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Graph Pattern Mining is Ubiquitous

»Real-world Graphs +Graph Pattern Mining

Finding subgraphs of interest (patterns) in
input graphs
e.g., Finding Triangles

Social Network

Chemical Engineering

Applications
Bio-medicine Finance: Fraud detection
Web: Network motifs discovery
Biology: Drug discovery
Society: Community detection
























1] GraphPi [SC’20]

Problem: Inherent Redundant Computations

“*Redundancies are prevail in different patterns

*Prior works follow structural equality to merge same set formulasl1li2]

eA large number of redundant computations still exist (avg., 60%)
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- , Implicit redundancies occur during runtime and are hard to predict
] SumPA [PACT’21]



New Opportunity: Computation Similarity

A deeper dive: Two types of computation similarities
eStatic Similarity: finer-grained data reuse possibility at the operands level
eDynamic Similarity: which vertices are more likely to be requested during runtime
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Inputs can also be shared >85% computations include <15% high-degree vertices
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Opportunities for predicting and reusing hard-traced redundancies during runtime




New Abstraction: Set Dataflow

**Need an abstraction to exploit the computation similarity
“*Set Dataflow: A directed graph indicating how sets are transferred

eDecouples set operands and set operators for fine-grained analysis
e|ndicates data reuse for redundancy elimination
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New Abstraction: Set Dataflow

**Need an abstraction to exploit the computation similarity
“*Set Dataflow: A directed graph indicating how sets are transferred

eDecouples set operands and set operators for fine-grained analysis
e|ndicates data reuse for redundancy elimination
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Overview of Cyclosa

“*Cyclosa: A graph pattern mining framework based on the set dataflow
Frontend Backend

Input

Patterns Redundancy- : :
aware | Set Dataflow Set Management |

Set Dataflow scheduling Execution Engine Substrate

Analyzer ] B i
lExecute

Data graph properties

Dataflow | Dataflow Dataflow | Dataflow

eHow to obtain an efficient dataflow

. Core 1l Core 2
eHow to execute the set operations |
eHow to manage the sets data




Designing Set Dataflow Analyzer

Challenges: Embracing small search space and low redundancy

e\arious search spaces for different matching orders
eRedundancy is hard to predict
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“+*Main idea: Consider pattern and graph properties at the same time



Redundancy-aware Pattern Analysis

»Degree-first DFS Order: Raising the possibility of results reusing
-High-degree vertices are more likely to be involved into redundancies

Degree-first (un)
(us) (w)  DFS Check @ (us) (us)
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<**Graph-aware Cost Estimation: I\/I|n|m|zmg total workloads
eCombines the degree and triangle count of data graph to improve precision
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Light-weight Set Dataflow Construction

+Set Dataflow Representation: Decoupled computation and set data
eExtracts basic compute units of graph pattern mining for expressiveness

e|nput and output sets are individually identified in the dataflow for data sharing
Input Operator Output
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_—»@ Reducer — EEEEEE

eEliminates explicit redundancies by dataflow cutting
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Set-centric Dataflow Execution

“»Set-centric: Put a set instead of a subgraph as the basic parallel unit

eSubgraphs are oblivious to the shared sets during runtime

Different Same

view: (SGO0), (5G1) view: (0, 1) (0, 1)

Restore

E ........ : Subgraph e et
________ @ @

Operator
Oblivious to the shared sets Identifying a set computation with set IDs




Set-centric Dataflow Execution

“»Set-centric: Put a set instead of a subgraph as the basic parallel unit

eSubgraphs are oblivious to the shared sets during runtime

eBenefits from the set dataflow scheduling and maintains reusable set space
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Set-centric Dataflow Execution

»Challenges: Oblivious to the subgraph structure

eEmbracing correctness and efficiency is challenging

»Solution: Dual IDs that separate set IDs and scheduling IDs
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Set-centric Dataflow Execution

“»Challenges: Oblivious to the subgraph structure
eEmbracing correctness and efficiency is challenging

»Solution: Dual IDs that separate set IDs and scheduling IDs
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Redundancy-aware Set Management

“Automatically results caching for set computations

eChallenges: Storing all results in limited memory space is impossible
eSolution: Selectively storing results with high reuse possibility
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Redundancy-aware Set Management

Degree-guided Caching Mechanism

eStoring computed results from high-degree vertices first (previous observation)

ePriority decision based on the Combiner position in the set dataflow
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Evaluated Benchmarks

“»Diverse graph patterns “»State-of-the-arts systems
eSingle vs. multiple patterns eGraphPi: Best search space
eSparse vs. dense patterns eSumPA: Most related

ePatterns with different sizes
(k-Cliques, Pseudo Cliques, k-Motifs, ...)

“*Real-world graphs »Experimental Platform
*Graphs with 100K to Billion edges e2x14-core E5-2680v4 CPU
Graphs V]| E| Size .
Wiki.Vote (WV) 7.1K 100.8K 0.81MB 256GB RAM’ >12GB 55D
MiCo (MI) 96.6K 1.1IM  8.24MB ‘64b|t Ubuntu 18.04

WikiTalk (WT) 2.39M  5.02M 40.16MB
Patents (PA) 3.8M 16.5M 0.12GB
LiveJournal (LJ) 4.0M  34.7M 0.26GB
Orkut (OR) 3.IM 117.2M 0.87GB
Friendster (FR) 65.6M 1.8B 13.46GB




Performance Comparison

Comparison with state-of-the-arts

eSubgraph listing for single patterns IZI E @ @ @ @
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»Yielding 1.19x to 16.28x
speedup over GraphPi

» Handles both explicit and
implicit redundancies well

»Yielding 4.01x ~ 7.52x
speedup over GraphPi

» Redundancies among
multiple patterns are well
reduced by set dataflow



Evaluation of Results Caching

»Efficiency of results caching

e Achieves avg. 2.53x better performance than non-caching

eReduces more redundancies than existing systems, especially for implicit ones

eEfficient in a limited memory space

Sensitivity on Cache Strategies Sensitivity on Cache Capacity
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Normalized Speedup

Evaluation of Scaling Threads

Scalability on the number of threads

eScaling well with # threads because of multi-level parallelisms in the set dataflow

eIncreasingly-saturated performance improvement due to memory access contention

hyper-threading
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Overhead

“*Memory consumption
eRelatively small memory footprint with a DFS-style execution mode

eSet space allocated for each node of the set dataflow is reused for computation

eSmart caching strategies explore the trade-off between capacity and reusability

Table 5: Memory Consumption on Orkut with 28 Threads
Systems 4-CF 4-MC 5-MC | PC-0.8

Cyclosa | 2.69GB | 2.75GB | 2.96GB | 2.94GB
GraphP1 | 3.81GB | 3.83GB | 4.16GB | 3.97GB

“»Dataflow construction time

eLimited construction overhead because graph patterns are usually small

Table 6: Time for Constructing Set Dataflow
App. | WikiVote | Patents Orkut

5-CF 1.74ms | 1.72ms | 1.69ms
5-MC 0.32ms | 9.44ms | 9.37ms
PC-0.8 3.16ms | 3.09ms | 3.22ms




Conclusion

“ldentifying explicit and implicit redundancies in graph pattern mining
eOpportunities from static and dynamic computation similarity

*We propose the concept of set dataflow to remove redundancies

e Cost-efficient and redundancy-aware set dataflow analysis
eSet-centric dataflow execution model

eMemory-friendly results caching and reusing mechanisms

“*»Advanced performance improvement
e Qutperforming state-of-the-arts by up to 16.28x



