
USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 61

PIKACHU: How to Rebalance Load in Optimizing MapReduce On

Heterogeneous Clusters

Rohan Gandhi, Di Xie, Y. Charlie Hu

Purdue University

Abstract

For power, cost, and pricing reasons, datacenters are

evolving towards heterogeneous hardware. However,

MapReduce implementations, which power a representa-

tive class of datacenter applications, were originally de-

signed for homogeneous clusters and performed poorly

on heterogeneous clusters. The natural solution, rebal-

ancing load among the reducers running on heteroge-

neous nodes has been explored in Tarazu, but shown to

be only mildly effective.

In this paper, we revisit the key design challenge in

this important optimization for MapReduce on hetero-

geneous clusters and make three contributions. (1) We

show that Tarazu estimates the target load distribution

too early into MapReduce job execution, which results in

the rebalanced load far from the optimal. (2) We articu-

late the delicate tradeoff between the estimation accuracy

versus wasted work from delayed load adjustment, and

propose a load rebalancing scheme that strikes a balance

between the tradeoff. (3) We implement our design in the

PIKACHU task scheduler, which outperforms Hadoop by

up to 42% and Tarazu by up to 23%.

1 Introduction

For power, cost, and pricing reasons, datacenters have

evolved towards heterogeneous hardware. For example,

different hardware generations exist in Amazon EC2 [1]

due to phased hardware upgrades over the years. Hetero-

geneity also arises due to other factors including special

hardware such as GPUs, unequal creation of instances,

and background load variation [18, 11, 15].

MapReduce, a high-level programming model for

data-intensive applications [10], has been widely adopted

in cloud datacenters such as Google, Yahoo, Microsoft,

and Facebook [7, 8, 17, 9], to power a significant portion

of applications. However, the numerous MapReduce im-

plementations have been designed and optimized for ho-

mogeneous clusters. A recent study [6] has shown that

contemporary MapReduce implementations can perform

extremely poorly on heterogeneous clusters.

The same study characterized how heterogeneous

hardware, i.e., mix of fast and slow nodes, adversely af-

fects the performance of MapReduce frameworks into

two primary effects. (1) Map-side effect: The built-in

load balance of map tasks leads to faster nodes stealing

tasks from slow nodes, which can greatly increase the

network load which in turn can coincide with and slow

down the subsequent network-intensive shuffle phase.

(2) Reduce-side effect: MapReduce implementations as-

sume homogeneous nodes and distribute the keys equally

among reduce tasks. Such distribution leads to disparate

progress on fast and slow nodes in heterogeneous clus-

ters, and contributes to prolonged job completion time.

In [6], the authors proposed Tarazu, a suite of opti-

mizations for heterogeneous clusters. For map-side ef-

fect, it adaptively allows task stealing from slow nodes

and interleaving map tasks with shuffling on fast nodes.

For reduce-side effect, it explores the natural solution,

i.e., rebalancing load between reducers running on fast

and slow nodes. In particular, it estimates the target load

split between fast and slow nodes, i.e., key range parti-

tions, right before the start of the reduce tasks, based on

the relative progress rates of map tasks running on the

fast and slow nodes so far. Evaluation results in [6] how-

ever show the simple load rebalancing scheme is only

mildly effective, and can even degrade job performance

from inaccurate key distribution estimation.

In this paper, we revisit the key design challenge in

this important optimization for MapReduce on heteroge-

neous clusters: load rebalancing among reduce tasks to

even out their completion time. We make three concrete

contributions. First, we show that the relative progress

rates of map tasks on fast and slow nodes often do not

give a good indication of the relative progress rates of

reduce tasks on heterogeneous nodes due to different re-

source requirement, and hence estimating the target re-

ducer load distribution before reduce tasks start can re-

sult in the adjusted load being far from well-balanced.

Second, we explore the design space and articulate the

tradeoff between the estimation accuracy versus wasted

work from delayed load adjustment, and propose a load

rebalancing scheme that strikes a balance between the

two factors. We show an estimator that simply peeks into

the initial relative progress rates of reduce tasks can still

incur estimator error, because reducers on fast and slow

nodes can have different room for increased resource uti-

lization. Our final design captures this additional intri-

cacy using observed reducer CPU utilization on fast and

slow nodes to accurately estimate the target load split.

1

62 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Figure 1: Four stages and their concurrency in MapRe-

duce job execution.

