 2(b), and 2(c), we design UnFaaSener’s
scheduler to only activate when making offloading decisions.
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uler alongside the decision-making flow for each.

New offloading decisions do not need to be determined for
every single invocation, and the header function (§4) can rely
on the most recent decisions available in the Datastore.
Run in an offloading host. To run UnFaaSener, one or more
offloading hosts are needed. Otherwise, there is no offloading
and subsequently no cost reduction. Now, if there are already
offloading host(s) available, we can leverage them to host
the asynchronous scheduler as well. This addresses challenge
2(d) stated in §3. When there are more than one offloading
hosts, the developer can tag one of them as the leader at the
setup stage. If the leader host is not specified by the developer
or if the leader fails, we use the Raft [64] consensus algorithm
to elect the next leader in the order of the highest average
available resources since deployment.
Triggering rules. The offloading solver, which will be pre-
sented in the next section, determines the most optimal of-
floading decisions theoretically. However, serverless work-
loads can be highly dynamic. The request inter-arrival times
are shown to be highly variable [72], function execution times
for certain applications can be heavily input-dependent [62],
and the relatively short median execution time for serverless
functions [32, 72] amplifies the relative performance jitter in
the presence of third-party API calls. The resource utilization
of offloading hosts can change frequently, as well. To prevent
the solver from being constantly re-invoked, we pick minimal
triggering rules and rely on pre-solved scenarios. Figure 4
shows how system events trigger the scheduler.

A common case requiring new offloading decisions is vari-
ations in the invocation rate. UnFaaSener’s Log Collector (§8)
maintains an updated view of each application’s invocation
rate distribution on the leader host. Whenever the offloading
solver is run, it solves the same problem for different per-
centiles of the invocation rate distribution: 25th, 50th, 75th,
and 95th percentiles. The scheduler uses the 50th percentile
solutions for determining offloading decisions. Later, if the
utilization of predicted available resources was too high (85%)
or too low (20%), the scheduler can quickly pick the solution
for a higher or lower invocation percentile, respectively. We
found this simple mechanism effective for rapid flow control
without re-running the solver. In the high load case, if the

offloading decisions assuming the 95th percentile rate is still
not low enough, the solver is triggered.

6 Offloading Solver
In §3, we discussed the offloading solver that sits at the core
of UnFaaSener and is responsible for determining which func-
tions to offload, to where, and to what degree. At a high level,
the solver is a non-linear optimizer that considers execution
times, latencies, costs, resource demands, and availabilities
to determine the optimal offloading decisions. We describe
various design choices for UnFaaSener’s solver in this section.

Supporting different optimization goals: Any optimiza-
tion has an objective function. As one can imagine, the wide
range of service-level objectives (SLOs) in public cloud of-
ferings and the broad spectrum of serverless applications
(e.g., from latency-sensitive speech recognition [46] to cost-
oriented nightly builds [58, 60]) prevents using a one-size-
fits-all objective function. As a result, we built UnFaaSener’s
solver to support two different modes of operation: the cost
mode and the latency mode. In the cost mode, the goal is
to get maximum cost reduction without considering any con-
straints on the added latency. In the latency mode, the solver
aims to optimize for maximum cost reduction in the face of
a specific tolerance window for the added latency. By de-
fault, the tolerance window is set to the median latency of
the workflow (the start of the first function to the end of the
last function) when executed fully on serverless. This value
is easily modifiable by the user, and we evaluate the impact
of changing it in §9.3. Users have the flexibility to modify
existing optimization modes or introduce their own.

Considering locality: The solver can be re-invoked based
on changes in the resource availability of the hosts, change
in traffic patterns, etc. Each invocation of the solver should
not result in vastly different offloading decisions. Instead, the
solver should consider the current offloading host(s) of each
function and minimize migrations as much as possible. This
is because offloading a function to a new host would incur
additional latency to pull the code and build a container image.
The solver has a locality parameter, α, to control the degree
of emphasis placed on the locality.

Robustness to performance variations: The solver con-
sumes the data gathered by the Log Collector (§8) to deter-
mine the most optimal offloading. These logs contain obser-
vations for execution times on the serverless platform and
various hosts, as well as communication latencies. Execution
time for serverless functions has been shown to be highly vari-
able [42, 66]. The latency of pub/sub, which we use to build
our flexible offloading framework, can be highly variable too
(we evaluate this in §9.8). In this context, using only the mean
or median of limited observations can potentially misguide
the solver, specially in the latency mode, where a latency QoS
should be respected. Thus, the solver first checks the similar-
ity between serverless and host execution time distributions
using the Kolmogorov–Smirnov (KS) test, a non-parametric
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method that makes no assumptions about the normality of
the data distributions. If the KS test reveals distinct distribu-
tions for more than 70% of offloaded workflow functions, the
solver uses mean statistics. However, if the distributions are
not distinguishable for more than 30% of offloaded functions,
the solver solves for the following three scenarios using non-
parametric confidence intervals (95% confidence level [61])
and reports the average of three solutions as the final answer:

1. Best case: This is to model the situation where everything
goes well for offloading to hosts. The lower confidence
interval bound for each host’s execution records, and upper
confidence interval bound for serverless execution records
are used by the solver.

2. Worst case: Here, confidence intervals are chosen so
that we account for the low-end cost reduction and high-
end added latency for offloading each function. Thus, the
choices for confidence interval bounds are opposite to the
best case mode.

3. Mean case: Here, the mean of system logs for each unique
function-host pair is used.

The total offloading decision percentage for each function
is limited to 90%, whether using a single or triple solver.
Keeping some traffic on the serverless platform allows for 1)
continuously observing execution times and latencies in spite
of a varying workload, and 2) keeping some serverless func-
tion images warm in case the host(s) becomes unavailable.

Multi-host offloading: When multiple hosts are available,
maximum cost reduction may require offloading the same
function to more than one host. In such a case, each host
will be in charge of a portion of the incoming traffic to that
function. Here, the solver considers the resource availability
of multiple hosts and recommends partial (as opposed to
binary) offloading decisions.

Optimization formulation: We have reviewed various
design aspects of the solver. Let us go over the formulation of
the optimization problem, shown in Algorithm 1. The latency
mode optimization has an additional constraint (Constraint 4)
for comparing the added latency with the latency tolerance.

Intuitively, the solver aims to find offloading decisions that
lead to maximum cost reduction, without violating resource
or QoS constraints. Offloading decisions are partial (as op-
posed to binary) to ensure delivering cost savings even with
limited host capacity. Cost is defined as the serverless exe-
cution cost, which the solver can try to minimize; unlike the
host cost, which is already paid for. The predicted serverless
cost is based on the invocation rate and execution time history,
as well as the capacity required by the function. Therefore,
the solver will prioritize offloading the function with higher
resource usage, higher execution time, or higher invocation
rate, as it will result in a higher cost reduction.

Implementation: We implemented the solver in Python to
leverage its rich optimization and data manipulation packages.
We used the GEKKO [19] package for mixed integer nonlinear

Algorithm 1 Optimization algorithm used by the Solver.
1: α: Locality Weight
2: µ: Adjusted Average CPU Utilization
3: dt

n,i: Funci offloading percent on hostn at timet
4: rpsi: Request per second for Funci
5: ExecTimen,i: Execution time of Funci on hostn
6: Scenarios: All offloading scenarios based on partial decisions.
7: hostn or serverless← scenario[i] ▷ The assigned placement for

Funci in a scenario.
8: Directed Paths: All paths starting from an initial node and end-

ing at a terminal node in a DAG
9: CommLatencyscenario[m],scenario[n]: Communication latency be-

tween Funcm on scenario[m] and Funcn on scenario[n].
10: Slackpath = Durationcritical path−Durationpath
11: ExecLatencyn,i = ExecTimen,i−ServerlessExeci ▷ Added

latency by executing Funci on hostn versus serverless execution.
12: procedure CALCCOST(dt

n,i)
13: Cost = 0 ▷ Assumes hosts with fixed cost regardless of

utilization, e.g., a VM billed at an hourly rate.
14: for Funci ∈ functions do
15: offloadingi = 0
16: for n ∈ offloadingHosts do

17: offloadingi← offloadingi +
dt

n,i

100
18: Cost← Cost+ α×

∣∣∣min(dt
n,i,1)−min(dn,i

t−1,1)
∣∣∣

19: Cost← Cost+(1−α)×costFunci
×rpsi× (0.9- offloadingi)

20: Constraint 1: ∑
Funci∈ f unctions

µ× ExecTimen,i×rpsi ×
dt

n,i

100
≤AvailableCPUhostn

21: Constraint 2: ∑
Funci∈ f unctions

Memi× ExecTimen,i×rpsi×
dt

n,i

100
≤AvailableMemhostn

22: Constraint 3: ∑
n∈offloading hosts

dt
n,i ≤ 90

23: Constraint 4: (only for the latency mode)
24: for scenario ∈ Scenarios do
25: for path ∈ Directed Paths do
26: latency = 0
27: for Funci ∈ path do
28: if scenario[i] != serverless then
29: hostn ← scenario[i]
30: latency← latency+min(dt

n,i,1)×ExecLatencyn,i

31: for Func j ∈path and Func j ∈predecessorsi do
32: latency← latency+CommLatencyscenario[i],scenario[ j]

33: latency≤Slackpath+LatencyTolerance

34: Decision: d∗tn,i (OptimalValue)← argmin
dt

n,i

CALCCOST(dt
n,i)

programming (MINLP), used the CriticalPath [76] package
for slack analysis, and used the Pandas [1] package for storing
logs and efficiently performing complex statistical operations.

7 Host Agents

Let us explain UnFaaSener’s different host agents.
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7.1 Resource Monitor Agent
Implemented in C++, this lightweight agent tracks the CPU
and memory usage at the host. It distinguishes between
UnFaaSener-related processes (including containers running
offloaded functions) and host processes to create differen-
tiated scheduler triggers, described in §5. The monitoring
period is 100 ms in our implementation

7.2 Resource Predictor Agent
The predictor agent, also written in C++, is tightly coupled
with the monitor agent. It periodically (every 1 s in our imple-
mentation) predicts the maximum resource utilization in the
next time window. UnFaaSener’s effectiveness in cost reduc-
tion is as good as the accuracy of the predictions made by this
agent. If predictions are too conservative, the host’s available
capacity will not be well utilized, limiting cost reductions.
Conversely, aggressive predictions risk causing resource con-
tention between offloaded functions and host processes. We
formulate this trade-off using the following metrics:

1. Reclamation Efficiency (RE): RE represents how much
of the available resources could be reclaimed based on
the predicted usage. If predictions always match the peak
resource usage, RE would be 100%.

2. Violation Rate (V): If the predicted usage in a window is
lower than the materialized peak usage, the RE is capped at
100% and a prediction violation event is logged. V denotes
the percentage of predictions leading to a violation.

An ideal predictor would yield RE = 100% and V = 0%. For
each resource dimension (e.g., CPU and memory), the objec-
tive function combining the two looks like this:

PredictionScore = w×RE +(1−w)× (100−V ) (1)
Here, w denotes the resource reclamation weight. By default,
UnFaaSener gives equal importance to reclamation efficiency
maximization and violation minimization (w = 0.5) as it does
not make any assumptions about the host workloads. Further
knowledge about the workload or user’s tolerance of slow-
down for it can change this. We do not explore this angle in
this work and only use w = 0.5. We evaluate the prediction
quality and performance of various prediction policies in §9.9
and derive the one best suited to UnFaaSener.

7.3 Execution Agent
The execution agent subscribes to the pub/sub topic of its
host and is notified on incoming invocations. If that function’s
code is not present on the host, the execution agent proceeds
to download the function’s code and metadata (runtime and
memory limit) with a call to the Google Cloud Functions’ API.
Once the function’s code and metadata are retrieved, a new
docker container image is built using the skeleton container
for the specified runtime (e.g., Python 3.10). We use Docker
Hub [8] to host skeleton images. The agent leverages Docker’s

build utility to generate a local image of the runtime that
contains the function’s code and dependencies. As the image
generation step is computationally expensive, the generated
images are kept on the host for future use. Prior work has
shown that even employing simple keep-alive policies can
notably reduce cold starts [40, 69, 72]. The execution agent
stops an idle container when the time since the end of the last
execution exceeds the keep-alive window (10 minutes), or
when capacity is needed to execute a different function.

UnFaaSener’s execution agent supports concurrent execu-
tion of multiple instances of the same or different functions.
However, the agent queues incoming requests on the host
if the predicted resource availability is more than 90% uti-
lized, or if the current degree of concurrency is at or beyond
the concurrency limit. The execution agent has a feedback
mechanism to set the concurrency limit dynamically based
on observed CPU utilization and performance degradation of
offloaded functions. It starts with assuming one CPU thread
per function, the concurrency limit is thus set to the number of
cores available in the host. Over time, the agent has access to
average container CPU utilization reported by the monitoring
agent. It also has access to execution time trends for functions
allowing it to measure any slowdown. Combining the two, it
calculates the adjusted average CPU utilization as:
µ=min(1,AvgFuncCPUUtil+0.03×(e∆ExecTime−1)) (2)

From this, the concurrency limit is calculated as Core Count
µ .

The insight for this asymmetric feedback mechanism is as
follows: if no performance degradation is sensed, µ directly
reflects the average utilization of docker containers hosting
offloaded functions. However, with slight degradation, µ is
increased super linearly to reduce the concurrency limit. More
details on this process is provided in §A.1.

UnFaaSener’s approach of using pre-solved offloading de-
cisions accelerates the scheduling path. This approach also
makes the scheduler early binding [50]. The distributed nature
of the system introduces some delay from when a burst hits
to the time that the host scheduler updates the offloading deci-
sions. This can create a request build-up on the hosts’ queues.
To prevent QoS violations, the execution agent monitors re-
quests in the queue and if their wait time exceeds a specified
window (2 s by default), that request and all its descendant
function calls are redirected to the serverless platform.

In §4 we described how using the subscription retry pol-
icy of pub/sub can provide a degree of fault tolerance. If no
acknowledgment is received within the specified number of
retries (default 5), the message is redirected to the subscriber’s
dead-letter topic, provided by pub/sub. We have designated
the topic of host(i+1)%numhosts

as the dead-letter topic for hosti.
Additionally, to prevent duplicate execution on the host side,
we have made use of the exactly-once delivery feature. How-
ever, our current implementation lacks complete handling of
a host failure scenario. Although no further offloading occurs
to the failed host, any invocations previously acknowledged
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and queued on that host will be lost.
Offloaded function execution logs are stored locally and

periodically published to a Datastore entity every one thou-
sand logs for backup. This enables a smooth transition to a
new leader host in case of primary host failure.

8 Log Collection

The log collector runs periodically (every 1 minute in our
implementation) on the leader host, collecting execution and
latency logs for serverless as well as host executions logs. The
logs for serverless executions are collected using the Google
Cloud CLI (gcloud [27]). Aside from execution time infor-
mation, serverless logs contain timestamps for the invocation
of the header function that runs exclusively on serverless.
These timestamps are used to calculate the invocation rate
distribution for the workflow, which is used by the solver.

Host execution logs are needed by the solver to enforce the
latency tolerance QoS (discussed in §6). As mentioned in §7.3,
the execution agent writes execution records (start time, end
time, invocation ID, and function ID) to local log caches, and
asynchronously backs them up on the execution log Datastore
entity. In the event of leader failure, the log collector retrieves
execution records from the Datastore entity and stores them in
a pandas dataframe, similar to how local log caches store host
logs. This stored data is readily accessible for the offloading
solver upon activation. To accelerate statistical operations, the
dataframe stores a maximum of N most recent data points per
function-host, with N = 50 yielding favorable results in our
experiments.

9 Evaluation

9.1 Setup, Methodology, and Benchmarks
UnFaaSener has many components and serverless settings are
complex. We try to carefully distill various design and perfor-
mance aspects of UnFaaSener without confusing ourselves
or the reader with unnecessary complexity. Each experiment
conveys specific points to help readers build a mental model.
The majority of our evaluations are from real deployment,
but we also conduct some simulations to stress certain parts
of the system with more usage scenarios. Any reported cost
normalization is based on the scenario where all the functions
of the workflow run on serverless.

9.1.1 Benchmark Applications

We used five real-world serverless applications to evaluate
UnFaaSener; 1) DNA Visualization [28], a script that per-
forms visualization of the input DNA sequence file, 2) Image
Processing [51], an application that performs a sequence of
operations on input images, 3) Text2Speech Censoring [34]
turns short text segments into speech and censors any profani-
ties within the text segment, 4) Regression Tuning [12], which
solves a regression problem using Keras [25], and 5) Video

Benchmark Branch Dyn. Fanout DAG Structure

DNA Visualization ✗ ✗

Image Processing ✗ ✗

Text2Speech ✓ ✗

Regression Tuning ✓ ✗

Video Analytics ✗ ✓

Table 1: Benchmark applications were chosen to represent
various structures present in today’s serverless.

Analytics [13], an application that performs object recogni-
tion on images generated from a video stream. Table 1 shows
the diverse range of structures covered by these applications.
The dynamic fanout column in the table captures whether the
application has a sub-graph with parametrized fanout.

9.1.2 Workload Invocation and Traffic
We use FaaSProfiler [9, 71], a serverless testing tool used by
prior work [50, 66, 72], to invoke traffic patterns precisely.
Depending on the nature of the experiment, we use different
invocation patterns. For evaluating high-level trade-offs or as-
sessing the extremes, using a uniform invocation rate suffices.
For those with co-location scenarios, we use the 2021 Azure
Functions Invocation Trace [6, 86].

9.1.3 Ensuring fair comparisons
We take the following steps to make sure that our reported
gains are not inflated: 1) All cost numbers include the cost
of functions added by our system; 2) all latency numbers
are end-to-end and include the latency overhead introduced
by UnFaaSener; 3) each function is tuned [2] for the most
cost-optimal memory configuration. By making the baseline
serverless functions as cost-efficient as it gets, we ensure that
UnFaaSener’s cost savings are not an artifact of comparing to
bloated functions; 4) when comparing UnFaaSener to alter-
native solutions (§9.5), we ensure that each implementation
is minimal and tuned to the specific offering; 5) we invoke
each application with a set of random inputs; 6) we ignore the
bootstrapping phase measurements, as UnFaaSener tends to
offload more during this phase, leading to more cost savings.

9.2 Latency Mode vs. Cost Mode
Here, we use a VM with 4 vCPUs and 16 GB of memory to
demonstrate how even a relatively small host can be used by
UnFaaSener to offer cost savings. Figure 5 shows the normal-
ized execution cost and end-to-end latency values associated
with running three applications in latency and cost modes. For
each application, we chose the invocation frequencies such
that the maximum offloading (with a low rate) and minimum
offloading (with a high enough rate) are stressed.

As expected, using the cost mode leads to more savings
than the latency mode. It comes at the expense of potentially
increased latency since the solver considers no latency con-
straint when making offloading decisions in the cost mode.
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Figure 5: UnFaaSener’s cost savings and end-to-end latency
in two optimization modes.
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Figure 6: Increasing the latency tolerance in the latency mode
leads to more offloading, and thus more savings.

Even in the latency mode, UnFaaSener can reduce the cost, but
is limited by the default latency tolerance. As the invocation
rates increase, the cost savings achieved by UnFaaSener de-
crease. This is because UnFaaSener is designed to harvest
the unused computing resources of already-allocated hosts.
Therefore, when the invocation rates are high, the system
is fully utilizing the resources, leaving little or no unused
capacity to be harvested.

Later in §9.3, we show how changing the latency tolerance
affects the results in the latency mode.

We measured the added latency of the header function to be
∼50ms. The end-to-end latency values include this overhead.
9.3 Latency Mode and Tolerance Window
In the latency mode, the solver tries respecting a tolerance on
the added latency when making offloading decisions. Figure 6
shows the effect of changing the tolerance window on the
cost (green cross markers) and median latency (purple circle
markers). We studied its effect on two of our benchmarks:
Image Processing and Text2Speech Censoring. The tolerance
windows are set to zero, the median, and twice the median
latency of each workflow when solely run on the serverless
platform (baseline latency). The QoS (baseline + tolerance)
for these applications is depicted with purple dashed lines.

Overall, UnFaaSener manages to offload in a controlled
fashion and complies with the set tolerance window; except
for when latency tolerance of 0 is set for Image Processing.
Image Processing is a chain and thus every offloading is on
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Figure 7: UnFaaSener leverages larger hosts effectively to
increase offloading (reduce cost).

the critical path (see Table 1). This is unlike Text2Speech that
has asymmetric branches, because of which it enjoys higher
cost reductions and a higher safety margin from the QoS line.

9.4 Impact of Host Size
The results presented so far were gathered on a relatively
small host. This was to show that even with a small host, or
equivalently, with a small leftover capacity, UnFaaSener can
offer cost savings. It is worth asking how those results scale if
we use a larger host. To answer this, we scale up the cost-mode
experiments presented in §9.2 on two larger hosts. To prevent
factors other than the resource capacity, we picked larger
hosts from the same VM family as the small host (Google
Cloud’s e2-standard family). For brevity, we only show the
cost saving results for two benchmark applications in Figure 7.
The X-axis is logarithmic, and multiplying invocation rates
appears as a shift to the right. As seen, with increased host
size, the cost saving curve is shifted to the right consistently.

9.5 Comparison to Alternative Solutions
The primary objective of UnFaaSener is reducing the cost
by offloading to pre-paid hosts. To evaluate whether we ac-
complished this goal, we compare the maximum cost savings,
which is also the worst case latency, offered in the cost mode
with two popular serverless workflow platforms: AWS Step
Functions and Google Workflows. We also compare it to using
AWS Lambda functions glued with AWS SNS, and Google
Cloud functions glued with Google Pub/Sub. The latter is the
underlying setup for UnFaaSener. Furthermore, we present
results for UnFaaSener’s latency mode using the default tol-
erance window. Figure 8 compares the average latency and
cost per invocation for each benchmark and platform. We
could not port Text2Speech Censoring benchmark to AWS
as this benchmark utilizes Google Translate’s text-to-speech
API [11]. The cost mode is all about cost reduction. We see
that UnFaaSener is able to trade latency with cost effectively,
lowering the cost by about an order of magnitude. Using the
latency mode limits this cost reduction depending on the la-
tency tolerance expressed by developers (§9.2 and §9.3), and
helps cut down on average latency compared to the cost mode,
but the cost savings are not as significant. It is worth noting
that DNA Visualization, a single-function application, experi-
ences no added latency as it has low coordination overhead.
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Figure 8: Comparison of latency and cost.

Finally, we see that using workflow coordination services
comes with major cost implications. This is because, in addi-
tion to the capacity and invocation cost elements mentioned
in §2.2, the developer has to pay for state transitions in these
offerings [4, 15].

9.6 Adaptive Cost Saving
We are interested in assessing the responsiveness of Un-
FaaSener to host processes. We use the host with 16 vCPUs
from earlier in this experiment. We replay a sample trace from
the 2021 Azure Functions traces [6] using FaaSProfiler [9]
to invoke the Image Processing application. At second 110,
the Graph Analytics workload from CloudSuite 3.0 [7, 65]
is run on the host for about 80 seconds. The workload uses
Apache Spark to perform graph analytics on a large-scale
Twitter dataset and uses all 16 vCPUs as well as 15 GB of
memory. Before and after this window, the host is mostly idle
and fully available for offloading.

Figure 9 shows the cost for each execution of the Image
Processing workflow over time. The timespan for the execu-
tion of the heavy host workload is marked with dashed lines.
Soon after 110 s, the execution agent slows down admitting
new requests and the monitoring agent triggers the scheduler
with a prediction failure trigger due to a sudden host load
spike. New predictions are made, and the solver makes new
offloading decisions for minimal offloading. This is reflected
in increased cost during that period. After the VM workload
ends, the predictor remains cautious briefly before declaring
the majority of the host’s resources as available. Offloading
to the VM resumes as before. The two orders of magnitude
difference in cost is attributed to the non-offloadable header
function taking less than 100 ms to execute, while the rest of
the application takes 3-4 seconds.

9.7 Host Interference
To measure the impact of UnFaaSener on host processes, we
run Text2Speech and Image Processing applications on the
16-core host described in §9.4. We invoke them with the simi-
lar rates to those used in that section, and adhere to using the
cost mode which guarantees maximal offloading, and equiva-
lently, maximum host-side interference. We use three standard
benchmark applications on the host to measure the impact
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Figure 9: UnFaaSener adaptively adjusts offloading to respect
host processes.
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Figure 10: Degradation of host processes is a function of
traffic rate and the resource requirements of the functions.

on CPU, memory bandwidth, and network performance. For
the first two, we use Sysbench [53], in CPU and memory test
modes, respectively, each with 15 active threads. For network,
we use the Iperf [79] benchmark. Figure 10 shows the perfor-
mance of these benchmarks when normalized to that of an
idle host without UnFaaSener running. Across experiments,
the maximum average degradation at maximum offloading
is less than 15%. We find this degradation reasonable con-
sidering that 1) benchmarks used are highly sensitive and 2)
the developer is in the loop and aware of the operation of
UnFaaSener resource harvesting. We observe that sysbench-
mem benchmark experiences significantly higher degradation
for the Text2Speech serverless application. We pinpointed this
to Text2Speech having a function with a 2 GB memory con-
figuration, whereas the largest function for Image Processing
requires 256 MB of memory.

9.8 Pub/Sub Latency Overhead
Using pub/sub allows us to invoke functions on and from
offloading hosts. Here, we characterize the latency overhead
of the Google Pub/Sub [14], used by UnFaaSener.

In our experiment, the publisher is a Google Cloud function
in the East Coast sending payloads to three subscribers: 1) an-
other Google Cloud function in the same region, 2) a Google
Cloud VM in the same region, and 3) a private VM in the
West Coast. We test each publisher-subscriber pair with two
message sizes (10 KB and 1 MB) and two invocation rates
(0.1 rps and 5 rps). These values were driven by a recent char-
acterization of production serverless DAGs [59]. We chose
10 KB and 1 MB message sizes to estimate high-end values
for regular and high-fanout DAGs [59], respectively. Simi-
larly, 5 rps and 0.1 rps rates were chosen as high and medium
average invocation rates based on that characterization. We
collected 250 samples per scenario (3,000 samples in total).
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Figure 11 compares the distribution of latency depend-
ing on the subscriber. Higher message size (1 MB vs. 10 KB),
longer distance (West vs. East Coast), and very low invocation
rate (0.1 rps vs 5 rps) increase the latency. The latter is likely
caused by higher chances of lost connections between the
publisher, forwarder, and subscriber during longer invocation
periods. The wide distributions in Figure 11 reveal Pub/Sub’s
high performance variability. Even for two Google Cloud
functions in the same region, the latency varies from less
than 20 ms to more than a second. Such non-deterministic
variations in Pub/Sub latency alongside high performance
variations of serverless functions motivated us to use confi-
dence intervals statistics for the solver.

9.9 VM Resource Prediction Policy
The predictor agent runs on each host to forecast the maxi-
mum resource utilization anticipated for host processes. It has
two predictors: one for CPU and another for memory.

We dedicate this section to compare various prediction
policies and determine their fitness to be used by the Pre-
dictor agent. To assess prediction policies for a wide range
of VM usage scenarios we rely on simulations. We use the
Azure Public Dataset [29, 30] to simulate different predic-
tion policies for 1 million VMs over a 30-day period. The
dataset includes 5-minute VM CPU utilization readings (min,
average, and max utilization per reading) and has no memory
readings. CPU utilization is inherently more variable than
memory utilization. Besides, CPU utilization percentages can
experience a wider variation range due to CPU being the typi-
cal resource bottleneck in public clouds [45]. These factors
make forecasting CPU utilization a harder task.

We implement eight common time series forecasting meth-
ods and use traces from 100,000 VMs to train the best policy
parameters for them. These trained policy parameters are used
as the initial parameters for test VMs and during the lifetime
of each test VM the parameters are periodically retuned per
VM. A brief description of explored methods and their corre-
sponding parameters (shown in curly brackets) is listed below.
For all policies, we also consider a safeguard margin (m) to

allow exploring conservative predictions. To derive this mar-
gin despite inherent differences between various prediction
methods, we also included m as a training parameter.

Simple Exponential Smoothing (SES) {pars: m,α}:
sn+1 = αxn +(1−α)sn, xn+1 = sn+1× (1+m) (3)

Simple Moving Average (SMA) {pars: m,N}:

xn+1 =
1+m

N

n

∑
n−N+1

xi (4)

The averaging window is limited to the existing number of
observation if there are less than N observations.

Histogram (Hist) {pars: m, p,d}: Recent work [68, 72, 81]
has demonstrated the superior performance of histogram-
based time series forecasting. We implemented a histogram
with a 1% utilization resolution. At each prediction window,
the max observed utilization observed gets rounded to deter-
mine the histogram bin to be incremented. A certain percentile
of the histogram (p) is then used to determine the prediction
for the next window. A high percentile reduces violations,
but reduces reclamation efficiency. Old observations in the
histogram are depreciated using the decay factor (d).

Markov Chain (MC) {pars: m,r,o}: Markov Chains have
been used for time series forecasting in various problem do-
mains [18, 23, 49]. We build a simple MC predictor for CPU
prediction. A state transition matrix (STM) captures the his-
tory of state transitions. Each state is a range of CPU utiliza-
tion percentages; with state resolution (r) of 5%, there are a
total of 100

5 = 20 states. The current state is determined based
on the latest utilization observation: i = ⌈100%/xn⌉, and the
forecasted utilization is:

xn+1 =
∑
⌈100%/r⌉
j=1 ST Mi, j× ( j+o)

∑
⌈100%/r⌉
j=1 ST Mi, j

× (1+m) (5)

Here, o is an offset to compensate quantization of values.
Other predictors: We also implemented Double Exponen-

tial Smoothing, Autoregressive, Passive Aggressive Regres-
sion, and ARIMA predictors. We do not present their descrip-
tion and results for brevity due to their mediocre performance
compared to SES and SMA despite more complexity.

Figure 12 compares prediction scores for these four poli-
cies. It also shows an Oracle policy where future is known, in
which case RE is always 100% and V is always 0%. We only
include VMs with a minimum lifetime of 30 minutes (65%
of all VMs), as 5-minute readings mean that shorter lifetimes
require 4 or fewer predictions; too few to draw meaningful
statistical conclusions from. We see that any active prediction
policy is significantly better than relying on the latest obser-
vation of peak utilization. While we picked MC for delivering
slightly better scores, we do not observe considerable differ-
ences among these policies. To better understand what limits
prediction scores, we look at resource reclamation efficiency
and prediction violations of the MC prediction policy sepa-
rately, as a function of VM lifetime (Figure 13). Results here
include any VM with lifetime of at least 15 minutes (91%
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Figure 13: Resource reclamation efficiency and prediction
violations as a function of VM lifetime for 1 million VMs.

of all 1 million VMs). We observe that with increased VM
lifetime, the resource efficiency is increased and violations are
reduced. This is not surprising, as with longer history, policy
parameters can be better trained for each VM.

10 Related Work
Table 2 compares UnFaaSener with the related works target-
ing offloading in the serverless domain. For a category of
related work, the application is primarily deployed on VMs
and serverless plays the backup role at scale-out, while new
VMs are being provisioned [43, 47, 63, 84, 87]. LIBRA [67]
extends these works by simultaneously utilizing FaaS for the
low-rate bursty portion of the traffic. Reliance on VMs as the
primary infrastructure limits the scope of such systems to spe-
cific domains (as seen in Table 2), and in effect distances them
from serverless’s high scalability and pay-per-use features.

Another category of work proposes building hybrid IaaS-
FaaS deployments [56, 75]. The main drawback of these sys-
tems is adding a second scheduling/control layer on top of
that of serverless platforms. Moving away from the sched-
uler of public serverless offerings as the primary scheduler
and adding a new layer limits the scalability of these ap-
proaches, and comes with reliability and security implications.
UnFaaSener relies on the serverless scheduler to ensure a se-
cure and scalable gateway to external events, and by using
pre-solved decisions, eliminates added scheduling overheads.

Lastly, a category of work proposes modifying the server-
less platform to enable serverless functions to use resource-
harvesting VMs [86], idle resources from over-allocated
serverless functions [83], and users’ VMs on the same plat-
form [78]. These proposals modify cloud providers exten-
sively, which is out of reach of end users, and limit offloading
to the scheduler’s scope, usually within the same cluster. Un-

Related Supports Scheduling/ General Resource Primary Partial
Work Complex Control Path Purpose Harvesting Deployment Offloading

DAGs Decisions
Splice ✗ FaaS scheduler ✓ ✗ Hybrid ✗
[75] + Custom Scheduler

Spock ✗ FaaS scheduler ✗ ✗ IaaS NA
[43] + Custom Scheduler (ML Inference)

SplitServe ✗ FaaS scheduler ✗ ✗ IaaS NA
[47] + Custom Scheduler (Spark Jobs)

MArk ✗ FaaS scheduler ✗ ✗ IaaS NA
[84] + Greedy Instance Plan (ML Inference)

Amoeba ✗ FaaS scheduler ✗ ✗ Hybrid
[56] + Custom Controller (Microservices) ✗

FEAT ✗ FaaS scheduler ✓ ✗ IaaS
[63] + Custom Controller NA

LIBRA ✗ FaaS scheduler ✓ ✗ IaaS ✓ (offloads
[67] + Custom Controller excess traffic)

ServerMore ✗ FaaS scheduler ✓ ✓ FaaS ✗
[78] + Custom Controller

Skedulix ✓ FaaS scheduler ✓ ✗ Private ✗
[31] + Custom Scheduler FaaS

Kraken [20] ✓ Kraken Scheduler ✓ ✗ FaaS NA
Freyr ✗ Serverless Controller ✓ ✓ FaaS NA
[83] + Resource Manager

Zhang et al. ✗ FaaS scheduler ✓ ✓ FaaS NA
[86]

BeeHive ✗ FaaS scheduler ✗ ✗ IaaS ✓ (sets
[87] + Custom Runtime (Web Apps) offloading ratio)

UnFaaSener ✓ FaaS scheduler ✓ ✓ FaaS ✓
+ lightweight LUT

Table 2: The taxonomy of related work.

FaaSener works on top of existing serverless systems, requires
no change to the platform, and puts no limit on the location
of hosts it is harvesting resources from.

11 Discussion

Threat model. UnFaaSener offloads users’ functions to their
own offloading hosts. This simplifies the threat model by
eliminating co-location of different teams’ applications on the
same host. Developers have full control: they specify offload-
ing hosts, install host agents, and can unsubscribe hosts at any
time. UnFaaSener’s execution agent runs offloaded functions
in separate Docker containers for isolation, but this also brings
security implications [77]. In this context, we assume that 1)
the host, which belongs to the same development team, is not
malicious and 2) the developer is aware of the data protection
implications of offloading functions.

12 Conclusion

UnFaaSener enables serverless developers to leverage the
unused capacity of their VMs or on-premise servers, yielding
substantial cost savings without modifying existing serverless
platforms. UnFaaSener lays a foundation for researchers to
explore the potential of the proposed serverless offloading
mechanism for diverse purposes beyond cost optimization.
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har Irfan Chaudhry, Prateek Sharma, Kapil Arya, Kevin
Broas, Eugene Bak, Mehmet Iyigun, and Ricardo Bian-
chini. Memory-harvesting VMs in cloud platforms. In
Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, page 583–594. ACM, 2022.

[40] Alexander Fuerst and Prateek Sharma. FaasCache:
Keeping serverless computing alive with greedy-dual
caching. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’21, page
386–400. ACM, 2021.

[41] Philipp Gackstatter, Pantelis A. Frangoudis, and
Schahram Dustdar. Pushing serverless to the edge with
webassembly runtimes. In 2022 22nd IEEE Interna-
tional Symposium on Cluster, Cloud and Internet Com-
puting (CCGrid), pages 140–149, 2022.

[42] Samuel Ginzburg and Michael J Freedman. Server-
less isn’t server-less: Measuring and exploiting resource
variability on cloud FaaS platforms. In Proceedings of
the 2020 Sixth International Workshop on Serverless
Computing, pages 43–48, 2020.

[43] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mah-
mut Taylan Kandemir, Bhuvan Urgaonkar, George Ke-
sidis, and Chita Das. Spock: Exploiting serverless func-
tions for SLO and cost aware resource procurement in
public cloud. In 2019 IEEE 12th International Confer-
ence on Cloud Computing (CLOUD), pages 199–208,
2019.

[44] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui
Feng, Liang Mao, and Yungang Bao. Who limits the
resource efficiency of my datacenter: An analysis of

892    2023 USENIX Annual Technical Conference USENIX Association

https://cloud.google.com/sdk/gcloud
https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV1.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV1.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzurePublicDatasetV1.md
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/


Alibaba datacenter traces. In Proceedings of the Inter-
national Symposium on Quality of Service, IWQoS ’19.
ACM, 2019.

[45] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. Protean: VM allocation service at scale.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 845–861.
USENIX Association, November 2020.

[46] Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Serving deep learning models in a serverless
platform. In 2018 IEEE International Conference on
Cloud Engineering (IC2E), pages 257–262, 2018.

[47] Aman Jain, Ata F. Baarzi, George Kesidis, Bhuvan Ur-
gaonkar, Nader Alfares, and Mahmut Kandemir. Split-
Serve: Efficiently splitting apache Spark jobs across faas
and iaas. In Proceedings of the 21st International Mid-
dleware Conference, Middleware ’20, page 236–250.
ACM, 2020.

[48] Congfeng Jiang, Yitao Qiu, Weisong Shi, Zhefeng Ge,
Jiwei Wang, Shenglei Chen, Christophe Cerin, Zujie
Ren, Guoyao Xu, and Jiangbin Lin. Characterizing co-
located workloads in Alibaba cloud datacenters. IEEE
Transactions on Cloud Computing, 2020.

[49] Yuxuan Jiang, Mohammad Shahrad, David Wentzlaff,
Danny HK Tsang, and Carlee Joe-Wong. Burstable
instances for clouds: Performance modeling, equilib-
rium analysis, and revenue maximization. IEEE/ACM
Transactions on Networking, 28(6):2489–2502, 2020.

[50] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos
Kozyrakis. Hermod: Principled and practical scheduling
for serverless functions. In Proceedings of the 13th Sym-
posium on Cloud Computing, SoCC ’22, page 289–305.
ACM, 2022.

[51] Jeongchul Kim and Kyungyong Lee. Functionbench: A
suite of workloads for serverless cloud function service.
In 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), pages 502–504. IEEE, 2019.

[52] Haneul Ko, Sangheon Pack, and Victor C. M. Leung.
Performance optimization of serverless computing for
latency-guaranteed and energy-efficient task offloading
in energy harvesting industrial IoT. IEEE Internet of
Things Journal, 2021.

[53] Alexey Kopytov. Sysbench: a system performance
benchmark. http://sysbench. sourceforge. net/, 2004.

[54] Samuel Kounev, Cristina Abad, Ian T. Foster, Nikolas
Herbst, Alexandru Iosup, Samer Al-Kiswany, Ahmed
Ali-Eldin Hassan, Bartosz Balis, André Bauer, André B.
Bondi, Kyle Chard, Ryan L. Chard, Robert Chatley, An-
drew A. Chien, A. Jesse Jiryu Davis, Jesse Donkervliet,
Simon Eismann, Erik Elmroth, Nicola Ferrier, Hans-
Arno Jacobsen, Pooyan Jamshidi, Georgios Kousiouris,
Philipp Leitner, Pedro Garcia Lopez, Martina Maggio,
Maciej Malawski, Bernard Metzler, Vinod Muthusamy,
Alessandro V. Papadopoulos, Panos Patros, Guillaume
Pierre, Omer F. Rana, Robert P. Ricci, Joel Scheuner,
Mina Sedaghat, Mohammad Shahrad, Prashant Shenoy,
Josef Spillner, Davide Taibi, Douglas Thain, Animesh
Trivedi, Alexandru Uta, Vincent van Beek, Erwin van
Eyk, André van Hoorn, Soam Vasani, Florian Wamser,
Guido Wirtz, and Vladimir Yussupov. Toward a Def-
inition for Serverless Computing. In Serverless Com-
puting (Dagstuhl Seminar 21201), volume 11, pages 34–
93. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 2021.

[55] Alok Gautam Kumbhare, Reza Azimi, Ioannis
Manousakis, Anand Bonde, Felipe Frujeri, Nithish
Mahalingam, Pulkit A. Misra, Seyyed Ahmad Javadi,
Bianca Schroeder, Marcus Fontoura, and Ricardo
Bianchini. Prediction-Based power oversubscription
in cloud platforms. In 2021 USENIX Annual Techni-
cal Conference (USENIX ATC 21), pages 473–487.
USENIX Association, July 2021.

[56] Zijun Li, Quan Chen, Shuai Xue, Tao Ma, Yong Yang,
Zhuo Song, and Minyi Guo. Amoeba: QoS-awareness
and reduced resource usage of microservices with server-
less computing. In 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages
399–408, 2020.

[57] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, Bing-
sheng He, and Minyi Guo. The serverless computing
survey: A technical primer for design architecture. ACM
Comput. Surv., 54(10s), September 2022.

[58] Álvaro López García, Jesús Marco De Lucas, Marica
Antonacci, Wolfgang Zu Castell, Mario David, Mar-
cus Hardt, Lara Lloret Iglesias, Germán Moltó, Marcin
Plociennik, Viet Tran, Andy S. Alic, Miguel Caballer,
Isabel Campos Plasencia, Alessandro Costantini, Ste-
fan Dlugolinsky, Doina Cristina Duma, Giacinto Don-
vito, Jorge Gomes, Ignacio Heredia Cacha, Keiichi Ito,
Valentin Y. Kozlov, Giang Nguyen, Pablo Orviz Fernán-
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A Appendix

A.1 Dynamic Concurrency Feedback Details
As mentioned in §7.3, the execution agent uses a feedback
mechanism to dynamically set the concurrency limit.
Execution time changes during the time (∆ExecTime), which
is used as feedback in Equation 2, is calculated as:

En
t ← Current Average Execution Time for Functionn

En
t ← Current Execution Time for Functionn

En
t+1

= 0.8×En
t
+0.2×En

t

∆En
t = En

t −En
t−1

∆ExecTime = ∑
n∈functions

∆En
t

In order to prevent frequent changes in the concurrency
limit, we quantized the value of the µ calculated by Equation 2
into [0.33,0.66,1]. The weight of the exponential term in
Equation 2 (0.03) was determined empirically, considering
this quantization. Figure 14 shows the feedback mechanism
used for setting the concurrency limit.

Execution 
Agent

Monitoring 
Agent

CPU Util per
Container

Δ Execution Time

μ Concurrency Limit 
(Core Count /μ) 

Figure 14: The feedback mechanism for dynamic concur-
rency.

A.2 Sample DAG JSON description file

1 {
2 "workflow": "Text2SpeechWorkflow",
3 "workflowFunctions": [
4 "Text2SpeechWorkflow_GetInput",
5 "Text2SpeechWorkflow_TransferInput",
6 "Text2SpeechWorkflow_Profanity",
7 "Text2SpeechWorkflow_Text2Speech",
8 "Text2SpeechWorkflow_Conversion",
9 "Text2SpeechWorkflow_Compression",

10 "Text2SpeechWorkflow_MergeFunction",
11 "Text2SpeechWorkflow_Censor"
12 ],
13 "initFunc":"Text2SpeechWorkflow_GetInput",
14 "successors": [
15 ["Text2SpeechWorkflow_TransferInput"],
16 ["Text2SpeechWorkflow_Profanity",
17 "Text2SpeechWorkflow_Text2Speech"],
18 ["Text2SpeechWorkflow_MergeFunction"],
19 ["Text2SpeechWorkflow_Conversion"],
20 ["Text2SpeechWorkflow_Compression"],
21 ["Text2SpeechWorkflow_MergeFunction"],
22 ["Text2SpeechWorkflow_Censor"],
23 []
24 ],
25 "predecessors": [
26 [],
27 ["Text2SpeechWorkflow_GetInput"],
28 ["Text2SpeechWorkflow_TransferInput"],
29 ["Text2SpeechWorkflow_TransferInput"],
30 ["Text2SpeechWorkflow_Text2Speech"],
31 ["Text2SpeechWorkflow_Conversion"],
32 ["Text2SpeechWorkflow_Compression",
33 "Text2SpeechWorkflow_Profanity"],
34 ["Text2SpeechWorkflow_MergeFunction"]
35 ]
36 }

Figure 15: A sample DAG JSON description file.
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Abstract
Within the operating-system’s memory-management sub-

system, the page-frame allocator is the most fundamental com-
ponent. It administers the physical-memory frames, which
are required to populate the page-table tree. Although the
appearance of heterogeneous, nonvolatile, and huge memo-
ries has drastically changed the memory hierarchy, we still
manage our physical memory with the seminal methods from
the 1960s.

With this paper, we argue that it is time to revisit the de-
sign of page-frame allocators. We demonstrate that the Linux
frame allocator not only scales poorly on multi-core sys-
tems, but it also comes with a high memory overhead, suffers
from huge-frame fragmentation, and uses scattered data struc-
tures that hinder its usage as a persistent-memory allocator.
With LLFREE, we provide a new lock- and log-free allocator
design that scales well, has a small memory footprint, and
is readily applicable to nonvolatile memory. LLFREE uses
cache-friendly data structures and exhibits antifragmentation
behavior without inducing additional performance overheads.
Compared to the Linux frame allocator, LLFREE reduces
the allocation time for concurrent 4 KiB allocations by up
to 88 percent and for 2 MiB allocations by up to 98 percent.
For memory compaction, LLFREE decreases the number of
required page movements by 64 percent.

1 Introduction

In any virtual-memory subsystem, the allocation of physical
memory is a vital base primitive. Classically, the OS hands out
physical memory in page frames of MMU-imposed sizes and
uses simple free lists [42, 50] (Windows, Darwin) or special-
ized buddy-allocators [28] (Linux, FreeBSD) to manage mul-
tiple frame sizes. However, recent hardware trends (i.e., high
core counts and NVRAM) challenge these frame-allocator
designs.

One significant trend is the appearance of fast [49] byte-
addressable nonvolatile RAM (NVRAM) in the form of Intel
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Figure 1: Linux frame allocator performance for concurrent allocations
of 4 KiB (order 0) and 2 MiB (order 9) huge frames.

Optane DIMMs. Inspired by their persistence property, new
programming models [5, 39, 45, 52], file systems [10, 40, 48],
and crash-tolerant data structures [8, 13, 46] were proposed
and evaluated. And while Intel’s announcement [25] to wind
down its Optane business will make NVRAM harder to
obtain in the next years, it has been shown that low-cost,
high-capacity NVRAM is feasible and has significant po-
tential [1, 23, 31]. Furthermore, multiple researchers real-
ized that persistence and scalability are deeply entangled
properties [26, 29] that benefit both from lock-free algo-
rithms [8, 16, 46] and constructive avoidance of inconsistent
intermediate states.

Together with many cores competing for resources, large-
capacity NVRAM modules provoke the question of how, at
which costs, and with what guarantees the OS hands out the
available memory, which might be used for persistent data.
For example, for databases, current virtual-memory subsys-
tems can have a significant impact on their design [12, 35],
query-processing speeds [14] and buffer management [12,32].
Therefore, we believe it is time to revisit the whole virtual-
memory stack, starting from the bottom; the frame allocator.

First, we investigated whether the Linux frame alloca-
tor [18] and its underlying buddy system [28] still match to-
day’s requirements, not only for safely allocating frames from
NVRAM but also for the scalable management of DRAM.
Fig. 1 shows the multi-core scalability of bulk allocations.
With all 26 cores allocating in parallel, 4 KiB allocations slow
down by a factor of ten (94 ns→984 ns), while 2 MiB alloca-
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tions are even 27 times slower! This poor scalability affects
many multicore and memory-heavy workloads [7]. The root
causes are the scattered allocator state and the usage of global
locks, both of which are also problematic [16, 17] for a crash-
tolerant NVRAM adaptation.

About this paper
We propose LLFREE, a persistent, lock- and log–free page-
frame allocator that: (1) focuses on memory-management
unit (MMU)-specific memory sizes, (2) scales well on mul-
ti-core systems by reducing memory sharing, (3) is memory
efficient due to its small amount of metadata, (4) has auto-
matic huge-frame defragmentation, and (5) is always in a
consistent state and, thus, well suited for persistent memory.
In this paper, we claim the following contributions:

• We explore the weaknesses of the Linux buddy allocator
and simpler list-based frame allocators.

• We derive design principles for hardware-centric lock-
and log-free physical memory management.

• With LLFREE, we provide a page-frame allocator that
is suited for both volatile and nonvolatile memory.

• We replace the Linux buddy allocator with LLFREE and
conduct a comprehensive evaluation to compare the two
allocators in terms of performance, scalability, spatial
overhead, fragmentation behavior, and crash consistency.

2 Problem Analysis: Linux Frame Allocator

The page-frame allocator must provide physical-memory
frames, which have MMU-specific granularities, are naturally
aligned, and are used to set up virtual address spaces. For
this paper, we will stick to the AMD64 MMU and its frame
sizes (4 KiB, 2 MiB, 1 GiB), which we call natural (alloca-
tion) sizes. However, the general design can be adapted to
other page sizes. For 4 KiB, we will use the term base frame,
for 2 MiB huge frame, and for 1 GiB giant frame, respectively.
While some kernels (e.g., Windows and Darwin) use sim-
ple free lists [42, 50], Linux (and FreeBSD) use the buddy
system [18, 28].

Linux Buddy Allocator A buddy allocator avoids external
fragmentation by allowing only allocation sizes of the form
2o×P, where P is the smallest size and o is the allocation
order. For each order, the buddy system keeps a bucket of
naturally-aligned free blocks. If an allocation hits an empty
bucket o, a block from the bucket o + 1 is requested and
halved into two buddies, whose start addresses differ only in
a single bit. One buddy is returned, the other is put into the
order-o bucket. The free operation tries to recursively merge
the block with already freed buddy blocks before putting the
block into a bucket. To speed up merging, buckets are usually
implemented as doubly-linked lists and a one-bit flag is used
to track which blocks are available for merging.
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Figure 2: Requested allocation sizes during system startup and a
120 s memcached+memtier benchmark.

Linux employs one buddy allocator per memory
zone (e.g., for each NUMA node), supports the orders
o ∈ {0, . . . ,10}, and uses the base-frame size as P. Therefore,
the supported sizes are between 4 KiB and 4 MiB on AMD64.
Unlike a general-purpose buddy allocator, Linux does not
store the list pointers within the free memory, as this would
require all memory to be mapped, which is not supported
by all architectures. Instead, it uses the struct page for its
metadata.1 Also, each zone allocator is protected by a spin
lock, which serializes all split and merge operations. In order
to reduce contention on these locks, Linux further employs
per-CPU caches for the most frequently-used orders.

Problem 1: Mixing of Concerns Linux’s frame allocator is
not only used for hardware-sized page frames but also for allo-
cating contiguous physical-memory ranges of various orders.
Although this was necessary for allocating direct-memory
access (DMA) buffers before the widespread adoption of I/O-
MMUs, there is no technical requirement for this anymore.
However, the Linux developers still use those non-native sizes
to allocate larger kernel objects (e.g., stacks). To get a feeling
for this, we recorded the requested sizes during boot and a
subsequent memcached benchmark (see Fig. 2): We see that
userspace memory gets only requested for the natural orders 0
and 9, whereas the kernel mostly requests non-natural orders.
Allocating contiguous blocks of frames for kernel objects
might still be beneficial to save TLB entries (Linux identity-
maps all physical memory into the kernel space with giant
frames). However, by mixing frame- and kernel-object alloca-
tion, the allocator has to provide all orders via its interface,
which leads to a number of secondary problems.

Problem 2: Merge Cost Because there are nine buddy
orders between the base and huge frames, the transition be-
tween both is costly: In the worst case, starting from 512
4 KiB frames, it takes 511 buddy-merge operations to form
a single 2 MiB frame. For each merge and under lock, we
have to manipulate list pointers in five cache lines; four are in
struct pages that are usually not yet in the cache.

Problem 3: Scalability Furthermore, as we have seen in
Fig. 1, these already costly operations scale poorly if re-

1With struct page, Linux has a per-frame information store that is used
and repurposed by different subsystems. On AMD64, it is 64 bytes large.
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quested by multiple threads. The reason for this is the con-
tention at the mentioned per-zone lock, which Linux tries
to mitigate by maintaining per-CPU caches for some orders.
Each per-CPU cache keeps a list of free blocks, which are
drained on memory pressure or if the cache exceeds a water-
mark. While for a long time, only order-0 allocations were
cached, Linux 5.13 extended the caches to order 1-3 and or-
der 9 (2 MiB). However, allocation-heavy workloads easily
overwhelm these per-CPU caches. Also, they aggravate frag-
mentation and complexity.
Problem 4: Huge-Frame Fragmentation Although the
buddy system prioritizes the smallest-fitting bucket, it has
a problem with huge-page fragmentation: For example, if a
single 4 KiB piece of an otherwise free 2 MiB frame is in use,
the other 511 base frames exist as 9 blocks of different orders
(4 KiB to 1 MiB). Since buckets are unsorted sets and the
allocator has no concept of “almost-full huge pages”, those
blocks have equal chances of being allocated as any other
block from any other huge frame. As a result, the buddy sys-
tem does not specifically aim to minimize the fragmentation
of huge frames. We will discuss this further in Sec. 5.6.

The per-CPU caches aggravate fragmentation as they delay
merge operations. Even if the last missing 4 KiB frame of
a 2 MiB frame has already been freed, it may reside in a
per-CPU cache that would have to be flushed to complete
the huge frame. Furthermore, as the per-CPU cache hides
memory from the buddy allocator, we cannot employ an intra-
bucket heuristic that increases the likelihood of a huge-frame
merge (e.g., appending to the end of the bucket list). On the
contrary, a recently freed block that could complete a 2 MiB
frame is more likely to be allocated again.

In order to reduce huge-page fragmentation, Linux has
supported “high-atomic page blocks” since 2015 to isolate
larger blocks and prevent them from being fragmented by
small allocations. Furthermore, Linux also employs active
defragmentation (memory compaction), where a background
task iterates through a memory zone and moves pages to the
beginning, clearing larger chunks at the end. However, both
induce additional complexity.
Problem 5: Persistent Allocations Given its current struc-
ture, the Linux frame allocator is unsuitable for persistent
allocations. For persistent NVRAM zones, the allocator must
be able to recover its state in case of a power loss to en-
sure the persistence of the required metadata. This is chal-
lenging [17] for complex algorithms (such as lock-protected
recursive frame merging), distributed state (such as doubly
linked lists), or redundancy (such as per-CPU caches). While
in theory, each of these problems could be solved with ex-
tra logging protocols [36, 41, 45], the performance, memory,
and complexity impact of doing so would be excessive. Also,
this logging overhead would have to be paid for every reg-
ular operation despite crashes being usually extremely rare.
Thus, we do not consider this as a realistic option. To our
knowledge, there are currently no persistent (page-frame) al-

locators that achieve allocation times close to their volatile
counterparts [3, 9, 33, 36, 41, 45, 52].
Problem Summary: Complexity In the end, the Linux
physical-memory allocator suffers from complexity. Mixing
the concerns of frame-sized and other allocation quantities
(Problem 1) motivates the buddy structure, which, however,
leads to high merge costs (Problem 2) and lock-based, doubly-
linked traversals that hamper multi-core scalability (Problem
3). This is mitigated by an increasing number of per-CPU
caches, which (combined with the buddy system) unfortu-
nately worsens huge-frame fragmentation (Problem 4), requir-
ing additional mechanisms such as high-atomic page blocks
and memory compaction that further increase the complexity.
All this results in a design that is unsuitable for persistent allo-
cations (Problem 5) due to redundant and distributed storage
of data and state.

All these design decisions were most probably well-
founded when they were made. We argue that the time has
come to revisit the design and structure of the most fundamen-
tal memory manager in our systems, the page-frame allocator.

3 The LLFREE Page-Frame Allocator

We originally designed LLFREE as a page-frame allocator
for natural frame sizes (4 KiB, 2 MiB) only, with the goal of
high scalability and suitability for persistent allocations. For
the Linux integration, we later had to extend it to support also
non-natural allocation orders, which to our surprise, worked
out without having to compromise on any of our design goals.
In the following, we describe the original design, while the
integration particularities are left to Sec. 4.

3.1 Design Principles
For our allocator, we specified three major design principles:

Respect Hardware The hardware characteristics define both
the structural elements for and the features of the software
implementation. We leverage MMU-defined frame sizes,
cache-line granularity in data structures, and available atom-
ics in algorithms.

Avoid Sharing On systems with multiple CPUs, both true
and false sharing are major bottlenecks for scalability, be-
coming even more significant on NUMA systems. Locks are
a frequent cause of sharing. We reduce access to shared data
structures and do not use locks.

Careful Redundancy Redundant information (such as soft-
ware caches and replicas) must be kept in sync. This is
especially difficult to accomplish when targeting crash con-
sistency on persistent memory since a potential crash can
disrupt the synchronization of these redundant data struc-
tures. Therefore, we strictly limit redundancy for the state
that is required for crash recovery.
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We do not claim fundamental novelty for these principles: The
first two are well established in the domain of scalable OS
kernel development; their benefits have been reported many
times [6, 15, 22, 47]. This does not particularly hold for the
third principle, which is more targeted at reaching crash con-
sistency than scalability. On the contrary, employing rather
than limiting redundancy is a common technique in kernel de-
sign to avoid sharing and improve scalability (as we have seen
in the previous section), so there is a trade-off between the two.
This deep entangling of persistence and scalability, as well
as the importance of avoiding intermediate states for crash
consistency on NVRAM, has already been reported in the do-
main of data structures and algorithms [8, 16, 26, 29, 46]. The
contribution of this paper is the rigorous combination and ap-
plication of these principles and dealing with their trade-offs
in the design of a page-frame allocator that is both scalable
on DRAM and optionally crash-consistent on NVRAM.

3.2 LLFREE: Design Overview
Fig. 3 depicts the architecture of LLFREE, which has been de-
signed for the natural allocation orders 0 (4 KiB base frames)
and 9 (2 MiB huge frames). Conceptually, LLFREE is divided
into two levels: A lower level that performs the actual allo-
cations and an upper level that implements allocation strate-
gies to avoid sharing and fragmentation. Roughly speaking,
the lower level takes responsibility for crash consistency –
only its state needs to be kept persistent on a crash-consistent
NVRAM zone – while the upper level provides for scalability.

3.2.1 Lower Level - Allocation Mechanisms

The lower level manages de/allocation of base and huge
frames. For this, it employs a table entry and a bit field of
512 bits (Fig. 3: 2 MiB Children, 4 KiB Bit Fields) for every
huge frame to mark the free (0) and taken (1) base frames
from this huge frame. The number of free base frames is also
maintained in the counter cL. Base frames are allocated by

first atomically decrementing cL (this prevents races for the
last free frame) and then searching the bit field for a 0 bit, an
operation supported by special processor instructions. Huge
frames are allocated by just changing the counter cL from
512 to 0 and setting the allocated flat flag a, all within a sin-
gle 16-bit compare-and-swap (CAS) operation. The bit field
remains untouched, and all-zero in this case, the necessary
bookkeeping (e.g., for crash recovery) is done in the a flag.

Thus, in most cases, the lower-level allocator needs to touch
only two cache lines for de/allocating a base frame (table
entry, bit field) and just one cache line for a huge frame (table
entry).2 Still, even if the current child/tree does not contain
enough frames for an allocation, our sequential search fits
well with the processor’s cache-line prefetching.

3.2.2 Upper Level - Allocation Strategies

The upper level provides for scalability by using allocation
strategies that constructively minimize (false) sharing and
huge-frame fragmentation. Technically, it manages the physi-
cal memory as an array of chunks we call trees (Fig. 3): Each
tree root refers to a lower-level table with N children that, in
turn, refer to N bit fields, each managing 512 frames, similar
to a page-table tree. We chose N = 32 so that child arrays
(in the lower level) occupy a single cache line; hence a tree
manages 16384 base frames, respectively 64 MiB.

Each tree root contains the count cU of free base frames
(for allocation strategies), as well as a reserved flag r (for per-
CPU pinning). Our early benchmarks showed that allocations
suffer from false sharing when entries in the lower-level child
array are updated concurrently. Hence, to avoid sharing, each
CPU can pin (r = 1) a preferred tree for its allocations.

If there are no free frames left in the preferred tree, a new
tree has to be reserved. The reservation algorithm follows
a search heuristic to avoid fragmentation of huge frames by
using cU to classify trees into one of three classes:

2One additional cache-line access will happen in the upper level.
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allocated Almost all frames are taken (cU < 12.5 %).
free Almost all frames are free (cU > 87.5 %).

partial Everything in between.

The heuristic prioritizes partial trees over free and allocated
ones. Thereby, (almost) free trees have a higher chance of
becoming entirely free over time. However, we still select
free trees before allocated ones for a new CPU-preferred tree,
as the latter bear a high probability that allocations might
(soon) fail again, especially for huge frames. This is a trade-
off between performance and fragmentation.

The thresholds determining whether a tree is free, partial, or
allocated are configurable. Our benchmarks showed that the
thresholds of 12.5 percent (2048 free base frames for N = 32)
for free and 87.5 percent for allocated ones are sufficient
to avoid fragmentation (Sec. 5.6). The actual search for an
appropriate tree is done in the following order:

1. First, the neighborhood of the current CPU tree is
searched for partial or free trees, with neighborhood
being defined as the 31 other tree roots that reside on the
same cache line.

2. If this does not succeed, the whole trees array is sequen-
tially searched (first-fit) for a partial tree.

3. If no partial tree is found, the search is repeated for a
free tree or an allocated one with enough free pages.

4. As last resort, the allocator drains (unreserves) the trees
of other CPUs and steals them.

Note, however, that even the slow path of reserving a new
tree does not require locks and can be done fully parallel, as
the reservation itself requires only the atomic update of the
reserved flag of an entry. Given a memory zone of 256 GiB,
the algorithm accesses 128 cache lines in the worst case.

CPU-Local Tree Roots: Despite using per-CPU reserva-
tions, the updates on the tree array can still suffer from false
sharing when multiple CPUs concurrently update the free
counters of entries sharing a cache line. This can be solved in
two ways: either by aligning the 2 B tree entries to the cache
line size (64 B on x86) or by splitting the counter into a global
and a CPU-local part. We followed the second approach to
keep the memory and cache overhead low. On tree reserva-
tion, a CPU moves the free counter cU of the reserved tree
to its CPU-local data cP and sets cU to zero. Allocations and
frees from this CPU now change only the local counter cP.
Allocations from other CPUs no longer happen, as the tree is
reserved, but foreign frees from previous allocations may still
happen. In this case, only the global counter cU in the trees
array is incremented, which avoids invalidating the cache line
of the respective local entry. The counters are synchronized
if a local allocation runs out of memory (cP = 0) or, in rare
cases, by remotely draining a reserved tree from another CPU,
which also clears the tree’s reservation.

