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Cloud Systems: Natural Arena for RL

* Full of sequential decision-making processes
* E.g., resource management, job scheduling, congestion control, etc.

» Hard to model, mostly rely on human-engineered heuristics
 RL enables using DNNs to express the (1) complex dynamics with raw and
noisy signals (2) policies
» Abundant data generated in modern cloud systems: monitoring measurements,
systems metrics, workload performance, etc.
* E.g., Prometheus for Kubernetes, Monarch (Google), Scuba
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Examples of RL in Cloud Systems

Cluster Management and Scheduling

* Job scheduling (SIGCOMM 2019, NeurlPS 2019, HotNets 2016), Process
scheduling (ICML 2020), Device placement (ICLR 2018)

Networking and Video Streaming

* Congestion control (ICML 2019, AAAI 2021, SIGCOMM 2022), Adaptive
video streaming (SIGCOMM 2017)

Database Optimization
* Query optimization (VLDB 2019), Index structure (SIGMOD 2018)

Resource Management and Autoscaling [Our Focus]

« MIRAS (ICDCS 2019), FIRM (OSDI 2020)*, A-SARSA (ICWS 2020), ADRL
(TPDS 2021), Q-learning-based Autoscaler (CCGrid 2021), SOL (ASPLOS
2022), SIMPPO (SoCC 2022, NeurlPS 2022)*, DeepScaling (SoCC 2022)

*H. Qiu, W. Mao, A. Patke, C. Wang, H. Franke, et. al. SIMPPO: A Scalable and Adaptive Online Learning Framework for Serverless Resource Management. SoCC 2022.
*H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, R. K. lyer. FIRM: An Intelligent Fine-Grained Resource Management Framework for SLO-Oriented Microservices. OSDI 2020.
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Cloud Systems Management with RL: A Primer

* RL agent interacts with an environment, step by step taking observations (s;),
making actions (a;), receiving rewards (r;)

 Optimize for specific workloads (e.g., small jobs, low load, periodicity, high
scaling factor) by continuing to learn and maximizing the reward

* Direct real benefit by aligning the objectives with reward functions (i.e., agent
performance): Meeting SLOs & Higher cluster utilizations
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I
A Framework for Running RL in Production is Missing

* Bridge RL model development and advances to production

* Allow robust and reliable deployment of RL-based controllers in
real cloud systems

* Goal: To provide a framework for managing and running RL-
based controller in production cloud systems

* E.g., Multi-dimensional workload autoscaling in Kubernetes
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What are the Challenges?

Enabling built-in intelligence in cloud systems with less manual intervention
while achieving high robustness and self-adaptation (in both training/inference)
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Challenge #1: In the earlr training stages, RL agents tend
to generate poor autoscaling decisions
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 Lower than baseline rewards (i.e., worse agent
performance) and more SLO violations
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* Solution: Reliable RL exploration with offline training
(i.e., bootstrapping) + online training & inference
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FIRM (OSDI 2020)

RL Training Episodes

CPU Util -32.3% +14%  -42.9% +15% -22.1% +12%  -10.0% + 6%
Memory Util  -28.8%2 +11% -30.5% t10% -26.5%+8% -7.8% L 2%

SLO Violations 56.1 4+ 14x 22.2 + 7X 12.7 + 5X 10.1 &+ 3X

=

Overprovisioning -> CPU & memory
utils deficit compared w/ baseline

Unable to re-scale properly for
workloads changes -> SLO violations
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What are the Challenges?

Enabling built-in intelligence in cloud systems with less manual intervention
while achieving high robustness and self-adaptation (in both training/inference)

Challenge #2: During policy-serving stage, RL agent 200
performance degrades when workloads are updated
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* Solution: Continuous monitoring + Retraining
detection & trigger mechanism
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3 0.50- ﬁ 5 Challenge #3: Trained policies are application-

S ] 100% specific, costly to adapt to new applications

g o 2t 45.6% reward degradation (~230 eps retraining)

