
Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge:
Fast Reactive Scaling for Stream Processing

with Serverless Frameworks

Won Wook SONG, Taegeon Um, Sameh Elnikety, Myeongjae Jeon, Byung-Gon Chun

Seoul National University, Samsung Research, Microsoft Research, UNIST, FriendliAI

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Stream Processing Happens Continuously

2

Stream processing deals with real-time data
à Latency-critical

Input Events Stream Processing
Engine

Output Stream

Analytics

Outputs

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Low latency High throughput

Correctness Resource Efficiency

3

Stream Processing System Requirements

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Input Patterns of Stream Workloads: Unpredictable

4

In
pu

t l
oa

d
(e

ve
nt

s/
se

c)

Time (s)

Stream data are generated in real-time,
which are irregular and unpredictable, due to unforeseen events

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Input Patterns of Stream Workloads: Bursty

5

Time (s)

Bursty load

Real-time data can occur in sporadic bursts, due to random events

(e.g., influencer tweets, breaking news, natural disasters)*
*Rastegar et. al., Rule caching in sdn-enabled base stations supporting massive iot devices with bursty traffic. (IEEE IoT Journal ‘20)

*Robinson et. al., A sensitive twitter earthquake detector. (WWW Companion ‘13)

Bursty load
In

pu
t l

oa
d

(e
ve

nt
s/

se
c)

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Bursty Input Data Builds Up and Clogs the Pipeline

6

Input rate > Max throughput

Map Filter Join GroupByKey
(Combine)

2nd GbK
(Combine) WriteWindow

Bottleneck!

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Stream Operators: Stateful vs. Stateless

7

CPU/Memory trace of a stateless map operator
Stateless operators can easily scale-out

CPU/Memory trace of a stateful join operator
Stateful operators are more tricky to handle

due to state handling (e.g., migration)

Map

Filter

Join State

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Stream Operators: Stateful vs. Stateless

8

CPU/Memory trace of a stateless map operator
Stateless operators can easily scale-out

CPU/Memory trace of a stateful join operator
Stateful operators are more tricky to handle

due to state handling (e.g., migration)

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Preventing Latency with Over-provisioned Resources

9

Simplest solution, but bursty loads are unpredictable

à Must reserve 5-10x resources at all times = costly

Th
ro

ug
hp

ut
 (e

ve
nt

s/
se

c)

Time (s)

Throughput Capacity

Resource Demand

Over-provisioned idle CPU resources

Resources in use

Bursty load

Extra cost

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Scaling with On-Demand Virtual Machines (VMs)

10

VMs

Cluster

Input Events

Output Stream

Analytics

Outputs

Fixed specification of CPU and memory
10Gbps network

Stable and powerful

Machine-isolated by bare-metal hypervisors

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Scaling with On-Demand Virtual Machines (VMs)

11

VM Start-up Time is Too Slow (25-30s)

VMs

Cluster

Input Events

Output Stream

Analytics

Outputs

Over 25 seconds of
launch overhead

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Scaling with On-Demand Serverless Functions (SFs)

12

VMs

Cluster

Input Events

Output Stream

Analytics

Outputs

SFs

Process-isolated by OSes
Flexible allocation of CPU according to mem size

800-1200Mbps network per instance

300-750ms of
launch overhead

4x more expensive than VMs

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Scaling with On-Demand VMs and SFs

13

SFs to handle short-living bursty input loads &

VMs to handle long-living input loads

VMs

Cluster

Input Events

Output Stream

Analytics

Outputs

SFs

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Direct Network Communications are Prohibited among SFs

14

Serverless instances are not designed

to provide stable, direct network connections

SFs

Serverless Function BServerless Function A

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Managed Runtime Initialization Overhead

15

Managed runtimes (e.g., JVM) incur launch overheads (~4 seconds)

SFs

Serverless Function BServerless Function A

JVM JVM

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

State & Task Migration Overhead

16

State & task migration overheads are not negligible

due to smaller network bandwidths

VMs SFs

State State State

StateState State

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Challenges and Overheads to Overcome

17

Various overheads exist for using VMs and serverless instances

Managed runtime init.➡

➡

➡

➡

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge Overview

18

Sponge handles the challenges through compile-time and run-time

Sponge Runtime

Query
Sponge Compiler
DAG Optimizer

SF

RO MOTO

Scheduler

VM
Monitoring

VMVM

Tasks

Event
queue

a

c

f

b

e
d

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge Overview

19

Sponge handles the challenges through compile-time and run-time

Sponge Runtime

Query
Sponge Compiler
DAG Optimizer

SF

RO MOTO

Scheduler

VM
Monitoring

VMVM

Tasks

Event
queue

a

c

f

b

e
d

Redirect-and-merge

Fast reactive scaling

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge Runtime

Query
Sponge Compiler
DAG Optimizer

SF

RO MOTO

Scheduler

VM
Monitoring

VMVM

Tasks

Event
queue

a

c

f

b

e
d

Injecting New Operators during Compile-Time

20

Query DAG is inserted with new operators at compile-time with ~200ms overhead

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Injecting New Operators during Compile-Time