Besides the local free counter cP, the CPU-local entries
also contain an in-tree reservation flag t, and the start PFN,

combined into a single 64 bit data type. The start PFN con-
tains the last allocated base frame number; it acts as a last-fit
pointer to speed up allocations in the child array (divide by
512) and also identifies the reserved tree (divide by 512 ·N).

The t flag is atomically set during the reservation of a new
per-CPU tree to prevent races with remote draining or parallel
reservation attempts. The latter could only happen if the zone
is too small for one tree per core. If this is the case, the per-
CPU data is shared between multiple cores and the t-flag
coordinates the allocation of a new tree.3

Reserve-on-Free: While per-CPU trees prevent contention
and false sharing for concurrent allocations, frees must always
go to the tree that was the origin of the respective frame. If the
source CPU of the frame has meanwhile switched to a new
tree or the free is invoked from another CPU, this tree is not
the per-CPU tree. Especially on memory-intensive workloads,
frees thereby may still suffer from false sharing.

To mitigate this, LLFREE provides a reserve-on-free heuris-
tic that assumes that allocation and free workloads exhibit
locality: A CPU reserves a tree as its preferred tree after F
consecutive free operations targeted it, expecting that subse-
quent frees will also affect this tree (cF and i in Fig. 3). The
threshold F = 4 performed best in our benchmarks.

4 KiB Bit Fields
2 MiB Children

DRAM - Zone

Per-CPU

Page Frames Metadata

64 MiB Trees

NVRAM - Zone

Page Frames Persistent
Metadata

...

Zone Page

...

DRAM

Volatile
Metadata

Lower Level Upper Level

Figure 4: Layout of LLFREE-managed memory zones in persistent
and non-persistent memory.

3.2.3 Crash Consistency

LLFREE optionally provides crash-consistency on NVRAM
zones. For a crash-consistent NVRAM zone, only the allo-
cator’s lower level (cf. Fig. 3) has to be stored within the
persistent memory – plus one extra zone page storing a magic
identifier, the size of the memory region, and a startup/shut-
down marker to detect if the system needs to be recovered
after a power loss. The upper level always resides in DRAM
to reduce access latencies and avoid unnecessary writes to
NVRAM. It is restored into DRAM from the lower-level in-
formation. Fig. 4 depicts the zone layout for persistent and
non-persistent memory zones.

3On Linux-x86, this holds only for the 16 MiB DMA zone, which Linux
still offers for compatibility with legacy 16-bit ISA devices.
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The key point of LLFREE’s design is that all transactions
authoritatively happen within a single atomic change of a sin-
gle cache line. For base frames, this is the atomic change in
the respective bit field, while huge-frame de/allocation is im-
plemented by the atomic change of a and cL in the child entry.
This ensures memory consistency as each authoritative change
is visible to all cache-coherent cores, and all derived informa-
tion (i.e., counter values) are altered by atomic commutative
operations, which are not affected by reordering.

The single–cache-line property also makes it easy to im-
plement persistence consistency on all systems that provide a
persist granularity [38] of at least one cache line to be written
atomically to the NVRAM at the end of the operation, which
is considered to be the minimum standard for NVRAM hard-
ware [10, 38]. In case of a recovery, each entry in the child
array is checked for the a flag: If it is set, the child entry is
the authoritative information – the entry is a huge page with
cL = 0 (the bit field is all-zero). Otherwise, the entry describes
a set of base pages – the bit field is the authoritative informa-
tion, which is used to restore the value of cL. The upper-level
state can then be restored from the child array.

While a crash during a de/allocation would never result in
an unrecoverable allocator state, it could lead to a lost frame.
This would happen if in an allocation the bit has already been
set, but the frame has not yet reached the caller, or if the
deallocation has been invoked but not yet cleared the bit. The
theoretical worst-case bound for this effect is the maximum
number of parallel operations, that is, the number of CPUs.
This could be mitigated by two-phase de/allocation protocols,
which, however, would also change the interface of the page
allocator. Crashes are rare events – and a crash during the
critical phase of a page-frame allocation even more so (the
endangered code sequences take only a few clock cycles).
Hence, the probability of an actual frame loss during the
lifetime of a system is extremely low, while even in the case
of such an incident, the costs would be acceptable.

4 Implementation

We implemented LLFREE as a Rust module, integrated it
with (and extended it for) the Linux kernel, and replaced the
original Linux buddy allocator with LLFREE. Its allocate
and free algorithms, discussed in the previous section, can be
found in the appendix (Fig. 14).

4.1 Approach
As the Linux community has started to adopt the Rust lan-
guage, we took the chance to explore how well it is suited for
a performance-critical low-level kernel module. Compared to
C, Rust has much more restricted (i.e., safer) memory man-
agement and avoids undefined behavior. We are convinced
that these properties, which prevent entire classes of memory
bugs, simplified the development of the allocator.

The modular LLFREE implementation contains a test en-
vironment that initializes the allocator on a virtual memory
mapping in user space for unit testing and benchmarking. This
made it possible to profile and find performance bottlenecks
early on. Besides standard unit tests, we developed specific
race-condition tests for the possible orders of atomic opera-
tions, which proved quite helpful in finding several design
and logic errors.

Following this approach, we were able to quickly imple-
ment and compare strategies for the upper and lower level
of the allocator. The final implementation consists of 2199
lines of safe Rust code (with 25 unsafe lines for initialization
and address translations) and 1318 lines of unit tests. The
Linux buddy allocator is written in C and mainly contained
in page_alloc.c (excluding reclaiming and memory com-
paction), which alone has 6060 lines of code – without any
tests. However, the buddy allocator is tightly coupled with
other memory subsystem components, making it difficult to
estimate its actual contribution to this source base.

4.2 Replacing the Linux Buddy Allocator
We modified Linux to boot with our LLFREE allocator. The
integration required some modifications to LLFREE (support
for non-natural orders), but especially to Linux itself due to
the tightly coupled implementation of the buddy allocator.
Nonetheless, the system seems stable for everyday workloads.

4.2.1 LLFREE Changes

LLFREE was specifically designed for the natural orders de-
fined by the hardware. Linux, however, requires supporting
all orders up to 10, which we implemented as follows: Orders
1 to 6 (2 to 64 frames) can be allocated similarly to order 0.
The allocation now searches for a large enough, aligned set
of zeros in the bit fields and allocates it, toggling the bits with
a single 64-bit CAS operation.

Orders 7 and 8 (128 and 256 frames) are allocated with an
optimistic lock-free algorithm using 2–4 atomic operations.
If one fails due to a race, the others are safely reverted, and
the search continues. However, these orders are rarely allo-
cated (cf. Fig. 2), and contention could only occur if a tree is
stolen during an allocation or we explicitly share a tree among
multiple CPUs. Hence, an actual conflict is a rare event.4

Order 10 was implemented by allocating two aligned child
entries at once, similar to an order 9 allocation. As these child
entries are only 16 bit large (with alignment), this is done with
a single 32-bit CAS operation. If a higher-order allocation
fails because the tree is fragmented, another one is reserved.
In this case, the allocator searches for a free tree that is not
fragmented before falling back on partial ones.

4This also breaks our assumption for persistence consistency from
Sec. 3.2.3 for orders 7 and 8. However, we can safely ignore this for now, as
non-natural orders are only employed by the kernel, which currently does
not use persistence.
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4.2.2 Linux Changes

During boot, the data structures for the LLFREE allocator are
allocated by the early-boot memblock allocator and initialized.
Like the buddy allocator, we create one LLFREE instance per
memory zone and store a pointer to its data directly in the
struct zone. Most further changes in the code base are to
conditionally disable and replace the buddy allocator, its per-
CPU caches, zone locks, and high-atomic page blocks when
our implementation is activated (via a Kconfig option). In to-
tal, the LLFREE module, a thin wrapper around the LLFREE
allocator, added 942 lines. Outside this module, we changed
415 lines with 296 alone in page_alloc.c.

Most functionalities, including page reclamation, were eas-
ily adapted to the new allocator. However, some higher-level
services that directly use the buddy allocator’s internal data
structures, e.g., its free lists, turned out impossible to adapt
without completely rewriting them. Hence, we disabled them
for both allocators in the benchmarks. First, this includes
the memory fragmentation heuristic that decides whether ac-
tive memory compaction should be executed. The heuristic
uses the internal counters of the buddy-allocator’s free lists.
However, the need for active memory compaction is an ex-
ceptional state, only triggered when the allocator is highly
fragmented with almost no huge pages left. It does not hap-
pen in our benchmarks. Instead, we compare fragmentation
and compaction costs in Sec. 5.6. Second, we deactivated the
out-of-memory (OOM) handler, as its checks directly rely on
the internal free lists of the buddy allocator. Considering the
complexity of the OOM procedure, we consider its redesign
is outside the scope of this paper. Our benchmarks do not
trigger OOM events for both allocators.

To make the higher order allocation speeds in Linux com-
petitive, we had to implement two workarounds: The first
reduces the number of write accesses to the struct page

entries. As an aid for kernel-internal debugging (e.g., detect-
ing double frees), Linux reinitializes the flags of all struct
pages backing a higher order allocation, which is a costly
and mostly unnecessary overhead. Linux also differentiates
between standard allocations, which can be freed in parts,
and compound allocations, which can only be freed at once.
For compound allocations, all but the first struct page are
marked as tail page. This scattered, redundant encoding of
compound frames is costly, especially for huge frames. Mod-
ifying all 512 entries (i.e., 512 cache lines) for every de/al-
location is detrimental to the overall performance, making it
hard to distinguish and compare the allocation speeds of both
allocators. Thus, we benchmarked standard allocations and
disabled the flag reinitialization. The latter did not have any
observable consequences.

The second bottleneck that affected especially LLFREE is
the updating of the vmstat free-frames counter, which pro-
vides an estimate of the available free memory. This counter
is updated for de/allocations that escape the per-CPU caches.

To reduce congestion, each CPU has a local counter absorbing
updates up to a certain threshold. However, its current value of
125 is too small for huge frames. We increased the threshold
by 1024 (the size of the order 9 per-CPU caches). Because
the LLFREE allocator does not use these caches, the global
counter remains as accurate as with the buddy allocator using
the original value, as the latter may hide as many frames in
its per-CPU caches.

5 Evaluation

In our evaluation, we show that LLFREE scales well for dif-
ferent allocation patterns and sizes. We also look at the frag-
mentation behavior, quantify the memory overhead, and in-
vestigate crash recovery for the NVRAM case.

5.1 Evaluation Setup and Benchmarks
Our test system is a DELL PowerEdge R750 with two Gen 3
Intel(R) Xeon(R) Gold 5320 CPUs (2× 26 physical cores @
2.20 GHz). Each of the two NUMA nodes has four 32 GiB
DRAM DIMMs (total: 256 GiB DRAM) and four 128 GiB
Optane Gen 2 DIMMs (total: 1 TiB NVRAM). We assume
the eADR persistence guarantees offered by the Gen 3 Xeon
Gold architecture [24] (memory consistency 7→ persistence
consistency) and omit explicit persisting cache flushes (clwb)
in the implementation, as this also provides for a more di-
rect comparison of DRAM and NVRAM allocation speeds.5

For stable results, we disable proactive memory zeroing (a
recently introduced optional hardening feature) and hyper-
threading, which yields similar general performance charac-
teristics, with the exception that memory sharing is costlier
between physical cores than between logical ones. We execute
our benchmarks on the modified Linux 6.0 kernel with and
without LLFREE. As Linux instantiates allocators per mem-
ory zone (e.g., NUMA-1-DRAM) that do not impact each
other, we perform isolated tests with a single NUMA-node
allocator.

As allocator performance is highly work-load specific, we
created three synthetic benchmarks that cover a wide range
of allocation patterns: (1) For the bulk benchmark, all cores
allocate half of the available memory at once and directly free
it up again; this process is repeated. (2) The random bench-
mark allocates all memory(similar to the bulk benchmark)
and frees the frames in random order; we only measure free
operations. (3) For the repeat benchmark, each core allocates
and frees a single frame as fast as possible. Repeat has been
deliberately constructed as a best-case scenario for the Linux
buddy allocator, as it maximizes the expected benefit of the
local per-CPU caches. Nevertheless, this is the least realistic
scenario: Common is lazy allocation (due to demand paging)
with bulk/random free (at program termination).

5Note that LLFREE could also work with weaker persistency (Sec. 3.2.3).
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Figure 5: Per-order allocation time of standalone LLFREE on DRAM
and NVRAM (8 cores, 128 GiB)
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Figure 6: Per-order allocation time of Linux-integrated LLFREE (8
cores, 128 GiB DRAM, logarithmic scale)

As individual operations execute fast, per-operation time
measurements would distort the results. Therefore, we mea-
sure the time for all operations and divide it by their number.
Since LLFREE benefits from free locality, we expect the ran-
dom benchmark to be especially challenging.

5.2 Allocation Sizes

First, we look at the allocation speeds of the different request
sizes (4 KiB – 4 MiB). For this, eight CPU-pinned threads
manage 128 GiB of DRAM or DAX-mapped Optane memory.
The benchmarks are executed both in our userspace bench-
mark environment to measure the standalone performance of
LLFREE and with a kernel module in the modified Linux.

Fig. 5 shows the average time per operation for the
userspace benchmarks. For bulk and repeat, one operation
costs less than 100 ns, while order 8 (1 MiB), which is the fur-
thest from the next lower natural order, is the most expensive
one. Due to random’s cache-miss and invalidation behavior,
a free operation can take up to 120 ns. Even though Optane
is known to have around twice the random-access latency
of DRAM [49], the resulting allocator performance is very
similar for DRAM and NVRAM, as most updates remain in
the L3 caches.

After these userspace results, we replaced the Linux buddy
allocator with LLFREE for a quantitative in-situ compari-
son. This integration induces higher management overheads
(e.g., updating struct page), which causes additional cache
misses compared to the previous userspace benchmark. As
Linux’s allocator is not crash-consistent, we now only look at
DRAM performance. Again, eight cores on the first NUMA
node execute the respective benchmark in parallel.

Fig. 6 shows that LLFREE is about one order of magni-

tude faster than the original Linux allocator for the bulk and
random benchmarks. For the repeat benchmark, where a sin-
gle frame is reallocated repeatedly, the per-CPU caches (or-
der 0-3, 9) make the buddy allocator faster than LLFREE
(e.g., for order 0: 112 ns vs.183 ns). This stems not only from
the caching itself but also from the fact that some statistics
(i.e., vmstat counters, NUMA hit/miss rates) are not updated
if the cache services a frame request. Nevertheless, for sizes
that are not covered by per-CPU caches, LLFREE is about
100 times faster in the repeat benchmark.

However, the per-CPU caches are not beneficial for all
workloads: In the bulk benchmark, we see that for order-9
allocations, the buddy allocator is about ten times slower than
orders 8 and 10. An in-depth analysis revealed the problem:
As the order-9 caches only have a capacity of two, the cache-
refill operation is invoked for every other frame. This refill
batches the allocation of multiple frames - two in this case -
into a single critical section, reducing the number of acquire
and release operations to the buddy lock. However, this critical
section also contains a check for all struct pages of the
allocated frames, which is especially expensive for higher-
order allocations. Therefore, the lock is held longer, increasing
lock contention compared to the other orders without caches
that perform these checks after releasing the lock.

If we compare Fig. 5 and Fig. 6, we see that there is still
potential for improvement in Linux’s allocation path. As the
other overheads scale linearly with the number of covered
4 KiB frames (for updating struct page), we are currently
unable to fully harvest LLFREE’s performance for 2 MiB
frames. For example, while 4 KiB random frees are equally
fast within the kernel, freeing a huge frame takes 4.48 times
longer.

5.3 Multicore Scalability
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Figure 7: Average time per core count on orders 0 and 9 and 128 GiB
memory of LLFREE in volatile and persistent memory

To evaluate multicore scalability, we focus on the two natu-
ral frame sizes and scale the number of requesting cores from
1 to 26. Again, Fig. 7 shows the raw LLFREE performance (in
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Figure 8: Average time per core count on orders 0 and 9 and 128 GiB
memory in the Linux kernel on a logarithmic scale

userspace) on DRAM and NVRAM, while Fig. 8 (log-scale!)
shows the in-kernel performance on DRAM.

For the bulk and repeat userspace benchmarks (Fig. 7), we
see that LLFREE’s operation times remain almost constant,
independent of the number of cores, and the memory type
has only an insignificant influence on the performance. Here,
LLFREE’s allocation and free reservation system avoids most
sharing. Only for random, where cache invalidations and up-
date conflicts on child counters are more frequent, we see
a significant impact of more workers. However, even with
26 workers that request frames in parallel, a DRAM alloca-
tion/free of either order takes less than 170 ns.

In Fig. 8, we see that the Linux performance is heavily
influenced by its per-CPU caches for the natural sizes. For the
repeat benchmark, which is the best case for per-CPU caches,
we see that LLFREE is up to 65.18 percent (26 cores, 4 KiB)
slower than Linux. However, for bulk and random, which
exceed the capacity of the per-CPU caches, the Linux allocator
shows severe performance drops for more cores as memory
is now requested directly from the buddy system. While the
single-core performance for 4 KiB is still almost equal, Linux
takes 7.3/13.5 (bulk allocations/random frees) times longer
with 26 cores than LLFREE. For 26 cores requesting 2 MiB
frames, this changes to 52.5/9.6 times.

5.4 List-Based Allocators
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Figure 9: Average speed of the list and LLFREE allocators per core
count for order 0 on 128 GiB DRAM

Besides the buddy system, simple free lists are a com-
mon design for page-frame allocators in commodity (Win-
dows [50], Darwin [42]) and research (Twizzler [5]) operating
systems. Like Linux, they mitigate lock contention on the
global structures by additional core-local lists. To compare
these allocator concepts with LLFREE, we built three pro-
totypical list-based allocator implementations and evaluated
their scalability. (1) The ListLocked allocator, consisting of
a lock-based shared singly-linked list (Windows, Darwin),
(2) the ListCAS allocator, which uses a LIFO lock-free list
instead [44] (supposed to be preferable over locking), and
(3) the ListLocal allocator, a theoretical allocator that main-
tains per-core lists only, does not need any protection and
never drains (ideal case). All list allocators store their next
pointers in a 64 B aligned array, similar to Linux’s struct

page array.
In Fig. 9, we see the results of this comparison on a logarith-

mic scale. As expected, the locked variant has the worst per-
formance due to the high degree of lock contention. However,
while replacing the lock with atomic operations improves
the situation by 81 percent (26 cores, random), we see that
this still does not solve the fundamental scaling issue; con-
tention basically just moves from the lock to the cache line
that contains the head pointer of the list.

To our surprise, LLFREE even outperforms (from 16 cores
onwards) the ideal ListLocal variant, which is not even suited
as a global frame allocator, but takes 36 percent more time on
26 cores for bulk allocations. This is caused by the state disper-
sion of linked lists: Virtually every allocation and free touches
at least one new cache line – compared to LLFREE’s cache-
friendly structure, where in the best case, 512 allocations
reuse the same three cache lines. In the random benchmarks,
LLFREE also suffers from cache misses due to non-local
frees (the worst case for LLFREE).

5.5 Allocator State Dispersion

To compare allocators’ temporal and spatial costs, we propose
the state-dispersion metric – a quantitative measure denoting
the byte count utilized for metadata storage. Intuitively, state
dispersion is the number of bytes accessed for a full enumer-
ation of the internal state. However, it is critical to under-
stand that state dispersion does not directly translate to mem-
ory overhead, given that allocators often repurpose the free
memory or overload other shared data structures (i.e., struct
page) for their metadata, whereby the plain memory overhead
becomes a less meaningful metric. However, an allocator ex-
hibiting high state dispersion will likely induce more cache
misses during its operation, impacting run-time efficiency.
This, of course, does not only depend on the size of the state
but also its spatial distribution.

In Tab. 1, we break down the state dispersion of LLFREE
and the Linux allocator into the different components. To put
these numbers into perspective, we also show how the disper-
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Allocated Flag 32.0 KiB 4.0 MiB (within above)

Pageblock Bits 256 B 32.0 KiB 512
Per-CPU Caches 8 B 256 B 13.0 KiB 209

Table 1: Allocator-State Dispersion and Cache Overhead

sion scales to our benchmark machine (52 cores, 128 GiB, 1
memory zone) and how many distinct 64B cache lines would
be accessed for a complete enumeration in this setting.

Due to LLFREE’s usage of bit fields and counter arrays,
its state disperses only to 4.14 MiB (0.0032 % of DRAM)
on the benchmark machine. The primary contributor to this
are the 4 KiB bit fields (4 MiB). Thus, even a full-state scan
can comfortably fit within the machine’s 35 MiB L3 cache,
for which only 67 754 cache lines need to be loaded. Also,
as LLFREE does not repurpose memory, it does not require
physical memory to be mapped by the kernel, and its state
dispersion is equal to its memory overhead.

In contrast, the Linux allocator stores most of its state in
struct page. There, it requires one flag and repurposes the
16 bytes of the LRU list pointers (double-linked list) for its
per-order free lists and for the per-CPU page caches. Due to
the scattered nature of linked lists, the Linux allocator (po-
tentially) spreads its state over 516 MiB (0.39 % of DRAM).
Even worse, as each struct page resides on its own cache
line, a complete state scan would have loaded 33 555 169
cache lines. Hence, in comparison to LLFREE, Linux’s allo-
cator state not only disperses over 125 times more memory,
but even requires 495 times more cache lines to be loaded for
the full scan.

Furthermore, as LLFREE does not rely on the struct

page, this also raises the question if they could be shrunk
or eliminated. These records currently occupy 1.56 percent
of DRAM. Unfortunately, removing the allocator’s depen-
dency on struct page does not directly result in smaller
per-frame records, as other kernel subsystems reuse the LRU
list pointers for various purposes when the frame is allocated
(in the Linux source code, struct page is basically a mess
of unions). Therefore, shrinking or even eliminating struct

page is a deeply cross-cutting and challenging task.
Nevertheless, an allocator that, like LLFREE, does not re-

quire a per-frame record significantly eases this challenge,
since we then would only need per-frame records for allo-
cated frames. For example, with Linux’s current move to
struct folio [11], which describes a bundle of physically
contiguous frames, it could become possible to allocate this

record dynamically. In this sense, we see LLFREE as an im-
portant first step into untangling struct page dependencies.
However, its complete elimination remains a topic of further
research.

5.6 Fragmentation and Compaction Cost

Next, we look at the huge-frame fragmentation behavior of
both allocators. For this, we first define a metric for this frag-
mentation and for the memory-compaction cost that would
be required to remove this fragmentation. To measure frag-
mentation, we count the number of huge frames that can be
allocated if we drain all caches but perform no memory com-
paction. We then compare this to the number of possible huge
frames that could be allocated with compaction to get an idea
of the fragmentation level in the system.

To gauge the compaction cost, we consider the minimal
number of 4 KiB copy operations required to free up the pos-
sible maximum of huge frames. To calculate this metric, we
(1) count the number of free 4 KiB frames in each possible
huge frame, (2) sort the resulting array, and (3) match the
“fullest” with the “emptiest” huge frames while counting the
number of required copy operations. Please note that Linux
skips step 1 and 2 and moves memory to the beginning of
the zone, which results in suboptimal memory compaction.
With LLFREE, however, sorting the children array (see Fig. 3)
would bring us close to the optimal variant.

To compare both allocators, we conduct the following syn-
thetic benchmark: First, we generate an initial memory con-
figuration that is a worst-case scenario for a maximally frag-
mented physical memory. For this, we allocate 90 percent of a
125 GiB region before freeing up half of all 4 KiB frames ran-
domly again. Starting with this fragmented state, we perform
100 iterations, each freeing 10 percent of the allocated mem-
ory in the form of randomly-selected 4 KiB frames and real-
locating the same amount again as individual 4 KiB frames.
After each iteration, we drain the CPU-local caches (buddy),
respectively the tree reservations (LLFREE), and measure the
huge-frame fragmentation and the compaction cost. Note that
we still leave the Linux memory compactor turned off (as
stated in Sec. 4.2.2). Like in our other benchmarks, we do not
trigger unfulfillable allocation requests, which would require
synchronous compaction. We measured the hypothetical com-
paction costs for each iteration for both allocators using the
described offline calculation.

Fig. 10 shows the change of both metrics over time. The
Linux allocator can recover only a single huge frame in this
benchmark, although the whole memory was cycled ten times
over (100 iterations). Also, the compaction cost decreased
only by 3.3 percent, indicating that huge frames are only
getting slowly defragmented over time. Additionally, our sce-
nario benefits Linux as we drain the per-CPU caches and use
the optimal compaction-cost metric. In contrast, LLFREE can
recover 46.6 percent of the initially polluted huge frames over
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Figure 10: Free huge frames (left) and compaction cost (right) over
iterations that randomly reallocate 10% of the allocated memory.

the benchmark. Although it looks like defragmentation only
starts to kick in around iteration 50, a look at the compaction
cost indicates that entropy decreases right from the beginning;
there are just no completely free huge-frame frames yet. After
performing reallocations summing up to the total amount of
memory (10 iterations), we are at 39.1 percent compaction
cost and after 50 iterations, we would only require 4.9 percent
of the initially-required copy operations.

Overall, we see that LLFREE shows a passive defragmen-
tation behavior steered by our subtree-allocation policy. As a
buddy system does not track the “fullness” of split-up buckets,
it cannot imitate this on the cheap.

5.7 Crash Recovery
As validating crash consistency by real system crashes is
too time-consuming to obtain robust results, we simulate
LLFREE’s recovery (Sec. 3.2.3) for regular shutdowns and
crashes using a userspace benchmark on a DAX-mapped
NVRAM region: For this, (1) we initialize the allocator on a
128 GiB region, (2) allocate half of it randomly, and (3) allo-
cate and free memory repeatedly as in Sec. 5.6. For regular
shutdowns, the process terminates after (2), while we simulate
crashes by randomly killing the benchmark with SIGKILL dur-
ing (3). Afterward, another process recovers the allocator’s
state from the persistent memory.

In total, we injected 1000 crashes and LLFREE could re-
cover its state in all cases; in about half of the experiments, we
actually lost frames (at most one per core), which is expected,
as the cores spent all their time in alloc/free. For the recovery
procedure, LLFREE iterates through the bit fields to correct
the child counters, which takes on average 2460 µs. In com-
parison, a regular NVRAM re-initialization, where LLFREE
only needs to iterate over the child tables, takes only 477 µs.
Recovery was done single-threaded but could be parallelized
and partially performed in the background if recovery times
should become an issue.

5.8 Application-Level Benchmarks
As a real-world application benchmark, we used memtier6,
which evaluates the performance of the memcached key-value

6https://github.com/RedisLabs/memtier_benchmark
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Figure 12: Average time to populate/free a 128 GiB memory map in
the write benchmark.

store. It measures the throughput of Get and Set requests.
Unfortunately, we see no significant difference as shown in
Fig. 11. As the page allocator is primarily used by the page-
fault handler, which lazily allocates memory, the overhead of
the other involved memory management components might
overshadow any performance gains.

To investigate this hypothesis further, we created the write
benchmark, which maps a large memory region and popu-
lates it in parallel. The population is done by writing a non-
zero value into the first byte of the page, triggering a page
fault and subsequent allocation request. For unmapping, the
madvice/DONTNEED syscall is used. The benchmark is exe-
cuted for 1–26 cores, with the memory region split evenly
between the cores. Again, the results in Fig. 12 show no signif-
icant difference between the buddy and LLFREE allocators,
just like the memtier benchmark.

Utilizing the perf profiler, we measured where most of
the runtime is spent. The flame graph in Fig. 13 shows that
the page allocator (yellow) only accounts for 5.3 percent of
the runtime. Primarily dominant are the struct mm rw-lock
(orange, 17.3 %) and the updates of the LRU, cgroups, reverse
mappings, and struct page flags (green, 28.7 %). Because
most struct page update macros are inlined, the actual time
is probably higher. These memory-management bottlenecks
are consistent with other research [7, 12, 14, 32, 35].

6 Discussion

Our results show (besides crash consistency) that LLFREE
provides excellent scalability in user- and kernel-level bench-
marks, achieved by its consequent lock-free and cache-
friendly design. Nevertheless, these benefits are not yet visible
in end-to-end benchmarks, even though there are applications
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Figure 13: Flame graph for the write benchmark with the Buddy
allocator on 8 cores and 128 GiB DRAM.

for which OS-level memory de/allocation performance al-
ready is a big issue [12, 14, 32, 35].

We argue that, given the deep entangling and grown com-
plexity, the scalability problem could only be solved in a
bottom-up manner and provide LLFREE and its design con-
cepts as a first step in this direction. We believe if nonvolatile
memories will play a role some day, their kernel-level man-
agement has to be designed together with volatile memory
– and see LLFREE as an important step in this direction. Fi-
nally, our results also show that the conjunction of striving for
scalability and persistence [8, 16, 46] works out particularly
well in kernel design if considered from the very beginning.

7 Related Work

Many general-purpose allocators [3, 9, 33, 36, 41, 45, 52]
for nonvolatile memory have been proposed. In contrast to
LLFREE, all of them use logging to ensure crash consistency,
which increases NVM wear [49], and locks for multithreaded
operation; some reduce lock contention by using multiple
allocator instances [36, 41], per-CPU/thread free lists [3, 9] or
range locking [52]. From these, PAllocator [36] has similari-
ties to LLFREE as it comes with antifragmentation measures
and, similar to our lower level, stores only parts of its state in
NVRAM and recovers its volatile state on boot. Nevertheless,
all of these persistent allocators are general-purpose userspace
allocators and, thus, have different design goals compared to
a kernel page-frame allocator like LLFREE.

On the OS side, Twizzler [5] is explicitly built around non-
volatile memory but nevertheless does not contain a persistent
page-frame allocator. Instead, the system rebuilds the alloca-
tor state from the persistent objects on each reboot in DRAM.
To our knowledge, LLFREE is the first persistent page-frame
allocator to be used within the operating system.

While the immunity to external fragmentation was one of
the original motivations for paging [2], its extension to dif-
ferent frame sizes brought back the problem. To ease active
huge-frame reclamation, placement strategies [19–21] cate-
gorize allocations (i.e., movable, reclaimable) and spatially
cluster them onto separate huge frames. For this, Linux has
multiple free lists per buddy order, each of which serves a
different category. LLFREE currently does not support such
categorization. However, it could easily be extended for this

by specialized trees (see Sec. 3.2.2). For Linux, strategies with
better clustering characteristics have been suggested [37].

Other measures to reduce huge-frame fragmentation in-
clude proactive compaction [30] and anticipated continuous
memory reservation [27, 34]. Even hardware solutions have
been proposed, such as building huge frames of noncontin-
uous memory [43], or an additional level in address transla-
tion [51] similar to nested paging [4]. In contrast, LLFREE
is a pure software solution that passively defragments huge
frames while being fast and crash-consistent at the same time.

8 Conclusion

The page-frame allocator, which manages the physical mem-
ory, is at the core of all memory management in modern op-
erating systems. However, as we have shown in the example
of Linux, its classical lock-based design with many lists and
distributed metadata has not kept up with the progress in hard-
ware towards massive-parallel systems with large amounts of
heterogeneous volatile and nonvolatile memories. This results
in internal complexity, poor scalability, high memory fragmen-
tation, and general unfitness for achieving crash-consistent
allocations on nonvolatile memories.

We presented LLFREE, a new log- and lock-free page-
frame allocator that, by its lockless and cache-centric de-
sign, achieves excellent scalability for parallel allocations (53
times faster than the Linux buddy allocator for parallel 2 MiB
DRAM allocations on 26 cores), while constructively keeping
huge-page fragmentation low. All de/allocations manifest in
memory by a one–cache-line transaction, whereby LLFREE
can provide crash-consistency for persistent NVRAM with-
out logging and at near-DRAM speed on eADR systems. Our
integration of LLFREE into Linux was successful, but it also
revealed many further bottlenecks of its memory-management
subsystem and the deep entangling of the buddy allocator with
it. These topics demand further investigation and redesign.
We consider LLFREE a crucial first step towards a complete
structural rethinking of the OS memory management.
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Appendix

(1) If reserved counter cP ≥ 2o then cP← cP−2o and continue
with (2).

(a) Otherwise, sync with global cU and repeat (1) if the
counter is now large enough.

(b) Otherwise, reserve a new tree and repeat (1).
(2) Search the corresponding children array sequentially for an

entry with cL ≥ 2o. If this search fails, reserve a new subtree
and repeat (1).

(a) For base frames, decrement cL, search the correspond-
ing bit field for a zero bit, and set it.

(b) For huge frames set cL = 0 and a = 1.
(3) Return the allocated page-frame number (PFN) or NULL.

(a) The allocation of an order o frame.

(1) Check the corresponding child entry.
(a) For base frames, check if cL ≤ 512−2o and a = 0, and

continue with (2).
(b) For huge frames, check for a = 1, set it to zero, and

continue with (4).
(2) Toggle the corresponding bits in the layer-one bit field.
(3) Increment the child counter (cL ← cL + 2o).
(4) Increment the reserved cP or the global cU if this free is in

another tree.
(a) When a global, partial tree entry is updated, reserve it if

the past F allocations also affected it.

(b) The free operation of an order o frame.

Figure 14: The allocation and free algorithms. This description does
not include all edge cases and error paths.
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A Artifact Appendix

Abstract

The artifact contains the necessary tools and resources required to evaluate
LLFree, a new lock- and log-free allocator design that scales well, has a small
memory footprint, and is readily applicable to non-volatile memory. To simplify
the evaluation, the artifact is packaged as a Docker image, which includes the
different benchmarks from the paper’s evaluation and any dependencies. These
benchmarks are designed to stress the allocator in various scenarios. They allow
other researchers to compare the performance of LLFree with the traditional
Buddy allocator and reproduce our experimental results. Additionally, this
image contains the raw data and scripts for the paper’s figures, making our
evaluation as transparent as possible.

Scope

These benchmarks show that the LLFree allocator out scales the buddy alloca-
tor on systems and workloads with high parallelism. However, executing them
in a virtual machine (even with KVM) leads to less accurate results. There-
fore, in the paper, we built and tested the modified Linux on raw hardware.
Nonetheless, the results should show similar trends as in the paper’s evaluation.

Contents

The Docker image includes all required dependencies and scripts for building
and running the benchmarks, as well as generating relevant plots and data.
It also features a Python script (run.py) that serves as the central command
center to manage the building, benchmarking, and plotting processes. The
allocator can be tested in both user space and within a custom-built Linux
kernel that incorporates LLFree executed in a QEMU+KVM vm. For the latter,
the image contains a QEMU+KVM virtual machine and scripts to boot it and
run the kernel benchmarks. It further contains the raw data and plots from the
benchmarks shown in the paper.

Hosting

The docker image and the repositories of the allocator, the modified Linux
kernel, and the benchmarks are hosted on GitHub:

• Docker Image: This image contains an execution environment that
makes it easy to run and evaluate the benchmarks.

• llfree-bench: The benchmark scripts and results.
(tag = atc23-artifact-eval)

– The artifact instructions can be found in artifact-eval/README.md.
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• llfree-rs: The Rust implementation of the LLFree allocator.
(tag = atc23-artifact-eval)

• llfree-linux: The modified Linux Kernel that can be configured to use
LLFree instead of the Buddy allocator.
(tag = atc23-artifact-eval)

• linux-alloc-bench: Kernel module for benchmarking the page allocator.
(tag = atc23-artifact-eval)

Requirements

As our benchmarks are packaged in a Docker image and do not rely on specific
hardware, the only prerequisites are:

• A Linux-based system for KVM. We have tested this on Linux 6.0, 6.1,
and 6.2.

• At least 8 physical cores and 32GB RAM (more is better). Lower specifi-
cations should work, but the results may be less meaningful.

• Hyperthreading and TurboBoost should be disabled for more stable re-
sults. As the VM is not configured for this, the kernel benchmarks might
be especially affected.

• A properly installed and running Docker daemon.

Next Steps

The artifact instructions can be found in the llfree-bench repository under
artifact-eval/README.md. The artifact-eval directory also contains all the
scripts mentioned in the document and also the Dockerfile for building the im-
age by oneself if desired.
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SingularFS: A Billion-Scale Distributed File System Using a Single Metadata Server

Hao Guo Youyou Lu∗ Wenhao Lv Xiaojian Liao Shaoxun Zeng Jiwu Shu

Tsinghua University

Abstract
Billion-scale distributed file systems play an important role
in modern datacenters, and it is desirable and possible to
support these file systems with a single metadata server. How-
ever, fully exploiting its performance faces unique challenges,
including crash consistency overhead, lock contention in a
shared directory, and NUMA locality.

This paper presents SingularFS, a billion-scale distributed
file system using a single metadata server. It includes three key
techniques. First, SingularFS proposes log-free metadata op-
erations to eliminate additional crash consistency overheads
for most metadata operations. Second, SingularFS designs hi-
erarchical concurrency control to maximize the parallelism of
metadata operations. Third, SingularFS introduces hybrid in-
ode partition to reduce inter-NUMA access and intra-NUMA
lock contention. Our extensive evaluation shows that Singu-
larFS consistently provides high performance for metadata
operations on both private and shared directories, and has a
steadily high throughput for the billion-scale directory tree.

1 Introduction

In modern datacenters, the vast majority of distributed file
systems are within billions of files, and we call them billion-
scale distributed file systems [33]. It is possible to support
these file systems with one single metadata server, which
typically has enough capacity to hold terabytes of metadata.
However, the performance of a single metadata server requires
further attention, as metadata operations account for more
than half of all file system operations [16, 17, 26].

We find it challenging to store billions of files without
sacrificing performance in a single metadata server, so most
distributed file systems support billions of files by scaling
metadata servers [17, 19, 22, 25, 31]. In this paper, we explore
the design space of a billion-scale distributed file system that
achieves high performance in a single metadata server.

Remote direct memory access (RDMA) and persistent
memory (PM) provide new opportunities for the performance
∗Youyou Lu is the corresponding author (luyouyou@tsinghua.edu.cn).

of metadata servers. However, existing solutions fail to fully
exploit them and provide desirable metadata performance.
Our experiments show that both local PM file systems and
distributed file systems have performance limitations in both
private and shared directories. Specifically, for the state-of-the-
art local PM file system, NOVA [32], its file create through-
put in a shared directory drops to only 0.14× of its throughput
in private directories, even for the million-scale directory tree
without the impact of networking.

Exploiting the performance of a single metadata server
brings several challenges to the design of file systems. First,
the overhead to ensure crash consistency is extremely heavy
for a single metadata server that aims to support billions of
files. Second, operations in a shared directory, which are com-
mon in distributed file systems, suffer from limited parallelism
and low performance caused by severe lock contention on the
directory dirents and inode. Third, The NUMA architecture
is under-exploited for file systems, especially for metadata
operations in a single metadata server.

This paper presents SingularFS, a billion-scale distributed
file system using a single metadata server. With only one
metadata server, SingularFS achieves 8.36M/18.80M IOPS
for file create/stat operations, which outperforms InfiniFS
with 32 metadata servers reported in its paper [19], without
sacrificing multi-server scalability. To address the challenges
mentioned above, SingularFS optimizes the directory tree
and the metadata operations with the following designs.

First, we propose log-free metadata operations to remove
the additional crash consistency overheads from most meta-
data operations. The key idea is to identify possible metadata
inconsistency by leveraging both the single-object update
atomicity of the key-value storage backend and the metadata
semantic dependency of the parent inode and child inodes.

Second, we design hierarchical concurrency control to
maximize the parallelism of metadata operations in a shared
directory with less synchronization overhead. The key idea
of this protocol is to synchronize inode operations in a more
fine-grained way. Specifically, inode writer uses the per-inode
read-write lock to synchronize with other operations, and
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inode timestamp updater and reader use a lock-free protocol
to do extra synchronization between themselves.

Third, we introduce hybrid inode partition to reduce inter-
NUMA access and intra-NUMA lock contention. The key
idea is to separate the timestamps from the directory inode
and group it with the directory’s child inodes to the same
NUMA node, thus ensuring NUMA locality of file operations.
SingularFS further partitions the intra-NUMA data structure
to reduce its lock contention.

In summary, this paper makes the following contributions:

• We identify the challenges to fully exploiting the perfor-
mance of a single metadata server.
• We propose SingularFS, an efficient distributed file sys-

tem using a single metadata server, featured with log-free
metadata operations (§3.2), hierarchical concurrency con-
trol (§3.3), and hybrid inode partition (§3.4).
• We implement and evaluate SingularFS to demonstrate

that SingularFS outperforms existing distributed file sys-
tems in latency and throughput of metadata operations,
has comparable latency and throughput with local PM file
systems in file operations, provides high throughput scala-
bility in a shared directory, and maintains a steadily high
throughput for a billion-scale directory tree (§5).

2 Background and Motivation

2.1 Background

Billion-scale file systems are fundamental building blocks
for cloud service vendors and smaller datacenters. Even in
some huge datacenters such as Alibaba [19], massive files are
managed with small storage clusters, which are within billion-
scale. One single metadata server is sufficient to contain all
the metadata at this scale, and it has the following benefits
compared to using more metadata servers:
• Implementation and performance. Distributed transactions

and load balancing across metadata servers are avoided,
which simplifies the implementation and improves the
performance.
• TCO reduction. The installation, maintenance, and daily

cost of a single metadata server are cheaper than multiple
metadata servers.
New network and storage hardware, such as RDMA and

PM, provides new opportunities for metadata performance.
NVIDIA’s latest generation NIC, ConnectX-6, exhibits a
speed of 215Mpps for small packets [4]. RedN [23] also
illustrates that ConnectX-6 shows a 112M verbs/s throughput
in 64B RDMA writes. The only available PM product, Intel
Optane DIMM, shows at least 29.06Mops/s and 8.75Mop-
s/s read/write throughput with the access granularity of less
than 256B [2] while maintaining memory semantics and data
persistence. As inodes are typically tiny in file systems (e.g.,
128B in Ext4), achieving high small-granularity access per-
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Figure 1: Per-NUMA file create and delete throughput
of local PM file systems and distributed file systems (a) in a
private directory for each client, (b) in a shared directory.

formance allows us to build a high-performance distributed
file system with a single metadata server.

2.2 Analysis of Existing Solutions

In this section, we analyze the limitations of existing solutions
that discourage them to support a billion-scale distributed file
system with a single metadata server.

There are mainly two categories of existing solutions, local
PM file systems, and distributed file systems. For each type,
we select two typical file systems for comparison, namely
Ext4-DAX and NOVA [32] for local PM file systems, and
CephFS [31] and InfiniFS [19] for distributed file systems.
We gradually increase the number of client threads until each
file system achieves the peak throughput. The testbed and
configuration details are further described in §5.1.

Figure 1 shows the per-NUMA file create and delete
throughput of the compared file systems with clients operating
on private directories and a shared directory, respectively. We
make the following observations:

1) The overhead of crash consistency limits the through-
put of multi-inode metadata update operations. Ext4-DAX
uses write-ahead-logging (WAL) to guarantee its crash con-
sistency, while InfiniFS and CephFS leverage the transac-
tion support of their storage backend. These methods all
introduce extra costs for the multi-inode metadata update
operations. NOVA reduces the crash consistency cost by us-
ing the log-structured metadata architecture, making its file
create/delete throughput 7.17×/12.19× higher than other
file systems with private directories. However, it cannot com-
pletely get rid of the journaling overhead when coordinat-
ing multi-inode update operations. Also, it introduces extra
garbage collection overhead.

2) The lock contention limits the throughput of metadata
operations in a shared directory. For file create and delete
operations, NOVA shows 0.17×/0.13× throughput in a shared
directory than in private directories. This is because NOVA
directly acquires the shared directory’s write lock when per-
forming these operations, which aggravates lock contention.
The other three file systems show no significant performance
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degradation. This is because they either directly use the jour-
nal for concurrency control (e.g., Ext4-DAX) or leverage the
transaction support of the storage backend (e.g., CephFS and
InfiniFS). These methods coordinate all the metadata opera-
tions similarly no matter they are in private directories or a
shared directory, limiting the performance in both scenarios.

3) File systems fail to scale to multiple NUMA nodes while
maintaining NUMA locality of metadata operations. For the
compared file systems, NOVA doesn’t provide support for
multiple NUMA nodes. Although Ext4-DAX can be mounted
to a RAID 0 device spanning across the PM DIMMs on all
NUMA nodes, the simple striped layout of RAID 0 can not
ensure NUMA locality for metadata operations. For InfiniFS
and CephFS, they scatter the metadata objects to all the PM
DIMMs without specific NUMA-aware partition rules, result-
ing in low NUMA locality as well.

2.3 Challenges
Based on the three observations in §2.2, we find three chal-
lenges to fully exploiting the performance of a single metadata
server in distributed file systems, as discussed below.

Challenge 1. The overhead to ensure crash consistency is
extremely heavy for a single metadata server that aims to
support billions of files.

File systems use journaling or the log-structured design to
provide crash consistency. In the journaling approach, data is
written twice and checkpointed in order. In the log-structured
approach, data is written in newly-allocated places, while
leaving the old places as garbage. Unfortunately, garbage
collection causes high overhead. Intensive prior research
aims to reduce the overhead of the crash consistency mecha-
nisms [14, 18, 21]. However, we need to further reduce this
overhead to exploit the potential of a single server to support
billions of files.

Challenge 2. Operations in a shared directory, which are
common in distributed file systems, suffer from limited paral-
lelism and low performance caused by severe lock contention
on the directory dirents and inode.

In HPC and big data applications, it is common for the
workloads to concurrently access a large shared directory,
such as N-N checkpointing [9] and image processing [1].
The concurrency of metadata operations in a shared directory
significantly influences the overall performance of these ap-
plications. However, concurrent inode create and delete
operations in a shared directory need to update their common
parent’s directory entries (dirents) and inode, which causes
high lock contention. Such contention limits the parallelism
and performance as demonstrated in §2.2.

The previously-proposed solutions are not suitable for the
case of a single metadata server. Previous works use parti-
tion strategy either inside dirents [34] or between metadata

server daemons [22, 31] to increase parallelism. However,
partitioning inside dirents can’t reduce the lock contention
of the common parent inode, and partitioning the super direc-
tories between metadata server daemons can not be used for
one metadata server.

Challenge 3. The NUMA architecture is under-exploited for
file systems, especially for metadata operations in a single
metadata server.

NUMA-aware design is important for metadata perfor-
mance when a server is used only for metadata storage and
processing. On the one hand, NUMA locality is of great impor-
tance for fully utilizing the performance potentials of PM. Pre-
vious works illustrate that remote PM access introduces a sig-
nificant performance drop in bandwidth and small-granularity
throughput, especially for writes [28, 35], which makes meta-
data operations more vulnerable compared to data operations.
On the other hand, our analysis in §2.2 shows that file sys-
tems fail to scale to multiple NUMA nodes while keeping
NUMA locality of metadata operations, which is because of
their coarse-grained partition strategy such as striping.

Existing methods are not desirable for overcoming this chal-
lenge. Randomly scattering the inodes into multiple NUMA
nodes can’t avoid this issue, as some operations like inode
create and delete need to update multiple inodes, which
causes inter-NUMA metadata access. Other methods like
in-DRAM cache [28], thread migration [30], or thread dele-
gation [35] all waste extra resources for coordination or data
structure maintenance.

3 Design and Implementation

With the overall goal of exploiting the performance of a single
metadata server, we design SingularFS with three key design
principles as below:

• Guaranteeing crash consistency without logs. Singu-
larFS performs most metadata operations without extra
crash consistency mechanisms such as logs. This reduces
their overheads while still maintaining POSIX semantics.
• Maximizing parallelism in a shared directory. By uti-

lizing hierarchical concurrency control, SingularFS maxi-
mizes the parallelism of metadata operations in a shared
directory with less synchronization overhead.
• Reducing inter-NUMA access and intra-NUMA lock

contention. SingularFS takes a hybrid approach to meta-
data partition. This ensures NUMA locality of file opera-
tions and reduces lock contention within data structures to
further increase the parallelism in a shared directory.

3.1 Overview
SingularFS is a billion-scale distributed file system using
a single metadata server, exploiting the single-server perfor-
mance while not sacrificing multi-server scalability. Figure 2
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Figure 2: SingularFS architecture.

presents the architecture of SingularFS, which contains two
components, clients and servers. Servers maintain a global file
system directory tree inside PM. Clients perform file system
operations through POSIX-like interfaces offered by the user-
space library. Servers and clients are equipped with RDMA
NICs for network communication.
Storage backend. SingularFS uses a generic key-value
store (KV Store) as its storage backend. The KV Store should
be able to execute point queries and prefix matching. Besides,
it should guarantee the atomicity of single-object operations
at a low runtime cost.

SingularFS differs from other file systems with KV Store
backends [17, 19, 24, 25] in two ways. First, instead of rely-
ing on the transaction provided by the KV Store backends
(Non-transactional KV Store in Figure 2), SingularFS uses
a lightweight approach for metadata operations (§3.2, §3.3).
Second, instead of using one ordered KV Store per metadata
server, SingularFS leverages hybrid inode partition to convert
the shared index into multiple ordered indexes scattered to
NUMA nodes, aiming at reducing inter-NUMA access and
intra-NUMA lock contention (§3.4).
Regular metadata operations. We use this term to refer
to metadata operations other than rename. Leveraging the
timestamp dependency of modified inodes, SingularFS uses
ordered metadata update to guarantee their crash consistency
without logs (§3.2). For concurrency control, SingularFS
takes a hierarchical method by utilizing both the per-inode
read-write lock and lock-free timestamp update (§3.3).
Rename. SingularFS uses journaling to guarantee the crash
consistency of rename. As an optimization, ordered metadata
update (§3.2) is adopted to guarantee the crash consistency of
the two parent directories involved in rename, reducing the
number of logged inodes from 4 to 2. SingularFS uses strict
two-phase locking for concurrency control of rename.
Inode. SingularFS adds two fields, the born time btime
and the death time dtime, to the inode to identify metadata
inconsistencies leveraging the timestamp dependency (§3.2).
Besides, SingularFS partitions the directory inode to times-
tamp metadata (atime, ctime, and mtime) and access meta-

A

B DC

ID: 1

(𝑎)

Directory Tree

key value

1/  B < ID: 2 , B’s inode > 

1/  C < ID: 3 , C’s inode >

1/  D < ID: 4 , D’s inode >

KV Store

(𝑏)

Dirent of A/B

d_type: DT_REG

d_name: B

(𝑐)

d_ino: 2

Figure 3: (a) An example of the directory tree. (b) The format
of directory A’s child inodes in KV Store. For the inode with
ID = i, the keys of its child inodes share the same prefix i. (c)
The way to reassemble dirents in a readdir operation. Sin-
gularFS first does prefix matching with the target directory’s
ID to get the child KV pairs, then uses the keys to generate
d_name and reads the values to get d_ino and d_type.

data (inode ID, permission, btime, dtime, etc.), and places the
timestamp metadata of the parent directory with its child in-
odes into the same NUMA node to ensure NUMA locality of
file operations (§3.4).

Inodes are all stored in the KV Store backend. Directory
access metadata and file inodes are indexed by key <parent
inode ID+name>, and directory timestamp metadata is in-
dexed by key <inode ID>. The root directory has a unique
inode ID 0. Path resolution is done by recursively fetching the
directory access metadata from the root to the target inode.
Dirent. Directory entries (dirents) are omitted from direc-
tory metadata blocks but co-located with the keys and values
of child inode objects. Thus, dirent update and inode up-
date are fused into one key-value update operation. As shown
in Figure 3, in a readdir operation, SingularFS reassem-
bles the dirents of the target directory by adopting prefix
matching provided by the KV Store backend.
Data management. SingularFS employs a decoupled struc-
ture for metadata and data. Therefore, existing approaches for
data management can be directly adopted by SingularFS. Cur-
rently, SingularFS uses the object store [31] to manage data.
It indexes data blocks with key <inode ID+block no>.

3.2 Log-free Metadata Operations
In this section, we first analyze and classify the metadata write
operations. Then, we demonstrate the timestamp dependency
of the parent directory and child inodes and propose the core
of log-free metadata operations, i.e., ordered metadata update.

3.2.1 Analysis of Metadata Write Operations

As illustrated in Table 1, metadata write operations in Singu-
larFS can be classified into three categories according to the
number of modified inodes.

1. Single-node operations. These operations only update the
target inode itself (e.g., file open/close/read/write).

2. Double-node operations. These operations update the tar-
get inode, as well as the timestamps of its parent direc-
tory (e.g., file create/delete). Note that in SingularFS,
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Operation Type Metadata Write Operations Modified Inodes
Target Inode Parent Directory Other Inodes

Single-node open/close/read/write/chmod/chown/utimens •

Double-node mkdir/rmdir/create/delete • •

Rename rename • • •

Table 1: Classification of metadata write operations according to the modified inodes.

parent dirents are co-located with the child inode ob-
jects (§3.1), so there is no need to update the dirents
separately for these operations.

3. Rename operation. This operation updates the original
inode, the new inode, and their parent directories.

According to the real workloads shown in InfiniFS [19] and
HopsFS [20], regular metadata operations, which include read
operations, single-node operations, and double-node opera-
tions, account for more than 90% of all file system operations.
Based on this observation, we design log-free metadata oper-
ations to guarantee the crash consistency of regular metadata
operations.

Since the crash consistency of single-node operations can
be directly guaranteed by the KV Store backend, in this sec-
tion, we seek to guarantee the crash consistency of double-
node operations without incurring additional overheads.

3.2.2 Ordered Metadata Update

As double-node operations set the parent directory’s ctime
to the target inode’s btime or dtime, we observe that the times-
tamps of the parent directory and child inodes have the fol-
lowing dependency:

For an inode d, d.ctime ≥ max(c.btime,c.dtime),
where c is any of d’s child inodes.

Based on this observation, we update the metadata in order,
to guarantee the crash consistency of double-node operations
without incurring the logging overhead.
inode creation. As shown in Figure 4(a), inode creation
includes two atomic steps. First, we insert the inode with
btime = t0, where t0 is the current timestamp. Second, we set
the ctime and mtime of its parent directory to t0.
inode deletion. As shown in Figure 4(b), inode deletion
includes three atomic steps. First, we invalidate the target
inode and set its dtime to the current timestamp t0. Second, we
set the ctime and mtime of its parent directory to t0. Finally,
we physically remove the target inode from KV Store.
Crash recovery. When a crash occurs between the two steps
in inode creation, or between step 1 and step 2 in inode dele-
tion, the inconsistency can be identified by checking if the
maximum btime and dtime of child inodes > ctime of the
parent directory, and fixed by setting the ctime and mtime
of the parent directory to the maximum value. When a crash
occurs between step 2 and step 3 in inode deletion, the incon-
sistency can be identified by checking if the target inode is
invalid and fixed by physically removing the invalid inode.
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Figure 4: The process of inode creation and inode deletion
in log-free metadata operations. (a) Inode creation includes
two steps. First, insert the target inode with btime = current
timestamp t0. Then, update the timestamps of the parent di-
rectory to t0. (b) Inode deletion includes three steps. First,
mark the target inode as invalid and set its dtime to the current
timestamp t0. Then, update the timestamps of the parent di-
rectory to t0. Finally, physically remove the target inode. The
inconsistency of the directory tree is marked with red lines.

In order to detect and fix all the inconsistencies mentioned
above, the most straightforward approach is to scan the whole
directory tree. However, this process can be costly. Singu-
larFS detects and fixes the inconsistency lazily when the
inconsistent directory is accessed, as described in §4.

3.3 Hierarchical Concurrency Control

In traditional file systems, it is challenging to maximize the
parallelism of double-node operations in a shared directory,
as they cause contention over the parent dirent and times-
tamps. In SingularFS, the update of the parent dirent is
co-located with the update of the child inode, whose concur-
rency is guaranteed by the KV Store backend. Therefore, the
remaining challenge lies in the concurrent timestamp update.

We observe that double-node operations only modify the
parent directory’s ctime and mtime, whose size is 16B in
total. Therefore, the concurrency control of the timestamp
updates could be executed in a lock-free manner by leveraging
the 16B atomic compare-and-swap instruction.

We divide operations on a target inode into three categories,
updater, writer, and reader. updater contains inode update
operations that involve only the target inode’s ctime and
mtime, and writer contains all other update operations. reader
contains all inode read operations. For example, double-node
operations like file create/delete are both writers of the
target inode and updaters of the parent directory, and file stat
is a reader of the target inode.
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1 struct Inode {
2 ...
3 uint64 ctime; # aligned at a 16B boundary.
4 uint64 mtime;
5 ...
6 }
7

8 def writer(this: Inode *):
9 this->write_lock() # sync with other operations.

10 modify_inode(this)
11 this->write_unlock()
12

13 def updater(this: Inode *, timestamp: uint64):
14 this->read_lock() # sync with writer
15 while True:
16 # acquire timestamp snapshot.
17 cur = { this->ctime, this->mtime }
18 nxt = { timestamp, timestamp }
19 # update ctime and mtime atomically.
20 if (cur[0] >= timestamp or
21 cmpxchg16b(&this->ctime, cur, nxt)):
22 break
23 this->read_unlock()
24

25 def reader(this: Inode *):
26 this->read_lock() # sync with writer
27 while True:
28 # use ctime as the version number.
29 last_ctime = this->ctime
30 compiler_barrier()
31 inode = *this
32 compiler_barrier()
33 # OCC-like method.
34 cur_ctime = this->ctime
35 if cur_ctime == last_ctime:
36 break
37 this->read_unlock()
38 return inode

Algorithm 1: Hierarchical concurrency control algorithm.

Algorithm 1 shows the hierarchical concurrency control
algorithm among writer, updater, and reader.

Writer-other synchronization. Synchronization between
writers and other operations is handled by the per-inode read-
write locks. The writer acquires the write lock to guarantee
exclusive access to the target inode (line 9). Updaters and
readers acquire the read lock to avoid concurrent writer doing
inode update or remove operations (line 14, line 26).

Updater-updater synchronization. With the purpose of min-
imizing the length of the critical section, updaters use atomic
instructions to synchronize between themselves in a lock-free
manner. As the updater only updates the ctime and mtime
of the target inode, they are placed in a 16B-aligned block
(line 3), and the updater uses cmpxchg16b to atomically up-
date ctime and mtime to the maximum of the timestamp
parameter and the original value (lines 15-22). Specifically,
the updater first acquires the current snapshot of ctime and
mtime (line 17). If the current ctime is not less than the
timestamp parameter, there is no need to update the times-
tamps as they have been updated by another updater with a
later timestamp (line 20). If the current ctime is less than the
timestamp parameter and there is no concurrent updater in the
critical area (line 21), then update the timestamps atomically.

Updater-reader synchronization. We observe that ctime
monotonically increases when updaters modify the inode, so

it has the same semantic as a version number. Based on this
observation, we adopt optimistic concurrency control (OCC)
to synchronize between readers and updaters without locks.
Specifically, ctime is fetched by the reader before and after
getting the whole inode (line 29, line 34). The reader validates
the inode by comparing the two ctimes (line 35).

3.4 Hybrid Inode Partition

In this section, we first show how to partition the inodes
among NUMA nodes and execute multi-object directory op-
erations introduced by the partition. Then, we propose the
intra-NUMA data structure.

3.4.1 Inter-NUMA Inode Partition

Partition for NUMA locality of file operations. As file oper-
ations account for the majority of all metadata operations [19],
we seek to guarantee their NUMA locality.

For single-node file operations, we delegate metadata re-
quests to the corresponding NUMA node to ensure their
NUMA locality. However, this does not work for double-node
file operations (create/delete), as the two related inodes
may reside in different NUMA nodes. Fortunately, in Singu-
larFS, these operations only modify the parent directory’s
ctime and mtime, so NUMA locality of them can be guar-
anteed by grouping the parent directory’s ctime and mtime
with the child file inodes to the same NUMA node.

Therefore, SingularFS partitions the directory inode into
timestamp metadata (atime, ctime, and mtime) and access
metadata (inode ID, permission, btime, dtime, etc.). For each
directory, SingularFS aggregates the directory timestamp
metadata, its child file inodes, as well as its child directories’
access metadata into a metadata group. The objects within
a metadata group are placed in the same NUMA node. Sin-
gularFS uses consistent hashing to distribute the groups to
NUMA nodes of the metadata server, thus achieving NUMA
locality of file operations.

Multi-object directory operations. As the directory meta-
data is partitioned into two parts (i.e., two objects in the KV
Store backend), the KV Store backend cannot intrinsically
guarantee crash consistency for updates on the two parts. To
solve this problem without incurring extra cost, SingularFS
performs these operations in certain orders.
1. Directory mkdir and rmdir. Three objects are involved in

these operations, specifically the target directory’s access
metadata and timestamp metadata, as well as the parent di-
rectory’s timestamp metadata. Note that when a directory
is created, all its timestamps are set to its btime, which is in-
side the access metadata of the target directory. Leveraging
this, SingularFS creates the target directory’s timestamp
metadata after creating its access metadata. After a crash,
the target directory’s timestamp metadata is re-generated
with its access metadata.
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2. Directory set_permission. Two objects are involved
in this operation, specifically directory access metadata
and timestamp metadata. To guarantee the crash consis-
tency, we expand the semantic of btime to the maximum
of born time and last set_permission time. When ex-
ecuting set_permission, SingularFS first updates the
target directory’s permission fields and its btime at the
same time. Then, SingularFS updates its ctime. On crash
recovery, SingularFS identifies whether the directory’s
btime is greater than its ctime and fixes them if needed.

3.4.2 Intra-NUMA Inode Partition

Partition for less lock contention. To generate dirents of
a particular directory, SingularFS relies on the range query
operation, which is supported by the ordered index. However,
typical B+-tree-based ordered indexes suffer from high lock
contention caused by traversing and node splits when updates
prevail in workloads. To reduce such intra-NUMA lock con-
tention while keeping the functionality of the range query,
inside each NUMA node, SingularFS uses the hash algorithm
to scatter all metadata uniformly to n ordered indexes, where
n is a configurable parameter.

When executing point queries, SingularFS queries the
value from the key’s corresponding index calculated by its
hash. When performing range queries, such as in directory
readdir operation, SingularFS makes range queries in all
the indexes and merges the results.

Optimization for removal. Directory rmdir requires deter-
mining whether the target directory is empty. As the dirents
are co-located with the child inodes, this process can be imple-
mented using prefix matching. However, with intra-NUMA
inode partition, we would have to perform prefix matching in
all n ordered indexes, which could be costly.

We optimize this process by adding a num_dents variable
to the metadata of each directory, identifying the number of
dirents. The crash consistency of this variable is easily guar-
anteed because it can be recovered by executing a complete
prefix matching for the directory.
num_dents should meet two requirements for concurrency

safety. First, it must allow concurrent updates from updaters.
To achieve this goal, directory updaters use fetch_and_add
and fetch_and_sub to synchronize with each other. Second,
its value must be correct when a rmdir occurs. Since rmdir
is a writer of the target inode, there can be no concurrent
updaters when SingularFS is executing rmdir. Therefore,
num_dents will keep unchanged during rmdir and it is safe
for us to use its value to judge the directory’s emptiness.

