AWARE: Automate Workload Autoscaling with
Reinforcement Learning in Production Cloud Systems

Haoran Qiu', Weichao Mao'!, Chen Wang?, Hubertus Franke?, Alaa Youssef?

Zbigniew T. Kalbarczyk!, Tamer Basar'!, Ravishankar K. lyer!

1UIUC I 2 IBM Research

ATC 23

Cloud Systems: Natural Arena for RL

* Full of sequential decision-making processes
* E.g., resource management, job scheduling, congestion control, etc.

» Hard to model, mostly rely on human-engineered heuristics
 RL enables using DNNs to express the (1) complex dynamics with raw and
noisy signals (2) policies
» Abundant data generated in modern cloud systems: monitoring measurements,
systems metrics, workload performance, etc.
* E.g., Prometheus for Kubernetes, Monarch (Google), Scuba

»t @ /—

—

Meta), etc.

Server 1

Server 2

@0 &0

g
el

Scheduler Server 3

Resource Management Congestion Control Cluster Job Scheduling

Examples of RL in Cloud Systems

Cluster Management and Scheduling

* Job scheduling (SIGCOMM 2019, NeurlPS 2019, HotNets 2016), Process
scheduling (ICML 2020), Device placement (ICLR 2018)

Networking and Video Streaming

* Congestion control (ICML 2019, AAAI 2021, SIGCOMM 2022), Adaptive
video streaming (SIGCOMM 2017)

Database Optimization
* Query optimization (VLDB 2019), Index structure (SIGMOD 2018)

Resource Management and Autoscaling [Our Focus]

« MIRAS (ICDCS 2019), FIRM (OSDI 2020)*, A-SARSA (ICWS 2020), ADRL
(TPDS 2021), Q-learning-based Autoscaler (CCGrid 2021), SOL (ASPLOS
2022), SIMPPO (SoCC 2022, NeurlPS 2022)*, DeepScaling (SoCC 2022)

*H. Qiu, W. Mao, A. Patke, C. Wang, H. Franke, et. al. SIMPPO: A Scalable and Adaptive Online Learning Framework for Serverless Resource Management. SoCC 2022.
*H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, R. K. lyer. FIRM: An Intelligent Fine-Grained Resource Management Framework for SLO-Oriented Microservices. OSDI 2020.

3

Cloud Systems Management with RL: A Primer

* RL agent interacts with an environment, step by step taking observations (s;),
making actions (a;), receiving rewards (r;)

 Optimize for specific workloads (e.g., small jobs, low load, periodicity, high
scaling factor) by continuing to learn and maximizing the reward

* Direct real benefit by aligning the objectives with reward functions (i.e., agent
performance): Meeting SLOs & Higher cluster utilizations

RL Agent State s, & Environment
Training | | Serving '] Reward1; | (System task modeled as a

l
Policy ——= ! Markov Decision Process)

I'l Action a;

|

I Improvement | I Evaluation

- T — 1 | oA M\“} amezon [EC2
- N |
m ON T

Trajectory {(s¢, at, 7¢) }e=0 T -

Policy

Goal: Maximize the expected cumulative reward E[X1_,y* - 7]
(in any trajectory with T steps)

I
A Framework for Running RL in Production is Missing

* Bridge RL model development and advances to production

* Allow robust and reliable deployment of RL-based controllers in
real cloud systems

* Goal: To provide a framework for managing and running RL-
based controller in production cloud systems

* E.g., Multi-dimensional workload autoscaling in Kubernetes

o @ '-"

S - ﬂfl‘\“’ Production el

- i[ITN 5
A

State S; , Rewards R;

e

'M‘-r'» Kubernetes
q

Vertical Scaling

I

Horizontal Scaling {

Environment

Workloads .
Policy mg Action A,

Workload- RL-based Multidimensional Container Autoscaling
dependent (Modeled as a Markov Decision Process)

What are the Challenges?

