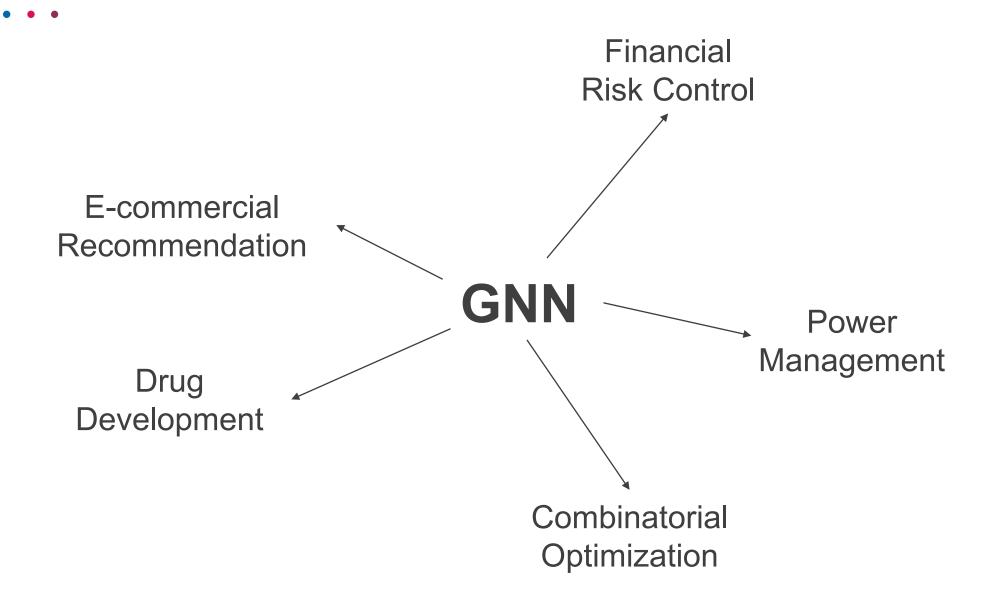
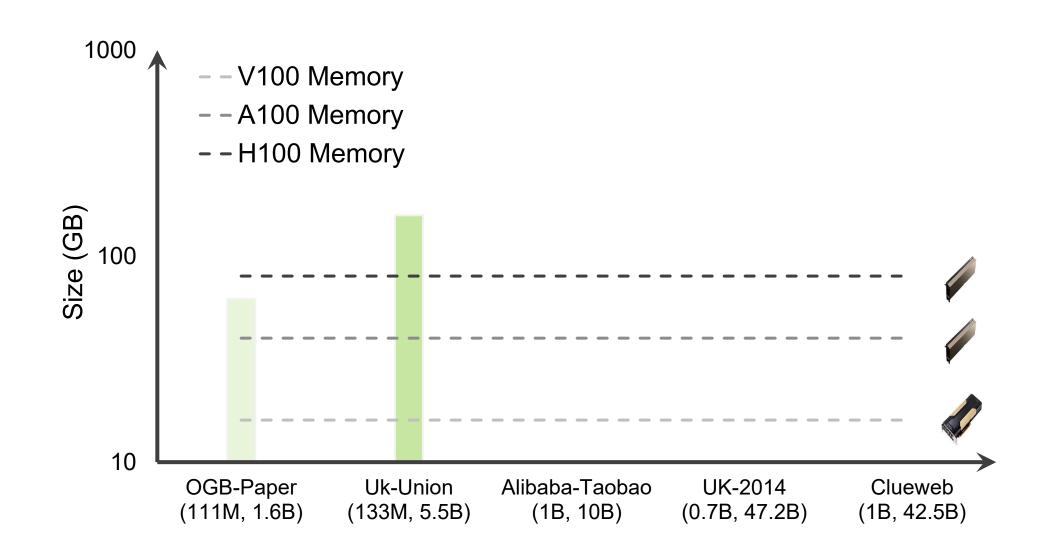
- . Legion:
- Automatically Pushing the Envelope of Multi-GPU
- System for Billion-Scale GNN Training

Jie Sun, Li Su, Zuocheng Shi, Wenting Shen, Zeke Wang Lei Wang, Jie Zhang, Yong Li, Wenyuan Yu, Jingren Zhou, Fei Wu