21

1. Router operators (ROs) enable redirection of input events to specific instances

2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

Map Filter Sum

State
K1

K2

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Injecting New Operators during Compile-Time

22

1. Router operators (ROs) enable redirection of input events to specific instances

2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

Map Filter SumROfilter ROsum State
K1

K2

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Injecting New Operators during Compile-Time

23

1. Router operators (ROs) enable redirection of input events to specific instances

2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

TOMap TOFilter TOSum

Map Filter SumROfilter ROsum State
K1

State

K2

K1 Events

K2 Events

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Injecting New Operators during Compile-Time

24

MOsum

1. Router operators (ROs) enable redirection of input events to specific instances

2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

TOMap TOFilter TOSum

Map Filter SumROfilter ROsum State
K1

State

K2

K1 Events

K2 Events

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Injecting New Operators during Compile-Time

25

MOsum

1. Router operators (ROs) enable redirection of input events to specific instances

2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

TOMap TOFilter TOSum

Map Filter Sum
State

K1

K2

ROfilter ROsum

K1 Events

K2 Events

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

How Much Resources are Required for Our Pipeline?

26

How much data should we redirect to serverless functions?

How many serverless instances should we be using?

VMs

Cluster

Input Events

Output Stream

Analytics

Outputs

SFs

= ?

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Dynamic Resource Management during Runtime

27

CPU and input rates are monitored every second (~10ms overhead)

CPU utilization goal: 60-80%

Th
ro

ug
hp

ut
 (e

ve
nt

s/
se

c)

Time (t)

Costs saved
Bursty load

Over-provision case

Adaptive CPU usage

Input load

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Stable Input Load per CPU Core

28

𝐴𝑝𝑝𝑟𝑜𝑥. 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑉𝑀 𝑐𝑜𝑟𝑒 = !"#$% &'%(
"$)*(& +, -. /+&(0

Input load rate 𝑟! 𝑡

Time (t)

Th
ro

ug
hp

ut
 (e

ve
nt

s/
se

c)

Measure the average stable CPU usage rate on VMs
and the average task input rate for every second

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Recovery Deadline and Target Throughput

29

Join …

𝐷𝑎𝑡𝑎 𝑝𝑖𝑙𝑒𝑑 𝑢𝑝 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑞𝑢𝑒𝑢𝑒 ≤ 𝐷𝑎𝑡𝑎 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑜𝑢𝑟 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒
(𝐼𝑛𝑝𝑢𝑡 𝑟𝑎𝑡𝑒 − 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡) ∗ 𝑡𝑖𝑚𝑒 ≤ (𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 − 𝑖𝑛𝑝𝑢𝑡 𝑟𝑎𝑡𝑒) ∗ 𝑡𝑖𝑚𝑒

Input load rate 𝑟! 𝑡

Time (t)

max throughput 𝑚! 𝑡 on VMs

Th
ro

ug
hp

ut
 (e

ve
nt

s/
se

c)

Data piled up in input
queue

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Recovery Deadline and Target Throughput

30

Join … Input load rate 𝑟! 𝑡

Time (t)

max throughput 𝑚! 𝑡 on VMs

Target max throughput 𝑚!!

Th
ro

ug
hp

ut
 (e

ve
nt

s/
se

c)

Fast reactive scaling
on SFs

𝐷𝑎𝑡𝑎 𝑝𝑖𝑙𝑒𝑑 𝑢𝑝 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑞𝑢𝑒𝑢𝑒 ≤ 𝐷𝑎𝑡𝑎 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑜𝑢𝑟 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒
(𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗ 𝑡𝑖𝑚𝑒 ≤ 𝑇𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗ 𝑡𝑖𝑚𝑒)

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Input load rate 𝑟! 𝑡

Time (t)

max throughput 𝑚! 𝑡 on VMs

Target max throughput 𝑚!!

Th
ro

ug
hp

ut
 (e

ve
nt

s/
se

c)

Preparing SFs to Reduce Runtime Launch Overhead

31

…

1.Retrieve the existing metrics on approx. throughput per VM core and target throughput

2.Profile capacity between SF and VM cores for scaling

3.Find # of 𝑡𝑎𝑟𝑔𝑒𝑡 𝑆𝐹 𝑐𝑜𝑟𝑒𝑠 for 70% utilization (with a ±10% buffer for minor profiling errors)

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑆𝐹 𝑐𝑜𝑟𝑒𝑠 =
𝑇𝑎𝑟𝑔𝑒𝑡 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

70% ∗ 𝐴𝑝𝑝𝑟𝑜𝑥. 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑝𝑒𝑟 𝑆𝐹 𝑐𝑜𝑟𝑒

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Input load rate 𝑟! 𝑡

Time (t)

max throughput 𝑚! 𝑡 on VMs

Target max throughput 𝑚!!

