
Proprietary + Confidential

Mohammad Al-Fares*, Virginia Beauregard*, Kevin Grant*, Angus Griffith*, Jahangir Hasan*, Chen Huang*, Quan Leng*,
Jiayao Li*, Alexander Lin*, Zhuotao Liu‡, Ahmed Mansy*, Bill Martinusen†, Nikil Mehta*, Jeffrey C. Mogul*, Andrew Narver*,
Anshul Nigham*, Melanie Obenberger†, Sean Smith§, Kurt Steinkraus*, Sheng Sun*, Edward Thiele*, Amin Vahdat*

*Google †Formerly at Google ‡Tsinghua University §Databricks

Change Management in Physical
Network Lifecycle Automation

USENIX ATC 2023 – Deployed Networking

Google Cloud
Platform

Regions, PoPs, and network

Current region
with 3 zones

Future region
with 3 zones NetworkEdge point

of presence

Google Datacenter in Hamina, Finland

Proprietary + ConfidentialProprietary + Confidential

Deployment How to you deploy networks efficiently and quickly?

Biggest Challenges

Interoperability How do you go from O(N2) to O(1)?

Safety How do you reliably grow a serving network safely?

Scale How do you manage a vast, global network?

Proprietary + ConfidentialProprietary + Confidential

Context: What is MALT?

Proprietary + ConfidentialProprietary + Confidential

MALT*
● A language to model network topology,

at multiple levels of abstraction
● Entity/relationship graph

○ Topology, taxonomy, state
● Versioned, immutable, sharded

MALTShop
● Model storage system
● Replicated

What is MALT?

*Mogul et al. “Experiences with Modeling Network Topologies
at Multiple Levels of Abstraction,” NSDI 2020

Network A Network B

Link X

Originates
Terminates

Planning
View

Block 1 Block 2 Block N

DCNI

…

Connected

Fabric
View

Rack 1

Switch 1

Switch N

SDN
Domain 1

Contains
Controls

Entity
View

Example models available at github

Proprietary + ConfidentialProprietary + Confidential

What is MALT used for?

MALT
models

Model Query
Service

SDN config
generator

Switch config
generator

Paths between
fabrics X and Y?

Enabled
protocols on

switch S?

Network link
repairs

Physical devices
spanned by link L?

Materials
ordering

New fibers for
deployment D?

Datacenter
technicians

Port wiring for
device D and

peers?

High-availability
storage replicator

One-hop-connected
off-site peers for

cluster C?

Fleet efficiency
dashboard

Deployed capacity
between racks P

and Q?

And many, many more …

Proprietary + ConfidentialProprietary + Confidential

Model-Generation and
Management

Proprietary + ConfidentialProprietary + Confidential

Model Design Service

MALT Shop

MALTs V4.0 ...

Planning Service

Design Service

intent Deltas

A1 A2 A3
Future Plans

The PoR Plan B1 A3A1 C2 A2 ...
Commit

MALT Models
(both Planning and HEAD)

Promote
(to HEAD)

Build Service
(Model Producers)

Query
 Service

Model Writer

Evaluate
(Planned)

Read

Model Reader

Write

MALTs V4.0 MALTs V4.0

Front-end for workflows to mutate current and future models
● Maintains a Unified Intent Model (UIM)
● Generates intent-delta for each change
● Synchronization point

Proprietary + ConfidentialProprietary + Confidential

Model Build Service

Distributed data-flow graph execution engine
● “Compiles” intent into concrete models
● Operates on: (1) Data (mostly MALT), (2) Rules
● Input-dependent, stateful
● Caching

MALTShop

Build Worker

Build 1: B
Build 2: D

F

G

D

H

N

Build 2

Build Leader
Build Worker

Build 1: C

<empty>

Build Worker

Build 2: N

<empty>

Worker Pool
Build Leader

Build 1A

B

D E

C

Proprietary + ConfidentialProprietary + Confidential

Model Query Service

Model Profiles
● Profile Evolution
● “Semantically equivalent” models

Semantic and Canned Queries
● Insulate clients from schema details

and schema changes Example queries:
● “What is the set of enabled

interfaces on switch X?”
● “What are the BGP peers of

fabric Y at time T?”

Connected Originates Terminates

Port A Port B

Link X

Link Y

Profile N

Profile N+1

Port A Port B

Proprietary + ConfidentialProprietary + Confidential

TopoPlan

● Planning Service to manage Future Network Topology
○ Analogous to a Version Control System (VCS)

● Plan: Similar to a commit branch
○ Maintain “plan of record,” as well as side plans and what-ifs

● PlanPoint: Intent Delta, similar to a commit
● Build service can evaluate at any point

Intent
Model

Plan of Record
PlanPoint 1

Intent patch
“Add 5 units
from A to B”

Head
 Previous

Head

Side plan 1

Side plan 2

PlanPoint 2

Intent patch
“Create

Network C”

PlanPoint 3

Intent patch
“Add 10 units
from A to B”

PlanPoint 4

Intent patch
“Remove

Network D”

Proprietary + ConfidentialProprietary + Confidential

Experiences / Case-Studies

Proprietary + ConfidentialProprietary + Confidential

Deadzone Reduction

● Deployment projects are long-lived
● Deadzones: Artificial serialization of projects
● Detailed planning support

a. Separates future network state from operational models
b. Allows execution pipelining

● Benefit: streamlined deployment execution

Migration A

Fabric Expansion B

Augment C

After Savings

Migration A Augment CFabric Expansion BBefore
Execution time

Planning model

Turnup model
No dependency
Enforced dependency

Deadzone Deadzone

Proprietary + ConfidentialProprietary + Confidential

WAN Change Management

Datacenter vs. WAN networks
● DCs (mostly) independent
● WAN is globally interdependent

Project Dependency Management
● Enables project concurrency
● Surface impact of plan-change
● Execution sequence resilience

Oregon
Singapore

Taipei PP1: Decom X linksPP2: Augment Y links

Port-constrained

Plan of
Record

PlanPoint 1

Decom X links
from Taipei to

Oregon

PlanPoint 2

Add Y links
from Taipei to

Singapore

Dependency

Proprietary + ConfidentialProprietary + Confidential

Summary and Takeaways

Proprietary + ConfidentialProprietary + Confidential

Deployment Detailed planning support, with dependency tracking

Summary

Interoperability Common modeling language, with profile evolution

Safety Validate network invariants, as early as possible

Scale Automate, automate, automate