Enabling built-in intelligence in cloud systems with less manual intervention
while achieving high robustness and self-adaptation (in both training/inference)

20

Challenge #1: In the earlr training stages, RL agents tend
to generate poor autoscaling decisions

—_
ot
)

 Lower than baseline rewards (i.e., worse agent
performance) and more SLO violations

(@)
(e}
1

Reward per Episode
S

b

* Solution: Reliable RL exploration with offline training
(i.e., bootstrapping) + online training & inference

O_

(en}
1

200 400 600 800 1000 1200

FIRM (OSDI 2020)

RL Training Episodes

CPU Util -32.3% +14% -42.9% +15% -22.1% +12% -10.0% + 6%
Memory Util -28.8%2 +11% -30.5% t10% -26.5%+8% -7.8% L 2%

SLO Violations 56.1 4+ 14x 22.2 + 7X 12.7 + 5X 10.1 &+ 3X

=

Overprovisioning -> CPU & memory
utils deficit compared w/ baseline

Unable to re-scale properly for
workloads changes -> SLO violations

6

What are the Challenges?

Enabling built-in intelligence in cloud systems with less manual intervention
while achieving high robustness and self-adaptation (in both training/inference)

Challenge #2: During policy-serving stage, RL agent 200
performance degrades when workloads are updated

p—

()]

(e}
1

<«@@~>

* Solution: Continuous monitoring + Retraining
detection & trigger mechanism

(@)
o
1

Reward per Episode
o
=

& 1.00 . 0 T e

g 0.75 - ;_ E::\Il'::irll)gr(z)ost L 900 ._“.é 0 2(I)0 4(I)0 _6_(I)O _ 800 1000 1200

K = RL Training Episodes

3 0.50- ﬁ 5 Challenge #3: Trained policies are application-

S] 100% specific, costly to adapt to new applications

g o 2t 45.6% reward degradation (~230 eps retraining)

* Solution: Meta-learning for fast model adaptation

AWARE Overview IRLEn [Kubemetes e scaling

| Metrics recommendation
' > MPA Wrapper

Key Components: L -
. , State, Reward | Actions
“ An MPA (multi-dimensional 4
pod autoscaling) system for RL . RL APl Gateway <~ RL Bootstrapper
. g . T e
e Offline training (via an RL S Online Mode /=5 npa |
bootstrapper) followed by @ RL Agent | :
line training & inf o 5oL gen ¢ ; Non-RL Controller |
online training & inference = N} (Base-Learner) | | —-------~- a
- . .
e Ap RL retraining detection & Embeddings | Switch
trigger module e on/off
RL Trajectory Meta-learner retraining

e A meta-learning module for fast
model adaptation

DB

_———— i m o —— - ———-e

Past X :\ RL Retraining RL Retraining |1

Key Idea: Models the RL agent as a base- > :
Rewards| | Detector Triger |
| A

learner and creates a meta-learner to learn
to generate embeddings that can precisely T T T (slosT T T T T T T T T TS
differentiate and represent applications

O RLPipeline
JEEr () Developer 8

Multi-dimensional Pod Autoscaling (MPA)

* Open-source Framework: A system design that allows general workloads on
Kubernetes to use RL-based autoscalers such as FIRM

 Reusing HPA/VPA as a fallback to RL to have a default autoscaling algorithm
* Scaling recommendation is separated from actuation
* Supports customized plug-and-play multi-dimensional autoscaling algorithms

VPA CR

th VPA Recommender
Terminate Pods

_ Set Configs

Metrics

pd
N

Metric Server

Admission Controller VPA Updater

Metrics R

Monitoring HPA

+/- number

Application L<
Deployments

)

Resize Pods

of replicas

Watch for vertical

MPA Design Overview

MPA API (CR Object)