Th
ro

ug
hp

ut
 (e

ve
nt

s/
se

c)

Preparing SFs to Reduce Runtime Launch Overhead

32

…
1.Retrieve the existing metrics on approx. throughput per VM core and target throughput

2.Profile capacity between SF and VM cores for scaling

3.Find # of 𝑡𝑎𝑟𝑔𝑒𝑡 𝑆𝐹 𝑐𝑜𝑟𝑒𝑠 for 70% utilization (with a ±10% buffer for minor profiling errors)

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑆𝐹 𝑐𝑜𝑟𝑒𝑠 =
𝑇𝑎𝑟𝑔𝑒𝑡 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

70% ∗ 𝐴𝑝𝑝𝑟𝑜𝑥. 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑝𝑒𝑟 𝑆𝐹 𝑐𝑜𝑟𝑒

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge In Action

33

Query
Sponge Compiler
DAG Optimizer

RO MOTOa

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge In Action

34

Sponge Runtime

Query
Sponge Compiler
DAG Optimizer

RO MOTO

Scheduler
VMVM

a

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge In Action

35

Sponge Runtime

Query
Sponge Compiler
DAG Optimizer

RO MOTO

Scheduler
VMVM

Tasks

Event
queue

a

b

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge In Action

36

Sponge Runtime

Query
Sponge Compiler
DAG Optimizer

RO MOTO

Scheduler
Monitoring

VMVM

Tasks

Event
queue

a

c
b

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge In Action

37

Sponge Runtime

Query
Sponge Compiler
DAG Optimizer

SF

RO MOTO

Scheduler

VM
Monitoring

VMVM

Tasks

Event
queue

a

c
b

d

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge In Action

38

Sponge Runtime

Query
Sponge Compiler
DAG Optimizer

SF

RO MOTO

Scheduler

VM
Monitoring

VMVM

Tasks

Event
queue

a

c
b

e
d

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge In Action

39

Sponge Runtime

Query
Sponge Compiler
DAG Optimizer

SF

RO MOTO

Scheduler

VM
Monitoring

VMVM

Tasks

Event
queue

a

c

f

b

e
d

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge Implementation

• Programming interface: Apache Beam

• Associative and commutative operators are extracted to implement the merge operators

• DAG reshaping mechanisms & data processing runtime: Apache Nemo
• Operator insertion can be expressed as reusable algorithms

• Serverless frameworks: AWS Lambda

• Managing & deploying different instances: boto3

• AWS SDK API for controlling AWS instances

40

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023 41

Evaluation Results

• AWS Cluster of 5 nodes for execution + 1 large node for data generation

• r5.xlarge (4vCPUs, 32GB Memory) * 5

• c5d.12xlarge for data generation (48vCPUs, 96GB Memory) * 1

• 1769MB AWS Lambda instances (1769MB offers instance with 1 vCore) * up to 200

• NEXMark Benchmark Suite

• A suite of pipelines, provided by Apache Beam, representing an online auction system

• Queries include

• 1 (currency conversion)

• 4, 6 (avg. price per category, avg. price by seller)

• 5, 7 (hot items, highest bid)

• 8 (monitor new users)

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Evaluation Results: Input Patterns

44

3 different input patterns with different burstiness and duration

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Evaluation Results: Latency and CPU Utilizations

45

La
te

nc
y

(s
ec

)
La

te
nc

y
(s

ec
)

U
til

iz
at

io
n

(%
)

U
til

iz
at

io
n

(%
)

Latency for 5x burst at 380s CPU Utilizations for 5x burst at 380s

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023 46

Sponge Evaluation: Performance Breakdown

Performance breakdown of different Sponge components

+ Router operators à + Transient operators à + Merge operators

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Evaluation Results: Different Input Patterns

47

Traffic pattern Burstiness Duration

Tail latency for different patterns, burstiness, and durations

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Evaluation Results: Cost Analysis

49

(a) Sponge effectively keeps latencies low compared to over-provisioned solutions

(b) Bursty duration falls below 15% of total time, making Sponge cost-effective

4x

5x

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Conclusion

• Bursts of input events à input data to piles up in the input queue

• Sponge prevents launch and migration overheads
• By redirecting bursts of input data to fast-starting serverless frameworks

• SFs are automatically scaled to keep latencies and budget within our target

• Sponge reduces tail latencies by 88% on average vs. VM scaling

• Sponge reduces cost to 17% (83% reduction) vs. over-provisioning

50

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Thank you!
Questions?

51

Won Wook SONG

https://wonook.github.io

wonook@apache.org

Sponge:	Fast	Reactive	Scaling	for	Stream	Processing	with	Serverless	Frameworks	|	USENIX	ATC	‘23	|	Won	Wook	SONG	|	July	11th,	2023

Sponge:
Fast Reactive Scaling for Stream Processing

with Serverless Frameworks

Won Wook SONG, Taegeon Um, Sameh Elnikety, Myeongjae Jeon, Byung-Gon Chun

Seoul National University, Samsung Research, Microsoft Research, UNIST, FriendliAI

