Legion:
Automatically Pushing the Envelope of Multi-GPU
System for Billion-Scale GNN Training

Jie Sun, Li Su, Zuocheng Shi, Wenting Shen, Zeke Wang
Lei Wang, Jie Zhang, Yong Li, Wenyuan Yu, Jingren Zhou, Fei Wu

Alibaba Group
> PEEEEE[

Graph Neural Network (GNN)

Financial
Risk Control

E-commercial

Recommendation \
GNN T, Power

Drug / Management

Development

Combinatorial
Optimization

Billion-scale Graphs

1000 A
V100 Memory
- -A100 Memory
- -H100 Memory
m
O

Size

10

OGB-Paper Uk-Union Alibaba-Taobao UK-2014 Clueweb
(111M, 1.6B) (133M, 5.5B) (1B, 10B) (0.7B, 47.2B) (1B, 42.5B)

Challenge from Industry

1000 A
V100 Memory
- -A100 Memory
- -H100 Memory
m
2 100
[«) Y USSRy U SR S R T e
N
n
10
OGB-Paper Uk-Union Alibaba-Taobao UK-2014 Clueweb

(111M, 1.6B) (133M, 5.5B) (1B, 10B) (0.7B,47.2B) (1B, 42.5B)

Sampling-based GNN

 Three Key Stages:

1. Graph Sampling

Graph Topology

2. Feature Extraction

Vertex Features

Q

b

3. Model Training

Layer1

Aggregate
&Combine

Layer2

==

Aggregate
&Combine

Downstream Tasks

O Training Vertices Q Sampled Neighbors — Edges [Vertex Features ==» Aggregator] Activations

GraphSAGE [NeurlPS 2017]

Sampling-based GNN

 Three Key Stages:

1. Graph Sampling

Graph Topology

2. Feature Extraction

Vertex Features

s:

b

3. Model Training

Layer1

Aggregate

Layer2

==

Light

Aggregate

&Combine &Combine

Downstream Tasks

O Training Vertices Q Sampled Neighbors — Edges [Vertex Features ==» Aggregator] Activations

GraphSAGE [NeurlPS 2017]

Sampling-based GNN

 Three Key Stages:

1. Graph Sampling

Graph Topology

Heavy

2. Feature Extraction

Vertex Features

s,:

Heavy

3. Model Training

Layer1

Aggregate

Layer2

==

Light

Aggregate

&Combine &Combine

Downstream Tasks

O Training Vertices Q Sampled Neighbors — Edges [Vertex Features ==» Aggregator] Activations

GraphSAGE [NeurlPS 2017]

Traditional GNN Systems

DEEP

P e =
GRAPH "A:].,\‘
LIBRARY ‘\“;’! P yG

4G

graph-learn

Traditional GNN Systems

 Properties:

» GPU model training

» Storing graph in CPU memory
» CPU graph sampling

» CPU feature extraction

Traditional GNN Systems

 Properties: * |ssues:
» GPU model training PCle communication becomes
» Storing graph in CPU memory major bottleneck!

POI>>

; EXPRESS
CPU »ﬂ

——— Bottleneck!

Graph I:IEIEII:I

mrrrrm

"GPU | Model

ANnNnNn
Uuuuvu

Traditional GNN Systems

* Properties: * Issues:
» GPU model training

» CPU graph sampling CPU sampling can not catch up
» CPU feature extraction with GPU training!

y e
Graph g0aoo q|CPUIB AEPGPU Model

mrrrrm

Heavy Light

Cache-based GNN Systems

» Existing Works: * Optimizations:
» PaGraph [SoCC 2020]
> Quiver [2022]
» GNNLab [Eurosys 2022]

Cache-based GNN Systems

» Existing Works: * Optimizations:
» PaGraph [SoCC 2020]
> Quiver [2022]
» GNNLab [Eurosys 2022]

Cache-based GNN Systems

» Existing Works: * Optimizations:
» PaGraph [SoCC 2020]
> Quiver [2022]
» GNNLab [Eurosys 2022]

* They are not optimized for billion-scale GNN training:

14: Poor Multi-GPU Cache Scalability
* Two Issues:

12: Coarse-grained Topology Management

* Fully explore the hardware capabilities of modern
multi-GPU systems for training billion-scale graphs

