
Darby Huye, Yuri Shkuro, & Raja Sambasivan

Analysis of topology and request workflows
Lifting the veil on Meta’s microservices

Microservices: what are they?

2

Is this a microservice???

Authentication

Foundational trends towards microservices

3

Monolith

Organizational trends:
• desire for teams to work independently, want quick

development, globalization of companies

Hardware trends:
• death of Moore’s law leads to need for parallelization

4

Monolith

Microservices

Basic Idea: apps composed of tiny pieces
communicating over the network

Organizational trends:
• desire for teams to work independently, want quick

development, globalization of companies

Hardware trends:
• death of Moore’s law leads to need for parallelization

Foundational trends towards microservices

Microservices: current abstraction

5

• Concept of service is sufficient dimension
for deployment, scaling, observability

• Independently deployable units
• Small, represent a single business

capability
• Strictly hierarchical architecture
• Relatively stable topologies

Front end

Authentication

Friends

Feed

Ads

Ads

DependencyStateless
Service

Stateful
Service

Example: Simple Social Network

Posts

Friends

FeedFeed

6

Front end

Authentication

Friends

Feed

Ads

Ads

DependencyStateless
Service

Stateful
Service

Example: Simple Social Network

Posts

Scheduler Observability Framework

Friends

• Concept of service is sufficient
dimension for deployment, scaling,
observability

• Independently deployable units
• Small, represent a single business

capability
• Strictly hierarchical architecture
• Relatively stable topologies

Microservices: current abstraction

Microservices: request workflow

7

Front end

Authentication

Friends

Feed

Ads

Ads

Dependency

Stateless
Service

Stateful
Service

Friends

Posts

Request

Load my feed

Microservice Topology (Dependency Diagram)

Current state of microservice research
Microservice testbeds [ASPLOS’19, TSE’18, Bookinfo]

• small in scale and complexity

Tools evaluated on testbeds [OSDI’20, SINAN’21, ASPLOS’21]

• Focuses on topology and request workflows
• E.g., Sage: resource management using topological information
• TProf aggregate analysis of request workflows

8

How realistic is our abstraction?

Workflows
Analysis of Meta’s microservices

9

Observability loss
impacts deep traces

Variation in #
calls, even locally

Wide & shallow

Depth predicts
calls

Traces rep. of
workflows

Topology

Workflows
execute

consistently

Variation in conc.,
decreased by
children set

Service is
sufficient

dimension

Service is not
one size fits

all

Topology is
static

Long-term
growth with
daily churn

X

X

X ✓

X

X

X

Services are
simple

Long tail of
complex services

FindingAbstraction Finding Abstraction
Wide & shallow

Workflows
Analysis of Meta’s microservices

10

Observability loss
impacts deep traces

Variation in #
calls, even locally

Wide & shallow

Depth predicts
calls

Traces rep. of
workflows

Topology

Workflows
execute

consistently

Variation in conc.,
decreased by
children set

Service is
sufficient

dimension

Service is not
one size fits

all

Topology is
static

Long-term
growth with
daily churn

X

X

X ✓

X

X

X

Services are
simple

Long tail of
complex services

FindingAbstraction Finding Abstraction
Wide & shallow

Methodology: Topology
Service History (22 months)
• Service deployment and lifetimes

Service Complexity (1 day)
• Endpoints exposed by deployed services, replication factors, and

dependencies

Analysis granularity: service id, a unique name assigned to each
service (e.g. authentication)

11

Is service a sufficient dimension?

12

Inference platform: includes tenant info in service id to utilize infrastructure support

Service granularity is not sufficient for all management tasks: at
least multi-tenancy and data placement must be considered

60% of service ids are
inference_platform

+ #####

Daily churn of deployed services

• 89% of new services deployed were also deprecated
• 40% of regular services lived the entire time range

13

Creation:
new service
id deployed
for first time

Deprecation:
last time
service id
deployed

Long-term growth in total deployed instances

• Total number of deployed service instances nearly doubled
• Growth is due to new (regular) service ids, not an increase in

replication factors for existing services
14

Workflows
Analysis of Meta’s microservices

15

Observability loss
impacts deep traces

Variation in #
calls, even locally

Wide & shallow

Depth predicts
calls

Traces rep. of
workflows

Topology

Workflows
execute

consistently

Variation in conc.,
decreased by
children set

Service is
sufficient

dimension

Service is not
one size fits

all

Topology is
static

Long-term
growth with
daily churn

X

X

X ✓

X

X

X

Services are
simple

Long tail of
complex services

FindingAbstraction Finding Abstraction
Wide & shallow

Front End + Load Feed

Methodology: Workflows
• Distributed tracing: graphs capturing the work done on behalf of a

request
• Canopy [SOSP’17]: Meta’s distributed tracing framework
• Traces can be sampled anywhere in the topology

16

Auth + Verify User

Legend:

Block

Point

EdgeFeed + Load Posts

Example Canopy Trace

Methodology: Workflows
Used traces collected on a single day from three important trace profiles:

17

Ads Manager
3.2M traces

Random Sampling
(0.01%)

Fetch Notifications
87,000 traces

Adaptive Sampling
(1 trace/second)

RaaS (Ranking of items)
3.3M traces

Adaptive Sampling
(25 trace/second)

18

Description of analyzed workflow properties

Children set: A B

Number of calls: 6

Parent’s characteristics:

Node names:
service id + endpoint name

Child A Child B

Parent

Root

…

Child A

Child A

Child A

Child B

Time

Concurrency

Max concurrency rate: 0.5 (3/6)

Predicting number of children

19

Leaf Single Relay

…

Variable Relay

The majority of service + endpoints are leaves or single relays:
• Ads Manager: 54%
• Fetch Notifications: 66%
• RaaS: 72%

Identified three categories of nodes:

Number of calls issued by a
service + endpoint

service + endpoint

20

Predicting # of children for variable relays
Ads

Number of calls issued by a
service + endpoint

service + endpoint

RaaSFetch

21

Predicting # of children for variable relays
Ads

22

Predicting # of children for variable relays
Ads

1

2

Variation in number of calls is often
attributed to:

1 Different children sets

2 Database accesses

Time

Concurrency

Max Concurrency Rate: 2/3 (0.67)

23

Predicting concurrency rates of variable relays
Ads

Time

Concurrency

Max Concurrency Rate: 2/3 (0.67)

RaaSFetch

24

Predicting concurrency rates of variable relays
Ads

25

Predicting concurrency rates of variable relays
Ads

S

Children are either 100% concurrent or 0% concurrent

service + endpoint

Always 100%
concurrent

Always 0%
concurrent

Children sets: 2.1.

Children set provides visibility into code logic, explaining dependencies

Outline
• Introduction
• Overview of Findings
• Topology
• Workflows
• Implications

26

Implications

Tooling that uses workflows for performance prediction, diagnosis,
capacity planning [Tprof’21, SoCC’19, VAIF’21, ATC ’22]:
• Need to assume significant diversity in workflows

27

Testbeds should be extended to provide support for:
• Heterogeneity of services, churn & growth of deployed instances
• Variable concurrency, number of children, and children sets

Tooling that uses topology for resource management [ASPLOS’21, OSDI’20, SINAN’21]:
• Should be adaptable to dynamic topology

28

Topology
Service is not one

size fits all

Long-term growth
with daily churn

Long tail of
complex services

Workflows

Observability loss
impacts deep traces
Variation in # calls,

even locally
Variation in conc.,

decreased by children set

Wide & shallow
Observability loss

impacts deep traces

Summary

Data available @
github.com/

facebookresearch/
distributed_traces

Microservice abstraction should be extended to support different types of archs.

References
• [SOSP’17]: Canopy: An End-to-End Performance Tracing And Analysis System, SOSP’17, Kaldor et al.

• [ATC ’22]: CRISP: Critical Path Analysis of Large-Scale Microservice Architectures, ATC’22, Zhang et al.

• [SoCC ‘21]: Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis, SoCC’21, Lou et al.

• [JSEP ‘22]: Characterizing and synthesizing the workflow structure of microservices in ByteDance Cloud, JSEP’22, Wen et al.

• [JSys’22]:[SoK] Identifying Mismatches Between Microservice Testbeds and Industrial Perceptions of Microservices, JSYS’22,
Huye & Shesagiri et al.

• [ASPLOS’19]: An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge
Systems, ASPLOS’19, Gan et al.

• [TSE’18]: Fault Analysis and Debugging of Microservice Systems: Industrial Survey, Benchmark System, and Empirical Study,
TSE’18, Zhou et al.

• [ASPLOS’21]: Sage: Practical & Scalable ML-Driven Performance Debugging in Microservices, ASPLOS’21, Gan et al.

• [Tprof’21]: tprof: Performance profiling via structural aggregation and automated analysis of distributed systems traces,
SoCC’21, Huang et al.

29

References
• [OSDI’20]: FIRM: An intelligent fine-grained resource management framework for slo-oriented microservices, OSDI’20, Qiu

et al.

• [VAIF’21]: Automating instrumentation choices for performance problems in distributed applications with VAIF, SoCC’21,
Toslali et al.

• [SINAN’21]: Sinan: ML-based and qos-aware resource management for cloud microservices. ASPLOS’21, Zhang et al.

• [NSDI’11]: Diagnosing performance changes by comparing request flows, NSDI’11, Sambasivan et al.

• [SoCC’19] Sifter: Scalable Sampling for Distributed Traces, without Feature Engineering, SoCC’19, Las-Casas et al.

• [BookInfo] Istio, https://istio.io/latest/docs/examples/bookinfo/

30