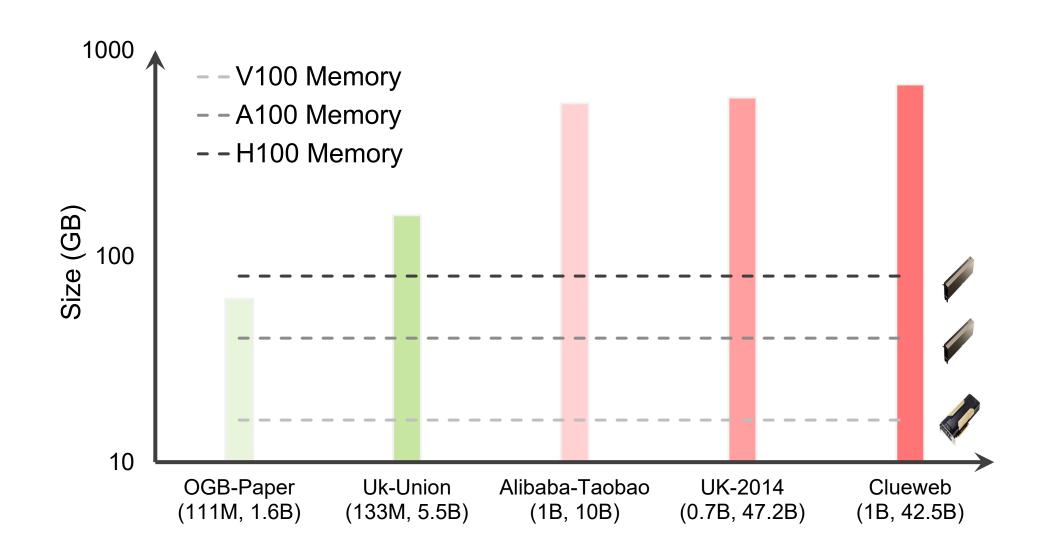
Graph Neural Network (GNN)



Billion-scale Graphs



Challenge from Industry

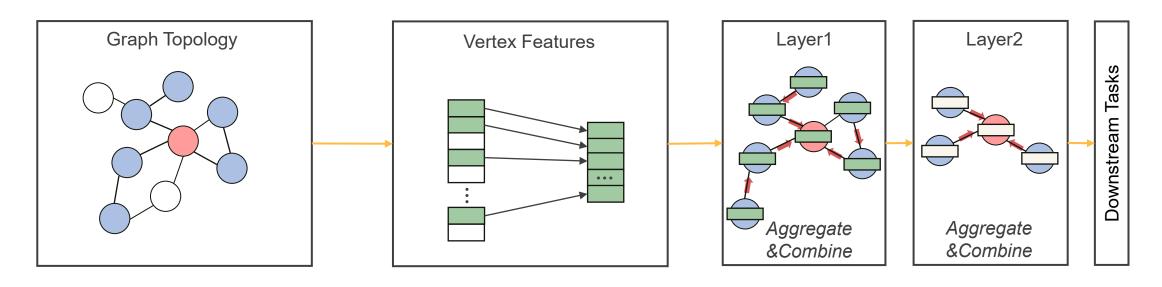


Sampling-based GNN

• • • •

- Three Key Stages:
 - 1 Graph Sampling
 - 1. Graph Sampling 2. Feature Extraction

3. Model Training



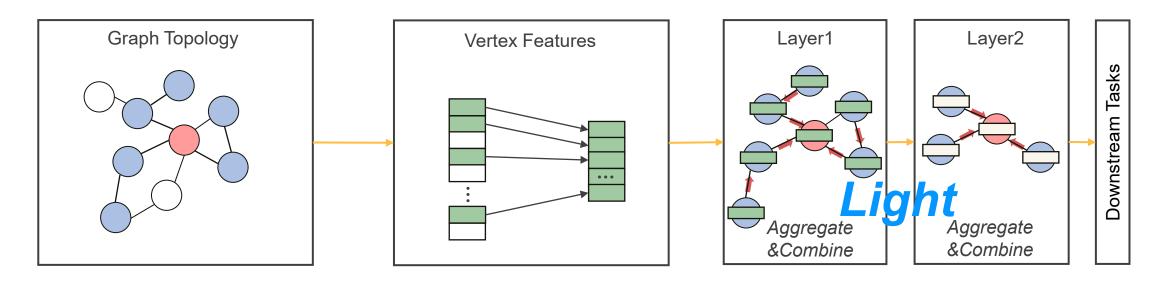
Training Vertices Sampled Neighbors —Edges Vertex Features → Aggregator Activations

Sampling-based GNN

- Three Key Stages:

 - 1. Graph Sampling 2. Feature Extraction

3. Model Training



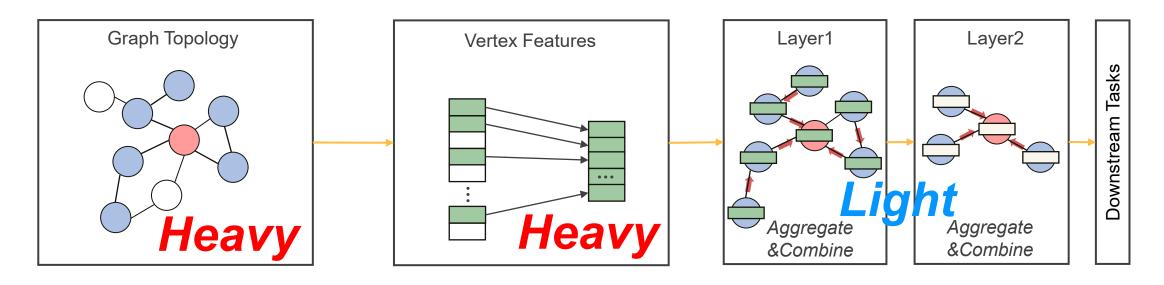
Training Vertices Sampled Neighbors — Edges Wertex Features — Aggregator Activations

