Sponge:
Fast Reactive Scaling for Stream Processing
with Serverless Frameworks

Won Wook SONG, Taegeon Um, Sameh Elnikety, Myeongjae Jeon, Byung-Gon Chun

Seoul National University, Samsung Research, Microsoft Research, UNIST, FriendliAl

£
\’\’: 77/f

) SAMSUNG :
mi\ /) Research B Microsoft

A1é__ Iiitm

€, FriendliAl

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

Stream Processing Happens Continuously

— ‘
HEE 3 Q} 3
g =

Outputs

Input Events Stream Processing
Engine

Stream processing deals with real-time data
- Latency-critical

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 2

Stream Processing System Requirements

Low latency High throughput

Correctness Resource Efficiency

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

-
= »

Input Patterns of Stream Workloads: Unpredictable

o
L

Input load (events/sec)

v

Time (s)

Stream data are generated in real-time,
which are irregular and unpredictable, due to unforeseen events

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

Input Patterns of Stream Workloads: Bursty

o
L

Bursty load

Bursty load

Input load (events/sec)

v

Time (s)
Real-time data can occur in sporadic bursts, due to random events

(e.g., influencer tweets, breaking news, natural disasters)*

*Rastegar et. al., Rule caching in sdn-enabled base stations supporting massive iot devices with bursty traffic. (IEEE loT Journal ‘20)
*Robinson et. al., A sensitive twitter earthquake detector. (WWW Companion ‘13)

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

Bursty Input Data Builds Up and Clogs the Pipeline

GroupByKey 2nd GbK
(Combine) (Combine)
I R R R R

Bottleneck!

ri > m;

Input rate > Max throughput

-
=
I‘Jk« iy

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 6

Stream Operators: Stateful vs. Stateless

Join

CPU/Memory trace of a stateful join operator
Stateful operators are more tricky to handle
due to state handling (e.g., migration)

OF

State

CPU/Memory trace of a stateless map operator
Stateless operators can easily scale-out

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

Stream Operators: Stateful vs. Stateless

100 = CPU = Memory 100
S 75 75
% ~

Q

3 50 50 2
E o
g 25 255
Q O
s

0 0

0 100 200 300 400 500

time (sec)

CPU/Memory trace of a stateful join operator
Stateful operators are more tricky to handle
due to state handling (e.g., migration)

OF

100 = CPU = Memory 100

75

~
a1

50

{

25

Memory Usage (%)
\
o 3
CPU Usage (%)

0 0
0 100 200 300 400 500
time (sec)

CPU/Memory trace of a stateless map operator
Stateless operators can easily scale-out

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

o o

Preventing Latency with Over-provisioned Resources

t —— . Throughput Capacity
Over-provisioned idle CPU resources

Bursty load

Extra cost

Throughput (events/sec)

Resource Demand

L

Resources in use

Time (s)

Simplest solution, but bursty loads are unpredictable
- Must reserve 5-10x resources at all times = costly

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

Scaling with On-Demand Virtual Machines (VMs)

Anics

Output Stream

Outputs

Machine-isolated by bare-metal hypervisors
Fixed specification of CPU and memory
10Gbps network

Stable and powerful

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

10

Scaling with On-Demand Virtual Machines (VMs)

Analytics

l Output Stream

Outputs

. Over 25 seconds of
launch overhead

VM Start-up Time is Too Slow (25-30s)

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

11

Scaling with On-Demand Serverless Functions (SFs)

Anics

j Output Stream

Input Events

Outputs

300-750ms of
launch overhead

Process-isolated by OSes
Flexible allocation of CPU according to mem size

800-1200Mbps network per instance
4x more expensive than VMs

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

12

Scaling with On-Demand VMs and SFs

SFs to handle short-living bursty input loads &
VMs to handle long-living input loads

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

Anics

Output Stream

Outputs

Direct Network Communications are Prohibited among SFs

Serverless Function A

Serverless instances are not designed

to provide stable, direct network connections

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

14

Managed Runtime Initialization Overhead

Managed runtimes (e.g., JVM) incur launch overheads (~4 seconds)

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 15

State & Task Migration Overhead

State & task migration overheads are not negligible
due to smaller network bandwidths

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

16

Challenges and Overheads to Overcome

Overheads
SF initialization 4
Data redirection {
&J Task migration - = 0
&J Managed runtime init. - = Of
GJ State migration Of
& VM Initialization L—Qj'
(I) é 1IO 115 210 215 3l0

Overhead (s)

Various overheads exist for using VMs and serverless instances

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 17

Sponge Overview

Sponge Compiler

Quer
Yy e DAG OptimizerOQO N
— Bl >

p
Sponge Runtime
Monitoring.:;;::iiii‘i“"""""””"‘f”f”""“”' \
=A&Ty - 7
EZ‘ :;':"_3_ E EEAYT A
_ ——— e _ =T __

