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Billion-Scale Distributed File Systems

 Billion-scale distributed file systems dominate modern datacenters
 Cloud service vendors, small-scale clusters (within billion-scale)
 Hyperscale clusters: Alibaba (billion-scale on average)
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Billion-Scale Distributed File Systems

 Billion-scale distributed file systems dominate modern datacenters
 Cloud service vendors, small-scale clusters (within billion-scale)
 Hyperscale clusters: Alibaba (billion-scale on average)

 Using a single metadata server is desirable and possible
 Easy implementation
 TCO reduction
 Capacity: 1TB / 256B (typical inode size) = 4.29 billions

 But what about performance?
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Performance Opportunities
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 New hardware provides performance opportunities for metadata
 Metadata is typically small (e.g., 256B for inode, 263B for directory entry)

 New hardware shows high small-granularity IOPS

New Hardware Compared Hardware

Network

Storage

RDMA NIC
112Mops/s (64B)

Persistent Memory
29.1Mops/s (read)
8.75Mops/s (write)

Ethernet NIC
1.48Mops/s (64B)

NVMe TLC SSD
1.10Mops/s (read)
0.20Mops/s (write)



 Huge gap between existing solutions and theoretical performance

Analysis of Existing Solutions

6
Theoretical performance: 3 PM writes (2 inodes, 1 dirent) + 1 network RPC.

Setup: 4 PM DIMMs, 1 RDMA NIC
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12

Private Shared

Throughput of File Create

Theoretical Performance NOVA Ext4-DAX InfiniFS CephFS
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Challenges
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1. Crash consistency overhead

f1 f2

/

Create {f2} in / WAL f1 f1 f2 f2 f2

/

Write-ahead logging Log-structured

Double write
In-order checkpoint

Garbage collection
(GC) overhead



2. Concurrency control in a shared directory
 High lock contention caused by concurrent update of shared parent’s metadata

Challenges
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f1 f3

A

f2

Server Thread

Concurrent file create in a shared directory



3. NUMA scalability
 Existing solutions randomly scatter metadata to different NUMA nodes

Challenges
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f1 f2

B f3

NUMA 0 NUMA 1AA

B

Metadata Server

f2 f1

B f3

A

NUMA locality can’t be ensured for file create / delete

B

f1

B

f1
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SingularFS Architecture
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Clients
SingularFS

library

Hybrid Inode Partition

Servers

NUMA 0 NUMA 1
Ordered Indexes

NUMA 0
Ordered Indexes

A billion-scale distributed file system using a single metadata server

Optimizations
 Metadata Storage
 Metadata Operations

Metadata Storage
 Hybrid Inode Partition

Metadata Operations
 Hierarchical Concurrency 

Control
 Log-free Metadata 

Operations

Directory Tree/

Hierarchical Concurrency Control

Log-free Metadata Operations

Non-transactional KV Store

Server Threads



Key Designs
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 Crash consistency overhead
    1. Log-free Metadata Operations

 Concurrency control in a shared directory
    2. Hierarchical Concurrency Control

 NUMA scalability
    3. Hybrid Inode Partition



1. Log-free Metadata Operations
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Crash consistency guarantee for different metadata write operations

Type Operations
Modified Inodes

Target Parent Others

Single-Node open/close
read/write/… •

Double-Node mkdir/rmdir
create/delete • •

Rename rename • • •



1. Log-free Metadata Operations
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Crash consistency guarantee for different metadata write operations

Type Operations
Modified Inodes

Target Parent Others

Single-Node open/close
read/write/… •

Double-Node mkdir/rmdir
create/delete • •

Rename rename • • •Rarely happens, use journaling

Non-transactional key-value (KV) operations 
without additional crash consistency cost



 KV pair: <parent_ID+name> → <inode>
 ls operation: 

 Prefix matching with key <parent_ID>
 Extract the keys for name, values for ID and type

1. Log-free Metadata Operations
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Step 1. Use KV Store to co-locate directory entries (dirents) and inodes

A

B

Directory tree

Key Value
1/ B B’s access meta
1/ f1 f1’s inode

1 A’s timestamps
2 B’s timestamps

KV Store (partial) Directory entry in ls

inode ID
inode type

inode name/

f1
ID = 2

Note: access meta and timestamps will be discussed later in Hybrid Inode Partition.