Finally, we implement our new load rebalancing

scheme in the PIKACHU task scheduler, and experi-

mentally show it substantially outperforms Tarazu and

Hadoop, reducing the job completion time by up to 23%

and 42%, respectively, for a diverse set of benchmarks

and cluster configurations.

2 Background

The execution of a MapReduce job is broken down by the

runtime system into many Map tasks and Reduce tasks

(called reducers hereafter) running in parallel on differ-

ent nodes of the cluster. A reducer consists of three types

of subtasks: (1) shuffle, (2) sort, and (3) user-defined re-

duce function. Every node in the cluster has a fixed num-

ber of map and reduce slots, and the scheduler assigns a

task whenever a slot frees up.

Four stages of MapReduce execution in Hadoop. To

help illustrate of the impact of heterogeneous hardware

on MapReduce performance, we divide the execution of

a MapReduce job in Hadoop into four distinct stages in

the time dimension, as shown in Figure 1. (1) Map-

Only: In this stage, only map tasks are running across

the nodes in the cluster; the reducer is yet to begin. (2)

Map-Shuffle: This stage starts when the reduce tasks

start to run (T1 in Figure 1). The start time for reducers

is configurable, but is typically set to be when the first

wave of map tasks is finished, i.e., at least one map task

is finished on all nodes. In this stage, the reduce task

continuously performs staggered shuffle and sort 1 (or

simply shuffle-sort hereafter) to digest the output of each

wave of map tasks. Effective, map tasks and shuffle-sort

are running concurrently on all nodes. (3) Shuffle-Only:

This stage begins when all map tasks are finished (time

T2) but the shuffle-sort phases of the reducers are yet to

be finished. In this stage, only the shuffle and sort tasks

are running concurrently. (4) User-Reducer: This stage

begins when all the data have been shuffled and sorted,

and only the user-defined reducer function executes. Fi-

nally, the job is said to be finished when the user-defined

reducer function is finished on all the nodes.

3 Impact of Heterogeneity

The scheduler of MapReduce implementations, e.g.,

Hadoop, however, does not consider heterogeneity,

1They do not have to be strictly inter-leaved as each sort task can

begin before the corresponding shuffle task is over, when sufficient

amount of data has been shuffled.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Setup-1 Setup-2

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(a) Wordcount

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Setup-1 Setup-2

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(b) Sort

Figure 2: Job completion time breakdown (normalized

to total time) for Wordcount and Sort.

which results in poor application performance on hetero-

geneous clusters. Using testbed measurement, we dissect

the impact of hardware heterogeneity on the four stages

of MapReduce execution.

3.1 Setup
Our heterogeneous cluster consists of 5 Xeon (slow)

nodes and 2 Opteron (fast) nodes, all of which are con-

nected to a 1Gbps switch. Each Opteron node has 8 cores

and 16GB RAM, and each Xeon node has 2 cores and

2GB RAM. We run Hadoop Wordcount (CPU-intensive)

and Sort (IO-intensive) benchmarks and analyze their job

completion time. The total job size consists of 40GB in-

put data, i.e., 680 map tasks each with 64 MB data size.

We use two configurations in our experiments. Both

have 8 and 2 map slots each on fast and slow nodes,

proportional to their numbers of cores, as in Tarazu [6].

They differ in reduce slots per node. Config-1 uses 2

reduce slots on both fast and slow nodes, as in Tarazu,

while Config-2 uses 4 and 1 reduce slots on fast and slow

nodes, i.e., proportional to their numbers of cores.

3.2 Impact of Heterogeneous Nodes
Figure 2 shows the execution time and their breakdown

into the four stages discussed in §2, of the two bench-

marks on the fast and slow nodes, respectively, under the

two configurations. We make the following observations.

(1) Map-Only: We observe the duration of Map-Only

stage is short. For Wordcount, this stage ends when 1

wave of map tasks is over on the slow nodes, and 2 waves

of map tasks are completed on the fast nodes.

(2) Map-Shuffle: The Map-Shuffle stage always fin-

ishes at almost the same time on the fast and slow nodes.

This is due to the inherent load balancing feature of the

task scheduler: whenever a Map slot is freed on a node,

a new map task is scheduled. For example, in Config-1,

each fast node processes far more map tasks (41%) than

slow nodes (3.6%) for Wordcount. This imbalanced map

task processing has two consequences. First, after the

fast nodes finish map tasks on local data first (a locality

feature of the Hadoop scheduler), they will execute re-

mote map tasks (stealing data from the slow nodes). In

Config-1, about 9% of the total map tasks (of the whole

job) executed by a fast node in Wordcount are remote

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 63

map tasks. Such remote map tasks generate extra net-

work traffic from fetching data remotely. Second, since

a fast node performed more map tasks, it will shuffle

much more intermediate data out to other nodes than

slow nodes. In Figure 2(a) Config-1, each fast node in

total shuffles out 7 times more data than each slow node.

