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Background

 Redundant data in backup systems

e Data deduplication
* Removing duplicate chunks

* Delta compression
* Removing redundancy among similar chunks



Challenges of adding delta compression
to deduplication systems

* Low compression ratio
* Low backup throughput
* Low restore performance

* Missing potential similar chunks when rewriting
techniques are applied



Challenge 1: low compression ratio

Redundancy Locality: the repeating patterns of the
redundant data among consecutive backups

* Logical Locality: the repeating pattern before deduplication

* Physical Locality: the repeating pattern after deduplication
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Challenge 1: low compression ratio

Sketch indexing techniques:

* Logical-locality-based indexing: sketches of the data chunks
of the last backup

* Physical-locality-based indexing: sketches of the data chunks
stored along with duplicate chunks

* Full indexing: sketches of all data chunks in the backup
storage



Logical-locality-based sketch indexing

Disadvantage: Missing potential Backup1: [ A | B | ¢ | D

similar chunks across backup

versions. Backup 2: E F C’\ : D’

Advantage: high similarity of 5. 15T TH

detected similar chunks.

The best base chunk for delta-compressing a chunk is often its previous
copy in the last backup.



Physical-locality-based sketch indexing

Disadvantage: Detecting BackwN:| A | B, | G,
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chunks as base chunks

Advantage: Detecting most
of potential similar chunks
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Full sketch indexing

Disadvantage: Detecting self-referenced similar chunks as
base chunks

Advantage: Detecting all potential similar chunks

Upper bound for compression evaluations



Challenge 1: low compression ratio

Complementary capabilities

_ Advantage Disadvantage

Logical locality High similarity Missing similar chunks

Physical locality Detecting almost all similar chunks Low similarity

Combining the Best of Both Worlds

Dual-locality-based Sketch Indexing: detecting similar chunks by
exploiting both logical and physical locality



Challenge 2: low backup throughput

Extra 1/Os for reading base chunks on the write path
significantly decrease the backup throughput.

Observations:
* Routine operations: accessing containers during deduplication

* Most of the containers holding similar chunks would be accessed
during deduplication



Challenge 2: low backup throughput

Observations:
* Routine operations: accessing containers during deduplication

* Most of the containers holding similar chunks would be accessed
during deduplication

Locality-aware Prefetching:

* Prefetching potential base chunks by piggybacking on routine
operations for prefetching metadata during deduplication.



Challenge 3: low restore performance

Extra 1/Os for reading base chunks on the read path
significantly decrease the restore performance.

* Locality-aware prefetching reduces extra I/Os during restore.

* Base-fragmented chunks: Data chunks that refer to deltas whose
base chunks requier extra |/Os during restore.
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Challenge: Obtaining the container ID of the base chunk of a delta
in the system



Challenge 3: low restore performance

Cache-aware Filter:
 Storing fingerprints of base chunks of deltas along with deltas.

* |dentifying base-fragmented chunks with the assistance of
recently prefetched metadata during deduplication

* rewriting base-fragmented chunks to prevent extra I/Os for base
chunks during restore



Challenge 4: missing base chunks

* The rewriting techniques declare infrequently reused
containers.

e Base chunks are required during restore.

 Similar chunks detected from infrequently reused
containers cannot serve as base chunks.



Challenge 4: missing base chunks

Observations:

Delta compression can be viewed as a two-step process.

* Step 1: encoding the target chunk relative a similar chunk and
generating a delta

* Step 2: removing the target chunk and storing the delta to
achieve a data reduction

The target chunk refers to a chunk being backed up, while the similar
chunk refers to a chunk in the backup storage.



Challenge 4: missing base chunks

Inversed Delta Compression:

Changing the target of delta compression to the chunk in the backup
storage. ATC'23-LoopDelta

 Step 1: encoding the detected similar chunk (say, S) relative to
the chunk (say, C) being backed up and generating a delta,
storing the delta along with C.

 Step 2: removing S during Garbage Collection (GC) to achieve a
data reduction.
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Our approach: LoopDelta

Dual-locality-based Sketch Indexing: low compression ratio

Locality-aware Prefetching: low backup throughput due to extra I/Os for
base chunks on the write path

Cache-aware Filter: low restore performance caused by extra 1/Os for base
chunks on the read path

Inversed Delta Compression: delta compression prohibited by rewriting
techniques



Evaluation: datasets

ME Workload descriptions Key property

200 backups of the redis key-value store Multi-version

o database inheritance
WEB 330 GB 120 days snapshots of the website: S.elf.-referenced
news.sina.com. similar chunks

100 versions of source codes of Chromium
project from v84.0.4110 to v86.0.4215

180 synthetic backups by simulating file Multi-version
create/delete/modify operations inheritance

CHM 284 GB

SYN 335GB



Evaluation: % of detected similar chunks
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LoopDelta (our approach) can detect nearly all potential similar chunks.



Evaluation: similarity of detected chunks

A larger value of DCE indicates higher similarity
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On dataset (WEB) containing self-referenced similar chunks, our approach
detects similar chunks with higher similarity than other approaches.



Evaluation: efficiency of Cache-aware Filter

Improvement in restore performance achieved by Cache-aware
Filter when rewriting is applied

RDB 50.6%
WEB 11.7%
CHRO 33.3%

SYN 47.8%



Evaluation: efficiency of Inversed Delta

Compression

The rewriting scheme is
Capping.

The compression gain: 15.3%,
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Evaluation: compression ratio
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LoopDelta achieves a compression ratio
comparable to SIDC and Greedy, and higher than
MeGA on the RDB, CHRO, and SYN datasets,
while achieving the highest compression ratio on
the WEB dataset.
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Evaluation: restore performance
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Evaluation: backup throughput
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Thank you!

For any inquiries, please email me at
zhangyc hust@126.com



