
AWARE: Automate Workload Autoscaling with
Reinforcement Learning in Production Cloud Systems

Haoran Qiu1, Weichao Mao1, Chen Wang2, Hubertus Franke2, Alaa Youssef2

Zbigniew T. Kalbarczyk1, Tamer Basar1, Ravishankar K. Iyer1

1 UIUC 2 IBM Research

ATC ’23

Cloud Systems: Natural Arena for RL
• Full of sequential decision-making processes
• E.g., resource management, job scheduling, congestion control, etc.

• Hard to model, mostly rely on human-engineered heuristics
• RL enables using DNNs to express the (1) complex dynamics with raw and

noisy signals (2) policies

• Abundant data generated in modern cloud systems: monitoring measurements,
systems metrics, workload performance, etc.
• E.g., Prometheus for Kubernetes, Monarch (Google), Scuba (Meta), etc.

2
Congestion ControlResource Management Cluster Job Scheduling

Server 1

Server 2

…

Scheduler Server 3

Examples of RL in Cloud Systems
• Cluster Management and Scheduling
• Job scheduling (SIGCOMM 2019, NeurIPS 2019, HotNets 2016), Process

scheduling (ICML 2020), Device placement (ICLR 2018)

• Networking and Video Streaming
• Congestion control (ICML 2019, AAAI 2021, SIGCOMM 2022), Adaptive

video streaming (SIGCOMM 2017)

• Database Optimization
• Query optimization (VLDB 2019), Index structure (SIGMOD 2018)

• Resource Management and Autoscaling [Our Focus]
• MIRAS (ICDCS 2019), FIRM (OSDI 2020)*, A-SARSA (ICWS 2020), ADRL

(TPDS 2021), Q-learning-based Autoscaler (CCGrid 2021), SOL (ASPLOS
2022), SIMPPO (SoCC 2022, NeurIPS 2022)*, DeepScaling (SoCC 2022)

3

*H. Qiu, W. Mao, A. Patke, C. Wang, H. Franke, et. al. SIMPPO: A Scalable and Adaptive Online Learning Framework for Serverless Resource Management. SoCC 2022.
*H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, R. K. Iyer. FIRM: An Intelligent Fine-Grained Resource Management Framework for SLO-Oriented Microservices. OSDI 2020.

Cloud Systems Management with RL: A Primer
• RL agent interacts with an environment, step by step taking observations (𝑠!),

making actions (𝑎!), receiving rewards (𝑟!)
• Optimize for specific workloads (e.g., small jobs, low load, periodicity, high

scaling factor) by continuing to learn and maximizing the reward
• Direct real benefit by aligning the objectives with reward functions (i.e., agent

performance): Meeting SLOs & Higher cluster utilizations

4

Goal: Maximize the expected cumulative reward 𝔼[∑!"#$ 𝛾! (𝑟!]
(in any trajectory with T steps)

ServingTraining
Policy

Evaluation
Policy

Improvement

Policy

Trajectory (𝑠!, 𝑎!, 𝑟!) !"#

RL Agent

Action 𝑎!

State 𝑠! &
Reward 𝑟!

Environment
(System task modeled as a
Markov Decision Process)

A Framework for Running RL in Production is Missing
• Bridge RL model development and advances to production

• Allow robust and reliable deployment of RL-based controllers in
real cloud systems

• Goal: To provide a framework for managing and running RL-
based controller in production cloud systems
• E.g., Multi-dimensional workload autoscaling in Kubernetes

5

Production
RL

Vertical Scaling

Horizontal Scaling

State 𝑆! , Rewards 𝑅!

Kubernetes
Environment

Policy 𝜋$ Action 𝐴!
Workloads

Controls

RL-based Multidimensional Container Autoscaling
(Modeled as a Markov Decision Process)

Workload-
dependent

Challenge #1: In the early training stages, RL agents tend
to generate poor autoscaling decisions
• Lower than baseline rewards (i.e., worse agent

performance) and more SLO violations
• Solution: Reliable RL exploration with offline training

(i.e., bootstrapping) + online training & inference

6

Enabling built-in intelligence in cloud systems with less manual intervention
while achieving high robustness and self-adaptation (in both training/inference)

RL Episodes EP #1-100 EP #101-200 EP #201-300 EP #301-400

CPU Util -32.3% ± 14% -42.9% ± 15% -22.1% ± 12% -10.0% ± 6%

Memory Util -28.8% ± 11% -30.5% ± 10% -26.5% ± 8% -7.8 % ± 2%

SLO Violations 56.1 ± 14x 22.2 ± 7x 12.7 ± 5x 10.1 ± 3x

Overprovisioning -> CPU & memory
utils deficit compared w/ baseline

Unable to re-scale properly for
workloads changes -> SLO violations

FIRM (OSDI 2020)

What are the Challenges?