(3) Shuffle-Only: Figure 2 shows the duration of the

Shuffle-Only stage can vary significantly on fast and

slow nodes. The gap results from the difference between

shuffle-sort speeds on fast and slow nodes, which results

in different total shuffle-sort durations – the shuffle-only

stage is the leftover shuffle-sort beyond the time all map

tasks are finished. Figure 2(a) shows the stage is 7.4

times shorter on fast nodes than on slow nodes for Word-

count, but completes at about the same on fast and slows

for Sort, under Config-1.

(4) User-Reducer: Since the default scheduler

equally partitions the key range across reducers, each re-

ducer processes equal amount of data in the user-reducer

phase. The execution time, however, can differ among

different nodes due to the difference in their processing

speed. Figure 2(a) shows under Config-1, this stage is

3.51 times slower on slow nodes than on fast nodes for

Wordcount but finishes at about the same time for Sort,

whereas under under Config-2, it finishes at about the

same time for Wordcount, but is 1.26 times slower on

fast nodes than on slow nodes.

(5) Diversity of impact: Overall, Figure 2 shows the

impact of hardware heterogeneity on different stages dif-

fer for different applications under different configura-

tions, suggesting it cannot be easily solved by any static

map/reduce slot configuration.

4 Dynamic Load Rebalancing

We revisit the key design challenge in dynamic load re-

balancing, a potentially effective technique to optimize

MapReduce execution on heterogeneous clusters.

4.1 General Approach
The idea of load rebalancing is straight-forward: faster

reducer gets more data; the task scheduler calculates the

key range partition for fast and slow nodes that results in

the reducers on them finishing at about the same time.

One can potentially derive an analytic model to cap-

ture the effects of all contributing factors to the reducer

completion time on fast and slow nodes [6]. However,

the extensive information needed in such a model are ap-

plication and hardware specific, which requires extensive

profiling and makes it infeasible to use in practice [6].

This motivates the practical approach of dynamic load

rebalancing, i.e., the task scheduler starts with the de-

fault even split policy, estimates the key range partitions

for fast and slow nodes at runtime, and instructs the re-

duce tasks to carry their new workload accordingly.

Dynamic load rebalancing faces two conflicting chal-

lenges. (1) The new load split estimate needs to be accu-

rate, to maximally even out the reducer completion time

on fast and slow nodes. (2) The new load split estimate

needs to be calculated as early as possible, to minimize

the wasted (and hence extra) data movement and process-

ing. In particular, when the assignment of a bin changes

from one reduce task to another, the data associated with

the bin needs to be reshuffled to the newly assigned re-

duce task and re-processed thereafter. Conceptually, the

two challenges are at odds with each other: the longer

the task scheduler waits to estimate the new load split,

the more information it can collect and estimate the split

more accurately, but also the more wasted (and hence

extra) data movement and processing due to the default

even load split before rebalancing takes place.

4.2 Design Space
We define the target ratio of key partition sizes assigned

to each reducer on a fast node to each reducer on a slow

node as the partition ratio — P. The challenge is to cal-

culate P accurately to balance the completion time of the

reducers. We now explore the design space for when and

how the task scheduler should attempt to estimate P.

D1: At start of the Map-Only stage (T0)2. At the begin-

ning of job execution, since no information is available

about the progress rates of map and reduce tasks, P can

only be set to the default value 1. This is the default even-

split policy which is oblivious to cluster heterogeneity. 3

D2: At start of the Map-Shuffle stage (T1). At T1,

since the reduce tasks have not started, P can only be

estimated using the relative progress rates of map tasks

(so far) on fast and slow nodes, i.e., P =
S f a,m

Ssl,m
, where

S f a,m and Ssl,m are the progress rates for map tasks on

fast and slow nodes. This method is used in Tarazu [6].

The main advantage of this method is that, since

shuffle-sort has not started, there is no need to reshuf-

fle any data after the load rebalancing act. However, it

can give a poor estimate of P. Map and reduce tasks

are known to have very different resource requirements,

e.g., a map task is CPU-intensive in the first half and I/O-

intensive in the second half, whereas shuffle-sort has in-

terleaved network-intensive and CPU- and I/O-intensive

phases. As a result, the relative speed of map tasks can be

a poor approximation to the relative speed of shuffle-sort.