4 Crash Recovery

Algorithm 2 shows the overall crash recovery algorithm for
a single directory inode in SingularFS. It mainly consists
of three aspects: Parent timestamp recovery (lines 9-14) and

1 def recover(ino: Inode):
2 ino.num_dents = 0
3 # re-create incomplete timestamp metadata
4 recreate_timestamp_meta(ino)
5 # inconsistency caused by set_permission
6 if ino.btime > ino.ctime:
7 ino.ctime = ino.btime
8 for c in ino.child_inodes:
9 if (c.valid and c.btime > ino.ctime) or

10 (!c.valid and c.dtime > ino.ctime):
11 # crash before timestamp update.
12 ino.ctime = max(c.btime, c.dtime)
13 ino.mtime = max(c.btime, c.dtime)
14 redo(c) # create / delete.
15 else if not c.valid:
16 remove(c) # invalid inode
17 ino.num_dents += 1 # maintain num_dents

Algorithm 2: Crash recovery algorithm for inode ino.

invalid inode removal (lines 15-16) in log-free metadata op-
erations, directory timestamp metadata recovery (lines 4-7)
in inter-NUMA inode partition, and num_dents maintenance
(line 2, line 17) in intra-NUMA inode partition.

SingularFS detects and fixes the inconsistent directory
only when it is accessed. Specifically, SingularFS maintains
a global restartCnt variable, which increases by one at
each restart. Inside each directory inode, we keep a local
restartCnt padded in the directory read-write lock. Lock-
ing a directory also sets its local restartCnt to the global
value. After a crash, an inconsistent directory will contain an
outdated restartCnt. Such inconsistency will be detected
and fixed according to Algorithm 2 on the next access.

5 Evaluation

In this section, we evaluate SingularFS to answer the follow-
ing questions:
• How does SingularFS compare to local PM file systems

and distributed file systems utilizing RDMA and PM on
metadata performance? (§5.2)
• How does SingularFS scale on concurrent racing metadata

operations in a shared directory? (§5.3)
• How do the techniques employed by SingularFS impact

its metadata performance? (§5.4)
• How does SingularFS perform with a billion-scale direc-

tory tree? (§5.5)
• What is the performance of rename in SingularFS? (§5.6)
• What is the end-to-end performance of SingularFS? (§5.7)
• What is the overhead of crash recovery? (§5.8)

5.1 Experimental Setup

Hardware configuration. In the experiments, unless other-
wise stated, we use one server node and one or two client
nodes. The metadata server and data server are co-located.
Each server node has two Intel Xeon Gold 6330 CPUs, with
28 cores per socket. Hyperthreading is disabled on servers, for
it aggravates contention and degrades the overall performance.
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Each socket has four 128GB Intel Optane DC Persistent Mem-
ory (DCPMM) DIMMs, 256GB DRAM, and one 200Gb/s
Mellanox ConnectX-6 NIC. The Optane DIMMs are config-
ured in App Direct mode.

Each client node has two Intel Xeon Platinum 8360Y CPUs,
with 36 cores (72 threads) per socket, so as to issue as many re-
quests as possible to saturate the metadata server. Each socket
has 256GB DRAM and one 200Gb/s Mellanox ConnectX-6
NIC. All the clients and servers are connected with a Mel-
lanox QM8790 switch. For ConnectX-6 NICs, the driver and
firmware versions are OFED 5.5-1.0.3.2 and 20.32.1010.

Compared systems. We use two types of baseline file system
in the comparison, specifically local PM file systems and
distributed file systems.

For local PM file systems, we choose Ext4-DAX and
NOVA [32]. For these file systems, we clear the VFS cache
before each directory and file stat operation to mitigate its
impact and ensure that the acquired performance reflects the
actual metadata performance of the file system.

For distributed file systems, we choose CephFS [31] and In-
finiFS [19]. For CephFS, we use version 15.2.16 with RDMA
enabled. The latency of CephFS is obtained by running it in
RDMA mode, while the throughput is obtained by running
it in IPoIB mode because we find that CephFS will always
crash if run in RDMA mode for a relatively long time. For
InfiniFS, we add support for RDMA and multiple NICs with
eRPC [13]. Since InfiniFS uses RocksDB [5] storage backend,
we run it on Ext4-DAX mounted on top of a RAID 0 device
spanning across all the PM DIMMs.

We use P-Masstree [15] as the ordered index of SingularFS
and set the per-NUMA index number n to 8. For SingularFS
and InfiniFS, we use 56 worker threads executing in-line
requests, and clients connect to them in a round-robin way.
SingularFS stores its data objects in PM for fairness.

Benchmark. We use mdtest v3.3.0 provided by IOR [3] to
evaluate the metadata performance of the aforementioned file
systems. We use OpenMPI v4.1.2 to generate parallel mdtest
client processes, which are placed on the metadata server for
local PM file systems and scattered across all the client nodes
for distributed file systems. We use the POSIX interface for
local PM file systems. For distributed file systems, we use
either the intercepted POSIX syscall [6] or the client libraries
(e.g., libcephfs of CephFS). Our experiments create files of
zero length like the previous works [17, 19, 25] because we
focus on the insights into metadata performance. For end-to-
end benchmarks, we use Filebench [27] to evaluate the overall
performance.

For lack of multi-NUMA support in some of the compared
file systems (e.g., NOVA and CephFS), we compare their per-
NUMA throughput instead of overall throughput to guarantee
the fairness of the comparison. For Ext4-DAX and NOVA,
we limit their CPU and PM resources to a single NUMA node
and use the results directly as their per-NUMA performance.
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Figure 5: Per-NUMA throughput of metadata operations in
private directories. The Y-axis is log-scaled.

For CephFS, we restrict its server-side PM and NIC resources
and directly use the results as its per-NUMA performance.
For SingularFS and InfiniFS, we do not limit their hardware
resources and average their throughput results to get their
per-NUMA performance.

5.2 Metadata Performance

In this section, we compare the overall metadata performance
of the file systems mentioned above. We use mdtest to mea-
sure the performance of directory mkdir/stat/rmdir and
file create/stat/delete operations. Each client handles 2
million directories and 2 million files in its private directory.
For CephFS and InfiniFS, we get their peak performance by
modestly reducing the directory and file quantity per client
process, as they show a relatively low performance at the
aforementioned scale.

5.2.1 Throughput

In this section, we evaluate the throughput of metadata op-
erations in different file systems. We gradually increase the
number of client processes to achieve the peak per-NUMA
throughput for each file system.

Figure 5 shows the per-NUMA metadata throughput of
different file systems in private directories. From the figure,
we make the following observations:

1) SingularFS outperforms local PM file systems in file
create and delete operations and outperforms the dis-
tributed file systems by more than an order of magnitude.
SingularFS achieves 3.13×/1.93× and 22.49×/23.57× higher
throughput for file create/delete operations than NOVA
and InfiniFS. This is because the log-free metadata opera-
tions in SingularFS removes the extra transaction logic from
the critical path of these operations, which saves both PM
bandwidth and the CPU cycles spent writing logs and wait-
ing for persistence. Inter-NUMA inode partition also guaran-
tees NUMA locality of file operations, reducing inter-NUMA
communication. These two designs make SingularFS fully
exploit the single-server performance of file metadata write
operations.
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Figure 6: Latency of metadata operations. Note that the result
of SingularFS, CephFS, and InfiniFS includes the network
delay, while the result of Ext4-DAX and NOVA doesn’t.

2) The throughput of directory mkdir and rmdir is much
lower than file create and delete, but still comparable with
local PM file systems (0.96×/0.73× than NOVA) and much
higher than distributed file systems (7.82×/7.77× higher than
InfiniFS). This is because these operations need to write both
the target directory’s access metadata and its timestamp meta-
data, which are not guaranteed to be in the same NUMA node.
However, these metadata update operations are transformed
into several simple KV writes by utilizing log-free metadata
operations, accelerating this process.

3) SingularFS outperforms local PM file systems and dis-
tributed file systems in the case of metadata read operations.
For file stat operation, SingularFS achieves 9.54×/10.10×
higher throughput than NOVA/Ext4-DAX, and 7.54×/10.97×
higher throughput than CephFS/InfiniFS. This is because by
adopting log-free metadata operations and hierarchical con-
currency control, SingularFS separates the transaction logic
from KV Store. This enables SingularFS to use a lightweight
KV Store backend (e.g., P-Masstree [15]) to accelerate the
stat operation.

4) SingularFS demonstrates high NUMA scalability. Us-
ing inter-NUMA inode partition, SingularFS guarantees
NUMA locality for file operations. Although it utilizes all
the hardware resources rather than just one NUMA node, its
per-NUMA throughput of file operations still outperforms
that of file systems running on one NUMA node.

5.2.2 Latency

In this section, we evaluate the latency of metadata opera-
tions in different file systems. We launch one mdtest client to
measure the latency of each metadata operation.

Figure 6 shows the average latency of different metadata
operations of the compared file systems. From this figure, we
make the following observations:

1) Compared with local PM file systems, SingularFS
achieves comparable latency with Ext4-DAX and NOVA in
file operations. This is because SingularFS has a shorter
server-side critical path for metadata write operations by lever-
aging log-free metadata operations and inter-NUMA inode
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Figure 7: Per-NUMA throughput scalability of file create
and delete in a shared directory.

partition. SingularFS also has a low latency for read opera-
tions by guaranteeing NUMA locality of file metadata. Even
though suffering from the µs-level inherent latency of RDMA,
SingularFS still achieves comparable latency with local PM
file systems for file operations.

2) Compared with distributed file systems, SingularFS
achieves lower latency than CephFS and InfiniFS. This is
because with the lightweight KV Store and log-free metadata
operations, SingularFS has a more lightweight software stack
than CephFS and InfiniFS, contributing to its lower latency.

5.3 Scalability in a Shared Directory

In this section, we evaluate the throughput scalability of con-
current racing metadata operations in a shared directory. In
the evaluation process, we gradually increase the number
of mdtest clients and get the per-NUMA throughput for file
create and delete operations in a shared directory.

Figure 7 shows the throughput scalability of file create
and delete in a shared directory in different file systems.
From the figure, we make the following observations:

1) SingularFS shows much better throughput scalability
in a shared directory than other file systems, outperforming
them by at least 7.76×/5.61× on file create/delete oper-
ations. This is because SingularFS leverages hierarchical
concurrency control to maximize the parallelism of meta-
data operations in a shared directory, and adopts intra-NUMA
inode partition to reduce lock contention inside the intra-
NUMA data structure. These two methods contribute to the
shared-directory scalability of SingularFS.

2) SingularFS achieves nearly the theoretical peak per-
formance in a shared directory. The file create/delete
throughput of SingularFS in a shared directory converges to
around 4Mops/s for the whole metadata server, which is close
to the per-NUMA peak throughput of SingularFS illustrated
in Figure 5. This is because all the inodes in a shared directory
are placed in the same NUMA node. Therefore, all the oper-
ations are handled in the same NUMA node, and the upper
bound for performance is the per-NUMA peak performance
of SingularFS.
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Figure 8: Performance breakdown. (a) Average latency. (b) Throughput in private directories. (c) Throughput in a shared directory.
Design techniques are accumulated.

5.4 Factor Analysis
In this section, we analyze how our designs contribute to the
latency and throughput by breaking down the performance
gap between the Baseline and SingularFS. We apply our de-
signs one by one to the Baseline, and measure the average
latency and throughput of file create and delete. For the
latency breakdown evaluation, we initiate one mdtest client
to operate on 2 million files in a directory. For the throughput
breakdown evaluation in private directories, we initiate 112
mdtest clients, and each client handles 2 million files in its
private directory. For the throughput breakdown evaluation
in a shared directory, we gradually increase the client num-
ber from 1 to 112 to achieve the peak throughput of each
configuration. Each client operates on 2 million files in a
shared directory. The results are not averaged to per-NUMA
performance.

We implement the Baseline based on the framework of
SingularFS, but without the key design features. It uses P-
Masstree running on Ext4-DAX mounted on top of a RAID 0
device built from all the PM DIMMs, with pessimistic two-
phase locking (2PL) and WAL for transaction support. In
these three figures, +Log-free stands for utilizing log-free
metadata operations instead of WAL to guarantee crash con-
sistency. +CC represents adopting hierarchical concurrency
control instead of simply using 2PL to do concurrency control.
+Inter-NUMA partition and +Intra-NUMA partition are the
two design parts of hybrid inode partition.

5.4.1 Private Directories

As shown in Figure 8(a) and Figure 8(b), SingularFS has
much higher throughput and lower latency against Baseline.
Specifically, for file create operation, SingularFS achieves
2.15× higher throughput with 1.13× lower average latency.
For file delete operation, SingularFS achieves 1.58× higher
throughput with 1.16× lower average latency. Here, we sep-
arately analyze all the design techniques in terms of file
create workload (file delete has the same conclusions).

Inter-NUMA inode partition improves the throughput by
1.52× and reduces the average latency by 1.05×, since it guar-
antees NUMA locality of file operations, thus reducing the

frequency of inter-NUMA PM access.
By using log-free metadata operations to guarantee crash

consistency, SingularFS gains another 1.58× and 1.06× im-
provement in terms of throughput and average latency. This
is because WAL is replaced in the critical path with log-free
metadata operations, reducing the bandwidth waste of PM for
logs and saving the CPU cycles of log persistence.

Hierarchical concurrency control and intra-NUMA parti-
tion bring a 10% throughput drop and a minor latency in-
crease since they introduce extra synchronization overhead
when there are few conflicts. Besides, the intra-NUMA inode
partition has a negative effect on the cache friendliness of the
overall data structure, accounting for the throughput drop.

5.4.2 Shared Directory

Figure 8(c) shows the throughput of file create and file
delete in a shared directory. Compared with Baseline, Sin-
gularFS achieves 15.93×/11.40× higher throughput for file
create/delete operations separately.

Inter-NUMA inode partition and log-free metadata opera-
tions contribute to 1.21×/1.15× throughput increase for file
create/delete operations by reducing the length of the
critical area, which shortens the critical area. However, the
major bottleneck still lies in the lock contention of the shared
directory. Hierarchical concurrency control mitigates this lock
contention, thus increasing the throughput by 7.66×/6.09×.
This is the peak throughput of P-Masstree in the case of high
lock contention brought by the common prefix. The intra-
NUMA inode partition mitigates this lock contention and
contributes to another 1.72×/1.62× higher throughput.

5.5 Billion-scale Directory Tree
In this section, we demonstrate that SingularFS can efficiently
support the billion-scale directory tree. We repeatedly create
and stat 50 million files per NUMA node to increase the
directory tree size until the file system is full.

Figure 9 shows the evaluation results. We make the follow-
ing observations from the figure:

1) SingularFS delivers a steadily high throughput for file
create and file stat operations with the billion-scale direc-
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Figure 10: Performance of directory rename and file rename.
(a) Latency. (b) Per-NUMA throughput.

tory tree. Specifically, it shows a steady per-NUMA through-
put of ∼4.40Mops/s for file create and ∼9.10Mops/s for
file stat, which is 41.90×/9.83× higher than Ext4-DAX. Al-
though NOVA shows a relatively high throughput when the
directory tree is nearly empty, its throughput is not even as
high as Ext4-DAX when there is a billion-scale directory tree.

2) SingularFS shows similar directory tree scalability to
local PM file systems. SingularFS supports 1.75 billion files
per NUMA node, which is higher than Ext4-DAX (1 billion
files) and lower than NOVA (2.05 billion files). The reason
why SingularFS supports fewer files than NOVA is that Sin-
gularFS uses a KV Store to store the inodes, while NOVA
uses per-core linked lists. The index of SingularFS has a
higher capacity overhead than NOVA. However, it provides
significantly higher performance.

5.6 Rename

In this section, we evaluate the latency and per-NUMA
throughput of directory rename and file rename in Singu-
larFS. In the experiments, each client renames 1 million
directories and 1 million files from one directory to another.

Figure 10 shows the overall results. From the figure, we
make the following observations:

1) For file rename, SingularFS shows comparable latency
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Figure 11: Per-NUMA throughput of Fileserver and Varmail
workloads in Filebench.

with local PM file systems and at least 3.95× higher per-
NUMA throughput than other file systems. Although Singu-
larFS uses journaling to ensure crash consistency, the journal
is lightweight as it only contains the two target KV pairs. Logs
of the parent directories are omitted with log-free metadata
operations. However, because of the journaling overhead and
inevitable inter-NUMA access, the throughput of file rename
is 0.17×/0.15× of file create/delete, lower than a half of
their throughput (i.e., theoretical throughput limit).

2) The latency and throughput of directory rename are
both worse than those of file rename. This is because Singu-
larFS adopts the directory metadata cache like the previous
works [17, 19, 25]. Directory rename causes cache invalida-
tion and path re-resolution, reducing its performance.

5.7 End-to-end Performance

In this section, we test the end-to-end performance of Sin-
gularFS. Specifically, we run the per-NUMA throughput of
Filebench Fileserver and Varmail workloads on SingularFS
and baseline systems. We set the file number of Varmail to
100K. The result of InfiniFS is not included as it focuses on
metadata service rather than the whole file system.

Figure 11 shows the results. From the figure, we make the
following observations:

1) SingularFS outperforms CephFS and Ext4-DAX in both
workloads. Specifically, SingularFS outperforms Ext4-DAX
by 1.05× in Fileserver and 1.71× in Varmail. With its meta-
data design, SingularFS gets more performance gains in Var-
mail, which is metadata-intensive.

2) SingularFS shows 0.74× and 0.41× the throughput of
NOVA in Fileserver and Varmail respectively. The lower per-
formance of SingularFS stems from the existing inter-client
metadata dependencies (e.g., client 1 creates a file, then client
2 deletes it) within the workload, which makes the high per-
formance of the metadata server hard to be fully exploited.
As the metadata server is under-saturated, the latency of meta-
data operation becomes the primary influence on the overall
performance. Because SingularFS is accessed over the net-
work, it has higher metadata operation latency (as discussed
in §5.2.2) and thus lower throughput than NOVA.
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Method Launch Consistent Inconsistent
Scan 32.1s 5.3µs -
Lazy 0s 5.3µs 30.8ms

Table 2: Recovery overhead. Launch: recovery time during
launch. Consistent: latency of file create that does not re-
quire recovery. Inconsistent: latency for file create to detect
and fix the inconsistent parent directory.

5.8 Crash Recovery

In this section, we evaluate the impact of lazy recovery on the
latency of metadata operations, compared to scanning the di-
rectory tree. In the experiments, the server crash results in one
inconsistent directory with 100K files in it. For lazy recovery,
SingularFS detects and fixes this inconsistent directory while
doing file create in it. For scan, the server scans the whole
directory tree during launch. The directory tree size is 100M.

Table 2 shows the results. From the table, we make the
following observations:

1) The time of lazy recovery is much shorter than scanning
the directory tree. This is because SingularFS only scans
the 100K files in the inconsistent directory on lazy recovery.
However, all the 100M files must be accessed when scanning
the whole directory tree, contributing to its high latency. This
issue is even more severe in the billion-scale directory tree.

2) The lazy recovery time is still orders of magnitude higher
than metadata operations. This is because SingularFS still
needs to scan the 100K files in the inconsistent directory
during lazy recovery. The recovery time is expected to be
lower if the inconsistent directory contains fewer files.

6 Related Work

The efficiency of file systems has always been an interest-
ing and important research topic, both for local PM file sys-
tems [10, 11, 32, 35] and distributed file systems [7, 17, 19, 22,
25, 31]. Different from the works mentioned above, Singu-
larFS improves metadata efficiency by optimizing the transac-
tions in metadata operations with ordered updates and improv-
ing NUMA locality of metadata operations. In this section,
we focus on these two aspects of related work.
Transactions and Ordering in metadata operations.
Transactions are a way to guarantee the atomicity and crash
consistency of metadata operations. For local PM file systems,
BPFS [10] relies on copy-on-write (CoW) and 8-byte in-place
atomic updates to provide metadata consistency. PMFS [11],
in contrast, uses larger in-place atomic updates with jour-
naling, while NOVA [32] uses a log-structured data struc-
ture for metadata consistency. For distributed file systems,
HopsFS [20] relies on both row-level locking and the NDB
backend for strong metadata consistency semantics, while
InfiniFS [19] leverages the transaction mechanism of the
key-value storage backend and the two-phase commit pro-
tocol separately for local and distributed metadata transac-

tions. CephFS [7,31] and CFS [29] also leverage their storage
backend to guarantee the atomicity and crash consistency of
metadata operations. These methods have considerable CPU
overhead, and SingularFS mitigates this overhead by using
log-free metadata operations to guarantee crash consistency
with minimal cost and adopting hierarchical concurrency con-
trol to maximize parallelism.

Ordering is another way to support crash consistency. Soft
Updates [12] ensures that data and metadata are written to
disks in an ordered way, so as to enable recovery after a crash.
One of the obstacles to using Soft Updates is the complexity
of keeping general orders between different metadata blocks.
In comparison, SingularFS only needs to keep the orders of
timestamp metadata, and thus is more practical in use.

NUMA-aware file systems. Several recent studies propose
approaches for mitigating the NUMA effect in PM file sys-
tems. NThread [30] uses thread migration to alleviate the
NUMA issues of the PM file systems. Assise [8] uses on-
die DMA engines for remote PM writes to bypass hardware
cache coherence. OdinFS [35] uses NUMA-aware delegation
threads to handle PM access with large granularity. These
approaches are mainly for data service in the file system, and
can not be easily applied to metadata service, because meta-
data operations 1) are not more costly than thread migration,
2) have a more complex indexing logic other than simple
read/write, 3) have small access granularity. SingularFS uses
hybrid inode partition to ensure NUMA locality of file opera-
tions while minimizing the extra cost of scheduling.

7 Conclusion

This paper presents SingularFS, a billion-scale distributed
file system using a single metadata server. SingularFS uses
log-free metadata operations to eliminate additional crash
consistency overheads for most metadata operations; then
uses hierarchical concurrency control to maximize the paral-
lelism of metadata operations; and finally, takes hybrid inode
partition to reduce inter-NUMA access and intra-NUMA lock
contention. Our extensive evaluation shows that SingularFS
consistently provides high performance for metadata opera-
tions on both private and shared directories, and has a steadily
high throughput for the billion-scale directory tree.
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The Hitchhiker’s Guide to Operating Systems

Yanyan Jiang
Nanjing University

Abstract
This paper presents a principled approach to operating sys-
tem teaching that complements the existing practices. Our
methodology takes state transition systems as first-class cit-
izens in operating systems teaching and demonstrates how
to effectively convey non-trivial research systems to junior
OS learners within this framework. This paper also presents
the design and implementation of a minimal operating sys-
tem model with nine system calls covering process-based
isolation, thread-based concurrency, and crash consistency,
with a model checker and interactive state space explorer for
exhaustively examining all possible system behaviors.

1 Introduction

“Everything should be made as simple as possible,
but no simpler.” —Albert Einstein

The teaching foundation of operating system design and
implementation has been well-established for decades. From
Tanenbaum’s “Operating Systems: Design and Implementa-
tion (1987)” [45] to Arpaci-Dusseau’s “Operating Systems:
Three Easy Pieces (2018)” [3], students approach operating
systems by studying the layered design of abstractions over
processors, memory, and storage systems.

In parallel, researchers have observed the emergence of
fast, scalable, reliable, and secure systems over the past few
decades. This progress has been driven by the development
of innovative system technologies, such as hardware/software
co-design [24, 43], cross-stack integration [20, 23], program
analysis [11, 48], and formal methods [30, 31], among others.

This paper attempts to share these exciting ideas with junior
operating system learners under a unified theme by “adding
a layer of indirection.” Our key insight is to view all compo-
nents of a computer system–including hardware, applications,
and the operating systems that connect them–as state transi-
tion systems. By analyzing these components as informal yet
mathematically rigorous objects, we aim to bridge the gap

between theoretical concepts and practical system implemen-
tations.

This model-driven approach is grounded in several innova-
tive philosophies on operating systems education, which are
outlined below:

Everything is a state machine (Section 2). The key idea
of this paper is to consider state transition systems as the
foremost concept in teaching operating systems. The state-
machine abstraction is fundamental: the state of a modern
multi-processor system is essentially determined by regis-
ter/memory bit values, driven by the non-deterministic se-
lection of a single CPU executing a single-step instruction1.
The same abstraction is also applicable to any multi-threaded
program.

Consequently, we argue that it is beneficial to view the
operating system as both a state machine and a manager of
state machines. An operating system essentially leverages
application-invisible data structures (e.g., a page table) to
multiplex CPUs across processes and threads. This approach
provides a rigorous explanation of process management APIs:
fork/execve/exit functions simply clone, reset, and destroy live
state machines. This abstraction also encourages in-depth
discussions about fork [4] and the initial process state after
execve.

By adopting this state-machine-centric perspective, we can
explain research systems with a clear and rigorous foundation.
For instance, every debugger [12], trace [8], and profiler [9]
essentially “observes” runtime state snapshots, facilitating
discussions on interactive query debuggers [39], deterministic
full-system replay [16], time-travel failure reproduction [11],
snapshot-based fault tolerance [38], and state space explo-
ration [7] in an introductory-level operating system course.

Emulate state machines with executable models (Section 3).
Since state machine is a mathematically rigorous concept, we
could always emulate the execution of real state machines.
Although emulation has been widely adopted in operating sys-

1Under the assumption of race-freedom that instructions are serializable.
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System Call Description

fork() Create current thread’s heap and context clone
spawn( f ,xs) Spawn a heap-sharing thread executing f (xs)
sched() Switch to a non-deterministic thread
choose(xs) Return a non-deterministic choice among xs
write(xs) Write strings xs to standard output
bread(k) Return the value of block k
bwrite(k,v) Write block k with value v to a buffer
sync() Persist all outstanding block writes to storage
crash() Simulate a non-deterministic system crash

Table 1: System calls in the operating system model.

tem teaching2, this paper takes one step further by emulating
a “fully functional” operating system model with processes,
threads, a debug console, and block storage. The system calls
are listed in Table 1. The executable model approach has the
following advantages:

First, executable model is a foundation for exploring op-
erating system concepts. Synchronization primitives like Pe-
terson’s algorithm [34], condition variable, and semaphore
can be implemented over shared memory. The non-trivial
state copy behavior of fork() [4] can be reproduced under
this model. A file system checker can be carried out upon a
simulated crash().

Second, executable model is a behavioral specification
of real operating systems; it is the golden standard on the
application-observable behaviors. A model facilitates discus-
sions on the abstractions–the concrete implementation of the
fork() function may employ copy-on-write, but this should
remain transparent to a process. Such a model also motivates
the key idea behind formally verified systems like seL4 [25]
and Hyperkernel [31].

Enumeration demystifies operating systems (Section 4).
We design our emulator to handle all sources of non-
determinism in a coherent way: every system call (not merely
choose) returns a set of possible choices as callbacks. Conse-
quently, we can exhaustively enumerate all possible system
behaviors with little implementation effort.

Such a design finally leads to our MOSAIC (Modeled
Operating System And Interactive Checker) operating system
model and checker. MOSAIC adds lightweight formal meth-
ods [21, 47] to operating systems teaching. MOSAIC is capa-
ble of checking fork-based process parallelism, thread-based
shared memory concurrency, and crash consistency [36]. The
model checker’s output can be piped to an interactive state
space explorer that can be embedded in a Jupyter notebook
(Figure 3); thus, all non-trivial corner cases of the operating
system model can be rigorously explained.

In summary, this paper makes the following contributions:

2We loved the emulated process scheduler, virtual memory, and file sys-
tems in the “Three Easy Pieces” [3].

1. We propose a new “state-machine first” approach in the
breakdown of operating system teaching: (1) model sys-
tems as state machines, (2) realize models by emulation,
and (3) explore models by enumeration. This approach
enabled us to introduce non-trivial research systems to
junior operating system learners.

2. We design and implement MOSAIC, a minimal (500 lines
of code, including comments) executable operating sys-
tem model and checker, which strikes a balance between
understandability and functionality. MOSAIC can rig-
orously explain non-trivial textbook cases concerning
concurrency, virtualization, and persistence. MOSAIC is
available via

https://github.com/jiangyy/mosaic.

3. We incorporated these ideas in a first undergraduate oper-
ating system course (Section 5). This course became one
of the most popular operating system courses in China
and has attracted over 2,000,000 video views since its
initial release in 2020.

2 State Machines: First-class Citizens of Oper-
ating Systems

Philosophy 1: Everything is a state machine.

This paper’s key contribution is the “state-machine first” ap-
proach to operating systems. By regarding both user-level
applications and kernels as state machines (Section 2.1), it
became obvious that operating systems are state machine
managers (Section 2.2). This section also discusses modern
computer systems and tools under the state machine perspec-
tive (Section 2.3).

2.1 Introducing State Machines in the Operat-
ing System Class

Program as a state machine. Every program run essentially
boils down to the execution of binary instructions, whose be-
havior is rigorously defined by a state machine in which states
are register/memory values and transitions are the execution
of one instruction at the program counter. We implement this
idea on Linux (Figure 1) to provide a definition of system
calls: system call is a state transition (e.g., via a trap instruc-
tion or any process-kernel communication mechanism [44])
for accessing the “exterior” of the state machine, e.g., writing
data to the operating system or changing the state machine’s
memory address space (via mmap or mprotect) and existence
(via exit). Without system calls, the program (state machine)
is a “closed world” that can only perform arithmetic and logi-
cal operations over memory and register values.
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1 #include "sys/syscall.h"
2 mov $SYS_write, %rax // write(
3 mov $1, %rdi // fd=1,
4 mov $hello, %rsi // buf=hello,
5 mov $16, %rdx // count=16
6 syscall // );
7 // "ret" here yields SIGSEGV
8 mov $SYS_exit, %rax // exit(
9 mov $1, %rdi // status=1

10 syscall // );
11 hello: ; .ascii "Hello, OS World\n"

mov $hello, %rsi 

0 0 …

Hello……

1

rax rsi
0

…
…

Hello……

Reg

Mem

1

rax rsi …
…

Hello……

Reg

Mem
… …

Initial state s0

Figure 1: A minimal “Hello World” program and its corre-
sponding state machine.

Bare-metal as a state machine. The bare-metal hardware
shares a similar model with binaries: a CPU essentially op-
erates as an infinite loop of instruction execution, which is
also the case for a full-system emulator [5]. In contrast to
user-level programs that can perform system calls, bare-metal
kernels (including operating systems) access the “external
world” via port or memory-mapped I/O and can be interrupted
as if a trap instruction is non-deterministically injected.

Discussions. The advantage of introducing the state machine
model early in an operating system course is that it fosters
a tendency of rigorous thinking–state transition systems are
well-defined mathematical objects. Specifically, we motivate
the students to think of what is the mathematically precise
definition of the process initial state. We explain that any pro-
cess’s initial state is well-defined by its binary executable and
the Application Binary Interface. We also demonstrate how
to inspect the initial state of the code in Figure 1 using stepi

in GDB and memory mapping files in procfs. We further en-
courage students to consider more involved details of process
states, such as the reasons behind the inability to perform a
function return (using a ret instruction) and the necessity of
wrapping C main functions with a __libc_start_main.

2.2 Operating System as a State Machine Man-
ager

Computer system stack on state machines. Virtualization
is the most fundamental mechanism of modern operating
systems. Each application in an operating system can be
regarded as a state machine whose initial memory layout
and state transitions are specified by its binary executable.

0 1 2 3

0

1

2

3

4

5

Application A

Application B

Mem

Reg

Operating

System


(Implementation)

Operating

System

(Model)

0 0 0 3 1 3

6

7

1 5
B A B

syscall

(nondeterministic)

……

“refinement mapping”

Figure 2: Operating system as a state machine manager. In
this example, the operating system “executes” state transitions
0→ 1 and 0→ 3→ 5 for applications A and B, respectively.

The operating system should give the application the illusion
that the state transition system runs continuously following
its specification, even though instruction execution could be
non-deterministically interrupted at any time.

The state-machine approach provides a natural “implemen-
tation” of virtualization: by making state snapshots of all
processes available and scheduling a process through “mov-
ing” a state machine to the CPU. The trap/interrupt handler
plays such a role: it stores the state machine’s registers in
the operating system’s private memory space, ensuring the
system-wide invariant that all application states can be re-
constructed. Subsequently, the operating system can continue
processing interrupts, executing system calls, and resuming
any process based on a predefined scheduling policy.

These arguments conclude our claim that “everything is a
state machine” and gives us a new picture of understanding
operating systems, as shown in Figure 2:

1. Application code is the developer’s specification of a
state machine.

2. Operating system code is the designer’s specification
of a state machine manager, a “superset” state machine
container of all application state machines.

3. The operating system provides system calls as services
and leverages application-invisible states (e.g., page ta-
ble) to give processes the illusion of continuous state
machine execution.

Process APIs on state machines. Following the idea that
running applications are state machines, the need for process
APIs became obvious: an operating system must provide
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mechanisms for manipulating the set of live state machines.
We found that the state machine language3 precisely and
concisely explains UNIX process APIs:

1. fork() makes a “full copy” of the currently running state
machine. Registers and the address space should appear
to be deeply copied. References to operating system
objects (e.g., file descriptors and signal handlers) should
also be copied, but with caution [4].

2. posix_spawn(...) creates a new state machine (always re-
sets to the initial state of an application) with controllable
state sharing with the parent.

3. execve(path, argv, envp) resets a running state machine
to the initial state specified by the binary file path, with
arguments argv and environment list envp placed in mem-
ory following the Application Binary Interface.

4. exit(status) removes the currently running state ma-
chine from the operating system, reclaims used re-
sources, and notifies any waiting process with the exit
status.

2.3 State Machines Meet Operating Systems
We discovered that the state-machine approach is not only
beneficial for clarifying operating system concepts, but it can
also serve as a fundamental basis for explaining non-trivial
research systems to students:

Understanding system execution. Theoretically, executing
a state transition system (be it an application or an operating
system kernel) results in an execution trace composed of state
snapshots connected by state transitions

tr = s0→ si→ . . .→ si+1→ . . . ,

as if we single-instruction debug the program and save a core
dump after each instruction execution. Such a trace contains
all information needed for understanding this specific pro-
gram execution.

However, such a massive trace (billions of instructions exe-
cuted per second and megabytes of snapshots) is impractical
and unnecessary to keep for any engineering practice. Debug-
gers provide the break/watchpoint mechanism to efficiently
stop at interested program points (sometimes with hardware
assistance like debug registers) and let the developer examine
the program states interactively.

Understanding a program’s execution usually only requires
a tiny fraction of information in the full trace tr. The trade-off
space of “what parts of tr to observe” leads to many impor-
tant mechanisms incorporated in the engineering of modern
operating systems, which are explained below.

3For brevity, we removed less critical mechanisms including signals,
process groups, and access control in this discussion. However, all of them
can be explained under the state machine perspective whenever needed.

Playing with snapshots. fork provides a verbatim copy of
a program’s state si with reasonably low cost. Holding such
program state snapshots yields interesting applications. One
is the Zygote process of Android [14], which copies initial-
ized Java virtual machine state to avoid repetitive and time-
consuming bootstrap-time class loading. Another example is
that one can take periodical clean-state snapshots (e.g., in the
idle state of an event loop) and fall back to a snapshot when
an unexpected error occurs [38].

Time-travel debugging. Developers use a debugger to in-
teractively examine tr, which can be enhanced by a query
language [39]. Debuggers can also enable time-travel de-
bugging by recording the differences between consecutive
states, essentially creating an undo log. Time-travel debug-
ging is already implemented in GDB [12]. Observing that
non-deterministic transitions are only a tiny fraction of tr, one
can also keep track of their locations and choices to enable a
deterministic replay [16, 33].

Trace and profiler. One can insert probes exclusively at state
transitions relevant to the application logic (e.g., function
calls and returns) and gather diagnostic data (e.g., call stack
traces). Trace utilities such as ftrace and Kprobe in Linux [8]
are widely used for debugging production failures.

One can place probes only at application logic relevant state
transitions (e.g., function calls and returns) to collect diagnos-
tic information (e.g., call stack trace). Such trace tools like
ftrace and Kprobe in Linux [8] are widely used in debugging
production failures.

The overhead associated with tracing can be further re-
duced through sampling, which involves periodically activat-
ing probes within a specified time interval. Such profilers
generate summaries of the sampled program states and are
extremely useful in diagnosing performance issues.

Runtime checkers. Runtime checkers can also be considered
as functions that accept tr as input and check it against spe-
cific bug patterns. A broad spectrum of checkers operate in
this manner: AddressSanitizer [40] asserts the absence of out-
of-bounds and use-after-free memory accesses. ThreadSani-
tizer [41] confirms that there are no conflicting shared mem-
ory accesses unordered by happens-before relations. Lock-
dep [29] checks whether all observed lock acquisition order-
ings do not form a cycle.

Symbolic execution and program verification. It is obvi-
ous that system calls can exhibit non-deterministic behavior.
However, it is less emphasized that such non-determinism
can be rigorously quantified; for instance, a read system call
returns only a finite number of possibilities. Thus, we can
enumerate all possible state transitions to capture all potential
program behaviors; however, this approach is only feasible in
a theoretical context. Even reading a 32-bit integer results in
232 distinct states.

Using a compact representation of a vast number of states
(e.g., using a symbolic value x to represent an “arbitrary”
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value of variable x) and imposing constraints on symbolic
values across branches results in a symbolic program veri-
fier [7].

3 An Executable Operating System Model

Philosophy 2: Emulate state machines with exe-
cutable models.

As state machines are mathematically rigorous constructs,
their usefulness is not limited to merely clarifying operating
system concepts. It is also feasible to develop executable state
machines that accurately emulate the behavior of processes
and operating systems.

Specifically, we leverage modern programming language
mechanisms like coroutines for lightweight in-process con-
text switches to implement a lightweight executable operating
system model with emulated threads, processes, and devices
(Section 3.1). This section also discusses how instructors
could use a model to simplify non-trivial textbook cases (Sec-
tion 3.2) and use models as behavioral specifications of real
systems (Section 3.3).

3.1 Emulating an Operating System

State machines (processes) and system calls. We implement
our operating system model in Python, a popular program-
ming language among students. A process is emulated by a
generator (stackless coroutine) object where process memory
is its local variables. System calls (Table 1) are emulated by
yield in which the generator saves its local state (local vari-
ables and program counter) in a closure and transfers control
to its caller4:

1 def main(msg): # an emulated application process
2 i = 0
3 while (i := i + 1):
4 yield 'SYS_write', msg, i # write(msg, i)
5 yield 'SYS_sched', # sched()

Our operating system model, as a state machine manager,
maintains a set of processes (continuable generators) and is an
infinite loop of yield trap handler, just like any real operating
system:

1 class OperatingSystem:
2 def __init__(self, procs): # OS initialization
3 self._procs = procs
4 self._current = procs[0]
5

6 def run(self): # the OS main loop
7 while True:
8 syscall, *args = self._current.__next__()

4In the MOSAIC implementation, the process code is stored in a stan-
dalone Python file. Applications invoke system calls in Table 1 as ordinary
function calls like x = sys_choose(['Head', 'Tail']), and MOSAIC rewrites
the AST by replacing all system call nodes to yield.

9 match syscall:
10 case 'SYS_write': # write to debug console
11 print(*args)
12 case 'SYS_sched': # switch to a random process
13 self._current = random.choice(self._procs)
14

15 OperatingSystem([main('ping'), main('pong')]).run()

Process APIs. Because deep-copying a generator object is
not allowed in Python, we implement fork() by creating a
new OperatingSystem object and replaying all executed sys-
tem calls to obtain a deep copy of the process. This requires
OperatingSystem to keep track of the non-deterministic choices
of all previously executed system calls. Processes have in-
creasing IDs starting from 1,000, and the child process ID is
returned on fork(). There is no exit() because returned gen-
erators are never scheduled and are considered exited. There
is also no execve() because its functionality largely overlaps
with spawn() and fork().

Threads and shared memory. The shared memory among
threads is emulated by the global heap variable, whose value
is updated before switching to a process/thread by

globals()['heap'] = self._current.heap,

and readers may notice that this heap models a “page table base
register” which is changed on context switches. spawn(f, *xs)

creates a new generator calling f with arguments xs and a
shared heap. The replay-based fork() obtains a deep copy of
the heap in the freshly allocated OperatingSystem object.

Devices. Writing to the debug console appends the message
to a buffer. Reading from the debug console can be imple-
mented by choose() from possible inputs. The emulated block
device is a key-value mapping, which maps each block’s ID
(any string like inode or even emojis) to its contents (any seri-
alizable data structure including strings and lists). All block
device writes are first appended to a queue to simulate real
disks with a volatile buffer [36]. Write-back happens only
when sync() is called.

3.2 Modeling Operating System Concepts
Such a surprisingly simple model can simplify textbook cases
that require non-trivial interactions across system layers and
are thus challenging to debug or even reproduce–we can selec-
tively model the essential elements of the system to minimize
the complexity:

A fork() in the road [4]. Fork is no longer simple, consid-
ering it conducts a full state copy of libraries and references
(handles) to operating system objects. Below is such a non-
trivial case related to the buffer mechanism in the standard C
libraries:

1 for (int i = 0; i < 2; i++) {
2 int pid = fork();
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3 printf("%d\n", pid);
4 }

(unix) $ ./a.out
1000
1001
0
0
1002
0

(unix) $ ./a.out | wc -l
8 # ???

Debugging the internal implementation of libc (even with a
much simpler implementation like musl [1]) to understand this
case requires substantial engineering efforts. Alternatively,
we first model this case by removing all low-level details of
process creation and focusing on the behavior of a fork-cloned
buffer:

1 def main():
2 heap.buf = ''
3 for _ in range(2):
4 pid = sys_fork() # heap.buf is deeply copied
5 sys_sched() # non-deterministic context switch
6 heap.buf += f'{pid}\n' # or sys_write()
7 sys_write(heap.buf) # flush buffer at exit

The executable model always gives a process schedule
to explain its outputs5. After fully understanding the model,
students can examine the system call traces and debug the
libc source code with less pain.

Understanding synchronization. Synchronization primi-
tives (mutexes, condition variables, semaphores, etc.) are usu-
ally informally introduced in a textbook or an operating sys-
tem course. Implementing them upon our operating system
model gives them a rigorous semantics specification6. Below
displays a model of the buggy producer-consumer implemen-
tation from Chapter 30 of “The Three Easy Pieces” [3], in
which a consumer may erroneously wake up another con-
sumer (instead of a producer), resulting in a deadlock:

1 def Tworker(name, delta):
2 for _ in range(N):
3 while heap.mutex == ' ': # mutex_lock()
4 sys_sched() # |- spin wait
5 heap.mutex = ' ' # |
6

7 while not (0 <= heap.count + delta <= BUFSIZE):
8 sys_sched()
9 heap.mutex = ' ' # cond_wait()

10 heap.cond.append(name) # |
11 while name in heap.cond: # |- spin wait
12 sys_sched() # |
13 while heap.mutex == ' ': # |- reacquire lock
14 sys_sched() # |
15 heap.mutex = ' ' # |

5The model checker (Section 4.1) can be used to exhaustively examine
all process schedules and understand the possible outputs.

6Our model assumes that the execution of statements between consecutive
sched() appears to be atomic and uninterruptible.

16

17 if heap.cond: # cond_signal()
18 t = sys_choose(heap.cond) # |
19 heap.cond.remove(t) # |- wake up anyone
20 sys_sched()
21

22 heap.count += delta # produce or consume
23

24 heap.mutex = ' ' # mutex_unlock()
25 sys_sched()
26

27 def main():
28 heap.mutex = ' ' # or
29 heap.count = 0 # filled buffer
30 heap.cond = [] # condition variable's wait list
31 sys_spawn(Tworker, 'Tp', 1) # delta=1, producer
32 sys_spawn(Tworker, 'Tc1', -1) # delta=-1, consumer
33 sys_spawn(Tworker, 'Tc2', -1) # delta=-1, consumer

At first glance, this model seems to diverge from the text-
book example, as all synchronization primitives are denoted
by spin-wait constructs (Lines 3-4, 11-12, and 13-14). How-
ever, this is intentional: spin wait reflects the specification that
the thread could not make any progress unless the synchro-
nization condition is satisfied (e.g., a mutex is in the unlocked
state or a condition variable has been signaled). Blocking wait
is merely one possible implementation. Such a model also
captures a detail often overlooked by students: a condition
variable contains an implicit re-acquisition of its associated
mutex (Lines 13–15) after being signaled. An executable
model facilitates the development of rigorous concepts in
operating systems.

The incorrect use of condition variable is also non-trivial:
manifesting the bug requires at least three threads (a producer
and two consumers) and N ≥ 2. Such a fact can be easily
verified by the model checker (Section 4.1). Running this
model under a uniform-random scheduler, there is only ap-
proximately an 8% chance of triggering the deadlock in which
all three threads Tp, Tc1 , and Tc2 are spinning on Line 11.

Finally, we found that emojis in the code can improve the
readability of program states: “ ” intuitively indicates that
a thread holds this mutex. Other cases include using
in Peterson’s algorithm [34] (instead of flag[2] and integer
values 0 or 1) to indicate a thread “raising hand” to enter the
critical section and to denote success or failure.

File system consistency and journaling. The emulated block
device enabled us to implement ideas in file systems without
tedious low-level device details. Recall that the block device
is conceptually a dict. Thus, we can assign blocks with intu-
itive names like 'bitmap1' to indicate a bitmap block in the
persistent storage. We can also use this dict as a file system
by mapping file names (e.g., '/tmp/a.txt') to their metadata
and contents (e.g., ('symlink', '/etc/passwd')) when the ac-
tual storage layout is not relevant. Below is a simplified model
of xv6 [10] log commit:

1 def main():
2 # 1. log the write to block #B
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3 head = sys_bread(0) # blocks #1, #2, ... are the log
4 free = max(log.values(), default=0) + 1 # allocate log
5 sys_bwrite(free, f'contents for #{B}')
6 sys_sync()
7

8 # 2. write updated log head
9 head = head | {B: free}

10 sys_bwrite(0, head)
11 sys_sync()
12

13 # 3. install transactions
14 for k, v in head.items():
15 content = sys_bread(v)
16 sys_bwrite(k, content)
17 sys_sync()
18

19 # 4. clear log head
20 sys_bwrite(0, {})
21 sys_sync()

With the model checking feature (Section 4.1), all possible
crash behaviors and potential file system inconsistencies can
be exhaustively explored.

3.3 Application: Specification of Systems
An operating system model can be useful beyond explaining
textbook cases. A model also provides a behavioral specifi-
cation for real operating systems, like a high-level reference
implementation. For example, it could be proved that the mu-
tex model in Section 3.2 has the following two properties:

1. Safety: as long as a thread holds a mutex, any other
thread’s lock acquisition never returns.

2. Liveness: a thread eventually acquires a mutex if threads
with acquired locks eventually release them under a fair
(random) scheduler.

Because everything is a state machine (and thus a well-defined
mathematical object), it could be theoretically possible to
prove that a real system’s implementation is consistent with a
model by constructing a refinement mapping7. This is exactly
the idea behind formally verified systems like seL4 [25] (with
a Haskell executable model) and Hyperkernel [31] (with a
Python executable model), which all modeled operating sys-
tems as a state machine. Even though the technical details
of the research work may be too involved for first-time oper-
ating system learners, state machines still facilitate grasping
the fundamental concepts underlying them–one could always
perform a “brute-force prove” by enumerating all reachable
vertices on the state transition graph for finite systems.

Models are also useful as a behavioral reference for real sys-
tem implementations. A more practical “refinement mapping”
is to feed the same workload to both a model and a real system.
Cross-checking the model and system traces validates the im-
plementation’s correctness. For example, executing the same

7One fundamental result of program verification is that refinement map-
pings between high-level and low-level specifications always exist [2].

1 Q←{[]}; // the queue of traces pending checking
2 S←∅; // the set of checked states
3 while ¬Q.empty() do
4 tr← Q.pop() ;
5 ⟨s,choices⟩ ← replay(tr);
6 if s /∈ S then
7 S← S∪{s}; // add the unexplored state to S
8 for c ∈ choices do
9 Q.push(tr :: c); // extend tr with c and append to Q

Algorithm 1: The MOSAIC model checker

fork() sequence (assuming that all forks succeed) should yield
identical process trees for both the model and a student’s op-
erating system kernel. Such an approach is also known as the
lightweight formal method [22] and has been widely adopted
in validating practical systems [6].

4 One Model Checker to Rule Them All

Philosophy 3: Enumeration demystifies operating
systems.

The executable model’s behavior can be exhaustively explored
by enumerating all possible non-deterministic choices. This
section presents such a model checker (Section 4.1) and its ap-
plication to operating system teaching (Section 4.2), followed
by short quantitative experiments in Section 4.3.

4.1 MOSAIC Model Checker Design and Im-
plementation

Instead of executing a system call immediately, all MOSAIC
systems calls return a dict mapping possible choices (which
can be regarded as labeled transitions in the state machine)
to lambda callbacks for actually performing the system call,
even if there is only one unique choice:

1 def sys_sched(self):
2 return { # all possible choices
3 f't{i+1}': (lambda i=i: self._switch_to(i)) # callback
4 for i, th in enumerate(self._threads)
5 if is_runnable(th.context)
6 }
7

8 def sys_fork(self, *args):
9 return { # only one choice

10 'fork': (lambda: self._do_fork())
11 }

Such a design yields a simple replay-based state space ex-
plorer as shown in Algorithm 1. The algorithm is a straightfor-
ward breadth-first search that memorizes traversed states in S.
A trace is a chronological list of each system call’s selected
choice. Replaying a trace will always reach the next system

USENIX Association 2023 USENIX Annual Technical Conference    935



Figure 3: The interactive thread interleaving space explorer
on MOSAIC’s results of checking a spin lock implementa-
tion. Process and thread states are plotted as vertices. Thread
program counters are highlighted on the source code like a
debugger. Clicking a vertex expands its children.

call’s non-deterministic choices (Line 5), or there is no choice
(choices =∅) when all processes and threads are terminated.

For finite-state models, the algorithm always terminates and
produces a state transition graph whose vertices are traces in S
and edges are labeled with c in Line 9. MOSAIC serializes the
state transition graph as a JSON file. Both states (generator
states, heaps, debug console output, and storage state) and
transitions (labeled edges) are serialized. We encourage the
students to follow the UNIX philosophy and pipe the text
output to different backends:

1. Simply grep stdout | sort | uniq -c for a quick (and
dirty, perhaps unsound) check for all possible debug
console outputs.

2. Any JSON query or viewer like jq [15] to extract fields of
interest (e.g., variable values or block device contents).

3. Our interactive state explorer (Figure 3) in which one
can selectively expand nodes in the state transition graph.
This interactive explorer is particularly handy for class
demonstration.

4.2 Model Checking for Fun and Profits
The ability to exhaustively explore the state space makes a
model checker suitable for rigorously explaining non-trivial
cases in operating systems. A few such cases are shown below.

Processes and TOCTTOU attack. Both UNIX and our op-
erating system model lack a mechanism (e.g., transactions
[13, 37]) to enforce the atomicity across system calls and
may be subject to time-of-check to time-of-use attacks. We
demonstrate such a case of process-level race from [46]:

1 def main():
2 sys_bwrite('/etc/passwd', ('plain', 'secret...'))
3 sys_bwrite('file', ('plain', 'data...'))
4 pid = sys_fork()

5 sys_sched()
6 if pid == 0: # attacker: symlink file -> /etc/passwd
7 sys_bwrite('file', ('symlink', '/etc/passwd'))
8 else: # sendmail (root): write to plain file
9 filetype, contents = sys_bread('file') # for check

10 if filetype == 'plain':
11 sys_sched() # TOCTTOU interval
12 filetype, contents = sys_bread('file') # for use
13 match filetype:
14 case 'symlink': filename = contents
15 case 'plain': filename = 'file'
16 sys_bwrite(filename, 'mail')
17 sys_write(f'{filename} written')
18 else:
19 sys_write('rejected')

MOSAIC reveals that “/etc/passwd written” is possible and
gives such a process schedule. The exhaustive search can also
reveal that the two sys_sched in Lines 6 and 10 are essential
to produce such a result.

Hardness of shared-memory concurrency. Understanding
thread interleaving can be difficult. Restoring the global or-
dering of shared memory accesses on thread-local read/write
sequences is NP-Complete [17]. One interesting case is the
possible outcomes of concurrent tot++, assuming that loads
and stores are atomic (i.e., a sequentially consistent memory
model) and the compiler does not merge multiple tot++:

1 def Tsum():
2 for _ in range(N):
3 tmp = heap.tot # load(tot)
4 sys_sched()
5 heap.tot = tmp + 1 # store(tot)
6 sys_sched()
7

8 def main():
9 heap.tot = 0

10 for _ in range(T):
11 sys_spawn(Tsum)

MOSAIC reveals that tot can be 2 regardless of N and T
(for N,T ≥ 2) and gives such a thread schedule in which one
thread “holds” a value of 2 in the last iteration of the loop and
does not write it back until all other threads are terminated.
We used the N = 3,T = 2 case as an exam problem, and
approximately half of the students got wrong.

Persistence and crash consistency. Upon crash(), MOSAIC
automatically explores all 2n possible crash disks, assuming
that any of the n buffered block I/O requests could be lost [36].
By modeling a file operation that involves multiple block
updates (inode, bitmap, and data), an instructor can clearly
and rigorously illustrate potential inconsistencies in a file
system upon a system crash. Below is a textbook case in
Chapter 42 of “The Three Easy Pieces” [3]:

1 def main():
2 # intially, file has a single block #1
3 sys_bwrite('file.inode', 'i [#1]')
4 sys_bwrite('used', '#1')
5 sys_bwrite('#1', '#1 (old)')
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Subject Parameters # State Memory Time

fork-buf
(7 LOC)

n = 1 (p = 2) 15 17.0 MB < 0.1s
n = 2 (p = 4) 557 19.8 MB 3.3s (171 st/s)
n = 3 (p = 8) Timeout (> 60s)

cond-var
(34 LOC)

n = 1; tp = 1; tc = 1 33 17.3 MB < 0.1s
n = 1; tp = 1; tc = 2 306 19.7 MB 0.1s (2 912 st/s)
n = 2; tp = 1; tc = 2 2 799 26.0 MB 0.8s (3 343 st/s)
n = 2; tp = 2; tc = 1 4 666 30.5 MB 1.4s (3 247 st/s)

xv6-log
(27 LOC)

n = 2 55 17.3 MB < 0.1s
n = 4 265 19.2 MB < 0.1s
n = 8 6 157 40.2 MB 1.3s (4 810 st/s)

n = 10 28 687 93.9 MB 20.7s (1 385 st/s)

tocttou
(24 LOC)

p = 2 33 17.4 MB < 0.1s
p = 3 97 17.8 MB 0.2s (413 st/s)
p = 4 367 19.4 MB 2.7s (135 st/s)
p = 5 1 402 23.5 MB 30.2s (46 st/s)

parallel-inc
(11 LOC)

n = 1; ts = 2 40 17.2 MB < 0.1s
n = 2; ts = 2 164 18.0 MB < 0.1s
n = 2; ts = 3 6 635 37.4 MB 1.4s (4 580 st/s)
n = 3; ts = 3 52 685 139.5 MB 14.1s (3 725 st/s)

fs-crash
(25 LOC)

n = 2 90 17.5 MB < 0.1s
n = 4 332 19.4 MB < 0.1s
n = 8 5 136 36.2 MB 2.6s (1 944 st/s)

n = 10 Timeout (> 60s)

Table 2: Evaluation subjects and results. p, t, n denote the
number of processes, threads, and loop iterations, respectively.
All experiments were performed on an i7-6700 Linux PC
with 4 GB RAM running Python 3.11. Each configuration is
repeated for 10 times, and the average number is reported.

6 sys_sync()
7

8 # append a block #2 to the file
9 sys_bwrite('file.inode', 'i [#1 #2]') # inode

10 sys_bwrite('used', '#1 #2') # bitmap
11 sys_bwrite('#1', '#1 (new)') # data block 1
12 sys_bwrite('#2', '#2 (new)') # data block 2
13 sys_crash() # system crash
14

15 # display file system state at crash recovery
16 inode = sys_bread('file.inode')
17 used = sys_bread('used')
18 sys_write(f'{inode:10}; used: {used:5} | ')
19 for i in [1, 2]:
20 if f'#{i}' in inode:
21 b = sys_bread(f'#{i}')
22 sys_write(f'{b} ')

MOSAIC’s self-explanatory outputs verified that the one-
page informal arguments in the textbook are indeed exhaustive
and correctly covered all possible cases. MOSAIC can also
check the journal implementation in Section 3.2 by adding
crash() to the code and reveal that removing the sync() in
Line 6 may result in file system inconsistency.
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Figure 4: Major modules and their dependencies in our oper-
ating system course. The concept of state-machine is a good
foundation for thread-based concurrency, and thus we intro-
duce concurrency first in the course.

4.3 Experiments
We evaluate the performance of MOSAIC by checking the six
representative models in Sections 3.2 and 4.2. Both experi-
mental subjects and results are listed in Table 2. As expected,
MOSAIC cannot address the state space explosion problem
and has no comparable performance with a state-of-the-art
software model checker with dedicated optimizations. Further-
more, programs that extensively fork is significantly slower
(benchmarks fork-buf and tocttou) because our fork() is imple-
mented by a full-system replay. Nevertheless, checking thou-
sands of nodes per minute could be considered sufficiently
useful for instructional purposes, and our design choice is to
make a functional model checker minimal and elegant.

5 A New Operating System Course

We design a new operating system course from scratch based
on “The Three Easy Pieces” [3] and our teaching philosophies:
everything is a state machine, emulate state machines with
executable models, and enumeration demystifies operating
systems. The course syllabus is shown in Figure 4. This
section presents the impacts of the state machine perspective
(Section 5.1) and model checker (Section 5.2) in the course
design, followed by discussions in Section 5.3.

5.1 State Machines and Operating Systems
In addition to introducing the key concepts in operating sys-
tems using state machines, the state machine perspective also
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brings the following advantages in establishing a high-level
understanding of important concepts regarding computer sys-
tems in a natural and coherent way.

Don’t panic in hacking real systems! All students had a hard
time in debugging real (even minimal) systems, including but
not limited to operating system kernel, even if we provided
skeletal code, tool chain, and state visualization scripts.

The state-machine perspective provides a natural reflex on
how to deal with bugs or unexpected behavior in real systems:
All bugs in computer systems are essentially some anomaly
in the state-machine’s execution trace. Given an unlimited
amount of time, one just seeks the first abnormal state, and the
root cause is right there. We teach students this (impractical)
debugging principle and motivate students to consider clever
tricks to make this procedure fast, robust, and easy.

For example, the essence of printf-debugging is to provide
a high-level digest of the state-machine trace, which helps
in narrowing down the scope of the initial anomalous state.
One can also employ defensive programming by inserting
assertions to the validity of states. These lessons are usually
less taught in an operating system class but are essential for
surviving hacking or implementing a large-scale system.

One classroom story is using a profiler (i.e., “frequent” state
sampler) in diagnosing an unexpected 100% CPU usage on an
idle workload in a production system in on a specific machine.
The perf tool [9] attributes the hot spot to an xhci-related
function, which leads us to a short-circuited USB port.

Concurrency meets state machines. The model checking
community has long represented concurrent programs as state
transition systems, and model checking is widely recognized
as a computationally intensive technique that frequently en-
counters state explosion issues. Nevertheless, employing ex-
haustive enumeration is not the sole efficient approach to
harness the capabilities of state machines.

The concept of data race, an important topic in operating
system courses, refers to the simultaneous access of a shared
memory location by two threads or processors (with at least
one performing a write). Data races are considered harmful
in systems programming.

When one checks a state machine trace against data races, it
is essential to examine all types of state transitions that could
lead to memory access [41]. However, two sources of mem-
ory access may be overlooked by students: (1) fetching an
instruction from the program counter and (2) stack operations,
including function and interrupt returns.

We let the students experience a subtle data race in an op-
erating system kernel lab that requires students to migrate a
process from one processor to another. The destination proces-
sor could not immediately schedule the process. Otherwise,
there will be a data race on the kernel’s interrupt stack.

Demystifying compilers. It is not obvious to students that C
programs can also be represented by state transition systems.
We use the example in Figure 5 (a non-recursive “Tower of

1 void hanoi(int n, int from, int to, int via) {
2 if (n == 1) {
3 printf("%d -> %d\n", from, to);
4 } else {
5 hanoi(n - 1, from, via, to);
6 hanoi(1, from, to, via);
7 hanoi(n - 1, via, to, from);
8 }
9 }

1 typedef struct { int pc, n, from, to, via; } Frame;
2 #define call(...) ({*(++top) = (Frame) {0, __VA_ARGS__};})
3 #define ret() ({top--;})
4 #define jmp(loc) ({f->pc = (loc) - 1;})
5

6 void hanoi_nr(int n, int from, int to, int via) {
7 Frame stk[64], *top = stk - 1, *f;
8 call(n, from, to, via);
9 while ((f = top) >= stk) {

10 switch (f->pc) {
11 case 0: if (f->n == 1) {
12 printf("%d -> %d\n", f->from, f->to); jmp(4);
13 } break;
14 case 1: call(f->n - 1, f->from, f->via, f->to); break;
15 case 2: call(1, f->from, f->to, f->via); break;
16 case 3: call(f->n - 1, f->via, f->to, f->from); break;
17 case 4: ret(); break;
18 default: assert(0);
19 }
20 f->pc++;
21 }
22 }

stack frames

n=3, f=1, t=3, v=2hanoi(PC=5)

n=3, f=1, t=3, v=2hanoi(PC=6)

n=3, f=1, t=3, v=2hanoi(PC=6)

n=3, f=1, t=3, v=2hanoi(PC=6)

n=2, f=1, t=2, v=3hanoi(PC=1)

hanoi(2, 1, 2, 3)

stack frames

…

global/allocated memory
…

global/allocated memory

(Line 5)

Figure 5: State machine perspective of C programs. hanoi_nr
is also an “executable model” emulating recursions for rigor-
ously understanding the semantics of C programs.

Hanoi” implementation) to illustrate that the “runtime state”
of C programs consists of static variables, heap memory, and a
list of stack frames. State transitions are small-step expression
evaluations at the top-most stack frame’s program counter.

Compilers should always generate equivalent assembly
(low-level state machine specification) from source code
(high-level state machine specification). Therefore, a funda-
mental question is what kinds of translation are allowed for
an optimized compiler. Notably, such deliberations are fre-
quently neglected throughout the undergraduate curriculum,
including in courses specifically addressing compilers.
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With the conceptual model of state machines, the correct-
ness of translation is essentially the equivalence between two
state machines. This naturally leads to the definition of ex-
ternal observable equivalence between systems: given that
system calls are the only way of influencing the remaining
parts of the system, two programs are considered equivalent if
they generate identical system call traces for the same inputs,
and one program terminates if and only if the other program
terminates. This principle serves as the core concept behind a
verified compiler such as CompCert [27].