Watch for horizontal

Updater |

config updates config updates
N
Set scaling configs
\ % Metric Server API Read parameters
Admission Default Metrics Measurements ¥
Controller : Recommender
Tracing data
(Webhook) Custom Metrics ,,/’7\
L
Monitoring VPA [HPA RL Controller
Vertical s| Application ¢ Horizontal Scaling
Resize pods Deployments +/- number of replicas
| Peployments _

Kubernetes Operators

* MPA: Multi-dimensional Pod Autoscaler

s o An RL bootstrapper that
o i ot ® 9 combines offline training with

online training & inference

MPA Wrapper

State, Reward | Actions

RL APl Gateway &> RL Bootstrapper

/N
/Online Mode p= = A_ _ -

O \ |
"= 1| VPA HPA

8 RL Agent . ;
L(| (Base-Learner) 1_Non-RL Controller |
- Offline Mode

ﬁﬁajectory DB |

* R1 and R2 are calculated based on user-specified SLOs

Initialized Policy Offline Training

Algorithm

|

|

|

|

|

|

(| @
S

I(—.;'

1| <

il ©
-1

=

!

I =

| o

1| =.

1=
aqQ,

|

|

|

|

L

RL Retraining Detection and Trigger

& trigger module

e An RL retraining detection
>V

=1
g |
1
-
= |
=
31
|
|
|
|
|
|
|
|
I
|
|
t:<
g
v |
|
|
|
|
|
|
I
|

RLAgent | , . . — !

RL Trajectory (Base-Learner) | Switch 1 Policy Online Training :
DB onfoff | I
retraining : No :

Past X .| RLRetraining | .| RL Retraining : Avg(R[X]) >= R2 & :
Rewards °| Detector Triger | Var(R[X]) <= V1 ;
T : Yes |

SLOs | |

O RLPipeline! _ . I

User APl <— Developer : Avg(R[X]) < R2 Policy Serving :

| No |

oo o oo oo oo oo e o o mm mn mm e mm mm mm m e mm mm o mm mm Em o -l

* R1 and R2 are calculated based on user-specified SLOs 12

T
Fast Model Adaptation with Meta-learner

Goal: To reduce RL model retraining time (cost) and adapt quickly to new application
workloads (unseen during training)

Key Idea: Model each RL agent as a base-learner and create a meta-learner to learn to
generate an embedding that can accurately represent each environment

« The embedding is fed to the base-learner (as state input) to differentiate one RL
environment from another -> customized to each environment

Why meta-learning?
* “Learning to learn”

 Capable of adapting well or generalizing to new environments that have never been
encountered during training

 Adaptation process requires only limited exposure to the new environment

* A systematic framework that enables automatic adjusting of internal hidden states to
learn (combined with RL -> learned policy conditioning on the application)

AWARE Design and Model Architecture

Meta Learner

[TRi = (St, A, Te) ter]

I
|
|
|
|
|
|
I | RNN
|
|
|
|
|
|
|
|
|

Resource
Configs

Resource
| Utilizations |

Application
Metrics

App+Env

. Embe;ijding_)

TR;: RL Trajectories
from environment i

w9
o0
\\YVI/
“‘w"""\\
n o

IIM\\

II"

I

‘

/

B

Scaling
Actions

v
& v
| ’1\,’ O
o |l \e\ "r,
i1 \ i —~
wn \\‘w"lf .;:"
mm : 2
f: ,«t\\ %
E '4,5‘\\\ o
= Q!,;f;:g\,
) / \
L Critic Net

I
oreting “Embeddings” from Systems Perspective

\/\
R : -
I
O —1+ / S
© mm ~ [—
S o ©
£ S
]
] S
< i
o _
I _ &
© I/ “@ "\ S
c%'§ \ ! ZI l, \\
//_: / Z N’ / y
/\ =~ -~
Projected Projected

Vector Space Vector Space

Performance-Resource Load Arrival Patterns
Sensitivity Heatmap Time Series (#req/sec)

Evaluation

RQ1: Does AWARE provide fast model adaptation to new workloads?
* What is the value of meta-learning?