Sampling-based GNN

- Three Key Stages:

 - 1. Graph Sampling 2. Feature Extraction

3. Model Training



Training Vertices Sampled Neighbors — Edges Wertex Features — Aggregator Activations

• • • •

graph-learn

• • • • •

Properties:

- GPU model training
- Storing graph in CPU memory
- CPU graph sampling
- > CPU feature extraction

• • • •

Properties:

- GPU model training
- Storing graph in CPU memory
- > CPU graph sampling
- CPU feature extraction

Issues:

- PCIe communication becomes major bottleneck!
- CPU sampling can not catch up with GPU training!

• • • •

Properties:

- GPU model training
- > Storing graph in CPU memory
- CPU graph sampling
- CPU feature extraction

Issues:

- PCIe communication becomes major bottleneck!
- CPU sampling can not catch up with GPU training!

Cache-based GNN Systems

• • • •

- Existing Works:
 - PaGraph [SoCC 2020]-
 - > Quiver [2022]
 - ➤ GNNLab [Eurosys 2022]

- Optimizations:
 - GPU Feature Cache

Cache-based GNN Systems

• • • • •

- Existing Works:
 - PaGraph [SoCC 2020]
 - Quiver [2022]
 - ➤ GNNLab [Eurosys 2022]

- Optimizations:
 - **GPU Feature Cache**
 - GPU Sampling

Cache-based GNN Systems

• • • •

Existing Works:

- PaGraph [SoCC 2020]
- Quiver [2022]
- GNNLab [Eurosys 2022]

Optimizations:

GPU Feature Cache

GPU Sampling

They are not optimized for billion-scale GNN training:

Two Issues:

I₁: Poor Multi-GPU Cache Scalability

I₂: Coarse-grained Topology Management

Legion

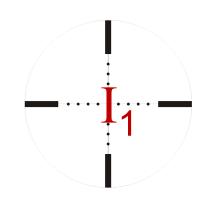
Goal:

 Fully explore the hardware capabilities of modern multi-GPU systems for training billion-scale graphs

Legion

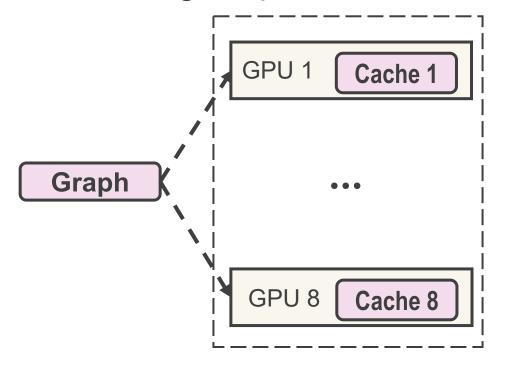
Contributions:

- 1. Hierarchical Graph Partitioning
- 2. Hotness-aware Unified Cache
- 3. Automatic Cache Management



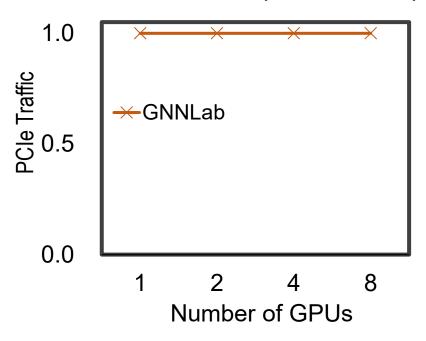
> GNNLab Design

No Partitioning Replicate cache in all GPUs



Cache Scalability Evaluation

Platform: 4 NVLink cliques, 2 GPUs per clique



PCIe traffic does not decrease with more GPUs

Quiver Design

oliguas

Cache Scalability Evaluation

No Partitioning Replicate cache in all cliques

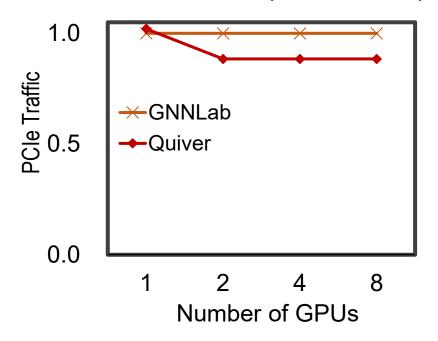
GPU 1 Cache 1

GPU 2 Cache 2

GPU 7 Cache 7

GPU 8 Cache 8

Platform: 4 NVLink cliques, 2 GPUs per clique



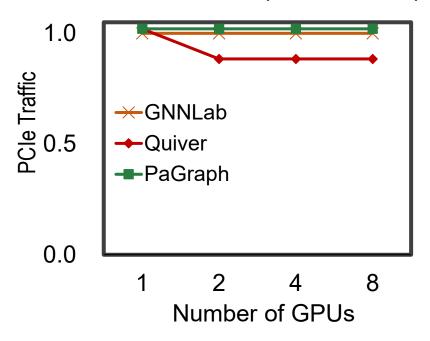
PCIe traffic does not decrease with more NVLink cliques

