LoopDelta: Embedding Locality-aware
Opportunistic Delta Compression in Inline
Deduplication for Highly Efficient Data Reduction

Yucheng Zhang Nanchang University

Hong Jiang University of Texas at Arlington
Dan Feng Huazhong University of Science and Technology
Nan Jiang East China Jiaotong University
Taorong Qiu Nanchang University
Wei Huang Nanchang University
AN
UNﬁRSIT‘YOF
TEXAS

ARLINGTON

Background

 Redundant data in backup systems

e Data deduplication
* Removing duplicate chunks

* Delta compression
* Removing redundancy among similar chunks

Challenges of adding delta compression
to deduplication systems

* Low compression ratio
* Low backup throughput
* Low restore performance

* Missing potential similar chunks when rewriting
techniques are applied

Challenge 1: low compression ratio

Redundancy Locality: the repeating patterns of the
redundant data among consecutive backups

* Logical Locality: the repeating pattern before deduplication

* Physical Locality: the repeating pattern after deduplication

Logical locality Physical locality

Chunk A
Chunk B
Chunk C
Chunk D
Chunk E

Backup 1: |Chunk A |[Chunk B || Chunk C |[Chunk D || Chunk E |
A A A A A

identical similar similar
identical identical

Chunk A
Chunk B .
Chunk C
Chunk D
Chunk E

v v v v v
Backup 2: | Chunk A || Chunk B ||Chunk C'|[Chunk D || Chunk E'|

(@]
(]
3
-
o
)
=
=

Container 1 Container 2

Challenge 1: low compression ratio

Sketch indexing techniques:

* Logical-locality-based indexing: sketches of the data chunks
of the last backup

* Physical-locality-based indexing: sketches of the data chunks
stored along with duplicate chunks

* Full indexing: sketches of all data chunks in the backup
storage

Logical-locality-based sketch indexing

Disadvantage: Missing potential Backup1: [A | B | ¢ | D

similar chunks across backup

versions. Backup 2: E F C’\ : D’

Advantage: high similarity of 5. 15T TH

detected similar chunks.

The best base chunk for delta-compressing a chunk is often its previous
copy in the last backup.

Physical-locality-based sketch indexing

Disadvantage: Detecting BackwN:| A | B, | G,

\

self-referenced similar =
chunks as base chunks

Advantage: Detecting most
of potential similar chunks

Container X

similar chunks from the previous backups > self-referenced similar chunks

Full sketch indexing

Disadvantage: Detecting self-referenced similar chunks as
base chunks

Advantage: Detecting all potential similar chunks

Upper bound for compression evaluations

Challenge 1: low compression ratio

Complementary capabilities

_ Advantage Disadvantage

Logical locality High similarity Missing similar chunks

Physical locality Detecting almost all similar chunks Low similarity

Combining the Best of Both Worlds

Dual-locality-based Sketch Indexing: detecting similar chunks by
exploiting both logical and physical locality

Challenge 2: low backup throughput

Extra 1/Os for reading base chunks on the write path
significantly decrease the backup throughput.

Observations:
* Routine operations: accessing containers during deduplication

* Most of the containers holding similar chunks would be accessed
during deduplication

Challenge 2: low backup throughput

Observations:
* Routine operations: accessing containers during deduplication

* Most of the containers holding similar chunks would be accessed
during deduplication

Locality-aware Prefetching:

* Prefetching potential base chunks by piggybacking on routine
operations for prefetching metadata during deduplication.

Challenge 3: low restore performance

Extra 1/Os for reading base chunks on the read path
significantly decrease the restore performance.

* Locality-aware prefetching reduces extra I/Os during restore.

* Base-fragmented chunks: Data chunks that refer to deltas whose
base chunks requier extra |/Os during restore.

Backup 1: [Chunk A | [Chunk B | | Chunk C | | Chunk D |
Backup 2: | Chunk E Chunk B Chunk C' Chunk F

Backup 3: [Chunk E | [[Chunk G | [Chunk€"] [Chunk F

N

2-level reference Base-fragmented

Data layout: relationship lhlt‘ ﬁll‘ﬁl; chunk
evel .
[Chunk A | [ChkE]| ~ |[Chmko]
[ChunkB | ‘h“-lzg‘(*__‘l’“‘.‘__, Delta(C", O)]{
[RCHGROR} - [ChunkF | blank
Chunk D blank
Container 1 Container 2 Container 3

Challenge: Obtaining the container ID of the base chunk of a delta
in the system

Challenge 3: low restore performance

Cache-aware Filter:
 Storing fingerprints of base chunks of deltas along with deltas.

* |dentifying base-fragmented chunks with the assistance of
recently prefetched metadata during deduplication

* rewriting base-fragmented chunks to prevent extra I/Os for base
chunks during restore

Challenge 4: missing base chunks

* The rewriting techniques declare infrequently reused
containers.

e Base chunks are required during restore.

