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Stream Processing Happens Continuously
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Engine

Stream processing deals with real-time data
- Latency-critical
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Stream Processing System Requirements

Low latency High throughput

Correctness Resource Efficiency
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Input Patterns of Stream Workloads: Unpredictable
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Input load (events/sec)
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Stream data are generated in real-time,
which are irregular and unpredictable, due to unforeseen events
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Input Patterns of Stream Workloads: Bursty

o
L

Bursty load

Bursty load

Input load (events/sec)

v

Time (s)
Real-time data can occur in sporadic bursts, due to random events

(e.g., influencer tweets, breaking news, natural disasters)*

*Rastegar et. al., Rule caching in sdn-enabled base stations supporting massive iot devices with bursty traffic. (IEEE loT Journal ‘20)
*Robinson et. al., A sensitive twitter earthquake detector. (WWW Companion ‘13)
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Bursty Input Data Builds Up and Clogs the Pipeline
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Stream Operators: Stateful vs. Stateless

Join

CPU/Memory trace of a stateful join operator
Stateful operators are more tricky to handle
due to state handling (e.g., migration)

OF

State

CPU/Memory trace of a stateless map operator
Stateless operators can easily scale-out
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Stream Operators: Stateful vs. Stateless
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CPU/Memory trace of a stateful join operator
Stateful operators are more tricky to handle
due to state handling (e.g., migration)
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CPU/Memory trace of a stateless map operator
Stateless operators can easily scale-out
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Preventing Latency with Over-provisioned Resources

t —— . Throughput Capacity
Over-provisioned idle CPU resources

Bursty load

Extra cost

Throughput (events/sec)

Resource Demand

L

Resources in use

Time (s)

Simplest solution, but bursty loads are unpredictable
- Must reserve 5-10x resources at all times = costly
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Scaling with On-Demand Virtual Machines (VMs)

Anics

Output Stream

Outputs

Machine-isolated by bare-metal hypervisors
Fixed specification of CPU and memory
10Gbps network

Stable and powerful
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Scaling with On-Demand Virtual Machines (VMs)

Analytics

l Output Stream

Outputs

. Over 25 seconds of
launch overhead

VM Start-up Time is Too Slow (25-30s)
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Scaling with On-Demand Serverless Functions (SFs)

Anics

j Output Stream

Input Events

Outputs

300-750ms of
launch overhead

Process-isolated by OSes
Flexible allocation of CPU according to mem size

800-1200Mbps network per instance
4x more expensive than VMs
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Scaling with On-Demand VMs and SFs

SFs to handle short-living bursty input loads &
VMs to handle long-living input loads
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Direct Network Communications are Prohibited among SFs

Serverless Function A

Serverless instances are not designed

to provide stable, direct network connections
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Managed Runtime Initialization Overhead

Managed runtimes (e.g., JVM) incur launch overheads (~4 seconds)
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State & Task Migration Overhead

State & task migration overheads are not negligible
due to smaller network bandwidths
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Challenges and Overheads to Overcome

Overheads
SF initialization 4
Data redirection {
&J Task migration - = 0
&J Managed runtime init. - = Of
GJ State migration Of
& VM Initialization L—Qj'
(I) é 1IO 115 210 215 3l0

Overhead (s)

Various overheads exist for using VMs and serverless instances
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Sponge Overview

Sponge Compiler
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Sponge handles the challenges through compile-time and run-time
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Sponge Overview

Sponge Compiler

Redirect-and-merge
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Fast reactive scaling

Sponge Runtime
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Sponge handles the challenges through compile-time and run-time
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Injecting New Operators during Compile-Time

Sponge Compiler
Que

uery DAG OptlmlzerQQQ N
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MO Y,

Query DAG is inserted with new operators at compile-time with ~200ms overhead

9]

MEdya
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Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances
2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

N/

Sum

State
K1

K2
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Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances
2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

} Sum State
K1

K2
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Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances
2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states
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Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances
2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states
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Injecting New Operators during Compile-Time

1. Router operators (ROs) enable redirection of input events to specific instances
2. Transient operators (TOs) enable execution of cloned operators on SFs

3. Merge operators (MOs) enable merges on partial states

K1 Events
i v MO
Map ROritter Filter ROsum Sum sum
4 ) State
’ § K2 Events K2
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How Much Resources are Required for Our Pipeline?

Anics

l Output Stream

Outputs

How much data should we redirect to serverless functions?