Challenge #2: During policy-serving stage, RL agent
performance degrades when workloads are updated

• Solution: Continuous monitoring + Retraining
detection & trigger mechanism

7

Challenge #3: Trained policies are application-
specific, costly to adapt to new applications
• 45.6% reward degradation (~230 eps retraining)
• Solution: Meta-learning for fast model adaptation

Workload changes leads to 21.8% reward drops

What are the Challenges?
Enabling built-in intelligence in cloud systems with less manual intervention

while achieving high robustness and self-adaptation (in both training/inference)

8

MPA Wrapper
Metrics

Set scaling
recommendation

State, Reward Actions

RL Agent
(Base-Learner)

RL Retraining
Triger

Switch
on/off
retrainingRL Trajectory

DB

Tr
aj

ec
to

rie
s

Past X
Rewards

RL Retraining
Detector

Kubernetes

Meta-learner

Embeddings

RL BootstrapperRL API Gateway

Online Mode

Offlin
e Mode

HPAVPA

Key Components:

• An MPA (multi-dimensional
pod autoscaling) system for RL

• Offline training (via an RL
bootstrapper) followed by
online training & inference

• An RL retraining detection &
trigger module

• A meta-learning module for fast
model adaptation

User API

SLOs
RL Pipeline
Developer

AWARE Overview RL Env

Non-RL Controller

Key Idea: Models the RL agent as a base-
learner and creates a meta-learner to learn
to generate embeddings that can precisely
differentiate and represent applications

• Open-source Framework: A system design that allows general workloads on
Kubernetes to use RL-based autoscalers such as FIRM
• Reusing HPA/VPA as a fallback to RL to have a default autoscaling algorithm
• Scaling recommendation is separated from actuation
• Supports customized plug-and-play multi-dimensional autoscaling algorithms

9

Metric ServerVPA CR

Watch

Set Configs

Terminate Pods Application
Deployments

Monitoring

+/- number
of replicas

HPA

Metrics

VPA Recommender

Admission Controller

Metrics

VPA Updater

Watch

Multi-dimensional Pod Autoscaling (MPA)

Resize Pods

10

Default Metrics

Custom Metrics

Metric Server API

Application
Deployments

Monitoring RL Controller

* MPA: Multi-dimensional Pod Autoscaler

Admission
Controller

(Webhook)

Vertical
Resize pods

Watch for vertical
config updates

Recommender
Measurements

Tracing data
Updater

Watch for horizontal
config updates

Horizontal Scaling
+/- number of replicas

Kubernetes Operators

VPA / HPA

MPA API (CR Object)

Set scaling configs
Read parameters

MPA Design Overview

RL Training Bootstrapping

11

Online Mode

MPA Wrapper

State, Reward Actions

RL Agent
(Base-Learner)

RL Trajectory DB

Tr
aj

ec
to

rie
s

RL API Gateway RL Bootstrapper

Offline Mode

HPAVPA
Non-RL Controller

Initialized

Yes

Policy Online Training

Policy Serving

Avg(R[X]) >= R2 &&
Var(R[X]) <= V1

No

Avg(R[X]) < R2

Yes

No

Policy Offline Training

Avg(R[X]) >= R1

Yes

No

Algorithm

* R1 and R2 are calculated based on user-specified SLOs

An RL bootstrapper that
combines offline training with
online training & inference

RL Retraining Detection and Trigger

12

RL Agent
(Base-Learner)

RL Retraining
Triger

Switch
on/off
retraining

RL Trajectory
DB

Past X
Rewards

RL Retraining
Detector

User API

SLOs
RL Pipeline
Developer

Initialized

Yes

Policy Online Training

Policy Serving

Avg(R[X]) >= R2 &
Var(R[X]) <= V1

No

Avg(R[X]) < R2

Yes

No

Policy Offline Training

Avg(R[X]) >= R1

Yes

No

Algorithm

* R1 and R2 are calculated based on user-specified SLOs

An RL retraining detection
& trigger module

Fast Model Adaptation with Meta-learner
• Goal: To reduce RL model retraining time (cost) and adapt quickly to new application

workloads (unseen during training)

• Key Idea: Model each RL agent as a base-learner and create a meta-learner to learn to
generate an embedding that can accurately represent each environment
• The embedding is fed to the base-learner (as state input) to differentiate one RL

environment from another -> customized to each environment

• Why meta-learning?
• “Learning to learn”
• Capable of adapting well or generalizing to new environments that have never been

encountered during training
• Adaptation process requires only limited exposure to the new environment
• A systematic framework that enables automatic adjusting of internal hidden states to

learn (combined with RL -> learned policy conditioning on the application)

13

14

… …

Base Learner
Arrival Rate

Resource
Configs

Resource
Utilizations

Application
Metrics

App+Env
Embedding

St
at

es
 (𝑆

!)

… …

St
at

es
 (𝑆

!)
A

ct
io

n
(𝐴
!) Q(
𝑆 !
,𝐴

!)