ID = 1



1. Log-free Metadata Operations
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Double-Node operations 

What happens after Step 1?
 Single-Node operations: Crash consistency is guaranteed with KV Store
 Double-Node operations: Directory entries are embedded in KV pairs

Base
Transaction

Create / Delete
the target inode

Update parent’s
directory entry

Update parent’s
ctime & mtime

Using
KV Store

Transaction

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Note: In POSIX semantics, ctime is the metadata change time, not the create time.



1. Log-free Metadata Operations
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Double-Node operations 

What happens after Step 1?
 Single-Node operations: Crash consistency is guaranteed with KV Store
 Double-Node operations: Directory entries are embedded in KV pairs

Base
Transaction

Create / Delete
the target inode

Update parent’s
directory entry

Update parent’s
ctime & mtime

Using
KV Store

Transaction

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

How to eliminate the transaction of the two KV operations?

Note: In POSIX semantics, ctime is the metadata change time, not the create time.



Step 2. Ordered metadata update
 Insert the target inode with its born 

time (btime)
 Update the parent’s ctime & mtime

to the target inode’s btime

1. Log-free Metadata Operations
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Transaction is needed for inserting inode and updating timestamps

Parent’s ctime is not smaller than the born / death time of child inodes

A

/

ctime = 4
mtime = 3

btime = 5

A

/

ctime = 5
mtime = 5

btime = 5

Operation: create /A/f1 at t = 5 

f1 f1



1. Log-free Metadata Operations
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Transaction is needed for inserting inode and updating timestamps

Parent’s ctime is not smaller than the born / death time of child inodes

A

/

ctime = 4
mtime = 3

btime = 5

A

/

ctime = 5
mtime = 5

btime = 5

Operation: create /A/f1 at t = 5 

f1 f1

Step 2. Ordered metadata update
 Insert the target inode with its born 

time (btime)
 System crashes
 Update parent’s ctime & mtime with 

max(child inodes’ btime)



Using
KV Store

Transaction

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

1. Log-free Metadata Operations
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Double-Node operations 

What happens after Step 2?
 Single-Node operations: Crash consistency is guaranteed with KV Store
 Double-Node operations: Transactions are eliminated

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtimeLog-free



Using
KV Store

Transaction

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

1. Log-free Metadata Operations
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Double-Node operations 

What happens after Step 2?
 Single-Node operations: Crash consistency is guaranteed with KV Store
 Double-Node operations: Transactions are eliminated

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Most metadata operations are transformed to 
non-transactional KV operations

Log-free



2. Hierarchical Concurrency Control
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Minimize the critical area of operations in a shared directory
Double-Node operations in a shared directory 

Base
Serialized

Create / Delete
the target inode

Update parent’s
directory entry

Update parent’s
ctime & mtime

Using
KV Store

Conflicting transactions

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Concurrent

Log-free
Concurrent

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Serialized



2. Hierarchical Concurrency Control
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Minimize the critical area of operations in a shared directory
Double-Node operations in a shared directory 

Base
Serialized

Create / Delete
the target inode

Update parent’s
directory entry

Update parent’s
ctime & mtime

Using
KV Store

Conflicting transactions

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Concurrent

Log-free
Concurrent

One KV operation
Edit the inode + Update dirent

One KV operation
Update parent’s ctime & mtime

Serialized

One 16B atomic operation
Update parent’s ctime & mtime

Minimized critical area

SingularFS

Critical area of operations in a shared directory 
is minimized to one 16B atomic operation



2. Hierarchical Concurrency Control
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Double-Node operations need the parent directory’s write lock

Treat these ops specially as they only update the parent’s timestamps

Operations related to an inode
 Updater: timestamp update operations
 Writer: other update operations
 Reader: metadata read operations

1st layer: Writer with other ops
 Based on the target inode’s rwlock

2nd layer: Updater with Reader
 Updater-Updater: 16B atomic operations
 Updater-Reader: OCC based on timestamps

Writer

Write lock

Read lock

Updater Updater

Reader

16B atomic
operations

OCC based on 
timestamps



 Acquire the target inode’s write lock (Writer of the target inode)
 Acquire the parent directory’s read lock (Updater of the parent directory)

 Update the timestamps using 16B atomic CAS
 Insert the metadata KV pairs concurrently

2. Hierarchical Concurrency Control
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Example 1. Concurrent file create in a shared directory