5.2 Modeling and Model Checking in Action

Models and emulation are everywhere. Models in an oper-
ating system course may not be limited to Python-implement
system calls. We advocate using minimal but functionally
“working” models, even they are implemented using a lower-
level programming language.

One particular example is that we long had difficulties in
explaining the ELF dynamic linker and loader to the students
due to the unnecessarily excessive complexity of the ELF
format. We identified that the problem stems from the fact
that the ELF design is intended to be read exclusively by
machines, rather than humans.

Therefore, we design a simplified binary format imple-
mented using GNU C preprocessor and assembly. The bi-
nary file contains merely a magic number, a NULL-terminating
symbol table whose entries are macros like IMPORT(printf) or
EXPORT(main), followed by assembly instructions. By reusing
GCC and binary utilities, we implement the full toolchain of
linker, loader, and an objdump equivalent in 200 lines of C code.
Student and social media feedback indicate that such a model
significantly flattens the learning curve of dynamic loading.

Formal method meets operating systems. We motivate the
need for a model checker by making substantial (boring) ef-
forts to draw a state transition graph to prove the safety and
liveness of Peterson’s mutex algorithm [34]. It is then obvious
that a program like MOSAIC can replace human labor by em-
ulation. We received positive feedback from students on their
first contact with the model-checking approach, particularly
the interactive visualizer (Figure 3), which is embedded in a
Jupyter notebook for in-class demonstrations. The machine-
generated state transition graph is also generally more reliable
than the informal arguments in popular textbooks [42].

Another advantage of a model checker over existing teach-
ing methods is the immediate feedback when answering “what
if” questions related to changes in assumptions, implementa-
tions, and other factors. We encourage students to extensively
experiment with the model, e.g., to see if the system breaks
with added sched() or removed sync().

The gap between models and real systems. We also teach
students that models do not fully reflect the real world. Models
are good at making all assumptions explicit, e.g., MOSAIC

assumes the atomicity of statements between consecutive
sched() calls and a sequentially consistent memory model.

The discrepancies between a model and an actual system
are explained by careful examination of these assumptions.
Peterson’s algorithm is correct only under proper assumptions–
specifically, a sequentially consistent memory model as if
context switches only happen on instruction boundaries. For
Peterson’s algorithm, we provide an equivalent C implemen-
tation to illustrate how compiler and memory barriers may
impact the program’s behavior.

5.3 Student Acceptance and Discussions

Student Feedback. After publicizing the course lecture notes,
demonstrations, and videos on the Internet, we received an
excessive amount of positive feedback. Comments included
statements like, “It is remarkable that such a comprehensive
explanation of operating system principles can be provided in
an undergraduate-level course.” Students conveyed that they
“gained valuable insights on overcoming the panic in hacking
large-scale systems in this course.”

There are also controversial arguments on the appropri-
ateness of incorporating state machines as a key concept in
operating system courses. However, we have also received
feedback from the industry professionals supporting our ap-
proach by indicating that state machines are one of the most
fundamental abstractions for controlling complexity in build-
ing production systems.

Since the first public release of the course in 2020, the
video has received more than 2,000,000 plays on the Internet.
Moreover, this course has been conferred the "Test-of-Time
Teaching Award of the Department," as chosen by alumni
who evaluated all courses in their curriculum.

Usefulness of models. Modeling is a versatile technique for
establishing concepts and understanding. Modeling can also
control the complexity by selectively hiding low-level im-
plementation details. Another major advantage of executable
models is making operating system concepts rigorous. Con-
cepts (e.g., mutex, condition variable, and crash consistency)
can be defined by “all possible behaviors on a model.”

One may argue that any model behavior can be manifested
by real workloads, and thus students should have first-hand
experiences on real systems. We consider understanding the
model (and thus the concepts) a critical step before students
can hack real systems. Otherwise, the excessive and irrele-
vant implementation details can be a significant source of
distraction.

Limitations. The “state-machine perspective” motivates the
key insights and high-level designs of operating systems well.
However, such over-simplification may yield students over-
looking the challenges of implementing real systems. There-
fore, we still consider the “hands-on approach,” [26] in which
students implement their own operating system kernel on
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emulated bare metal, an indispensable part of an operating
system course8.

MOSAIC only models a small fraction of an operating sys-
tem. More are missing, and one has to model them explicitly:
file descriptors, signals, futexes, RAID, network stack, etc.
Theoretically, it could be possible to model them in MOSAIC;
however, we preferred simplicity in our model design and
leaving these mechanisms to user-level applications like we
did in Sections 3.2 and 4.2.

The implementation of MOSAIC also has limitations: main
must be a Python generator (rather than a stackful coroutine).
Thus, system calls are not allowed in functions being called by
main. MOSAIC also assumes that the program being checked
is deterministic. Non-determinism beyond system calls (e.g.,
random numbers) results in unsound model-checking results.
Considering that MOSAIC is a pedagogical model checker
and an instructor can easily bypass these limitations; thus,
they are not a significant obstacle to adopting MOSAIC in
practice.

6 Related Work

Emerging from the logic and programming language com-
munity, formal methods (mainly model checking and formal
verification) has been widely adopted in the validation and
verification of computer systems [6, 25, 27, 31, 47]. The key
idea of formal methods is to treat specifications, models, and
implementations as unambiguously-defined mathematical ob-
jects and prove properties by exhaustive search or axiomatic
reasoning.

Despite a growing trend of formal method applications
for computer systems, the teaching practice of “classical”
operating systems remains classical on the layered abstrac-
tions of computer systems [3, 42] and the “hands-on” ap-
proach [26] in which students hack teaching operating system
kernels [10, 19, 35] over emulators like QEMU [5] to fully
understand all low-level implementation techniques.

There are attempts to incorporate model checking in teach-
ing computer systems. Hamberg and Vaandrager [18] mod-
eled textbook concurrency control algorithms using the Up-
paal modeling language and checker. Michael et al. [28] target
real Java programs on a message-passing model and check
against all possibilities of message reorderings, drops, and
duplications. Both concurrent programs and distributed sys-
tems are classical application scenarios of a model checker.
To the best of our knowledge, we are the first to apply formal
methods throughout an entire operating system course.

MOSAIC models a fully functional operating system by the
unified treatment of non-determinism in system calls (Sec-
tion 4.1). MOSAIC can check the interactions between pro-
cesses, threads, and devices. Such a design resembles the

8Students all had a hard time debugging a bare-metal kernel. Such experi-
ences further motivate the need for debugging aids and dynamic analysis in
Section 2.3.

EXPLODE system [47] for model checking real storage sys-
tems, in which all non-determinism and fault injection are
implemented upon choose().

As a pedagogical model checker, MOSAIC’s primary use
is to explain real operating system behaviors by mapping
the model’s execution traces (e.g., examples in Sections 3.2
and 4.2) to real systems. Such an approach belongs to the
paradigm of lightweight formal methods [21, 22], which
strongly emphasizes practicability rather than the full sound-
ness of a proof. Lightweight formal methods have been proven
effective against validating excessively complex real sys-
tems [6]. Like other pedagogical model checkers [28], we
intentionally trade off the performance with understandabil-
ity. Compared with fully verified systems [31], MOSAIC is
functional but with magnitudes less code.

Emulation is also a widely-adopted approach in operating
system teaching, which facilitates students establishing a cor-
rect and rigorous understanding of concepts. The exercises
of “Three Easy Pieces” [3] are based on a substantial amount
of independent emulators. MOSAIC as a unified model, on
the other hand, can model (and check) the interplay between
different levels of system mechanisms, e.g., how file system
operations and process-level race result in a TOCTTOU attack
in Section 4.2.

Finally, (replicated) state machines also play a fundamental
role in distributed systems [32]. Formal methods became
increasingly necessary in handling the counter-intuitive corner
cases often overlooked by informal arguments. We believe
that getting familiar early with such a paradigm on rigorous
modeling and reasoning in a first operating system course can
inspire the future generation of system researchers.

7 Conclusion

This paper presents a state-machine-first and model-based
approach to teaching operating systems. By leveraging mod-
eling and model checking, we can define operating system
concepts rigorously, explore system behaviors exhaustively,
and motivate non-trivial research systems intuitively under a
unified framework in a first operating system course. We be-
lieve that this paper’s teaching philosophies have the potential
to lead a paradigm shift in the teaching of operating systems.
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Abstract
Scaling model parameters improves model quality at the price
of high computation overhead. Sparsely activated models,
usually in the form of Mixture of Experts (MoE) architec-
ture, have sub-linear scaling of computation cost with model
size, thus providing opportunities to train and serve a larger
model at lower cost than their dense counterparts. However,
distributed MoE training and inference is inefficient, mainly
due to the interleaved all-to-all communication during model
computation.

This paper makes two main contributions. First, we system-
atically analyze all-to-all overhead in distributed MoE and
present the main causes for it to be the bottleneck in train-
ing and inference, respectively. Second, we design and build
Lina to address the all-to-all bottleneck head-on. Lina oppor-
tunistically prioritizes all-to-all over the concurrent allreduce
whenever feasible using tensor partitioning, so all-to-all and
training step time is improved. Lina further exploits the in-
herent pattern of expert selection to dynamically schedule
resources during inference, so that the transfer size and band-
width of all-to-all across devices are balanced amid the highly
skewed expert popularity in practice. Experiments on an A100
GPU testbed show that Lina reduces the training step time
by up to 1.73x and reduces the 95%ile inference time by an
average of 1.63x over the state-of-the-art systems.

1 Introduction

Recent advances in deep learning have shown that a model’s
quality typically improves with more parameters [15, 21, 23,
29, 47]. Many new frontiers in Computer Vision (CV) and
Natural Language Processing (NLP) have been explored us-
ing large dense models [22, 38, 44]. While effective in terms
of model quality, the computation cost of model training and
serving is extremely high. ChatGPT [1], an impressive chatbot
released by OpenAI, is estimated to spend 3 million dollars
per month to serve user requests. Wider adoption and develop-
ment of these models are impeded by the exorbitant compute
cost.

Following the basic idea of curbing the computation cost of
massive models, sparsely activated models have recently been
introduced [13, 23, 33, 44]. The Mixture-of-Experts (MoE)
structure is now one of the most popular ways to implement
sparse activation [13, 14, 44, 55]. For each input, instead of
using all parameters, an MoE model selects just a few of
them, i.e. experts, for processing. This leads to sub-linear
scaling of FLOPs needed with model size. Recent litera-
ture [9, 22, 26, 30, 38, 54] has proven the potential of MoE
models. For instance, Google develops a family of language
models named GLaM using MoE [22]. Compared to GPT-3
with 175 billion parameters, the largest GLaM has 1.2 tril-
lion parameters while only consuming 1/3 of the energy for
training. Meanwhile, GLaM still achieves better zero-shot
and one-shot performance than GPT-3. Microsoft reports that
their MoE-based language models achieve a 5x training cost
reduction compared to a dense model with the same model
quality [38].

Given the uptake of MoE, there have been several systems
for efficient MoE training and inference, including Google’s
Mesh TensorFlow [43], Meta’s FairScale [10], Microsoft’s
DeepSpeed [2] and Tutel [7], etc. They provide APIs for users
to replace the conventional dense layers with MoE layers with
minimal code changes. They adopt both data parallelism and
expert parallelism to accelerate the training and inference.
That is, each device (e.g. GPU) is assigned with a unique
expert, and uses all-to-all to receive inputs from other devices
and then sends the gradients back to them accordingly. Dur-
ing training, allreduce is then used to aggregate non-expert
gradients in the backward pass.

We focus on the efficiency of distributed MoE training and
inference in this work. As some [25,31,41] has shown, the all-
to-all operation is the main bottleneck. All-to-all blocks the
subsequent computation operations and needs to be invoked
two times in the forward pass and another two in the backward
pass for each MoE layer. Interestingly, the main causes for
all-to-all being the bottleneck are different in training and in-
ference. In training, all-to-all and allreduce often contend for
network bandwidth when they overlap in the backward pass,
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leading to a prolonged blocking period to the computation.
Inference, on the other hand, presents a highly-skewed expert
popularity driven by real-world requests. Devices with popu-
lar experts have to handle much more data than others. Not
only does it delay the launch of all-to-all, but it also causes
imbalanced transfer size and bandwidth utilization across the
devices, both of which are detrimental.

We are thus motivated to systematically tackle the all-to-all
bottleneck. Our solution is Lina, a system that accelerates
both MoE training and inference.

In training, we prioritize all-to-all over allreduce in order to
improve its bandwidth. Existing MoE systems launch separate
CUDA streams for the expert-parallel and data-parallel pro-
cess groups which correspond to all-to-all for expert and allre-
duce for non-expert parameters, respectively. As there is no
coordination between these streams, all-to-all and allreduce
can overlap and fair-share the network bandwidth. Unlike
allreduce, all-to-all is blocking and cannot be made parallel
with the computation process. Thus, prioritizing all-to-all in
the backward pass and avoid concurrent allreduce is crucial
to reducing the blocking period.

To efficiently prioritize all-to-all, we adopt tensor partition-
ing which breaks down a tensor into smaller chunks, each
of which forms a micro-op. With micro-ops, simple priority
scheduling can be applied to guarantee full bandwidth for all-
to-all while allowing allreduce micro-ops to make progress
when all-to-all is not present. In addition, micro-ops allow the
expert computation to be pipelined with all-to-all.

In inference, we dynamically schedule the resources for
each expert in order to balance the workload of each device,
thereby alleviating the imbalanced all-to-all transfer size and
bandwidth. Intuitively popular experts should be given more
resources while the rest may be served with less resources.
The key challenge here is to efficiently and accurately obtain
the expert popularity before the selection is actually done
by the gating network, for every batch of input at each MoE
layer, so scheduling benefit can be maximized with minimal
overheads. Fortunately, we find the experts selected by each
token across the layers demonstrate clear patterns, which
allow us to estimate the expert distribution of the upcoming
layer based on the past selection results from the preceding
layers. We adopt a two-phase scheduling approach that fine-
tunes the estimation based allocation only when the actual
expert popularity deviates too far.

We build Lina based on DeepSpeed MoE [2] and PyTorch,
and evaluate it on a cluster with up to 16 Ampere A100 GPUs
with 40GB memory and 100Gbps InfiniBand. Results show
that Lina accelerates all-to-all by at least 2.21x, and achieves
on average 1.57x speedup in overall training step time com-
pared to state-of-the-art system DeepSpeed. The median and
95%ile inference time is reduced by 1.45x and 1.63x.

Our contributions can be summarized as follows:
• We present an in-depth empirical analysis of distributed

MoE to show the main causes for all-to-all to be the perfor-

mance bottleneck in training and inference.
• We propose to prioritize all-to-all over allreduce in order

to improve its bandwidth and reduce its blocking period in
distributed training. Lina’s scheduler incorporates tensor
partitioning and pipelining to perform micro-op scheduling.

• We examine the pattern in expert selection of MoE layer
and propose to estimate the expert popularity to conduct re-
source scheduling in advance during inference. Lina adopts
a two-phase scheduling scheme to minimize the overhead.

• We implement a concrete prototype system and conduct
comprehensive testbed experiments to demonstrate the ben-
efits of our design in a realistic GPU cluster setting.

2 Background and Motivation

We start with an introduction on MoE and a widely-adopted
distributed system for MoE model in §2.1. Then, we motivate
our idea by analyzing the performance bottleneck (i.e. all-to-
all) in distributed MoE training and inference in §2.2.

2.1 A Primer on MoE
Mixture-of-Experts (MoE) has been adapted to different types
of DNN models , and exhibits great potential in improving the
performance of language models in particular. GShard [31]
and Switch Transformer [23] are two seminal works on scal-
ing Transformer-based language models with MoE layers. We
focus on MoE in Transformer-based models in this work.

Transformer-based models normally use an MoE layer to
replace the feed-forward network (FFN) layer. An MoE layer
consists of multiple FFNs each serving as an expert, and a
gating network (Figure 1a). Every expert is a fully-connected
two-layer network using ReLU activation but with different
parameters. The gating network takes in the embedding vector
of each token and multiplies them with its trainable matrix.
Based on the results, it dispatches the token to a small num-
ber of experts (usually one or two). The final output of the
MoE layer is the weighted sum of outputs from the selected
expert(s). The sparsity nature of MoE improves the model
scaling in size without increasing the training cost and natu-
rally leads to a dynamically-changing model graph.
Load balancing loss. In MoE training, an auxiliary loss is
introduced to evaluate the token distribution among the ex-
perts [23]. The objective is to achieve a uniform distribution
of tokens across the experts, thereby preventing an excessive
concentration of tokens in a single expert. By minimizing this
loss term, we encourage but do not enforce the gating network
to produce a perfectly balanced token distribution.

The standard practice is to calculate the auxiliary loss of
each MoE layer and sum them with the training loss using an
appropriate weight. Previous research has demonstrated the ef-
fectiveness of this approach [16,33,45]. However, it should be
noted that achieving a perfectly balanced distribution, where
the auxiliary loss converges to zero, is challenging [18, 53].
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Figure 1: MoE layer in Transformer-based models.

# Experts Model Training (ms) Inference (ms)

GPUs #Layers & Params All-to-all Ratio All-to-all Ratio

12L + 117M 259 36.7% 73 27.4%
4 24L + 233M 589 35.4% 103 26.2%

36L + 349M 979 38.2% 153 28.3%

12L + 419M 333 39.5% 102 32.5%
16 24L + 838M 715 37.6% 177 31.7%

36L + 1.2B 1145 36.8% 243 27.4%

Table 1: The completion time of all-to-all and its ratio in training and infer-
ence task of Transformer-XL [20] in different number of experts per layer.
Training and inference have the same batch size here. Each FFN layer is
replaced with MoE and the number of experts is equal to the number of GPUs
similar to the common practice [23]. A100 GPUs with 40GB memory and
100Gb/s InfiniBand are used. We use the MoE implementation in DeepSpeed.

During MoE inference, the trained gating network is utilized
to dispatch tokens to the experts based on their respective em-
beddings. This process is solely driven by the characteristics
of the token embeddings.
Hybrid parallelism in distributed MoE. Training and serv-
ing MoE models in a distributed manner are necessary due to
the tremendous compute requirement of large-scale language
models [12]. For efficiency, both data parallelism and MoE-
specific expert parallelism (as a form of model parallelism)
are applied [23,31]. Existing MoE systems [2,7,10,23,31,43]
allocate one unique compute device (e.g., GPU) for each ex-
pert in expert parallelism. An all-to-all communication is then
needed to send tokens to their experts selected by the gating
network, and another all-to-all is needed to send tokens back
to the device they belong to in data parallelism to finish the
rest of the forward pass as shown in Figure 1b.

2.2 Bottleneck Analysis

Much prior work has identified that the introduction of all-to-
all in MoE causes performance inefficiency in Transformer-
based models [7, 41, 54]. We extract the completion time
of all-to-all operations in both training and inference in our
GPU cluster as shown in Table 1. All our experiments in this
section use the same testbed and settings. Overall, all-to-all
takes an average of 34.1% — a significant fraction of the step
time. Interestingly, though the bottleneck brought by all-to-all
is universal in both MoE training and inference, the causes
differ. In the following, we motivate our work by analyzing
how all-to-all affects the efficiency of training and inference,
respectively.

Stream a
Stream b All-to-all

Forward Pass

0 3.1 10.7 12.1 18.7
ms

20.3
All-to-all

Gate FFN Combine

Figure 2: Timeline of forward pass an MoE layer. We simplify the presenta-
tion by bundling GPU kernels here: The computation kernels are grouped
by their roles in the MoE layer into Gate, FFN and Combine. The Combine
operation involves reshaping the tensors and computing the weighted output.
The timeline is taken from a sample run of the 419M-parameter model in
Table 1.
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Figure 3: CDF of how much all-to-
all is prolonged when it overlaps with
allreduce operation. We mark the me-
dian and average slowdown factors.
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Figure 4: The proportion of all-to-
all’s completion time over training
step time when the number of experts
grows. Dashed line plots the data size
in one all-to-all operation.

Synchronous all-to-all with large data transfer. The com-
mon characteristic shared by MoE training and inference is
all-to-all’s large data transfer. All-to-all is an irreplaceable
synchronous component to handle the data exchange among
devices in MoE layer. Each MoE layer has two all-to-all oper-
ations to send the tokens to the experts and then restore the
position of tokens, as introduced in §2.1. The data transfers
in the two all-to-all operations have the same size because the
expert’s FFN architecture ensures that its input data size is
the same as the output data size. Figure 2 shows an empirical
timeline view of the forward pass of MoE model in our cluster.
All-to-all takes 74.9% of the end-to-end running time of one
MoE layer. Expert FFN computation and the combine opera-
tion follow when all-to-all operation completes. MoE training
and inference suffer from such inefficiency consistently. GPU
is mostly idle during this period: We use the PyTorch Pro-
filer [6] to profile the GPU activities for 20 steps in each
experiment in Table 1, and find that the average GPU SM effi-
ciency during all-to-all is 3.7%. Besides, the data transfer size
grows linearly with the number of experts. Figure 4 presents
the empirical evidence of all-to-all’s transfer size as the num-
ber of experts grows from 2 to 16 (128). With the increasing
number of experts, the time taken by all-to-all grows from
33.4% to 44.5% of the step time.
Problem in training: Prolonged all-to-all with allreduce.
The unique challenge in MoE training is that applying the
hybrid parallelism creates a particularly severe impact to all-
to-all in backward pass. Non-MoE layers in data parallelism
need allreduce to aggregate the gradients, while expert par-
allelism requires all-to-all to exchange tokens to compute
expert gradients. Since the two operations control their own
process groups independently, two dedicated CUDA streams
are launched concurrently. This is demonstrated in Figure 5
with the timeline of backward pass in a sample run of MoE
training. As the two operations overlap, they contend for the
network bandwidth and their completion times are severely
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Figure 5: Timeline of backward propagating an MoE layer under hybrid
parallelism. The first all-to-all is prolonged by the allreduce operation in
Stream b. The shadowed part is its original completion time.
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(b) 16-expert MoE.

Figure 6: Sampled expert popularity. The distribution is computed as the
ratio between the number of tokens received by the expert and total number
of tokens in one batch. We use the Enwik8 test set [3] for evaluation.

prolonged. To make matters worse, we find that the slowdown
factor varies significantly. We collect the completion times
of 1,500 all-to-all operations in backward pass on our testbed
and plot the CDF of the slowdown factor they endure with
allreduce in Figure 3. Observe that the median slowdown is
over 1.83x and the worst is 4.14x.
Problem in inference: Skewed expert popularity. The main
cause of all-to-all being the bottleneck in MoE inference is
the skewed expert popularity. The token-to-expert distribution
in inference is purely workload-driven, and we empirically
find that the expert popularity is highly skewed in sharp con-
trast to training. We sample the expert popularity of the same
MoE model in training and inference in Figure 6. In train-
ing, the distribution is nearly the same across all experts after
hundreds of steps due to the use of load balancing loss. In
inference, however, the most popular expert receives 4.02x
and 5.56x tokens of the least popular ones in 4-expert and
16-expert inference tasks. With the same network and com-
putation capacity, devices hosting popular experts take much
longer to perform expert computation. In this experiment, the
maximum idle time of the least popular expert is 29.4% of the
inference time of that batch. Thus, within one batch, tokens to
the less occupied experts have to wait for others to complete
on the more popular experts, degrading the all-to-all perfor-
mance significantly. Further, under uniform expert-device
allocation, devices hosting popular experts have more tokens
using their links for all-to-all, while the links of other devices
are underutilized.

3 Design Overview

Lina is designed to accelerate all-to-all in distributed MoE.
It attacks both the bandwidth contention with allreduce in
training, as well as the straggler with unbalanced all-to-all

bandwidth in inference. We focus specifically on MoE imple-
mentations that leverage both data and expert parallelism.
MoE training. We aim to improve the bandwidth of all-to-all
in order to reduce the blocking period of the computation
operations. Our key idea here is to prioritize all-to-all so it
does not fair-share bandwidth with concurrent allreduce (§4).
This is achieved using tensor-partitioning. We partition all-
to-all and allreduce tensors into small chunks, each of which
then forms a micro-op. Lina schedules an allreduce micro-op
only when there is no all-to-all waiting or ongoing so that
all-to-all is guaranteed the full network bandwidth during its
lifetime. Without prior information, tensor-partitioning and
micro-ops can ensure that in most cases all-to-all can launch
immediately and allreduce is not deferred excessively.
MoE inference. We propose to dynamically adjust the device
allocation for experts based on the expert popularity, so that is
not all-to-all is not delayed by the trailing tokens, and its band-
width utilization across links is balanced (§5). We exploit the
expert selection pattern across adjacent layers to estimate the
expert popularity. Based upon the estimation, Lina performs
scheduling at each layer to allocates proportionally more de-
vices for popular experts and pack unpopular ones to fewer
devices, and coordinate all-to-all correspondingly.

4 Prioritizing All-to-All Training

We have shown that all-to-all is slowed down significantly if
it overlaps with allreduce in the backward pass in MoE train-
ing. Lina partitions the communication operations into small
micro-ops and schedule them strategically in order to priori-
tize all-to-all without impeding allreduce and the computation
process. We introduce the design challenges in §4.1. In §4.2,
we present Lina’s communication scheduler that uses tensor
partitioning and pipelining to improve the training efficiency.

4.1 Design Challenge
Intuitively, Lina can prioritize all-to-all and avoid concurrent
execution with allreduce with strict priority scheduling. All-
to-all is always dispatched first if both are present in the queue,
and subsequent operations have to wait until the running one
finish to make sure allreduce does not share the bandwidth.

It turns out that simply prioritizing all-to-all is not as ef-
ficient as one may expect. For work-conservation, when an
allreduce arrives first, it should be launched immediately. The
problem is when an all-to-all arrives later, though ideally one
would preempt the allreduce due to priority scheduling, this
is not possible in current multi-GPU communication libraries
such as NCCL [4]. The communication primitives are highly
optimized and upon being called, their complete transmission
strategies are settled and pushed to the CUDA streams. There
is no control knob inside each primitive to adjust how it shares
resources (e.g. CUDA cores, network bandwidth) with others.
Thus, as the example in Figure 7b shows (based on testbed
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(a) Baseline. Shadowed all-to-all and allreduce are their completion times
without concurrent operations. Computing the entire MoE layer’s gradients
ends at 29.0ms.
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(b) Naively prioritizing all-to-all without concurrent transmission can lead
to worse results; computing the MoE layer’s gradients ends at 30.9ms. The
completion time is profiled. Theoretically, the completion time should be the
same as Figure 7a.
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(c) Deferring allreduce to after the second all-to-all leads to better training
efficiency; computing the MoE layer’s gradients ends at 24.6ms.
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(d) Scheduling results if the arrival time and running time of communication
operations are known a priori. The allreduce completes much faster than (c).
Figure 7: Backward pass of MoE training. The yellow background is the
period of computing the gradients of the MoE layer. Stream a is responsible
for the computation process and streams b and c are for communication.
This timeline is extracted from a real run of the 419M-parameter benchmark
model in Table 1.

experiments), naively prioritizing all-to-all actually leads to a
longer completion time for the first all-to-all and training step
time compared to the baseline in Figure 7a.

A potential solution is to obtain the arrival time and running
time of the upcoming all-to-all and allreduce, and orchestrate
them accordingly to maximize the efficiency. Assuming we
know that the allreduce for gradient i can complete before
all-to-all and the completion time of gradient i−1’s allreduce
is shorter than FFN computation. Then we can schedule gra-
dient i− 1’s allreduce to the gap between the two all-to-all
operations at 13.3ms as depicted in Figure 7d. Obtaining the
precise knowledge of arrival and running times is, however, a
daunting task. ML frameworks such as PyTorch fuse gradients
into buckets based on a user-defined bucket size to optimize
allreduce efficiency. Yet in large Transformer-based models,
gradient sizes are also large; since bucketing is done on the
gradient boundary, the actual bucket size for allreduce varies
wildly [5]. Moreover, the implementation details of allreduce
make it difficult to acquire a reliable running time estimate as
prior work has found out [19].
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(a) Prioritize all-to-all and partition allreduce tensors. Instead of bucketing
gradients, we partition gradient i into three chunks when it is computed.
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(b) Tensor partitioning for all-to-all and pipeline the FFN computation.

Figure 8: We show the scheduling results from Figure 7a with tensor parti-
tioning. All-to-all and allreduce micro-ops are of the same size.

The other design choice is to blindly defer allreduce until
an even number of all-to-all finish as there should be a larger
gap between the backward pass of two MoE layers relative
to FFN’s backward computation. Figure 7c shows the best
scheduling result based on the baseline in Figure 7a. In this
case, allreduce can be launched when the second all-to-all
finishes and completes before the first all-to-all of the next
MoE layer (not shown in the figure). Yet, in other (worse)
cases, allreduce may still block the all-to-all of the upcoming
MoE layer if it takes relatively longer. In the extreme case, no
allreduce can be launched until all four all-to-all operations of
the current step finish. Since devices have to wait for allreduce
before moving onto the optimization phase, this incurs more
delay and is undesirable for wait-free backward pass [51].

4.2 Tensor Partitioning and Micro-Ops

To resolve the above challenges, we propose tensor partition-
ing that breaks down a communication operation into micro-
ops, which can be easily prioritized with high efficiency.
Tensor partitioning. Unlike tensor bucketing which fuses
multiple gradients for an allreduce, Lina partitions each gra-
dient tensor into equal-sized small chunks and executes in-
dividual allreduce micro-ops independently. This brings two
advantages. First, it resolves the varying bucket size problem
for allreduce since each micro-op is uniform in size now. Sec-
ond, micro-ops naturally make better use of bandwidth [36]
without causing too much delay to allreduce under priority
scheduling. Consider the same setup from Figure 7a, in Fig-
ure 8a we partition gradients into five chunks. Before the
first all-to-all arrives, Lina launches three allreduce micro-
ops; after the first all-to-all ends, it starts another micro-op to
opportunistically make use of the expert computation time.
Compared to the scheduling result without micro-ops in Fig-
ure 7c, allreduce for gradient i−2 now completes 6.6ms or
21.7% faster without prolonging all-to-all. Tensor partitioning
does incur overhead due to the partition and concatenation
operations before and after an allreduce, but it is mild: the
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overall overhead in Figure 8a’s case is 764us. §7.2.2 has more
details of the overhead analysis.
Pipelining micro-ops. Intuitively, we can also partition all-
to-all which provides an opportunity to pipeline the expert
FFN and further reduce the time that computation is blocked.
Specifically, we can pipeline the expert computation and all-
to-all micro-ops (Figure 8b). Since the FFN computation is in
token granularity, the expert can start computing with a subset
of the tokens after one all-to-all micro-op. With pipelining, we
can eliminate the FFN time which is 1.6ms in this example.
Expert packing. Ideally, the FFN and all-to-all micro-ops
should take a similar time so that both compute capacity and
network bandwidth are fully utilized without any bubbles in
the pipeline. However, we notice that a single FFN micro-op
takes much less time than its corresponding all-to-all micro-
op (Figure 8b). In Lina, we consider packing multiple experts
on each device whenever possible to maximize the pipelin-
ing efficiency. Lina adopts the following approach: starting
with one expert per device, it iteratively increases the number
of experts per device in powers of two, until the FFN com-
putation exceeds that of the all-to-all micro-op. In case of
GPU memory shortage, we adopt DRAM-offloading [42] to
transfer expert parameters that are not currently in use to host
memory.

5 Scheduling Resources in Inference

Recall in §2.2, we have shown empirically that skewed expert
popularity leads to unbalanced processing times across tokens
of the same batch in MoE inference, which delays all-to-all
and causes imbalanced bandwidth for it severely. The root
cause lies in the data granularity mismatch between the ex-
pert and the attention layers in the model: an expert processes
individual tokens, but the attention layer processes an entire
sequence as a whole. Our design question is thus: How can
we ensure that each token within the same batch experiences
the same end-to-end completion time no matter its expert se-
lection result? We will first discuss the challenge of achieving
this through dynamic resource scheduling (§5.1), and then
present our design that exploits the unique token-level expert
selection pattern to address the challenge in §5.2.

5.1 Design Challenge
To cope with skewed expert popularity, intuitively one must
accordingly adjust the resource allocation for experts. This
adjustment also needs to be done for each input sequence as
the expert popularity distribution varies across sequences. An
immediate question is: how can we know the expert popular-
ity distribution, before the input is processed by the gating
network?

This question is challenging for two reasons. First, even
for a given batch of input, expert popularity varies across
MoE layers of the model. We collect the expert popularity

of different MoE layers for 1000 batches of input requests.
Table 2 shows the top-4 popular experts of two 12-expert infer-
ence tasks: text generation and translation. Observe that each
MoE layer of the same task (model) has completely different
popular experts. This also suggests that dynamic resource
scheduling has to be done before each MoE layer in order
to be effective. Moreover, scheduling resources according to
the actual expert selection results, as some might be thinking,
incurs delay in collecting information, making scheduling
decisions, and coordinating the all-to-all amongst all experts
with respect to the new expert-device mapping, all of which
are blocking operations and are performed at each layer. This
is far from optimal (as will be shown in §7.3.1). Thus, we
need to know as much as possible the expert popularity be-
fore the gating network selects experts in each layer, so these
overheads can be largely overlapped with MoE computation.

5.2 Popularity based Scheduling

Lina tackles the design challenge by exploiting the token-
level expert selection pattern which we empirically establish
now. Building upon this, we design a resource scheduler that
replicates popular experts on proportionally more devices in
order to better balance the workload.
Pattern in expert selection. Experts in MoE models are
trained to specialize in different types of input. We find that
a token’s expert selection demonstrates a pattern across the
MoE layers. Tokens that have selected the same expert in
layer i tend to select the same expert again in layer i+1. We
trace the expert selection of sampled tokens. For each group
of tokens that have selected the same expert in layer i, we
calculate the ratio of them that in the next layer also select
one of the same top-k experts ranked locally among the same
group. Figure 9 plots this ratio averaged over token groups
in two 12-layer MoE models. We see 41.94% tokens exhibit
this pattern when k is 1 and 54.59% when k is 2, and deeper
layers see more tokens with this pattern.

This observation makes intuition sense. The gating network
has a simple architecture, and their routing or expert selection
decision is made (largely) based on relatively simple features,
such as the parts of speech of a word (noun, verb, etc.), and
the meaning of the word (number, time, etc.) [32]. These
features are fixed for each token. Meanwhile, experts focus
on the local syntax information of each token rather than the
cross-dependency within a sequence. For all these reasons,
similar tokens naturally tend to be processed by the same or
similar experts in each layer.
Estimating expert popularity. Though this pattern may not
be sufficient to predict a particular token’s expert selection
accurately, it provides enough clues for us to estimate the
overall expert popularity for a given batch. Specifically, Lina’s
estimation approach works as follows. In the profiling stage,
we collect the expert selection results of all tokens when the
load balancing loss is minimized and becomes stable. We then
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Model& Dataset Layer Top-4

Transformer-XL
& Enwik8
(Text generation)

3 9 4 5 10
4 5 7 8 10
8 9 2 3 13

12 4 5 15 8

BERT-Large
& WMT En-De
(Translation)

6 7 6 10 1
8 10 6 2 15

10 9 4 11 8
12 1 8 10 14

Table 2: Top-4 popular experts in
sampled MoE layer of two MoE mod-
els.
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Figure 9: Ratio of tokens that select
one of the top-k experts in layer i+
1 given that they have selected the
same expert in layer i.

group tokens that select the same experts from layer i− l to
layer i, which represent a unique sample path of experts used.
For each sample path j, we compute the expert popularity
distribution Ψ

i+1
j for layer i+1. Here l is the path length to

control the accuracy-cost tradeoff in profiling: a larger path
length leads to more accurate estimation for layer i+1 at the
expense of higher data collection and computation costs.

Then based on the profiled distributions {Ψ}, Lina can es-
timate the next layer’s expert selection distribution for each
sample path of experts traversed by a token in inference (start-
ing from the l-th layer of the model). In each layer i, for
a sample path j, we pick the top-k expert(s) of the subse-
quent layer from Ψ

i+1
j and use their probabilities {Pi+1

j (e)}
to represent expert popularity for resource scheduling, where
e denotes an expert. The reason why we only consider top-k
experts is that they demand the most resources, and the re-
maining experts have low popularity (Figure 9). Note that this
estimation happens before any MoE layer computation takes
place.
Two-phase scheduling. During inference, Lina dynamically
conducts layer-wise resource scheduling in two phases.

The first phase happens right after the expert popularity esti-
mation at each MoE layer, when Lina relies on the estimation
to replicate popular experts on more devices and pack unpop-
ular ones onto fewer devices. Specifically, the total number
of devices for expert e is determined by:

ne = N×
Nt

∑
t=1

Pi+1
j(t) (e)/Nt , (1)

That is, for the current batch of input with Nt tokens, using es-
timation from each token t’s sample path j(t) up to layer i, the
overall popularity of expert e is estimated as ∑

Nt
t=1 Pi+1

j(t) (e)/Nt

for layer i+ 1 accounting for all tokens. This requires the
same proportion of devices assuming the expert parallelism
degree is 1 (i.e. the number of devices equals the number of
experts). For experts with the estimation ne, we adopt the first-
fit-decreasing heuristic to pack them into the empty devices so
the total devices used are minimized. It is possible that some
experts, being extremely unpopular (for this batch), are not
amongst the top-k list of any tokens and thus do not have their
ne estimation. They are assigned evenly to the remaining free
devices if any; otherwise are randomly assigned to a device.

In phase two, Lina fine-tunes the estimation-based schedul-
ing decision after the gating network selects the actual experts.

It checks if the selection result deviates significantly from the
estimation, by comparing the overall top-2k experts. If the
two lists are identical, no fine-tuning is needed and inference
continues. Otherwise, the scheduler re-computes the resource
allocation with the actual expert popularity now available fol-
lowing the same logic in phase 1. The fine-tuning phase does
incur delay to collect the gating outputs and check against
the estimation, which is necessary to deal with inaccurate
estimation that turns out to be much more detrimental to per-
formance, if left unchecked (§7.3).

6 Implementation

We implement Lina on DeepSpeed MoE and PyTorch using
C++ and Python. PyTorch 1.10, CUDA 11, and NCCL 2.10
are used. We modify PyTorch’s implementation of distributed
training to support Lina in DeepSpeed. The implementation
has ∼7500 LoC.

6.1 Training
Lina’s communication scheduler for training is deployed on
all devices and runs a single thread. Since the communication
scheduling is purely local in scope, no coordination is needed
across the scheduler instances on different devices.
Communication scheduler. Each scheduler instance main-
tains a priority queue to schedule the micro-ops. The micro-op
size is passed in as a hyperparameter. Lina uses the built-
in APIs chunk and cat in LibTorch to partition the data in
the token dimension. We avoid putting chunks from differ-
ent gradients into the same micro-op to simplify the subse-
quent concatenation operation. Moreover, the scheduler stops
launching allreduce micro-ops if the combining computation
in backward pass, since this implies all-to-all is imminent. We
pipeline all-to-all micro-op in the MoE layer. FFN is ready to
start right after each all-to-all micro-op.
Expert packing coordinator. We embed a packing controller
in the MoE model and it runs a single thread. Expert packing
is dynamically adjusted after 10 training steps. In the forward
pass, the controller records the completion times of all-to-all
and FFN micro-ops. When FFN micro-ops are shorter than
all-to-all, the controller starts to pack experts. First, we ini-
tialize the new process groups. Second, the controller inserts
a one-time synchronous all-to-all to exchange expert param-
eters between packed devices that would be invoked at the
upcoming iteration. Finally, multi-stream parallel execution
is adopted for both forward and backward passes when more
than one expert are hosted on a device.

6.2 Inference
Resource scheduler. The inference scheduler runs on a dedi-
cated thread on device 0 of the cluster and manages resource
scheduling. Each device saves the weights of all experts in

USENIX Association 2023 USENIX Annual Technical Conference    951



their host DRAM and the collected layer-wise expert popular-
ity distribution using multiple unordered_map, one for each
layer. If GPU memory is in shortage, a device only loads one
expert and the profiled distribution of one layer at a time.

In phase one of scheduling, all relevant communication
happens by piggybacking the information on the regular all-
to-all to reduce overheads. For each MoE layer, each device
appends the popularity estimation to the first all-to-all for
device 0. The scheduler computes the new expert-device map-
ping and instructs each device which expert and how many
to host via the second all-to-all. We also include necessary
information to coordinate all-to-all of the next layer, including
the list of devices with the same expert, and how many to-
kens each replica should handle to balance the load. Devices
then swap in the expert weights for the next layer. All these
procedures are pipelined with model computation.

In phase two, each device updates the actual expert popular-
ity in a separate NCCL send to the scheduler. If no fine-tuning
is required, the scheduler broadcasts a resume signal. This
only creates a negligible overhead as the transfer size is tiny.
Otherwise, Lina broadcasts the fine-tuned expert-device map-
ping. The model computation is blocked during phase two
until the scheduler’s command is received.
All-to-all coordination. In inference, Lina uses all-to-all with
an unequal split. That is, the transfer size to each device in
all-to-all does not need to be the same. Using unequal split
all-to-all can save the overhead of initializing multiple process
groups. A placeholder data pointer is passed to all-to-all if no
tokens are directed to a certain device.
Expert packing. Expert computation is sequential on devices
hosting multiple experts. Each device loads the experts one
at a time to perform computation and move on to the next
packed expert. In this manner, Lina avoids placing extra strain
on the GPU memory. The second all-to-all is launched when
the computation for all packed experts is completed. We set a
maximum number of experts per device to control the over-
head of swapping the weights.

7 Evaluation

We present the testbed evaluation results here.

7.1 Setup

Testbed setup. Our testbed has four worker nodes. Each
node has 4 Ampere A100 GPUs with 40GB memory and
is equipped with 100Gbps InfiniBand.
MoE models. We convert three common Transformer-based
dense language models to MoE ones for training.
• Transformer-XL [20]: a 24-layer encoder model.
• BERT2GPT2 [49]: a 12-layer encoder-decoder model.
• GPT-2 [39]: a 12-layer decoder model.
Besides, we consider two inference tasks.

• Transformer-XL [20]: The inference task is text generation
with Enwik8 [3] test set.

• BERT-Large [21]: a 12-layer decoder model. The inference
task is translation using WMT En-De [8] test set.
All FFN layers in these models are converted to MoE layers.

We vary the number of experts in an MoE layer from 2, 4, 8,
to 16. We adopt top-2 gating in training and top-1 gating in
inference following [23], i.e. k = 2 in training and k = 1 in
inference
Metrics. We consider four metrics to evaluate Lina.
• Training step time: Time to complete one step of training.
• Inference time: Time to complete one batch of inference.
• All-to-all time: The completion time of all-to-all.
• MoE layer time: Time to complete one MoE layer of com-

putation and communication.
In collecting these metrics we use PyTorch Profiler to obtain
CUDA kernel execution time and GPU activities. Training
results are averaged over 50 steps after a 10-step warm-up pe-
riod. Inference results are averaged over the test set. Since the
optimization introduced by Lina does not affect the precision
of model parameters, model accuracy is unaffected and we
omit its evaluation.
Training configurations. Lina’s micro-op communication
scheduler adopts a tensor partition size of 30MB, which can
minimize the period blocked by all-to-all in most cases. Ex-
pert packing is launched at the 10-th step of each training task
and is adjusted every four steps.
Inference configurations. Lina’s resource scheduler runs on
device 0. The path length l in popularity estimation is 3; the
maximum number of experts packed on a device is 4.
Baselines. We use the vanilla DeepSpeed [2] as the Baseline.
We also provide a comparison to the open-source version of
Tutel [7], which performs similarly with DeepSpeed. We en-
able hierarchical all-to-all for both Lina and DeepSpeed and
disable Random Token Dropping [50] introduced by Deep-
Speed.

7.2 Training
We start with Lina’s training performance. Note that Lina
is evaluated when the expert packing decision is stabilized;
all settings here use 2 experts per device as the best strategy
except Transformer-XL with 16 experts, which uses 4 experts
per device. The number of GPUs is equal to the number of
experts per layer in both Baseline and Lina.

7.2.1 Overall Performance

Training step time. Figure 10 shows Lina’s speedup in step
time over Baseline and Tutel. All other aspects of the models
stay the same (e.g. sequence length, hidden states dimen-
sion, etc.). Compared to Baseline (DeepSpeed), step time is
reduced by an average of 1.37x and 1.47x for the 4- and 16-
expert cases, respectively, and by an average of 1.71x and
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Figure 10: Speedup of training step
time against two Baselines.
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Figure 11: Speedup of MoE layer’s
forward pass completion time.

2 4 8 16
Experts

1.8
2.0
2.2
2.4
2.6

M
oE

 B
w

d 
 S

pe
ed

up

Figure 12: Speedup of MoE layer’s
backward pass completion time.
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Figure 13: Speedup of all-to-all time
in forward and backward pass.
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Figure 14: Training step time speedup over Baseline with different design choices of the communication scheduler.
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Figure 15: Partition size increases from
10MB to 200MB in 16-expert models.

1.73x for 2- and 8-expert models, respectively. The 2- and
8-expert cases see more significant gains as Lina’s packs two
experts per device as mentioned before. The 2-expert case thus
boils down to pure data parallelism without any all-to-all; the
8-expert models avoid inter-node all-to-all as our servers have
4 GPUs each. Lina’s speedup over Tutel is slightly smaller
than that of DeepSpeed. Thus in the following we only use
DeepSpeed as the Baseline.

MoE layer time. We specifically seek to understand Lina’s
gain in MoE layers in both the forward and backward pass. As
Figures 11 and 12 show, similar to step time, the gain in the 2-
and 8-expert cases is the largest. The forward and backward
pass of MoE layers in the 2-expert case are accelerated by
1.84x and 2.41x, and in the 8-expert case by 1.89x and 2.32x,
respectively. Since backward pass in Baseline suffers from
the interference of allreduce while the forward pass does not,
the improvement in the backward pass is more significant.
Average GPU utilization in the MoE layer for 16-expert cases
is improved by at least 16% as the period blocked by all-to-all
is minimized with Lina.

GPU utilization and memory usage. We measure the aver-
age GPU utilization GPU memory usage. We observe an aver-
age of 17.6% improvement in GPU utilization due to the effi-
cient scheduling of Lina. Expert packing would lead to usage
increase in GPU memory. The peak memory of BERT2GPT2
is increased by 19.5% while Transformer-XL and GPT-2 use
up all the memory and apply DRAM-offloading to store the
packed expert parameters.

All-to-all time. We then zoom in on all-to-all time in back-
ward pass, where Lina prioritizes all-to-all and avoids concur-
rent execution with allreduce. Expert packing also reduces the
all-to-all transfer size. Figure 13 shows an average speedup
of 2.21x, 2.39x, and 2.31x in 4-, 8-, and 16-expert cases in
all-to-all time, respectively.

Expert Model Pipelining Efficiency

w/o Packing w/ Packing (Experts per Device)

16
Transformer-XL 33% 86% 4
GPT-2 36% 85% 2
BERTGPT2 34% 79% 2

Table 3: Pipelining efficiency comparison with and without expert packing.

Expert Model Average GPU Utilization(%) GPU Memory Peak Usage(%)

Baseline Lina Baseline Lina DRAM-offloading

16
Transformer-XL 66.2 83.4 72.1 100 3
GPT2 62.3 78.2 83.8 100 3
BERT2GPT2 63.5 82.5 74.3 94.2 7

Table 4: GPU utilization and peak memory usage of 16-expert MoE models.
GPU Memory Peak Usage is the ratio between the maximum usage and the
total device memory. DRAM-offloading indicates if it is applied.

We also examine the pipelining efficiency between all-to-
all and expert computation in Lina. We define the pipelining
efficiency to be the fraction of non-idle time in the computa-
tion CUDA stream during the all-to-all duration. We calculate
the pipelining efficiency of Lina before and after adopting
expert packing in Table 3. The average improvement is 2.43x
in 16-expert case, which also demonstrates the benefits of
expert packing. The expert FFN micro-op time is thus closer
to the all-to-all time. We find that two experts per device can
achieve the best pipelining efficiency in most cases, justifying
our settings mentioned before.

7.2.2 Communication Scheduler

We now present an in-depth analysis of Lina’s priority-based
micro-op scheduler, aiming to understand the benefit of each
design choice. For fairness all experiments here are obtained
without expert packing in Lina, i.e. one expert per device.
Tensor partitioning and pipelining. To justify our design,
we incrementally add the key design choices to Baseline
and see their corresponding gain: first priority scheduling,
then tensor partitioning, and lastly pipelining. Besides, we
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(a) Median inference time with
Transformer-XL.
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(b) 95%ile inference time with
Transformer-XL.

2 4 8 16
Experts

0.0
0.5
1.0
1.5
2.0

N
or

m
al

iz
ed

 
 In

fe
re

nc
e 

Ti
m

e

(c) Median inference time with BERT-
Large.
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(d) 95%ile inference time with BERT-
Large.

Figure 16: Median and tail inference time. We normalize the inference time with the ideal result. The median and tail inference time is the same in Ideal.

consider a fixed scheduling strategy where allreduce is al-
ways scheduled between pairs of all-to-all operations (i.e.
two MoE layers) with tensor fusion enabled in PyTorch’s
DistributedDataParallel by default (same as Baseline).

Figure 14 shows the step time comparison. We make sev-
eral interesting observations here. First, using priority brings
about 10%–30% gain over Baseline in most cases, with an
average of 24%. Priority scheduling in general presents more
benefit when more devices and nodes are used in training.
The main reason is that all-to-all’s slowdown due to sharing
bandwidth with allreduce is more severe as training scales out.
Second, tensor partitioning significantly improves the benefit
of prioritizing all-to-all: step time is reduced over Baseline
by 1.36x, 1.36x, 1.41x and 1.42x in 2-, 4-, 8-, and 16-expert
cases, respectively on average. On the other hand, pipelining’s
gain is limited as expected, since expert computation takes
much less time than all-to-all without expert packing (recall
§4.2). Overall, all three design choices can effectively reduce
all-to-all’s completion time.

We also observe that the relative benefit of priority schedul-
ing and tensor partitioning is model-specific: GPT-2 enjoys
much more gain from priority compared to tensor partitioning
while the other two models do not exhibit such clear pattern.
This is likely due to the degree of overlapping of all-to-all
and allreduce: most allreduce can fit in between all-to-all op-
erations in GPT-2, and as a result using priority scheduling
alone is very beneficial.

Finally, the fixed scheduling strategy leads to the smallest
gains in almost all cases. This is because (1) all-to-all still
has to fair-share bandwidth with allreduce, and (2) tensors
are not partitioned which aggravates the impact of allreduce.
This demonstrates again the effectiveness of our design in pri-
oritizing all-to-all with smaller tensors instead of using fixed
heuristics that cannot opportunistically maximize efficiency.
Partition size. We also evaluate the impact of partition size
on the communication scheduler. Figure 15 shows the step
time of 16-expert models when we gradually increase the par-
tition size from 10MB to 100MB. We find that a partition size
beyond 50MB slows down Transformer-XL and BERT2GPT2
compared with 30 MB. As long as the period blocked by all-
to-all is minimized, step time would be minimum. Therefore,
for each model and setting, there are multiple optimal partition
sizes. Ideally, the scheduler can more precisely control the

operations with a smaller partition size. In practice, small par-
titions (below 10MB) may cause heavy transmission overhead
in each micro-op and degrade the overall performance [37].
Overhead analysis. We provide a brief analysis of the over-
head incurred by Lina’s communication scheduler. First, the
preprocessing and postprocessing, including tensor partition-
ing and concatenation, take an average 1.02% of the step time.
Second, we measure the transmission overhead of micro-ops.
We sum up running times of all the communication micro-ops
and compare against those without partitioning in Baseline.
The average completion time is lengthened by 1.7%.

7.3 Inference

We then evaluate Lina’s inference performance. Each ex-
periment is repeated five times: two of which measure the
end-to-end inference time, and the rest profile the different
components with Profiler and collect statistics for overhead
and estimation accuracy. This way the inference time is not
affected by the profiling overhead.

7.3.1 Resource Scheduler

Inference time. Figure 16 shows the median and 95% infer-
ence time of Baseline and Lina. We also present the ideal
inference time with a perfectly balanced load across devices
in all MoE layers. This is obviously challenging to achieve
with real-world requests. Thus we modify the gating network
to constantly output a balanced expert selection to obtain this
benchmark. We normalize all results to the Ideal value.

Lina’s resource scheduler effectively balances the load
among devices and achieve inference time close to Ideal.
Compared to Baseline, median inference time is reduced by
1.54x and 1.45x for the 4- and 16-expert Transformer-XL,
and by 1.36x and 1.46x for the 4- and 16-expert BERT-Large,
respectively. The 95%ile inference time is reduced by 1.82x
for 16-expert Transformer-XL and 1.68x for 16-expert BERT-
Large. The reduction on tail inference time increases with
more experts in a layer, because a wider MoE layer is more
likely to present more skewed expert popularity, giving more
room for Lina to optimize. Lastly, Lina’s gap to Ideal can be
explained for two reasons other than the overheads. First, Lina
cannot perfectly balance load: the least popular experts are
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(b) BERT-Large.
Figure 17: 95%ile completion time of MoE layer.
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Figure 18: All-to-all time in 16-expert MoE.
T is Transformer-XL and B is BERT-Large.
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Figure 19: Estimation accuracy of
16-expert MoE.

randomly placed for example. Second, Lina starts to schedule
from the fourth layer.
MoE layer and all-to-all time. With Lina, MoE layer time
includes gate computation, phase two of scheduling, two all-
to-all, and expert computation; phase one of the scheduling
is largely overlapped with computation as explained in §6.2.
The 95%ile MoE layer time is reduced by 1.87x and 1.77x in
8- and 16-expert Transformer-XL over Baseline and by 1.58x
and 1.81x in 8- and 16-expert BERT-Large as in Figure 17.
We also extract all-to-all time, which is a direct indicator of
whether Lina balances load across devices effectively. We
present the tail all-to-all time reduction of different layers
in Figure 18. The average and maximum improvements are
1.96x and 2.50x over Baseline. These results confirm that
Lina effectively balances the load of each device and all-to-all
transfer size of each link.
Two-phase scheduling. We then evaluate the effectiveness
of our resource scheduler’s design. We consider separately
Lina without estimation and without fine-tuning in order to
understand their individual gains. Lina w/o estimation refers
to scheduling using the actual routing decision computed by
the gating network.

In Figure 16, we present the comparison of inference time
for all schemes. Without estimation the median inference time
is worsened by 24.0% and 18.6% for 16-expert Transformer-
XL and BERT-Large in Lina. The scheduler works after the
gating network and blocks all-to-all with the following com-
putation until it completes. Thus the scheduling overhead
manifests at each MoE layer, overweighing the additional
gains brought by accurate popularity information. The tail
inference time is less affected compared to the median, but
still suffers without estimation.

Without fine-tuning, tail inference time is prolonged by
26.7% and 33.1% for 16-expert Transformer-XL and BERT-
Large. This suggests that fine-tuning also plays an indispens-
able role when the estimation shows a large difference from
the actual routing decision. For example, if the top-1 expert
in the actual routing decision is estimated as an unpopular
one packed with others, the Moe layer time would even be
worse than Baseline. More discussions are presented in §7.3.2.
The importance of fine-tuning depends heavily on estimation
accuracy and number of expert in MoE layer.
Overhead analysis. We dissect the overhead of the resource
scheduler, by considering the scheduling times of phase one
and phase two separately. The scheduling time for both phases

Model Path
Length

Norm. Inference Time Fine-tuning
(%)

Estimation
Accuracy (%)Median 95%ile

1 1.41 1.32 76.5 31.6
Transformer-XL 3 1.16 1.04 25.7 60.4

6 1.19 1.11 22.5 71.4

1 1.34 1.35 71.3 28.3
BERT-Large 3 1.07 1.04 32.2 63.5

6 1.09 1.11 27.1 66.0

Table 5: Lina’s performance using different path lengths during estimation.
Both models have 16 experts per layer. Inference time is normalized to Ideal.

averages at ∼6.2ms since they share the same logic and coor-
dination workflow. Yet, the overhead of phase one is largely
overlapped with model computation. Though overhead of
phase two with re-scheduling is more salient, it only kicks in
for 23% of the cases on average, and is smaller than the idle
time incurred by skewed expert popularity. The overhead of
phase two without fine-tuning is merely 1.45ms.

7.3.2 Popularity Estimation

We now analyze Lina’s popularity estimation method.
Estimation accuracy. We first examine the estimation accu-
racy across MoE layers. We resort to the same definition used
in Lina’s phase two scheduling: if the top-2 (recall k = 1 in
inference) estimated experts are identical to the actual rout-
ing decision, we consider the estimation accurate. Figure 19
shows the accuracy for every MoE layer in two inference
tasks. Overall, estimation accuracy is 58.41% and 54.16%
for Transformer-XL and BERT-Large, respectively. The es-
timation accuracy is higher in the latter layers of the model,
which is consistent with our observation in Figure 9. We also
compare the complete popularity rankings given by the esti-
mation to better understand its accuracy. Using 1000 random
batches of the Transformer-XL model, we observe that er-
rors usually happen at experts with a similar popularity. An
average of 3.67 experts out of the estimation are incorrectly
ordered. Therefore, the fine-tuning only requires little adjust-
ment to the experts packed together. The effectiveness of
Lina’s estimation can be justified.
Sample path length. We also investigate the impact of sample
path length l. The longer the sample path of expert selection is
for making an estimation, the more accurate the result is. Ta-
ble 5 shows Lina’s performance degrades with l = 1, in terms
of inference time, estimation accuracy, and the occurrence of
phase two fine-tuning, compared with the default length of 3.
Longer paths can elevate the estimation accuracy and further
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Task Dataset Model Norm. 95%ile Inference Time Estimation Accuracy

Sentiment
Analysis

IMDB Reviews [34] BERT 1.08 64.4%
Twitter [35] 1.11 62.3%

Translation
(English)

WMT French [8] T5 [40] 1.04 68.8%
WMT Russian [8] 1.08 62.5%

Table 6: Lina’s performance on different tasks and datasets. Inference time
is normalized to Ideal. The path length is set to 3.
reduce the number of times of Lina’s fine-tuning. However,
due to the problem of a slower start, the reduction of inference
time is not as noteworthy as the estimation accuracy. For a
path length of 6, Lina shows a similar median and tail result
as the performance with a path length of 3.
Generalizability. We proceed to evaluate how well Lina’s
popularity estimation approach can be generalized to different
tasks. Table 6 shows the estimation accuracy of four tasks
with different datasets. The 95%ile inference time can achieve
at most 1.04x of the Ideal inference time and the estimation
accuracy is at least 62.3%. Lina’s estimation method relies
on the patterns obtained from training stage. Therefore, it is
tailored to each specific task and proves to be an effective
approach to capturing the expert popularity prior.

8 Discussion

Parallelism in training. With the increasing scale of lan-
guage models, the adoption of pipeline and tensor parallelisms
has become essential [46]. Pipeline parallelism involves the
use of blocking send and receive operations to transmit inter-
mediate activations, while tensor parallelism utilizes blocking
all-reduce operations to combine tensor partitions. Extensive
research has been conducted on coordinating communica-
tion operations for dense models [7, 27, 52]. Lina focuses
on sparsely-activated MoE with data and expert parallelism,
which are orthogonal to existing work.
Estimation of expert popularity. The current estimation
approach used by Lina relies on data collection during the
training stage. While fine-tuning can assist in improving effi-
cient expert placement decisions, an estimation method with
improved accuracy and confidence would further reduce in-
ference time. One potential approach is to leverage machine
learning techniques to train a compact yet powerful model
that can predict the expert selected by each token in every
MoE layer ahead of time, when the requests are received.

9 Related Work

Existing MoE systems. Recent literature has proposed MoE-
specific optimization techniques. DeepSpeed [41] enables
distributed training for MoE models and leverages flexible
combinations of parallelism strategies. It also introduces a
novel MoE architecture called Pyramid-Residual MoE. PR-
MoE applies experts only where they are most effective. Tu-
tel [7] extends DeepSpeed and proposes an adaptive paral-
lelism switching strategy specialized at MoE training tasks. It
also includes a hierarchical all-to-all design to cope with the

inter- and intra-node GPU topology for better efficiency. It is
complementary with Lina.

FasterMoE [25] proposes a roofline performance model to
analyze the end-to-end performance of MoE training systems.
Guided by this model, they propose a dynamic shadowing
approach that pulls popular expert parameters instead of send-
ing tokens to the experts. They also design a topology-aware
expert selection strategy that relieves network congestion by
sending tokens to experts with lower latency.
Communication acceleration in distributed training. Our
community has proposed several communication schedulers
for generic distributed training [11, 17, 19, 24, 37, 48]. The
objective is to better overlap the communication and compu-
tation operations in the backward pass and prioritize the com-
munication of former layers over latter layers in the model. In
Lina, we leverage the domain-specific insight that all-to-all
should be prioritized over allreduce in MoE training, which
is different from prior work. BytePS [28] proposes to re-
duce the communication traffic by utilizing the heterogeneous
GPU/CPU resources in a training cluster. These acceleration
techniques can be integrated into distributed MoE. Lina can
also benefit from this idea, since more available bandwidth
can be left to all-to-all operations.

10 Conclusion

We presented Lina, a new system that accelerates all-to-all
in distributed MoE. Through a systematic analysis, we build
Lina upon two key ideas: first to prioritize all-to-all over allre-
duce using tensor partitioning and pipelining to improve its
bandwidth in training, and second to dynamically balance the
workload with token-level expert selection pattern in infer-
ence. We implemented Lina over DeepSpeed and performed
extensive testbed evaluation using A100 GPUs and 100Gbps
InfiniBand to show that Lina significantly improves training
efficiency and inference time.
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SMARTMOE: Efficiently Training Sparsely-Activated Models through Combining
Offline and Online Parallelization
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Abstract
Deep neural networks are growing large for stronger model

ability, consuming enormous computation resources to train
them. Sparsely activated models have been increasingly pro-
posed and deployed to reduce training costs while enlarging
model size. Unfortunately, previous auto-parallelization ap-
proaches designed for dense neural networks can hardly be
applied to these sparse models, as sparse models are data-
sensitive and barely considered by prior works.

To address these challenges, we propose SMARTMOE to
perform distributed training for sparsely activated models
automatically. We find optimization opportunities in an en-
larged space of hybrid parallelism, considering the workload
of data-sensitive models. The space is decomposed into static
pools offline, and choices to pick within a pool online. To
construct an optimal pool ahead of training, we introduce
a data-sensitive predicting method for performance model-
ing. Dynamic runtime selection of optimal parallel strategy
is enabled by our efficient searching algorithm. We evalu-
ate SMARTMOE on three platforms with up to 64 GPUs. It
achieves up to 1.88× speedup in end-to-end training over the
state-of-the-art MoE model training system FasterMoE.

