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Deployment How to you deploy networks efficiently and quickly?

Biggest Challenges

Interoperability How do you go from O(N2) to O(1)?

Safety How do you reliably grow a serving network safely?

Scale How do you manage a vast, global network?
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Context: What is MALT?
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MALT*
● A language to model network topology, 

at multiple levels of abstraction
● Entity/relationship graph

○ Topology, taxonomy, state
● Versioned, immutable, sharded

MALTShop
● Model storage system
● Replicated

What is MALT?

*Mogul et al. “Experiences with Modeling Network Topologies 
at Multiple Levels of Abstraction,” NSDI 2020
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Example models available at github
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What is MALT used for?

MALT 
models

Model Query 
Service
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And many, many more …
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Model-Generation and 
Management
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Model Design Service

MALT Shop

MALTs V4.0 ...
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MALTs V4.0 MALTs V4.0

Front-end for workflows to mutate current and future models
● Maintains a Unified Intent Model (UIM)
● Generates intent-delta for each change
● Synchronization point
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Model Build Service

Distributed data-flow graph execution engine
● “Compiles” intent into concrete models
● Operates on: (1) Data (mostly MALT), (2) Rules
● Input-dependent, stateful
● Caching

MALTShop
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Model Query Service

Model Profiles
● Profile Evolution
● “Semantically equivalent” models

Semantic and Canned Queries 
● Insulate clients from schema details 

and schema changes Example queries: 
● “What is the set of enabled 

interfaces on switch X?”
● “What are the BGP peers of 

fabric Y at time T?”

Connected Originates Terminates

Port A Port B

Link X

Link Y

Profile N

Profile N+1

Port A Port B
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TopoPlan

● Planning Service to manage Future Network Topology
○ Analogous to a Version Control System (VCS)

● Plan: Similar to a commit branch
○ Maintain “plan of record,” as well as side plans and what-ifs

● PlanPoint: Intent Delta, similar to a commit
● Build service can evaluate at any point 

Intent 
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Experiences / Case-Studies
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Deadzone Reduction

● Deployment projects are long-lived
● Deadzones: Artificial serialization of projects
● Detailed planning support

a. Separates future network state from operational models
b. Allows execution pipelining

● Benefit: streamlined deployment execution

Migration A

Fabric Expansion B

Augment C

After Savings

Migration A Augment CFabric Expansion BBefore
Execution time

Planning model

Turnup model
No dependency
Enforced dependency

Deadzone Deadzone
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WAN Change Management

Datacenter vs. WAN networks
● DCs (mostly) independent
● WAN is globally interdependent

Project Dependency Management
● Enables project concurrency
● Surface impact of plan-change
● Execution sequence resilience
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Summary and Takeaways
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Deployment Detailed planning support, with dependency tracking

Summary

Interoperability Common modeling language, with profile evolution

Safety Validate network invariants, as early as possible

Scale Automate, automate, automate