Sponge handles the challenges through compile-time and run-time

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

Sponge Overview

Sponge Compiler

Redirect-and-merge

Query e

—P>

Fast reactive scaling

Sponge Runtime

[E AT ¢

Monitorig:;;_—:,:_-'.-i'ii'i""""""”““f”f”'"“”' \
‘ ‘ : [EAT A

Sponge handles the challenges through compile-time and run-time

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

Injecting New Operators during Compile-Time

Sponge Compiler
Que

uery DAG OptlmlzerQQQ N

T 0@0 (O 0c®

MO Y,

Query DAG is inserted with new operators at compile-time with ~200ms overhead

9]

MEdya

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 20

Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances
2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

N/

Sum

State
K1

K2

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC 23 | Won Wook SONG | July 11th, 2023 21

Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances
2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

} Sum State
K1

K2

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC 23 | Won Wook SONG | July 11th, 2023 22

Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances
2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

K1 Events
VR
Map RO¥iter Filter ROsum Sum | State
TOwmap TOriter b TOsum —
3 " i K2 E\;ents K State
K2

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 23

Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances
2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

K1 Events
Map ROfter Filter 0w | sum[state | MOsum
\ . K1
TOws | . TOner | AN T0gm 7
d K] K2 E\;e nts k State

.,
g
g o
. .
0
LTI L

K2

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC 23 | Won Wook SONG | July 11th, 2023 24

Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances
2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

K1 Events
i v MO
Map ROritter Filter ROsum Sum sum
4) State
’ § K2 Events K2

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

How Much Resources are Required for Our Pipeline?

Anics

l Output Stream

Outputs

How much data should we redirect to serverless functions?

How many serverless instances should we be using?

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 26

Dynamic Resource Management during Runtime

Over-provision case

Costs saved
Bursty load

'Adaptive CPU usage

Throughput (events/sec)

InPut load

Time (t)

CPU and input rates are monitored every second (~10ms overhead)
CPU utilization goal: 60-80%

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 27

Stable Input Load per CPU Core

Measure the average stable CPU usage rate on VMs
and the average task input rate for every second ___

Throughput (events/sec)

Input load rate 7;(t)

Time (1)
CPU _ input rate
L J Approx.throughput rate per VM core = number of VM cores
o1
NS0

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 28

Recovery Deadline and Target Throughput

Data piled up in input
. queue

max throughput m,(t) on VMs

Throughput (events/sec)

In PUt load rate r;(t)

/3 Time (1)

N
= Data piled up in the event queue < Data to process within our target deadline
e ([nput rate — throughput) *time < (Target throughput — input rate) * time

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 29

Recovery Deadline and Target Throughput

Fast reactive scaling
\ on SFs

Target max throughput m;_

M\V_ max throughput m,(t) on VMs

Input load rate ;(¢t)
/ﬁ Time (t)]

Throughput (events/sec)

]
== Data piled up in the event queue <
p— (Existing throughput *time <

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 30

Preparing SFs to Reduce Runtime Launch Overhead

b

ts/sec)

Target max throughput m;_ I /\
A

1.Retrieve the existing metrics on approx. throughput per VM core and target throughput

2.Profile capacity between SF and VM cores for scaling

3.Find # of target SF cores for 70% utilization (with a +10% buffer for minor profiling errors) p VMs

EV N4 v \/\/ \-»/ ﬂlnput load rate r;(t)

Time (1)
—mn L
= (L%
E _ Target additional throughput
p— required SF cores = [70% * Approx. throughput per SF corel
—_— (B YOS
- \ 2SO

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 31

Preparing SFs to Reduce Runtime Launch Overhead

b

Target max throughput m;_ I /\

A
1.Retrieve the existing metrics on approx. throughput per VM core and target throughput

ts/sec)

2.Profile capacity between SF and VM cores for scaling
3.Find # of target SF cores for 70% utilization (with a +10% buffer for minor profiling errors) p VMs

E}’ N4 v \',\/ \-»/ ﬂlnput load rate r;(t)

Time (1 Yooy O\ mmm
SV syl —

rod SF _ [Target additional throughput l '
require OTES = (709 « Approx.throughput per SF core e .O —
71

32

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

Sponge In Action

Sponge Compiler

Query e

MEdya

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 33

Sponge In Action

Sponge Compiler

Quer
y - DAG OptimizerQQO
— .f:Q,Q E>.§C O
\ @) 2 \"'I/T)
N’ nou

, \

Sponge Runtime &
i3

Scheduler
VM VM
G

~

J

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

MEdya

34

Sponge In Action

(Sponge Compiler
Query p o
DAG Optimizer
—>
.
&
/ .
Sponge Runtime -
o1
5
2 —_:::‘.‘-l, J Scheduler
\

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

ETLE!

