
Cyclosa: Redundancy-Free Graph Pa6ern
Mining via Set Dataflow

Chuangyi Gui1,2, Xiaofei Liao1, Long Zheng1,2, Hai Jin1

1Huazhong University of Science and Technology 2Zhejiang Lab

July 10-12, 2023
BOSTON, MA, USA

Graph PaAern Mining is Ubiquitous

Social Network

Chemical Engineering

Bio-medicine

…

Finding subgraphs of interest (paAerns) in
input graphs
e.g., Finding Triangles

ApplicaKons
Finance: Fraud detecKon
Web: Network moKfs discovery
Biology: Drug discovery
Society: Community detecKon

❖Real-world Graphs ❖Graph Pa6ern Mining

Problem: Inherent Redundant ComputaKons
❖Redundancies are prevail in different paAerns

•Prior works follow structural equality to merge same set formulas[1][2]

•A large number of redundant computaKons sKll exist (avg., 60%)

0%
20%
40%
60%
80%

100%

q1 q2 q3 q4 q5 q6

solved unsolved

0%
20%
40%
60%
80%

100%

q1 q2 q3 q4 q5 q6

solved unsolved

WV MI

q1 q2 q3 q4 q5 q6
[1] GraphPi [SC’20]
[2] SumPA [PACT’21]

v0 ∈ V
v1 ∈ N(v0)
v2 ∈ N(v0) ∩ N(v1), v2 > v1

v3 ∈ N(v0) ∩ N(v1)
v4 ∈ N(v0) ∩ N(v2)

S1:
S2:
S3:

S5:
S4:

S’S3 S4=
Rewrite to one

Implicit redundancies occur during runDme and are hard to predict

New Opportunity: ComputaKon Similarity

•StaDc Similarity: finer-grained data reuse possibility at the operands level

v0 ∈ V
v1 ∈ N(v0)
v2 ∈ N(v0) ∩ N(v1), v2 > v1

v3 ∈ N(v0) ∩ N(v1)
v4 ∈ N(v0) ∩ N(v2)

S1:
S2:
S3:

S5:
S4:

800
700
600
500
400
300
200
100

0
0 0.5k 1k 1.5k 2k 2.5k 3k

Fr
eq

ue
nc

y
Vertex ID

CiteSeer

35k0 5k 10k 15k 20k 25k30k

60000

50000

40000

30000

20000

10000

Fr
eq

ue
nc

y

Vertex ID

Email-EU

•Dynamic Similarity: which verKces are more likely to be requested during runKme

>85% computaKons include <15% high-degree verKcesInputs can also be shared

OpportuniKes for predicKng and reusing hard-traced redundancies during runKme

SpaDal perspecDve Temporal perspecDve

❖A deeper dive: Two types of computaKon similariKes

∩

New AbstracKon: Set Dataflow
❖Need an abstracKon to exploit the computaKon similarity

•Decouples set operands and set operators for fine-grained analysis
❖Set Dataflow: A directed graph indicaKng how sets are transferred

•Indicates data reuse for redundancy eliminaKon

v0 ∈ V
v1 ∈ N(v0)
v2 ∈ N(v0) ∩ N(v1), v2 > v1

v3 ∈ N(v0) ∩ N(v1)
v4 ∈ N(v0) ∩ N(v2)

S1:
S2:
S3:

S5:
S4:

V

N(v0) N(v1)

R

vertices → N(vk) → neighbors

[input0,input1] → ∩ → results
S1 S3

∩

New AbstracKon: Set Dataflow
❖Need an abstracKon to exploit the computaKon similarity

•Decouples set operands and set operators for fine-grained analysis
❖Set Dataflow: A directed graph indicaKng how sets are transferred

•Indicates data reuse for redundancy eliminaKon

v0 ∈ V
v1 ∈ N(v0)
v2 ∈ N(v0) ∩ N(v1), v2 > v1

v3 ∈ N(v0) ∩ N(v1)
v4 ∈ N(v0) ∩ N(v2)

S1:
S2:
S3:

S5:
S4:

V

N(v0) N(v1)

R
vertices → N(vk) → neighbors

[input0,input1] → ∩ → results
S1 S5

R

∩∩

N(v2)

Simplifying
∩

V

N(v0) N(v1)

R

∩ N(v2)

Reduced Operators: 2* , 1* , 1* , 1*∩ N(v0) N(v1) N(v2)

Overview of Cyclosa
❖Cyclosa: A graph paAern mining framework based on the set dataflow