Operation: thread 1 create /A/f1, thread 2 create /A/f2 concurrently

A R

W

R

W

ctime
mtime

f1 f2

16B CAS
16B CAS

A R

W

R

W

ctime
mtime

f1 f2

A R

W

R

W

ctime
mtime

f1 f2

R read lock
W write lock



 Acquire the target inode’s write lock (Writer of the target inode)
 Acquire the parent directory’s read lock (Updater of the parent directory)

 Update the timestamps using 16B atomic CAS
 Insert the metadata KV pairs concurrently

2. Hierarchical Concurrency Control
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Example 1. Concurrent file create in a shared directory

Operation: thread 1 create /A/f1, thread 2 create /A/f2 concurrently

A R

W

R

W

ctime
mtime

f1 f2

16B CAS
16B CAS

A R

W

R

W

ctime
mtime

f1 f2

A R

W

R

W

ctime
mtime

f1 f2

R read lock
W write lock

Readers may get corrupted metadata 
because of concurrent Updaters…



2. Hierarchical Concurrency Control
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Example 2. Concurrent directory stat with other operations
 Acquire the target inode’s read lock (Reader of the target directory)
 OCC using the target inode’s ctime as the version number

Operation: thread 1 stat directory A

R read lock
W write lock

A Rctime

ctime

Global

Thread 1 A ctime’

Equal?

A Rctime

ctime

Global

Thread 1 A

A Rctime

ctime

Global

Thread 1

OCC needs a version number for ensuring data consistency

Inode’s ctime has the same semantic as a version number



BB

3. Hybrid Inode Partition
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NUMA-locality of Double-Node file operations can’t be ensured

Group the involved metadata into the same NUMA node

f1 f2

B

AA
Access 

metadata

timestamps

f3

NUMA 0 NUMA 1
AA

B

Metadata Server



3. Hybrid Inode Partition
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NUMA-locality of Double-Node file operations can’t be ensured

Group the involved metadata into the same NUMA node

NUMA 0 NUMA 1

B

f1 f2

B

BB

A

f3

A

AA

Metadata Server



3. Hybrid Inode Partition
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Lock contention inside the tree index limits metadata performance

Partition the intra-NUMA tree index into multiple sub-indexes

 Point query (common):
 Hash the key to a sub-index
 Directly get the result

  

 Range scan (in ls):
 Scan all the indexes
 Combine all the results

Point query Range scan
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Experimental Setup
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Hardware Platform
 1 server + 2 clients, 2 NUMA nodes per machine

CPU Intel Xeon, 56 cores (server), 72 cores (client)

Memory Samsung DDR4 3200MHz 32GB * 16

Storage Intel Optane DCPMM Gen2 128GB * 8

Network Mellanox ConnectX-6 200Gbps * 2

Benchmark
 Metadata performance: mdtest benchmark
 End-to-end performance: Filebench Fileserver & Varmail

Compared Systems
 Local PM file systems: Ext4-DAX, NOVA [FAST ’16]
 Distributed file systems: InfiniFS [FAST ’22], CephFS [OSDI ’06]



Metadata Latency
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Metadata Latency
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SingularFS NOVA Ext4-DAX InfiniFS CephFS
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2.5x 2.8xSingularFS shows comparable latency with local PM file 
systems and lower latency than distributed file systems
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File Create File Stat File Delete
SingularFS NOVA Ext4-DAX InfiniFS CephFS

Metadata Throughput
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SingularFS has higher throughput than local PM file systems
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File Create File Stat File Delete
SingularFS NOVA Ext4-DAX InfiniFS CephFS

Metadata Throughput
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22.5x
23.6x

7.5x

SingularFS has about an order of magnitude higher throughput than DFS
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Operations in a Shared Directory
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(a) File Create

5.6x

SingularFS shows high throughput in a shared directory

Client Threads

(b) File Delete



Billion-Scale Directory Tree
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(a) File Create
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SingularFS efficiently supports billion-scale directory tree

File Number (Million)

(b) File Stat
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Conclusion
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 Goal
 Exploit the performance of a single metadata server to support billions of files

 Key Techniques of SingularFS
 Log-free metadata operations
 Hierarchical concurrency control
 Hybrid inode partition

 Results
 SingularFS shows comparable latency with local PM file systems

 SingularFS has high throughput in both private and shared directories



Other Details
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Design & Implementation
 Lazy recovery to reduce recovery overheads

 Log-free directory operations after introducing inode partition

Evaluation
 End-to-end benchmark

 Rename, crash recovery, billion-scale directory tree, …

Please check our paper for more details!
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