> PaGraph Design

Partitioning with Large cache overlap large overlap GPU 1 Cache 1 Graph GPU 8 Cache 8

Cache Scalability Evaluation

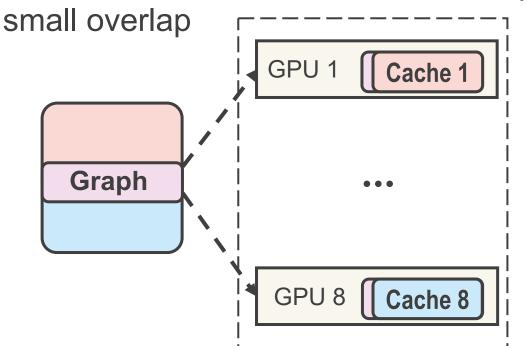
Platform: 4 NVLink cliques, 2 GPUs per clique



PCIe traffic decreases very little with more GPUs

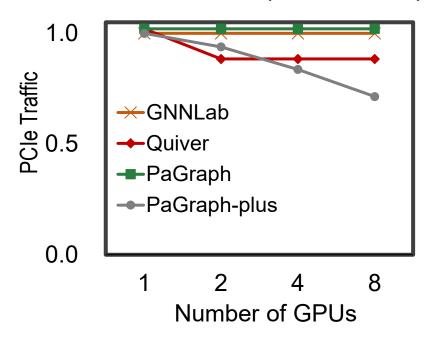
> PaGraph-plus Design

Partitioning with Small cache overlap



> Cache Scalability Evaluation

Platform: 4 NVLink cliques, 2 GPUs per clique

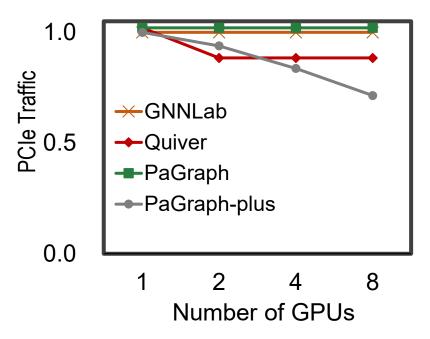


- PCIe traffic still decreases very little with more GPUs
- Unbalanced cache hit among GPUs

> ? Design

> Cache Scalability Evaluation

Platform: 4 NVLink cliques, 2 GPUs per clique



How to improve multi-GPU cache scalability?

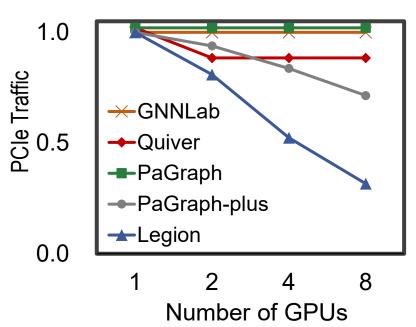
> Legion Design

Hierarchical graph partitioning

NVLink-enhanced multi-GPU cache

> Cache Scalability Evaluation

Platform: 4 NVLink cliques, 2 GPUs per clique



Key idea:

Co-design hierarchical graph partitioning with NVLink-enhanced multi-GPU cache

> Legion Design

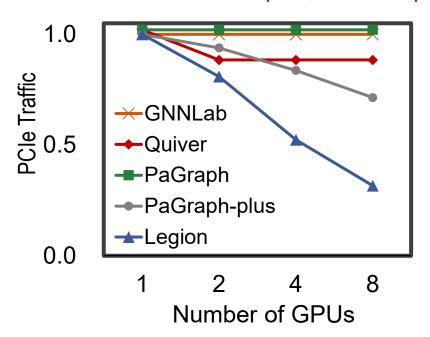
Hierarchical **NVLink-enhanced** graph partitioning multi-GPU cache GPU₁ Cache 1 VP₁ [1] VP₁ [2] GPU 2 Cache 2 Minimized Graph G Edge-cut *** **VP₄**[1] GPU 7 Cache 7 VP_4 . . . **VP**₄[2] GPU 8 Cache 8

Key idea:

Co-design hierarchical graph partitioning with NVLink-enhanced multi-GPU cache

> Cache Scalability Evaluation

Platform: 4 NVLink cliques, 2 GPUs per clique



Goal: Improve multi-GPU cache scalability

• Goal: Improve multi-GPU cache scalability

Principles:

- Between NVLink cliques:
 - Maintain different caches for different partitions
 - => Minimize cache replication