Legion

Contributions:
1. Hierarchical Graph Partitioning

I,: Poor Multi-GPU Cache Scalability

1 2 4 8

\
GPU 8 | Cache 8
Number of GPUs

» GNNLab Design » Cache Scalability Evaluation
No Partitioning Replicate cache in all GPUs pjatform: 4 NvLink cliques, 2 GPUSs per clique
i | 1.0
| 4 GPU 1 | Cache1 ||
I | 2
,'1| | S ~<GNNLab
/7 | ! 0.5
Graph [| | o
N |
\ |
\ | 0.0
| |
| I
| |

e e e e ——————— — —]

®PCIe traffic does not decrease with more GPUs

I,: Poor Multi-GPU Cache Scalability

> Quiver Design » Cache Scalability Evaluation
No Partitioning Replicate cache in all cliques pjatform: 4 NVLink cliques, 2 GPUs per clique

r— - 1
| | 1.0
: GPU 1 | Cache 1 : . \ o .
=
/:1 N : e ~<GNNLab
», 11GPU2 | Cache2 || 20.5 |--Quiver
Graph](: oo : a
\
\L GPU 7 | Cache7 :
b X | 0.0
I GPU 8 (Cache8]|, 1 2 4 8
| |

Number of GPUs

®PCIe traffic does not decrease with more NVLink cliques

I,: Poor Multi-GPU Cache Scalability

» PaGraph Design

Partitioning with Large cache overlap

large overlap

7

Graph

4 GPU 1 | Cache 1

GPU 8 | Cache 8

e e e o — — ——— —— —

» Cache Scalability Evaluation

Platform: 4 NVLink cliques, 2 GPUs per clique

PCle Traffic

1.0

O
o

0.0

S ——

-<GNNLab
—e—Quiver
-#-PaGraph

1 2 4 8
Number of GPUs

®PCIe traffic decreases very little with more GPUs

I,: Poor Multi-GPU Cache Scalability

1 2 4 8
Number of GPUs

I GPU 8 || Cache 8

» PaGraph-plus Design » Cache Scalability Evaluation
Partitioning with Small cache overlap Platform: 4 NVLink cliques, 2 GPUs per clique
small overlap p—— 1| 0

'4 GPU 1 (| Cache1 |||
y | =
g /: : ks ~<GNNLab
d | I g 0.5 | ——Quiver
Graph | : o -#-PaGraph
J \ : | -e—-PaGraph-plus
- \ I
\ I 0.0
|
|
|

@PCIe traffic still decreases very little with more GPUs
@ Unbalanced cache hit among GPUs

I,: Poor Multi-GPU Cache Scalability

> ? Design » Cache Scalability Evaluation
Platform: 4 NVLink cliques, 2 GPUs per clique
1.0
kS
? = —-<GNNLab
- g 0.5 | ——Quiver
Q- -=-PaGraph
-e—-PaGraph-plus
0.0

1 2 4 8
Number of GPUs

How to improve multi-GPU cache scalability”?

Hierarchical Graph Partitioning

» Legion Design » Cache Scalability Evaluation

Hierarchical NVLink-enhanced

Platform: 4 NVLink cliques, 2 GPUs per clique
graph partitioning multi-GPU cache

1.0
Q
s
= -<GNNLab
g 0.5 | —=—Quiver
Q- -=-PaGraph
-e—-PaGraph-plus
-+l egion
0.0

1 2 4 8

Key idea: Number of GPUs

» Co-design hierarchical graph partitioning
with NVLink-enhanced multi-GPU cache

Hierarchical Graph Partitioning

» Legion Design » Cache Scalability Evaluation
Hierarchical NVLink-enhanced pjatform: 4 NVLink cliques, 2 GPUs per clique
graph partitioning multi-GPU cache 10

—— .
Hash _ o GPU1 | Cache 1 =
VP, < VA, Il l’l a-cge S ~<GNNLab
| Xt | @ .
Minimized VP, [2] J--yGPu2 [cache2 : O 0.5 | —+Quiver
Graph G Edge-cut®"® : | -#-PaGraph
Hash VP, [1] F _1|,| GPU7 [Cache? : +Pa§raph-p|us
VP, | % | ——Legion
4 ‘If" GPU8 | Cache8 ||, 1 2 4 8
___________| Number of GPUs

Key idea:
» Co-design hierarchical graph partitioning
with NVLink-enhanced multi-GPU cache

