DFINITY

Decentralized and Stateful Serverless
Computing on the Internet Computer
Blockghain

‘\ ///
Maksym Arutyunyan, Andriy Berestovskyy, Adam Bratschi- Kaye Ulan Degehb M}nu Drijvers, Islam El-Ashi,

Stefan Kaestle, Roman Kashitsyn, Maciej Kot, Yvonne-Anne Plgnolet\ Rostlskav Rumenov Dimitris Sarlis, Alin
Sinpalean; Alexandru Uta, Bogdan Warinschi, Alexandra Zapuc < .

Presentation by: Alexandru Uta

What is the Internet Computer?

Vision:
Platform to run efflc ntly any computation
ina decentrallzed an S@E ner

\@XJ/I

Internet Computer — Bird’s Eye View

Collection of replicated state machines

Nodes in independent data-centers
Nodes are partitioned into subnets

Each subnet is a replicated state machine

Each subnet runs canisters (smart
contracts)

DFINITY

Canister Smart Contracts

Data: Memory pages

I

Code: WebAssembly bytecode

® Can be programmed in Rust, Motoko, Python, Javascript
® 64 GB memory/storage
e (alls possible to:

o canisters on the same/different subnets

o exterior (http outcalls)

GO

DFINITY

|IC Layers

o%p\f Networking & P2P

i:} Consensus

Message Routing

> Message acquisition and ordering

> Deterministic computation,
Replicated State Machine

ﬁ Execution Environment

5 OO

DFINITY

Calls exposed by canisters

Update
Slow (goes through consensus)
Persists state changes

Replicated

Query
Fast (no consensus)
State changes discarded

Non-replicated

CO

DFINITY

What's different about the Internet Computer?

e Byzantine fault tolerance
o Up to f malicious out of 3f + 1 nodes
o Individual nodes cannot be trusted

Internet Computer

e Geo-replicated
o 549 nodes, DCs in 18 countries

e Decentralized (88 node providers)
o DFINITY (or any other entity) can only
access their own nodes

IP / Internet

Data Centers

Self-governing
o No single entity in control of the IC

o Votes to apply changes L t R o0

DFINITY

Execution — Focus of This Presentation

O%Jg’ Networking & P2P

{:} Consensus

Message Routing

> Message acquisition and ordering

> Deterministic computation,
Replicated State Machine

ﬁ Execution Environment

° o0

DFINITY

Systems Challenges

Statefulness
Deterministic Scheduling
Scalability*

Security*

B~ wh =

*not in this talk, details in the article

CO

9
DFINITY

Challenge 1 — Statefulness

10

statefulness through
orthogonal persistence

Canisters are “forever-running”
processes

State is kept after replicated
message execution

No (or little) programmer work
to achieve this

Motoko Key-Value store Canister

public func add(key :

let state = HashMap<Text, Nat64>();

Text, value :

state.put(key, value)

t;

public query func get(key :

state.get(key)
%

rt
| 4
S

.. ';.
"

~
(P

I‘i\

v’y ‘P

of L(m
'y
‘H

Text)

Motoko
Playground

Nat64): async () {

: async ?Nat64 {

CO

DFINITY

Execution of Canister Messages

11

Execution of message
instantiates Wasmtime VM
running in sandbox

Execution happens in rounds

Each canister can execute 1 or
more messages per round

Every N = 500 rounds, canister
state is checkpointed

“ Message

m

Compiles to

Page
Fault

Instantiates

Wasmtime

00

DFINITY

Memory Architecture

01010001 ——Read——s{ page1 |e——Fault From Checkpoint—— pagel

00101010
00010100 Nprite Page 2 Page 2

1

Create
\ = —l Page K OO NS age
Read Page K Delta 9 nvalidate P K

Fault from
\M Page M [*—p .10 —Page M

(i) () (o) (v

12 OO

DFINITY

Statefulness: Tracking Changes

For Performance: Map memory 01010001 ==Read—s Page1 |e——Fault From Checkpoint—{Page1
ooot0100 N\, Page 2 4 Page 2
pages on demand rite D
e Page protection & signal handler \Rd\- Page K —ELTfJeA‘ | [PageK
to catch accesses "> {Fage M|e—paul from