 Similar chunks detected from infrequently reused
containers cannot serve as base chunks.

Challenge 4: missing base chunks

Observations:

Delta compression can be viewed as a two-step process.

* Step 1: encoding the target chunk relative a similar chunk and
generating a delta

* Step 2: removing the target chunk and storing the delta to
achieve a data reduction

The target chunk refers to a chunk being backed up, while the similar
chunk refers to a chunk in the backup storage.

Challenge 4: missing base chunks

Inversed Delta Compression:

Changing the target of delta compression to the chunk in the backup
storage. ATC'23-LoopDelta

 Step 1: encoding the detected similar chunk (say, S) relative to
the chunk (say, C) being backed up and generating a delta,
storing the delta along with C.

 Step 2: removing S during Garbage Collection (GC) to achieve a
data reduction.

Backupl1l: | A | B C | D E F G | H

Backup2: | A [B | C K
infrequently reused Direct delta compression
container (the tradititznal approach)
V. '
Data layout: . ;
A ; Gl T K
i 5 B[T
C G Hie blank
D H NECON
Container 1 Container 2/ Co'n'f;iiner 3 Container 4
| A
Will be removed Inversed delta

during GC compression

Our approach: LoopDelta

Dual-locality-based Sketch Indexing: low compression ratio

Locality-aware Prefetching: low backup throughput due to extra I/Os for
base chunks on the write path

Cache-aware Filter: low restore performance caused by extra 1/Os for base
chunks on the read path

Inversed Delta Compression: delta compression prohibited by rewriting
techniques

Evaluation: datasets

ME Workload descriptions Key property

200 backups of the redis key-value store Multi-version

o database inheritance
WEB 330 GB 120 days snapshots of the website: S.elf.-referenced
news.sina.com. similar chunks

100 versions of source codes of Chromium
project from v84.0.4110 to v86.0.4215

180 synthetic backups by simulating file Multi-version
create/delete/modify operations inheritance

CHM 284 GB

SYN 335GB

Evaluation: % of detected similar chunks

MeGA (Logical Locality) SIDC (Physical Locality)
B Greedy (Full Indexing) |l LoopDelta
100%
5%
50%
25%
OO
& RDB WEB CHRO SYN
Dataset

LoopDelta (our approach) can detect nearly all potential similar chunks.

Evaluation: similarity of detected chunks

A larger value of DCE indicates higher similarity

__]MeGA (Logical Locality) [N SIDC (Physical Locality) DCE=

Il LoopDelta chunk size before delta compression

0.97 -

B Greedy (Full Indexing)
0.945

Average DCE
©
(o)
B
o

0.930

0.935 |

RDB

0.96 -

0.95F

0.94

size of delta—compressed bytes

k

WEB

On dataset (WEB) containing self-referenced similar chunks, our approach
detects similar chunks with higher similarity than other approaches.

Evaluation: efficiency of Cache-aware Filter

Improvement in restore performance achieved by Cache-aware
Filter when rewriting is applied

RDB 50.6%
WEB 11.7%
CHRO 33.3%

SYN 47.8%

Evaluation: efficiency of Inversed Delta

Compression

The rewriting scheme is
Capping.

The compression gain: 15.3%,
5%, 16.4%, and 5.3%

100%

50%

0%

B Inversed delta compression
I Direct delta compressin

RDB WEB CHRO SYN
Dataset

Evaluation: compression ratio

7 MeGA [SIDC | Greedy
I LoopDelta B LoopDelta-Cap

[
o
1

120

-
©
o
[+
o
T

-
w
6]
©
o
T

N
o

©

o
T

[}

o
T

Compression ratio
N
o
T

IS
[($)]
T
w
S
T

Compression ratio
Compression ratio

o

CHRO

o

o

WEB

w
o
1

LoopDelta achieves a compression ratio
comparable to SIDC and Greedy, and higher than
MeGA on the RDB, CHRO, and SYN datasets,
while achieving the highest compression ratio on
the WEB dataset.

N N
= [
T

Compression ratio
=

o ~
T

Evaluation: restore performance

10

8

Speed factor
N EEN »

o

[]sIDC | Greedy |l LoopDelta [l LoopDelta-Cap

RDB

WEB CHRO
Dataset

LoopDelta > SIDC, Greedy

LoopDelta-Cap > LoopDelta

ol

SYN

Evaluation: backup throughput

[]SIDC Il Greedy [l LoopDelta [l LoopDelta-Cap
180

LoopDelta > SIDC, Greedy

-

w

(&)
I

LoopDelta-Cap > LoopDelta

Backup throughput (MB/s)
& 8

o

RDB WEB CHRO SYN
Dataset

Thank you!

For any inquiries, please email me at
zhangyc hust@126.com