Input
Pa6erns

Set Dataflow
Analyzer

Dataflow Dataflow Dataflow Dataflow

Core 1 Core 2

Set Dataflow
ExecuDon Engine

Set Management
Substrate

Frontend Backend

Data graph properKes

Redundancy-
aware

scheduling

Execute

•How to obtain an efficient dataflow
•How to execute the set operaDons
•How to manage the sets data

Designing Set Dataflow Analyzer
❖Challenges: Embracing small search space and low redundancy

•Various search spaces for different matching orders

❖Main idea: Consider paAern and graph properKes at the same Kme

•Redundancy is hard to predict

u0

u2

u1

u3

[u0, u1, u2, u3] [u0, u1, u3, u2]MO1 MO2

1 2 3

0

54
3 2

0 1

2 3

6

4 5

7

8

9 1 2 3

0

54
3 2

6 7 8 9

u0

u1

u2

u3

u0

u1

u2

u3

Redundancy-aware PaAern Analysis
❖Degree-first DFS Order: Raising the possibility of results reusing

❖Graph-aware Cost EsDmaDon: Minimizing total workloads

•High-degree verKces are more likely to be involved into redundancies

•Combines the degree and triangle count of data graph to improve precision

u1

u0

u4

u2

u3

u1

u0

u4

u2

u3

u1

u0

u4

u2

u3

Degree-first
DFS Check

u1 u0 u4u2 u3
<

Loop0
Loop1

Loop2
Loop3

Loop4
|V|*deg

|V|*deg*ntri*ntriα

|V|

|V|*deg*ntriα

u1

u0

u4

u2

u3

v0 ∈ V
v1 ∈ N(v0)
v2 ∈ N(v0) ∩ N(v1), v2 > v1

v3 ∈ N(v0) ∩ N(v1)
v4 ∈ N(v0) ∩ N(v2) Effect of symmetry-breaking

Light-weight Set Dataflow ConstrucKon
❖Set Dataflow RepresentaDon: Decoupled computaKon and set data

Input OutputOperator
Generator

Combiner

Reducer

V

N(v0)

SI V0

V0 N(V0)

v1 ∈ N(v0) V1 R(0)

•Extracts basic compute units of graph paAern mining for expressiveness
•Input and output sets are individually idenKfied in the dataflow for data sharing

•Eliminates explicit redundancies by dataflow cuong

v3 ∈ N(v0) ∩ N(v1)

v2 ∈ N(v0) ∩ N(v1), v2 > v1

V1 N(V1)

V2R(1)V0 N(V0)

V3R(2)

Set-centric Dataflow ExecuKon
❖Set-centric: Put a set instead of a subgraph as the basic parallel unit

•Subgraphs are oblivious to the shared sets during runKme

0 1
3

Subgraph
Operator

Set
Operator

0 1
4

Different

0 1
3

0 1
4

0 1
3

0 1
4

Same

0 1

0 1

(SG0), (SG1) (0, 1) (0, 1)view: view:

Subgraph
Restore

Oblivious to the shared sets Iden-fying a set computa-on with set IDs

Set-centric Dataflow ExecuKon
❖Set-centric: Put a set instead of a subgraph as the basic parallel unit

•Subgraphs are oblivious to the shared sets during runKme

•Benefits from the set dataflow scheduling and maintains reusable set space

Set
Operator

0 1
3

0 1
4

Same

0 1

0 1

(0, 1) (0, 1)view:

Subgraph
Restore

Iden-fying a set computa-on with set IDs

Set Operators

Compute
Unit

Check
Unit

3 -1 1 2 6 7 9

5 -1 1 2 6 7 8

3 5 1 2 6 7

miss

3 -1 1 2 6 7 90 1 2 3 4 ..

3 5 1 2 6 7
v2 > v0

6 7

3 5

Individual local
set space

Set-centric Dataflow ExecuKon
❖Challenges: Oblivious to the subgraph structure

•Embracing correctness and efficiency is challenging

Compute
Unit

Check
Unit

3 -1 1 2 6 7 9

5 -1 1 2 6 7 8

3 5 1 2 6 7

miss

3 -1 1 2 6 7 90 1 2 3 4 ..

