
Decentralized and Stateful Serverless
Computing on the Internet Computer

Blockchain

Maksym Arutyunyan, Andriy Berestovskyy, Adam Bratschi-Kaye, Ulan Degenbaev, Manu Drijvers, Islam El-Ashi,
Stefan Kaestle, Roman Kashitsyn, Maciej Kot, Yvonne-Anne Pignolet, Rostislav Rumenov, Dimitris Sarlis, Alin
Sinpalean, Alexandru Uta, Bogdan Warinschi, Alexandra Zapuc

Presentation by: Alexandru Uta
1

DFINITY Onboarding DeckWhat is the Internet Computer?

Vision:
Platform to run efficiently any computation
in a decentralized and secure manner

2

Internet Computer – Bird’s Eye View

● Collection of replicated state machines

● Nodes in independent data-centers
● Nodes are partitioned into subnets

● Each subnet is a replicated state machine

● Each subnet runs canisters (smart
contracts)

3

Canister Smart Contracts

4

● Can be programmed in Rust, Motoko, Python, Javascript

● 64 GB memory/storage
● Calls possible to:

○ canisters on the same/different subnets
○ exterior (http outcalls)

IC Layers

Consensus

Networking & P2P

Message Routing

 Execution Environment

Deterministic computation,
Replicated State Machine

Message acquisition and ordering

5

Update Query

Slow (goes through consensus) Fast (no consensus)

Persists state changes State changes discarded

Replicated Non-replicated

6

Calls exposed by canisters

What’s different about the Internet Computer?

● Byzantine fault tolerance
○ Up to f malicious out of 3f + 1 nodes
○ Individual nodes cannot be trusted

● Geo-replicated
○ 549 nodes, DCs in 18 countries

● Decentralized (88 node providers)
○ DFINITY (or any other entity) can only

access their own nodes

● Self-governing
○ No single entity in control of the IC
○ Votes to apply changes

Internet Computer

ICP

IP / Internet

Data Centers

7

Consensus

Networking & P2P

Message Routing

 Execution Environment

Deterministic computation,
Replicated State Machine

Message acquisition and ordering

8

Execution – Focus of This Presentation

Systems Challenges

1. Statefulness
2. Deterministic Scheduling
3. Scalability*
4. Security*

*not in this talk, details in the article

9

Challenge 1 – Statefulness
● statefulness through

orthogonal persistence

● Canisters are “forever-running”
processes

● State is kept after replicated
message execution

● No (or little) programmer work
to achieve this

10

Motoko Key-Value store Canister

Motoko
Playground

Execution of Canister Messages

11

● Execution of message
instantiates Wasmtime VM
running in sandbox

● Execution happens in rounds

● Each canister can execute 1 or
more messages per round

● Every N = 500 rounds, canister
state is checkpointed

Memory Architecture

12

For Performance: Map memory
pages on demand

● Page protection & signal handler
to catch accesses

Canister call

1. Initially: no page is mapped
2. Read access: page fault → map

r/o
3. Write access: page fault →

create delta, (re-)map r/w,

Statefulness: Tracking Changes

13

Memory Optimizations

14

Challenge 2 – Deterministic Scheduling

● (Sub-)Challenge 1: Determinism

Replicated state machine → all nodes in the state machine execute the same
computation, in the same order

● (Sub-)Challenge 2: Charging
Because of replicated computation can’t use “time”, but instruction counts

● (Sub-)Challenge 3: Fairness, DoS protection

● (Sub-)Challenge 4: Scale, need to support 100K+ canisters

15

Challenge 2 – Deterministic “Time” Slicing

w/o slicing

w/ slicing

* does not work on time units, but rather on numbers of instructions
16

Is the IC serverless?

Serverless Internet Computer

Devs do not admin machines/nodes (node providers, IC protocol)

Devs break code into small functions (canisters, update/query calls)

Functions usually short-running (ideally calls < 1s)

Fine-grained billing (at the level of instructions)

 Single-cloud provider Decentralized

 Need to use external service Stateful

17

IC vs. Serverless Performance Comparison
● Compute-intensive workload

● Just execution time, no
networking or other overheads

● Comparison with one of top-3
serverless platforms

● Promising performance,
overheads to improve

18

S
p
e
e
d
u
p

Performance Overhead – Memory Intensive Workload

19

The Internet Computer in Data
● Launch in May 2021
● Data as of Jan 2023 (more growth in the meantime)

20

Conclusion
● The IC has been running since May 2021
● Steadily growing in terms of users and workload
● Performance is good, but still room for improvement
● Large team effort, many thanks to all collaborators!

● Lots of systems challenges
● Join us in solving them!
● Join the IC in building new (d)apps!

IC code: https://github.com/dfinity/ic
Dashboard: https://dashboard.internetcomputer.org/
Dataset API: https://ic-api.internetcomputer.org/api
21

https://github.com/dfinity/ic
https://dashboard.internetcomputer.org/
https://ic-api.internetcomputer.org/api

Backup Slides

22

Message Rate

23

End-to-End Performance per Subnet

24

Developers and users interact directly with Canisters

25

Internet Computer Consensus

https://internetcomputer.org/how-it-works/consensus

Assumption: n > 3f

Guarantees agreement
even under asynchrony

Guarantees
termination under
partial synchrony

26

PODC’22

https://internetcomputer.org/how-it-works/consensus

Chain Key Cryptography

Single 48-byte public key

https://internetcomputer.org/how-it-works/chain-key-technology

for a secret-shared private key

27

https://internetcomputer.org/how-it-works/chain-key-technology

