Tectonic-Shift: A Composite Storage Fabric for Large-Scale ML Training

Mark Zhao, Satadru Pan, Niket Agarwal, Zhaoduo Wen, David Xu, Anand Natarajan, Pavan Kumar, Shiva Shankar P, Ritesh Tijoriwala, Karan Asher, Hao Wu, Aarti Basant, Daniel Ford, Delia David, Nezih Yigitbasi, Pratap Singh, Carole-Jean Wu, and Christos Kozyrakis

Stanford University, Meta

2023 USENIX Annual Technical Conference

Tectonic Filesystem: Meta's storage foundation

ML infrastructure scaling trends

Training larger and more complex models (e.g., LLMs, DLRMs) requires...

Scale-Up Infrastructure

ML infrastructure scaling trends

Training larger and more complex models (e.g., LLMs, DLRMs) requires...

Scale-Out Infrastructure

ML infrastructure needs IOPS scaling

Result: A massive growth in IOPS demand for ML training datasets

How do we scale Tectonic to meet exploding IOPS demands?

M. Zhao, et al., Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training, ISCA'22

Need to provision storage fabric with *both* sufficient **storage** and **IOPS** capacity

Option 1: Scale Tectonic's HDD Chunk Store

Option 2: Place ML datasets in flash

Option 3: Composite storage

Option 3: Composite storage

Option 3: Composite storage

Software design space exploration

Goal: Build a flash tier that **absorbs read IOPS** without storing the entire dataset.

Challenge: While our ML workloads exhibit skewed popularity, *current caches are ineffective at capturing their data reuse*.

Why current caches will not work

- ML jobs present challenging cache patterns
 - Scans: Large O(10-100PB), longrunning single-epoch reads
 - Churn: data reuse *across* massive, asynchronous multi-tenant jobs
- General-purpose LRU caches thrash
- ML caches focus on data reuse within multi-epoch jobs and single-tenant environments

>>> dataset = tf.data.Dataset.range(5)
>>> dataset = dataset.map(lambda x: x**2)
>>> dataset = dataset.cache()
>>> # The first time reading through the data will generate the data using
>>> # `range` and `map`.
>>> list(dataset.as_numpy_iterator())
[0, 1, 4, 9, 16]
>>> # Subsequent iterations read from the cache.
>>> list(dataset.as_numpy_iterator())
[0, 1, 4, 9, 16]

D. G. Murray, et al., tf.data: A Machine Learning Data Processing Framework, VLDB vol. 14

Why current caches will not work

- ML jobs present challenging cache patterns
 - Scans: Large O(10-100PB), longrunning single-epoch reads
 - Churn: data reuse *across* massive, asynchronous multi-tenant jobs
- General-purpose LRU caches thrash
- ML caches focus on data reuse within multi-epoch jobs and single-tenant environments

Need for a flash storage tier designed for industrial ML workloads.

Shift: A transparent, application-aware flash tier

A disaggregated flash storage tier that is...

- Transparent to end users
 - Exposes Tectonic API and semantics used across Meta
- Application-aware
 - Maximizes IOPS absorption using application metadata
- Simple
 - Builds upon Tectonic's Metadata Layer and CacheLib
- Scalable and Fault Tolerant
 - Decentralized, DHT-based architecture

Tectonic-Shift: Meta's ML storage fabric

Each Shift Storage Node implements cache policies on top of CacheLib to maximize absorbed IOPS:

1. Group similar accesses (e.g., table partition) to *buckets*

2. Prioritize buckets based on *historic* and *derived future* accesses

3. Admit buckets based on **threshold** to avoid thrashing and flash burn

Bucket priorities: Predicting the future

Calculate bucket priorities based on...

- Historic accesses
 - Log of recent per-bucket accesses
- Key insight: Future accesses
 - Derived from dataset specifications

```
class DLRMDataset(...):
  def init (self, table, rows, cols):
  def iter (self):
    # return iterator over table rows/cols
. . .
ds = DLRMDataset(
  table t,
  [date d, ...],
  [feature f, ...]
loader = DataLoader(ds, ...) # DPP client
for sample in loader:
  # read sample from storage
  # train model
```

Dynamic priority and threshold tuning

Dynamic priority and threshold tuning

Shift dynamically adjusts admission policies to keep high-priority data in cache, while minimizing thrashing and flash writes.

Putting it all together

Shift admission policies improve IOPS absorption

- Benchmark setup
 - Three production DLRM training workloads
 - 6-node Shift cluster
- Policy evaluation
 - CacheLib LRU, FIFO eviction only
 - Historic admission: bucket priority from recent accesses
 - Future admission: bucket priority from future accesses derived from Dataset
 - Historic & Future admission: bucket priority from max of Historic, Future

Average Normalized IO Absorption Across Benchmarks									
LRU Eviction	FIFO Eviction	Historic Admission + LRU Eviction	Future Admission + LRU Eviction	Historic & Future Admission + LRU Eviction					
1.00	1.31	1.51	3.28	1.67					

Shift admission policies manage flash endurance

- Need to limit flash write rates in production
 - Evaluation: 100 MB/s average write rate limit

Average IO Absorption & NVM Write Rate for Synchronized Workload										
	CacheLib Dynamic Admission	Reject First	Admit All	Historic Admission	Future Admission	Historic & Future Admission				
IO Absorption (norm. to Dynamic)	1.00	1.51	2.66	2.14	3.07	2.99				
NVM Write Rate (norm. to 100 MB/s limit)	0.96	8.39	22.05	1.01	1.01	1.00				

Production deployment

Shift has been deployed across DCs at PB scale since early 2022, saving significant amounts storage infrastructure power.

Conclusion

- Modern ML training clusters require massive storage IOPS.
- *Tectonic-Shift* meets IOPS demand by combining *Tectonic* with *Shift*, an IOPS-efficient flash storage tier.
- Shift maximizes absorbed IOPS (1.5-3.3x over LRU) using intelligent policies leveraging historic and derived future access patterns.
- *Tectonic-Shift* serves as Meta's ML storage fabric, improving storage efficiency (29% in our trace) across multiple datacenters.

myzhao@cs.stanford.edu