3 5 1 2 6 7
v2 > v0

6 7 Retriever

AcKvator

Flow Map

Monitor

op0

op1

op2

<3, 5, op, gid, value>

<3, 5, op, gid>

hit/miss<3, 5, op, gid>

<op, gid> <3, -1, op, gid*, value>

<3, 5, op, gid> <op, gid, value>

Operator ID
Subgraph ID

Set ID

❖SoluDon: Dual IDs that separate set IDs and scheduling IDs

Set-centric Dataflow ExecuKon
❖Challenges: Oblivious to the subgraph structure

•Embracing correctness and efficiency is challenging

Compute
Unit

Check
Unit

3 -1 1 2 6 7 9

5 -1 1 2 6 7 8

3 5 1 2 6 7

miss

3 -1 1 2 6 7 90 1 2 3 4 ..

3 5 1 2 6 7
v2 > v0

6 7 Retriever

AcKvator

Flow Map

Monitor

op0

op1

op2hit/miss

Data
Manager

<3, 5, op, gid, value>

<3, 5, op, gid>

<3, -1, op, gid*, value>

<op, gid, value>
<3, 5, op, gid>

<op, gid>

<3, 5, op, gid>

❖SoluDon: Dual IDs that separate set IDs and scheduling IDs

Redundancy-aware Set Management
❖AutomaKcally results caching for set computaKons

ID Value

3 8 1 2 6 7

3 9 7 9

5 8 2 4 9

<3,5>RID0

RID1

RID2

RID3

Results <ID>

<3,6>

Set Buffer Maintainer Fixed-size Set Buffer

RID0

RID1

RID2 RID3

<4,7>

<5,8>

Hits
Check

Priority
Check

hitsIow priority

Dropped

•Challenges: Storing all results in limited memory space is impossible
•SoluDon: SelecKvely storing results with high reuse possibility

Redundancy-aware Set Management
❖Degree-guided Caching Mechanism

•Storing computed results from high-degree verKces first (previous observaKon)
•Priority decision based on the Combiner posiDon in the set dataflow

high

middle

low

<ID0, ID1, op> LFU

MRU

LRU

Probability Table
R(0) R(1) R(2)

R(0) 1 0.3 0.9
R(1) 0.3 1 0.3
R(2) 0.9 0.3 1

R(1)

Degree(ID0,ID1)
high high
high low

+

0 2 3 5 6 7
2 4 1 3 8
3 5 1 2 6 7
3 6 7 9Re

-e
va

lu
at

e hits
6
5
9
3

Results Buffer

Evaluated Benchmarks
❖Diverse graph paAerns

•Single vs. mulKple paAerns

❖Real-world graphs
•Graphs with 100K to Billion edges

•Sparse vs. dense paAerns
•PaAerns with different sizes

❖State-of-the-arts systems
•GraphPi: Best search space

•SumPA: Most related

❖Experimental Plavorm
•2x14-core E5-2680v4 CPU

•256GB RAM, 512GB SSD

•64bit Ubuntu 18.04

(k-Cliques, Pseudo Cliques, k-MoKfs, …)

Performance Comparison
❖Comparison with state-of-the-arts

•Subgraph lisKng for single paAerns

•CounKng mulKple pseudo cliques

‣Yielding 1.19× to 16.28×
speedup over GraphPi

‣Handles both explicit and
implicit redundancies well

‣Yielding 4.01× ∼ 7.52×
speedup over GraphPi
‣Redundancies among
mulKple paAerns are well
reduced by set dataflow

EvaluaKon of Results Caching
❖Efficiency of results caching

•Achieves avg. 2.53x beAer performance than non-caching
•Reduces more redundancies than exisKng systems, especially for implicit ones
•Efficient in a limited memory space

EvaluaKon of Scaling Threads
❖Scalability on the number of threads

•Scaling well with # threads because of mulK-level parallelisms in the set dataflow

•Increasingly-saturated performance improvement due to memory access contenKon

hyper-threading

Overhead
❖Memory consumpKon

❖Dataflow construcKon Kme

•RelaKvely small memory footprint with a DFS-style execuKon mode
•Set space allocated for each node of the set dataflow is reused for computaKon
•Smart caching strategies explore the trade-off between capacity and reusability

•Limited construcKon overhead because graph paAerns are usually small

Conclusion
❖IdenKfying explicit and implicit redundancies in graph paAern mining

•OpportuniKes from staKc and dynamic computaKon similarity

❖We propose the concept of set dataflow to remove redundancies
•Cost-efficient and redundancy-aware set dataflow analysis
•Set-centric dataflow execuKon model
•Memory-friendly results caching and reusing mechanisms

❖Advanced performance improvement
•Outperforming state-of-the-arts by up to 16.28x

