
Nodens: Enabling Resource Efficient and Fast QoS Recovery
of Dynamic Microservice Applications in Datacenters

Jiuchen Shi, Hang Zhang, Zhixin Tong, Quan Chen,
Kaihua Fu, Minyi Guo

Department of Computer Science and Engineering, Shanghai Jiao Tong University

Content

Introduction & Background1

2

3

4

Motivation

Nodens Overview & Design

Evaluation

5 Conclusion

Introduction & Background

Introduction & Background

Shifting to Microservices
Datacenters host user-facing applications with the QoS target.

Traditional applications
Coupled & Central

ⅩComplex app

ⅩCentralized deployment

ⅩUnified programming

language

Ⅹ

Microservice applications
Decoupled & Distributed

ü

ü Fine-grained management

ü Heterogeneous program

languages

ü Multiple microservices

Shifting to

Distributed

Monolithic Microservices

Microservice Architecture

Dependency graph: DAG, tree-like, less multi in-degree; Entering microservice: frontend web service

Call graph: Part of microservices, different query patterns; Example: user-selected recommendation methods

Complex dependency structure; Various call graphs of user queries

Dependency graph and call graphs

Motivation

Motivation

Load and Call Graph Dynamics

Load dynamics over time

Alibaba microservice trace 2021: 3000+ applications in 12 hours

Call graph dynamics over time

Load dynamics: Application load changes over time.

Three investigation benchmarks

Call Graph dynamics: Call graph proportion changes over time.

Microservice dynamics: Load dynamics + Call graph dynamics

10%-40%

Current Works of Microservice Management
Proactive methods:

Current works have long QoS recovery time.

Evaluation Setup:
 3 benchmarks
 18 dynamic scenarios
 Load+Call Graph dynamics

QoS recovery time:
24.6 to 84.4 seconds

Reactive methods:

QoS recovery time: Time needed to reduce the 99%-ile latency below a fixed target

Predict load/performance, Call graphs, Unpredictable dynamics

Latency monitor, ML-based, Adjust individually

ELIS: BO-based

Causes of the Long Recovery Time

Latency change after dynamics happen

Long Monitoring Interval

Ø Monitoring real-time latencies of microservices
Ø Allocate resources based on latencies

Latency monitor interval needs to be long enough.

Ø Interval: seconds or tens of seconds

Causes of the Long Recovery Time

Execution blocking effect among MSs

Need to adjust resources for multiple times => long QoS recovery time

Ø Monitored ≠ to-be-processed

Execution Blocking Effect

Ø ms-0 blocks ms-3, ms-3 blocks of ms-8+9

Blocking examples

Insufficient

Insufficient

Blocked

Blocked

Ø Latencies increase when their superiors get enough resources
Ø Get to-be-processed loads when blocking is alleviated

Causes of the Long Recovery Time

Excessive resource allocation can reduce overall QoS recovery time.

Ø Queued queries need extra time to be drained under just-enough resources.

Slow Query Draining

Ø Queued queries can lead to long QoS recovery time.

Ø More excessive resource allocation, shorter queued query draining time.

Nodens Overview and Design

Nodens Overview and Design

Nodens Overview
Traffic-based Load Monitor:
Obtain monitored loads of microservices based on monitored network traffic.

Nodens Overview
Blocking-aware Load Updater:

(1) Execution Blocking Graph; (2) Actual Load Updating

Nodens Overview
Execution Blocking Graph:
Capture all the execution blocking relationships among different microservices.

Nodens Overview
Actual Load Updating:
Updating actual to-be-processed loads of microservices based on execution blocking graph.

Nodens Overview
Resource-efficient Query Drainer:
Allocate just-enough excessive resources for microservices to drain queued queries.

Traffic-based Load Monitor

Predict modelsUpper network
traffic

Monitored loads
of microservices

② Obtain monitored loads based on network traffic

③ Results input to load updater

Tree-like dependency graph:
Linux file /proc/net/dev, calculate hierarchically

Graph-like dependency graph:
Use Libpcap to capture packets among MSs

① Obtain upper network bandwidth usage of microservices

microservice-6: data communication amount per second
from microservices 0, 2, and 3.

linear linear
Traffic => Load => CPU demand

Blocking-aware Load Updater

microservice-3: log-in

microservice-8: authentication

microservice-9: reservation

q Call dependencies among microservices

Execution Blocking Effect

Monitored/Actual loads of an example
Graphs of HR benchmark

1500/1000

1000
1000

Block
1/1.5

q 1.5X load + call graph dynamics

q Call order among microservices

Blocking-aware Load Updater

① Multiple in-degrees => multiple replicas

③ No order: blocking=dependency relationship

q Construction process
Execution Blocking Graph

④ Call order: ends of blocking subtree of X

Z: log-in

X: authentication

Y: reservation

② Construct blocking relationship for sub-structures

Blocking-aware Load Updater

Actual Load Updating Mechanism

q Blocking rate

q Load updating mechanism

① Follow the BFS process of the blocking graph

② Calculate Blocking Rate of the front node in BFS queue

③ Update Actual Loads pass to downstream microservices

④ Push the Updated Microservice into the BFS queue

⑤ All Actual Loads are updated after the BFS process

Resource-efficient Query Drainer

Ø QoS recovery time target: the recovery time is within 3 seconds after dynamics happen

Ø Minimize: excessive resource allocation, s.t. Recovery time target is ensured

Ø Output: Just-enough excessive resources for microservices

Ø Input: MonitoredLoad, HandleLoad, ActualLoad

Evaluation

Evaluation

Evaluation Setup

Ø Hardware: Eight-node server
Ø Software: Docker, Kubernetes; three benchmarks
Ø Testing cases: 18 dynamic scenarios with load+call graph dynamics
Ø Baselines: ELIS and FIRM, directly allocate optimal resources, Nodens’s query drainer

Reducing QoS Recovery Time
Ø Just-enough resources with 1X initially, then change load and call graph proportion

Nodens has shorter QoS recovery time under microservice dynamics.

Ø FIRM < ELIS: Directly adjust critical microservices

Ø Nodens eliminates QoS violation in given recovery targets in all dynamic scenarios
Ø Reduce the QoS recovery time by 12.1X and 10.2X than ELIS and FIRM

Resource Usage during Recovery Period

Ø Use the longest QoS recovery time (ELIS’s) to calculate cores×hours.

Nodens uses small amount more resources, maintains resource efficiency.

Ø FIRM > ELIS: ELIS spends extra time to actively recycle over-provisioned resources.

Ø Nodens uses 1.5% and 6.1% more resources on average than FIRM and ELIS

Effectiveness of the Load Updater

Ø Nodens-wou: disables the blocking-aware load updater

Load updater avoids execution blocking effect by updating actual loads in advance.

QoS recovery time Example of allocation timeline

Ø Nodens-wou recovers in two cases, requires 2.6X time than Nodens

ØExecution blocking makes Nodens-wou only obtain actual loads layer by layer.

Effectiveness of the Query Drainer

Ø Nodens-wod: disables the resource-efficient query drainer

Query drainer drains queued queries quickly with high resource efficiency.

QoS recovery time Excessive resource allocation example

Ø Nodens-wod fails in all cases, requires 1.6X time than Nodens

Ø Query drainer allocates “just-enough” excessive resources to microservices

Conclusion

Conclusion

Conclusion

Update actual loads in advance: Blocking rate based actual load updating

Drain queued queries quickly: Resource-efficient query draining

Capture blocking relationships: Execution blocking graph construction

Under microservice dynamics, above techniques enable
Fast QoS recovery and high resource efficiency.

Monitor load change quickly: Network traffic based load monitor

The end