1 Introduction

In recent years, a promising direction for deep neural network
(DNN) design has been to increase model size. For example,
pre-trained large models have shown extraordinary capabili-
ties in natural language processing (NLP) tasks [1, 2, 13, 28].

As model size increases, training efficiency becomes in-
creasingly important. From the system side, various parallel
strategies (e.g., data [14,18,30,33], pipeline [4,10,19,24,25],
and tensor [35, 36, 38] parallelism) have been proposed to
enable scalable distributed training. Furthermore, to hide un-
derlying complex system details from researchers to allow
them to focus on model design, automatic parallelization train-
ing systems [4, 24, 36, 41] have been proposed to automati-

⋄Tsinghua University, BNRist

cally decide among various combinations of different parallel
strategies to improve training efficacy. From the model design
side, sparse architectures have been proposed to break the
coherent relationship between model size and computation
cost in DNN models with dense architectures. One of the
most popular sparse models currently is Mixture-of-Experts
(MoE) [12], which has significantly scaled up DNN mod-
els in many deep learning tasks, including natural language
processing [3, 6, 15, 34], computer vision [11, 32], speech
recognition [39, 40], and recommendation [22].

However, few efforts have been put into combining these
two optimization directions. Existing training systems [8, 16,
38] typically adopt a specific expert parallelism to support dis-
tributed training of MoE models. Although expert parallelism
mitigates the problem of high memory consumption of MoE
models, training efficiency is affected. Several previous stud-
ies [9, 11, 17, 23, 27, 29] try to reduce the overhead of expert
parallelism or combine expert parallelism with other parallel
strategies, but all require special system expertise. Meanwhile,
existing automatic parallelization training systems mainly tar-
get conventional DNN models with dense architectures. To
improve both the user experience and the training efficiency
of MoE models, it is indispensable to design an automatic
parallelization training system for MoE models.
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Figure 1: Dense Model Compared with MoE Model.

Figure 1 compares typical dense models with MoE models.
In a dense model, the inputs are regarded as identical data to
be processed by some layers. In an MoE model, the layers
are replaced by multiple expert sub-networks. For each input,
a special gating network is used to match it with the most
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suitable expert, and it is only processed by the selected expert.
This leads to the dynamic and imbalanced property of MoE
models, as the experts have different workloads. Some experts
have to process more inputs than others, and this imbalanced
situation is ever-changing across layers and iterations.

We identify the critical challenge of applying automatic
parallelization techniques to MoE models due to the dynamic
and imbalanced property, or being data-sensitive. While the
training cost is fixed in dense models over any input, MoE
models behave differently over different data, layers, and train-
ing steps. Because the gating network dynamically matches
training inputs with experts, the workload of experts may vary
a lot, resulting in varying costs for computation and com-
munication. Unfortunately, current automatic parallelization
approaches fail to efficiently deal with data-sensitive training
of MoE models due to the following two limitations.
Limited Optimization Space. Being data-sensitive makes
previous approaches of parallelism combinations perform
differently and introduces more space and opportunities for
optimizations. Compared to dense models, heterogeneous
workloads on different expert sub-networks in MoE training
lead to a much larger combination space of parallelism. We
find that with the workload variance in mind, there are more
opportunities of optimizing training performance. However,
existing works [36, 41] assume that the workloads on sub-
networks are homogeneous, and exclude many potentially
faster candidates from their space for hybrid parallelism.
Large Searching Overhead. For data-sensitive models, the
optimal execution plan changes frequently. However, for pre-
vious data-insensitive systems, the workload is static and
can be determined by the model structure before training.
Therefore, they adopt time-consuming algorithms, e.g., dy-
namic programming [24, 36] or integer linear programming
(ILP) [41], to search for optimal execution plans. These algo-
rithms commonly take minutes or even hours, only feasible to
be performed offline. However, optimal execution plans for
the dynamic workload should be identified between iterations
that commonly take less than one second.

To address these challenges, we propose SMARTMOE, an
automatic parallelization training system for sparsely acti-
vated models. We explore the space of hybrid parallelism
with awareness of heterogeneous workloads, where more
potentially faster candidate parallel strategies are included.
To sustain high efficiency during the dynamic and imbal-
anced MoE training process, we propose a two-stage solution
for parallelization. Based on a static pool that consists of
mutual-convertible parallel strategies constructed offline, fast
dynamic adaption is performed within the constructed pool
at runtime to select the strategy that fits the current workload.

In the offline stage, we create a pool of strategies that guar-
antees good inherent performance and low switching overhead
at runtime. Also, we design a workload-aware performance
model to estimate the performance of the data-sensitive mod-
els without actually training them so that an optimal pool can

be constructed ahead of training.
In the online stage, we develop light-weight algorithms

to find the optimal parallel strategy for the current workload
within the selected pool. The algorithms are performed peri-
odically at runtime to determine whether we should employ a
new parallel strategy, considering factors including switching
cost and searching overhead.

We evaluate SMARTMOE on three different clusters with
up to 64 GPUs. Results show that SMARTMOE achieves up
to 1.88× speedup in end-to-end training compared with the
state-of-the-art MoE model training system FasterMoE [9].

In summary, we make the following contributions:

• We enlarge the combination space of hybrid parallelism
for data-sensitive models, enabling more potential to
optimize training performance.

• We propose a two-stage adaptive auto-parallelization
approach that performs hierarchical optimizations both
offline and online.

• We introduce the awareness of workload to performance
modeling, enabling performance prediction of training
the data-sensitive models.

• We develop fast algorithms that can find optimal parallel
strategies within a pool at runtime.

• We implement these techniques into an end-to-end MoE
training system, SMARTMOE, and achieve up to 1.88×
speedup over FasterMoE [9].

The rest of this paper is organized as follows. §2 introduces
background and our motivation. §3 presents an overview of
SMARTMOE. §4 introduces an enlarged space of hybrid par-
allelism for MoE model training. §5 discusses the scope of
pool among the space of data-sensitive hybrid parallelism, and
demonstrates our estimation-based approach of performance
modeling. §6 illustrates our adaptive automatic parallelization
methods. §7 evaluates SMARTMOE. More related works are
described in §8, and §9 concludes this paper.

2 Background and Motivation

2.1 MoE Model and Expert Parallelism
The Mixture-of-Experts (MoE) was proposed decades
ago [12] and applied to DNN models in recent years. It has
been proven to be helpful in improving model accuracy in
many deep learning tasks, including nature language process-
ing [15], computer vision [11], speech recognition [39, 40]
and recommendation [22]. In this paper, we focus on sparsely-
gated MoE [34] models, the most widely used MoE technique,
with instant demand for efficient distributed training.

The MoE technique is currently the most feasible way to en-
able the parameter size of a model and its computational cost
to be scaled independently. A model can increase the number
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Figure 2: An Example of MoE Model and Expert Parallelism.

of parameters by applying MoE, while keeping the floating-
point operations (FLOPs) of one training iteration almost
identical. For example, Figure 2 shows the model structure of
the transformer model extended by MoE. A feed-forward net-
work (FFN) is regarded as an expert, and the model contains
multiple experts which are sparsely activated. A trainable gat-
ing network is added to dynamically match training samples
with suitable experts. As each training sample is sent to a
certain expert, which equals the original FFN in size, FLOPs
required to train over the sample remains similar. Meanwhile,
numerous experts can be employed in one MoE layer, greatly
increasing the number of parameters.

Distributed training becomes a must to train MoE models,
as the model is so large that it cannot be held in the mem-
ory of any single device. To support the distributed training,
GShard [15] designs a specific method of parallelism for MoE
models, namely Expert Parallelism (EP). In fact, it is a com-
bination of Data Parallelism and Tensor Model Parallelism
specialized for the MoE scenario. As shown in Figure 2(c),
the model is split up across the dimension of the experts’ in-
dices, and the input and output features are split along sample
dimension. All-to-all communication is performed to dispatch
the input samples to the desired expert models and put the
output back to its original location, e.g. re-arranging words
into sentences in language models.

Dynamic routing is the most unique feature of the MoE
training workload. A trainable gating module dynamically
assigns tokens to different experts in every iteration for every
MoE layer, according to the input data. Therefore, the train-
ing workload varies at different layers and iterations. This
dynamic nature of the MoE models makes it much different
from a traditional neural network in distributed training.

2.2 Hybrid and Automatic Parallelization
Listed below are three common ways of parallelism to train
typical dense deep neural networks.

Data Parallelism (DP). Each worker stores a complete
copy of parameters, and the training samples assigned to each
worker are different. Forward and backward computation are
completed independently on each worker. Gradients on dif-
ferent workers are aggregated before being used in the op-
timization of the model. DP incurs significant memory and
communication overhead as the model gets larger, because all
the parameters are replicated and synchronized in every itera-
tion. Some approaches [30, 37] reduce the memory footprint
by splitting up the replicas, but the communication overhead
is inevitable.
Pipeline Model Parallelism (PP). The model is divided into
multiple stages with sequential data dependency. Each worker
stores the parameters of its corresponding stage. The first
worker reads batches of the training data, and workers with
adjacent stages exchange intermediate results for forward or
gradients for backward computation. To be efficient, PP has
to have evenly distributed stages and bubble-free schedule,
intensively studied by prior works [4, 10, 24, 25].
Tensor Model Parallelism (TP). Single operators of a model
are partitioned across multiple workers. Each worker stores a
part of the parameters of the operators and conducts part of its
computation, e.g. a tile of a matrix. TP of different operators
needs to be designed specifically by experts, and the parti-
tioning method is critical to distributed training performance.
Megatron [35] provides the best practice of TP on transformer
models. Other works [36, 38] explores unified representation
of TP and automatic generation of the most efficient partition.

To improve distributed training performance, Hybrid Par-
allelism is introduced, which combines a few of the above
parallel strategies to better fit specific models and particular
training hardware. We call an instance of hybrid parallelism
a parallel execution plan. Given a model and a hardware
specification, there can be multiple parallel execution plans,
since multiple parallel strategies are available. For exam-
ple, Megatron-v2 [26] achieves high-performance distributed
training by expert-designed hybrid parallel execution plans,
but only for transformer-based models.

Moreover, automatic parallelization is desired to make
high-performance hybrid parallelism available to model de-
velopers with less expertise in distributed systems, Alpa [41]
categorizes parallelism into inter-layer (PP) and intra-layer
(DP and MP) levels, and automatically generates hybrid par-
allel execution plans by hierarchically optimizing over both
levels. However, it is very time-consuming for current ap-
proaches to generate an optimal parallel execution plan, due
to the lack of performance models and their excessive search-
ing algorithms. Minutes, or even hours, are taken to generate
an execution plan that may only cost milliseconds or seconds
for an iteration.

In the end, we summarize three key challenges for any
automatic parallelization training system.
Space of Hybrid Parallelism. Hybrid parallelism means
combining multiple different parallel strategies into one ex-
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ecution plan. Specifically, the hybrid of any two different
strategies may involve complicated adaption, and introduce
variance in performance. The more parallel strategies a sys-
tem can handle, the more opportunities exist to find a faster
execution plan.
Performance Modeling. Performance modeling helps ex-
plore a huge hybrid parallelism space efficiently, as it is in-
feasible to measure the cost of every possible execution plan
without actually running it.

Besides, beyond being accurate as a basic requirement, a
good performance model shall be giving extra information,
or guidance, that can provide better understanding of the per-
formance, and indicate the direction of generating a better
execution plan.
Searching Algorithm. The huge space of hybrid parallelism
shall be explored adequately to find an optimal or near-optimal
execution plan. However, for large-scale model training, it
is even unacceptable to enumerate every possible candidate.
The algorithm’s efficiency in finding a near-optimal execution
plan is appreciated, primarily when performed frequently over
different configurations.

2.3 Challenges of Automatic Parallelization for
MoE Models

The aforementioned issues are even more challenging with
MoE models. Unlike typical dense models, the dynamic na-
ture of the MoE training workload makes them more com-
plicated and invalidates existing automatic parallelization ap-
proaches. We use an example of MoE training in Figure 3 to
explain the challenges.
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Figure 3: Example MoE Training Workloads and Related
Parallel Execution Plans.

Larger Space of Hybrid Parallelism. The dynamic nature
of MoE leads to heterogeneous workloads on different expert
sub-networks, resulting in a larger space of hybrid parallelism

for MoE models than that for dense models. For a 4-experts
MoE layer, two possible execution plans are shown at the
top of Figure 3. In the conventional view, these two plans
are identical, as both devices contain two experts, so their
memory consumption and computation costs are identical.
However, the dynamic workload of MoE training can lead
to computational bottlenecks occurring on different experts
during the training process, resulting in performance differ-
ences between the two example execution plans. For example,
execution plan 1 suffers from a load-imbalance problem over
training workload 1, while execution plan 2 does not.

State-of-the-art MoE training systems [9, 11, 17, 23, 27, 29]
fail to support execution plan 2, because none of them study
the order to place expert sub-networks on multiple devices.
State-of-the-art auto-parallelization systems [36, 41] also ig-
nore execution plan 2, as both execution plans are treated
as the same in their algorithms. To avoid missing efficient
execution plans, exploring the space of hybrid parallelism
with an awareness of the imbalanced dynamic workload of
MoE models is necessary.
Workload-Aware Performance Modeling. Conventional
performance modeling approaches only use model structure
and hardware information to estimate the performance and
lack consideration of the workload. However, the dynamic
nature of MoE causes a strong relationship between ever-
changing training workloads and efficiency, invalidating con-
ventional performance modeling approaches of DNN opera-
tors. Looking back to the example in Figure 3, the efficiency
of execution plans is different under two training workloads.
Execution plan 1 becomes better in workload 2, though it is
slower in workload 1. There is a strong connection between
the efficiency of an execution plan and the training workload,
being a unique feature of MoE models.

Current auto-parallelization algorithms [36, 41] search for
an efficient execution plan ahead of training, lacking consid-
eration of the dynamic workload. A dynamic workload-aware
performance modeling approach is demanded to provide ac-
curate estimation for the MoE training scenario.
Adaptive Automatic Parallelization. For data-insensitive
dense models, parallelization is performed once before train-
ing to generate an optimal execution plan. However, since no
single execution plan can fit all workloads in MoE training,
using a fixed execution plan cannot be efficient throughout the
MoE training process. Adaptive automatic parallelization is
demanded, which employs runtime execution plans searching
and switching to maintain high efficiency through the training
process. Ideally, the searching and switching procedure is so
efficient that a training system can change the execution plan
at every iteration to achieve ultimately high performance.

However, it is hard to achieve the ideal case due to the
following issues. First, state-of-the-art systems use time-
consuming algorithms such as integer linear programming
for an optimal execution plan, which cannot fit the time limit.
Second, switching between different execution plans can be
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expensive because of the high overhead of parameters ex-
change through inter-device links.

In existing distributed training systems [4, 23, 24, 26, 41],
they select an execution plan before training without the abil-
ity of runtime execution plan adaption. Besides, the searching
overhead of current auto-parallelization algorithms [36, 41]
is too high to be used at runtime. Light-weight methods to
generate and switch between execution plans according to
the dynamic workload are appreciated for an MoE training
system.

3 Overview

We propose SMARTMOE, an automatic parallel training sys-
tem for sparsely activated models. Previous automatic par-
allelization systems only search for the optimal execution
plans before training, while SMARTMOE uses a two-stage ap-
proach. Beyond prior works that generate optimal execution
plans based on model architecture and hardware specification,
we take the workload into account for data-sensitive models.
We introduce an enlarged space for hybrid parallelism in §4.
It introduces more opportunities for better training efficiency.
With this enlarged space, SMARTMOE supports efficient exe-
cution plans for data-sensitive models. Moreover, to achieve
efficient workload-aware parallelization, we split the process
of automatic parallelization into two stages, performed offline
and online, respectively. Figure 4 presents an overview of our
two-stage algorithm.

Offline
Pool Construction (§5)

Online
Adaptive Parallelization (§6)

An
MoE
Model

Layer 1 E10 E11 E12 E13

Layer 2 E20 E21 E22 E23

E10 E11 E12 E13

E22 E21 E20 E23

E12 E11 E10 E13

E22 E21 E20 E23

E10 E12 E11 E13

E20 E22 E21 E23

Figure 4: Overview of Two-Stage Auto-Parallelization.

Offline Pool Construction (§5). The imbalanced work-
load introduces potentially faster candidate execution plans.
Among them, some pairs of execution plans are identified to
be much more expensive to switch between than others and
infeasible to be performed online. Therefore, SMARTMOE
clusters a group of execution plans as a pool, among which
the switching cost is moderate. SMARTMOE constructs a
promising pool ahead of training, while keeping the ability of
online adaption within the constructed pool.

An optimal pool has to be aware of the workload. We
design a data-sensitive performance model to help construct
good pools among numerous candidates, utilizing model spec-
ifications to estimate the workload without using statistics of
actual workload. As the time limit is relatively relaxed be-
fore training, we exploit searching algorithms of conventional
methods with our performance model to construct the pool.
Online Adaptive Parallelization (§6). A pool commonly
contains an exponential number of execution plans to be se-
lected, but online decisions should be made in milliseconds.
We develop light-weight algorithms to meet the time limit.
The algorithms can be intensively performed to ensure the ex-
ecution plan fits the current workload and quickly find faster
ones from the pool if available.

Online adaptive execution plan switching can only be prac-
tical considering the overhead itself. We find it a trade-off
between the high efficiency of an execution plan and the
latency to switch to it. We utilize temporal locality in the ever-
changing workload of MoE model training to adjust parallel
strategy at the proper time and achieve overall performance
improvement.

4 Enlarged Space for Hybrid Parallelism

In most of the previous MoE model training systems, only
expert parallelism is used for MoE models. A representative
system of this class is FasterMoE [9], which focuses on op-
timizing expert parallelism. Fewer previous works support
hybrid parallelism for MoE models. A notable system of this
class is BaGuaLu [23], which combines expert and data par-
allelism to train MoE models on a full-scale supercomputer.
Different from previous works, SMARTMOE supports hybrid
parallelism for MoE models comprehensively.

SMARTMOE supports an arbitrary combination of data and
tensor, pipeline and expert parallelism, beside a barely stud-
ied aspect of parallel strategies, namely expert placement.
With the help of this enlarged space for hybrid parallelism,
SMARTMOE could cover more efficient parallel execution
plans than previous works.

Table 1: Configuration of Expert Slot.
Parallel Strategy Capacity # Slots # Layers

Expert 1 E/N L
Expert+Data 1 D×E/N L
Expert+Tensor 1/T T ×E/N L
Expert+Pipeline 1 E/(N/P) L/P

SMARTMOE supports an arbitrary combination of existing
parallelism using the concept of expert slot. An expert slot
is a basic unit to store parameters of an expert sub-network
on workers. To specify a parallel strategy for an MoE layer,
the configuration of expert slot for every worker should be
determined. Formally, we use three attributes to represent a
configuration of expert slot:
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• The capacity of each slot. It should be a fraction between
0 and 1, as each slot can store the partial or whole of an
expert sub-network.

• The number of slots for each worker. It should be posi-
tive, as each worker contains one or more slots.

• The number of MoE layers for each worker. It should be
a positive integer, depending on the model structure.

These attributes are powerful to represent classic parallel
strategies and their combinations. Suppose a model con-
tains L MoE layers and E experts in each layer. The train-
ing is done on a N workers cluster. D,T,P represent ways
of data, tensor, and pipeline parallelism respectively. We
showcase how to set attributes for different parallel strate-
gies in Table 1. We also provide a concrete example in
Figure 5, where (L,E,N) = (2,4,4). In Figure 5(c), the set-
ting is (D,T,P) = (2,1,1)/(1,2,1)/(1,1,2), respectively. It
is worth noting that only combinations of at most two parallel
strategies are shown in the above examples. SMARTMOE
can instantiate their arbitrary combinations, as they can be
represented as specific configurations of the expert slot.
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Figure 5: Hybrid Parallelism for MoE Models.

SMARTMOE explores a new parallel strategy, expert place-
ment. The expert placement plan is an essential but under-
studied aspect of MoE model training. An expert placement
plan refers to a mapping from expert sub-networks to expert
slots, as shown in Figure 5(d). When the number of slots
on each workers is more than one, an expert placement plan
could influence performance because of the imbalanced work-
load. Recall the example in Figure 3. Two execution plans
only differ in expert placement, but their efficiency signifi-
cantly varies due to the imbalanced workloads. To the best of
our knowledge, previous MoE training systems do not study
the difference among different expert placements, i.e., expert
sub-networks are stored in multiple slots in serial order.

As Figure 5 suggests, besides supporting combinations of
existing parallelism (Figure 5(b,c)), SMARTMOE can explore

various expert placement plans (Figure 5(d)) for better perfor-
mance. In contrast, existing MoE training systems only work
on limited cases of our space. For example, FasterMoE [9]
focuses on runtime optimization of expert parallelism (Fig-
ure 5(b)). BaGuaLu [23] and DeepSpeed-MoE [29] adopt
specific hybrid parallel strategies in Figure 5(c).

5 Offline Pool Construction

5.1 Design Principle of a Pool
A pool is a sub-space of hybrid parallelism that contains
multiple execution plans with some parallel strategies fixed
and leaving the others variable. The pool remains unchanged
throughout the process of distributed training. For example, a
pool can be a condition that over multiple nodes with multiple
GPUs, pipeline parallelism shall be used across nodes, which
is fixed. And any parallelism, such as data or model paral-
lelism, can be used among GPUs within a node. SMARTMOE
constructs a good pool before training and switches execution
plans at runtime within this constructed pool.

The critical challenge of defining the scope of pools is divid-
ing parallel strategies into two categories: fixed and variable.
The fixed parallel strategies have inherent latency of execu-
tion plans, which are almost unaffected by dynamic workload.
In contrast, runtime switching on the variable parallel strate-
gies is necessary to fit the current workload. In addition, the
overhead of runtime switching should be balanced with the
performance gain.

In SMARTMOE, we define a pool as a group of execution
plans where expert placement is the only variable paral-
lel strategy. Expert placement, i.e., mapping from experts to
devices, is found to be non-trivial due to the heterogeneous
workload on experts. We identify that hybrid parallel strate-
gies for typical dense models steadily impact performance.
In contrast, expert placement could influence performance
significantly when the workload changes dynamically. So, in
the offline pool construction stage, SMARTMOE searches for
an excellent combination of typical parallel strategies, while
the expert placement plan is variable to be switched online.

This definition of the pool has two main advantages. First,
the space of candidate execution plans has enough flexibility
for online adaption. The number of possible expert place-
ment plans is increased exponentially when there are more
expert slots for each worker. It is promising to find a suitable
execution plan according to the current imbalanced work-
load (Detailed in §6.1). Second, these candidate execution
plans are mutual-convertible with minor overhead, avoiding
introducing much runtime overhead. As they have the same
configuration of expert slots, there is no need for memory
allocation or release when switching. The switching overhead
is only caused by parameter exchange between workers, and
it is possible to maintain a moderate communication overhead
(Detailed in §6.2).
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5.2 Workload-Aware Performance Modeling

In the offline stage, SMARTMOE constructs a good pool be-
fore training. A critical step is using a performance model to
estimate the efficiency of different pools. However, designing
an accurate performance model offline is challenging because
the performance of an execution plan is strongly related to the
dynamic training workload, which cannot be obtained before
training.

We introduce a method to estimate the training workload
to address this challenge. Specifically, it estimates the distri-
bution of expert selection, i.e., the outputs of gating networks,
before training. So, it realizes workload-aware performance
modeling of MoE layers without actual statistics of the train-
ing workload. With its help, we can accurately estimate the
computation and communication costs of candidate pools
before training. Finally, we apply the data-sensitive perfor-
mance model over the candidate pools and enumerate the
search space before initiating distributed training.

Semantics of the gating network guides the workload esti-
mation. Based on the specific algorithm of any given gating
network, the maximum amount of workload for any expert
can be calculated without actually training the model. This
upper bound of workload is commonly close to the actual
workload and is the bottleneck of the training process. There-
fore, using the maximum possible amount of workload, we
can accurately predict the performance of a pool.

We take the most common Choose Top-K along Experts
Axis gating approach as our instance, and our modeling
method is applicable to many others [5]. The key idea is
to understand the design of gating networks for accurate esti-
mation of computation and communication costs. We classify
state-of-the-art MoE gating networks into two classes and
explain our estimation approach for them respectively.
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Figure 6: Expert Selections under Different Gating Networks.

One is load-balanced gating networks, which ensures a
balanced workload on experts. GShard [15] gate, a commonly
used gating method, represents this class. The critical design
of the GShard gate is the capacity factor, which limits the
proportion of training samples assigned to remote experts
(i.e., experts placed in different devices with input samples).
We visualize expert selections of GShard gate from a real
training process in Figure 6. The capacity factor is set to 1.2,
4.8, and +∞ (i.e., no capacity limit). Controlled by different
capacity factors, the proportion of training samples assigned
to the overloaded experts varies. Despite the variation, there
is a definite load upper bound of the most overloaded expert,
being the bottleneck of the whole layer. Therefore, we use
that upper bound to estimate the performance of execution
plans.

Another is topology-aware gating networks, which limit
the size of cross-nodes communication in the all-to-all dis-
patching stage. Two state-of-the-art MoE models [7, 9] use
topology-aware gates. In Figure 6, Faster Gate proposed by
FasterMoE [9] is visualized. The example cluster has 16 de-
vices on four nodes with a fat-tree network topology. To avoid
suffering low bandwidth across nodes, it prefers to assign
training samples to experts within the same node, as can be
seen in the figure that most expert selection is in 4×4 blocks
on the diagonal. We can estimate expert selection considering
its hierarchical gating algorithm. As it also uses hardware
specifications available to us, we follow its algorithm to com-
pute the maximum possible communication volume and com-
putation workload for each device and adopt these data for
our performance prediction.

Generally, although the actual expert selection is unreach-
able, hyper-parameters of these gating networks can be used
to depict the distribution of expert selection. The computa-
tion overhead of the most overloaded expert can be estimated
according to the capacity factor, and the communication over-
head of device pairs can be estimated according to constraints
provided by topology-aware gating networks. After obtaining
the distribution of expert selection, we adopt an existing per-
formance model [9] to estimate the performance of execution
plans. It is worth noting that the original model has to take
the current workload information captured at runtime as its
input. However, in SMARTMOE, we apply it to the estimated
workload. With the help of our estimating method and the
performance model, we apply exhaustively offline searching
for a pool with the best-estimated performance.

6 Online Adaptive Parallelization

6.1 Light-Weight Searching
Adaptive parallelization is required for the MoE model to
keep it on an optimal execution plan considering its current
workload. The challenge of runtime adjustment is a much
stricter time limit of searching overhead, as a single iteration
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of an MoE layer typically takes only tens of milliseconds. Ex-
isting works fail to meet the time requirement of MoE models
because they commonly apply time-consuming algorithms
such as integer linear programming (ILP). In practice, the
overhead of these methods is orders of magnitude greater
than the latency of a single iteration. They are infeasible for
MoE models because they shall be intensively performed at
runtime to ensure the execution plan fits the current workload.

Defining a pool as only expert placement plans can be
adjusted at runtime is a good equilibrium point: workload-
guided expert placement plans effectively improve training
efficiency, while switching between expert placement plans
does not introduce much communication overhead. Based
on the pool constructed offline, we make minor adjustments
to fit the current workload. To keep moderate overhead, we
design light-weight searching algorithms to transfer within the
pool among execution plans. We invent a greedy algorithm
to replace time-consuming methods such as ILP, which is
intensively performed to ensure the execution plan fits the
current workload.

Motivated by our observation in Figure 3, it is critical to
generate a dedicated expert placement plan which fits the cur-
rent workload. We formalize the expert placement problem as
follows. Supposed that there are E experts and N devices, Ci
training samples are assigned to expert i by the gating network.
We need to decide the placement of each expert, where the
placement of expert i is denoted as Pi(i⊆ {0,1, . . . ,N−1}).
The optimization goal is to minimize eq. (1), where Ci

∥Pi∥ de-
notes the number of training samples processed by each repli-
cate of expert i, and overall training latency is determined by
the most overloaded device j.

max
0≤ j<N

{ ∑
0≤i<E, j∈Pi

Ci

∥Pi∥
} (1)

Algorithm 1 Greedy Expert Placement

1: function EXPERTPLACEMENTGREEDY(E,N,C[E])
2: samples[0 . . .N]← 0 ▷ current samples per device
3: experts[0 . . .N]← 0 ▷ current experts per device
4: P[0 . . .E]← /0 ▷ placement of experts
5: for i,Ci ∈ DescendingSort(C) do
6: Tmin← ∞

7: for all j do ▷ decide the placement
8: if experts[ j]< E

N and samples[ j]< Tmin then
9: Tmin← samples[ j]

10: p← j
11: P[i]← P[i]∪ p
12: samples[p]← tokens[p]+Ci
13: experts[p]← experts[p]+1
14: return P[0 . . .E]

We propose a light-weight greedy approach in Algorithm 1.
An intuitive idea is to avoid placing overloaded experts on the

same device. Therefore, Algorithm 1 decides each expert’s
placement in the order of amounts of computation on experts.
To avoid increasing memory overhead on certain devices, the
number of experts placed in one device is limited to E

N . This
algorithm’s computational complexity is O(NE), which is
light enough for runtime searching.

We also propose a more accurate but costly dynamic pro-
gramming approach. The state of dynamic programming is
defined as F(i,S), in which i denotes the number of devices
that are fully used, S is a subset of N experts to denote which
experts have been placed. And F represents the minimal size
of the most overloaded device in the first i devices. Equa-
tion (2) shows the transfer function between states, which
enumerates experts placed on device i for a minimum cost. In
this dynamic programming approach, the number of states is
O(N×2E), and O(2E) states are enumerated in one transfer,
resulting in total computation complexity O(N× 4E). This
approach is guaranteed to find an optimal solution.

F(i,S) = min
S0
{max{F(i−1,S0), ∑

e∈S−S0

Ce}} (2)

To leverage the advantages of the two algorithms above, we
design Algorithm 2 to combine them. The problem of placing
E experts into N devices is divided into two steps: in the first
step, E experts are placed into M virtual devices using the
greedy algorithm; in the second step, M virtual devices are
placed into N devices using the dynamic programming algo-
rithm. The computation complexity of this hybrid algorithm
is O(ME +N× 4M). The number of virtual devices M is a
tunable parameter, which controls the overhead of the search-
ing algorithm. For example, modern clusters usually have tree
topology: there are multiple devices within a compute node,
and multiple nodes are working together. In this setting, the
M can be set as the number of devices within a node, in which
the greedy algorithm is used across nodes, and the dynamic
programming algorithm is used within a node.

Algorithm 2 Hybrid Approach of Expert Placement

1: function EXPERTPLACEMENTHYBRID(E,N,C[E])
2: M← DEV ICES_PER_NODE ▷ tunable parameter
3: P0[E]← ExpertPlacementGreedy(E,M,C[E])
4: P[0 . . .E]← /0

5: for i← 0, . . . ,M do ▷ Use dynamic programming
within a virtual device

6: S←{e | i ∈ P0[e]}
7: PS← P(F(M,S)) ▷ Get placement of DP state S
8: P← P∪PS

9: return P[0 . . .E]

By properly tuning M according to hardware configuration
and searching time limit, these algorithms can work together
with minimum overhead and maximum effect.
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6.2 Efficient Adaptive Training

The goal of the online stage is to obtain performance gain
by applying an execution plan that fits the current workload
while keeping moderate switching overhead between exe-
cution plans. A few configurations of SMARTMOE are im-
portant to ensure performance gain. We currently tune them
manually by heuristics, as discussed below.
Threshold of Switching Overhead. Switching from the
current expert placement plan to a newly generated one in-
troduces non-negligible all-to-all communication overhead.
However, in practice, some newly generated expert placement
plans only make slight advancements over the current one
while introducing much communication overhead. To address
this problem, we set a tunable threshold to filter out new ex-
pert placement plans with minor improvement in eq. (1). In
addition, if two new plans have the same latency in eq. (1),
SMARTMOE chooses the one similar to the current plan to
minimize the switching overhead.
Frequency of Online Searching. Although online search-
ing fits the expert placement plan with the current workload,
searching and switching costs extra time. One extreme case
is to perform searching at every iteration, which can always
fit the current workload with the best execution plan but in-
troduces too much overhead. However, if the search interval
is too large, the training throughput usually decreases as the
workload changes. Fortunately, as a neural network, param-
eters of the gating network change slightly in adjacent itera-
tions, which leads to a gradual change in the distribution of
expert selections. Thanks to this temporal locality, we can
conduct runtime searching every several iterations. Figure 12
reveals the trade-off between searching frequency and train-
ing performance in real model training. We currently select
an appropriate frequency by experimentation.
Frequency of History Collecting. Our online searching al-
gorithm depends on the history of expert selection. To obtain
this data, SMARTMOE needs to dump the output of the gating
network and synchronize among workers. These operations
could be time-consuming if performed too frequently. In prac-
tice, we find an effective strategy is only collecting the history
of expert selection at a few iterations immediately before the
iteration of online adaption. This strategy also utilizes the tem-
poral locality of the expert selection, and prevents collecting
useless stale history.

7 Evaluation

7.1 Experimental Setup

Clusters. We evaluate SMARTMOE on three representative
clusters, as shown in Table 2, which differ in accelerators, net-
work topology, network bandwidth, and scale. Evaluation on
these clusters demonstrates that optimization of SMARTMOE
works on different hardware environments.

Table 2: Hardware Platforms for Evaluation.
Name GPUs Per Node Max GPUs Infiniband Bandwidth

blinky 8× NVIDIA V100 PCIe 32 50Gb/s
pinky 4× NVIDIA V100 SXM 64 100Gb/s
inky 8× NVIDIA A100 SXM 32 200Gb/s

Models. The models used for evaluation are shown in Ta-
ble 3. We choose models from two popular deep learning
tasks for evaluation: one is GPT-MoE for natural language
processing, and the other is Swin-MoE for computer vision.
We use typical batch sizes for each of them. Model param-
eters are increased along with the number of GPUs. One of
the most popular gating methods proposed by GShard [15] is
used. GShard gate has a tunable parameter named capacity
factor, which controls the degree of load imbalance problem
(Smaller capacity factor results in a more balanced workload).
This optimization is from the model design side to improve
MoE model training performance. We apply the GShard gate
with different capacity factors to evaluate our system-side
optimization.

Table 3: Models Used for Evaluation.
Model Task Batch Size # params (billion) Capacity Factor

GPT-MoE NLP 256/512 4.5/7.3/9.9/14.0 1.2/2.4/4.8/+∞Swin-MoE CV 4096 0.54/1.0

Baselines. We compare SmartMoE with four strong train-
ing systems. DeepSpeed-MoE [29] is an MoE training sys-
tem with both system-side and model design-side optimiza-
tion. It is implemented on DeepSpeed [31] and Megatron-
LM [35]. For fairness of comparison, we only turn on the
system-side optimization in the following experiments. Tu-
tel [11] targets the scalability problem of MoE training, which
achieves promising performance on large-scale MoE training.
And Tutel designs Swin-MoE models by extending Swin-
Transformer [20, 21] with the MoE technique. FasterMoE [9],
the latest version of FastMoE [8], is one of the early efforts
of data-sensitive optimization for MoE training. It proposes
runtime smart scheduling and expert shadowing. For fairness
of comparison, we manually tune hyper-parameters of Faster-
MoE to achieve good performance. Alpa [41] is a state-of-
the-art general-purpose auto-parallelization training system,
which hierarchically generates inter- and intra-operator paral-
lel execution plans. It should be noticed that we do not directly
compare our system with Alpa. Alpa is implemented on JAX,
while the other systems we used are implemented on PyTorch.
For fairness of comparison, we use parallelism recommended
in the Alpa paper on our system to simulate its performance.
Evaluation Metrics. For end-to-end evaluation, we measure
the training latency including forward, backward, gradient
synchronization, and optimization stages in both MoE and
dense layers in the real model training process. Instead of us-
ing randomly generated input samples, we apply real datasets
for training to ensure that the dynamic workload in MoE lay-
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Figure 7: End-to-End Speedup of GPT-MoE Models.

ers represents real situations. For micro-benchmarks, training
latency only includes the forward and backward stages in
MoE layers. We use a comprehensive expert selection dataset,
which is collected in real model training processes, including
different model structures and gating methods.

7.2 End-to-End Speedup

We evaluate the end-to-end performance of two types of mod-
els on three different clusters. Evaluations are done in a form
of weak scaling, where model sizes are increased along with
the number of GPUs. And different capacity factors are ap-
plied at each scale. X/Y means evaluation on X devices with
capacity factor Y . "OOM" means out-of-memory. The perfor-
mance of FasterMoE is used as a baseline.

Figure 7 shows the end-to-end speedup of GPT-MoE mod-
els. SMARTMOE achieves on average 1.53× speedup on inky
cluster, and achieves on average 1.17× speedup on pinky clus-
ter. Comparing inky cluster and pinky cluster, SMARTMOE
achieves higher speedup on inky, where SMARTMOE achieves
a maximum speedup of 1.88×. This can be explained by two
reasons. First, the bandwidth gap between intra-node and
inter-nodes links is greater, making hybrid parallelism more
efficient. Second, inky has more GPUs in a node, increas-
ing possible intra-node parallel strategies. Figure 8 shows
the speedup of Swin-MoE models. SMARTMOE achieves on
average 1.14× speedup on blinky cluster.

Comparing different GShard capacity factors, SMARTMOE
achieves a more significant speedup when the capacity factor
is higher. This reveals the tight relationship between model
design and system-side optimization. Both of them improve
training performance by alleviating the load-imbalance prob-
lem in MoE layers, so there are fewer optimization opportu-
nities as the gate is set up with stricter load-balancing limits.
In this case, SMARTMOE brings improvement because it
constructs a better pool. A good pool replaces the originally
expensive all-to-all of expert parallelism by communication
among fewer workers in hybrid parallelism. Systems with
only runtime optimization (e.g. FasterMoE) could reduce the
computation overhead by balancing workload, but they fail to
reduce the communication overhead, as detailed in §7.5.
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Figure 8: End-to-End Speedup of Swin-MoE Models.

7.3 Offline Parallelization Ablation Study

We study the effectiveness of our offline parallelization
algorithm. In order to verify that SMARTMOE can find
a good pool, we compare performance of different auto-
parallelization systems in Figure 9. X/Y means evaluation
on X devices with capacity factor Y . The performance of
FasterMoE is used as a baseline. To compare with the data-
insensitive auto-parallelization approach, we use execution
plans recommended by Alpa, in which expert parallelism is
used within a node, and pipeline parallelism is used across
nodes. To fairly compare the effect of offline parallelization,
online optimizations of all systems are disabled. SMARTMOE
uses a random execution plan generated by the offline data-
sensitive auto-parallelization approach. Both data-sensitive
and insensitive approaches generate more efficient execu-
tion plans compared with pure expert parallelism, attributing
to the high performance of hybrid parallelism. Meanwhile,
the data-sensitive approach of SMARTMOE achieves 2.67×
speedup, while the data-insensitive approach only achieves
2.36× speedup.
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Figure 9: Performance of Offline Parallelization.
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Figure 10 shows the accuracy of our data-sensitive perfor-
mance model. X −Y means evaluation on X devices with
local batch size Y . We use MoE layers with expert selection
recorded in a real training process to verify the accuracy of
SMARTMOE performance model. Different scales and batch
sizes are used. For all configurations, it achieves R2 > 0.5.
Results show that the execution time of an MoE layer varies
under different training data. However, the data-insensitive
performance model of MoE operators only gives a constant
estimation of execution time for each scale and batch size, as
shown by vertical lines, inaccurate for most cases. In contrast,
our data-sensitive performance model predicts execution time
based on current training data. Results show that its accu-
racy is higher when workers are in the same node, because
an unstable cross-node network prevents us from precisely
modeling cross-node all-to-all communication latency.
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Figure 10: Accuracy of Performance Modeling.

7.4 Online Parallelization Ablation Study
Now we evaluate performance improvement from the adap-
tive automatic parallelization approach in SMARTMOE. A
16-layer MoE model is trained on 64 V100 GPUs of pinky.
We set the execution plan adjustment frequency to once every
10 iterations. Figure 11 shows the speedup of all 16 MoE
layers. SMARTMOE achieves on average 1.16× speedup per
layer, and at most 1.43× speedup in layer 2. Performance
opportunities differ among layers because they are trained
to have different internal features. The overhead of execu-
tion plan adjustment is insignificant, because training with
dynamic execution plans beats the static execution plan at
every layer.
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Figure 11: Speedup of Online Parallelization.

In another view, Figure 12 shows the latency of an MoE
layer from iteration 1 to 1500. The performance of using
either static or dynamic execution plans with different fre-
quencies of adjustment is shown by curves. dyn.X denotes
switching execution plans every X iteration. Before the first
time of switching, the execution plan used is the same as the

origin, which does not fit the workload dynamically, result-
ing in inefficient training. After switching execution plans, it
immediately becomes efficient, because SMARTMOE uses
recent history of expert selections to guide switching. As train-
ing progresses, the distribution of expert selection gradually
changes. We can find that for frequencies of 250 and 500 itera-
tions, after switching, performance degrades as time increases.
This suggests that the frequency of the execution plan adjust-
ment should be high enough for the varying workload. But we
also find that the switching overhead could hurt overall perfor-
mance when adjustment frequency is too high. Moreover, it
is interesting that the actual execution plan adjustment tends
to be less frequent as the training progresses. For example,
in Figure 12, the performance of different switching frequen-
cies becomes more close after iteration 1000. We speculate
the reason for this phenomenon is that the distribution of the
expert selection becomes more stable after thousands of itera-
tions. In conclusion, we think how to set a proper frequency
of dynamic parallelization is still an open problem.
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Figure 12: Performance of different adjusting frequencies.

7.5 Fine-Grained Performance Breakdown
We present a fine-grained performance breakdown in Fig-
ure 13. FasterMoE is the baseline implementation of MoE
model training, which uses pure expert parallelism with sim-
ple runtime load-balancing strategies. Alpa represents state-
of-the-art training systems with only offline parallelization.
SMARTMOE represents MoE model training with both offline
and online parallelization. Baseline systems and SMARTMOE
are used to train two MoE models, which are only different in
the capacity factor of the gate. The overhead of communica-
tion and computation for one iteration is measured separately.

As models with smaller capacity factor tend to have a
more balanced workload, the execution time of three systems
for the case capacity = 1.2 is shorter than its counterpart,
capacity =+∞. Because FasterMoE only supports pure ex-
pert parallelism, while Alpa and SMARTMOE support hybrid
parallelism, both communication and computation overhead
are reduced by the latter. In the case, capacity = 1.2, the
speedup of communication is more significant, because com-
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Figure 13: Fine-Grained Performance Breakdown.

putation is forced to be more balanced with the restricted
expert selection. SMARTMOE outperforms Alpa because of
workload-awareness.

7.6 Overhead Analysis
The overhead of SMARTMOE parallelization approaches is
insignificant, compared with the end-to-end training time.
Table 4 shows an execution time breakdown of a model which
has 16 experts and is trained on a 16 V100 GPUs cluster.

Table 4: Execution Time Breakdown.

Searching Switching Forward and Backward Alpa’s SearchingOriginal Optimized

0.05ms 20ms 75ms 67ms 825s

Searching algorithms cost less than 1ms, because there are
only 16 experts. We test the searching algorithms for 1024
experts further, the cost of a single searching process is still
less than 50ms. Switching costs 20ms in this example, be-
cause the size of expert sub-networks is non-negligible. For a
single forward and backward step, the overhead of switching
could influence training performance. However, the switching
of execution plans brings on average 10% performance gain,
which is 8ms in this example. After 3 steps, the end-to-end la-
tency of adaptive parallelization is lower than the original one.
Typically, tens of forward and backward steps are performed
in one iteration, so the switching cost is acceptable for end-
to-end training. We also evaluate the overhead of Alpa [41]
for this example, which takes 825 seconds to generate an ex-
ecution plan. The searching overhead of Alpa is orders of
magnitude greater than our approaches.

8 Related Work

MoE training systems. Early efforts implement expert
parallelism to enable MoE model training in the existing
frameworks, including GSPMD [38] for TensorFlow and
Fairseq [16], FastMoE [8] for PyTorch. More recent literature
has proposed some MoE-specific optimization techniques
from different perspectives. To optimize all-to-all commu-
nication in MoE training, DeepSpeed-MoE [29] proposes a
hierarchical all-to-all algorithm to reduce latency. Lita [17]
systematically analyzes all-to-all overhead in MoE training

and designs a new communication scheduling scheme. For
improving hardware utilization, Tutel [11] delivers adaptive
parallelism and pipelining, and scales MoE training to thou-
sands of GPUs. FasterMoE [9] provides a comprehensive
performance analysis of MoE training and designs multiple
techniques to alleviate load-imbalance problems.

Efforts above focus on the optimization of expert paral-
lelism, which are complementary with SMARTMOE. To en-
able hybrid parallelism, Tutel [11] combines expert, data,
and tensor model parallelism to scale up MoE training.
BaGuaLu [23] combines expert and data parallelism to train
an MoE model on a full-scale supercomputer. SMARTMOE
implements more complete parallelism for MoE models,
which brings more performance opportunities.
Automatic parallelization training systems. Previous
works target different parallel strategies. Tofu [36] generates
tensor model parallel execution plans by a novel DP algo-
rithm. PipeDream [24] and DAPPLE [4] propose pipeline
parallelism planners for efficient pipeline partitioning and
scheduling. Alpa [41] generates more sophisticated execu-
tion plans, considering both inter-operator (i.e., pipeline) and
intra-operator (i.e., data and tensor) parallelism.

These efforts are mainly designed for models with dense
architecture. SMARTMOE analyzes unique challenges of au-
tomatic parallelization for models with sparse architecture,
and designs specific techniques to address them.

9 Conclusion

We propose SMARTMOE, an automatic parallelization system
for distributed training of sparsely activated models. We iden-
tify the key challenge of applying automatic parallelization
for sparsely activated MoE models as their dynamic nature or
being data-sensitive. To address this challenge, we propose
a two-stage solution. The combination space of hybrid par-
allelism, which enables more potential for optimization, is
decomposed by pools. To construct an optimal static pool be-
fore training, we design a workload-aware performance model
to predict the training performance with estimations of gating
networks. At runtime, we invent light-weight searching algo-
rithms to change execution plans with minimum overhead.
Compared with selected baselines, SMARTMOE achieves up
to 1.88× speedup in end-to-end MoE model training.
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Abstract
A wide range of reinforcement learning (RL) algorithms have
been proposed, in which agents learn from interactions with a
simulated environment. Executing such RL training loops is
computationally expensive, but current RL systems fail to sup-
port the training loops of different RL algorithms efficiently
on GPU clusters: they either hard-code algorithm-specific
strategies for parallelization and distribution; or they acceler-
ate only parts of the computation on GPUs (e.g., DNN policy
updates). We observe that current systems lack an abstrac-
tion that decouples the definition of an RL algorithm from its
strategy for distributed execution.

We describe MSRL, a distributed RL training system
that uses the new abstraction of a fragmented dataflow
graph (FDG) to execute RL algorithms in a flexible way.
An FDG is a heterogeneous dataflow representation of an
RL algorithm, which maps functions from the RL training
loop to independent parallel dataflow fragments. Fragments
account for the diverse nature of RL algorithms: each frag-
ment can execute on a different device using its own low-level
dataflow implementation, e.g., an operator graph of a DNN
engine, a CUDA GPU kernel, or a multi-threaded CPU pro-
cess. At deployment time, a distribution policy governs how
fragments are mapped to devices, without changes to the algo-
rithm implementation. Our experiments show that MSRL ex-
poses trade-offs between different execution strategies, while
surpassing the performance of existing RL systems.

1 Introduction
Reinforcement learning (RL) solves decision-making prob-
lems by having agents learn policies – typically represented
as deep neural networks (DNNs) – on how to act in an en-
vironment [51]. RL has achieved remarkable outcomes: in
game play, AlphaGo [49] defeated a world champion in the
Go board game; in biology, AlphaFold [21] predicts three-
dimensional structures for protein folding; in robotics, RL
allows robots to perform dexterous manipulation without hu-

*Equal contribution.

man intervention [15]; and the ChatGPT chatbot [41] uses a
reinforcement step with PPO [47] to fine-tune its model.

Such advances in RL, however, come with high computa-
tional demands: AlphaStar trained 12 agents on 384 TPUs and
1,800 CPUs for 44 days to achieve grandmaster level in Star-
Craft II game play [54]; OpenAI Five trained to play Dota 2
games for 10 months with 1,536 GPUs and 172,800 CPUs [3].

Existing RL systems (e.g., SEED RL [8], Acme [18],
Ray [34], RLlib [25], Podracer [16]) are therefore optimized
for specific types of RL algorithms and the structure of their
RL training loops. In particular, systems hardcode a strategy
for parallelizing and distributing the RL computation:
Parallelization. Most RL systems only accelerate the DNN
computation on GPUs or TPUs [8, 18, 25] using current
DNN engines (e.g., PyTorch [42], TensorFlow [14], and Mind-
Spore [19]). Other parts of RL algorithms (e.g., action gen-
eration, environment execution, and trajectory sampling) are
executed as sequential Python functions on worker nodes,
potentially becoming performance bottlenecks.

Some systems try to accelerate more parts of RL training
loops: Podracer [16] uses the JAX [12] compilation frame-
work to vectorize Python implementations of RL algorithms;
WarpDrive [23] implement the entire RL training loop using
CUDA on a GPU; and RLlib Flow [26] uses a set of parallel
dataflow operators [58] to express an RL training loop. All of
these approaches, however, require users to rewrite the com-
plete RL algorithm (e.g., agents, learners, and environments)
using a single API with a fixed set of dataflow operators.
Distribution. When distributing computation, current RL sys-
tems allocate algorithmic components (e.g., actors and learn-
ers) to workers in a fixed way: SEED RL [8] assumes that
learners perform policy inference and training on TPUs, and
actors execute on CPUs; Acme [18] only distributes actors
and maintains a single learner; and TLeague [50] distributes
learners but co-locates environments with actors on CPU
workers. As we shown in §6, such decisions are algorithm-
specific: since different algorithms deployed on a given set
of resources exhibit diverse bottlenecks, a single distribution
strategy cannot exhibit the best performance in all cases.
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We observe that the above challenges come from a lack of
separation between the definition of an RL algorithm and
how it is executed by the system. For example, many RL sys-
tems allow users to define RL algorithms as a set of Python
functions for agents, learners, and environments. The system
then directly invokes the implementation of e.g., an agent’s
act() function to produce new actions for the environment.
While this simplifies system implementation, it removes con-
trol from the system regarding how algorithmic components
are parallelized or distributed at deployment time.

DNN training systems use intermediate representa-
tions (IRs), which are compiled to target devices for execution,
to decouple DNN definition from execution [1,6,56]. Such ap-
proaches, however, assume a homogeneous training computa-
tion (forward/backpropagation over differentiable DNNs [2]),
which can be expressed by a fixed set of computational opera-
tors over tensor types. In contrast, the space of RL algorithms
exhibits more heterogeneity in terms of the computation per-
formed by algorithmic components (agents, actors, learners,
polices, environments, leaderboards), their exchanged data
(observations, actions, policy updates) and communication
patterns (one-to-one, one-to-many, all-reduce).

Our goal is to explore a new design for an RL training
system that requires users to define an RL algorithm only
once. At deployment, the system then supports (i) the exe-
cution of arbitrary parts of the RL computation on parallel
devices (GPUs and CPUs); and (ii) the deployment of parts
of the computation on distributed workers.

We describe MSRL, a distributed RL system that achieves
this by decoupling the specification of a RL algorithm from
its execution through the abstraction of a fragmented dataflow
graph (FDG). Unlike dataflow approaches of DNN and data
analytics systems, an FDG does not enforce a single uniform
dataflow representation, which is challenging for diverse RL
algorithms. Instead, it allows different components of an RL
algorithm to have bespoke GPU or CPU implementations,
chosen by the user at deployment time.

In summary, MSRL’s design makes three contributions:
(1) Fragmented dataflow graphs (§3). From the RL algo-
rithm implementation, MSRL constructs an FDG, which con-
sists of independent fragments. Each fragment can have its
own dataflow representation (e.g., DNN operators, CUDA, or
Python) targeting GPUs or CPUs. MSRL then maps instances
of fragments to devices at deployment time.

To obtain fragments, MSRL statically analyzes the RL
algorithm implementation to group functions into fragments.
By default, the boundaries between fragments are chosen
based on the algorithmic components of the RL algorithm.
Since fragments are deployed on different devices, MSRL
synthesizes appropriate communication operators that allows
fragments to exchange data.
(2) API with distribution policies (§4). Users specify an
RL algorithm by implementing its algorithmic components
as Python functions in a traditional way. The implementa-

tion makes no assumptions about how the algorithm will be
executed: all runtime interactions between components are
managed by calls to MSRL APIs. A separate deployment
configuration defines the devices available for execution.

Since FDGs separate algorithm implementations from ex-
ecution, MSRL can apply different distribution policies to
govern how fragments are mapped to devices. MSRL sup-
ports distribution policies, which subsume the hard-coded
distribution strategies of current RL systems: e.g., a policy
can distribute multiple actors to scale environment interaction
(like Acme [18]); distribute actors and move policy inference
to learners (like SEED RL [8]); distribute both actors and
learners (like Sebulba [16]); or represent the full RL training
loop on a GPU (like WarpDrive [23] and Anakin [16]).

When a user changes the algorithm configuration, its hyper-
parameters or deployment resources, they can also switch be-
tween distribution policy to maintain high training efficiency
without having to change the RL algorithm implementation.
(3) Heterogeneous fragment execution (§5). For execution,
MSRL deploys hardware-specific implementations of frag-
ments on CPUs and GPUs. MSRL supports different fragment
implementations: CPU implementations use regular (multi-
process) Python code, and GPU implementations are gen-
erated as compiled computational graphs for DNN engines
(e.g., MindSpore or TensorFlow) if a fragment is implemented
using operators, or are implemented directly in CUDA.

MSRL optimizes co-located fragments on the same worker:
it fuses data-parallel fragments for more efficient execution by
batching data items (e.g., tensors) and using single-instruction-
multiple-data (SIMD) execution.
We evaluate MSRL experimentally and show that MSRL’s
abstraction supports flexible training across different RL algo-
rithm without compromising training performance compared
to current hardcoded RL training systems: MSRL scales to
64 GPUs and outperforms the Ray distributed RL system [34]
by up to 3×. By switching between distribution policies,
MSRL can improve the training time of the PPO RL algo-
rithm by up to 2.4× as hyper-parameters, network properties
or hardware resources change.

2 Distributed Reinforcement Learning
Next we give background on RL algorithms (§2.1), discuss
the requirements for RL training (§2.2), and survey the design
space of existing RL systems (§2.3).

2.1 Reinforcement learning

Reinforcement learning (RL) solves a sequential decision-
making problem in which an agent operates in an environ-
ment. The agent’s goal is to learn a policy that maximizes the
cumulative reward based on the feedback from the environ-
ment (see Fig. 1). RL training performs three steps: 1 policy
inference: an agent obtains an action by performing inference
on a policy; 2 environment execution: the environment ex-
ecutes the action, generating trajectories of ⟨state,reward⟩
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Fig. 1: RL training loop with multiple agents

pairs; and 3 policy training: the agent improves the policy by
adapting it based on the reward.

RL algorithms are diverse in nature, falling into three cat-
egories: (1) value-based algorithms (e.g., DQN [33]) use a
DNN to approximate a value function that predicts the ex-
pected return of actions. Agents then select actions based
on these estimated values; (2) policy-based algorithms (e.g.,
Reinforce [55]) directly learn a parameterized policy – ap-
proximated by a DNN – for selecting actions without a value
function. Agents use batched trajectories to train the policy by
updating its parameters to maximize the reward; and (3) ac-
tor–critic algorithms (e.g., PPO [47], DDPG [27], A2C [32])
combine the two by learning a policy that selects actions and
a value function that evaluates them.

Multi-agent reinforcement learning (MARL) employs mul-
tiple agents, each optimizing its own cumulative reward when
interacting with the environment or other agents (see Fig. 1).
A3C [32] executes agents asynchronously on separate environ-
ment instances; MAPPO [57] extends PPO to a multi-agent
setting in which agents share a global parameterized policy.

2.2 Requirements for distributed RL systems

RL algorithms explore large spaces of actions, states and
DNN parameters, which grow exponentially with the number
of agents [37]. RL systems must thus exploit the parallelism
of GPUs and scale computation to many worker nodes.

Due to the diverse computational patterns exhibited by
different RL algorithms, there is no single strategy for paral-
lelization and distribution that is optimal for all RL algorithms,
e.g., in terms of both achieving the lowest iteration time and
scaling to the most workers. Bottlenecks during training de-
pend on the specific algorithm, the training workloads and
the employed hardware resources: e.g., our experiments show
that, for PPO [47], environment execution ( 2 ) takes up to
98% of execution time; for MuZero [46], a large MARL al-
gorithm with many agents, instead 97% of time is spent on
policy inference and training ( 1 + 3 ).

Therefore, there are many proposals how to parallelize
and distribute RL computation: e.g., in single-agent RL, envi-
ronment execution ( 2 in Fig. 1), policy inference and train-
ing ( 1 + 3 ) can be distributed across workers [8,16,16,18,34];
in MARL, agents can be distributed [25, 26, 34, 45] and ex-
change training state [29, 39]. Environment instances can
execute in parallel [16, 32] or be distributed [7].

Python function
def actor(state) 
    action=actor_net(…) 
    ...

Agent.act( )

Python function
def step(action) 
    state,reward=… 
    ...

Environment.step( )

Python function
def learn(state,reward) 
    loss=… 
    ...

Agent.learn( )

Function call

(a) Function-based

Message

Actor 2 

Actor 1

Actor 3

Agent.act( )

Environment.step( )

Agent.learn( )

(b) Actor-based

Dataflow operators
Agent.act( )

Environment.step

Agent.learn( )

Function operator 
Shared memory  

Dataflow operators

Dataflow operators

(c) Dataflow-based

Fig. 2: Types of RL system designs

Instead of committing to one approach for parallelizing
and distributing the RL computation, an RL system should
provide the flexibility to change its execution approach based
on the workload. This leads us to the following requirements:
(1) Execution abstraction. The system should have a flex-
ible execution abstraction for parallelizing and distributing
computation, unencumbered by how the algorithm is defined.
(2) Distribution strategies. The system should support mul-
tiple strategies for distributing RL computation. Users should
be permitted to switch between strategies based on the train-
ing workload, without changes to the algorithm.
(3) Acceleration support. The system should exploit the
parallelism of GPUs and CPUs, accelerating not just policy
training and inference ( 1 + 3 ) but the full RL training loop,
including environment execution ( 2 ) [23].
(4) Algorithm abstraction. The system should expose famil-
iar APIs to users for defining RL algorithms and their training
loops, structured around algorithmic components [9, 13, 22],
such as agents, actors, learners, policies, environments, etc.

2.3 Design space of existing RL systems

We analyze the design space of RL systems. Existing designs
fit into three types (see Fig. 2):
(a) Function-based RL systems are the most common type.
They express RL algorithms typically as Python functions,
executed directly by workers (see Fig. 2a). The RL training
loop is implemented through direct function calls. For ex-
ample, Acme [18] and SEED RL [8] organize algorithms
as actor/learner functions; RLGraph [45] uses a component
abstraction, and users register Python callbacks to define func-
tionality. Distributed execution is delegated to backend en-
gines, e.g., TensorFlow [14], PyTorch [42], Ray [34].
(b) Actor-based RL systems execute algorithms as a set
of (programming language) actors deployed on worker
nodes (see Fig. 2b). For example, Ray [34] uses an actor
model to define tasks, which are distributed among nodes
using remote calls. Defining control flow in an actor model,
however, is burdensome. To overcome this issue, RLlib [25]
adds logically centralized control on top of Ray. Similarly,
MALib [61] offers a higher level abstractions for population-
based MARL algorithms (e.g., PSRO [35]) on Ray.
(c) Dataflow-based RL systems define algorithms through a
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Type System (1) Execution (2) Distribution (3) Acceleration (4) Algorithm

Function-based
SEED RL [8] Python functions

environment only DNNs only actor/learner/env
Acme [18] Python classes
RLGraph [45] delegated to backend agent

Actor-based
Ray [34] task (stateless)

actor (stateful)
scheduler/RPC DNNs only

Python functions
with Ray API [34]RLlib [25]

MALib [61] agent/actor/learner/env

Dataflow-based

Podracer [16]
JIT-compiled
by JAX [12] hardcoded funcs/DNNs/envs JAX [12] API

RLlib Flow [26]
predefined
dataflow operators

dataflow operators/
Ray tasks [34] DNNs only operator API

WarpDrive [23] GPU thread blocks — CUDA kernels CUDA API

Fragmented dataflow MSRL heterogeneous
fragments any fragment funcs/operators/

DNNs/envs agent/actor/learner/env

Tab. 1: Design space of distributed RL systems

set of data-parallel operators, implemented by GPU kernels
or distributed tasks (see Fig. 2c). Users must express the com-
plete RL training loop using operators APIs. For example,
Podracer [16] uses JAX [12] to compile vectorized Python to
TPU kernels. RLlib Flow [26] provides Spark-like dataflow
operators on top of Ray. WarpDrive [23] executes RL training
loops implemented in CUDA using GPU thread blocks.
Tab. 1 considers how well these approaches satisfy the four
requirements from §2.2:
(1) Execution abstraction. Function- and actor-based sys-
tems execute RL algorithms directly through implemented
(Python) functions and user-defined language actors, respec-
tively. This prevents systems from applying optimizations
how RL algorithms are parallelized or distributed. In contrast,
dataflow-based systems execute computation using opera-
tors [16,26] or CUDA kernels [23]. This allows for execution
optimizations, but algorithm implementations are restricted
by the supported set of operators.
(2) Distribution strategies. Most function-based systems
only support a hardcoded strategy, e.g., one that distributes ac-
tors to parallelize the environment execution ( 1 + 2 in Fig. 1)
with a single learner. In actor-based systems, a scheduler as-
signs stateful actors and stateless tasks to workers, and users
have no control over the distribution approach.

