
Jie Sun, Li Su, Zuocheng Shi, Wenting Shen, Zeke Wang
Lei Wang, Jie Zhang, Yong Li, Wenyuan Yu, Jingren Zhou, Fei Wu

Legion:
Automatically Pushing the Envelope of Multi-GPU
System for Billion-Scale GNN Training

Graph Neural Network (GNN)
Financial

Risk Control

E-commercial
Recommendation

Drug
Development

Power
Management

GNN

Combinatorial
Optimization

Billion-scale Graphs

10

100

1000

OGB-Paper
(111M, 1.6B)

Uk-Union
(133M, 5.5B)

Alibaba-Taobao
(1B, 10B)

UK-2014
(0.7B, 47.2B)

Clueweb
(1B, 42.5B)

Si
ze

 (G
B)

V100 Memory
A100 Memory
H100 Memory

Challenge from Industry

10

100

1000

OGB-Paper
(111M, 1.6B)

Uk-Union
(133M, 5.5B)

Alibaba-Taobao
(1B, 10B)

UK-2014
(0.7B, 47.2B)

Clueweb
(1B, 42.5B)

Si
ze

 (G
B)

V100 Memory
A100 Memory
H100 Memory

Sampling-based GNN

GraphSAGE [NeurIPS 2017]

1. Graph Sampling 2. Feature Extraction

Graph Topology

…

Vertex Features

Training Vertices Sampled Neighbors Vertex FeaturesEdges Aggregator

Aggregate
&Combine

Aggregate
&Combine

D
ow

ns
tre

am
 T

as
ks

Activations

Layer1 Layer2

3. Model Training

• Three Key Stages:
…

Sampling-based GNN

GraphSAGE [NeurIPS 2017]

1. Graph Sampling 2. Feature Extraction

Graph Topology

…

Vertex Features

Training Vertices Sampled Neighbors Vertex FeaturesEdges Aggregator

Aggregate
&Combine

Aggregate
&Combine

D
ow

ns
tre

am
 T

as
ks

Activations

Layer1 Layer2

3. Model Training

…
• Three Key Stages:

Light

Sampling-based GNN

GraphSAGE [NeurIPS 2017]

1. Graph Sampling 2. Feature Extraction

Graph Topology

…

Vertex Features

Training Vertices Sampled Neighbors Vertex FeaturesEdges Aggregator

Aggregate
&Combine

Aggregate
&Combine

D
ow

ns
tre

am
 T

as
ks

Activations

Layer1 Layer2

3. Model Training

…

Light
Heavy

• Three Key Stages:

Heavy

Traditional GNN Systems

Traditional GNN Systems

 GPU model training
 Storing graph in CPU memory
 CPU graph sampling
 CPU feature extraction

• Properties:

Traditional GNN Systems

Bottleneck!

 GPU model training
 Storing graph in CPU memory
 CPU graph sampling
 CPU feature extraction

• PCIe communication becomes
major bottleneck!

• CPU sampling can not catch up
with GPU training!

Graph Model

• Properties: • Issues:

Traditional GNN Systems

Heavy

 GPU model training
 Storing graph in CPU memory
 CPU graph sampling
 CPU feature extraction

• PCIe communication becomes
major bottleneck!

• CPU sampling can not catch up
with GPU training!

Light

Graph Model

• Properties: • Issues:

Cache-based GNN Systems

 PaGraph [SoCC 2020]
 Quiver [2022]
 GNNLab [Eurosys 2022]

• GPU Feature Cache
• Existing Works: • Optimizations:

Cache-based GNN Systems

 PaGraph [SoCC 2020]
 Quiver [2022]
 GNNLab [Eurosys 2022]

• GPU Feature Cache
• GPU Sampling

• Optimizations:• Existing Works:

Cache-based GNN Systems

 PaGraph [SoCC 2020]
 Quiver [2022]
 GNNLab [Eurosys 2022]

I1: Poor Multi-GPU Cache Scalability

I2: Coarse-grained Topology Management

• GPU Feature Cache
• GPU Sampling

• They are not optimized for billion-scale GNN training:

• Two Issues：

• Optimizations:• Existing Works:

Legion

Goal:
• Fully explore the hardware capabilities of modern

multi-GPU systems for training billion-scale graphs

Legion

Contributions:
1. Hierarchical Graph Partitioning I1

I1: Poor Multi-GPU Cache Scalability

PCIe traffic does not decrease with more GPUs

Cache Scalability Evaluation

Graph

GPU 1 Cache 1

Cache 8GPU 8

No Partitioning

…

GNNLab Design

0.0

0.5

1.0

1 2 4 8

PC
Ie

Tr
aff

ic

Number of GPUs

GNNLab

Platform: 4 NVLink cliques, 2 GPUs per cliqueReplicate cache in all GPUs

I1: Poor Multi-GPU Cache Scalability

Graph

GPU 1 Cache 1

GPU 7 Cache 7

GPU 8

GPU 2
…

0.0

0.5

1.0

1 2 4 8

PC
Ie

Tr
aff

ic

Number of GPUs

GNNLab
QuiverCache 2

Cache 8

Quiver Design
No Partitioning

Cache Scalability Evaluation
Platform: 4 NVLink cliques, 2 GPUs per cliqueReplicate cache in all cliques

PCIe traffic does not decrease with more NVLink cliques

I1: Poor Multi-GPU Cache Scalability

GPU 1 Cache 1

Cache 8GPU 8

Partitioning with
large overlap

…

0.0

0.5

1.0

1 2 4 8

PC
Ie

Tr
aff

ic

Number of GPUs

GNNLab
Quiver
PaGraphGraph

Cache Scalability EvaluationPaGraph Design
Platform: 4 NVLink cliques, 2 GPUs per cliqueLarge cache overlap

PCIe traffic decreases very little with more GPUs

I1: Poor Multi-GPU Cache Scalability

GPU 1

GPU 8

…

0.0

0.5

1.0

1 2 4 8

PC
Ie

Tr
aff

ic

Number of GPUs

GNNLab
Quiver
PaGraph
PaGraph-plus

Graph

Cache 1

Cache 8

Unbalanced cache hit among GPUs

PaGraph-plus Design Cache Scalability Evaluation
Partitioning with
small overlap

Platform: 4 NVLink cliques, 2 GPUs per cliqueSmall cache overlap

PCIe traffic still decreases very little with more GPUs

I1: Poor Multi-GPU Cache Scalability

0.0

0.5

1.0

1 2 4 8

PC
Ie

Tr
aff

ic

Number of GPUs

GNNLab
Quiver
PaGraph
PaGraph-plus

?

How to improve multi-GPU cache scalability?

Cache Scalability Evaluation? Design
Platform: 4 NVLink cliques, 2 GPUs per clique

Hierarchical Graph Partitioning

0.0

0.5

1.0

1 2 4 8

PC
Ie

Tr
aff

ic

Number of GPUs

GNNLab
Quiver
PaGraph
PaGraph-plus
Legion

Cache Scalability Evaluation

Key idea:
 Co-design hierarchical graph partitioning

with NVLink-enhanced multi-GPU cache

Legion Design
Platform: 4 NVLink cliques, 2 GPUs per cliqueHierarchical

graph partitioning
NVLink-enhanced
multi-GPU cache

Hierarchical Graph Partitioning

0.0

0.5

1.0

1 2 4 8

PC
Ie

Tr
aff

ic

Number of GPUs

GNNLab
Quiver
PaGraph
PaGraph-plus
Legion

Hierarchical
graph partitioning

NVLink-enhanced
multi-GPU cache

Key idea:
 Co-design hierarchical graph partitioning

with NVLink-enhanced multi-GPU cache

Cache Scalability EvaluationLegion Design
Platform: 4 NVLink cliques, 2 GPUs per clique

• Goal: Improve multi-GPU cache scalability

Hierarchical Graph Partitioning

• Goal: Improve multi-GPU cache scalability

• Principles:
 Between NVLink cliques:
 Maintain different caches for different partitions