Hierarchical Graph Partitioning

» Goal: Improve multi-GPU cache scalability

Hierarchical Graph Partitioning

» Goal: Improve multi-GPU cache scalability

* Principles:
» Between NVLink cliques:
» Maintain different caches for different partitions
=> Minimize cache replication

Hierarchical Graph Partitioning

» Goal: Improve multi-GPU cache scalability

Principles:
» Between NVLink cliques:
» Maintain different caches for different partitions
=> Minimize cache replication

» Within NVLink cliques:
» Split cache exclusively and uniformly
=> Eliminate cache replication & improve load balance

Hierarchical Graph Partitioning

» Goal: Improve multi-GPU cache scalability

Hierarchical Graph Partitioning Hotness-aware Unified Cache
______________________________ | |____________'|
' 1. NVLink Clique Detection 3. Intra-clique Partitioning | | |
: NVLink Topology Matrix M; VP1 [1] = — - JI-+GPU 1 Cﬂ%@’l :

VP Hash | | e |

K, =4 | K,=2 . < | | 25 |

| } 9 nimized VP, [2] jt—===p{GPU2 | Cache2 ||

Graph G | | |

: Edge-cut I | =2 |
|

| VP, [1] T————‘I* GPU 7 | Cache? :

| VP, (FI | | S —

| 2. Inter-clique Partitioning VP,[2] Jl- - - 1'., GPU 8 [Cache 8 :
| |

| | |

Legion

Contributions:

2. Hotness-aware Unified Cache

I,: Coarse-grained Topology Management

> DGL [ICLR 2019]
> Quiver [2022]

* Design:
 All topology in CPU memory
* Issue:

« Low PCle utilization

Graph Sampling Feature Extraction

14
12
10

PCle Throughput(GBI/s)

oODN B~ O

4 8 16 32 64 128 256
Payload Size(Byte)

I,: Coarse-grained Topology Management

» DGL [ICLR 2019]

> Quiver [2022] » GNNLab [Eurosys 2022]
» Design: * Design:
 All topology in CPU memory All topology in GPU memory
* Issue: * Issue:
 Low PCle utilization « Limited graph topology size
_ ” Graph Sampling Feature Extra:ction
% 13] UK-Union OOM
S | Alibaba-Taobao OOM
§ X | Clueweb OOM
& 0

4 8 16 32 64 128 256
Payload Size(Byte)

How to Manage Graph Topology?

® All topology in CPU memory

®Low PCle utilization : _; : ® Limited graph topology size

® All topology in GPU memory

=> Hotness-aware Unified Cache

Hothess-aware Unified Cache

* Goal: GPU Memory

* Minimize PCle traffic generated by both

TopoCache | FeatCache

graph sampling and feature extraction

Hothess-aware Unified Cache

* Goal: GPU Memory
* Minimize PCle traffic generated by both

graph sampling and feature extraction

TopoCache | FeatCache

* Principle:
« Fill the hottest graph topology and feature into TopoCache and FeatCache

Hothess-aware Unified Cache

 Goal:

* Minimize PCle traffic generated by both
graph sampling and feature extraction

* Vertex-centric Data Structure
v' TopoCache: CSR
v FeatCache: 2D Array

GPU Memory

TopoCache

FeatCache

/ TopoCache \

Hash Map]

_

[

CSR

Indptr

Indices

J

-~

FeatCache

[

Hash Map

]

2D Array

Feature Vector 1

Feature Vector K

~

Hothess-aware Unified Cache

* Goal: GPU Memory
* Minimize PCle traffic generated by both

graph sampling and feature extraction

TopoCache | FeatCache

® Step 1. ® Step 2. ® Step 3.
Pre-Sampling Cache Candidate Selection Cache Initialization and Fill-up

:_.__._;TL_. ____ - .________.___.___._;TL_.________-_—_TLT_—_-_—_TLTL_-_—_-T:
VP, [1 + Pre-sampling Candidates GPutLTC: M 4 _FC, [1] |
i — ¢ HF 1 Selection]_L Gr. Ge 25 |
VP, [2] :i‘ Pre-sampling J° I cru2| TC,121 | FC,[2] !}
| : ||
|
' Pre- : | : cru7 | TC, 11 | FC,M1] |
VP, [1 b Pre-sampling | 4 4 I
(1] il . } i H, Candidates]i 6., G < 4 I |
VB2 niPre-samping f- i seleclon_J | ~erus(TCL 0 | Fe.1] |
L — |