* Solution: Meta-learning for fast model adaptation




AWARE Overview IRLEn [ Kubemetes e scaling

| Metrics recommendation
' > MPA Wrapper

Key Components: L -
. , State, Reward | Actions
“ An MPA (multi-dimensional 4
pod autoscaling) system for RL . RL APl Gateway <~ RL Bootstrapper
. g . T e
e Offline training (via an RL S Online Mode /=5 npa |
bootstrapper) followed by @ RL Agent | :
line training & inf o 5oL gen ¢ ; Non-RL Controller |
online training & inference = N} (Base-Learner) | | —-------~- a
- . .
e Ap RL retraining detection & Embeddings | Switch
trigger module e on/off
RL Trajectory Meta-learner retraining

e A meta-learning module for fast
model adaptation

DB

_———— i m o —— - ———-e

Past X :\ RL Retraining RL Retraining |1

Key Idea: Models the RL agent as a base- > :
Rewards| | Detector Triger |
| A

learner and creates a meta-learner to learn
to generate embeddings that can precisely T T T (slosT T T T T T T T T TS
differentiate and represent applications

O RLPipeline
JEEr () Developer 8




Multi-dimensional Pod Autoscaling (MPA)

* Open-source Framework: A system design that allows general workloads on
Kubernetes to use RL-based autoscalers such as FIRM

 Reusing HPA/VPA as a fallback to RL to have a default autoscaling algorithm
* Scaling recommendation is separated from actuation
* Supports customized plug-and-play multi-dimensional autoscaling algorithms
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Watch for vertical

MPA Design Overview

MPA API (CR Object)

Watch for horizontal
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s o An RL bootstrapper that
o i ot ® 9 combines offline training with

online training & inference
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RL Retraining Detection and Trigger
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T
Fast Model Adaptation with Meta-learner

Goal: To reduce RL model retraining time (cost) and adapt quickly to new application
workloads (unseen during training)

Key Idea: Model each RL agent as a base-learner and create a meta-learner to learn to
generate an embedding that can accurately represent each environment

« The embedding is fed to the base-learner (as state input) to differentiate one RL
environment from another -> customized to each environment

Why meta-learning?
* “Learning to learn”

 Capable of adapting well or generalizing to new environments that have never been
encountered during training

 Adaptation process requires only limited exposure to the new environment

* A systematic framework that enables automatic adjusting of internal hidden states to
learn (combined with RL -> learned policy conditioning on the application)



AWARE Design and Model Architecture

Meta Learner
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I
oreting “Embeddings” from Systems Perspective
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Evaluation

RQ1: Does AWARE provide fast model adaptation to new workloads?
* What is the value of meta-learning?

RQ2: How does AWARE perform in online policy-serving when workload updates
or load changes occur?

RQ3: How does AWARE perform in the early stages of policy training, compared to
RL agents without bootstrapping?

Workload generation:

* 16 represented production serverless function segments (e.g., CPU-intensive jobs, image
manipulation, text processing, web serving, ML model serving, 1/O services)

» Generated 1000 synthetic applications by random selection and combination

RL agent/algorithm (i.e., base-learner) implementation adopted from FIRM (OSDI
2020) - DDPG, an actor-critic RL algorithm

* Reward function: R(t) = a - RU(t) + (1 — a) - SP(t), where SP(t) = min(latencysw,l)

latency
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RQ1 — Fast Model Adaptation
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RQ2 & RQ3 - Bootstrapping and Online Policy-serving

Bootstrapping
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Compared to no-bootstrapping:

* AWARE had 47.5% and 32.2% higher
CPU and memory utilization

* AWARE reduced workload SLO
violations by 16.9x

Online Policy-serving
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Compared to no-retraining:

* AWARE had 9.6% and 14.8% higher
CPU and memory utilization

* AWARE reduced workload SLO
violations by 3.1x



Summary and Future Work

AWARE is an extensible framework for deploying and managing RL-based
controllers in production systems

AWARE provides (1) fast adaptation with meta-learning, (2) reliable RL exploration
with bootstrapping, (3) robust online performance with timely retraining

Demonstrated AWARE in workload autoscaling:

» Adapts a learned autoscaling policy to new workloads 5.5 x faster than the existing transfer-
learning-based approach

* Provides stable online policy-serving performance with less than 3.6% reward degradation

* Helps achieve 47% and 32% higher CPU and memory utilization while reducing SLO
violations by a factor of 16.9x during initial policy training

Out-of-distribution cases (limitation of meta-learning)
* Detection/classification + Fine-grained customization

Future Work: Extend the meta-learning-based framework for other workload-aware
MLA4Sys cases as a general paradigm which supports fast model adaptation

* Scheduling, resource config search, congestion control, power management, etc.
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