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Shifting to Microservices
Datacenters host user-facing applications with the QoS target.

Traditional applications
Coupled & Central

ⅩComplex app

ⅩCentralized deployment

ⅩUnified programming 

language

Ⅹ ......

Microservice applications
Decoupled & Distributed

ü ......

ü Fine-grained management 

ü Heterogeneous program 

languages

ü Multiple microservices

Shifting to

Distributed

Monolithic Microservices



Microservice Architecture

Dependency graph: DAG, tree-like, less multi in-degree; Entering microservice: frontend web service

Call graph: Part of microservices, different query patterns; Example: user-selected recommendation methods

Complex dependency structure; Various call graphs of user queries

Dependency graph and call graphs
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Load and Call Graph Dynamics

Load dynamics over time

Alibaba microservice trace 2021: 3000+ applications in 12 hours

Call graph dynamics over time

Load dynamics: Application load changes over time.

Three investigation benchmarks

Call Graph dynamics: Call graph proportion changes over time.

Microservice dynamics: Load dynamics + Call graph dynamics

10%-40%



Current Works of Microservice Management
Proactive methods:

Current works have long QoS recovery time.

Evaluation Setup:
    3 benchmarks
    18 dynamic scenarios
    Load+Call Graph dynamics

QoS recovery time: 
24.6 to 84.4 seconds

Reactive methods:

QoS recovery time: Time needed to reduce the 99%-ile latency below a fixed target

Predict load/performance, Call graphs, Unpredictable dynamics

Latency monitor, ML-based, Adjust individually

ELIS: BO-based



Causes of the Long Recovery Time

Latency change after dynamics happen

Long Monitoring Interval

Ø Monitoring real-time latencies of microservices
Ø Allocate resources based on latencies

Latency monitor interval needs to be long enough.

Ø Interval: seconds or tens of seconds



Causes of the Long Recovery Time

Execution blocking effect among MSs

Need to adjust resources for multiple times => long QoS recovery time  

Ø Monitored ≠ to-be-processed

Execution Blocking Effect

Ø ms-0 blocks ms-3, ms-3 blocks of ms-8+9

Blocking examples

Insufficient

Insufficient

Blocked

Blocked

Ø Latencies increase when their superiors get enough resources
Ø Get to-be-processed loads when blocking is alleviated



Causes of the Long Recovery Time

Excessive resource allocation can reduce overall QoS recovery time. 

Ø Queued queries need extra time to be drained under just-enough resources.

Slow Query Draining

Ø Queued queries can lead to long QoS recovery time.

Ø More excessive resource allocation, shorter queued query draining time.
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Nodens Overview
Traffic-based Load Monitor: 
Obtain monitored loads of microservices based on monitored network traffic.



Nodens Overview
Blocking-aware Load Updater: 

(1) Execution Blocking Graph;  (2) Actual Load Updating



Nodens Overview
Execution Blocking Graph:
Capture all the execution blocking relationships among different microservices.



Nodens Overview
Actual Load Updating: 
Updating actual to-be-processed loads of microservices based on execution blocking graph.



Nodens Overview
Resource-efficient Query Drainer: 
Allocate just-enough excessive resources for microservices to drain queued queries.



Traffic-based Load Monitor 

Predict modelsUpper network 
traffic

Monitored loads 
of microservices

② Obtain monitored loads based on network traffic

③ Results input to load updater

Tree-like dependency graph:
Linux file /proc/net/dev, calculate hierarchically

Graph-like dependency graph:
Use Libpcap to capture packets among MSs

① Obtain upper network bandwidth usage of microservices

microservice-6: data communication amount per second 
from microservices 0, 2, and 3.

linear   linear
Traffic => Load => CPU demand



Blocking-aware Load Updater

microservice-3: log-in

microservice-8: authentication

microservice-9: reservation

q Call dependencies among microservices

Execution Blocking Effect

Monitored/Actual loads of an example
Graphs of HR benchmark

1500/1000

1000
1000

Block
1/1.5

q 1.5X load + call graph dynamics

q Call order among microservices



Blocking-aware Load Updater

① Multiple in-degrees => multiple replicas

③ No order: blocking=dependency relationship

q Construction process
Execution Blocking Graph

④ Call order: ends of blocking subtree of X

Z: log-in

X: authentication

Y: reservation

② Construct blocking relationship for sub-structures



Blocking-aware Load Updater

Actual Load Updating Mechanism

q Blocking rate

q Load updating mechanism

① Follow the BFS process of the blocking graph

② Calculate Blocking Rate of the front node in BFS queue 

③ Update Actual Loads pass to downstream microservices

④ Push the Updated Microservice into the BFS queue

⑤ All Actual Loads are updated after the BFS process



Resource-efficient Query Drainer

Ø QoS recovery time target: the recovery time is within 3 seconds after dynamics happen

Ø Minimize: excessive resource allocation, s.t. Recovery time target is ensured

Ø Output: Just-enough excessive resources for microservices

Ø Input: MonitoredLoad, HandleLoad, ActualLoad
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Evaluation Setup

Ø Hardware: Eight-node server
Ø Software: Docker, Kubernetes; three benchmarks
Ø Testing cases: 18 dynamic scenarios with load+call graph dynamics
Ø Baselines: ELIS and FIRM, directly allocate optimal resources, Nodens’s query drainer



Reducing QoS Recovery Time
Ø Just-enough resources with 1X initially, then change load and call graph proportion

Nodens has shorter QoS recovery time under microservice dynamics.

Ø FIRM < ELIS: Directly adjust critical microservices

Ø Nodens eliminates QoS violation in given recovery targets in all dynamic scenarios 
Ø Reduce the QoS recovery time by 12.1X and 10.2X than ELIS and FIRM



Resource Usage during Recovery Period

Ø Use the longest QoS recovery time (ELIS’s) to calculate cores×hours.

Nodens uses small amount more resources, maintains resource efficiency. 

Ø FIRM > ELIS: ELIS spends extra time to actively recycle over-provisioned resources.

Ø Nodens uses 1.5% and 6.1% more resources on average than FIRM and ELIS



Effectiveness of the Load Updater

Ø Nodens-wou: disables the blocking-aware load updater

Load updater avoids execution blocking effect by updating actual loads in advance.

QoS recovery time Example of allocation timeline

Ø Nodens-wou recovers in two cases, requires 2.6X time than Nodens

ØExecution blocking makes Nodens-wou only obtain actual loads layer by layer.



Effectiveness of the Query Drainer

Ø Nodens-wod: disables the resource-efficient query drainer

Query drainer drains queued queries quickly with high resource efficiency.

QoS recovery time Excessive resource allocation example

Ø Nodens-wod fails in all cases, requires 1.6X time than Nodens

Ø Query drainer allocates “just-enough” excessive resources to microservices 
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Conclusion

Update actual loads in advance: Blocking rate based actual load updating

Drain queued queries quickly: Resource-efficient query draining

Capture blocking relationships: Execution blocking graph construction

Under microservice dynamics, above techniques enable
Fast QoS recovery and high resource efficiency.

Monitor load change quickly: Network traffic based load monitor



The end