Pre-sampling

 Goal:

« Count the hotness (access frequency) of

vertices on every GPU

After 1 epoch of pre-sampling:

GPU Memory

TopoCache

FeatCache

Vertices Hotness
of Topology

H- [1]:

Vertex ID

Hotness

11

12

8

Nl (o] (6]| E=N [F6) [) EN [an)

=i O

Vertices Hotness

of Feature
H:[1]:

Vertex ID | Hotness

10
8

] (o]l (6] E~N (6] [\ O) E [an)
el G (G20 (€21 [*2])

Cache Candidate Selection

* Goal: GPU Memory
» Sort the vertices with high hotness to get the

candidate queues on every GPU

TopoCache | FeatCache

 Hotness « Candidate Queues
___H. I He [1] => |____Grl1] Ge [1]
Cquue 1 :I_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_"'_'_'_'I_'_'_'_'o_':_'_'_'_'_':_'_'_" Clique 1 :I_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_"'_'_'_':_'_'_'_'_':_'_'_'_'_':_'_'_"
] E— Lo LR | - Rel2l | =] I— S C/ N Geld |
__Hm He [7] => [6 G.[7]
C|ique 45::::::::::::::::::: e _> C|ique 4:ZIIIIIZIIIIIZIIIIZZI e
; Hy [8] H; [8] = ' G, [8] G [8]

Cache Initialization and Fill-up

 Goal:

« Load the topology & feature data from

CPU to GPU memory

 Candidate Queues

[em][Gl
Clique 1 /2222222 o T
| S, S) E— |
: G [7] Ge [7]
Clique 4 r T T T
| G, [8] G [8]

Limited by cache sizes

GPU Memory

TopoCache

FeatCache

GPU 1

TopoCache

a5

1 GPU 2

TopoCache

1GPU 7

TopoCache

X

Limited by cache sizes

GPU 8

TopoCache

FeatCache

FeatCache

FeatCache

FeatCache

Legion

Contributions:

3. Automatic Cache Management

New Challenge

« Trade-off: Topology Cache vs Feature Cache

——Feature Cache ——Topology Cache|

o
()

o
—
3y

0.05

ATransaction/AMemory
1/Byte)
(@)

0 B
0 4000 8000 12000
GPU Memory for Cache(MB)

New Challenge

« Trade-off: Topology Cache vs Feature Cache

——Feature Cache ——Topology Cache|

o
()

o
—
3y

0.05

ATransaction/AMemory
1/Byte)
(@)

0 A
0 4000 8000 12000
GPU Memory for Cache(MB)

 How to find the optimal size of topology and feature cache automatically?

Automatic Cache Management

« Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput

Automatic Cache Management

« Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput

@0

» Use the overall PCle traffic to estimate overall throughput

Reasons:

€ PCle traffic is the system bottleneck

€ Larger topology cache size => Lower PCle traffic of graph sampling
& Larger feature cache size => Lower PCle traffic of feature extraction

Automatic Cache Management

« Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput

@0

» Use the overall PCle traffic to estimate overall throughput

=

* Build cost model to estimate the overall PCle traffic

Automatic Cache Management

Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput

@0

Use the overall PCle traffic to estimate overall throughput

=

Build cost model to estimate the overall PCle traffic

.

Method:

« Build the cost model at the NVLink-clique granularity
 One GPU in a cligue calculates cost model and search for optimal cache plan

Datasets:
 Billion-scale real-world graphs

Experimental Settings

Dataset PR PA CO UKS | UKL CL
Vertices 24M | 11IM | 65M | 133M | 0.79B 1B
Edges 120M | 1.6B 1.8B 5.5B | 47.2B | 42.5B
Topology Storage || 640M | 6.4GB | 7.2GB | 22GB | 189GB | 170GB
Feature Size 100 128 256 256 128 128
Feature Storage || 960M | 56GB | 65GB | 136GB | 400GB | 512GB

Models:

* Two popular GNN models:

GraphSAGE, GCN

Platforms:

« Three multi-GPU platforms with
different NVLink topologies

Server DGX-V100 Siton DGX-A100
GPU Type 16GB-V100x8 | 40GB-A100x8 | SOGB-A100x8
NVLink Topo. || K. =2, K, =4 | K. =4, K, =2 | K. = 1. K, =8
PCle 3.0x16 4.0x16 4.0x16
CPU Mem. 384GB ITB ITB

