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Billion-scale Graphs

1000 A
V100 Memory
- -A100 Memory
- -H100 Memory
m
O

Size

10

OGB-Paper Uk-Union Alibaba-Taobao UK-2014 Clueweb
(111M, 1.6B) (133M, 5.5B) (1B, 10B) (0.7B, 47.2B) (1B, 42.5B)



Challenge from Industry
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Sampling-based GNN

 Three Key Stages:

1. Graph Sampling

Graph Topology

2. Feature Extraction

Vertex Features

Q

b

3. Model Training

Layer1

Aggregate
&Combine

Layer2

==

Aggregate
&Combine

Downstream Tasks

O Training Vertices Q Sampled Neighbors — Edges [ Vertex Features ==» Aggregator ] Activations

GraphSAGE [NeurlPS 2017]
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Sampling-based GNN
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Traditional GNN Systems
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Traditional GNN Systems

 Properties:

» GPU model training

» Storing graph in CPU memory
» CPU graph sampling

» CPU feature extraction



Traditional GNN Systems

 Properties: * |ssues:
» GPU model training  PCle communication becomes
» Storing graph in CPU memory major bottleneck!
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Traditional GNN Systems

* Properties: * Issues:
» GPU model training

» CPU graph sampling  CPU sampling can not catch up
» CPU feature extraction with GPU training!
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Cache-based GNN Systems

» Existing Works: * Optimizations:
» PaGraph [SoCC 2020]
> Quiver [2022]
» GNNLab [Eurosys 2022]
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Cache-based GNN Systems

» Existing Works: * Optimizations:
» PaGraph [SoCC 2020]
> Quiver [2022]
» GNNLab [Eurosys 2022]

* They are not optimized for billion-scale GNN training:

14: Poor Multi-GPU Cache Scalability
* Two Issues:

12: Coarse-grained Topology Management



* Fully explore the hardware capabilities of modern
multi-GPU systems for training billion-scale graphs



Legion

Contributions:
1. Hierarchical Graph Partitioning



I,: Poor Multi-GPU Cache Scalability
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I,: Poor Multi-GPU Cache Scalability

> Quiver Design » Cache Scalability Evaluation
No Partitioning Replicate cache in all cliques  pjatform: 4 NVLink cliques, 2 GPUs per clique
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I,: Poor Multi-GPU Cache Scalability

» PaGraph Design

Partitioning with Large cache overlap
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I,: Poor Multi-GPU Cache Scalability
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I,: Poor Multi-GPU Cache Scalability

> ? Design » Cache Scalability Evaluation
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How to improve multi-GPU cache scalability”?



Hierarchical Graph Partitioning

» Legion Design » Cache Scalability Evaluation

Hierarchical NVLink-enhanced

Platform: 4 NVLink cliques, 2 GPUs per clique
graph partitioning multi-GPU cache
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» Co-design hierarchical graph partitioning
with NVLink-enhanced multi-GPU cache



Hierarchical Graph Partitioning

» Legion Design » Cache Scalability Evaluation
Hierarchical NVLink-enhanced  pjatform: 4 NVLink cliques, 2 GPUs per clique
graph partitioning multi-GPU cache 10
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Key idea:
» Co-design hierarchical graph partitioning
with NVLink-enhanced multi-GPU cache



Hierarchical Graph Partitioning

» Goal: Improve multi-GPU cache scalability
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* Principles:
» Between NVLink cliques:
» Maintain different caches for different partitions
=> Minimize cache replication



Hierarchical Graph Partitioning

» Goal: Improve multi-GPU cache scalability

Principles:
» Between NVLink cliques:
» Maintain different caches for different partitions
=> Minimize cache replication

» Within NVLink cliques:
» Split cache exclusively and uniformly
=> Eliminate cache replication & improve load balance



Hierarchical Graph Partitioning

» Goal: Improve multi-GPU cache scalability
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Legion

Contributions:

2. Hotness-aware Unified Cache



I,: Coarse-grained Topology Management

> DGL [ICLR 2019]
> Quiver [2022]

* Design:
 All topology in CPU memory
* Issue:

« Low PCle utilization
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I,: Coarse-grained Topology Management

» DGL [ICLR 2019]

> Quiver [2022] » GNNLab [Eurosys 2022]
» Design: * Design:
 All topology in CPU memory  All topology in GPU memory
* Issue: * Issue:
 Low PCle utilization « Limited graph topology size
_ ” Graph Sampling Feature Extra:ction
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How to Manage Graph Topology?