RQ2: How does AWARE perform in online policy-serving when workload updates
or load changes occur?

RQ3: How does AWARE perform in the early stages of policy training, compared to
RL agents without bootstrapping?

Workload generation:

* 16 represented production serverless function segments (e.g., CPU-intensive jobs, image
manipulation, text processing, web serving, ML model serving, 1/O services)

» Generated 1000 synthetic applications by random selection and combination

RL agent/algorithm (i.e., base-learner) implementation adopted from FIRM (OSDI
2020) - DDPG, an actor-critic RL algorithm

* Reward function: R(t) = a - RU(t) + (1 — a) - SP(t), where SP(t) = min(latencysw,l)

latency

T
RQ1 — Fast Model Adaptation

S
3

Relative Cost
—_
o

N
) —

* AWARE adapts 5.5x and 4.6x faster than

* TL: Transfer learning with model

parameter sharing
 TL+: Transfer learning that includes | 1 I Iy
5.5x 3.5 7.1
W) AX
* AWARE saves 68-72% CPU cycles ‘

« AWARE reduces CPU and memory e Ty GO Dt ot o
utilization deficit by 4.6x and 6.2 x Retral"® CPE T epy U oy U SLO NV

TL and TL+
1.
’ s TL TL+ BN AWARE
additional features
* AWARE reduces SLO violations by 7.1x

RQ2 & RQ3 - Bootstrapping and Online Policy-serving

Bootstrapping

o 18 1 I Rule-based
§ No Bootstrapping]:
§17 T B AWARE ;
S Converged RL VW -
o, N 16.9X//
= 1.5x, 47.5% I .
B & &i 32.2% I

O -

Reward CPU Util Memory Util SLO Violations

Compared to no-bootstrapping:

* AWARE had 47.5% and 32.2% higher
CPU and memory utilization

* AWARE reduced workload SLO
violations by 16.9x

Online Policy-serving

| M Rule-based s AWARE
No Retraining Converged RL

w

3.1x

[\
]

9:6%

8'%il }il 14.8% - |

LR N s

Reward CPU Util Memory Util SLO Violations

—_

Relative Performance

Compared to no-retraining:

* AWARE had 9.6% and 14.8% higher
CPU and memory utilization

* AWARE reduced workload SLO
violations by 3.1x

Summary and Future Work

AWARE is an extensible framework for deploying and managing RL-based
controllers in production systems

AWARE provides (1) fast adaptation with meta-learning, (2) reliable RL exploration
with bootstrapping, (3) robust online performance with timely retraining

Demonstrated AWARE in workload autoscaling:

» Adapts a learned autoscaling policy to new workloads 5.5 x faster than the existing transfer-
learning-based approach

* Provides stable online policy-serving performance with less than 3.6% reward degradation

* Helps achieve 47% and 32% higher CPU and memory utilization while reducing SLO
violations by a factor of 16.9x during initial policy training

Out-of-distribution cases (limitation of meta-learning)
* Detection/classification + Fine-grained customization

Future Work: Extend the meta-learning-based framework for other workload-aware
MLA4Sys cases as a general paradigm which supports fast model adaptation

* Scheduling, resource config search, congestion control, power management, etc.

Thank you!

Haoran Qiu', Weichao Mao', Chen Wang?, Hubertus Franke?, Alaa Youssef?

Zbigniew T. Kalbarczyk!, Tamer Basar!, Ravishankar K. lyer!

1UIUC I 2 IBM Research

ARTIFACT ARTIFACT ARTIFACT

evawuateo || evawateo || evawates | (Check out the paper for more details:
https://www.usenix.org/conference/atc2 3/presentation/giuhaoran

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AVAILABLE REPRODUCED

20

https://www.usenix.org/conference/atc23/presentation/qiuhaoran