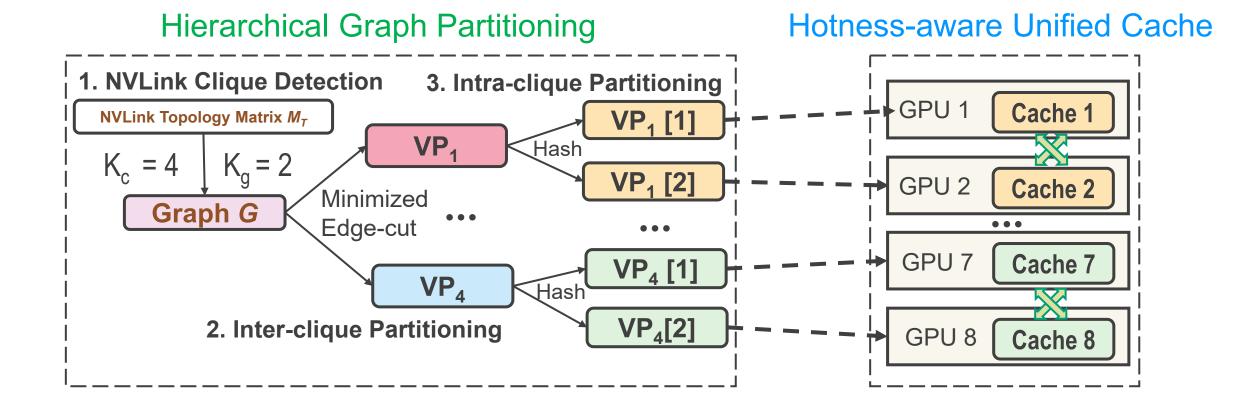
Goal: Improve multi-GPU cache scalability

Principles:

- Between NVLink cliques:
 - Maintain different caches for different partitions
 - => Minimize cache replication

- Within NVLink cliques:
 - > Split cache exclusively and uniformly
 - => Eliminate cache replication & improve load balance

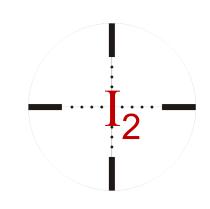
Goal: Improve multi-GPU cache scalability



Legion

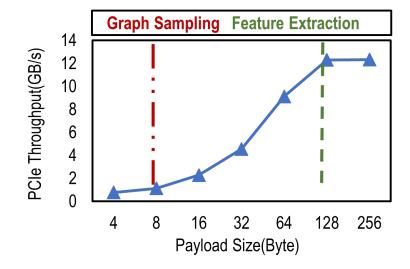
Contributions:

- 1. Hierarchical Graph Partitioning
- 2. Hotness-aware Unified Cache
- 3. Automatic Cache Management



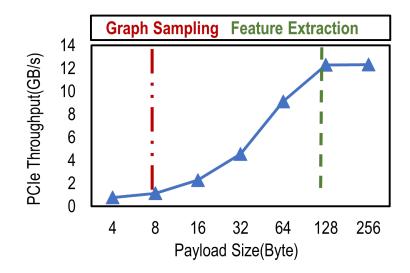
I₂: Coarse-grained Topology Management

- > **DGL** [ICLR 2019]
- > **Quiver** [2022]
 - Design:
 - All topology in CPU memory
 - Issue:
 - Low PCIe utilization



I₂: Coarse-grained Topology Management

- DGL [ICLR 2019]
- Quiver [2022]
 - Design:
 - All topology in CPU memory
 - Issue:
 - Low PCIe utilization



- GNNLab [Eurosys 2022]
 - Design:
 - All topology in GPU memory
 - Issue:
 - Limited graph topology size

Examples	16 GB V100
UK-Union	OOM
Alibaba-Taobao	OOM
Clueweb	OOM

How to Manage Graph Topology?

All topology in CPU memory

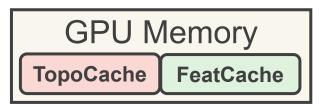
- All topology in GPU memory
- Limited graph topology size

=> Hotness-aware Unified Cache

• • • •

Goal:

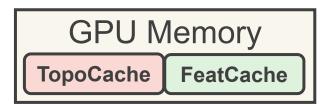
 Minimize PCIe traffic generated by both graph sampling and feature extraction



• • • •

Goal:

 Minimize PCIe traffic generated by both graph sampling and feature extraction



Principle:

Fill the hottest graph topology and feature into TopoCache and FeatCache

• • • •

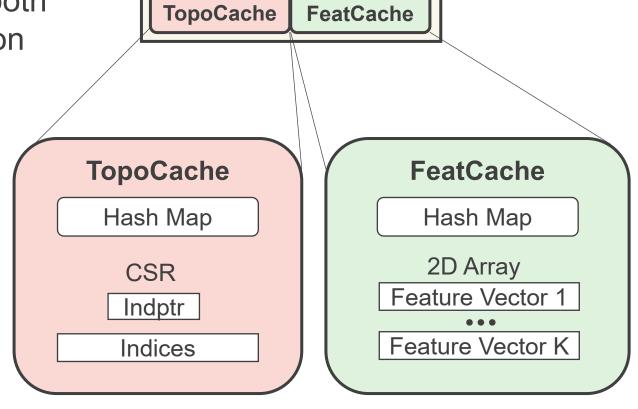
Goal:

 Minimize PCIe traffic generated by both graph sampling and feature extraction

Vertex-centric Data Structure

✓ TopoCache: CSR

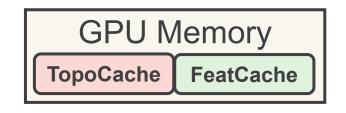
√ FeatCache: 2D Array

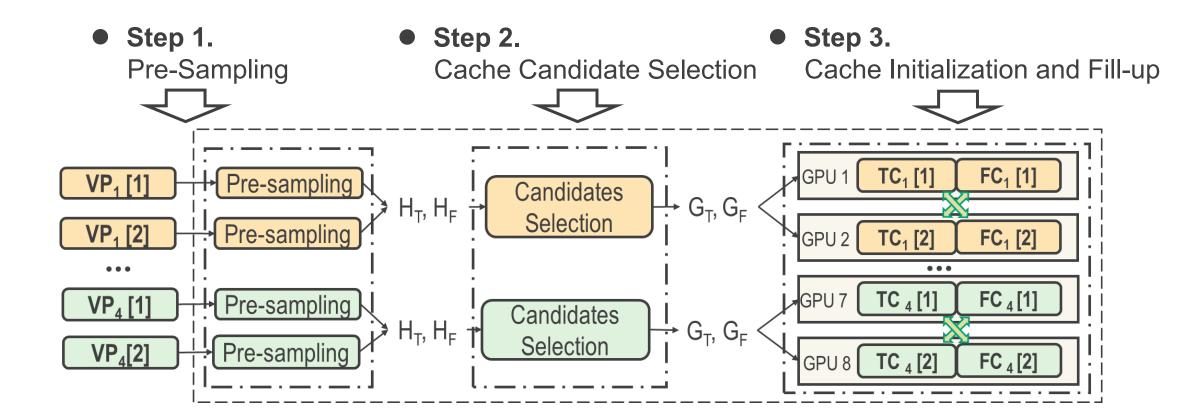


GPU Memory

Goal:

 Minimize PCIe traffic generated by both graph sampling and feature extraction

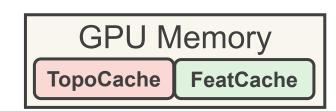




Pre-sampling

Goal:

 Count the hotness (access frequency) of vertices on every GPU



Vertices Hotness of Topology

 $H_{T}[1]$:

Vertex ID	Hotness
0	11
1	12
2	8
3	7
4	5
5	2
6	3
7	1

 Vertices Hotness of Feature

 H_F [1]:

Vertex ID	Hotness
0	10
1	8
2	7
3	6
4	5
5	5
6	1
7	1

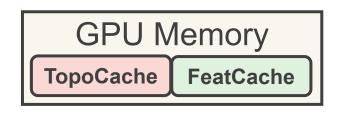
After 1 epoch of pre-sampling:

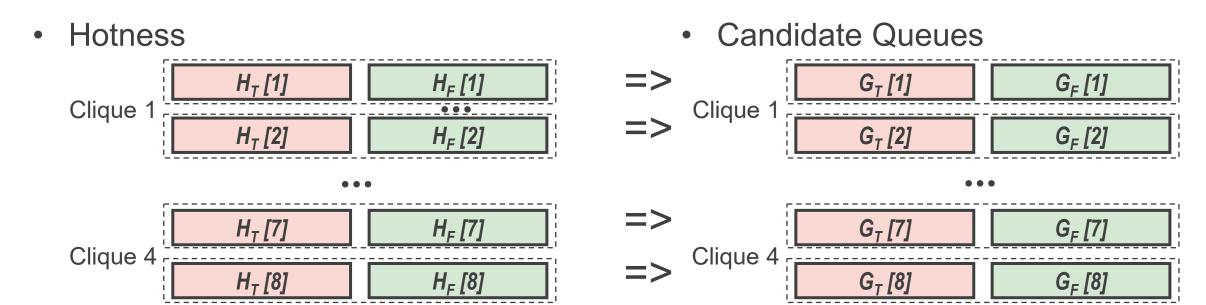
Cache Candidate Selection

• • • •

Goal:

 Sort the vertices with high hotness to get the candidate queues on every GPU

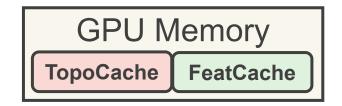


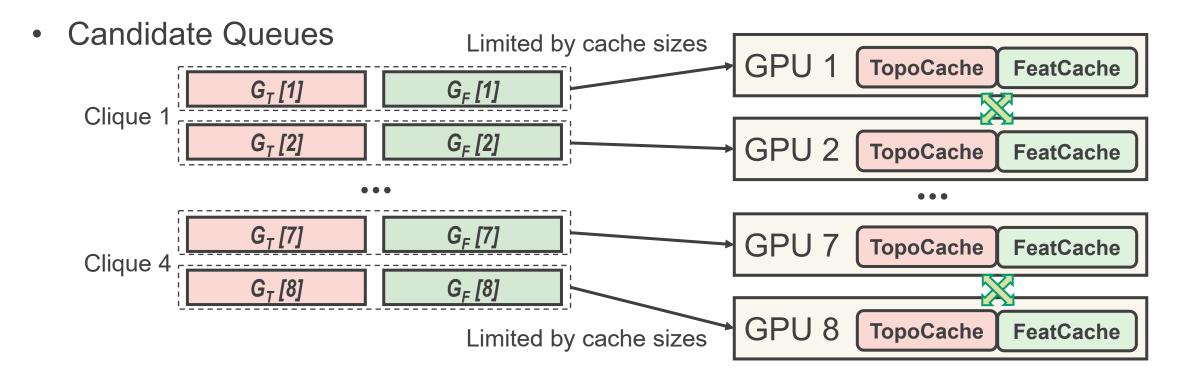


Cache Initialization and Fill-up

Goal:

 Load the topology & feature data from CPU to GPU memory





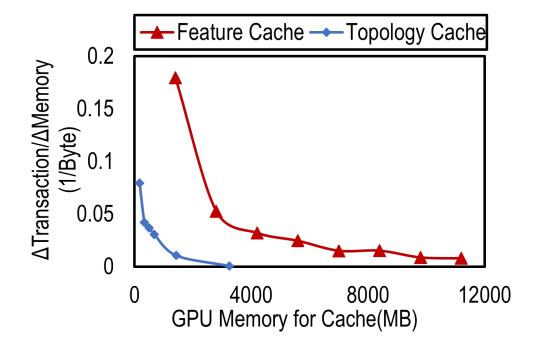
Legion

Contributions:

- 1. Hierarchical Graph Partitioning
- 2. Hotness-aware Unified Cache
- 3. Automatic Cache Management

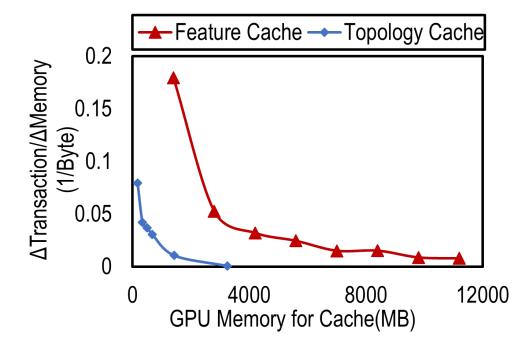
New Challenge

Trade-off: Topology Cache vs Feature Cache



New Challenge

Trade-off: Topology Cache vs Feature Cache



How to find the optimal size of topology and feature cache automatically?

• Goal: Automatically decide topology & feature cache size to maximize the overall training throughput

• Goal: Automatically decide topology & feature cache size to maximize the overall training throughput

Use the overall PCIe traffic to estimate overall throughput

Reasons:

- ◆ PCIe traffic is the system bottleneck
- ◆ Larger topology cache size => Lower PCIe traffic of graph sampling
- ◆ Larger feature cache size => Lower PCIe traffic of feature extraction

 Goal: Automatically decide topology & feature cache size to maximize the overall training throughput

Use the overall PCIe traffic to estimate overall throughput

Build cost model to estimate the overall PCIe traffic

 Goal: Automatically decide topology & feature cache size to maximize the overall training throughput

Use the overall PCIe traffic to estimate overall throughput

Build cost model to estimate the overall PCIe traffic

- Method:
 - Build the cost model at the NVLink-clique granularity
 - One GPU in a clique calculates cost model and search for optimal cache plan

Experimental Settings

Datasets:

Billion-scale real-world graphs

Dataset	PR	PA	CO	UKS	UKL	CL
Vertices	2.4M	111M	65M	133M	0.79B	1B
Edges	120M	1.6B	1.8B	5.5B	47.2B	42.5B
Topology Storage	640M	6.4GB	7.2GB	22GB	189GB	170GB
Feature Size	100	128	256	256	128	128
Feature Storage	960M	56GB	65GB	136GB	400GB	512GB

Models:

 Two popular GNN models: GraphSAGE, GCN

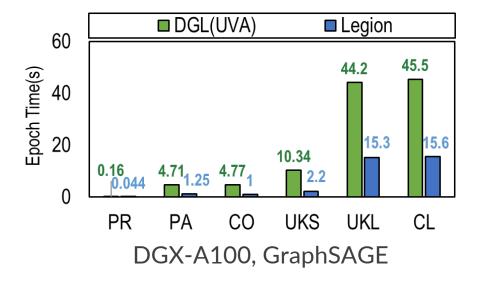
Platforms:

 Three multi-GPU platforms with different NVLink topologies

Server	DGX-V100	Siton	DGX-A100	
GPU Type	16GB-V100x8	40GB-A100x8	80GB-A100x8	
NVLink Topo.	$K_c=2, K_g=4$	$K_c=4, K_g=2$	$K_c=1, K_g=8$	
PCIe	3.0x16	4.0x16	4.0x16	
CPU Mem.	384GB	1TB	1TB	