Similarly, existing dataflow-based systems only support
fixed policies how dataflow operators are assigned to workers:
Anakin [16] co-hosts an environment and an agent on each
TPU core; Sebulba distributes the environment, learners and
actors on different TPUs; and RLlib Flow [26] shards dataflow
operators across distributed Ray actors.
(3) Acceleration support. Most RL systems only accelerate
DNN policy inference and training ( 1 + 3 ). Some dataflow-
based systems (e.g., Podracer [16] and WarpDrive [23]) also
accelerate other parts of training, requiring bespoke dataflow
implementations: e.g., Podracer accelerates environment exe-
cution ( 2 ) on TPU cores; WarpDrive executes the entire RL
training loop ( 1 – 3 ) on a single GPU using CUDA.
(4) Algorithm abstraction. Function-based RL systems pro-
vide intuitive actor/learner/env APIs. Actor-based RL sys-

tems exhibit harder-to-use low-level APIs for distributed
components (e.g., Ray’s get/wait/remote [34]) and must
rely on high-level libraries (e.g., RLlib’s PolicyOptimizer
API [25]) to bridge the gap. Dataflow-based systems come
with their own dataflow operators, requiring the rewriting
of a complete RL training loop. For example, JAX [12] re-
quire users to express RL algorithms in terms of the vmap and
pmpa operators for vectorization and single-program multiple-
data (SPMD) parallelism, respectively.
We note that there is an opportunity to combine the usabil-
ity of a function-based algorithmic abstraction, which allow
users to express RL algorithms naturally using algorithmic
components, with the acceleration potential of dataflow-based
approaches. Such a design, however, requires a new execution
abstraction, which also retains the flexibility of supporting
different distribution strategies.

3 Fragmented Dataflow Graphs
We now describe the dataflow abstraction that we use to rep-
resent the heterogenous computation of RL algorithms and to
map it to various devices for execution.

3.1 Overview

Our aim is to take an arbitrary RL training loop of a single- or
multi-agent RL algorithm (Fig. 1) and translate it to a dataflow
representation. The RL system can then use the dataflow
representation to parallelize and distribute the computation
across heterogeneous devices. We observe that RL training
loops combine different types of computations: e.g., actors
decide on an action to carry out based on inference results
from the DNN policy, obtaining trajectories first; learners
update the DNN policy using a DNN training algorithm;
and environments execute steps in e.g., a physics simulator,
returning trajectories based on the current simulation state.

Unlike existing dataflow models for DNN computation [1,
6,19], this heterogeneity of computation makes it challenging
to impose a single uniform dataflow model that prescribes a
set of computational operators and a single data representation
(e.g., tensors) between them. Instead, we adopt a heteroge-
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neous dataflow model, in which independent dataflow rep-
resentations for different algorithmic components of the RL
training loop can be “stitched together” through well-defined
interfaces. We refer to this dataflow model as a fragmented
dataflow graph (FDG), shown in Fig. 3.
Fragments. Each node in an FDG is a potentially data-
parallel fragment, which is implemented using a bespoke
dataflow representation. For example, fragment A in Fig. 3
represents the action computation of an actor using the data-
parallel operators of a DNN engine [1, 6, 19], performing
model inference to decide on an action; fragment B imple-
ments the environment simulation directly as parallel Python
code; and fragment C conducts the model training, which is
implemented as CUDA kernels [11, 38].

Based on the fragment allocation, FDGs support the execu-
tion of RL computation on different devices. Each fragment
is assigned to one or more devices: the DNN operator repre-
sentation of fragment A allows it to be deployed on GPUs
or CPUs; fragment B requires a Python interpreter with the
multiprocessing library [10] on CPU cores; and instances of
fragment C must run as CUDA kernels on GPUs.

In addition, it is possible to parallelize fragment execution
by having multiple instances of a fragment and assigning
each instance to a separate device. In Fig. 3, fragment A is
replicated 3 times and executed by 3 GPU devices in parallel.
Communication. To form a connected FDG of the complete
RL training loop, each fragment must support entry and exit
interfaces, allowing them to exchange data: the entry inter-
face receives data as a byte buffer, which is transformed into
a fragment-specific representation (e.g., a tensor); and the
exit interface requires a fragment to provide output, which is
serialized for consumption by the next fragment.

The implementation of these interfaces depends on how
the fragments are deployed: if two fragments are placed on
different workers, the interface must use network commu-
nication to exchange data e.g., using an RPC protocol over
Infiniband [48]; if two fragments are co-located on devices
on the same worker, they can share data structures e.g., using

inter-GPU communication links such as NVLink [40].
According to the communication method and distribution

policy (§4.2), fragment interfaces may be blocking, which
means that they only execute after all data has arrived, e.g.,
after a collective communication AllReduce round when ag-
gregating DNN gradients. Alternatively, they can be non-
blocking, which means that they execute continuously, e.g.,
allowing actors to interact with environments asynchronously.

3.2 Trade-offs with fragmented dataflow graphs

FDGs subsume execution strategies of existing RL systems.
For example, an FDG may represent an actor and its envi-
ronment as a single CPU-based fragment, and a learner as
a GPU-based fragment, as proposed by Acme [18]. Alterna-
tively, it may create a larger GPU fragment by moving the
DNN policy to the learner, accelerating policy inference, as
proposed by SEED RL [8]. An even larger fragment may
contain the actor, learner, policy, and environment, execut-
ing the whole training loop on a single GPU, as proposed by
WarpDrive [23] and Anakin [16].

More generally, FDGs expose two dimensions that impact
execution performance:
Fragment granularity refers to the code size, which affects
device utilization: a small fragment may underutilize a GPU,
and a large one may exhaust GPU memory.

Fragment granularity also determines the ratio between
computation and communication. The frequency and amount
of data synchronization between fragments often limit scal-
ability: coarser fragments require less synchronization with
other fragments, which reduces communication overhead, but
they remove opportunities for parallelism. For example, mul-
tiple fragments may exchange trajectories frequently at each
step; alternatively, they may batch data from multiple steps
and communicate only once in each episode.
Fragment co-location is the assignment of fragments to
devices on the same worker. Co-locating fragments avoids
network communication (e.g., Ethernet or InfiniBand) and
instead uses more efficient intra-node communication (e.g.,
NVLink or PCIe). Whether two fragments can be co-located
depends on the available resources on the worker, such as the
number of available GPUs.
Choosing the right trade-off between fragment granularity
and co-location is key to achieving good performance. In the
next section, we describe how FDGs allow users to define
an RL algorithm and select between different distribution
policies, which expose these trade-offs.

4 Using MSRL
MSRL is our system that implements FDGs for parallel and
distributed execution of RL algorithms based on distribution
policies. We describe the APIs supported by MSRL for users
to define RL algorithms (§4.1) and the distribution policies
supported by MSRL to deploy FDGs (§4.2).
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Type API Description

Component

Agent, Actor, Learner, Trainer Abstract classes for components
Actor.act(. . .) Trajectory collection
Learner.learn(. . .) DNN policy training
Trainer.train(. . .) RL training loop

MSRL.agent_act(. . .) Invoke actor
MSRL.agent_learn(. . .) Invoke learner
MSRL.env_step(. . .) Execute environment
MSRL.env_reset() Reset environment

Interaction MSRL.replay_buffer_insert(. . .) Store trajectories in buffer
MSRL.replay_buffer_sample() Sample trajectories from buffer

Tab. 2: MSRL APIs

4.1 MSRL APIs

MSRL’s APIs are designed to decouple the algorithm logic
from its deployment, while supporting familiar algorithmic
concepts (i.e., agents, actors, learners, trainers, and environ-
ments). As listed in Tab. 2, MSRL supports component and
interaction APIs:
Component APIs specify an RL algorithm by defining algo-
rithmic components derived from abstract classes. An Agent

consists of actors and learners: actors collect trajectories in
Actor.act() by invoking MSRL.env_step(); and learners im-
plement the DNN update logic in Learner.learn(). A trainer
constructs the RL training loop in Trainer.train(). It can use
MSRL.env_step() to invoke the environment implementation
and MSRL.env_reset() to reset the training episode.
Interaction APIs offer RL-specific functionality to
algorithmic components. For example, an actor can
store collected trajectories in a replay buffer using
MSRL.replay_buffer_insert(), and a learner can sample
from that replay buffer with MSRL.replay_buffer_sample().
This avoids direct invocations between components, which
allows MSRL to distributed fragments transparently.
Alg. 1 shows a sample implementation of the multi-agent
PPO (MAPPO) algorithm [57]. (For brevity, it omits the
DNN policy definition.) The MAPPOAgent (line 1) defines
the agent behavior: it interacts with the environment
through MAPPOActor (line 6), and performs the policy train-
ing with MAPPOLearner (line 12). The agent collects trajecto-
ries (lines 8–9), and updates its DNN policy (lines 15–21).

MAPPOTrainer defines the RL training loop (line 23).
At the start of each episode, it resets the environment
(MSRL.env_reset()) and calls MSRL.agent_act() to place tra-
jectories (line 28) in a replay buffer (line 10). The trainer
invokes the learner through MSRL.agent_learn() (line 29).

To separate the algorithm’s logic from its deployment,
MSRL uses configurations, specified as Python dictionaries:
an algorithm configuration instantiates the algorithmic com-
ponents and their hyper-parameters (e.g., the number of agents
and learning rates). In the MAPPO example (lines 30–38),
the configuration requests 4 agents, each with 3 actor and
1 learner. Each actor interacts with 32 environments; and a de-
ployment configuration defines (i) the resources (e.g., GPUs,
CPUs, and worker nodes) and (ii) a distribution policy. In the

Algorithm 1: MAPPO algorithm in MSRL
1 class MAPPOAgent(Agent):
2 def act(self ,state):
3 return self.actors.act(state)
4 def learn(self ,sample):
5 return self.learner.learn(sample)

6 class MAPPOActor(Actor)
7 def act(state):
8 action = self.actor_net(state)
9 reward ,new_state = MSRL.env_step(action)

10 MSRL.replay_buffer_insert(reward,new_state)
11 return reward ,new_state

12 class MAPPOLearner(Learner):
13 def learn():
14 sample = MSRL.replay_buffer_sample()
15 action ,reward ,state ,next_state = sample
16 last_pred = self.critic_net(next_state)
17 pred = self.critic_net(state)
18 r = discounted_reward(reward ,last_pred ,self.gamma)
19 adv = gae(reward ,next_state ,pred ,last_pred ,self.

gamma)
20 for i in range(self.iter):
21 loss += self.mappo_net_train(action ,state ,adv ,r)
22 return loss / self.iter

23 class MAPPOTrainer(Trainer):
24 def train(self ,episode):
25 for i in range(episode):
26 state = MSRL.env_reset()
27 for j in range(self.duration):
28 reward ,new_state = MSRL.agent_act(state)
29 loss = MSRL.agent_learn()

30 mappo_algorithm_config = {
31 ’agent’:{’num’:4,’name’:MAPPOAgent ,
32 ’actor’:MAPPOActor ,’learner ’:MAPPOLearner},
33 ’actor’:{’num’:3,’name’:MAPPOActor ,
34 ’policy ’:MAPPOActorNet ,’env’:True},
35 ’learner ’:{’num’:1,’name’:MAPPOLearner ,
36 ’policy ’:[ MAPPOCriticNet ,MAPPONetTrain],
37 ’params ’:{’gamma’:0.9}} ,
38 ’env’:{’name’:MPE ,’num’:32,’params ’:{’name’:’MPE’}}}

39 mappo_deployment_config = {
40 ’workers ’:[198.168.152.19 , 198.168.152.20 , [. . .],
41 ’GPUs_per_worker ’:4},
42 ’distribution_policy ’:’SingleLearnerCoarse ’}

example (lines 39–42), it deploys workers with 4 GPUs each,
using the SingleLearnerCoarse distribution policy.

4.2 Distribution policies

A distribution policy (DP) governs how MSRL distributes and
parallelizes an RL algorithm by allocating, replicating and
collocating fragments from the FDG to workers and devices.

In general, there exists no single DP that is optimal in all
cases: the performance and applicability of a DP depends on
the type of RL algorithm, the size and complexity of the DNN
model, its hyper-parameters, the available cluster compute
resources (i.e., CPUs and GPUs), and the network bandwidth.
MSRL allows users to easily switch between DPs, either for
the same RL algorithm or when using different algorithms.
MSRL provides six DPs, which follow widely used hard-
coded distribution strategies of existing RL systems.

Next we give an overview of the support DPs and their
trade-offs. Tab. 3 shows how three of the DPs deploy the
fragments of an RL algorithm. (We list all DPs currently
implemented by MSRL in Appendix A).
DP-SingleLearnerCoarse replicates the actor and environment
fragments but uses a single learner. The policy DNN is repli-
cated across the actors and learner, which only requires coarse
synchronization. This policy is therefore most suitable with
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Tab. 3: Sample distribution policies with deployments

computationally-expensive environments that need scaling
out, but small DNN models that can be synchronized in a
batched fashion, e.g., Acme [18], Sebulba [16].

The MAPPO deployment in Alg. 1 uses DP-
SingleLearnerCoarse: each agent is partitioned into
4 GPU fragments, i.e., 3 actors and 1 learner, and 3 CPU
fragments for environments. Actor and environment frag-
ments are collocated. This setting is replicated for each of the
4 MAPPO agents, as specified in the algorithm configuration.
In contrast, DP-SingleLearnerFine fuses the actor and en-
vironment into a single CPU fragment, and only deploys
the learner on a GPU. Therefore it does not communicate
policy parameters between workers, which is preferable for
large DNN models with many parameters. Compared to the
DP-SingleLearnerCoarse, it relies on fine-grained synchro-
nization: training data is exchanged at each step, instead
of being batched per episode. For good performance, DP-

SingeLearnerFine therefore requires high bandwidth connec-
tivity between workers, e.g., SEED RL [8].
DP-MultiLearner performs data-parallel training with multiple
learners. This policy is necessary when the data generated
from actors becomes too large for a single GPU, and e.g., DP-
SingleLearnerCoarse cannot be used. However, it requires the
tuning of hyper-parameters (e.g., the learning rate) to scale
due to its reliance on data parallelism. Since workers only ex-
change information about the trained policy (e.g., aggregated
DNN gradients), DP-MultiLearner is communication efficient,
supporting fully decentralized MARL training [5, 43, 59, 62].
MSRL supports further policies: DP-GPUOnly fuses the RL
training loop into a single GPU fragment and distributes it
to multiple GPU devices. DP-Environments dedicates one
or more workers for the execution of complex or compute-
intensive environments (e.g., physics simulations). Finally,
DP-Central introduces a separate fragment for a centralized
component (e.g., policy pool [61] or parameter server [24]).

The choice of the best distribution policy depends on the
algorithm’s characteristics and available hardware resources:
single-agent RL algorithms, such as PPO/A3C, exhibit the
best performance under the DP-SingleLearnerCoarse pol-
icy, which distributes actors to speed up trajectory collec-
tion through data parallelism; multi-agent algorithms, such
as MAPPO/MADDPG, require a DP-MultiLearner policy that
distributes actors and learners separately from agents, thus
parallelizing both trajectory collection and model training; a
DP-GPUOnly policy can be used in a GPU environment to
fuse the training loop and execute it entirely on GPUs, which
offers the best performance.

Based on the hardware resources, bottlenecks shift between
DPs: the DP-SingleLearnerFine policy exchanges data be-
tween actors/environments at a fine granularity by distribut-
ing inference/training to one GPU worker and environments
across CPU workers. Despite the need for frequent commu-
nication, this policy is suitable in situations where GPUs
are scarce; in contrast, the DP-SingleLearnerCoarse policy
co-locates the GPU DNN inference with the environments,
enabling the learner to gather batched training data. With
enough GPUs, this policy accelerates trajectory collection.

5 MSRL Architecture
We describe MSRL’s architecture, explaining how FDGs are
generated (§5.1) and executed (§5.2).

MSRL follows a coordinator/worker design (see Fig. 4):
a user submits the RL algorithm implementation to the co-
ordinator 1 . The coordinator generates the fragments that
constitute the FDG and dispatches them to the workers 2 .
Each worker maintains one or more execution backends (e.g.,
a DNN engine, a CUDA job scheduler, a Python interpreter),
each managing devices (e.g., GPUs or CPU cores). After re-
ceiving fragments, the worker optimizes them 3 and submits
them to a backend for execution 4 .
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Fig. 4: Overview of the MSRL architecture

5.1 Generating FDGs

The coordinator has two components:
The FDG Generator partitions the RL algorithm according
to the DP specified in the deployment configuration (§4.1). It
splits the implementation at fragment boundaries and injects
code for the interface implementations between fragments.
The fragment logic is then emitted as part of a run() method
in a generated Fragment class.

The partitioning of the RL algorithm into fragments uses
the information associated with a DP. Each DP provides a set
of rules about (1) how fragments are generated and (2) how
they are distributed. The DP contains a fragment template,
which associates each fragment with a Python class that has
placeholders for class names, member functions, and other
relevant elements. These placeholders instruct the Genera-
tor where to insert specific algorithm logic, such as actor
computation, into the generated fragments. The DP also de-
fines the communication operations required by the inter-
faces. To choose appropriate implementations, the DP refers
to communication operations supported by backends (e.g.,
comms.AllGather [20] in a DNN engine). The DP also spec-
ifies which fragments are replicated into multiple instances
for parallel execution, or co-located on the same worker.

When partitioning the RL training loop, the boundaries be-
tween fragments follow the algorithmic components (actors,
learners, environments). The data to be transferred between
fragments is defined in terms of the function signatures of
the components. The partitioning is done on a dataflow rep-
resentation of the RL algorithm: nodes in the dataflow graph
are Python statements; edges represent the dataflow through
variables. Therefore, edges at the boundary of algorithmic
components describe fragment interfaces, and we refer to
them as boundary edges. MSRL creates fragments by parti-
tioning the dataflow graph at these boundary edges.

As an example, consider partitioning the MAPPO algo-
rithm (Alg. 1) into actor and learner fragments, with the
boundary between lines 28 and 29. Fig. 5a shows the sim-
plified dataflow graph obtained after static analysis, with the

Algorithm 2 Generation of fragmented dataflow graphs
function generate_FDG (alg, DP):

1: FDG←{}, DFG← generate_DFG(alg)
2: boundary_edges← obtain_boundary_edges(DFG)
3: interfaces← generate_interfaces(boundary_edges, DP)
4: for boundary in boundary_edges do
5: fragment_code← build_fragment(alg, boundary)
6: fragment← build_fragment(fragment_code, interfaces, DP)
7: FDG← FDG ∪ fragment
8: return FDG

input/output data of the components shown in red. Splitting
the graph at these boundaries, partitions it into two fragments
(see Fig. 5b), which communicate through the new interface
obtained from the boundary edges (shown in red).

Alg. 2 summarizes the FDG generation. The Generator
takes the RL algorithm’s abstract syntax tree (alg) and dis-
tribution policy DP as input (line 0) and constructs its
dataflow graph (DFG) (line 1). Next, it locates the algorith-
mic components and determines the boundary edges from the
DFG (line 2). Based on the information from the DP, it con-
structs the communication interfaces (line 3). For each bound-
ary edge (line 4), it extracts the fragment code (line 5) and
builds the fragment with its interface implementation (line 6).
At the end, it returns the complete FDG (line 8).
The Fragment Dispatcher launches instances of execution
backends on each worker according to the devices from the
deployment configuration. It also sets up distributed commu-
nication, e.g., through MPI [30], as required by the fragment
interfaces. Finally, it assigns fragments to devices based on
the DP and sends the fragments to the workers.

5.2 Executing fragments

The workers use a set of execution backends to take the frag-
ment code and run it. Some backends (e.g., a DNN engine)
produce executable machine code for a given device (e.g.,
GPUs) by translating the fragment implementation into a
computational graph, which enables code optimizations.

The communication between fragments is also handled
by the execution backends. For example, a DNN engine
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MSRL RLlib WarpDrive

PPO 207 347 (+68%) 400 (+93%)
A3C 267 428 (+60%) n/a

Tab. 4: Lines of code for the RL algorithm implementations

uses communication operators as part of its computational
graph, automatically selecting suitable implementations (e.g.,
NCCL [39] for GPU collective communication).

Each worker has two components:
The Fragment Optimizer optimizes fragments that have
been received for a given execution backend. To avoid the
overhead of executing multiple instances of a replicated frag-
ment, the optimizer attempts to fuse instances represented as
computational graphs: it exploits the support of DNN engines
to process data in a SIMD fashion by batching tensors from
multiple fragment instances.

The Optimizer performs this transformation on the frag-
ment’s AST before submitting it to the DNN engine. It locates
the AST nodes of tensors and merges their data. It then com-
putes the new tensor shape to create a single tensor that can
be processed by other data-parallel operators.
The Executor backends execute the fragments on a given
target device: a DNN engine (MindSpore) executes compu-
tational graph on GPUs or CPUs; a CUDA job scheduler
runs CUDA kernels on GPUs; a Python interpreter executes
Python fragments on CPU cores; and a container scheduler
can run arbitrary compute containers on CPU cores.

6 Evaluation
Our experimental evaluation answers the following questions:
(i) what is the training performance that MSRL with FDGs
achieves compared to existing RL systems with fixed exe-
cution strategies (§6.2)?; (ii) how does MSRL benefit from
choosing different distribution policies (§6.3)?; and (iii) how
well does MSRL scale in terms of the number of agents and
the amount of training data (§6.4)?

6.1 Experimental set-up

Implementation. We implement MSRL in 11,700 lines
of Python and C++ code. It uses CUDA 11.03,
cuDNN 8.2.1, OpenMPI 4.0.3, and the MindSpore

Cluster CPU cores GPUs Interconnects
#nodes × #per node #nodes × #per node intra-, inter-node

Azure VMs
NC24s_v2

Intel Xeon E5-2690
16×24, 448 GB

NVIDIA P100
16×4

PCIe
10 GbE

Local cluster
Intel Xeon 8160
4×96, 250 GB

NVIDIA V100
4×8

NVLink
100 Gbps IB

Tab. 5: Testbed configuration

DNN framework 1.8.0 [19] as a GPU-based ex-
ecution backend. The source code is available at
https://github.com/mindspore-lab/mindrl.

MSRL uses the following distribution policies from Ap-
pendix A: DP-SingleLearnerCoarse; DP-SingleLearnerFine;
DP-MultiLearner; DP-GPUOnly; and DP-Environments.
Baseline comparisons. For comparison, we use RLlib [34]
of Ray V2.0, as a representative distributed RL system, and
WarpDrive V1.6 [23], as a single-GPU system that accelerates
the full RL training loop. Note that the implementations of
RLlib Flow [26] and PodRacer [16] are unavailable.
RL algorithms. We focus on three popular algorithms:
(1) proximal policy optimization (PPO) [47]; its multi-agent
version, (2) multi-agent PPO (MAPPO) [57]; and (3) asyn-
chronous advantage actor-critic (A3C) [31].

Tab. 4 compares the lines of code for the algorithm im-
plementations. The RLLib and WarpDrive implementations
require 68% and 93% more lines than MSRL, respectively,
due to the hardcoded execution and distribution logic. This
shows a benefit of MSRL’s approach, which allows users to
focus on the algorithm logic in their implementations.

For environments, we use two games (CartPole,
HalfCheater) from the MuJoCo simulation engine [52], and
two strategies (Spread, Tag) from the multi-agent particle
environment (MPE) [28]. The policies use a 7-layer DNN.
Testbeds. We conduct experiments on a cloud and a local
cluster. The hardware details are given in Tab. 5: the cloud
cluster has 16 VMs (with 64 GPUs); the local cluster has
4 nodes (with 32 GPUs). All nodes run Ubuntu Linux 20.04.
Metrics. For PPO, we measure (i) the training time to reach
a given reward and (ii) the time per episode. For MAPPO, as
the problem size increases with agents, we report (i) training
time against the problem size and (ii) training throughput.

6.2 Performance with FDGs against baselines

We investigate the performance impact that MSRL’s FDG
abstraction incurs compared to RL systems that only support
hardcoded parallelization and distribution approaches.
Distributed training. We compare MSRL with DP-Single-
LearnerCoarse to Ray [34] using PPO and A3C on the lo-
cal cluster. For Ray, both algorithms are implemented using
RLlib-Flow [26] and tuned based on RLlib’s public PyTorch
implementation [44]. DP-SingleLearnerCoarse is equivalent
to the distribution approach implemented by RLlib-Flow’s
PPO and A3C implementations.
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For PPO, we distribute 320 environments evenly among
the actors, i.e., each actor interacts with 320/#actors envi-
ronments. A single learner trains the DNN. For A3C, one
learner performs gradient optimization with gradients col-
lected asynchronously from actors. Each actor interacts with
one environment and computes gradients locally. We measure
the time per episode, which is dominated by actor and envi-
ronment execution. Since the DNN training/inference time
is negligible, the fact that MSRL and Ray use different DNN
frameworks (MindSpore vs. PyTorch) has low impact.

Fig. 6a shows the time per episode for PPO. MSRL’s time
with 1 GPU is 2.5× faster than Ray’s, because Ray’s CPU ac-
tor interacts with all environments sequentially. As the number
of GPUs increases, both systems reduce episode time, because
each actor interacts with fewer environments. With 24 GPUs,
it takes 3.9 s for MSRL to execute an episode compared to
11.4 s for Ray (3× speed-up). When actors interact with mul-
tiple environments, MSRL combines DNN inference into one
operation through FDG fusion, increasing GPU parallelism.
It also uses fragments to execute environment steps in parallel
by launching multiple processes.

Fig. 6b shows the time per episode for A3C. Both systems
exhibit constant time with more GPUs, because the workload
of each GPU executing an actor remains unchanged. MSRL
executes actors 2.2× faster than Ray: since its distribution
policy exploits customized asynchronous send/receive oper-
ations from the DL engine, it can avoid further data copies
between GPUs and CPUs. In contrast, Ray must copy data to
the CPU to communicate asynchronously.

In addition, MSRL generates the FDG that can be trans-
lated into a computational graph by the DL engine, enabling
code optimizations and efficient execution. By leveraging
code templates, MSRL generates optimized fragment code by
directly manipulating the FDG AST.
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Fig. 8: Impact of parameters on distribution policies

GPU only training. Next, we use MSRL to deploy PPO
with distribution policy DP-GPUOnly, which fuses the train-
ing loop into a single GPU fragment and replicates it for
distributed execution. We use the simple tag MPE environ-
ment [28], which simulates a predator-prey game in which
chaser agents are rewarded for catching runner agents. We
train different numbers of agents, thus increasing the number
of environments, on the local cluster and measure the training
time per episode. We compare against WarpDrive [23], which
performs single-GPU end-to-end RL training.

Fig. 7a shows the training time on 1 GPU. Compared to
WarpDrive, MSRL is 1.2–2.5× faster when ranging from
20,000 to 100,000 agents. MSRL’s DL engine (MindSpore)
compiles fragments to computational graphs, exploiting more
parallelization and optimization opportunities than Warp-
Drive’s hand-crafted CUDA implementation.

While WarpDrive cannot scale to more than 1 GPU, Fig. 7b
shows MSRL’s performance when using up to 16 GPUs (each
GPU trains 80,000 agents). Initially, training time increases
from 138 ms to 150 ms due to the increased computation on a
single worker (i.e., up to 640,000 agents). After that, training
time is stable, and it is limited by communication bandwidth
(InfiniBand, NVLink).
Conclusions: MSRL’s FDG abstraction provides distribution
policies for PPO and A3C that are tailored to their bottlenecks,
e.g., enabling parallel environment execution and aggressively
parallelizing GPU execution. Ray is limited by the distribution
approach of its RLlib library; WarpDrive’s manual CUDA im-
plementation prevents it from exploiting more sophisticated
compiler optimizations.

6.3 Trade-offs between distribution policies

Next, we explore the trade-offs between different distribution
policies when changing RL algorithms and resources.
Actors. We measure PPO’s training time with two distribution
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policies, DP-SingleLearnerCoarse and DP-MultiLearner. We
use a reward of 3,000 with 200 environments.

Fig. 8a shows the training time with 2 to 70 actors.
DP-MultiLearner outperforms DP-SingleLearnerCoarse with
fewer than 30 actors, but DP-SingleLearnerCoarse scales bet-
ter after that, converging faster with more actors. Since DP-
SingleLearnerCoarse only has 1 learner, its training batch size
is fixed. Adding more actors therefore only distributes envi-
ronment execution. In contrast, DP-MultiLearner fuses actors
and learners into single fragments. With more actors, it also
adds learners, reducing the batch size for each learner. This
adds randomness to the training, affecting convergence [17].

Next, we compare two algorithms, PPO and A3C, under
the same distribution policy DP-SingleLearnerCoarse.

Fig. 8b shows the time per episode for up to 24 actors. For
PPO, the time decreases with the actor count; in contrast,
A3C’s time stays constant. Adding actors in PPO increases
the parallelism of environment execution, thus reducing the
workload per actor; for A3C, each actor only interacts with
one environment, which makes its workload independent of
the actor count. To reduce the episode time for A3C, a new
distribution policy could be written that distributes the actor
among multiple devices, combining data- or task-parallelism.
Environments. We explore how changing the number of en-
vironments affects the choice of distribution policy. When an
agent interacts with more environments in parallel per episode,
it trains with more data, improving training performance.

Fig. 8c shows the training time with 50 actors with 100–
600 environments under DP-SingleLearnerCoarse and DP-
MultiLearner. DP-MultiLearner scales better than DP-Single-
LearnerCoarse with more than 320 environments: DP-Single-
LearnerCoarse’s training time increases with more environ-
ments, because its actors send trajectories to the learner,
adding communication overhead; DP-MultiLearner only com-
municates gradients, having a fixed overhead.
Network latency. We examine the behavior of DP-Single-
LearnerCoarse and DP-MultiLearner with PPO under different
network latencies. We change network latency in our cloud
cluster using the Linux traffic control (tc) tool from 0.2 ms
to 6 ms. We use 400 environments and 50 actors.

As Fig. 8d shows, DP-MultiLearner is more sensitive to net-
work latency than DP-SingleLearnerCoarse, and its training
time increases with higher latency: since DP-MultiLearner
uses Mindspore’s data parallel model [19] to broadcast, ag-
gregate and update gradients, it transmits many small tensors.
This makes it a more suitable choice for cluster with low
latency (< 2 ms); DP-SingleLearnerCoarse transmits the tra-
jectory and DNN model weights as large tensors, performing
data transmissions less frequently.
Cluster size. Finally, we study the performance of PPO under
3 distribution policies when increasing the GPU count: DP-
SingleLearnerCoarse and DP-SingleLearnerFine use a single
learner but apply different synchronization granularities; DP-
MultiLearner scales to multiple learners using data-parallelism.
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Fig. 9: Impact of GPU count on distribution polices

We use a constant 320 Mujoco HalfCheetah [4] environments.
Fig. 9a shows the training time in the cloud cluster to reach

a reward of 4,000 with up to 64 GPUs; Fig. 9b reports the
time per episode. With 64 GPUs, DP-SingleLearnerCoarse
achieves the best speed-up in training time (5.3×). It main-
tains local copies of the DNN model at the actor and learner,
and only actors send the batched states and rewards to the
learner at the end of each episode (i.e., after 1,000 steps).
This reduces the overhead with more GPUs compared to DP-
SingleLearnerFine, whose actor fragments must communicate
with the learner at each step.

DP-MultiLearner exhibits a different behavior: with
16 GPUs, it achieves better performance than either DP-Single-
LearnerCoarse and DP-SingleLearnerFine, because it dis-
tributes policy training: it trains smaller trajectory batches
on each GPU and aggregates the gradients from all GPUs.
Instead, DP-SingleLearnerFine and DP-SingleLearnerCoarse
gather all batches and train them using 1 learner.

With more than 16 GPUs, DP-MultiLearner performs worse
than DP-SingleLearnerCoarse: batches become smaller, mak-
ing the gradient aggregation less efficient compared to training
a large batch. Although DP-MultiLearner trains each episode
faster than DP-SingleLearnerCoarse (see Fig. 9b), it requires
more episodes to reach a similar reward value.

Note that DP-SingleLearnerCoarse and DP-SingleLearner-
Fine use the original PPO implementation with 1 learner [47],
which limits scalability due to the centralized policy train-
ing ( 3 in Fig. 1). To ignore this bottleneck in the algorithm,
Fig. 9b also reports only the policy training time (labelled
DP-SingleLearnerCoarse’ and DP-SingeLearnerFine’). Now,
MSRL scales better: when moving from 32 to 64 GPUs, per-
formance increases by 25%.
Conclusions: As hyper-parameters, network properties or
GPU counts change, the differences between distribution poli-
cies in terms of synchronization granularity and frequency of
impact performance. MSRL’s ability to allow users to switch
between distribution policies at deployment time means that
they can achieve the best performance in different scenarios
without changing the algorithm implementation.

6.4 Scalability

Finally, we investigate how MSRL’s design scales with the
number of deployed agents for a MARL algorithm and of en-
vironments, thus increasing training data. We want to validate
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if MSRL’s approach introduces scalability bottlenecks.
Agents. We use MAPPO with the MPE simple spread envi-
ronment [28], in which n agents learn to cover n landmarks
while avoiding collisions. Agents must also process global
observations on how far the closest agent is to each landmark.
This results in O(n3) observations with n agents, quickly grow-
ing in computational cost and GPU memory usage [28]. We
deploy on the cloud cluster using DP-Environments: each
GPU trains 1 agent, and 1 worker executes all environments.

Fig. 10a shows the training time per episode for up to
64 GPUs against a sequential baseline (1 GPU). Due to its
cubic complexity, the time increases both for the baseline and
MSRL. With distributed training, MSRL’s time grows more
slowly than the baseline: with 32 agents, MSRL improves
performance by 58×; with 64 agents, the baseline exhausts
GPU memory, while MSRL trains one episode in 23.8 mins.

Fig. 10b compares the throughput with different agent num-
bers. Throughput is measured as the amount of data trained
per second (in MB/s). Adding more agents (i.e., GPUs) signif-
icantly improves throughput, and the margin becomes larger
with more GPUs: the throughput with 64 agents is over
7,600× higher than with 2 agents, as multiple GPUs train
agents in parallel, processing more observations per GPU.
Environments. We observe the effect of more environments
on statistical efficiency, i.e., the episodes needed to reach a
given reward. We use 10 environments per CPU, adding more
workers in the cloud cluster using DP-SingleLearnerCoarse.

Fig. 11 shows the reward along with the number of episodes
for different environment counts. More environments lead to
a higher reward: as more CPUs execute environments, the
larger use of trajectories per episode yields a higher reward.
Conclusions: FDGs do not deteriorate scalability. MSRL

scales to a large number of data-intensive agents, handling
the increase in communication between fragments without
bottlenecks. A larger amount of data generated by more envi-
ronments also improves the statistical efficiency of training.

7 Related Work

DNN compilation. XLA [56] is a domain-specific compiler
that accelerates the linear algebra of DNN models. JAX [12]
uses just-in-time (JIT) compilation to transform vectorized
Python programs to GPU or TPU code. TVM [6] is an au-
tomated end-to-end optimizing compiler for DNN training.
These approaches focus on DNN training and inference work-
loads with regular computation/communication patterns. In
contrast, RL algorithms exhibit more complex control and
data flow in their training loops.

DNN auto-parallelization. Alpa [60] and Unity [53] automat-
ically parallelize and distribute DNN training using data/oper-
ator/pipeline parallelism. They search for effective distributed
execution plans using dynamic or integer linear programming.
In future work, we want to explore the use of optimization
techniques to generate an optimal distribution policy for a
given RL algorithm. Since an FDG has more heterogeneity
than DNN dataflows, the search space is substantially larger
and based on more complex cost models.

Dataflow and actor systems. Spark [58] and Naiad [36]
express programs as dataflow graphs, sharding data across
workers. They provide high-level APIs to express computa-
tion as a single homogeneous dataflow. In contrast, FDGs
allow different dataflow models to be integrated into a single
distributed computation, as governed by distribution policies.

Ray [34] offers a general actor-based platform for dis-
tributed computing. To support RL algorithms, it uses domain-
specific libraries (RLlib/RayFlow [25, 26]) that hardcode dis-
tribution strategies, preventing it from switching strategies
based on e.g., hardware properties. Instead, MSRL proposes
FDG, a higher-level abstraction for parallelizing and distribut-
ing RL training loops, which decouples RL algorithms from
their execution through explicit distribution policies.

8 Conclusions

While DNN systems have mature dataflow abstractions that
improve execution performance, similar abstractions for RL
systems have been under-explored. We described MSRL, a
system that supports the flexible parallelization and distri-
bution of RL algorithms using fragmented dataflow graph.
Accounting for the heterogeneous nature of RL training loops,
MSRL separates the algorithm from its execution by using
distribution policies that allocate dataflow fragments to GPUs
and CPUs. Our experiments showed how distribution policies
generalize existing RL systems without overhead.
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A Supported Distribution Policies

Distribution policy Deployment Description

[DP-SingleLearnerCoarse]

replicate: (actor, env)
split: (learner)

e.g., Acme [18], Sebulba [16]

Gather

Actor

Replay  
buffer

GPU
Worker 1

Actor

Replay  
buffer

GPU

Environ
ment

CPU
Worker 2

Worker 3

Learner
Replay  
buffer

GPU CPU
Broadcast

Environ
ment

CPU

Actor

Replay  
buffer

GPU
Environ

ment

CPU
Worker 4

DP-SingleLearnerCoarse replicates the actor and environ-
ment fragments: W1–W3 co-locate 1 GPU fragment with
an actor for DNN policy inference and 1 CPU fragment
for the environment execution. A single GPU fragment
with a learner performs policy training (W4), gathering
batched training data, training the policy and broadcasting
updates.

[DP-SingeLearnerFine]

replicate: fused actor/env
split: learner

e.g., SEED RL [8]

Gather

Actor

Replay  
buffer

Environment

CPU
Worker 1

Actor

Replay  
buffer

Environment

CPU
Worker 2

Actor

Replay  
buffer

Environment

CPU
Worker 3

Learner
Replay  
buffer

GPU CPU

Scatter Worker 4

DP-SingleLearnerFine fuses the actor and environment
into 1 fragment (W1–W3) but handles policy inference at
the learner (W4), i.e., actors do not contain DNNs. W4
executes policy inference and training in 1 GPU fragment;
W1–3 only have CPU fragments. W4 scatters actions to
W1–W3 and gathers data for policy training.

[DP-MultiLearner]

replicate: fused actor/learner, env Learner

Actor
Replay  
buffer

GPU
Worker 1

Learner
Actor

Replay  
buffer

GPU
Worker 2

CPU

Worker 4Allreduce

Environ
ment

CPU

Learner

Actor
Replay  
buffer

GPU
Worker 3

Environ
ment

CPU

Environ
ment

Learner
Actor

Replay  
buffer

GPU CPU

Environ
ment

DP-MultiLearner performs data-parallel training with mul-
tiple learners, supporting fully decentralised MARL train-
ing [5,43,59,62]. DP-MultiLearner co-locates 2 fragments:
a GPU fragment that fuses the actor and learner, accelerat-
ing policy inference, training and replay buffer manage-
ment, and a CPU fragment for environment execution.

[DP-GPUOnly]

replicate: fused actor/learner/env Learner

Actor
EnvironmentGPU

Worker 1
CPU

Learner

Actor
GPU
Worker 2

CPU

Learner

Actor
GPU
Worker 4

CPU

Allreduce

Learner

Actor
EnvironmentGPU

Worker 1
CPU

Environment

Environment

DP-GPUOnly fuses the training loop into 1 GPU fragment.
To enable communication among GPU fragments, DP-
GPUOnly uses Allreduce operators compiled into the
computational graph with NCCL2 [39]. DP-GPUOnly is
a distributed implementation of the single-node systems
(e.g., WarpDrive [23]).

[DP-Environments]

replicate: fused actor/learner
split: env

e.g., MALib [61]

Worker 1
CPU

Learner

Actor
Replay  
buffer

GPU
Worker 3

CPU

Environ
ment 1

Environ
ment 2

Learner

Actor
Replay  
buffer

GPU
Worker 2

CPU

Learner

Actor
Replay  
buffer

GPU
Worker 4

CPU
GatherGather Scatter Scatter

DP-Environments has a dedicated worker for environment
execution. W1 has CPU fragments to execute environment
instances on multiple CPU cores; W2–W4 fuse the actor
and learner to accelerate policy inference and training. W1
gathers the inferred actions and scatters the states and
rewards.

[DP-Central]

replicate: fused actor/learner, env
split: param server/policy pool

Parameter 
serverPolicy pool

Worker 1
CPU

Learner

Actor
Replay  
buffer

GPU
Environ

ment

Worker 2
CPU

Learner

Actor
Replay  
buffer

GPU
Environ

ment

Worker 2
CPU

Learner

Actor
Replay  
buffer

GPU

Environ
ment

Worker 4
CPU

Scatter
GatherGather

Scatter

DP-Central supports a central policy pool [61] or param-
eter server [24] on a separate worker (W1). W2–W4 co-
locate GPU fragments for policy inference and training
and CPU fragments for environment execution.
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Abstract
Large tech companies are piling up a massive number of

GPUs in their server fleets to run diverse machine learning
(ML) workloads. However, these expensive devices often
suffer from significant underutilization. To tackle this issue,
GPU sharing techniques have been developed to enable mul-
tiple ML tasks to run on a single GPU. Nevertheless, our
analysis of Alibaba production traces reveals that allocating
partial GPUs can result in severe GPU fragmentation in large
clusters, leaving hundreds of GPUs unable to be allocated.
Existing resource packing algorithms fall short in addressing
this problem, as GPU sharing mandates a new scheduling
formulation beyond the classic bin packing.

In this paper, we propose a novel measure of fragmenta-
tion to statistically quantify the extent of GPU fragmentation
caused by different sources. Building upon this measure, we
propose to schedule GPU-sharing workloads towards the di-
rection of the steepest descent of fragmentation, an approach
we call Fragmentation Gradient Descent (FGD). Intuitively,
FGD packs tasks to minimize the growth of GPU fragmen-
tation, thereby achieving the maximum GPU allocation rate.
We have implemented FGD as a new scheduler in Kubernetes
and evaluated its performance using production traces on an
emulated cluster comprising more than 6,200 GPUs. Com-
pared to the existing packing-based schedulers, FGD reduces
unallocated GPUs by up to 49%, resulting in the utilization
of additional 290 GPUs.

1 Introduction

Graphics Processing Units (GPUs) are widely deployed in
production clusters to accelerate machine learning (ML) tasks
for a plethora of AI applications [14, 16, 17, 21, 31, 39]. Com-
pared to CPUs and other resources, GPUs are considerably
more expensive but often underutilized in production clusters,
with the reported utilization rates ranging from 25% to below
50% [16, 19, 22, 31].

The primary reason for low GPU utilization is that a large
number of ML tasks, mostly inference, cannot fully utilize

∗Equal contributions.
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Figure 1: The allocation of partial GPUs results in fragmenta-
tion, which can be addressed with packing.

the capacities of modern GPUs, which have seen exponential
performance improvements in recent years. This trend is ex-
pected to continue in the foreseeable future [36]. To address
this issue, GPU sharing techniques have been developed to
enable multiple ML tasks to safely run on a single GPU with
guaranteed isolation, where each task is allocated partial re-
sources by means of virtualization [9, 13, 27, 33, 35] or the
Multi-Instance-GPU (MIG) feature supported in NVIDIA’s
Ampere architecture [3].

However, simply enabling GPU sharing does not necessar-
ily lead to high utilization. In many cases, allocating partial
GPUs results in fragmentation, preventing the remaining GPU
resources from being allocated. Figure 1 illustrates this prob-
lem in a toy example. Consider a cluster of two nodes A and
B with ⟨9 CPUs, 1 GPU⟩ and ⟨6 CPUs, 1 GPU⟩, respectively.
There are two tasks A and B running on the two nodes, each
demanding ⟨6 CPUs, 0.75 GPU⟩ and ⟨2 CPUs, 0.25 GPU⟩,
respectively. Without GPU sharing, both tasks are allocated an
entire GPU even though they cannot fully utilize it (Figure 1,
left). This problem can be addressed by allocating partial
GPUs, using the GPU sharing technique (Figure 1, middle).
Now supposing another instance of task A arrives, it cannot
run on either node even though the cluster has sufficient ag-
gregate GPU resources (0.25+0.75 = 1 GPU).

GPU fragmentation has been widely observed in our pro-
duction clusters that support GPU sharing. Figure 2 shows a
7-day trace collected from a 1280-GPU cluster. On average,
the aggregate GPU allocations account for 77.6% of the total

USENIX Association 2023 USENIX Annual Technical Conference    995



0 24 48 72 96 120 144 168
Hours from the beginning

0

25

50

75

100
Pe

rc
en

ta
ge

GPU Occupation

GPU Allocation

GPU Utilization

GPU Frag Rate

Figure 2: A 7-day trace from a large GPU-sharing cluster.
GPU occupation measures the number of GPU devices that
are not fully idle; GPU allocation measures the total amount
of allocated GPU resources; GPU utilization refers to the pro-
portion of actual GPU resources used by tasks; GPU frag rate
is the percentage of unallocated GPU resources that become
unusable due to fragmentation (defined in §3.2).

capacity (orange dashed line). These allocations, many being
partial GPUs, are distributed across almost all GPU devices
(blue solid line), turning 21–42% of the unallocated GPU re-
sources into fragments (red dotted line) that cannot be utilized
by the current workload. In general, higher allocations result
in more severe fragmentation. In our operational experience,
complaints about scheduling failures usually surge in rush
hours, although the cluster still has sufficient aggregate idle
GPUs, indicating severe fragmentation.

An effective approach to addressing fragmentation is to
perform packing. Returning to the previous example, the
scheduler can instead pack the two original tasks to node A,
thereby leaving the entire node B to the new instance of task
A (Figure 1, right). A large body of work formulates workload
scheduling as a multi-dimensional bin packing problem, in
which tasks and nodes are respectively modeled as balls and
bins with sizes in multiple resource dimensions, and the goal
is to pack balls to the fewest number of bins. Many heuristics
have been proposed to schedule cluster workloads, such as
best-fit [11, 21, 24, 30], vector alignment scoring [8, 23, 24],
and “GPU Packing” [31, 33].

However, our experiments show that none of these heuris-
tics work well in scheduling GPU-sharing workloads (§6).
The fundamental reason, we believe, is that the problem is
intrinsically different from the classic bin packing when a
node has multiple GPUs. Consider two natural bin packing
formulations. The first is to model a server’s multiple GPUs as
one large device with the aggregate capacity. This formulation
pools together all unallocated GPUs, and the fragments on
individual GPUs become irrelevant, which is not the case in re-
ality. Alternatively, one can treat a server’s multiple GPUs as
different “resource dimensions”. Yet, unlike other resources
such as CPU and memory, these GPUs are not independent
but interchangeable for a task that can run on any of them,
mandating a new formulation beyond classic bin packing.

In this paper, we develop a novel fragmentation-aware
scheduling approach for GPU-sharing workloads. Central
to our approach is a new analytical framework that quanti-
fies statistically the degree of GPU fragmentation in a cluster.

Given a task, we identify the GPUs on each node that cannot
be used to run the task (e.g., lacking sufficient GPU or other
resources). These GPUs are fragmented from the view of that
task as none of their remaining resources can be utilized. Now,
consider the target workload, which consists of a set of tasks
that are of interest (e.g., ML inference and training). We quan-
tify the degree of GPU fragmentation as the expected number
of GPUs that cannot be allocated to a task which is randomly
sampled from the target workload. Intuitively, it measures the
expected GPU resources that cannot be utilized by the target
workload. We can further break down the fragmentation anal-
ysis into different causes, such as the node having insufficient
or stranded GPUs, or the mismatch between the workload and
the node spec. This analysis provides more insights for the
operator to reason about the cluster state (§3).

Based on the GPU fragmentation analysis, we propose a
simple, yet effective heuristic to schedule workloads towards
the direction of the steepest descent of fragmentation, which
we call Fragmentation Gradient Descent or FGD. For each
GPU task submitted, FGD chooses a node and the available
GPU(s) on it to run the task so that the growth of GPU frag-
mentation caused by this decision is minimized (§4). By doing
so, FGD can minimize GPU fragmentation, saving a large
amount of expensive resources for more workloads.

We have implemented FGD as a new scheduler in Kuber-
netes [1] (§5) and evaluated its performance with production
and synthesized workload traces on an emulated cluster con-
sisting of more than 1,200 nodes and 6,200 GPUs (§6). FGD
consistently outperforms existing packing-based scheduling
algorithms in various settings: it reduces the unallocated
GPUs by up to 49%, allowing 290 GPUs to be utilized in
a large production cluster. Our implementation, including the
scheduler and the emulator1, as well as the trace data2 used
in the evaluation, are available as open-source software.

2 Background and Motivation

In this section, we briefly introduce the GPU sharing tech-
nique and illustrate the resulted fragmentation problem
through production trace analysis. We discuss the unique
scheduling challenge brought by GPU sharing that invalidates
the classic bin packing formulation.

2.1 GPU Sharing

Underutilized GPUs. GPU underutilization has been widely
observed in production clusters that run diverse ML work-
loads. Many tech companies report the low GPU utilization
averaging between 25% to below 50% [16, 19, 22, 31], which
has become a thorny pain point in reducing the total cost of
ownership of large GPU clusters.

1https://github.com/hkust-adsl/kubernetes-scheduler-simulator
2https://github.com/alibaba/clusterdata
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There are multiple factors that contribute to the low GPU
utilization. Most importantly, thanks to the exponential im-
provement of GPU performance in recent years, many ML
tasks, especially inference, cannot saturate the compute ca-
pacity of a modern GPU. Taking the latest A100 GPU as
an example, the peak inference speed of a ResNet50 [15]
model reaches over 36k images per second [36], far exceed-
ing the usual throughput requirement of an object detec-
tion application. In fact, even for training tasks, increasing
evidences show that many of them cannot fully utilize a
GPU [5, 6, 28, 31, 33, 34, 37].

GPU Sharing. GPU sharing techniques have recently been
developed to enable multiple tasks to run on a single GPU
with guaranteed performance isolation, where each task is
allocated a partial GPU. In production systems, GPU sharing
can be implemented at three levels.

1) Framework-level: This approach adds new dynamic scal-
ing mechanisms and sharing primitives to the existing ML
frameworks (e.g., TensorFlow, PyTorch, JAX) to allocate each
task the exact amount of required GPU memory and compute
units [6, 33, 34, 37]. The benefit of this approach is that it
can achieve fine-grained sharing between tasks by leveraging
their semantics information (e.g., training accuracy and loss),
which is available to the framework. On the other hand, it
requires users to switch to the modified framework to enable
GPU sharing – not all users are willing to do so.

2) Device runtime-level: This approach uses the API re-
moting technique to implement GPU sharing and virtualiza-
tion [9,13,27,28,32]. It deploys a GPU manager on each host.
The manager intercepts compute- and memory-related run-
time APIs (e.g., cuLaunchKernel and cuMemAlloc in CUDA
Library) to keep track of the compute and memory resources
requested by each task. A task’s memory allocation request
is accepted only when the its allocation is within the spec-
ified limit. The manager also controls kernel scheduling to
enforce the specified allocation of compute capacity by time-
multiplexing the device’s compute units between tasks (e.g.,
a task with 0.1 GPUs is guaranteed to receive at least 10% of
GPU time). This approach requires no framework changes or
user cooperation.

3) Hardware-assisted: Starting with Ampere architecture,
NVIDIA GPUs support the Multi-Instance GPU (MIG) fea-
ture. MIG can partition a GPU into as many as seven separate
instances [3]. Compared with the software approaches, MIG
provides the strongest isolation guarantee as each GPU in-
stance has dedicated resources for compute, memory, and
memory bandwidth. On the downside, MIG only supports
resource sharing at a coarse granularity and is available ex-
clusively to A100, A30, and H100 GPUs at the moment.

Production Deployment in Our Clusters. At Alibaba, we
have developed our own GPU sharing solution based on
CUDA Runtime API interception and deployed it in produc-
tion clusters that run a mixture of training and inference tasks.

A task can have one or multiple instances, each running in
a container and requesting multiple resources such as CPUs,
memory, and GPUs. We observe the GPU requests to be ei-
ther a partial GPU or full GPU(s), but rarely the combination
of both (e.g., 1.5 or 2.3 GPUs). In our implementation, the
minimum GPU allocation unit is 0.01 GPUs, in which a task
instance is allocated 1% of the GPU memory and at least 1%
of the GPU time.3 Tasks and their instances are orchestrated
using a customized Kubernetes system [1] with many new
features tailored to the production needs. In the following dis-
cussions, unless otherwise specified, we do not differentiate
between tasks and instances as their meanings are usually
clear from the context.

2.2 The Prevalence of GPU Fragmentation
Operational Experience. GPU sharing greatly reduces the
number of allocated GPUs for a workload, allowing more
tasks to run in a cluster than before. However, as we consol-
idate more workloads, an increasing number of users com-
plained about the long task wait time or even scheduling
failures due to the timeout of pending tasks, although they
still have sufficient GPU quotas to spare. In many clusters,
the GPU allocation rate can reach 85–90% maximum, leaving
hundreds of GPUs unable to utilize. In some extreme cases,
pending tasks start to build up when the GPU allocation rate
reaches above 80%. All these indicate heavy fragmentation.

Trace Analysis. We perform trace analysis to confirm the
fragmentation problem, which occurs when a GPU has insuf-
ficient resources or becomes stranded as the host runs out of
the other resources, such as CPU and memory. We choose
a highly crowded ML cluster H consisting of 1.2k nodes
with over 6.2k GPUs and 107k CPU cores. After scheduling
over 7.6k tasks, the GPU (CPU) allocation ratio reaches 92%
(75%), which is among the highest in all clusters. At this point,
cluster H is fully packed and cannot accommodate new tasks
despite having a total of 500 GPUs unallocated, causing a
significant resource waste. Figure 3a depicts the distributions
of unallocated GPUs on each node and the requested GPUs
of each pending task. Around 92% of nodes have < 1 GPU
left unallocated (blue solid line), whilst 49% of the pending
tasks request ≥ 1 GPU (orange dashed line). Figure 3b gives
the boxen plot of the nodes’ unallocated CPUs and the tasks’
requested CPUs, grouped by their GPU resources. Among the
nodes with ≥ 1 unallocated GPU, over 75% have ≤ 10 CPUs
left (blue boxes), which are insufficient to allocate to most
tasks (orange boxes), leaving the unallocated GPUs stranded.

2.3 Inapplicable Bin Packing Formulation
While fragmentation is not a novel problem in cluster man-
agement, GPU fragmentation is noteworthy because it (1)

3In our system, a task instance can opportunistically use more GPU time
if the computing capacity of the said GPU is not exhausted by the other tasks.
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Figure 3: Illustration of GPU fragmentation in a fully packed
cluster H. (a) Most nodes have insufficient GPUs. (b) Nodes
with abundant GPUs are usually in short of CPUs.

inherently differs from other resource fragmentation problem
and (2) is aggravated by partial-GPU allocation (Figure 1).

GPU Fragmentation Cannot be Handled Similarly as
Other Resources. Fragmentation is a common problem
in resource allocation. Taking file allocation as an example,
when the disk has no enough contiguous space to store a file,
the fragmentation occurs [4], and the solution is to chunk the
file into blocks for non-contiguous allocation. However, GPU
allocation must be contiguous: Consider a task requesting one
full GPU, it is not possible to allocate it two partial GPUs
(e.g., 0.3 GPUs + 0.7 GPUs).

Partial-GPU Allocation Invalidates Bin Packing Formu-
lation. Bin packing is known effective to address the frag-
mentation problem [23,24]. In the standard formulation, tasks
and nodes are respectively modeled as balls and bins of sizes
in Rd , where d is the number of concerned resources, such
as CPU, memory, and GPU. The goal is to pack balls to as
fewest bins as possible. However, unless a node has a single
GPU, this formulation does not apply to GPU-sharing tasks,
which we illustrate through two formulation attempts.

Attempt-1: Treating Multiple GPUs as a Unified Log-
ical Device. This formulation pools together all the
available GPU resources of a node into a large log-
ical GPU, leading to a node resource vector such as
⟨16 CPUs,24 GiB memory,1.3 GPUs⟩. However, this formu-
lation is problematic as it ignores the allocation boundary of
physical GPUs, making it unable to differentiate the fragmen-
tation state on each individual device. For example, consider
a 2-GPU node with the remaining capacity of 0.4 GPUs and
0.9 GPUs. For a task that requests one full GPU, although
in total the node has 1.3 GPUs, neither of its two GPUs has
sufficient capacity to run the task, to which both GPUs are
fragmented.

Attempt-2: Treating Each GPU as an Independent Re-
source Dimension. An alternative formulation is to model
each GPU on a node as an independent resource dimen-
sion, just like CPU and memory. This formulation is also
problematic as GPUs are interchangeable as long as they
have sufficient capacity to run a task. Returning to the
previous example and assuming that the node has 16

CPU cores and 24 GiB memory available, its resource
vector is ⟨16 CPUs,24 GiB memory,0.4 GPUs,0.9 GPUs⟩.
For a task that requests 2 cores, 8 GiB memory, and
0.3 GPUs, it can run on the node with any of the
two GPUs. The task hence has two interchangeable de-
mand vectors ⟨2 CPUs,8 GiB memory,0.3 GPUs,0 GPUs⟩
or ⟨2 CPUs,8 GiB memory,0 GPUs,0.3 GPUs⟩. This invali-
dates the classic bin packing formulation as the balls are now
“deformable” and can transform to various sizes.

To summarize, we stress that the inapplicability of bin pack-
ing formulation stems from the contiguous GPU allocation
requirement and the partial-GPU allocation practice, in which
each GPU has its own allocation boundary (Attempt 1) but is
also interchangeable to one another (Attempt 2). Through ex-
tensive experiments in §6, we will show that none of the exist-
ing packing heuristics, including best-fit [11,21,24,30], vector
alignment scoring [8, 23, 24], and “GPU Packing” [31, 33],
work well in scheduling GPU sharing workload.

3 The Fragmentation Measure
“You keep using that word. I do not think it means what you
think it means.” — Inigo Montoya, The Princess Bride

While the term fragmentation has been frequently men-
tioned in the existing cluster scheduling works [8, 11, 29, 30,
33, 34, 39, 40], its formal definition and quantitative measure
remain unclear. In this section, we answer what fragmentation
is and how can it be measured. We start with a conventional
measure defined in absolute terms and discuss its ineffective-
ness (§3.1). We next present a new measure that statistically
quantifies the fragmentation degree in a cluster (§3.2). We
show in case studies that the new measure can help operators
better reason about the cluster state (§3.3).

3.1 Fragmentation in Absolute Terms
Basic Assumption. In general, whether a node has frag-
mented resources depends on the target workload. For exam-
ple, a node with 0.6 GPUs is considered fragmented by a task
that requests one full GPU, but not by the one that demands
0.5 GPUs. In this paper, we assume that the target workload,
which contains a set of tasks with popularity (e.g., number
of instances) following a certain distribution, is known to the
cluster. This is reasonable as production ML workloads con-
sist of a large number of recurring tasks [31]. We also assume
that each task can request either a partial GPU or full GPU(s),
but not both, as mentioned in §2.1.

An Absolute Fragmentation Measure. Although not for-
mally defined, it is commonly accepted that a node is frag-
mented if its remaining resources cannot be allocated to run
any tasks in the target workload. In this definition, fragmenta-
tion is measured in absolute terms: regardless of task schedul-
ing, the fragmented resources cannot be utilized anyway and
are inevitably wasted.
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Figure 4: Fragmentation definition in the example cluster with
nodes of various unallocated resources (squares) and tasks of
various requested resources (circles).

Figure 4a gives a pictorial illustration. For simplicity, we
only consider CPU and GPU resources in a two-dimensional
plane. A task is depicted as a circle (ball) with x- and y-
coordinates being the requested CPUs and GPUs, respectively.
Similarly, a node is depicted as a box (bin) with the two
coordinates being the unallocated CPUs and GPUs. In case
that a node has multiple GPUs, we map their unallocated
capacity (a vector) to a scalar number as follows. Let f be
the number of fully-unallocated GPUs and p the maximum
unallocated partial GPU. We map the vector of unallocated
GPUs to a scalar u = f + p.4 For example, a 4-GPU node
with an unallocated capacity of ⟨1,1,0.5,0.25⟩ is considered
having u = 2.5 unallocated GPUs. Under this mapping, a
node has sufficient GPUs to run a task that requests g GPUs
if and only if u≥ g, provided that the task requests either a
partial GPU or full GPU(s), i.e., g ∈ [0,1)∪Z+.

With nodes and tasks depicted in the resource plane, we
see that a node has sufficient GPUs and CPUs to run a task
if it is located above and on the right of the task (e.g., node
A and task B). We call this region the non-fragmentation
region of the task. Taking the union of the non-fragmentation
regions of all tasks gives the non-fragmentation region of the
target workload (the green area in Figure 4a). It encompasses
all tasks, with the “innermost” ones (e.g., tasks A, B, and C)
located on the region’s border which we call the skyline [38].
The area below the skyline is the fragmentation region, within

4The mapping is not unique. For example, alternatively one can map the
capacity vector to u = max{ f , p}, which serves the same purpose.
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Figure 5: Trace-driven emulations with two scheduling poli-
cies (details in §6.1). The x-axis is the cumulative GPU de-
mands of arrived tasks, divided by the total cluster capacity.
Fragmentation in absolute terms (lower-right corner) stays at
a low level (< 5%) throughout the allocation of arrival work-
loads, failing to provide useful feedback to the scheduler.

which a node cannot run any task due to insufficient resources
and is thus fragmented (e.g., nodes B and C).

The Inefficiency of the Absolute Measure. Under the abso-
lute measure, resource fragmentation is identified in a rather
biased manner. Whether a node is fragmented solely depends
on if it has sufficient resources to run a task that is located
on the skyline (i.e., the skyline task), whereas the other tasks
are irrelevant. Yet, skyline tasks can rarely represent the en-
tire workload. Compared with the other tasks, they request
fewer CPUs and/or GPUs, and usually have a small popula-
tion. In our clusters, only 0.06% of instances belong to the
skyline tasks. On average, a skyline task requests ⟨3.2 CPUs,
0.07 GPUs⟩, as opposed to the average demand of ⟨9.4 CPUs,
0.9 GPUs⟩. As a result, even if a node has a small amount
of resources that cannot be allocated to run the majority of
the tasks in the target workload, it may still be considered
non-fragmented as long as it can run a tiny skyline task.

For the reasons above, the absolute fragmentation measure
cannot be used as a good metric to guide task scheduling. To
see this, we run trace-driven emulations with two different
scheduling policies (details in §6.1) and depict in Figure 5
the fragmented and allocated GPUs in percentage of the total
capacity. The fragmentation measure stays at a low level
(< 5%) throughout the process regardless of the scheduling
logic and its placement decisions, failing to provide useful
feedback to the scheduler. Increased fragmentation is only
observed when the cluster starts crowded, by which it is too
late for the scheduler to take actions. In fact, even when the
cluster becomes fully packed (i.e., the allocation curve flattens
when the cumulative GPU demands reach over 100% of the
cluster capacity), over 50% of unallocated GPUs are still
deemed non-fragmented under the absolute measure.

3.2 A Statistical Fragmentation Measure

We believe a good fragmentation measure should not be de-
fined against a small subset of tasks, but a joint calibration
of the entire workload. We hence use a statistical measure
to quantify the degree of fragmentation. Formally, let M be
the target workload in which each task m has popularity pm.
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Without loss of generality, we assume normalized popular-
ity where ∑m∈M pm = 1. Given a node n, Fn(M) denotes the
GPU fragmentation measured by workload M, and Fn(m) is
the fragmentation measured by a certain task m in the work-
load. We define the node-level measure as the weighted sum
of the task-level, i.e.,

Fn(M) = ∑
m∈M

pmFn(m). (1)

One can interpret Eqn. (1) as the expected fragmentation
measured by a task that is randomly sampled from the target
workload. We next describe how Fn(m) can be computed.