35

Sponge In Action

(Sponge Compiler
Query - .
DAG Optimizer
—P>
-
-
: | \
Sponge Runtime Y=
Monitorir_lg.—;:::.-——‘- ’@
-

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

MEdya

36

Sponge In Action

(Sponge Compiler b
Quer
J (DAG Optimizer
—P>
N\
&

p i
Sponge Runtime Y= L VM I
Monitorir_lg.;;_-::.---'- ’@ "\:\i i
L AN - tler ol e _/
J1[0 sF
| Jd -

MEdya

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 37

Sponge In Action

Sponge Compiler
DAG Optimizer

Query -

Sponge Runtime

o A
Monltorlgi;;_:':_:_--——'- e g

MEdya

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 38

Sponge In Action

Sponge Compiler
DAG Optimizer

Query -

Sponge Runtime

MEdya

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 39

Sponge Implementation

Programming interface: Apache Beam 3 beam

* Associative and commutative operators are extracted to implement the merge operators

* DAG reshaping mechanisms & data processing runtime: Apache Nemo

« Operator insertion can be expressed as reusable algorithms e Nemo

* Serverless frameworks: AWS Lambda G

AWS

* Managing & deploying different instances: boto3 Lambda

* AWS SDK API for controlling AWS instances @

Boto 3

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 40

Evaluation Results

« AWS Cluster of 5 nodes for execution + 1 large node for data generation
* rb.xlarge (4vCPUs, 32GB Memory) * 5

c5d.12xlarge for data generation (48vCPUs, 96GB Memory) * 1

1769MB AWS Lambda instances (1769MB offers instance with 1 vCore) * up to 200

« NEXMark Benchmark Suite

« A suite of pipelines, provided by Apache Beam, representing an online auction system %

* Queries include

~~" Person

1 (currency conversion) /BEdI Bidder
o |
e 4, 6 (avg. price per category, avg. price by seller) % [~ Auction :i\
.5, 7 (hot items, highest bid) person M %
Seller
* & (monitor new users) Person
Bidder ==

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 41

Evaluation Results: Input Patterns

_300K — Bursty
—— Sine
200K —— Gradual
150K

100K

e
e
N
)
o
A

Input rat
(events/sec

300 320 340 360 380 400 420 440 460
Elapsed time (s)

3 different input patterns with different burstiness and duration

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 44

Evaluation Results: Latency and CPU Utilizations

----- NoScaling —--VMBase -*-SFBase --+-VMInit --+- Over

i e N
g 40 ,/4 .\.
& 30 El N
LZ;‘ 201 ’ Fie
£ 10 TN
—

0_350 375 400 425 450
Elapsed time (sec)

Q6

S 40-
o 3% 2K
2 30| el o
> I Tk ¢
2 20- ?(.-1 s
Q B
® 10/ VAR
— PO

% 0" O\

0350 375 400 425 450
Elapsed time (sec)

Latency for 5x burst at 380s

100

Utilization (%)

100

Utilization (%)

CPU Utilizations for 5x burst at 380s

80 { ¥eetd
601
401
20

80
601 &
40
20

——Sponge

0350 375 400 435 450

Elapsed time (sec)

0350 375 400 435 450

Elapsed time (sec)
Q8

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

MEdya

45

Sponge Evaluation: Performance Breakdown

—A--SFBase ----- SpongeRO --4-- SpongeTO =+ -SpongeSnap ——Sponge

Latency (s)

300 350 400 450 300 350 400 450

Elapsed time (sec) Elapsed time (sec)
Q6 Q8

Performance breakdown of different Sponge components

+ Router operators - + Transient operators - + Merge operators 18

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC 23 | Won Wook SONG | July 11th, 2023 46

Evaluation Results: Different Input Patterns

B NoScaling [VMBase SFBase [VMinit [Over [Sponge
80
a 60
%)
c 40
2
L
E 20
0 L._
Bursty Sine Gradual 7X 10x 120s
Traffic pattern Burstiness Du ratlon

Tail latency for different patterns, burstiness, and durations

MEoga

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 47

Evaluation Results: Cost Analysis

4x

B 20-VMs (statlc) 150 1
= 101 mmm 25-VMs (static)
> I Sponge (5-VMs) & 100
© B
L 54 3 =@=20-VMs (static)
- =@== 25-VMs (static)

0 50 1 / =@=Sponge

|
T T T T T T

1 5 10 15 20 25
Query % of bursty duration
(a) in a day
(b)

(a) Sponge effectively keeps latencies low compared to over-provisioned solutions

(b) Bursty duration falls below 15% of total time, making Sponge cost-effective

MEdya

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 49

Conclusion

* Bursts of input events - input data to piles up in the input queue

* Sponge prevents launch and migration overheads

* By redirecting bursts of input data to fast-starting serverless frameworks

« SFs are automatically scaled to keep latencies and budget within our target

* Sponge reduces tail latencies by 88% on average vs. VM scaling

« Sponge reduces cost to 17% (83% reduction) vs. over-provisioning

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023 50

Thank you!
Questions?

Won Wook SONG
https://wonook.github.io

wonook®@apache.org

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

-
= »

51

Sponge:
Fast Reactive Scaling for Stream Processing
with Serverless Frameworks

Won Wook SONG, Taegeon Um, Sameh Elnikety, Myeongjae Jeon, Byung-Gon Chun

Seoul National University, Samsung Research, Microsoft Research, UNIST, FriendliAl

£
\’\’: 77/f

) SAMSUNG :
mi\ /) Research B Microsoft

A1é__ Iiitm

€, FriendliAl

Sponge: Fast Reactive Scaling for Stream Processing with Serverless Frameworks | USENIX ATC ‘23 | Won Wook SONG | July 11th, 2023