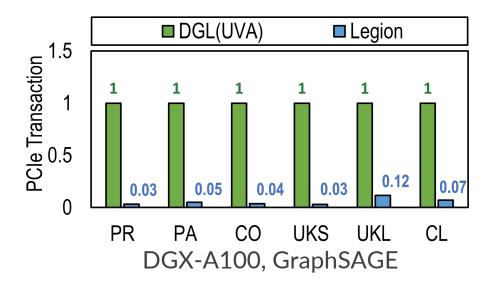
Train billion-scale graphs

 Existing cache-based system cannot scale well



Minimize PCle traffic

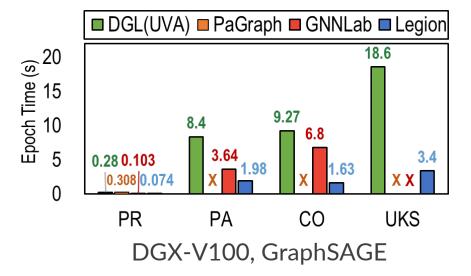
Significantly reduce the traffic comparing to baseline



• • • •

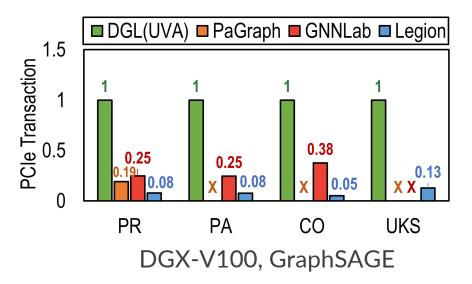
Train small graphs

 Outperform SOTA systems by up to 4.32x



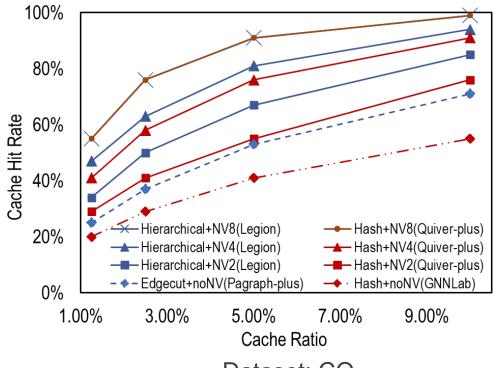
Minimize PCle traffic

Significantly reduce the traffic comparing to baselines



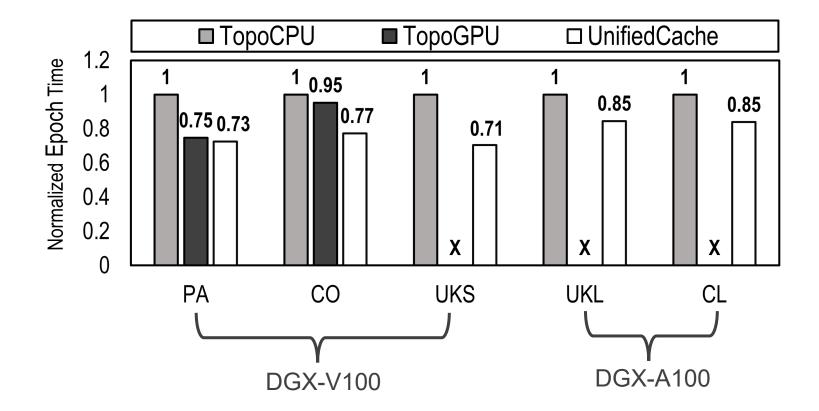
• • • •

- Impact of Hierarchical Graph Partitioning
 - In all platforms, Legion has a higher cache hit rate than baselines



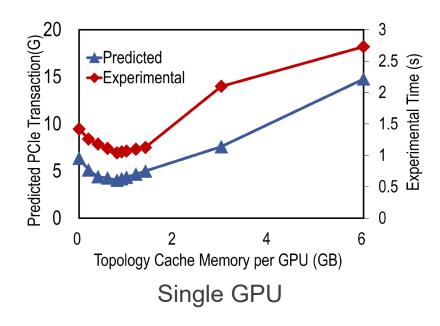
Dataset: CO

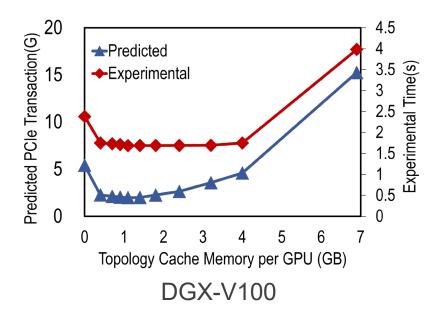
- Impact of Unified Cache
 - Unified cache outperforms all baselines in all datasets
 - All topology in GPU meet OOM in UKS, UKL, and CL



Impact of Automatic Cache Management

 Legion precisely predicts the trend of per-epoch execution time without manual interference





Q & A

Thanks!

Q&A