Pictorial Interpretation. From the view of a task, it con-
siders a GPU of a node being fragmented if it cannot be
allocated to the task. As a pictorial interpretation, we refer
to Figure 4b and consider node A. In case that the node has
multiple GPUs, we map their unallocated capacity (a vector)
to a scalar representation following the approach described
in §3.1. We partition the resource plane into four quadrants
with node A at the origin. The node has insufficient resources
to run any of the tasks that are located in Quadrants I, II, and
IV, among which those in Q-I are in short of CPUs and GPUs
(e.g., task D), Q-II in short of GPUs (e.g., task A), and Q-IV
in short of CPUs (e.g., task C). From the point of these tasks,
the unallocated GPUs are all fragmented, as they either have
insufficient capacity (Q-I and Q-II) or become stranded due
to the lack of CPU resource on the node (Q-IV).

Things become a bit more complex when it comes to Q-III.
While the node has sufficient resources to run a task in that
quadrant, not every unallocated GPU has enough capacity. For
example, on a 4-GPU node with an unallocated capacity of
⟨1,1,0.5,0.25⟩, the two partial GPUs cannot be assigned to a
task that requests 2 GPU, even though the node has sufficient
GPU resources. In this case, the two partial GPUs should be
counted as being fragmented for the task. More generally,
given a task in Q-III, we check each unallocated GPU, and
those with insufficient capacity are considered fragmented.

In addition to the four quadrants, tasks can also locate
on the x-axis if they request no GPU resource (e.g., task
E). For these tasks, all the unallocated GPUs are considered
fragmented as none of them can be utilized.

Formal Description. We now give a formal description of
the computation of Fn(m), where we consider only GPU and
CPU resources. That being said, the fragmentation measure
can be easily generalized to a high-dimensional space with
more resources such as memory and network.

We start with a few notations. Given a node n with Gn
GPUs, denote by Rn = ⟨RCPU

n ,RGPU
n,1 , · · · ,RGPU

n,Gn
⟩ the unallo-

cated resource vector, where 0 ≤ RGPU
n,g ≤ 1 for all GPU g.

Let RGPU
n be the scalar representation of the unallocated GPU

vector, which is defined as the number of fully unallocated
GPUs plus the maximum partial GPU (u = f + p in §3.1),
i.e., RGPU

n = ∑g⌊RGPU
n,g ⌋+maxg(RGPU

n,g −⌊RGPU
n,g ⌋). For each

task m, denote by Dm = ⟨DCPU
m ,DGPU

m ⟩ the resource demand
vector, where DGPU

m ∈ [0,1)∪Z+. We compute Fn(m) in the
following three cases.

Case-1 (Q-I, Q-II, and Q-IV): Task m cannot run on node n
due to the lack of CPU or GPU resources, i.e., DCPU

m > RCPU
n

or DGPU
m > RGPU

n . In this case, all the unallocated GPUs are
considered as fragments by task m. We have

Fn(m) = ∑
1≤g≤Gn

RGPU
n,g . (2)

Case-2 (Q-III): Task m can run on node m and has a GPU
request, i.e., DCPU

m ≤RCPU
n and 0<DGPU

m ≤RGPU
n . In this case,

we check each unallocated GPU and those with insufficient
capacity are identified as fragment in the view of task m. Note
that if m requests one or more GPUs, all partial GPUs cannot
be allocated and are hence fragmented. We have

Fn(m) = ∑
1≤g≤Gn

RGPU
n,g 1(RGPU

n,g < min{DGPU
m ,1}), (3)

where 1(·) is an indicator function that returns 1 if the given
condition holds, and 0 otherwise.

Case-3 (x-axis): Task m requests no GPU, i.e., DGPU
m = 0.

In this case, all the unallocated GPUs are deemed fragments
by task m, as none of them can be utilized. We have Fn(m)
computed the same way as in Eqn. (2).

In essence, Fn(m) measures the amount of available GPUs
on node n that cannot be allocated to task m. Taking the ex-
pectation of Fn(m) with respect to the popularity distribution
of tasks (see Eqn. (1)), we obtain Fn(M), which measures the
unallocated GPU resources on node n that are expected to be
fragmented (hence wasted) from the viewpoints of the entire
workload M.

Fragmentation Rate. Once Fn(M) is obtained, we compute
the node’s fragmentation rate as the ratio between the amount
of fragmented GPUs and the unallocated GPUs, i.e.,

fn(M) =
Fn(M)

∑1≤g≤Gn RGPU
n,g

. (4)

Intuitively, Eqn. (4) measures the severity of GPU fragmenta-
tion on a node.

Cluster-Level Fragmentation Measure. Given a cluster N
and the target workload M, the cluster-level GPU fragmenta-
tion, denoted by FN(M), is the aggregate fragmentation of all
nodes n in N, i.e.,

FN(M) = ∑
n∈N

Fn(M). (5)

Normalizing FN(M) by the unallocated GPUs in the cluster
gives the fragmentation rate of the cluster, i.e.,

fN(M) =
FN(M)

∑n∈N ∑1≤g≤Gn RGPU
n,g

. (6)
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(d) Stranded frag rate among nodes.

Figure 6: Distribution of node fragmentation and CPU-to-
GPU ratio of node and task in the fully packed cluster H.

3.3 Fragmentation Analysis in Action

The fragmentation measure described above can help opera-
tors better reason about the cluster state. To demonstrate its
practical utility, we perform fragmentation analysis in various
production clusters.

High Fragmentation Blocks Further Allocation. We reex-
amine a production cluster H previously described in §2.2. For
each node, we measure its GPU fragmentation rate (Eqn. (4))
and depict the distribution in Figure 6a (red dash-dotted line).
We observe that 25% of the nodes have GPUs fully allocated
and are free of fragmentation, while the other 75% nodes
measure over 99% fragmentation rate. This explains why the
cluster cannot run any tasks even if it still has a capacity of
500 unallocated GPUs.

Breakdown Analysis of the Fragmentation Causes. Using
the quadrant interpretation descried in §3.2, we can break
down the fragmentation of a node into different causes: (1)
having insufficient CPUs and GPUs to run tasks in Q-I (Fig-
ure 4b); (2) having insufficient GPUs to run tasks in Q-II,
some GPU-sharing tasks in Q-III, and tasks that request dif-
ferent types of GPUs (not shown in Figure 4b); (3) having
insufficient CPUs to run tasks in Q-IV (stranded GPUs); (4)
running non-GPU tasks (x-axis) on a GPU node.

Figure 6a attributes the fragmentation rate to different
causes and depicts their distributions. We see that the high
fragmentation is primarily caused by the node lacking suffi-
cient CPU and GPU resources (green dashed line), followed
by lacking GPUs only (orange dotted line). This suggests
that in cluster H, the allocation of CPUs and GPUs are rel-
atively balanced. But still, a small number of nodes (4.6%)
attribute stranded GPUs as the dominant factor (over 80%) of
fragmentation (blue solid line).

Impact of CPU-to-GPU Ratio. In our analysis, we are in-

terested in knowing which nodes are more likely to become
fragmented and find the CPU-to-GPU ratio a good indicator.
Figure 6b compares the CPU-to-GPU ratio of the node specs
and the task requests. On one hand, 65% nodes (tasks) have
(request) ≤ 16 CPUs per GPU, for which it is a good match
between the node specs and workload demands. On the other
hand, the cluster workload also contains 13% non-GPU tasks
(with an infinite CPU-to-GPU ratio), and they account for
23% of all CPU requests. The existence of non-GPU tasks
renders nodes with low CPU-to-GPU ratios more likely to
become fragmented, especially with stranded GPUs.

Figure 6c correlates the fragmentation rate with the node’s
CPU-to-GPU ratio. Among the nodes with CPU-to-GPU ratio
≤ 16, 80% of them measure high fragmentation rate over 98%
(dark red lines near the bottom). This proportion drops to only
47% when it comes to the nodes with 52 CPUs per GPU (light
blue lines in the center). As for the fragmentation caused by
stranded GPUs, Figure 6d shows that they are more commonly
observed on the low-CPU nodes (e.g., 8 or 12 CPUs per GPU).
We therefore recommend adding more high-CPU nodes to the
cluster for reduced fragmentation and improved utilization.

Fragmentation in a Less-Crowded Cluster. Fragmentation
is not a unique problem to fully packed clusters. Referring
back to Figure 2, we measured the the cluster-wide fragmen-
tation rate (Eqn. (5)) between 21% and 42% in a 1280-GPU
cluster in a normal (off-peak) period with 77.6% average GPU
allocation rate. Breakdown analysis further shows that 60%
of the fragmentation was caused by GPU shortage. This high-
lights the importance of reducing fragmentation by packing
existing GPU tasks, even in periods where the cluster is less
crowded. Additionally, non-GPU tasks contributed only 13%
to fragmentation in this cluster.

Running CPU Workloads in GPU Clusters. Our fragmen-
tation analysis has also identified a pathological case. We
have observed in a large cluster B consisting of 6.4k GPUs
and 750k CPU cores, there were 84% of tasks requesting no
GPU, resulting in many pending GPU tasks when the GPU
and CPU allocation ratios reached only 80% and 86%, respec-
tively. This led to the waste of 1.2k GPUs, with 95% of them
considered being stranded. The main cause of this issue was
the lack of CPU reservation on GPU nodes when scheduling
non-GPU tasks. To address this problem, we recommend mi-
grating non-GPU tasks to CPU nodes or even CPU clusters
in order to decrease fragmentation and improve resource uti-
lization. However, implementing this solution requires coor-
dination and collaboration in areas such as scheduling, quota
design, admission control, and capacity planning.

4 Fragmentation Gradient Descent

The fragmentation measure not only helps operators reason
about the cluster state, but can also be used to guide task
scheduling. In this section, we present the Fragmentation Gra-
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dient Descent (FGD) algorithm that schedules tasks towards
the direction of the steepest descent of fragmentation (§4.2),
thereby achieving the maximum GPU allocation rate. We start
with a description of the scheduling problem (§4.1).

4.1 Online Task Scheduling

We consider a GPU cluster managed by a container orchestra-
tion system such as Kubernetes [1] and Borg [30], in which
tasks are submitted as pods and maintained in a queue. In its
simplest form, tasks are scheduled in a first-come-first-served
(FCFS) manner. For each task pod, the scheduler finds the
best node and, if necessary, GPU(s) for it to run on. If no node
can be assigned, the pod remains unscheduled and is pend-
ing for another scheduling attempt (e.g., placed to the end of
the queue after a certain timeout). This formulates an online
scheduling problem, in which tasks are revealed sequentially
to the scheduler for placement decision making.

Fragmentation as a Metric. Each time a pod is assigned to
a node, the remaining resources decrease, moving the node
closer to the origin in the resource plane (Figure 4b). As a
result, the fragmentation region (Q-I, Q-II, and Q-IV) expands
and the fragmentation rate grows. Figure 7a depicts the grow-
ing fragmentation rate as the arriving tasks are scheduled
under different policies in our trace-driven emulations (details
in §6.1). Compared with the absolute measure (§3.1), the frag-
mentation rate is more sensitive to the placement decision and
can be used as an indicator of the scheduling quality: higher
fragmentation rate suggests a poorer scheduling decision.

Unlike the fragmentation rate, the fragmentation amount
has no clear trend of growing or decreasing, as shown in Fig-
ure 7b. This is because by Eqn. (5), it is the product of the
fragmentation rate and the unallocated GPUs – whilst the for-
mer grows as more tasks are scheduled, the latter decreases.
Also note that the fragmentation starts with 13% of the total
GPU capacity – all attributed to non-GPU tasks – but ends
up at different degrees under different policies when the clus-
ter is fully packed. At that point, all unallocated GPUs are
fragmented (100% fragmentation rate in Figure 7a).

4.2 FGD Algorithm

Key Insight. From the previous discussions, we see that an
effective approach to minimizing fragmentation is to suppress
the growth of fragmentation rate as much as possible. This
can be achieved by scheduling tasks towards the steepest
descent of fragmentation, a heuristic called Fragmentation
Gradient Descent or FGD.

Algorithm Description. Algorithm 1 formalizes the descrip-
tion of FGD scheduling. Given a task (pod) to schedule, the
scheduler first filters out all the unavailable nodes with insuf-
ficient resources or unsatisfied placement constraints (lines
3–4), such as the lack of requested GPU types. The scheduler
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(b) Percentage of fragmented GPUs to total resources under our measure.
It reveals the differences between various strategies from the early stage.

Figure 7: FGD pursues the lowest fragmentation among vari-
ous policies in scheduling production workloads (more results
under the same experiment settings are shown in Figure 9).

then hypothetically assigns the task to each node and calcu-
lates the increment (can be negative) of fragmentation that
would be caused by each assignment. In case a task requests
a partial GPU, the hypothetical assignment needs to try each
GPU as well (line 6). Note that the hypothetical assignment
can be performed in parallel for acceleration (lines 2–7). The
scheduler finally assigns the task to the node (and the GPU)
that causes the minimum increment of fragmentation (line 9).

Complexity and Scalability. FGD has a low computational
complexity and scales to a large cluster. For a cluster with
N nodes, the score of each node can be evaluated in paral-
lel (Algorithm 1 line 2) and the scheduler simply selects the
minimum. Besides, the scale of M is also limited since it
only represents the number of distinct task resource require-
ments (e.g., 80 among 7.6k tasks). In our evaluation (§6), each
scheduling decision can be made in hundreds of milliseconds
on a cluster of N = 1.2k nodes.

A Running Example. To better illustrate the scheduling
process of FGD, we refer to Figure 8 for a running exam-
ple. Consider a node with ⟨0.5,1⟩ unallocated GPUs. The
target workload has three tasks with equal popularity, each
requesting 0.3 GPUs (task-A), 0.5 GPUs (task-B) , and 0.7
GPUs (task-C). Originally, only GPU-A is considered frag-
mented (by task-C only). It thus measures the fragmentation
of 0.5× 1/3 = 1/6 GPUs. Assume that task-A arrives first.
Assigning it to GPU-A increases the fragmentation to 0.2
GPUs whereas assigning it to GPU-B results in no increase.
FGD hence assigns task-A to GPU-B, leaving the node with
⟨0.5,0.7⟩ unallocated GPUs. Next for task-B, FGD assigns it
to GPU-A, reducing the fragmentation to 0. In comparison,
assigning it to GPU-B would increase the fragmentation by
0.2 GPUs. Finally for task-C, it has no choice but to run on
GPU-B, the only GPU with the sufficient capacity.
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Figure 8: A running example of FGD scheduling. The target
workload contains three tasks with equal popularity.

Algorithm 1: Task scheduling of FGD
Input :Cluster N, incoming task m, target workload M
Output :Assigned node n∗

1 Initialize node score set S ←∅, and output n∗←∅.
2 parallel for node n ∈ N do
3 if Insufficient resources ∥ constraints not met then
4 Return ▷ Filter out unavailable nodes

5 n−← AssignTaskToNode(m,n) ▷ Hypothetically
6 ∆← Fn−(M)−Fn(M) ▷ Fragmentation increment
7 S ← S ∪ (n,∆)
8 if S ̸=∅ then
9 n∗← argminn∈S ∆ ▷ pick the node with the least ∆.

As FGD considers both the resource availability and task
distribution, it exhibits distinct behavior compared to other
scheduling algorithms. Back to the provided example, for task-
A scheduling, the best-fit (and similar bin packing policies)
would prioritize GPU-A (0.5 GPUs idle) over GPU-B (1 GPU
idle), whereas for task-B scheduling, the worst-fit (and other
load-balancing policies) would choose GPU-B (0.7 GPUs
idle) over GPU-A (0.5 GPUs idle). These policy preferences
diverge from the scheduling choices made by FGD.

5 System Implementation

We have implemented a prototype scheduling system on top
of Kubernetes v1.25.0 [1] in over 10k lines of Go codes.
Our system consists of two main components: a standalone
scheduler and an event-driven emulator.

A Standalone Scheduler. Kubernetes provides a pluggable
architecture called the scheduling framework [2] for devel-
opers to implement a customized scheduler. Following this
standard approach, we have implemented FGD and many
other scheduling policies as individual score plugins. The
scheduler listens for task creation events from the Kubernetes
API server and maintains a queue to cache submitted tasks
which are scheduled on a first-come-first-served basis.

Also, to enable fine-grained GPU allocation, which is not
supported by native Kubernetes, we have implemented a GPU-
sharing plugin to manage GPU resources. It filters out nodes
with insufficient GPUs or mismatched GPU types, assigns
tasks to the node with the highest scheduling score, and keeps
track of the allocatable GPU resources on each node.

Event-Driven Emulator. The event-driven emulator inter-

acts with the API server to manage the creation and deletion
of nodes and tasks. It supports two modes: high-fidelity sim-
ulation, which can receive production traces as input and
simulate the scheduling process in a large cluster consisting
of tens of thousands of GPUs within a few hours; and real
deployment, which can take over a production cluster with
valid certificates and create task pods on real nodes. The goal
of our system is to study the packing efficiency and resource
fragmentation of different scheduling policies, which are crit-
ical in large clusters. Although it is not possible to perform
experiments on real clusters with thousands of nodes, we
use the high-fidelity simulation mode in our evaluation. This
mode uses real traces as input and simulates task placements
and resource allocations based on the scheduling logic, which
yields the same scheduling results as real deployment.

6 Evaluation

In this section, we conduct extensive experiments to demon-
strate the effectiveness of our scheduling policy FGD. We first
compare FGD with several state-of-the-art mechanisms in
scheduling production workloads (§6.2). Further, we examine
the generality of FGD in various scenarios, covering a variety
of traces featured by GPU-sharing (§6.3), multi-GPU (§6.4),
GPU-type-constrained (§6.5), and non-GPU tasks (§6.6).

6.1 Methodology
Baselines. We compare FGD with five state-of-the-art heuris-
tic policies for scheduling GPU workloads:

1. Best-fit (BestFit) [11,21,24] assigns tasks to the node with
the least remaining resources, computed as the weighted
sum of all resource dimensions.

2. Dot-product (DotProd) [8, 23, 24] allocates tasks to the
node with the smallest dot-product value between the
node’s remaining resources and the task demands.

3. GPU Packing (Packing) [31] prioritizes task assignment
to occupied GPUs, followed by idle GPUs on occupied
nodes, and finally to fully idle nodes. The intuition is to
reserve available resources for multi-GPUs tasks.

4. GPU Clustering (Clustering) [33] packs the tasks of the
same GPU request together (GPU-sharing tasks are packed
together). It avoids heterogeneous distribution of task re-
source requirements on the same node.

5. Random-fit (Random) distributes the task randomly to any
node that meets the requirements for load balancing.

Since most of the policies above provide no native sup-
port of GPU-sharing workloads, we made some simple exten-
sions as follows: 1) GPU resources of multi-GPU nodes are
summed up as one dimension; 2) GPU-sharing tasks sched-
uled to a node are placed on the available GPU with the least
remaining resources (i.e., BestFit); 3) multi-resource vectors
are normalized by the maximum node capacity in the cluster.
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GPU Request per Task 0 (0,1) 1 2 4 8

Task Population (%) 13.3 37.8 48.0 0.2 0.2 0.5
Total GPU Reqs. (%) 0 28.5 64.2 0.5 1.0 5.8

Table 1: Distribution of tasks in the traces of cluster H.

Monte-Carlo Workload Inflation and Metrics. To assess
the cluster’s ability to accommodate workload under a given
scheduling policy, we employ the Monte-Carlo workload in-
flation approach [29]. Specifically, we repeatedly submit tasks
to the cluster for scheduling until they no longer fit. The tasks
are randomly sampled from the traces with replacement [12],
along with their resource requests and scheduling constraints.
We repeatedly conduct each experiment 10 times and report
the average and standard deviation of the key metric—the per-
centage of unallocated GPUs in the cluster when cumulative
GPU requests reach 100% of the cluster capacity5.

6.2 Allocation of Original Production Traces

To evaluate the performance of different scheduling policies,
we emulate the scheduling of over 8k tasks on the heteroge-
neous cluster H (§2.2) with 6.2k GPUs. As shown in Table 1,
the majority tasks are the 1-GPU and GPU-sharing ones. De-
spite the small population of 8-GPU tasks, they still occupy a
non-negligible portion in terms of requested GPUs (5.8%).

FGD Saves More Unallocatable GPUs. Figure 9a illus-
trates how the unallocated GPUs in the cluster decrease as
tasks arrive under different scheduling policies. Ideally, the
arrived tasks should be scheduled successfully until all GPUs
are allocated (gray dotted line). However, in practice, the frag-
mentation rate also increases with the allocation of arrived
tasks (Figure 7a). After a certain point when the fragmentation
rate reaches 100%, all unallocated GPUs become fragmented
and the allocation rate plateaus at a certain level, depending
on the used scheduling policy (e.g., DotProd at 90%). Com-
pared to classic scheduling policies, FGD achieves the highest
allocation rate and reduces wasted GPUs by 33–49%, which
translates to the additional allocation of 150–290 GPUs.

FGD Occupies Fewer Nodes in Scheduling. Figure 9b
shows how the number of nodes that have at least one task
running (occupied nodes) grows during the scheduling pro-
cess under different policies. We observe that FGD packs
tasks onto nodes whenever possible, leading to the fewest
occupied nodes among all policies. Especially in early stages
when the GPU allocation rate is 20%, FGD requires 55–70%
fewer nodes to host all the tasks compared to other policies.
As a result, FGD can enable significant savings in energy
consumption (on premises) or operational cost (on clouds).

FGD Schedules More GPU-Sharing and One-GPU Tasks.

5Although a slight decrease in unallocated GPUs may still occur thereafter
(thanks to few tiny tasks), the cluster is oversubscribed and rejects the majority
of incoming tasks; this is not a desirable state to be considered in our metric.
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(d) The breakdown of GPU fragmentation into three causes.

Figure 9: Performance comparison of FGD and various
scheduling policies. FGD outperforms all baselines with
fewer unallocated GPUs and failed tasks.

Figure 9c depicts the distribution of GPU requests of unsched-
uled tasks under different policies when the cluster is almost
full (i.e., the cumulative GPU requests of arrived tasks reach
96% of the cluster capacity). Except for Random, all policies
schedule multi-GPUs tasks well. Compared to classic poli-
cies, FGD schedules up to 5.9× GPU-sharing tasks and 6.6×
one-GPU tasks while reserving multi-GPU slots.

Early Detection of Fragmentation. Being able to detect
fragmentation early on is the key to improving the GPU al-
location rate. Referring back to Figure 7a, we see that FGD
consistently achieves the lowest fragmentation rate among all
policies, indicating better scheduling quality. As tasks arrives,
the advantage of FGD becomes larger. When the cumulative
requests grow to 90% of the total capacity, although most poli-
cies can still successfully schedule tasks, FGD outperforms
alternative policies with 24–44% lower fragmentation rate.
Figure 9d further decomposes the fragmented GPUs gener-
ated by each scheduling policy. It shows that < 10% of the
fragmented GPUs by FGD come from stranded resources,
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Figure 10: Distribution of resource requests of GPU-sharing
tasks in cluster H.
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Figure 11: Scheduling results when the traces contain a vary-
ing number of GPU-sharing tasks. Y-axis shows the percent-
age of unallocated GPUs when the overall GPU requests of
the arrived tasks reach 100% of the cluster’s GPU capacity
(same for the following figures).

which is 63–79% fewer than other policies. This confirms that
reducing the amount of stranded resources provides better
packing efficiency, which is in line with Borg’s insights [30].

6.3 Allocation of More GPU-Sharing Tasks

GPU-sharing techniques enable finer-grained resource allo-
cation. For GPU-sharing tasks, their resource requests are
typically based on the actual usage of model execution. Fig-
ure 10 depicts the CDF of resource requests of GPU-sharing
tasks. We observe that around 35% of GPU-sharing tasks re-
quest 0.8 GPUs, while no more than 5% tasks request less than
0.2 GPUs. This indicates that fractional GPUs (i.e., GPUs
with partial resources allocated), after scheduling 0.8-GPU
tasks, will mostly become fragmented. Nonetheless, there
are still many packing combinations of tasks that can ef-
fectively maximize the use of shared GPUs. For example,
0.32-GPU tasks and 0.65-GPU tasks account for nearly 10%
tasks, respectively—they can be placed together to reduce
fragmentation.

FGD Tailors Resources for GPU-Sharing Tasks. To eval-
uate the impact of GPU-sharing tasks on scheduling, we con-
struct different experimental settings based on production
traces (§6.2), increasing the proportion of GPU-sharing tasks
while keeping their resource requests in line with the original
distribution. Fragmented GPUs increase as the proportion
of GPU-sharing tasks rises (Figure 11). FGD considers the
chances that remaining resources after packing can be utilized
and tailors proper resources for subsequent tasks (Figure 8). It
outperforms the other policies in all cases; even when the clus-
ter has only GPU-sharing tasks, FGD reduces the unallocated
resources of 125–290 GPUs.
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Figure 12: Various proportions of multi-GPU tasks.
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Figure 13: Proportions of task with GPU-type constraint.

6.4 Allocation of More Multi-GPUs Tasks

To better understand the scheduling impact of multi-GPUs
tasks, we artificially adds more of them to the input workload,
increasing their GPU requests from 20% to 50% of the overall
demands. Figure 12 shows the scheduling results given by
different policies. We observe that all policies except Random
perform well when the workloads contain more multi-GPUs
tasks. The reasons are two-fold: (1) As the population of
multi-GPUs tasks increases, the scheduling impact caused
by GPU-sharing tasks becomes less significant, making the
classic multi-resource bin packing algorithms more effective.
(2) Reserving multi-GPUs slot is desirable due to the presence
of multi-GPU tasks. Compared to other scheduling policies,
FGD avoids stranded resources and judiciously reserves GPU
cards on nodes, reducing unallocated GPUs by 26–45% even
when the multi-GPU tasks account for 50% of GPU requests.

6.5 Allocation of Tasks with GPU Constraints

In previous experiments, we have mainly considered fragmen-
tation caused by mismatches of resources. Yet, production
tasks also have placement constraints of desired GPU type.
They typically request high-end GPUs for better performance;
models are sometimes optimized for a specific generation of
GPU. In our clusters, around 33% of GPU tasks have specified
desired GPU types, while the rest can run on any GPUs. Het-
erogeneous GPUs in a cluster are often unevenly distributed,
posing a challenge to resource scheduling.

Figure 13 shows the performance of different policies with
varying numbers of tasks that specify GPU-type constraints.
Classic heuristic policies only consider the alignment of re-
source demands, which is likely to cause severe fragmentation.
In comparison, FGD reduces 32–40% of fragmented GPUs
when tasks with GPU-type constraints account for 33% of the
total GPU requests. FGD selectively reserves popular GPUs
to avoid fragmentation caused by mismatches of GPU types.

USENIX Association 2023 USENIX Annual Technical Conference    1005



5% 10% 20% 25%
Proportion of non-GPU workloads in terms of task number

0

5

10

15

20

Un
al

lo
ca

te
d 

GP
U 

(%
)

5.0% 4.8% 5.2%
6.8%

FGD
BestFit

Packing
Clustering

DotProd
Random

Figure 14: Various proportions of non-GPU tasks.

6.6 Allocation of More Non-GPU Tasks
In GPU clusters, there are often many tasks that request no
GPU but other resources, such as CPU, memory, and disk. Ex-
amples include parameter servers and data processing tasks.
These non-GPU tasks are usually not resource-intensive. Yet,
if scheduled unwisely, they may cause some GPUs to become
stranded. To evaluate their impact to scheduling, we vary the
number of non-GPU tasks and compare the performance of
different scheduling policies in Figure 14. FGD consistently
maintains the unallocated GPUs at a low level, demonstrat-
ing its strong capability of avoiding stranded resources when
making scheduling decisions. In fact, as the proportion of
non-GPU tasks increases from 5% to 20%, fragmented GPUs
caused by FGD increase by < 3% while other policies in-
crease fragmentation by 18–45%.

7 Discussion

Scheduler Independence of Fragmentation Metrics. Our
proposed fragmentation metric quantifies how fragmented
the current cluster is considering only the next incoming task.
This narrow focus ensures scheduler independence. Specifi-
cally, if we consider two or more incoming tasks, each node
would need to determine the likelihood that the first task
has consumed its resources when assessing the fragmenta-
tion measured by the second task. This determination would
involve the scheduling policy. In contrast, our one-step frag-
mentation metric determines if a node is fragmented based
solely on whether its remaining resources can be fully utilized
by the next task, agnostic to the scheduler or other nodes.

Combining with Other Heuristics. Guided by the one-
step fragmentation metric, schedulers may perform subop-
timally in early stages when the cluster has abundant re-
sources and little fragmentation is observed. However, the
fragmentation-guided scheduling heuristic can be combined
with other heuristics to navigate this initial period. For exam-
ple, the scheduler could fall back to a best-fit approach if no
increase in fragmentation is detected.

8 Related Work

Resource Fragmentation. Many research works address
resource fragmentation in clusters [8,29,30,39,40]. For exam-
ple, Tetris [8] shows that fair schedulers usually result in frag-

mented resources and delayed job completion, and proposes to
combine them with an alignment-based policy. Borg [30] uses
a hybrid scoring model to reduce the amount of stranded re-
sources. HiveD [39] eliminates external fragmentation across
multiple tenants by constructing virtual clusters. However,
these works do not give a formal definition of fragmentation.
We propose a statistical measure to quantify the degree of
resource fragmentation and use it to guide task scheduling.

Multi-Resource Bin Packing. Resource allocation is of-
ten formulated as a multi-dimensional bin packing problem,
which has been extensively studied [24]. Many heuristic poli-
cies, such as best-fit, vector alignment scoring (dot-product),
are proven effective with high packing efficiency for schedul-
ing big data analytics workloads [8] and virtual machines
consolidation [11, 23]. However, it can be observed from
our experiments that they do not work well in GPU sharing
scenarios. Our work advocates resource allocation from the
perspective of mitigating fragmentation, which can further
reduce wasted resources.

GPU Cluster Scheduling. Recent works on GPU schedul-
ing concern various objectives, such as cluster utilization [21,
32–34,37,40], job completion time [10,18,25,26], job perfor-
mance [22], and fairness [7, 20]. Although some research ef-
forts (e.g., Gandiva [33], Salus [37], AntMan [34], TGS [32])
exploit GPU sharing techniques to improve resource utiliza-
tion, they do not address GPU fragmentation. Our work com-
plements them by reducing fragmentation and improving the
GPU allocation rate.

9 Conclusion

In this paper, we have identified the significant fragmentation
problem caused by GPU-sharing workloads that are increas-
ingly deployed in production clusters. To address this prob-
lem, we have proposed a novel metric to statistically quantify
the degree of GPU fragmentation caused by various sources.
Based on this measure, we have proposed a simple, yet ef-
fective scheduling approach, named Fragmentation Gradient
Descent (FGD), that schedules tasks towards the direction
of the steepest descent of GPU fragmentation. Large-scale
trace-driven emulations show that FGD substantially achieves
higher GPU allocation rate compared to existing packing-
based heuristics, saving hundreds of GPUs.
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Abstract
Iterative relational algebra (RA kernels in a fixed-point loop)
enables bottom-up logic programming languages such as Dat-
alog. Such declarative languages are attractive targets for high-
performance implementations of relational data analytics in
fields such as graph mining, program analysis, and social-
media analytics. Language-level constructs are implemented
via high-performance relational algebra primitives (e.g., pro-
jections, reorderings, and joins). Such primitives would appear
a natural target for GPUs, obtaining high throughput on large
datasets. However, state-of-the-art Datalog engines are still
CPU-based, scaling best between 8–16 threads. While much
has explored standalone RA operations on the GPU, relatively
less work focuses on iterative RA, which exposes new chal-
lenges (e.g., deduplication and memory management). In this
short paper, we present a GPU-based hash-join implementa-
tion, leveraging (a) a novel open-addressing-based hash table
implementation, (b) operator fusing to optimize memory ac-
cess and (c) two variant implementations of deduplication. To
evaluate our work, we implement transitive closure using our
hash-join-based CUDA library and compared its performance
against cuDF (GPU-based) and Soufflé (CPU-based). We
show favorable results against both, with gains up to 10.8×
against cuDF and 3.9× against Soufflé.

1 Introduction

High-performance iterative relational algebra (RA) has the po-
tential to automatically extract massive data-parallelism from
applications built on top of bottom-up logic programming
languages such as Datalog [2,6,9,21,38]. Datalog is a declar-
ative logic programming language that has been applied to a
wide variety of applications such as big-data analytics [17],
graph mining [26, 33], and program analysis [5, 34]. The goal
of declarative languages is for a user to provide a few under-
standable and compact rules that define a solution while the
language automatically extracts an operational approach for
computing the solution. Standard bottom-up Datalog solvers

do just this: rules are implemented via standard RA opera-
tions and combined into kernels that infer new facts from
discovered facts in a fixed-point loop.

Modern Datalog applications scale to extreme input-
relation sizes (billions of rows/facts, tens of gigabytes of
data), and thus highly parallel implementations are increas-
ingly valuable. Unfortunately, however, modern CPU-based
Datalog implementations have hit scalability walls due to
their use of locking shared-memory data-structures—in our
experiments, scalability for Soufflé (a best-in-class solver)
peaks at roughly 16 threads. By contrast, modern GPUs offer
(tens of) thousands of data-threads of computation in their
high-throughput SIMD architecture. While there has been a
plethora of work discussing implementation of standalone
joins [20, 24, 30–32, 36] on the GPU, not much work tackles
the problem of iterative joins, especially in the context of the
modern GPU architectures. Iterative joins, fused with other
relational operations such as union and projection, needed in
the context of Datalog engines, add extra layers of complexity
such as having to deal with low-level memory management,
performing deduplication and mantainance for index data
structures.

In this paper, we present key innovations which have al-
lowed us to build scalable GPU-based implementations of
Datalog-style declarative programs. Specifically, we imple-
ment the classic Datalog problem of finding all reachable
paths (i.e., transitive closure) of a graph—a simple case of
feature extraction. This problem entails implementing joins
along with other RA operations like union and projection
iteratively in a fixed-point loop. With this work, we make
an important first step towards developing a complete GPU
based datalog engine. Specifically, we make the following
novel contributions to literature:

1. Developed a high-performance GPU-based hash table
tailored to relational data; the hash table is used to ac-
complish binary hash joins between relations.

2. Implemented RA-operation fusion (e.g. join and projec-
tion) to improve memory and computation footprint.

3. Implemented deduplication using two techniques (a) sort
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and unique (using thrust [4]), and (b) merge (two sorted
lists) and unique. Both, key in facilitating iterative RA.

4. Evaluated our performance by comparing it against state
of art openMP-based implementation, Soufflé and a
cuDF implementation. We outperform both for almost
all graphs and achieve speedups up to 3.9× over Soufflé
and up to 10.8× over cuDF.

2 Related Work and Background

RA on GPUs Previous efforts in parallelizing RA have
mostly focused on stand-alone implementations of select few
RA primitives, such as join. Join is the most complex primi-
tive to implement as its output size is not known in advance
and depends on the characteristics of the input data and rela-
tions must be sorted, or stored in an index, for efficient joins to
be possible. The most common algorithms for implementing
joins are hash-joins and merge-sort join [3]. These algorithms
have been extensively studied for shared memory systems, be-
ing parallelized for both GPUs [16, 19, 20, 24, 30–32, 36] and
multi-core CPUs using openMP [23]. MPI-based distributed
join operations have also shown promise in several recent
studies [10, 13, 14, 25, 26]. However, unlike distributed join
implementations, most extant GPU-based implementations
do not maintain an order in their relations [39]. This poses a
problem in some iterated relational algebra algorithms (such
as transitive closure computation) as they require the join re-
sults to be sorted. If join results are sorted by default, we can
avoid costly operations like sorting the entire result at each
iteration of the algorithm, which impacts the overall perfor-
mance of all iterations and compounds across the fixed-point
loop. Additionally, off-the-shelf Python libraries also provide
RA primitives to perform iterated join operations [35], but
using the predefined methods does not allow fusing RA oper-
ations and creates memory overhead storing all intermediate
results during iterated RA operations.

Datalog and iterated RA In Datalog, rules can be provided
to define relations (tables) in terms of others. The following
Datalog program inductively defines the transitive closure, T ,
of an input graph G using two rules: T (x,y) :– G(x,y). and
T (x,z) :– T (x,y),G(y,z). The first rule represents a base case
that says: every x-to-y edge in G implies an immediate x-to-y
path in T . The second rule says: every x-to-y path in T that
can be extended with a y-to-z edge in G, implies an extended
x-to-z path. The second rule is recursive and must be iterated
repeatedly until stabilizing at a value for T that is consistent
with all rules.

The first rule can be implemented by inserting every el-
ement of G into T , a simple copy or union operation. The
second rule can be implemented by iteration of a kernel func-
tion, composed of several RA operations, iterated to a least-
fixed-point. One iteration of this function would join T on its

second column with G on its first column, yielding all triples
(x,y,z) where (x,y) can be drawn from T and (y,z) can be
drawn from G. Projection to the set of unique (x,z) tuples,
removing the middle column (as a graph, this is removing the
intermediate vertex in the discovered path), and unioning this
set of tuples with those in T completes one iteration of the
second rule. The output (newly discovered facts) acts as the
input for the following iteration, and the process continues
till all reachable paths are discovered (see Figure 1).

3 Standalone Join

We first implement a standalone join operation between two
input relations. A low-level programming model such as
CUDA allows us to control the memory hierarchy and fuse
operations together. We create a static hash table on the input
relation and then use a hash-join-based approach to join the
relations.

Representation We have developed a novel GPU-based
hash table from scratch to meet requirements pertinent to our
system. We extend the hash-join-based approach to support
the relational data type specific to our application (2-ary col-
umn). This is done by implementing an efficient hash table
that effectively supports search and can be easily linearized
to a compact 1D array (required for deduplication)– both
essential in implementing iterative joins.

To facilitate seamless hash-joins between relations, we use
the entries of the join column of every relation as the key of
the hash table. In particular, the join column of a relation is
used as the key, which maps to a set of values (corresponding
to the non-join column values). For example, for a relation
that is hashed on the first column, with tuples (1,2), (1,3),
and (1,4) the key corresponds to 1 and the set of values would
correspond to 2,3,4. Note that, our hash-table uses only the
join column as the key for hashing– making it easy to facili-
tate fast look-ups, needed for joins. Furthermore, to simplify
our development (targeting graph analytic applications), we
assume all base values are 32 bits wide.

All hash tables must support collision resolution. Two pop-
ular schemes include separate chaining and open address-
ing. However, GPUs face intrinsic difficulties in dealing with
linked data, and we instead use an open-addressing-based
hash table consisting of a fixed-size buffer. In our design, col-
lision resolution is accomplished via linear probing, which
(in our experiments) shows better cache performance than
quadratic and double-hashing techniques. Our implementa-
tion uses the Murmur3 hash, a popular implementation that
performs well on open-source benchmarks [22]. The hash is
calculated using a combination of bit shifts, multiplications,
and XOR operations. We obtain a hash-table build rate of 4
billion keys per second for a string graph and 400 million
keys per sec for a random graph (see Sec. 5 for more details).
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Algorithm 1 Hashjoin based transitive closure computation
algorithm. Blue boxes indicate join, orange indicates union,
green indicates deduplication, and red indicates clearing.

1: procedure TRANSITIVECLOSURE(Graph G)
2: R← HashTable(G)
3: result← Sort(G)
4: T∆← G
5: repeat
6: joinSizePerRow← JoinSize(R, T∆)
7: joinOffset← Scan(joinSizePerRow)
8: Initialize(joinResult, totalJoinSize)
9: joinResult← Join((R, T∆), joinOffset)

10: joinResult← Sort( joinResult)
11: joinResult← RemoveDuplicates( joinResult)
12: totalUniqueJoinSize← Size( joinResult)
13: FreeMemory(T∆)
14: T∆← Copy( joinResult, totalUniqueJoinSize)
15: unionSize← resultSize + totalUniqueJoinSize
16: Initialize(unionResult, unionSize)
17: unionResult←MergeSortedArrays(result, joinResult)
18: unionResult← RemoveDuplicates(unionResult)
19: uniqueUnionSize← Size(unionResult)
20: oldUnionSize← Size(result)
21: FreeMemory(result)
22: result← Copy(unionResult, uniqueUnionSize)
23: FreeMemory(joinOffset)
24: FreeMemory(joinResult)
25: FreeMemory(unionResult)
26: until oldUnionSize ̸= uniqueUnionSize
27: FreeMemory(R)
28: FreeMemory(result)
29: FreeMemory(T∆)
30: return result
31: end procedure

In an open-addressing-based hash table, the load
factor measures a table’s sparsity, Load factor(α) =
size(input)/size(hashTableSize) ≤ 1. Intuitively, a lower
load will yield fewer collisions (and thus higher perfor-
mance) [11]. In experiments, we use load factors 0.1 and 0.4
to pre-allocate our hash table as the nearest (larger) power
of two (called hashTableSize); this permits us to replace the
more expensive modulo operation in our hash function with
an efficient binary AND operation. We create the hash table
as a strided array of structures (Entity) with 32-bit integers
Key and Value as fields. The hash table is initialized with a
sentinel value (−1) to indicate an empty value. While doing
bulk insertions in the hash table, CUDA threads search for the
index of each tuple they are assigned, using the hash function.
If the position is available (i.e., −1), we insert the tuple in
the hash table using CUDA’s atomic compare-and-swap
operation (atomicCAS). If the position is already occupied,
we search for the next available position using linear probing.
In CUDA, if each thread only operates on one element of
the input array, it can lead to problems if the input is larger
than the number of available threads. To address this, we use
a grid-stride loop, which allows a single thread to traverse
multiple elements of the input array by incrementing its
index by a stride value that is determined by the grid size and
block size. Each CUDA thread performs build hash table
computation on one grid size (blockDim.x∗gridDim.x) at a
time to provide maximum memory coalescing.

1

2

3

4 5

T
G

1 2
1 3
2 4
3 4
4 5

TΔ

2 1
3 1
4 2
4 3
5 4

Join

2 4 1
3 4 1
4 5 2
4 5 3

Projection

1 4
1 4
2 5
3 5

Tnew
1 4
2 5
3 5

1 2
1 3
1 4
2 4
2 5
3 4
3 5
4 5

T

1 2
1 3
1 4
2 4
2 5
3 4
3 5
4 5

1 2
1 3
2 4
3 4
4 5

4 1
5 2
5 3

4 5 1 1 5 1 5 1 2
1 3
1 4
1 5
2 4
2 5
3 4
3 5
4 5

1 2
1 3
1 4
1 5
2 4
2 5
3 4
3 5
4 5

1 2
1 3
2 4
3 4
4 5

5 1

First Iteration

Second Iteration

Third Iteration

⨝ =

1

2

3

4 5

T

2

3

4 5

T

1

Tfull

Figure 1: An example of the iterated joins on transitive closure
computation of a graph

Hash-Join Phases We perform a join operation to get the
join result of the hash table and input relation of Entity struc-
ture element with two 32-bit integers (Key and Value as struc-
ture members). We use two passes to compute the join result.
These two passes are carried out by two CUDA kernels. First,
we initialize an array (offset) with the size equal to the input
relation. In the first phase, each CUDA threads searches for
a total of n keys of the input relation in the hash table where
n is the size of one grid(blockDim.x * gridDim.x). If it finds
a matching key in the hashtable, it increases the counter of
the offset array for that input element. Thus, we calculate the
number of matches for each key of the input relation using
this CUDA kernel. We use thrust library’s reduce and exclu-
sive_scan APIs with device execution policy to get the total
amount of matches and the exclusive prefix sum of the off-
set array. As the offset array reveals the size of the matches
for each key of the input relation, the second pass inserts the
joined columns to the join result array using another CUDA
kernel. In the second pass, we do not insert the join column to
fuse the join and projection operation in one kernel invocation.
Both of these kernels use offset-based calculation without us-
ing any atomic operations or barrier synchronization, which
are computationally costly. On top of that, our kernels use
grid-stride loops to distribute the workload equally to the
available CUDA threads. It also eliminates the branch diver-
gence problem, where some CUDA threads could have more
workloads than others.

4 Iterated Joins on the GPU

Implementing iterated joins requires the allocation of extra
buffers to materialize intermediate results. Additionally, these
intermediate results must be deduplicated between each RA
iteration to ensure tractability. In this section, we demonstrate
our approach to efficient iterated joins, using transitive closure
as an illustrative example; our techniques generalize to other
problems using finite-domain Datalog.
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Transitive closure: Transitive closure is operationalized as
iterated joins between a monotonically-growing set of transi-
tive edges, T , and an extensional database of edges, G. With
each iteration, new paths of increasing lengths are discov-
ered (monotonically extending T ) until all reachable paths
are found and execution terminates. In practice, efficient im-
plementations of Datalog employ semi-naïve evaluation [1],
tracking a frontier of new facts rather than all-yet-seen facts.
This is implemented by distinguishing multiple run-time ta-
bles for each syntactic relation: T∆, Tfull, and Tnew. T∆ tracks
the most-recently-discovered (last iteration’s) transitive edges
in T —T∆ is merged into Tfull after each iteration. Facts discov-
ered during the current iteration are accumulated into Tnew,
which is swapped into T∆ between iterations.

Figure 1 visualizes the execution of transitive closure on
a line graph consisting of five nodes. As a preparatory step
before the first iteration, T∆ is populated by G. The first it-
eration joins G and T∆, yielding four (intermediate) triples.
This is followed by projection of the join column, which re-
sults in a duplicate edge (1,4). We deduplicate by sorting
the results and applying consecutive deduplication (Thrust’s
unique, which required a preceding stable sort) to produce
unique inferred paths in Tnew. As a data-structure invariant,
tuples are sorted (using the natural lexicographic sort): this
enables merging Tnew into T using a single scan of Tnew. Next,
we union the merged relation and generate the union result in
Tfull. This graph is visualized in the middle left side of Figure
1, where blue edges indicate the new unique paths found from
the first iteration. We update the graph relation T∆ with Tnew
for the next iteration. We continue this iterated join operations
until we cannot find any new path or the size of T does not
change after the deduplication of the merged relation.

Algorithm 1 formalizes our implementation of transitive
closure in CUDA. This algorithm uses a combination of li-
brary functions illustrating the cruxes of Datalog on the GPU:
joins (boxed in blue), union (orange), deduplication (green),
and clearing (red). We begin by establishing the initial invari-
ants: building an initial result by sorting G, and copying G
into T∆. Next, we iterate until we reach a fixed-point; at the
end of each iteration we compare the number facts in the next
T with the number in the current T —when no new facts are
added, the algorithm terminates at a fixed-point.

Join operation in transitive closure The join operation
uses the single hash-join operation in a fixed-point iteration
described in Section 3. We create the hash table (R in Al-
gorithm 1) only once and repeatedly use it in the iterated
hash join. The relation T∆ is initialized with input relation
G. The two-pass approach (Sec. 3) calculates the join result
size (joinOffset) for each record of T∆ and then inserts the
join result in the joinResult array. Our algorithm fuses the
join and projection operations together and thus reduces time
and memory consumption for the iterated join (by up to 5%).
This optimization is novel from an iterated join on the GPU

Figure 2: Time comparison between CUDA’s pinned memory and
unified memory model for hash join based TC computation. (log-
scale for Y-axis)

perspective.

Deduplication of the join result and merged result We
use the key insight that some relational data can be perma-
nently maintained in sorted order while some cannot and use
this information to implement two kinds of deduplication
techniques. Duplicate tuples are generated in two segments;
after the join and projection operation and after the union
operation. We use thrust library’s sort and unique API to
remove duplicates from the join result. The sort API first
sorts the join results, and then the unique API removes the
consecutive duplicate elements from the array. To deduplicate
the union result, we initialize the result array with the input
graph G and sort it. To remove duplicates from the union
result (result ∪T∆), we merge the sorted arrays (result, T∆).
Then we apply the thrust’s unique API to remove the consec-
utive duplicates from the merged result. This merging step
eliminates the requirement of sorting the large result array
before applying the deduplication process.

Memory management The CUDA programming model
provides four memory allocation schemes: pageable memory,
pinned memory, mapped memory, and unified memory [7].
Pageable memory involves two transfers: from host pageable
memory to temporary pinned memory on the host, and then to
device memory. Pinned memory initializes data on the host’s
pinned memory, requiring only one transfer to send it to de-
vice memory [18]. Mapped memory maps pinned memory
in the device address space, avoiding host-to-device mem-
ory copying but increasing program processing time. Unified
memory creates a managed memory pool for accessing data
from both host and device using the same address, but intro-
duces supplementary operations for memory management.
For both the single join operations (Sec. 3) and iterated join
operations (Sec. 4), we utilize the CUDA pinned memory
model. We keep only two arrays (input relation and the final
result) in the host memory, and all intermediate buffers are
kept in the device memory without any need for data transfer
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Figure 3: Time comparison between single join operation using
CUDA and cuDF. R indicates Random, and S indicates String graph.
(log-scale for Y-axis)

between the host and device memory for intermediate results.
We ensure the implementations have no memory leakage us-
ing cuda-memcheck and compute-sanitizer API provided by
CUDA library.

5 Evaluation

We perform a series of experiments to evaluate the perfor-
mance of our iterative hash-based join implementation. We
begin by evaluating the performance tradeoffs offered by
using different memory management schemes of CUDA. Fol-
lowing which, we study the performance of a hash-join in
isolation, comparing it against state-of-art join implementa-
tion of the cuDF library – part of NVIDIA’s rapids framework
that uses NVIDIA CUDA programming model for GPU par-
allelism [12, 15, 37]. Finally, we evaluate the performance of
our iterative joins, by computing the transitive closure of a
range of graphs. We compare our performance against Souffle,
a state of art openMP-based library for performing iterated
joins, and our cuDF-based implementation.

Experiment platform and datasets We conduct our exper-
iments on the ThetaGPU supercomputer of Argonne National
lab [27]. It has 24 NVIDIA DGX A100 nodes with eight
NVIDIA A100 Tensor Core GPUs per node. Each node fea-
tures two AMD EPYC 7742 processors with 3.31GHz clock
speed and a total of 128 cores.

cuDF package was installed on a Python conda environ-
ment, and we developed our code using CUDA version 11.4.
We use Souffle version 2.3 with 128 threads in ThetaGPU.
As cuDF and our CUDA experiments use only one GPU de-
vice (single-gpu benchmark) we use a single GPU node from
ThetaGPU. The single GPU node has 108 multiprocessors on
device (SM) and we use 3,456 (32 × 108) blocks per grid
and 512 threads per block for each of the CUDA kernels.

To evaluate the experiments, we use real-world and syn-
thetic graph datasets from the Stanford large network dataset

Figure 4: Our time breakdown for fe_ocean graph (CUDA outper-
forms Soufflé by 3.9×)

collection, SuiteSparse matrix collection, and road network
real datasets collection [8,28,29]. Table 1 shows all our graphs
used along with performance results.

Memory optimization We evaluated the pinned memory,
and unified memory as memory allocation schemes for transi-
tive closure computation for several real-world graphs men-
tioned in Table 1 [7]. Figure 2 shows the time comparison
between these two memory allocation schemes for directed
and undirected graphs. We observe 2.6× to 4.1× speedup for
transitive closure computation using the pinned memory over
the unified memory model. However, we see that the unified
memory model can handle graphs with larger TC size (e.g.
dataset p2p−Gnutella31 from Table 1) without getting a run
time error (out of memory error) as unified memory can over-
subscribe the GPU global memory since CUDA version 8.
Therefore, the graph p2p−Gnutella31, which has a higher
workload per iteration overflows the GPU global memory
(with pinned memory). For a single GPU-based implementa-
tion, this is an expected result.

Single hash-join performance To benchmark the single
hash-join implementation (described in Sec. 3), we use two
types of synthetic datasets; random graphs (numbers in the
range of 0 to 32,767) and string graphs (e.g. (1→ 2),(2→
3),(3→ 4)). Both types of graphs have edges between 1
million to 5 million. Figure 3 shows the time performance
comparison between cuDF and our standalone join.

For a random synthetic graph, we can build a hash table at
a rate of 400 million keys per second. For the string graph,
the build rate goes up to 4 billion keys per second. These two
graph types invoke the two ends of the performance spectrum,
with the random graph leading to tons of inefficient matches
(worst case) and the string graph leading to perfectly aligned
matches (best case). We observe up to 21× speedup for single
hash-join computation for the string graph using our CUDA-
based implementation over the cuDF join implementation.
We notice that the increase in speedup is directly related to
the size of the input relation for string graphs. For the random
graph, we see 7.6× to 8.4× speedup using the CUDA-based
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Table 1: Transitive closure performance using Hashjoin based CUDA, Souffle, and cuDF implementation. CUDA implementation uses 3,456
blocks and 512 threads per block. The Soufflé implementation uses 128 threads. Type U and D indicate undirected and directed graphs.

Dataset Type Rows TC size Iterations CUDA Hashjoin(s) Soufflé(s) cuDF(s)
fe_ocean U 409,593 1,669,750,513 247 138.237 536.233 Out of Memory

p2p-Gnutella31 D 147,892 884,179,859 31 Out of Memory 128.917 Out of memory
usroads U 165,435 871,365,688 606 364.554 222.761 Out of Memory
fe_body U 163,734 156,120,489 188 47.758 29.070 Out of Memory

loc-Brightkite U 214,078 138,269,412 24 15.880 29.184 Out of Memory
SF.cedge U 223,001 80,498,014 287 11.274 17.073 64.417
fe_sphere U 49,152 78,557,912 188 13.159 20.008 80.077

CA-HepTh D 51,971 74,619,885 18 4.318 15.206 26.115
p2p-Gnutella04 D 39,994 47,059,527 26 2.092 7.537 14.005
p2p-Gnutella09 D 26,013 21,402,960 20 0.720 3.094 3.906

wiki-Vote D 103,689 11,947,132 10 1.137 3.172 6.841
cti U 48,232 6,859,653 53 0.295 1.496 3.181

delaunay_n16 U 196,575 6,137,959 101 1.137 1.612 5.596
luxembourg_osm U 119,666 5,022,084 426 1.322 2.548 8.194

ego-Facebook U 88,234 2,508,102 17 0.544 0.606 3.719
cal.cedge U 21,693 501,755 195 0.489 0.455 2.756
TG.cedge U 23,874 481,121 58 0.198 0.219 0.857

wing U 121,544 329,438 11 0.085 0.193 0.905
OL.cedge U 7,035 146,120 64 0.148 0.181 0.523

implementation over the cuDF based implementation.

Iterated hash-join We compare our iterated hash-join-
based transitive closure computation with state-of-the-art
Souffle and Nvidia’s cuDF library in Table 1. The bench-
mark results are based on multiple runs (at least 10), with
the average being reported. The variance between runs was
negligible (maximum standard deviation is <1%). For 15
out of 19 graphs, our CUDA-based implementation outper-
forms Souffle’s implementation (128 threads). For the graph
with the largest TC (fe_ocean, 1.6 billion edges), we observe
a speedup of 3.9× over Souffle. We observe a speedup of
10.8× over cuDF implementation. Moreover, the cuDF im-
plementation gets out of memory error several times where
the CUDA based implementation is able to compute the tran-
sitive closure of those graphs using the same experimental
setup. Additionally, we fused the projection operation with
join operation in CUDA implementation, which is not possi-
ble in cuDF-based implementation. Thus, it shows both time
and space performance enhancement of our iterated hash-join-
based transitive closure computation. To better understand
the time consumption for each of the individual operations
(mainly join, union, deduplication, and memory clear) at the
iteration level, we break down the operations at the granular
level. One such granular benchmark is shown in Figure 4. We
notice that the deduplication and union operation takes more
time than the other operations. Also, as the number of join re-
sults is smaller in the first few iterations, it takes significantly
less time in those iterations. For the graph (usroads), where
we under-perform compared to souffle, our hypothesis is that
we are not saturating the GPU as this graph has an increasing

number of iterations (606) and less work per iteration.

6 Conclusion

We explored the issues for iterated operations such as ineffi-
cient operation fusion, GPU memory management, and facts
deduplication while implementing the RA primitives which
are necessary for developing Datalog applications. Our sys-
tem is limited to a single GPU, and thus there are inherent
scaling walls dictated by available VRAM on the GPU–by
contrast, the largest unified nodes offer orders-of-magnitude
more available RAM, supporting larger graphs. We view this
work as a step towards multi-GPU joins across a cluster to
develop a scalable backend for Datalog.
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8 Availability

The data, code, and documentation are all open-sourced
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Soufflé: On synthesis of program analyzers. In Swarat
Chaudhuri and Azadeh Farzan, editors, Computer Aided
Verification, pages 422–430, Cham, 2016. Springer In-
ternational Publishing.

[24] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter
Volk. Gpu join processing revisited. In Proceedings
of the Eighth International Workshop on Data Manage-
ment on New Hardware, DaMoN ’12, page 55–62, New
York, NY, USA, 2012. Association for Computing Ma-
chinery.

[25] Sidharth Kumar and Thomas Gilray. Distributed re-
lational algebra at scale. In International Conference
on High Performance Computing, Data, and Analytics
(HiPC). IEEE, volume 1, 2019.

[26] Sidharth Kumar and Thomas Gilray. Load-balancing
parallel relational algebra. In International Confer-
ence on High Performance Computing, pages 288–308.
Springer, 2020.

[27] Argonne Leadership Computing Facility. Argonne lead-
ership computing facility, 2022.

[28] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

[29] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou,
George Kollios, and Shang-Hua Teng. On trip planning
queries in spatial databases. In International sympo-
sium on spatial and temporal databases, pages 273–290.
Springer, 2005.

[30] Ran Rui, Hao Li, and Yi-Cheng Tu. Join algorithms
on gpus: A revisit after seven years. In 2015 IEEE
International Conference on Big Data (Big Data), pages
2541–2550, 2015.

[31] Ran Rui, Hao Li, and Yi-Cheng Tu. Efficient join algo-
rithms for large database tables in a multi-gpu environ-
ment. Proc. VLDB Endow., 14(4):708–720, December
2020.

[32] Ran Rui and Yi-Cheng Tu. Fast equi-join algorithms on
gpus: Design and implementation. In Proceedings of
the 29th International Conference on Scientific and Sta-
tistical Database Management, SSDBM ’17, New York,
NY, USA, 2017. Association for Computing Machinery.

[33] Jiwon Seo, Stephen Guo, and Monica S Lam. Socialite:
Datalog extensions for efficient social network analysis.
In 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 278–289. IEEE, 2013.

[34] Alexander Shkapsky, Mohan Yang, Matteo Interlandi,
Hsuan Chiu, Tyson Condie, and Carlo Zaniolo. Big data
analytics with datalog queries on spark. In Proceedings
of the 2016 International Conference on Management
of Data, pages 1135–1149, 2016.

[35] Ahmedur Rahman Shovon, Landon Richard Dyken,
Oded Green, Thomas Gilray, and Sidharth Kumar. Ac-
celerating datalog applications with cudf. In 2022
IEEE/ACM Workshop on Irregular Applications: Ar-
chitectures and Algorithms (IA3), pages 41–45, 2022.

[36] Panagiotis Sioulas, Periklis Chrysogelos, Manos
Karpathiotakis, Raja Appuswamy, and Anastasia
Ailamaki. Hardware-conscious hash-joins on gpus.
In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 698–709, 2019.

[37] RAPIDS Development Team. RAPIDS: Collection of
Libraries for End to End GPU Data Science, 2018.

[38] Jeffrey D Ullman. Principles of database systems. Gal-
gotia publications, 1983.

[39] Haicheng Wu, Gregory Diamos, Tim Sheard, Molham
Aref, Sean Baxter, Michael Garland, and Sudhakar Yala-
manchili. Red fox: An execution environment for re-
lational query processing on gpus. In Proceedings of
Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’14, pages 44:44–
44:54, New York, NY, USA, 2014. ACM.

1016    2023 USENIX Annual Technical Conference USENIX Association

http://snap.stanford.edu/data
http://snap.stanford.edu/data


VectorVisor: A Binary Translation Scheme for
Throughput-Oriented GPU Acceleration

Samuel Ginzburg Mohammad Shahrad† Michael J. Freedman

Princeton University †University of British Columbia

Abstract
Beyond conventional graphics applications, general-purpose
GPU acceleration has had significant impact on machine learn-
ing and scientific computing workloads. Yet, it has failed to
see widespread use for server-side applications, which we
argue is because GPU programming models offer a level of
abstraction that is either too low-level (e.g., OpenCL, CUDA)
or too high-level (e.g., TensorFlow, Halide), depending on the
language. Not all applications fit into either category, resulting
in lost opportunities for GPU acceleration.

We introduce VectorVisor, a vectorized binary translator
that enables new opportunities for GPU acceleration by in-
troducing a novel programming model for GPUs. With Vec-
torVisor, many copies of the same server-side application are
run concurrently on the GPU, where VectorVisor mimics the
abstractions provided by CPU threads. To achieve this goal,
we demonstrate how to (i) provide cross-platform support for
system calls and recursion using continuations and (ii) make
full use of the excess register file capacity and high memory
bandwidth of GPUs. We then demonstrate that our binary
translator is able to transparently accelerate certain classes
of compute-bound workloads, gaining significant improve-
ments in throughput-per-dollar of up to 2.9× compared to
Intel x86-64 VMs in the cloud, and in some cases match the
throughput-per-dollar of native CUDA baselines.

1 Introduction
Server-side GPU acceleration has become ubiquitous, with
all major cloud providers offering virtual machine instances
with attached GPUs. GPU workloads such as graphics and
machine learning have found widespread adoption due to the
superior throughput-per-dollar that GPUs offer.

Typical approaches to accelerating these workloads on
GPUs use domain-specific programming languages (DSLs).
DSLs for GPUs heavily restrict which abstractions can be
used by developers to write applications, and in particular
forces them to use parallel abstractions. For example, ma-
chine learning programming systems such as TensorFlow [24]

require users to specify programs as a series of operations
performed on n-dimensional arrays. Approaches to extract-
ing parallelism on GPUs for graphical workloads such as
Halide [73] enforce more extreme restrictions such as requir-
ing developers to express image operations as pure mathe-
matical functions, defining the value of each function at each
point. Other DSLs targeting batch dataflow workloads require
developers to express their program using built-in parallel
functions, which impose additional restrictions on application
logic [75].

Developers who cannot express their application logic us-
ing these restricted abstractions are stuck manually rewriting
applications in OpenCL or CUDA, which expose a low-level
programming interface. Complex programs that use large
pre-existing libraries, or where extracting parallelism is dif-
ficult, can be time-consuming to write and require drastic
modifications to run using GPUs.

