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Traditional GNN Systems



Traditional GNN Systems

 GPU model training
 Storing graph in CPU memory
 CPU graph sampling
 CPU feature extraction

• Properties:



Traditional GNN Systems

Bottleneck!

 GPU model training
 Storing graph in CPU memory
 CPU graph sampling
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• PCIe communication becomes 
major bottleneck!

• CPU sampling can not catch up 
with GPU training!

Graph Model

• Properties: • Issues:
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Heavy

 GPU model training
 Storing graph in CPU memory
 CPU graph sampling
 CPU feature extraction

• PCIe communication becomes 
major bottleneck!

• CPU sampling can not catch up 
with GPU training!

Light

Graph Model

• Properties: • Issues:
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 PaGraph [SoCC 2020] 
 Quiver     [2022]
 GNNLab [Eurosys 2022] 

• GPU Feature Cache
• Existing Works: • Optimizations:
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Cache-based GNN Systems

 PaGraph [SoCC 2020] 
 Quiver     [2022]
 GNNLab [Eurosys 2022] 

I1: Poor Multi-GPU Cache Scalability

I2: Coarse-grained Topology Management

• GPU Feature Cache
• GPU Sampling

• They are not optimized for billion-scale GNN training:

• Two Issues：

• Optimizations:• Existing Works:



Legion

Goal: 
• Fully explore the hardware capabilities of modern 

multi-GPU systems for training billion-scale graphs



Legion

Contributions: 
1. Hierarchical Graph Partitioning I1



I1: Poor Multi-GPU Cache Scalability

PCIe traffic does not decrease with more GPUs
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I1: Poor Multi-GPU Cache Scalability

GPU 1 Cache 1

Cache 8GPU 8

Partitioning with 
large overlap

…

0.0

0.5

1.0

1 2 4 8

PC
Ie 

Tr
aff

ic

Number of GPUs

GNNLab
Quiver
PaGraphGraph

Cache Scalability EvaluationPaGraph Design
Platform: 4 NVLink cliques, 2 GPUs per cliqueLarge cache overlap

PCIe traffic decreases very little with more GPUs
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PCIe traffic still decreases very little with more GPUs



I1: Poor Multi-GPU Cache Scalability
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How to improve multi-GPU cache scalability?

Cache Scalability Evaluation? Design
Platform: 4 NVLink cliques, 2 GPUs per clique
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• Goal: Improve multi-GPU cache scalability

Hierarchical Graph Partitioning
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• Principles:
 Between NVLink cliques: 
 Maintain different caches for different partitions

=>  Minimize cache replication

Hierarchical Graph Partitioning



• Goal: Improve multi-GPU cache scalability

• Principles:
 Between NVLink cliques: 
 Maintain different caches for different partitions

=>  Minimize cache replication

 Within NVLink cliques:
 Split cache exclusively and uniformly

=>  Eliminate cache replication & improve load balance

Hierarchical Graph Partitioning



…Graph G

VP1

…
VP4 [1]

VP4[2]

VP1 [2]

VP1 [1]

VP4

Minimized 
Edge-cut

Hash

Hash

Kc = 4      Kg = 2
NVLink Topology Matrix MT

1. NVLink Clique Detection
GPU 1 Cache 1

Cache 2

GPU 7 Cache 7

Cache 8GPU 8

GPU 2 

Hierarchical Graph Partitioning Hotness-aware Unified Cache

…

• Goal: Improve multi-GPU cache scalability

2. Inter-clique Partitioning

3. Intra-clique Partitioning

Hierarchical Graph Partitioning



Legion

Contributions: 

2. Hotness-aware Unified Cache I2



I2: Coarse-grained Topology Management

• Design:
• All topology in CPU memory

• Issue:
• Low PCIe utilization

 DGL [ICLR 2019] 
 Quiver [2022] 



I2: Coarse-grained Topology Management

• Design:
• All topology in CPU memory

Examples 16 GB V100
UK-Union OOM
Alibaba-Taobao OOM
Clueweb OOM

 DGL [ICLR 2019] 
 Quiver [2022]  GNNLab [Eurosys 2022]

• Issue:
• Low PCIe utilization

• Design:
• All topology in GPU memory

• Issue:
• Limited graph topology size



How to Manage Graph Topology?