Canister call
CoONCT

1. Initially: no page is mapped

2. Read access: page fault — map
r/o

3. Write access: page fault —
create delta, (re-)map r/w,

13 O

DFINITY

Memory Optimizations

14

| Bl query
[optimized query
1 @ update
KX optimized update

Execution Time [ms]
= = =
o o o
= N w

=
o
o

a T ,
8 Bytes 1 MB
Data Size

Figure 4: The performance improvement given by memory
faulting optimizations (lower is better). Note the logarithmic

vertical axis. Speedups range from 1.25X to 3.5X.

CO

DFINITY

Challenge 2 — Deterministic Scheduling

e (Sub-)Challenge 1: Determinism

Replicated state machine — all nodes in the state machine execute the same
computation, in the same order

e (Sub-)Challenge 2: Charging
Because of replicated computation can’t use “time”, but instruction counts

e (Sub-)Challenge 3: Fairness, DoS protection
e (Sub-)Challenge 4: Scale, need to support 100K+ canisters

15 O

DFINITY

Challenge 2 — Deterministic “Time” Slicing

Round R Round R+1 Round R+2
Canister A Canister A
» >
w/o slicin . - -
g Canister B Canister B
— Time
Round R Round R+1 Round R+2 Round R+3
Canister A Canister A
. o e
w/ slicing [T
Canister B Canister B Canister B
» Time

* does not work on time units, but rather on numbers of instructions

16 O

DFINITY

Is the IC serverless?

17

Serverless

Devs do not admin machines/nodes
Devs break code into small functions
Functions usually short-running

Fine-grained billing

X Single-cloud provider
X Need to use external service

Internet Computer
/ (node providers, IC protocol)
/ (canisters, update/query calls)

/ (ideally calls < 1s)

// (atthe level of instructions)

/ Decentralized

J/ Stateful

CO

DFINITY

|IC vs. Serverless Performance Comparison

e Compute-intensive workload
1.5

e Just execution time, no

networking or other overheads N .
o| *
. . e
e Comparison with one of top-3 =
serverless platforms d| os
u
p
0.0
100 1000 10000 50000
e Promising performance
gp ’ work size

overheads to improve

18 OO

DFINITY

Workload

Performance Overhead — Memory Intensive

—===—n mmn R EENE
===zmu u BERECEEN
_cm==w aaspllTEEE
—e=—=n moosnEEEEE m
—em=sn "EnngER: --w
—es—mEN IIII--I-7
———=—m mmn H .BEHE
e T ﬂIII-I-

=—==mmm —mll:0 E-0
CemmzEEECNEEEEE
g
£

anister, ndbo

=
c o
e . a=am
5 o X
O O e
g o=
W s J———
M T e e T S s S 0
(®)]
=
gER
)
D m© 2
> w
I
o
Y}
1
o
IS
o
A
e
M
e

P2P,

’

Consensus

Networking, Crypto

20%

b L

DFINITY

The Internet Computer in Data

e Launch in May 2021
e Data as of Jan 2023 (more growth in the meantime)

7 - : 2500
2 200000 - No. of Canisters _ s _
2 150000 28R
§ 11500 § %
QO
< 100000 110005 ®
;50000 _ 2 &5
§ Total Canister State 500 =
01 : : : : : : , , — 10
O 0 AN OV 035094 0140944040
B A A N P P N (T
Date
CO

20
DFINITY

» .
Conclusion
e The IC has been running since May 2021
e Steadily growing in terms of users and workload
e Performance is good, but still room for improvement
e Large team effort, many thanks to all collaborators! —=

.