=> Minimize cache replication

Hierarchical Graph Partitioning

• Goal: Improve multi-GPU cache scalability

• Principles:
 Between NVLink cliques:
 Maintain different caches for different partitions

=> Minimize cache replication

 Within NVLink cliques:
 Split cache exclusively and uniformly

=> Eliminate cache replication & improve load balance

Hierarchical Graph Partitioning

…Graph G

VP1

…
VP4 [1]

VP4[2]

VP1 [2]

VP1 [1]

VP4

Minimized
Edge-cut

Hash

Hash

Kc = 4 Kg = 2
NVLink Topology Matrix MT

1. NVLink Clique Detection
GPU 1 Cache 1

Cache 2

GPU 7 Cache 7

Cache 8GPU 8

GPU 2

Hierarchical Graph Partitioning Hotness-aware Unified Cache

…

• Goal: Improve multi-GPU cache scalability

2. Inter-clique Partitioning

3. Intra-clique Partitioning

Hierarchical Graph Partitioning

Legion

Contributions:

2. Hotness-aware Unified Cache I2

I2: Coarse-grained Topology Management

• Design:
• All topology in CPU memory

• Issue:
• Low PCIe utilization

 DGL [ICLR 2019]
 Quiver [2022]

I2: Coarse-grained Topology Management

• Design:
• All topology in CPU memory

Examples 16 GB V100
UK-Union OOM
Alibaba-Taobao OOM
Clueweb OOM

 DGL [ICLR 2019]
 Quiver [2022]  GNNLab [Eurosys 2022]

• Issue:
• Low PCIe utilization

• Design:
• All topology in GPU memory

• Issue:
• Limited graph topology size

How to Manage Graph Topology?

? All topology in CPU memory  All topology in GPU memory

Low PCIe utilization

 All topology in GPU memory

Limited graph topology size

=> Hotness-aware Unified Cache

Hotness-aware Unified Cache

• Goal:
• Minimize PCIe traffic generated by both

graph sampling and feature extraction

GPU Memory
FeatCacheTopoCache

Hotness-aware Unified Cache

• Goal:
• Minimize PCIe traffic generated by both

graph sampling and feature extraction

• Principle:
• Fill the hottest graph topology and feature into TopoCache and FeatCache

GPU Memory
FeatCacheTopoCache

Hotness-aware Unified Cache

• Goal:
• Minimize PCIe traffic generated by both

graph sampling and feature extraction

TopoCache FeatCache

Indptr

Indices

Feature Vector 1

Feature Vector K
…

Hash Map Hash Map

CSR 2D Array

• Vertex-centric Data Structure
 TopoCache: CSR
 FeatCache: 2D Array

GPU Memory
FeatCacheTopoCache

Hotness-aware Unified Cache

• Goal:
• Minimize PCIe traffic generated by both

graph sampling and feature extraction

GPU Memory
FeatCacheTopoCache

 Step 2.
Cache Candidate Selection

 Step 3.
Cache Initialization and Fill-up

 Step 1.
Pre-Sampling

Pre-sampling

• Goal:
• Count the hotness (access frequency) of

vertices on every GPU

Vertex ID Hotness
HT [1]:

After 1 epoch of pre-sampling:
0 11
1 12
2 8
3 7
4 5
5 2
6 3
7 1

Vertex ID Hotness
0 10
1 8
2 7
3 6
4 5
5 5
6 1
7 1

HF [1]:

• Vertices Hotness
of Topology

• Vertices Hotness
of Feature

GPU Memory
FeatCacheTopoCache

…

…

Cache Candidate Selection

• Goal:
• Sort the vertices with high hotness to get the

candidate queues on every GPU

GT [1] GF [1]

GT [2] GF [2]

GT [7] GF [7]

GT [8] GF [8]

…
Clique 1

Clique 4

=>

=>

=>

=>

HT [1] HF [1]

HT [2] HF [2]

HT [7] HF [7]

HT [8] HF [8]