? All topology in CPU memory  All topology in GPU memory

Low PCIe utilization

 All topology in GPU memory

Limited graph topology size

=> Hotness-aware Unified Cache



Hotness-aware Unified Cache

• Goal: 
• Minimize PCIe traffic generated by both 

graph sampling and feature extraction 

GPU Memory
FeatCacheTopoCache



Hotness-aware Unified Cache

• Goal: 
• Minimize PCIe traffic generated by both 

graph sampling and feature extraction 

• Principle: 
• Fill the hottest graph topology and feature into TopoCache and FeatCache

GPU Memory
FeatCacheTopoCache



Hotness-aware Unified Cache

• Goal: 
• Minimize PCIe traffic generated by both 

graph sampling and feature extraction 

TopoCache FeatCache

Indptr

Indices

Feature Vector 1

Feature Vector K
…

Hash Map Hash Map

CSR 2D Array

• Vertex-centric Data Structure
 TopoCache: CSR 
 FeatCache: 2D Array

GPU Memory
FeatCacheTopoCache



Hotness-aware Unified Cache

• Goal: 
• Minimize PCIe traffic generated by both 

graph sampling and feature extraction 

GPU Memory
FeatCacheTopoCache

 Step 2. 
Cache Candidate Selection

 Step 3.
Cache Initialization and Fill-up 

 Step 1. 
Pre-Sampling



Pre-sampling

• Goal: 
• Count the hotness (access frequency) of 

vertices on every GPU

Vertex ID Hotness
HT [1]:

After 1 epoch of pre-sampling:
0 11
1 12
2 8
3 7
4 5
5 2
6 3
7 1

Vertex ID Hotness
0 10
1 8
2 7
3 6
4 5
5 5
6 1
7 1

HF [1]:

• Vertices Hotness 
of Topology

• Vertices Hotness 
of Feature

GPU Memory
FeatCacheTopoCache



…

…

Cache Candidate Selection

• Goal: 
• Sort the vertices with high hotness to get the 

candidate queues on every GPU

GT [1] GF [1]

GT [2] GF [2]

GT [7] GF [7]

GT [8] GF [8]

…
Clique 1

Clique 4

=>

=>

=>

=>

HT [1] HF [1]

HT [2] HF [2]

HT [7] HF [7]

HT [8] HF [8]

Clique 1

Clique 4

• Hotness • Candidate Queues

GPU Memory
FeatCacheTopoCache



Cache Initialization and Fill-up 

• Goal: 
• Load the topology & feature data from 

CPU to GPU memory

GT [1] GF [1]

GT [2] GF [2]

GT [7] GF [7]

GT [8] GF [8]

…

GPU 1 FeatCacheTopoCache

GPU 2 FeatCacheTopoCache

GPU 7 FeatCacheTopoCache

GPU 8 FeatCacheTopoCache

…

Clique 1

Clique 4

Limited by cache sizes

Limited by cache sizes

• Candidate Queues

GPU Memory
FeatCacheTopoCache



Legion

Contributions: 

3. Automatic Cache Management



New Challenge

• Trade-off: Topology Cache vs Feature Cache



New Challenge

• Trade-off: Topology Cache vs Feature Cache

• How to find the optimal size of topology and feature cache automatically?



Automatic Cache Management

• Goal: Automatically decide topology & feature cache size 
to maximize the overall training throughput



Automatic Cache Management

• Use the overall PCIe traffic to estimate overall throughput

Reasons: 
 PCIe traffic is the system bottleneck
 Larger topology cache size => Lower PCIe traffic of graph sampling
 Larger feature cache size => Lower PCIe traffic of feature extraction 

• Goal: Automatically decide topology & feature cache size 
to maximize the overall training throughput



Automatic Cache Management

• Use the overall PCIe traffic to estimate overall throughput

• Build cost model to estimate the overall PCIe traffic

• Goal: Automatically decide topology & feature cache size 
to maximize the overall training throughput



Automatic Cache Management

• Use the overall PCIe traffic to estimate overall throughput

• Build cost model to estimate the overall PCIe traffic

• Method: 
• Build the cost model at the NVLink-clique granularity
• One GPU in a clique calculates cost model and search for optimal cache plan

• Goal: Automatically decide topology & feature cache size 
to maximize the overall training throughput



Experimental Settings

• Billion-scale real-world graphs • Three multi-GPU platforms with 
different NVLink topologies

• Two popular GNN models: 
GraphSAGE, GCN

• Datasets: • Platforms:

• Models:



Evaluation

• Train billion-scale graphs
• Existing cache-based system 

cannot scale well

DGX-A100, GraphSAGE

• Minimize PCIe traffic
• Significantly reduce the traffic 

comparing to baseline

DGX-A100, GraphSAGE



DGX-V100, GraphSAGE

Evaluation

DGX-V100, GraphSAGE

• Train small graphs
• Outperform SOTA systems 

by up to 4.32x 

• Minimize PCIe traffic
• Significantly reduce the traffic 

comparing to baselines



Evaluation

• Impact of Hierarchical Graph Partitioning
• In all platforms, Legion has a higher cache hit rate than baselines

Dataset: CO



Evaluation

• Impact of Unified Cache
• Unified cache outperforms all baselines in all datasets
• All topology in GPU meet OOM in UKS, UKL, and CL

DGX-V100 DGX-A100



Evaluation

• Impact of Automatic Cache Management
• Legion precisely predicts the trend of per-epoch execution time 

without manual interference

Single GPU DGX-V100



Q & A

Thanks!

Q & A
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