How many serverless instances should we be using?
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Dynamic Resource Management during Runtime

Over-provision case

Costs saved
Bursty load

'Adaptive CPU usage

Throughput (events/sec)

InPut load

Time (t)

CPU and input rates are monitored every second (~10ms overhead)
CPU utilization goal: 60-80%
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Stable Input Load per CPU Core

Measure the average stable CPU usage rate on VMs
and the average task input rate for every second ___

Throughput (events/sec)

Input load rate 7;(t)

Time (1)
CPU _ input rate
L J Approx.throughput rate per VM core = number of VM cores
o1
NS0
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Recovery Deadline and Target Throughput

Data piled up in input
. queue

max throughput m,(t) on VMs

Throughput (events/sec)

In PUt load rate r;(t)

/3 Time (1)

N
= Data piled up in the event queue < Data to process within our target deadline
e ([nput rate — throughput) *time < (Target throughput — input rate) * time
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Recovery Deadline and Target Throughput

Fast reactive scaling
\ on SFs

Target max throughput m;_

M\V_ max throughput m,(t) on VMs

Input load rate ;(¢t)
/ﬁ Time (t) ]

Throughput (events/sec)

]
== Data piled up in the event queue <
p— (Existing throughput *time <
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Preparing SFs to Reduce Runtime Launch Overhead

b
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Target max throughput m;_ I /\
A

1.Retrieve the existing metrics on approx. throughput per VM core and target throughput

2.Profile capacity between SF and VM cores for scaling

3.Find # of target SF cores for 70% utilization (with a +10% buffer for minor profiling errors) p VMs
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Preparing SFs to Reduce Runtime Launch Overhead
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Sponge In Action

Sponge Compiler

Query e

MEdya
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Sponge In Action
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Sponge In Action
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Sponge In Action
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Sponge In Action
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Sponge In Action

Sponge Compiler
DAG Optimizer

Query -

Sponge Runtime
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Sponge In Action

Sponge Compiler
DAG Optimizer

Query -

Sponge Runtime

MEdya
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Sponge Implementation

Programming interface: Apache Beam 3 beam

* Associative and commutative operators are extracted to implement the merge operators

* DAG reshaping mechanisms & data processing runtime: Apache Nemo

« Operator insertion can be expressed as reusable algorithms e Nemo

* Serverless frameworks: AWS Lambda G

AWS

* Managing & deploying different instances: boto3 Lambda

* AWS SDK API for controlling AWS instances @

Boto 3
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Evaluation Results

«  AWS Cluster of 5 nodes for execution + 1 large node for data generation
* rb.xlarge (4vCPUs, 32GB Memory) * 5

c5d.12xlarge for data generation (48vCPUs, 96GB Memory) * 1

1769MB AWS Lambda instances (1769MB offers instance with 1 vCore) * up to 200

« NEXMark Benchmark Suite

« A suite of pipelines, provided by Apache Beam, representing an online auction system %

*  Queries include

~~" Person

1 (currency conversion) /BEdI Bidder
o |
e 4, 6 (avg. price per category, avg. price by seller) % [~ Auction :i\
.5, 7 (hot items, highest bid) person M %
Seller
* & (monitor new users) Person
Bidder ==
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Evaluation Results: Input Patterns
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3 different input patterns with different burstiness and duration
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Evaluation Results: Latency and CPU Utilizations
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Sponge Evaluation: Performance Breakdown

—A--SFBase ----- SpongeRO --4-- SpongeTO =+ -SpongeSnap ——Sponge

Latency (s)

300 350 400 450 300 350 400 450

Elapsed time (sec) Elapsed time (sec)
Q6 Q8

Performance breakdown of different Sponge components

+ Router operators - + Transient operators - + Merge operators 18
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Evaluation Results: Different Input Patterns
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Evaluation Results: Cost Analysis

4x

B 20-VMs (statlc) 150 1
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(a) Sponge effectively keeps latencies low compared to over-provisioned solutions

(b) Bursty duration falls below 15% of total time, making Sponge cost-effective

MEdya
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Conclusion

* Bursts of input events - input data to piles up in the input queue

* Sponge prevents launch and migration overheads

* By redirecting bursts of input data to fast-starting serverless frameworks

« SFs are automatically scaled to keep latencies and budget within our target

* Sponge reduces tail latencies by 88% on average vs. VM scaling

« Sponge reduces cost to 17% (83% reduction) vs. over-provisioning
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Thank you!
Questions?

Won Wook SONG
https://wonook.github.io

wonook®@apache.org
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