Actor Net Critic Net

Em
be

dd
in

g

𝑇𝑅" = (𝑠!, 𝑎!, 𝑟!)!∈$
𝑇𝑅": RL Trajectories
from environment 𝑖

Meta Learner

…𝑇𝑅%" 𝑇𝑅&" 𝑇𝑅'" 𝑇𝑅("

RNN

AWARE Design and Model Architecture

Scaling
Actions

Interpreting “Embeddings” from Systems Perspective

15

Projected
Vector Space

Performance-Resource
Sensitivity Heatmap

R
N

N
-b

as
ed

 E
m

be
dd

in
g

La
ye

r
(S

pa
ti

al
 C

ha
ra

ct
er

is
ti

cs
)

Projected
Vector Space

Load Arrival Patterns
Time Series (#req/sec)

R
N

N
-b

as
ed

 E
m

be
dd

in
g

La
ye

r
(T

em
po

ra
l C

ha
ra

ct
er

is
ti

cs
)

Evaluation
• RQ1: Does AWARE provide fast model adaptation to new workloads?

• What is the value of meta-learning?

• RQ2: How does AWARE perform in online policy-serving when workload updates
or load changes occur?

• RQ3: How does AWARE perform in the early stages of policy training, compared to
RL agents without bootstrapping?

• Workload generation:
• 16 represented production serverless function segments (e.g., CPU-intensive jobs, image

manipulation, text processing, web serving, ML model serving, I/O services)
• Generated 1000 synthetic applications by random selection and combination

• RL agent/algorithm (i.e., base-learner) implementation adopted from FIRM (OSDI
2020) – DDPG, an actor-critic RL algorithm
• Reward function: 𝑅 𝑡 = 𝛼 0 𝑅𝑈 𝑡 + (1 − 𝛼) 0 𝑆𝑃(𝑡), where 𝑆𝑃 𝑡 = min()*!+,-.%&'

/012345
, 1)

16

RQ1 – Fast Model Adaptation

• AWARE adapts 5.5× and 4.6× faster than
TL and TL+
• TL: Transfer learning with model

parameter sharing
• TL+: Transfer learning that includes

additional features

• AWARE saves 68–72% CPU cycles

• AWARE reduces CPU and memory
utilization deficit by 4.6× and 6.2×

• AWARE reduces SLO violations by 7.1×

17

Retraining Time
CPU Cycles

CPU Util Deficit

Memory Util Deficit
SLO Violatio

ns
0.0

0.5

1.0

1.5

R
el

at
iv

e
C
os

t

TL TL+ AWARE

5.5x 3.5x
4.6x 6.2x 7.1x

RQ2 & RQ3 – Bootstrapping and Online Policy-serving

Compared to no-bootstrapping:

• AWARE had 47.5% and 32.2% higher
CPU and memory utilization

• AWARE reduced workload SLO
violations by 16.9×

18

Compared to no-retraining:

• AWARE had 9.6% and 14.8% higher
CPU and memory utilization

• AWARE reduced workload SLO
violations by 3.1×

Bootstrapping Online Policy-serving

17

18

R
el

at
iv

e
P
er

fo
rm

an
ce

Rule-based

No Bootstrapping

AWARE

Converged RL

Reward CPU Util Memory Util SLO Violations
0

1

2

17

18

R
el

at
iv

e
P
er

fo
rm

an
ce

Rule-based

No Bootstrapping

AWARE

Converged RL

Reward CPU Util Memory Util SLO Violations
0

1

2

Reward CPU Util Memory Util SLO Violations
0

1

2

3

R
el

at
iv

e
P
er

fo
rm

an
ce

Rule-based

No Retraining

AWARE

Converged RL

Reward CPU Util Memory Util SLO Violations
0

1

2

3

R
el

at
iv

e
P
er

fo
rm

an
ce

Rule-based

No Retraining

AWARE

Converged RL

1.5x 47.5%
32.2%

16.9x
3.1x

14.8%

9.6%
8.6%

3.6%

Summary and Future Work
• AWARE is an extensible framework for deploying and managing RL-based

controllers in production systems
• AWARE provides (1) fast adaptation with meta-learning, (2) reliable RL exploration

with bootstrapping, (3) robust online performance with timely retraining
• Demonstrated AWARE in workload autoscaling:

• Adapts a learned autoscaling policy to new workloads 5.5× faster than the existing transfer-
learning-based approach

• Provides stable online policy-serving performance with less than 3.6% reward degradation
• Helps achieve 47% and 32% higher CPU and memory utilization while reducing SLO

violations by a factor of 16.9× during initial policy training

• Out-of-distribution cases (limitation of meta-learning)
• Detection/classification + Fine-grained customization

• Future Work: Extend the meta-learning-based framework for other workload-aware
ML4Sys cases as a general paradigm which supports fast model adaptation
• Scheduling, resource config search, congestion control, power management, etc.

19

Thank you!

20

Check out the paper for more details:
https://www.usenix.org/conference/atc23/presentation/qiuhaoran

Haoran Qiu1, Weichao Mao1, Chen Wang2, Hubertus Franke2, Alaa Youssef2

Zbigniew T. Kalbarczyk1, Tamer Basar1, Ravishankar K. Iyer1

1 UIUC 2 IBM Research

https://www.usenix.org/conference/atc23/presentation/qiuhaoran