Lots of systems challenges
e Join us in solving them!
e Join the IC in building new (d)apps!

|C code: https://github.com/dfinity/ic
Dashboard: https://dashboard.internetcomputer.ora/
Dataset API: https://ic-api.internetcomputer.org/api

21

DFINITY

https://github.com/dfinity/ic
https://dashboard.internetcomputer.org/
https://ic-api.internetcomputer.org/api

Backup Slides

22

IIIIIII

Message Rate

23

Message Rate [msg/s]

Non-replicated Queries
Replicated Execution

DFINITY

End-to-End Performance per Subnet

Throughput Latency
Op (ops/ s) (s) Overheads

Query 78,000 0.05-0.2 Networking

Networking,

Consensus,

Update 950 1-4 Replicated
Execution,

Statefulness

24

IIIIIII

Developers and users interact directly with Canisters

Internet Computer

Public cyberspace
CO

DFINITY

25

Internet Computer Consensus

Internet Computer Consensus

Jan Camenisch, Manu Drijvers, Tiro Hank
Yvonne-Anne Pignolet, Victor Shoup, Dominic Williams

DFINITY Foundation

May 13, 2021

Abstract

We present,the Internet Computer Consensus (ICC) family of protocols for atomic
- ind in a timely fashion. Unlike in many other protacols, there are no complicated

o HotSta), the tasic o relinbly disseminating the blocks to all parties is an integral
part the protocal, uud not lefl to some other unspecified subprotocol. An additional
‘property enjoyed by the ICC protocols (just like PBET and HotStuff, and unlike others,
such s Tonderamint) is optimistic responsiveness, which meaus that when Uhe leador is

honest, the protocol will proceed at the pace of the actual network delay, rather than
some upper bound on the network delay. We present three different protocols (along
with vasious minor vasiations on each). One of these protocols (ICCL) i desigued to be
pecr-to-peer , which reduces the. ot
the leader for disseminating large blocks, a problem that al leader-based protocols, like
BET and HotStuf, must address, but typically do not. Our Protocol [CC2 addresses
the same problem by substituting a low-communication reliable broadcast subprotocol
(which may be of independent interest) for the gossip sublayer.

Guarantees agreement
even under asynchrony

-

Introduction

Byzantine fault tolerance (BFT} is the ability of a computing system to endure arbitrary
(ic., Byzantine) failures of some of its components while still functioning properly as a
whole. One approach to achieving BFT is via state machine replication [Sch90]: the logic
of the system is replieated across & number of machines, each of which maintains state,
and updates its state is by executing a sequence of commands, In order to ensure that the
non-faulty machines end up in the same state, they must each deterministically exeoute the
same soquenco of commands. This is achiovod by using a protocol for atomic broadeast.

Guarantees
termination under
partial synchrony

1

PODC’22

26 https://internetcomputer.org/how-it-works/consensus

https://internetcomputer.org/how-it-works/consensus

Chain Key Cryptography

Single 48-byte public key

N

key jon and
key resharing

Jens Groth!
Jenssatinity.org
DFINITY Foundation
Dratt
Mazch 16, 2021

Abstract. We present & nom-interactive publicly verifisble secret shas-

clement and confidentially vol veriiably distribute shares to multiple ro-
ceivers. We also develap # non-interactive publily verifiable resharing

of a group element, saised o the secret field clement. We use our vorif

for a secret-shared private key

protection. The scheme uses chunked enceyption, which comes at a cost,
the cost i offset by a saving gained by our ciphertexts being com.
prised only of source group clements and no target group elements. A
further effciency saving is obtained in our protocals by extending our
single-teceiver encryption scheme (0 & multi-roceiver encryption scheme,
e the ciphertext is up to a factor 5 smaller than just having single-

ke management protacols are deployed on the Tn-
ternet Computer to facilitate the use of threshold BLS signatures. The

0 a sot of reccivers, to rofresh the sceret sharing whenever the
chango of key holders, and provid proactive security against mobile

ad-

1 Introduction

The Internet: Computer hosts clusters of nodes running subnets (shards) that
host finite state machines known as canisters (advanced smart contracts). The

https://internetcomputer.org/how-it-works/chain-key-technology Q
27 = E i fox N

https://internetcomputer.org/how-it-works/chain-key-technology