® All topology in CPU memory

®Low PCle utilization : _; : ® Limited graph topology size

® All topology in GPU memory

=> Hotness-aware Unified Cache



Hothess-aware Unified Cache

* Goal: GPU Memory

* Minimize PCle traffic generated by both

TopoCache | FeatCache

graph sampling and feature extraction



Hothess-aware Unified Cache

* Goal: GPU Memory
* Minimize PCle traffic generated by both

graph sampling and feature extraction

TopoCache | FeatCache

* Principle:
« Fill the hottest graph topology and feature into TopoCache and FeatCache



Hothess-aware Unified Cache

 Goal:

* Minimize PCle traffic generated by both
graph sampling and feature extraction

* Vertex-centric Data Structure
v' TopoCache: CSR
v FeatCache: 2D Array
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Hothess-aware Unified Cache

* Goal: GPU Memory
* Minimize PCle traffic generated by both

graph sampling and feature extraction

TopoCache | FeatCache

® Step 1. ® Step 2. ® Step 3.
Pre-Sampling Cache Candidate Selection Cache Initialization and Fill-up
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Pre-sampling

 Goal:

« Count the hotness (access frequency) of

vertices on every GPU

After 1 epoch of pre-sampling:

GPU Memory
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Cache Candidate Selection

* Goal: GPU Memory
» Sort the vertices with high hotness to get the

candidate queues on every GPU

TopoCache | FeatCache
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Cache Initialization and Fill-up

 Goal:

« Load the topology & feature data from

CPU to GPU memory

 Candidate Queues
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Legion

Contributions:

3. Automatic Cache Management



New Challenge

« Trade-off: Topology Cache vs Feature Cache
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New Challenge

« Trade-off: Topology Cache vs Feature Cache
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 How to find the optimal size of topology and feature cache automatically?



Automatic Cache Management

« Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput



Automatic Cache Management

« Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput

@0

» Use the overall PCle traffic to estimate overall throughput

Reasons:

€ PCle traffic is the system bottleneck

€ Larger topology cache size => Lower PCle traffic of graph sampling
& Larger feature cache size => Lower PCle traffic of feature extraction



Automatic Cache Management

« Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput

@0

» Use the overall PCle traffic to estimate overall throughput

=

* Build cost model to estimate the overall PCle traffic



Automatic Cache Management

Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput

@0

Use the overall PCle traffic to estimate overall throughput

=

Build cost model to estimate the overall PCle traffic

.

Method:

« Build the cost model at the NVLink-clique granularity
 One GPU in a cligue calculates cost model and search for optimal cache plan



Datasets:
 Billion-scale real-world graphs

Experimental Settings

Dataset PR PA CO UKS | UKL CL
Vertices 24M | 11IM | 65M | 133M | 0.79B 1B
Edges 120M | 1.6B 1.8B 5.5B | 47.2B | 42.5B
Topology Storage || 640M | 6.4GB | 7.2GB | 22GB | 189GB | 170GB
Feature Size 100 128 256 256 128 128
Feature Storage || 960M | 56GB | 65GB | 136GB | 400GB | 512GB

Models:

* Two popular GNN models:

GraphSAGE, GCN

Platforms:

« Three multi-GPU platforms with
different NVLink topologies

Server DGX-V100 Siton DGX-A100
GPU Type 16GB-V100x8 | 40GB-A100x8 | SOGB-A100x8
NVLink Topo. || K. =2, K, =4 | K. =4, K, =2 | K. = 1. K, =8
PCle 3.0x16 4.0x16 4.0x16
CPU Mem. 384GB ITB ITB




Evaluation

Train billion-scale graphs * Minimize PCle traffic
« Existing cache-based system  Significantly reduce the traffic
cannot scale well comparing to baseline
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Evaluation

* Train small graphs

* Qutperform SOTA systems
by up to 4.32x

= DGL(UVA) @ PaGraph @ GNNLab @ Legion
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* Minimize PCle traffic
 Significantly reduce the traffic
comparing to baselines

@ DGL(UVA) @ PaGraph B GNNLab @ Legion
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Evaluation

* Impact of Hierarchical Graph Partitioning
 In all platforms, Legion has a higher cache hit rate than baselines
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Evaluation

* Impact of Unified Cache

 Unified cache outperforms all baselines in all datasets
 All topology in GPU meet OOM in UKS, UKL, and CL
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Evaluation

* Impact of Automatic Cache Management
« Legion precisely predicts the trend of per-epoch execution time
without manual interference
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Q&A

Thanks!

Q&A



	幻灯片编号 1
	Graph Neural Network (GNN)
	Billion-scale Graphs
	Challenge from Industry
	Sampling-based GNN
	Sampling-based GNN
	Sampling-based GNN
	Traditional GNN Systems
	Traditional GNN Systems
	Traditional GNN Systems
	Traditional GNN Systems
	Cache-based GNN Systems
	Cache-based GNN Systems
	Cache-based GNN Systems
	Legion
	Legion
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Legion
	I2: Coarse-grained Topology Management
	I2: Coarse-grained Topology Management
	How to Manage Graph Topology?
	Hotness-aware Unified Cache
	Hotness-aware Unified Cache
	Hotness-aware Unified Cache
	Hotness-aware Unified Cache
	Pre-sampling
	Cache Candidate Selection
	Cache Initialization and Fill-up 
	Legion
	New Challenge
	New Challenge
	Automatic Cache Management
	Automatic Cache Management
	Automatic Cache Management
	Automatic Cache Management
	Experimental Settings
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Q & A