Clique 1

Clique 4

• Hotness • Candidate Queues

GPU Memory
FeatCacheTopoCache

Cache Initialization and Fill-up

• Goal:
• Load the topology & feature data from

CPU to GPU memory

GT [1] GF [1]

GT [2] GF [2]

GT [7] GF [7]

GT [8] GF [8]

…

GPU 1 FeatCacheTopoCache

GPU 2 FeatCacheTopoCache

GPU 7 FeatCacheTopoCache

GPU 8 FeatCacheTopoCache

…

Clique 1

Clique 4

Limited by cache sizes

Limited by cache sizes

• Candidate Queues

GPU Memory
FeatCacheTopoCache

Legion

Contributions:

3. Automatic Cache Management

New Challenge

• Trade-off: Topology Cache vs Feature Cache

New Challenge

• Trade-off: Topology Cache vs Feature Cache

• How to find the optimal size of topology and feature cache automatically?

Automatic Cache Management

• Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput

Automatic Cache Management

• Use the overall PCIe traffic to estimate overall throughput

Reasons:
 PCIe traffic is the system bottleneck
 Larger topology cache size => Lower PCIe traffic of graph sampling
 Larger feature cache size => Lower PCIe traffic of feature extraction

• Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput

Automatic Cache Management

• Use the overall PCIe traffic to estimate overall throughput

• Build cost model to estimate the overall PCIe traffic

• Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput

Automatic Cache Management

• Use the overall PCIe traffic to estimate overall throughput

• Build cost model to estimate the overall PCIe traffic

• Method:
• Build the cost model at the NVLink-clique granularity
• One GPU in a clique calculates cost model and search for optimal cache plan

• Goal: Automatically decide topology & feature cache size
to maximize the overall training throughput

Experimental Settings

• Billion-scale real-world graphs • Three multi-GPU platforms with
different NVLink topologies

• Two popular GNN models:
GraphSAGE, GCN

• Datasets: • Platforms:

• Models:

Evaluation

• Train billion-scale graphs
• Existing cache-based system

cannot scale well

DGX-A100, GraphSAGE

• Minimize PCIe traffic
• Significantly reduce the traffic

comparing to baseline

DGX-A100, GraphSAGE

DGX-V100, GraphSAGE

Evaluation

DGX-V100, GraphSAGE

• Train small graphs
• Outperform SOTA systems

by up to 4.32x

• Minimize PCIe traffic
• Significantly reduce the traffic

comparing to baselines

Evaluation

• Impact of Hierarchical Graph Partitioning
• In all platforms, Legion has a higher cache hit rate than baselines

Dataset: CO

Evaluation

• Impact of Unified Cache
• Unified cache outperforms all baselines in all datasets
• All topology in GPU meet OOM in UKS, UKL, and CL

DGX-V100 DGX-A100

Evaluation

• Impact of Automatic Cache Management
• Legion precisely predicts the trend of per-epoch execution time

without manual interference

Single GPU DGX-V100

Q & A

Thanks!

Q & A

	幻灯片编号 1
	Graph Neural Network (GNN)
	Billion-scale Graphs
	Challenge from Industry
	Sampling-based GNN
	Sampling-based GNN
	Sampling-based GNN
	Traditional GNN Systems
	Traditional GNN Systems
	Traditional GNN Systems
	Traditional GNN Systems
	Cache-based GNN Systems
	Cache-based GNN Systems
	Cache-based GNN Systems
	Legion
	Legion
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	I1: Poor Multi-GPU Cache Scalability
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Hierarchical Graph Partitioning
	Legion
	I2: Coarse-grained Topology Management
	I2: Coarse-grained Topology Management
	How to Manage Graph Topology?
	Hotness-aware Unified Cache
	Hotness-aware Unified Cache
	Hotness-aware Unified Cache
	Hotness-aware Unified Cache
	Pre-sampling
	Cache Candidate Selection
	Cache Initialization and Fill-up
	Legion
	New Challenge
	New Challenge
	Automatic Cache Management
	Automatic Cache Management
	Automatic Cache Management
	Automatic Cache Management
	Experimental Settings
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Q & A