Evaluation

Train billion-scale graphs * Minimize PCle traffic
« Existing cache-based system Significantly reduce the traffic
cannot scale well comparing to baseline
50 @ DGL(UVA) | Legion 15 B DGL(UVA) m Legion
— 442 455 2
2 40 S 1
g 20 1034 153 [15.6 %0_5
w 016, 4T4 0 477, w2 O
0 - ' 0
PR PA. CO UKS UKL CL UKS UKL

DGX-A100, GraphSAGE DGX AlOO, GraphSAGE

Evaluation

* Train small graphs

* Qutperform SOTA systems
by up to 4.32x

= DGL(UVA) @ PaGraph @ GNNLab @ Legion
20 18.6
§15
ém 8.4 = 6.8
7o lrn Dmee Bl Bom

PR PA CcO UKS
DGX-V100, GraphSAGE

* Minimize PCle traffic
 Significantly reduce the traffic
comparing to baselines

@ DGL(UVA) @ PaGraph B GNNLab @ Legion

PCle Transaction

PR PA CO UKS
DGX-V100, GraphSAGE

Evaluation

* Impact of Hierarchical Graph Partitioning
 In all platforms, Legion has a higher cache hit rate than baselines

100%
80%
£ 60%
o
T
@ 40%
& B
& yo_ ¥
20% |e -=>%—Hierarchical+NV8(Legion) —e— Hash+NV8(Quiver-plus)
0 —a— Hierarchical+NV4(Legion) —&— Hash+NV4(Quiver-plus)
——Hierarchical+NV2(Legion) —8—Hash+NV2(Quiver-plus)
0% - 4 - Edgecut+noNV/(Pagraph-plus) —& - Hash+noNV(GNNLab)
(i
1.00% 3.00% 5.00% 7.00% 9.00%

Cache Ratio
Dataset: CO

Evaluation

* Impact of Unified Cache

 Unified cache outperforms all baselines in all datasets
 All topology in GPU meet OOM in UKS, UKL, and CL

- O TopoCPU B TopoGPU O UnifiedCache
£ 1 1 1 1 1
= 0.95
fc’; 0.8 o503 0.7 0.71 = s
< 06
S 04
£
5 02 X X X
0
PA CO UKS UKL CL
\) \)
Y

DGX-V100

DGX-A100

Evaluation

* Impact of Automatic Cache Management
« Legion precisely predicts the trend of per-epoch execution time
without manual interference

_20 3 620 4.5
o ,
€ +Predicted [05 & € #Predicted 4
S : — 2 i 35«
515 | #Experimental @ = 15 | --Experimental 2
3 -2 E 8 -3 E
c c i—
o © © 25 =
=10 - 15 € ~ 10 IS
2 @ @ 2 5
O i £ &) £
a 5 1 5 a 5 1.5 =
e [o B
8 L 0.5 & £ [(1)5 £
3 3 '
a 0 0 x 0 0

0 2 4 6 0 1 2 3 4 5 6 7

Topology Cache Memory per GPU (GB) Topology Cache Memory per GPU (GB)

Single GPU DGX-V100

Q&A

Thanks!

Q&A

	幻灯片编号 1
	Graph Neural Network (GNN)
	Billion-scale Graphs
	Challenge from Industry
	Sampling-based GNN
	Sampling-based GNN
	Sampling-based GNN
	Traditional GNN Systems
	Traditional GNN Systems
	Traditional GNN Systems
	Traditional GNN Systems
	Cache-based GNN Systems
	Cache-based GNN Systems
	Cache-based GNN Systems
	Legion
	Legion
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Legion
	I2: Coarse-grained Topology Management
	I2: Coarse-grained Topology Management
	How to Manage Graph Topology?
	Hotness-aware Unified Cache
	Hotness-aware Unified Cache
	Hotness-aware Unified Cache
	Hotness-aware Unified Cache
	Pre-sampling
	Cache Candidate Selection
	Cache Initialization and Fill-up
	Legion
	New Challenge
	New Challenge
	Automatic Cache Management
	Automatic Cache Management
	Automatic Cache Management
	Automatic Cache Management
	Experimental Settings
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Q & A