In this paper, we explore the feasibility of an alternative pro-
gramming model for GPUs—where we take existing single-
threaded programs and execute many copies of them using
GPU threads. Each GPU thread corresponds to an emulated
CPU thread, running a single instance of the program. Un-
like prior approaches [37] which utilize interpretation, we
translate the input program to native GPU code, substantially
boosting performance while enabling a wider variety of tar-
get languages and runtimes. Unlike OpenCL or CUDA pro-
grams, we provide support for system calls and a CPU-like flat
memory model. While less efficient than manual translation,
this approach substantially reduces the barrier to accelerat-
ing throughput-oriented workloads using GPUs, ultimately
improving the throughput and cost efficiency of applications
that would otherwise run on CPUs.

Many applications written to run on CPUs are single-
threaded programs, often implemented using high-level pro-
gramming languages with large imported libraries. Without
modification, these applications do not map cleanly to exist-
ing GPU programming models (e.g., those using language-
level parallel functions such as in TensorFlow or Halide).
Instead, these workloads process requests independently, with
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no inter-request synchronization or communication. Exam-
ples of these workloads include cryptographic operations,
image manipulation, and compression. These workloads are
generally amenable to GPU acceleration [60, 67, 73], but are
frequently run on CPUs instead.

Effectively enabling this programming model requires one
to overcome several technical challenges in dealing with the
substantial differences between GPUs and CPUs. These dif-
ferences include how programs are executed—e.g., in which
programs are run to completion without preemption—as well
as a lack of support in GPUs for system calls. Further, failing
to take differences in GPU memory hierarchies into account
can result in an order of magnitude decrease in read and write
performance. Prior approaches to running unmodified pro-
grams on GPUs suffer from poor performance due to the
overheads of interpretation [37] as well as compatibility is-
sues such as the lack of support for system calls [45].

To explore this unique programming model for GPUs, we
built VectorVisor—a system which utilizes a vectorizing bi-
nary translator for GPUs. VectorVisor is designed to accel-
erate existing and unmodified programs that are designed to
run on CPUs but can benefit from GPU acceleration. Tar-
get programs are automatically translated to run on GPUs
efficiently, eliminating the need for complex manual transla-
tion. In particular, VectorVisor uses WebAssembly [54] as the
intermediate binary format, which enables secure, fast, and
efficient compilation for a wide range of applications.

We overcome the differences in program execution and
memory hierarchy by translating WebAssembly programs to
run directly on the GPU as opposed to using interpretation.
We show that the remaining differences between CPUs and
GPUs can be bridged with a combination of three techniques:

Continuations: CUDA and OpenCL do not provide sup-
port for preempting running applications in addition to lacking
support for system calls. Without preemption, we cannot dis-
patch system calls, making it impossible to run complex and
unmodified programs. To bypass this issue, we implement
continuations for OpenCL C. Continuations are language-
level primitives that allow us to save the program state at
arbitrary locations, and then resume execution at a later time.
Doing so allows us to pause and resume running GPU kernels,
and to provide support for system calls. We also benefit from
the portability of our approach—enabling VectorVisor to be
run with multiple GPU vendors (e.g., NVIDIA, AMD).

WebAssembly: WebAssembly (WASM) binaries are de-
signed with performance, portability, and security in mind.
Many popular languages can compile to WASM (e.g., Rust,
Go, C, C++, AssemblyScript, and more), making it an ideal
intermediate format. WASM binaries are designed with run-
time JIT compilation in mind, persisting vital information not
present in x86 binaries. WASM semantics provide VectorVi-
sor with memory alignment information, register allocation
hints, type-checks on operations, and language-enforced struc-
tured control-flow. We heavily utilize this information to deal

with challenges such as efficiently making use of the substan-
tially larger per-thread [14] register space on GPUs—which is
crucial for maximizing performance. Other important perfor-
mance optimizations are also enabled through this compile-
time information.

Memory Interleaving: GPUs organize threads in warps,
or groups of threads. Each thread in a warp has a numerical
index, and threads with adjacent indices must access adjacent
bytes for optimal performance—so that memory accesses can
be coalesced together. Coalesced memory accesses enable
GPUs to maximize memory bandwidth usage at the cost of a
more complex programming model. To bridge the differences
between the GPU and CPU memory hierarchies, we automat-
ically interleave the memory of each virtual machine running
on the GPU to transparently coalesce all memory accesses.

We demonstrate VectorVisor’s capabilities to accelerate
several unmodified, third-party applications which use pop-
ular open-source libraries. We then evaluate VectorVisor’s
efficacy using nine benchmarks with throughput-per-dollar
as our primary metric. Selected benchmarks include multiple
classes of workloads, some of which reflect ideal applica-
tions of VectorVisor, with others reflecting the limitations of
our programming model. Comparisons against native x86-64
and WebAssembly versions of each benchmark are provided,
showing that VectorVisor can achieve superior throughput-
per-dollar. We also provide native CUDA versions of two
benchmarks to evaluate the efficacy of our translation. Our
paper makes the following contributions:

1. We introduce a novel cross-platform approach to running
lightweight virtual machines using GPUs, where VMs
securely execute native code to maximize performance
and support multiple high-level languages.

2. We show that support for system calls can be efficiently
provided using continuations in addition to supporting
recursion and indirect calls in OpenCL.

3. We demonstrate that we can emulate a flat memory model
using an efficient memory interleave, enabling existing pro-
grams to leverage the high memory bandwidth of GPUs.

4. We explore the implications of batch size, latency, and
throughput on VectorVisor’s programming model and dis-
cuss which categories of workloads are optimal for it.

5. We discuss the limitations of our system and optimal GPU
configurations for it.

2 Motivation and Challenges
The past several years have shown a large increase in the avail-
ability of cloud accessible GPUs. GPUs that cost thousands
of dollars are now available at affordable prices per hour. De-
velopers can quickly test if accelerating their program using
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a GPU is cost-effective without large up-front investments
in GPU hardware. However, despite having strong parallel
processing power and cloud availability, GPUs are not often
used for running high concurrency server-side applications.

Translating programs originally intended to execute on
CPUs to run on GPUs is difficult due to the substantial differ-
ences between the execution models and memory hierarchies.
Today’s approaches to tackling these issues either require
strong language-level restrictions with unintuitive stumbling
blocks for developers, or slower automated approaches such
as interpretation [37].

2.1 Execution Model Differences
Taking advantage of the throughput that GPUs offer requires
using a different execution model than CPUs offer. GPUs fea-
ture restrictions on both the application runtimes and control
flow that limit the set of possible workloads.

Runtime Limitations: CUDA and OpenCL are the two
most popular compute APIs available for GPUs, and they
share a near identical programming model. Programs that
run on GPUs (GPU kernels) are submitted and execute until
completion without preemption. High-level languages target-
ing general-purpose GPU programming such as CUDA C++
and OpenCL C feature restrictions on the usage of standard
libraries, recursion, indirect function calls, variable length
arrays, virtual functions, and templates [12, 16]. Support for
other common features such as system calls and preemption
are absent, further restricting the set of programs that can run.

Divergence: Unlike CPUs, which allow for different hard-
ware threads to execute different instructions, GPUs organize
threads into groups of threads (warps). Each warp shares a
program counter, so all threads execute the same instruction
on each clock cycle. Support for conditional branching is
provided by executing no-ops for threads that have diverged,
while the remaining threads block on threads executing the
conditional branch. This results in the serialized execution of
branches. Programs with substantial divergence are not able
to efficiently use GPU resources as a result [33, 43, 51].

2.2 Memory Hierarchy Differences
GPUs and CPUs handle memory accesses differently due to
the different design constraints imposed upon the hardware.
CPUs optimize for reduced memory latency for all threads of
execution, so they feature large cache sizes to minimize ac-
cesses to main memory. In contrast, GPUs seek to maximize
memory bandwidth. GPUs can achieve 3× the memory band-
width of a comparable CPU [5, 8]. While GPUs can achieve
higher memory bandwidth, memory latency on a given GPU
can be up to 2.75× worse than a comparable CPU [61, 66].
These differences in the memory hierarchy between GPUs
and CPUs have two key implications for developers:

Register Space: At a high level, the memory hierarchies of
CPUs and GPUs are similar, with both devices featuring reg-

isters, data caches, and byte-addressable memory. However,
GPUs feature substantially larger register files. Each thread
on recent NVIDIA GPUs can have a maximum of 255 32-bit
register values [12] (just under 1 KiB of storage). In contrast,
the x86-64 instruction set architecture has 16 64-bit general
purpose registers (128 bytes of storage). Additionally, GPUs
typically feature far more threads of execution than CPUs, fur-
ther magnifying the difference. Making use of this extra space
is critical to maximizing performance on GPUs [36, 70].

Memory Accesses: Rules regarding efficient memory ac-
cess patterns are different for GPUs. GPUs require that pro-
grams perform coalesced memory accesses. Similar to CPUs,
locality of memory accesses allows reads and writes to be
cached, and is required to get optimal performance. However,
GPU kernels must also ensure the locality of memory ac-
cesses across threads. Threads in a GPU warp are numerically
indexed, and adjacent threads must access adjacent bytes of
memory as a general rule. Otherwise, memory accesses within
a warp can be serialized. Without proper memory coalescing
GPU memory bandwidth can be cut by up to 32× [12].

In addition to performance drops, GPUs can have stricter
memory access policies than CPUs. Ideally, memory accesses
are naturally aligned—meaning N byte accesses must be N-
bytes aligned. Unaligned accesses cause running GPU kernels
to fault on NVIDIA GPUs [12], causing programs that would
have run correctly on a CPU to crash on a GPU.

3 System Design
In this section we introduce VectorVisor 1, a vectorizing bi-
nary translator for GPUs designed to leverage the implicit par-
allelism provided by our programming model. Our approach
enables us to run many instances of unmodified programs
on the GPU concurrently, making it far easier to utilize the
substantial parallelism that GPUs offer.

We first describe our programming model in depth, where
we explain how developers can leverage VectorVisor to ac-
celerate programs. We characterize a set of ideal workloads
for VectorVisor and explore the limitations of our program-
ming model. Following this, we provide a high-level overview
of VectorVisor’s primary system components. To enable our
simple and easy to use programming model, VectorVisor auto-
mates data transfer to and from the GPU. We illustrate this by
showing the life cycle of a request processed by VectorVisor.
Lastly, we provide an example of a short program, and how
we transform it to run on the GPU.

3.1 Programming Model, Target Workloads
In contrast to OpenCL or CUDA, VectorVisor mimics the ab-
stractions provided by CPU threads, treating each individual
GPU thread as a small virtual machine. Each VM operates
on a statically allocated chunk of memory, fully isolated from

1https://github.com/SamGinzburg/VectorVisor
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other VMs. This memory model does not support inter-VM
communication, and thus prevents deadlocking. Many copies
of the same program are mapped to GPU threads, which then
operate on distinct inputs.

This approach to parallelism for GPUs enables developers
to run complex and unmodified single-threaded programs
originally written for the CPU. Developers can leverage GPU
acceleration without learning complex programming models
or rethinking the logical structure of their programs.

VectorVisor is designed to function with unmodified work-
loads, but not all programs are equally amenable to acceler-
ation using our programming model. Data parallel, latency-
insensitive, and compute-bound ‘serverless-like’ workloads
are ideal targets for GPU acceleration using VectorVisor. For
a subset of these workloads, correct manual translation can
be difficult without domain-specific knowledge—and those
workloads represent an ideal use-case for VectorVisor. Suit-
able workloads share a number of characteristics:

High Execution Volume: VectorVisor relies on running
many instances of the same program concurrently, instead of
accelerating a single execution. Therefore, the more instances
packed on the GPU, the higher the cost efficiency. Naturally,
the latency QoS of the application should be able to afford
the added batching latency prior to execution.

Application Limitations: VectorVisor runs unmodified
programs where possible, but some abstractions are expen-
sive to emulate on GPUs. Recursion and indirect calls reduce
application performance due to how we implement them (ex-
plained further in Section 3.3).

Navigating tradeoffs between application concurrency and
heap size are key to maximizing performance when using
VectorVisor. We experimentally found in our evaluation that
running 4096-6144 VMs with a heap size of 3-4 MiB proved
optimal for our selected workloads. However, it is possible
to run VectorVisor with varying degrees of concurrency—
adjusting for different heap sizes.

Lastly, floating point differences between CPUs and GPUs
can result in different outputs for applications [11, 37, 65],
depending on the specific application and compiler.

Low Divergence: Ideal workloads should minimize pro-
gram divergence in order to fully utilize the superior through-
put and memory bandwidth that GPUs can offer.

Data Transfer Overheads: VectorVisor automates data
transfer to and from the GPU; however, the overhead involved
can be a substantial fraction of end-to-end request time. Main-
taining a high ratio of GPU compute to input and output size
is ideal for maximizing VM throughput.

3.2 Design Overview
VectorVisor consists of two key components, the binary trans-
lator (compiler) and the vectorized virtual machine monitor
(VMM). We show an overview of VectorVisor in Figure 1,
showing the role of each component as well as the life cy-
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Figure 1: System Overview.

cle of an incoming request to the system. Requests are first
queued externally to VectorVisor, before being batched by the
VMM, and submitted to the VMs running on the GPU—which
are blocked on a system call awaiting input. We provide a
pre-configured web server that automatically handles all data
transfer to the VMM. After executing a batch of requests,
responses are returned via another system call, and then back
to the web server. This approach enables VectorVisor to be
used as a drop-in replacement for existing systems, without
the need for developers to manually batch incoming requests.

Binary translation is a separate process, occurring before
applications run. Programs are compiled from any language
targeting LLVM [64] (e.g., Rust, C, C++) into WebAssembly,
our intermediate binary format. We then compile WebAssem-
bly to OpenCL C. Targeting OpenCL C enables VectorVisor
to support multiple GPU vendors. This approach allows us
to run existing programs without the need to worry about
complex language semantics—we only need to concern our-
selves with WebAssembly semantics which are far simpler
than alternatives such as LLVM IR and directly compiling
high-level languages. LLVM IR places minimal restrictions
on control flow structures, and can represent programs that are
impossible for any GPU to run. WebAssembly only provides
structured control flow by design, ensuring that programs can
always be translated to run on the GPU [54]. Alternative ap-
proaches that directly compile high-level languages to run
using GPUs require substantial engineering effort, and can
run into compatibility issues [37].

Our system design features a number of novel contribu-
tions that we employ to bridge the substantial differences that
exist between GPUs and CPUs described in Section 2. Our
contributions succeed in bridging most of the gaps in capabil-
ities between CPU and GPU runtimes. Recursive and indirect
functions limit performance for some workloads but do not
limit our functionality or correctness.
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1 ;; // Pseudocode in C:
2 ;; int main(void) {
3 ;; // fd 1 == stdout
4 ;; char text[] = "ABCD\n";
5 ;; return write(1, text, strlen(text));
6 ;; }
7 (module
8 (import "wasi_unstable" "fd_write"
9 (func $fd_write (param i32 i32 i32 i32) (result i32

)))
10 (memory (;0;) 1)
11 (export "memory" (memory 0))
12 (export "_start" (func $_start))
13 (func $_start (result i32)
14 i32.const 1 ;; stdout
15 i32.const 0 ;; iovec ptr
16 i32.const 2 ;; entries
17 i32.const 24 ;; out bytes
18 call $fd_write
19 )
20 (data (i32.const 0) "\10\00\00\00\02\00\00\00")
21 (data (i32.const 8) "\12\00\00\00\02\00\00\00 ABCD")
22 )

Figure 2: WebAssembly Example. We show an example of a
simple program which makes a single system call.

3.3 Compiler
VectorVisor uses a binary translator (compiler) to translate
input programs such that they can run on the GPU. The role
of the compiler is to automate away the difficulties involved
in writing programs for the GPU that are outlined in Section 2.
We explore a set of techniques for enabling the execution of
unmodified programs, which we demonstrate using a simple
example of an input program.

3.3.1 Compiling WebAssembly

WebAssembly (WASM) [54], is a low-level language de-
signed for performance, size, portability, and security. WASM
binaries differ significantly from x86-64 binaries, as they are
designed to be recompiled before runtime, retaining signifi-
cant compilation information that can be used. Using WASM
as an intermediate format simultaneously allows us to avoid
dealing with the complex semantics of higher-level languages
(e.g., Rust, C, C++) while also improving the performance of
VectorVisor. We make use of this information in three places
within our compiler:

1. Register Allocation: Recent NVIDIA GPUs have up to
255 32-bit registers per thread [12], providing roughly 8× the
amount of storage per CPU thread ignoring vector registers.
Traditional x86-64 binaries target CPUs with only 16 64-bit
general purpose registers. Static analysis could conceivably
be used to place stack allocations in x86-64 binaries into GPU
registers, but WebAssembly provides a more convenient solu-
tion. In contrast to x86-64 binaries, WASM is a stack-based
virtual machine and does not explicitly allocate registers [54].
Instead, values are placed either onto the stack or into local
variables. Figure 2 shows an example WebAssembly program,
which places four integers onto the stack. During compilation,
we are able to store these values directly into variables which
the backend GPU compiler (OpenCL C compiler) can then

1-Byte Interleave

4-Byte Interleave

8-Byte Interleave

= Thread 0 = Thread 1

Byte 0 Byte 7

Bytes 0-3 Bytes 4-7

Bytes 0-7 Bytes 0-7

Figure 3: Memory Interleaving Examples of 1, 4, and 8-byte
interleavings for a system with 2 threads are shown.

place into GPU registers. This approach allows the OpenCL C
compiler to place values into registers that an x86-64 compiler
would have placed on the stack.

2. Runtime support: Most programs require some degree
of modification to run on GPUs. Memory allocation, locking
primitives, and threading primitives make assumptions about
the underlying system that are false on GPUs. However, many
such modifications are already performed by WebAssembly
compilers. WASM binaries not only provide substantial com-
pilation information, but also a “batteries-included” set of
runtime modifications. Compilers targeting WebAssembly
typically compile programs with a modified standard library
with the necessary modifications already made.

3. Memory Alignment: Misaligned accesses cause run-
ning programs to crash when run using NVIDIA GPUs [12].
Handling misaligned accesses can be done at runtime by
performing multiple aligned reads, but doing so introduces
runtime overhead. Emitting optimized code for aligned ac-
cesses substantially boosts application performance. WASM
binaries contain alignment information (e.g., the align at-
tribute) that we can use to optimize reads and writes. However,
the align attribute is only a hint, and as per the WASM spec-
ification, programs are expected to run correctly even with
incorrectly specified alignments [54]. In practice, WASM
binaries compiled by LLVM always contain the correct align-
ment information. By restricting the set of programs that we
run to those compiled by LLVM, we can leverage these compi-
lation hints safely to improve the performance of VectorVisor.
VectorVisor supports running programs with and without this
optimization using compiler-flags.

3.3.2 Memory Interleaving

GPUs have strict memory access rules to obtain optimal per-
formance. As described in Section 2.2, GPU kernels must
coalesce memory accesses to maximize memory bandwidth.
Doing so requires developers to interleave objects in memory,
such that adjacent threads access adjacent bytes, breaking the
abstraction of a flat memory model. Other aspects of the flat
memory model, such as process (or VM) memory isolation
are also absent on GPUs by design.

VectorVisor provides the abstraction of a flat memory
model to developers, automatically interleaving the address
space of underlying virtual machines (threads) on the GPU
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1 __kernel void wasm_entry (...) {
2 // Set up the stack , heap , buffers , ...
3 do {
4 /* call the next func/continuation */
5 switch (*entry_point) {
6 case 0:
7 ___start (...);
8 break;
9 default:

10 return;
11 }
12 // Check if we are done executing
13 } while(*sfp!=0 && *syscall_number==-2);
14 }

Figure 4: The trampoline function serves as the entry point to
each GPU kernel.

to provide both performance and security. This approach al-
lows existing programs to run, while also extracting the full
performance benefits of a GPU—assuming that running VMs
exhibit similar memory access patterns. Randomized memory
access patterns or significant program divergence can reduce
memory bandwidth. Figure 3 shows how memory is inter-
leaved across VMs in VectorVisor. Memory is organized into
cells of contiguous bytes. Cell addresses are computed using
the following pointer arithmetic (C operator precedence):

cell_addr=( o f f set
ileave )×(num_vms×ileave)+(vm_idx×ileave)+mem_base

Where the interleave (ileave) represents the byte-width of the
interleaving (e.g., 1, 4 or 8), the offset is the zero-indexed
WebAssembly address, and mem_base is the base address of
the allocated chunk of memory. Memory accesses are rewrit-
ten to operate on cells, with misaligned and larger (e.g., 8,
16-byte value) accesses requiring multiple operations. Our
approach enables us to support 1, 4, and 8-byte interleavings,
with larger interleavings typically achieving superior memory
bandwidth.

WASM memory is represented as a zero-indexed linear
array of bytes with pointers in the range of 0–232-1 and does
not expose virtual addresses to running VMs. The relative
addressing model WASM uses enables the compiler to con-
trol the virtual addresses of all memory reads and writes.
Our cell address computation prevents VMs from comput-
ing cell adresses which belong to other VMs— preventing
out-of-bounds accesses from corrupting or leaking data and
providing memory isolation by construction.

3.3.3 GPU Preemption

Section 2.1 described the limitations of GPU programming
models such as OpenCL and CUDA. Common features of
programs such as system calls, recursion, and indirect calls
vary in support—with system calls being absent from both
OpenCL and CUDA. To fully mimic the execution environ-
ment provided by a CPU in VectorVisor, we support all three
features. Implementing these features within OpenCL C re-
quires us to provide support for preempting running programs.
We provide support for preemption in VectorVisor by extend-

1 # 'c' is the called continuation
2 def example_fn(c, ...):
3 # context restore handler
4 switch (context):
5 case 0:
6 goto resume0;
7 case n:
8 goto resume_N;
9 default:

10 # Direct call , start from the top
11 # Indirect function call
12 switch(func_ptr):
13 case 0:
14 return c(example_fn , 0, resume0 , ...)
15 resume0:
16 case n:
17 return c(example_fn , 1, resume1 , ...)
18 resume1:
19 default:
20 trap;
21 # Optimized calls can be issued directly
22 call_example_func (...)
23 # Standard function call
24 return c(example_fn , 2, resume2 , ...)
25 resume2:
26 # Recursive function call]
27 # In this case example_fn == 3
28 return c(example_fn , 3, resume3 , ...)
29 resume3:
30 # System call
31 # These functions return control to the VMM
32 return c(example_fn , 4, resume4 , ...)
33 resume4:

Figure 5: Transformed Program Pseudocode example of how
different types function calls are implemented.

ing OpenCL C with support for continuations. Continuations
provide the abstraction of being able to pause and resume
programs at arbitrary points. To maximize the performance
of VectorVisor, we leverage several compiler optimizations
to reduce the overhead they introduce.

Continuations. Continuation-Passing Style [81] (CPS) is
a relatively uncommon programming style where functions
take in an additional parameter (the continuation), and instead
of returning a value call the provided continuation with the
return value. CPS with trampolining [27] is similar to stan-
dard CPS, with the difference being that function calls return
continuations instead of just calling the provided continuation.
A control operator (trampoline function), is used to repeatedly
call the returned continuations. Figure 4 shows the trampo-
line function used in VectorVisor, which is the main entry
point to each running GPU kernel. Implementing CPS with
trampolines in this manner enables VectorVisor to preempt
running GPU kernels at arbitrary locations—although we only
return control to the CPU when either every VM is finished
executing or when every VM is blocked on a system call. In
Figure 5 we see that the only difference between recursive, in-
direct, and standard calls is the returned continuation (which
encapsulates the program control state). This approach makes
it easy to bypass OpenCL C language-level restrictions and
provide support for recursive and indirect calls.

Compiler Optimizations. Naively implementing CPS with
trampolines enables support for system calls and recursion
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with large runtime overheads. To obtain better performance,
VectorVisor performs static analysis to minimize the size of
saved program contexts. We apply liveness analysis in addi-
tion to leveraging WASM type and control flow information
to enable (1) incremental context saving, (2) loop-invariant
code motion, and (3) WebAssembly-specific optimizations.

Liveness is associated with local usage inside WASM stack
frames, and we insert all context save and restore opera-
tions around control flow instructions (e.g., block, loop, br,
br_if, and end) and function (or system) calls. Runtime taint
tracking is used to further enhance our liveness estimates.

Stack frame contexts are saved incrementally—only saving
values written to since the previous context save operation.
Liveness estimates are used to minimize context sizes in addi-
tion to only restoring live values when resuming continuations
or unwinding stack frames. Loops without recursive or indi-
rect calls can be further optimized—with context saving and
restoring operations hoisted out of the loop. WASM function
type signatures are used to translate amenable indirect calls
into direct calls by filtering possible indirect call targets.

3.3.4 Profile-Guided Optimization

Minimizing the overhead of translating recursive and indi-
rect calls is key to running complex applications. Compiler
optimizations eliminate much of the overhead in the common-
case. Edge cases, such as heavy usage of indirect and recursive
calls in a tight loop remain a challenge. While recursion often
cannot be eliminated without restructuring programs, indi-
rect calls are easier to remove [25, 34]. Most indirect calls in
high-level languages have only one target—with on average
73.5% of indirect call sites in Java programs being monomor-
phic [59]. Despite aggressive monomorphization in the Rust
compiler [26], up to 37% of the most popular Rust libraries
reduce code size by not removing optimizable indirect calls
where possible [85]. Up to 98% of indirect calls in Java pro-
grams can be optimized out entirely [59].

We package a separate tool for instrumenting binaries, to
implement profile-guided optimization for VectorVisor. Each
program is instrumented and run using sample inputs rep-
resentative of the overall workload. Using profiler data, we
replace all indirect calls with less than 15 seen call targets
with direct calls. To avoid emitting indirect calls to handle
unseen targets, we instead emit panic handlers which check
for valid targets.

3.3.5 Soundness

VectorVisor performs a 1-to-1 translation for all operations in
input WebAssembly programs (e.g., stack operations, memory
access, arithmetic, control flow). Limitations on the soundness
of our approach come from (1) Compilation to WebAssembly
and (2) Optimizations.

Most common workloads can be recompiled to WebAssem-
bly without problems, but programs which rely on specific

x86 instructions (e.g., 80-bit floats), language implementation
details (e.g., undefined and implementation defined behavior),
and complex language runtimes with unimplemented features
(e.g., Go) can experience correctness issues.

Compiler-flags and tools (e.g., wasm-snip) are used to re-
place panic-related functions with unreachable statements.
Unrecoverable errors can be expensive to handle, and in most
cases replacing them with program aborts has no impact on
correctness. Profile-guided optimization (PGO) can reduce
indirect call counts, significantly improving performance in
some cases. Our implementation of PGO only includes func-
tion calls we observe as potential targets at indirect call sites,
aborting on unseen call targets. In practice, the indirect call
targets we observed did not vary significantly with user-input
beyond what we observed during profiling.

3.4 VMM
VectorVisor’s VMM handles all data transfer between the
running VMs on the GPU and CPU, as well as executing all
system calls. The VMM greatly simplifies the use of VectorVi-
sor by developers, avoiding the need to manage data transfer
manually or to batch incoming requests.

Support for dispatching system calls is provided through
the WebAssembly System Interface (WASI). We implement
two custom WASI system calls—which are used to create
a serverless-like event handler API for running VMs. Other
implemented calls are primarily used to initialize language
runtimes (e.g., reading environmental variables), support ran-
dom number generation, serve as synchronization barriers
(e.g., block on a subset of VMs), and perform simple IO (e.g.,
error logging).

Incoming requests are buffered using the request buffer,
while system calls use an alternate buffer, as shown in Fig-
ure 1. Double buffering adds some overhead, but enables
VectorVisor to overlap expensive network IO with on-GPU
execution time. Sufficiently compute-intensive workloads pre-
vent workloads from bottlenecking on the VMM, which can
process thousands of VMs per-CPU. VectorVisor supports us-
ing pinned memory transfers with multiple GPU vendors (e.g.,
NVIDIA, AMD) to further optimize data transfer speeds—
with vendor-specific optimizations [1, 4].

4 Evaluation
In this section, we present an evaluation of VectorVisor. First,
we discuss the efficiency of (1) our memory interleaving and
(2) system call implementation. Second, we explore a vari-
ety of modified and unmodified workloads to better under-
stand the tradeoff space of our novel approach to accelerating
programs. In several cases we show that we obtain superior
throughput-per-dollar against x86 CPUs. Breakdowns of the
end-to-end latencies of each benchmark are provided as well
to explain our results. Finally, we evaluate the efficiency of
our translation against handwritten CUDA baselines.
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Instance Name CPU GPU Cost/Hr
g4ad.xlarge Intel Cascade Lake AMD Radeon Pro V520 $0.3785
g4dn.xlarge Intel Cascade Lake NVIDIA T4 $0.526
g4dn.2xlarge Intel Cascade Lake NVIDIA T4 $0.752

g5.xlarge AMD EPYC 7002 NVIDIA A10G $1.006
g5.2xlarge AMD EPYC 7002 NVIDIA A10G $1.212
c5.xlarge Intel Cascade Lake N/A $0.17
c5a.xlarge AMD EPYC 7002 N/A $0.154

Table 1: Hardware Configurations. Prices as of 1/5/2023.

4.1 Methodology
Testbed. We evaluated VectorVisor using Amazon Web
Services (AWS). Five different VM types were used to
compare against x86-64 baselines, and an additional two
larger instances types were used to compare VectorVisor
against CUDA baselines. We provisioned three VMs with at-
tached GPUs (g4ad.xlarge, g4dn.xlarge, g5.xlarge), each with
4 vCPUs and 16 GiB of memory. Two additional compute-
optimized VMs were used for evaluating CPU performance
(c5.xlarge, c5a.xlarge), each with 8 GiB of memory and 4
vCPUs. Lastly, we used a single invoker VM (c5.8xlarge)
for sending requests. These instances were used to obtain
the results in Figures 8 and 9. Double extra large (2xl) in-
stances have 2× the memory and CPU of smaller (xlarge)
instances. These instances were used (in addition to xlarge
instances) to evaluate handwritten CUDA programs. CUDA
results which use 2xl instances can be found in Table 4. All
VMs are allocated in us-east-1, in the same availability
zone. Benchmarks are evaluated end-to-end over the network
with IO and system overheads included in all measurements.

Some hardware configurations could not be evaluated
due to AMD-specific bugs. AMD v520 GPUs, which are
the only cloud-available AMD GPU on AWS, are unsup-
ported in ROCm [21, 23] resulting in runtime crashes. Two
benchmarks (Strings-Go and Strings-AScript) are built with
WebAssembly-focused runtimes and do not have evaluated
x86-64 configurations. Detailed results for all system configu-
rations can be found in Tables 5 and 6 (Appendix).

Table 1 shows the hardware each VM has attached.
NVIDIA configurations use the latest CUDA 12 backend,
while AMD GPUs use ROCm 5.4.0 with the latest AMDGPU-
Pro driver. For our GPU instances, we do not run any fraction
of our workload on the available CPU cores to focus on eval-
uating GPU performance using VectorVisor. Undoubtedly, a
hybrid CPU/GPU deployment would be more cost-efficient.
We leave the exploration of heterogeneous deployments to
future work. VectorVisor runs each benchmark using a 4- or
8-byte memory interleaving.

Workloads. Workloads are run using a cross-platform
‘serverless-like’ event-loop. Figures 11, 12, and 13 (Appendix)
demonstrate how programs are written to run using our event-
loop with x86-64, WASM, and VectorVisor. Our benchmarks
evaluate VectorVisor using ‘as-is’ open-source library code in
addition to optimized code written to run more efficiently. We

explore the translation of lightweight (e.g., Rust) and complex
language runtimes featuring garbage collection such as Go
using TinyGo [22], and AssemblyScript [19]—a TypeScript-
like language. Our x86-64 baselines are compiled at -O3
with SIMD enabled. Two benchmarks (Blur-Bmp, PHash-
Modified) were manually rewritten to run natively using
NVIDIA CUDA APIs to explore the efficiency of our trans-
lation. Table 2 shows each benchmark, its category, whether
it features code that runs inefficiently in our system, whether
we had to modify the imported library, batch sizes, and the
total number of downloads on crates.io, a public repository
for Rust libraries [10]. Benchmarks are run for 10 minutes to
compute the average throughput (RPS).

Example Functions. Perceptual hashing is widely used
in industry, such as by Facebook [6, 7], to cross-reference
a given image against a database of images. We evaluate
an open-source implementation of Blockhash—a variation
on existing perceptual hashing algorithms [9, 90]. To further
evaluate the efficiency of our translation, we also evaluate a
modified blockhash library that we optimized to run more
efficiently using VectorVisor. Additionally, we evaluate a bill
generator which generates PDFs containing a set of purchased
items formatted with a default template. Both benchmarks use
mock data to simulate realistic workloads, with the hashing
benchmark using 200×200 randomly generated images and
the bill generation benchmark using 25 randomly generated
item names and prices with an attached image.

Microbenchmarks. We evaluate a set of common mi-
crobenchmarks, including image processing workloads (e.g.,
Gaussian image blur), cryptography (e.g., password-based
key derivation functions such as Scrypt and Pbkdf2), string
compression (LZ4), histogram computation (Histogram), and
string processing (e.g., stop word filtering and hashtag extrac-
tion). Our image processing, histogram, and cryptographic
benchmarks operate on realistic, synthetic, and random inputs.
We use the same parameters as Cisco type 8 passwords [20]
for Pbkdf2 and Litecoin parameters for Scrypt [15]. To sim-
ulate realistic workloads, the compression and string bench-
marks use as input a public dataset of tweets [41].

Baseline comparison. For our evaluation, we use two dif-
ferent baselines as points of comparison. First, for each of
our benchmarks we compile them to WebAssembly (WASM),
optimize them using wasm-snip and wasm-opt [17, 91], and
execute them using Wasmtime [18] (a popular WASM JIT
compiler). VectorVisor takes in the same WASM binary as
an input. Second, for each of our benchmarks we compile
and run them natively on an x86-64 CPU. This is the default
choice for many developers who choose to run applications
in the cloud, as most programs target x86-64. Each CPU
benchmark is evaluated with multiple threads executing in
parallel—proportional to the number of cores available.
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Features Scrypt Pbkdf2 Blur Blur PHash PHash Bill Histogram LZ4 Strings
Jpeg Bmp Modified PDF

Category Crypto. Crypto. Image Proc. Image Proc. Image Proc. Image Proc. Misc. Misc. Misc. Misc.
Reason for Inclusion M A M & A Alg. Uses Indirect Calls Alg. D A A D

Recursive or Indirect Code ××× ××× ××× ××× ××× ××× ×××
Unmodified Library Code ××× *

Batch Size (V520, T4, A10G) 2048, 4096, 6144 2048, 4096, 6144 1536, 3072, 4096 1536, 3072, 4096 1536, 3072, 4096 1536, 3072, 4096 1536, 3072, 4096 2048, 4096, 5120 1536, 3072, 4096 2048, 4096, 6144
Downloads 1.9M 12.4M 10.5M 10.5M 80k 0 10K 4.8M 298K 16K

Table 2: Details of evaluated benchmarks. We count benchmarks as containing recursive or indirect calls only if they execute
those calls in the critical path of the application. All-Time crates.io download counts are as of 1/5/2023. ‘M’ and ‘A’ represent
memory and arithmetically intensive benchmarks respectively. ‘D’ represents benchmarks with substantial divergence. ‘Alg’
represents benchmarks with significant algorithmic differences. *Bill-PDF uses a no-op system call as a barrier to mitigate heavy
program divergence, but does not modify imported libraries.
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4.2 System Performance
4.2.1 Copy Efficiency

Memory Bandwidth. To demonstrate that our memory in-
terleaving can efficiently utilize the high memory bandwidth
of GPUs, we evaluate five different memcpy implementations
which vary copy size (bytes copied per-loop iteration) and
loop unroll count. For each configuration we copy 1 MiB
of data (using volatile memory accesses to bypass caching
effects) from one array in memory to another non-aliased
array. Each benchmark is run 50 times, with a heap size of
3 MiB with 4096 (on T4) or 6144 (on A10G) VMs running
concurrently. Figure 6 shows that VectorVisor can achieve
close to 100% of the experimentally derived maximum mem-
ory bandwidth of the T4 [61] and 74% of the theoretical
memory bandwidth of the A10G [5]. We can see that larger
interleaves, loop unrolling, and instruction level parallelism
(ILP) [88] all have substantial impacts on memory bandwidth.
VectorVisor leverages the memory.copy and memory.fill
WASM intrinsics to insert optimized copy and fill functions
into programs.

Syscall Performance. System calls provide a simple, famil-
iar abstraction for developers to transfer inputs to and from
a GPU. However, performing per-VM system calls incurs
high data transfer overheads for smaller inputs. To evaluate
our system call implementation, we copy inputs to and from
the GPU, using batch sizes of 2048 (v520), 4096 (T4), and
6144 (A10G). Figure 7 shows the bandwidth for our VMM
excluding network IO. Native CUDA transfer speeds peak at
6.3 GB/s for the T4 and 12.9 GB/s for the A10G—for a single
large transfer. Despite high batching overheads, VectorVisor
obtains ∼25% of the max possible bandwidth for fine-grained
transfers of 256 KiB per-request using the T4. VectorVisor
additionally supports overlapping data transfers with running
GPU programs to avoid bottlenecks on VMM overhead.

4.2.2 Throughput
We evaluate VectorVisor’s throughput against native x86-64
and WebAssembly baselines—with x86-64 being our primary
baseline. WebAssembly numbers show the potential for het-
erogeneous deployments of VectorVisor in addition to show-
ing the overhead of using WebAssembly. Figure 8 shows the
best throughput for each configuration that we evaluated in
terms of requests per second (RPS). AMD-specific issues,
detailed in Section 4.1, prevent some configurations from
being evaluated. Detailed throughput results for all system
configurations can be found in Table 5 (Appendix).

VectorVisor outperforms x86 and WebAssembly for all
but one benchmark (LZ4). We see high variation in through-
put for each benchmark across our configurations. Device
architecture (e.g., Turing vs. Ampere vs. RDNA 1), memory
interleave size, backend compiler optimizations, and program
characteristics have outsized impacts on performance. To eval-
uate the impact of program characteristics such as recursive
and indirect function calls, we make use of profile-guided op-
timization (PGO) to remove indirect calls. Table 3 shows that
we can remove all indirect calls from our benchmarks, reduc-
ing unoptimized function calls by up to 3430×. Removing
all indirect calls and inlining functions where possible obtains
mixed results. Bill-PDF improves in throughput by 1.3×,
while other benchmarks are 10-20× slower. Function inlining
caused by removing indirect calls can result in expensive reg-
ister spilling. Counterintuitively, not removing indirect calls
can improve throughput despite the context saving overhead.
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Figure 8: Normalized throughput (average RPS of each benchmark). Results are normalized to the x86-64 baseline for each
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Scrypt Pbkdf2 Blur-Jpeg Blur-Bmp PHash PHash-Modified Bill-PDF Histogram LZ4 Strings Strings-Go Strings-AssemblyScript
# Total Slowcalls 52062 4828 4023 1416 11460 1410 285632 4117086 804807 43941 2172120 137212574

# Total Slowcalls w/PGO 206 1211 206 213 7844 206 2023 206 206 43744 2990690 143397289
# Indirect Calls 1 5228 162007 2 207031 1 211656 1 1 2 2869093 820142

# Indirect Calls w/PGO 0 0 0 0 0 0 0 0 0 0 0 0

Table 3: Profile-Guided Optimization Results. Cumulative indirect and unoptimized call counts for 200 invocations of each
instrumented WASM function. These benchmarks were run locally using a 16-core, 64 GB RAM machine running Ubuntu 18.04.

Complex runtimes such as Go and AssemblyScript have sig-
nificantly higher overhead than Rust on x86-64 WASM base-
lines (on average 0.41× the throughput of the Rust baseline
for Strings-Go using the T4). Runtime support for garbage
collection, reflection, and compiler design choices in Tiny-
Go/AssemblyScript all contribute to the observed overheads.

4.2.3 Throughput-per-dollar
Throughput as a metric is insufficient to evaluate VectorVisor.
Improving throughput for data parallel workloads by allocat-
ing more resources (VMs) represents the status quo. Instead,
we show that VectorVisor can achieve greater efficiency—
improving throughput using fewer resources. Measuring effi-
ciency requires normalizing performance across both CPUs
and GPUs, which we accomplish using throughput-per-dollar.
It is computed by dividing the requests-per-second (RPS)
by the cost of each respective instance per-hour using on-
demand pricing in us-east-1. On-demand prices are used
as a conservative measure of the cost benefits of VectorVisor.
Spot instance pricing can be cheaper, further improving the
throughput-per-dollar of GPU (T4) instances vs CPU (Intel)
instances by 1.49× (reported as of 1/5/2023).

Figure 9 shows the best throughput-per-dollar results for
each configuration. Detailed throughput-per-dollar results for
all system configurations can be found in Table 6 (Appendix).
VectorVisor outperforms x86 instances for four benchmarks
(Scrypt, Blur-Bmp, PHash-Modified, Bill-PDF), and on all

but two benchmarks versus WebAssembly. Throughput-per-
dollar results are overall lower than our throughput results in
Section 4.2.2. Leveraging GPU acceleration requires substan-
tial throughput improvements to offset the high cost of GPU
hardware (e.g., 3.42× for the T4 vs. AMD x86-64 CPUs).
Bottlenecks on application-level divergence (e.g., Strings)
and data transfer overheads (e.g., LZ4 and Histogram) result
in lower throughput and throughput-per-dollar results.

In three out of the four benchmarks where VectorVisor sur-
passes our x86-64 baselines, the T4 outperforms the A10G,
even though it belongs to an earlier generation of GPUs (e.g.,
Turing vs. Ampere). Despite differences in GPU hardware,
the best predictor of superior throughput-per-dollar with Vec-
torVisor is the ratio of the global memory size (e.g., the num-
ber of VMs that can fit) to cost. Compared to the A10G and
v520, the T4 packs 27.5% and 43% more VMs-per-dollar
respectively. Workloads such as Scrypt, which leverage hard-
ware differences like the larger memory bandwidth of the
A10G, can break this trend.

4.2.4 Latency
VectorVisor runs many instances of a program in parallel,
improving total throughput, but not latency. Batches of re-
quests have higher on-device execution times than x86-64,
ranging from 84-1040× longer using the T4—limiting usage
to non-latency sensitive applications.
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Figure 10: Per-benchmark latency breakdown of execution
time, VMM overhead (e.g., syscall overhead), continuations
overhead (e.g., context saving/restoring), and network IO.
Breakdowns correspond to the best performing configura-
tions with PGO disabled from Table 5.

4.3 Latency breakdown
Figure 10 shows the end-to-end (E2E) latency breakdown for
each benchmark. Batch sizes, which impact request latency,
can be found in Table 2. On-device execution time dominates
the E2E latency for most benchmarks, with the histogram
benchmark being the exception. We see that supporting pre-
emption using continuations has low overhead, varying be-
tween <1% (PHash-Modified) and 19% (Blur-Bmp) of the
on-device execution time. Similarly, by overlapping compute
with VMM and network IO VectorVisor significantly reduces
related overheads. Benchmarks with a low operational inten-
sity (Ops/Byte) (e.g., Histogram, LZ4) which cannot overlap
on-device execution time with batch formation as efficiently
are more likely to bottleneck on VMM or network IO.

GPU Platform Instance Name Benchmark Throughput Throughput/$
NVIDIA T4 VectorVisor g4dn.xlarge Blur-Bmp 804.83 1530.10

NVIDIA A10G VectorVisor g5.xlarge Blur-Bmp 1365.84 1357.69
NVIDIA T4 VectorVisor g4dn.xlarge PHash-Modified 384.32 730.65

NVIDIA A10G VectorVisor g5.xlarge PHash-Modified 608.02 604.40

NVIDIA T4 CUDA g4dn.xlarge Blur-Bmp 576.28 1095.59
NVIDIA T4 CUDA g4dn.2xlarge Blur-Bmp 1118.95 1487.96

NVIDIA A10G CUDA g5.xlarge Blur-Bmp 652.96 649.06
NVIDIA A10G CUDA g5.2xlarge Blur-Bmp 1250.33 1031.62

NVIDIA T4 CUDA g4dn.xlarge PHash-Modified 408.85 777.27
NVIDIA T4 CUDA g4dn.2xlarge PHash-Modified 821.15 1091.95

NVIDIA A10G CUDA g5.xlarge PHash-Modified 462.27 459.52
NVIDIA A10G CUDA g5.2xlarge PHash-Modified 896.35 739.56

Table 4: Performance of handwritten CUDA benchmarks.

4.3.1 CUDA Comparison
Leveraging GPU acceleration typically involves manually
breaking down a program into fine-grained tasks which can
be parallelized—speeding up individual invocations of a func-
tion. In contrast, VectorVisor runs many instances of the same
program in parallel, improving throughput but not latency.
To evaluate the efficiency of our translation, we manually
rewrote two benchmarks (Blur-Bmp and PHash-Modified)
using CUDA. CUDA baselines incur additional CPU over-
head from increased kernel launch overheads and running a
fraction of the workload on the CPU. To fairly evaluate these
baselines, we benchmark them using both xlarge and 2xlarge
instances with additional CPUs (Table 1).

We see in Table 4 that VectorVisor slightly outperforms a
handwritten CUDA Gaussian blur function, and obtains 67%
of the throughput-per-dollar of our CUDA PHash function.
PHash-Modified has higher VMM overhead than Blur-Bmp
(35% vs 12% of the E2E latency) which affects overall effi-
ciency.

5 Discussion
Workload Characterization. Identifying ideal workloads for
VectorVisor is key to improving the cost efficiency of real
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applications. Ideal workloads minimize divergent execution,
recursion, indirect calls, and are compute-bound. Future work
can incorporate model-based approaches [79] to identifying
acceleration opportunities for VectorVisor.

Evaluation Limitations. We use both throughput and
throughput-per-dollar as evaluation metrics. Throughput-per-
dollar is a powerful metric that enables us to compare the
end-to-end efficiency of VectorVisor, which considers system
complexities as well as the capital and operational cost im-
plications of running throughput-oriented workloads. Cloud
providers allow customers to insure themselves against high
variation in hardware pricing [62, 63], providing a steady
baseline cost (at a premium). On-premises hardware configu-
rations can be less expensive over long periods of time, for
those willing to pay higher up-front costs. Despite shortcom-
ings, cost-based efficiency metrics provide tangible baselines.

System Call Implementations. Providing support for sys-
tem calls using continuations was key to running realis-
tic workloads using VectorVisor. Systems such as GPUfs,
GPUnet, and Berkeley Borph [76–78, 82, 86] instead provide
support using a more performant RPC-like interface using
vendor-specific APIs or custom drivers. RPC-style interfaces
rely on the ability to perform concurrent and consistent CPU–
GPU memory accesses. OpenCL 2.0 in theory enables this
with fine-grained buffer SVM [3, 53]. In practice, support
for fine-grained SVM is mixed—with NVIDIA OpenCL 3.0
not supporting the API and AMD providing partial support 2.
Continuations provide a cross-platform and reasonably perfor-
mant approach to supporting system call support for GPUs.

6 Related Work
Continuations. Continuations are often used by compilers
to support complex control flow operations such as excep-
tions and preemption [27, 28, 30, 71, 84]. VectorVisor uses
continuations to efficiently provide support for preemption
and complex control flow on GPUs.

GPU Preemption. GPU kernel preemption can be sup-
ported through compiler-based approaches that partition (or
slice) programs into chunks [29, 35, 39, 89, 93, 94], or with
hardware/driver support [13, 68, 83, 86].

High-Level GPU Languages. CUDA or OpenCL require
developers to write programs using low level abstractions.
High level language approaches [2,31,44,48,52,55,57,72,92]
make it easier to accelerate existing programs by reusing exist-
ing codebases. Common language features such as dynamic
memory allocation, garbage collection, reflection, and recur-
sion are often absent. Unlike VectorVisor, code often must be
rewritten to explicitly leverage parallel APIs.

Domain-Specific GPU Systems and Languages. Pro-
gramming languages designed for domain-specific workloads
(DSLs) [24,38,40,46,58,73–75,80] can offer substantially im-
proved performance over general-purpose programming lan-

2Fine-grained SVM support is present, but not SVM Atomics.

guages. DSLs obtain superior performance through language
restrictions, forcing developers to express programs using
specific syntax or function calls. While DSLs can efficiently
accelerate specific workloads, they trade off performance for
programmability—e.g., many workloads cannot be expressed
using restrictive DSLs. Similar to DSLs, domain-specific sys-
tems can significantly improve performance for throughput-
oriented workloads [32, 42, 56, 87]. Domain-specific systems
vectorize common workloads (e.g., image processing, ma-
chine learning, database operations) using handwritten GPU
kernels. Other systems manually vectorize functions from
(non GPU-specific) DSLs (i.e. SQL) [50, 51, 69].

Vectorized Program Translation. Systems that abstract
a SIMT or SIMD lane as a VM often target restricted use-
cases (e.g., fuzz testing) [37, 45, 47, 49]. VectorVisor’s design
and implementation notably differ from prior work, offering
superior GPU language, runtime, and hardware support.

7 Conclusion
VectorVisor is a research prototype which demonstrates that
applications originally written for CPUs can be directly
run on GPUs without significant modifications. Not only is
such GPU execution possible, but it can in fact yield supe-
rior throughput-per-dollar versus compute-optimized x86-64
CPUs in the cloud.

Binary translation for GPUs is an exciting and predomi-
nantly unexplored area of research, with many potential appli-
cations. VectorVisor shows the viability of our new approach
to parallelism, opening up the area to future research.
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A Appendix

A.1 Tables

System Platform PGO Interleave Scrypt Pbkdf2 Blur
Jpeg

Blur
Bmp

PHash PHash
Mod.

Bill
PDF

Histogram LZ4 Strings (Rust / Go / AScript)

VectorVisor AMD v520 Y 4 32.27 N/A 202.24 368.64 70.28 77.85 N/A 832.43 449.89 N/A / N/A / N/A
VectorVisor AMD v520 Y 8 29.29 N/A 245.76 N/A 79.67 89.86 N/A 848.31 N/A N/A / N/A / N/A
VectorVisor NVIDIA T4 N 4 109.32 71.09 209.94 726.59 129.18 341.73 339.06 1570.90 818.90 9535.47 / 4112.16 / 861.24
VectorVisor NVIDIA T4 N 8 160.25 1355.05 177.07 804.83 140.44 367.31 380.55 1730.05 1114.30 10242.08 / 3735.93 / 826.29
VectorVisor NVIDIA T4 Y 4 108.51 63.68 50.66 720.79 10.44 349.98 398.26 1827.91 371.75 9077.32 / 4204.24 / 845.07
VectorVisor NVIDIA T4 Y 8 179.54 59.49 60.59 728.86 10.90 384.32 497.42 1676.06 486.94 10332.82 / 3842.04 / 841.04
VectorVisor NVIDIA A10G N 4 297.29 2596.52 93.30 1237.87 153.99 546.35 480.29 886.25 1527.21 24543.24 / 8438.01 / 1781.76
VectorVisor NVIDIA A10G N 8 389.08 168.56 69.52 1365.84 158.99 592.87 509.71 484.22 1490.67 25981.84 / 8030.55 / 1965.93
VectorVisor NVIDIA A10G Y 4 297.08 145.66 71.73 1166.44 14.81 533.85 308.62 2356.72 722.01 24109.98 / 8377.06 / 2398.01
VectorVisor NVIDIA A10G Y 8 397.10 143.55 127.47 1163.57 20.87 608.02 619.04 517.97 945.06 26598.05 / 8302.31 / 1977.61

CPU (x86-64) AMD N/A N/A 33.89 1233.44 176.63 147.14 66.05 68.02 111.18 1140.20 2235.93 11002.53 / N/A / N/A
CPU (x86-64) Intel N/A N/A 34.27 149.33 148.53 135.43 55.83 58.00 85.95 1144.96 1987.63 10182.98 / N/A / N/A
CPU (WASM) AMD N/A N/A 5.33 52.67 33.81 36.13 19.86 25.78 24.97 697.94 700.77 1536.22 / 1450.18 / 485.62
CPU (WASM) Intel N/A N/A 4.35 46.49 25.83 17.33 12.13 13.70 21.44 659.40 596.05 1431.18 / 1375.47 / 514.84

Table 5: Average requests per second (RPS) of each benchmark. Bold values correspond to the best throughput.

System Platform PGO Interleave Scrypt Pbkdf2 Blur
Jpeg

Blur
Bmp

PHash PHash
Mod.

Bill
PDF

Histogram LZ4 Strings (Rust / Go / AScript)

VectorVisor AMD v520 Y 4 85.27 N/A 534.32 973.95 185.68 205.69 N/A 2199.28 1188.61 N/A / N/A / N/A
VectorVisor AMD v520 Y 8 77.38 N/A 649.30 N/A 210.49 237.41 N/A 2241.24 N/A N/A / N/A / N/A
VectorVisor NVIDIA T4 N 4 207.84 135.16 399.13 1381.34 245.58 649.67 644.60 2986.51 1556.85 18128.26 / 7817.80 / 1637.33
VectorVisor NVIDIA T4 N 8 304.67 2576.15 336.63 1530.10 266.99 698.31 723.48 3289.07 2118.43 19471.63 / 7102.54 / 1570.90
VectorVisor NVIDIA T4 Y 4 206.30 121.06 96.31 1370.32 19.85 665.35 757.15 3475.12 706.74 17257.26 / 7992.86 / 1606.60
VectorVisor NVIDIA T4 Y 8 341.32 113.11 115.20 1385.66 20.73 730.65 945.67 3186.43 925.75 19644.15 / 7304.26 / 1598.94
VectorVisor NVIDIA A10G N 4 295.52 2581.03 92.74 1230.48 153.07 543.09 477.42 880.96 1518.10 24396.86 / 8387.68 / 1771.13
VectorVisor NVIDIA A10G N 8 386.76 167.56 69.11 1357.69 158.04 589.33 506.67 481.33 1481.78 25826.88 / 7982.65 / 1954.21
VectorVisor NVIDIA A10G Y 4 295.31 144.79 71.30 1159.48 14.72 530.66 306.78 2342.66 717.70 23966.18 / 8327.10 / 2383.71
VectorVisor NVIDIA A10G Y 8 394.73 142.69 126.71 1156.63 20.74 604.40 615.35 514.88 939.43 26439.41 / 8252.79 / 1965.81

CPU (x86-64) AMD N/A N/A 220.08 8009.37 1146.95 955.45 428.87 441.67 721.94 7403.91 14519.04 71444.98 / N/A / N/A
CPU (x86-64) Intel N/A N/A 201.60 878.40 873.70 796.63 328.39 341.18 505.61 6735.05 11691.97 59899.89 / N/A / N/A
CPU (WASM) AMD N/A N/A 34.60 342.03 219.52 234.62 128.97 167.39 162.16 4532.09 4550.45 9975.48 / 9416.76 / 3153.38
CPU (WASM) Intel N/A N/A 25.58 273.47 151.95 101.95 71.34 80.58 126.13 3878.82 3506.18 8418.72 / 8091.03 / 3028.45

Table 6: Benchmark Throughput-per-Dollar. Values correspond to the average RPS of each benchmark normalized to instance
cost. Bold values correspond to the best throughput-per-dollar.
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A.2 Rust Example

1 #[macro_use]
2 extern crate lazy_static;
3 // Import existing open -source libraries!
4 use pdf_writer ::*;
5 use pdf_writer::types::{ActionType , AnnotationType , BorderType};
6 use std::fs::File;
7 use std::io::Write;
8 use std::time::Instant;
9 // Import our custom 'serverless' runtime. We use this in our x86 and WASM benchmarks as well.

10 // WASM benchmarks run the same binary that VectorVisor does!
11 use wasm_serverless_invoke::wasm_handler ::*;
12 use wasm_serverless_invoke::wasm_handler::WasmHandler;
13 use wasm_serverless_invoke::wasm_handler::SerializationFormat::MsgPack;
14 use serde::Deserialize;
15 use serde::Serialize;
16 // Image and compression libraries
17 use image::{ColorType , GenericImageView , ImageFormat};
18 use miniz_oxide::deflate::{compress_to_vec_zlib , CompressionLevel};
19 // Include a sample template image for our PDF footer
20 lazy_static! {
21 static ref EMBED_IMAGE: &'static [u8] = include_bytes!("test.png");
22 }
23 // Syntactic sugar for (de)serializing JSON/MsgPack inputs
24 #[derive(Debug, Deserialize)]
25 struct FuncInput {
26 name: String,
27 purchases: Vec<String>,
28 price: Vec<f64>, // Typically prices should not be encoded as floats , we do this for simplicity.
29 }
30 #[derive(Debug, Deserialize)]
31 struct BatchInput {
32 inputs: Vec<FuncInput >
33 }
34 #[derive(Debug, Serialize)]
35 struct FuncResponse {
36 resp: Vec<u8>
37 }
38 #[derive(Debug, Serialize)]
39 struct BatchFuncResponse {
40 resp: Vec<FuncResponse >
41 }
42 #[inline(never)]
43 fn makePdf(event: FuncInput) -> Vec<u8> {
44 // Perform PDF formatting , image manipulation , and compression to generate a valid PDF
45 }
46 fn batch_genpdf(inputs: BatchInput) -> BatchFuncResponse {
47 let mut results = vec![];
48 for input in inputs.inputs {
49 results.push(FuncResponse { resp: makePdf(input) });
50 // Bill -PDF is the only benchmark to use system calls as synchronization barriers
51 unsafe { vectorvisor_barrier() }; // We can wait on arbitrary subsets of VMs (unlike OpenCL barrier (...))
52 }
53 return BatchFuncResponse{ resp: results };
54 }
55 fn main() {
56 // Specify input format type and buffer sizes
57 let handler = WasmHandler::new(&batch_genpdf);
58 // Starts the event -loop and encapsulates serverless_invoke/serverless_response
59 handler.run_with_format (1024*512, MsgPack);
60 }

Figure 11: Bill-PDF. This benchmark performs PDF processing, image manipulation, and compression.
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A.3 Golang Example

1 package main;
2
3 // define our system call interface
4 // #include "serverless.c"
5 import "C"
6 import (
7 // Import JSON + string manipulation libraries
8 "github.com/json -iterator/tinygo"
9 "unsafe"

10 "strings"
11 )
12
13 //go:generate go run github.com/json -iterator/tinygo/gen
14 type Payload struct {
15 Tweets []string `json:"tweets"`
16 }
17 //go:generate go run github.com/json -iterator/tinygo/gen
18 type Response struct {
19 Tokenized [][]string
20 Hashtags [][]string
21 }
22 // Go doesn't provide Map/Filter for us, so we use our own implementation
23 func Map[T, U any](ts []T, f func(T) U) []U {
24 ...
25 }
26 func Filter(vs []string, f func(string) bool) []string {
27 ...
28 }
29 func main() {
30 json := jsoniter.CreateJsonAdapter(Payload_json{}, Response_json{})
31 // Use this as a set, track all stopwords
32 stopwordSet := make(map[string]bool)
33 for _, word := range stopWords {
34 stopwordSet[word] = true
35 }
36 input_buf := make([]byte, 1024*450) // buffer for raw inputs from VectorVisor
37 for { // serverless_invoke is the system call used for transferring inputs from the host (CPU) to the GPU
38 in_size := C.serverless_invoke((*C.char)(unsafe.Pointer(&input_buf[0])), 1024*450)
39 if in_size == 0 { // if in_size == 0, then this VM is blocked off and has no input for this batch
40 fakeaddr := uintptr(0x0) // serverless_response copies inputs from the GPU back to the CPU.
41 C.serverless_response((*C.char)(unsafe.Pointer(fakeaddr)), 0)
42 continue
43 }
44 var input Payload;
45 json.Unmarshal(input_buf[0:in_size], &input);
46 // First tokenize each tweet []string --> [][]string
47 ...
48 // Now process each tweet , filtering out stop words
49 ...
50 // Get the hashtags , we will add them as we see them
51 var tags = make([][]string, 0)
52 ...
53 var response Response; // create a JSON response and return it!
54 response.Tokenized = tokenized;
55 response.Hashtags = tags;
56 bytes , _ := json.Marshal(response);
57 C.serverless_response((*C.char)(unsafe.Pointer(&bytes[0])), (C.uint)(len(bytes)))
58 }
59 }

Figure 12: Strings-Go. Tokenize some input tweets and return the hashtags. TinyGo (https://tinygo.org/docs/reference/lang-
support/) provides us with a conservative mark and sweep garbage collector, limited runtime reflection and goroutine support.
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A.4 AssemblyScript Example

1 import { Console , FileSystem , Descriptor } from "as-wasi/assembly"; // Import needed syscalls
2 import { JSON , JSONEncoder } from "assemblyscript -json/assembly"; // Import a JSON encoder/decoder
3 import { listen } from "./env"; // Import our event -driven runtime
4 import { stopWords , initSet , getSet } from "./stop"; // Import a dataset of stopwords
5 function abort(message: usize , fileName: usize , line: u32 , column: u32): void {
6 unreachable() // needed for the AssemblyScript runtime
7 }
8 initSet(); // init our set of "stop words"
9 let set: Set<string > = getSet();

10
11 // TypeScript -like syntax for GPU programing!
12 function process_tweets(input: JSON.Obj): Uint8Array | null {
13 let tweets: JSON.Arr | null = input.getArr("tweets");
14 if (tweets != null) {
15 let strTweets: string[] = tweets._arr.map<string >((val: JSON.Value): string => val.toString());
16 // Split each tweet (tokenize)
17 let tokenize: string[][] = strTweets.map<string[]>((val: string): string[] => val.split(" "));
18 // Remove empty values and stop words
19 let filtered: string[][] = tokenize.map<string[]>((arr: string[]): string[] =>
20 arr.filter((word: string): bool => {
21 if (set.has(word)) {
22 return false;
23 } else {
24 return true;
25 }
26 }));
27 // Get the array of hashtags for each tweet
28 let hashtags: string[][] = filtered.map<string[]>((tweet: string[]): string[] =>
29 tweet.filter((word: string): bool => {
30 if (word.charAt(0) == '#' && word.charAt(1) != "") {
31 return true;
32 } else {
33 return false;
34 }
35 }));
36 let encoder = new JSONEncoder(); // encode a JSON response
37 encoder.pushArray("tokenized");
38 for (let tweet_idx = 0; tweet_idx < filtered.length; tweet_idx++) {
39 ...
40 }
41 encoder.popArray();
42 encoder.pushArray("hashtags");
43 for (let tweet_idx = 0; tweet_idx < hashtags.length; tweet_idx++) {
44 ...
45 }
46 encoder.popArray();
47 let json: Uint8Array = encoder.serialize();
48 return json;
49 }
50 // else we failed somehow...
51 return null;
52 }
53 listen(1024*512, process_tweets); // Starts the event -loop and encapsulates serverless_invoke/serverless_response

Figure 13: Strings-AssemblyScript. Same as Strings+Strings-Go, but with different syntax. Support for incremental garbage
collection is provided.
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