Figure 3(b) shows for Sort, the ratio of map task progress

rates at T1 is 1.25 , which would be a poor approximation

to the steady-state ratio of shuffle-sort progress rates 0.7.

D3: during the Map-shuffle stage (between T1 and

T2). Between T1 and T2, P can be estimated as
S f a

Ssl
where

S f a and Ssl denote the actual progress rates of Shuffle-

Sort so far. The ratio, however, may not be a good ap-

2T0 to T4 are marked in Figure 1.
3Although conceptually P can be set to a biased value based on the

prior knowledge about the node heterogeneity, picking a suitable value

is hard as the progress rate varies significantly for different phases and

jobs on the same node.

3

64 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0

 2

 4

 6

 8

 10

 0 250 500 750 1000 1250

P
ro

g
re

s
s
 r

a
ti
o
 (

p
e
r

s
lo

t)

Time (s)

D2 D4
Map

Reduce

(a) Wordcount.

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

P
ro

g
re

s
s
 r

a
ti
o
 (

p
e
r

s
lo

t)

Time (s)

D2 D4

Map
Reduce

(b) Sort.

Figure 3: Ratio of progress rates of map and reduce tasks

on fast and slow nodes.

proximation to the ratio of progress rates of user-reducers

on fast and slow nodes, which perform different opera-

tions from shuffle-sort subtasks.

D3 achieves better estimate of P at the cost of the

penalty associated with adjusting load in the middle of

the Shuffle-Sort stage in two ways: (1) Re-Shuffling: the

reducer on a fast node needs to shuffle in some data al-

ready shuffled to slow nodes; (2) Dropping data: the re-

ducer on a slow node needs to drop some data shuffled in

and sorted under even split.

To strike a balance between accuracy and penalty, the

progress rates and their ratio of reducers on fast and slow

nodes can be measured once they are observed to stabi-

lize, typically after shuffling in one wave of map tasks.

D4: during the Shuffle-Only stage (after T2). Estima-

tion of P can be further delayed till the shuffle-only or

even user-reducer stage has started. At this point, the

relative progress rates of these stages on fast and slow

nodes can be measured accurately; but this design choice

suffers a major disadvantage in terms of reshuffling costs

as slow and fast nodes have fetched substantial amount

of data, ranging from 30-100%. Thus, rebalancing load

at this stage would result in too high data reshuffling

penalty which is likely to erase the gain from rebalancing

the data. We do not consider this option further.

4.3 Design Refinement

We implemented D3 (details in §5, the calculated P=2

from Figure 3(a)) and reran Wordcount. The new execu-

tion time breakdowns, shown in Figure 4, show that the

Shuffle-Only stage still finishes at different time on fast

and slow nodes! To understand the reason, we plot the

(total) map task completion rate and the rate map tasks

are shuffled in by fast nodes and slow nodes for Word-

count in Figure 5. We make two observations. (1) The

fast node is able to match the rate at which map tasks

are completed, which shows that fast node is able to get

enough CPU and network resources to fetch the map out-

puts. (2) The shuffle on slow nodes never catches up with

the total number of map tasks completed, possibly due to

lack of resources, i.e., slow nodes are overloaded.

The CPU utilization shown in Figure 5 further con-

firms this explanation. We see the CPU utilization of the

reducer on slow nodes is stable between 59-66%. Since

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Fast Slow

B
re

a
k
d

o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o

n
ti
m

e
 (

N
o

rm
a

liz
e

d
)

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

Figure 4: Job execution time and breakdown of Word-

count under D3 (P=2).

 0

 40

 80

 120

 160

 0 100 200 300 400 500 600

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Time (Sec)

CPU-Fast CPU-Slow

 0

 60

 120

 180

 0 100 200 300 400 500 600

T
a
s
k
s
 C

o
m

p
le

te
d

Time (Sec)

Map Tasks Shuffle-Fast Shuffle-Slow

Figure 5: Shuffling progress and CPU utilization by each

reducer on fast and slow nodes in D3 (calculated P=2).

the reducer on slow nodes always lags behind the map

tasks completed, we can conclude that 66% is the maxi-

mum CPU a reducer can get on slow nodes. In contrast,

the reducer CPU utilization on fast nodes reaches 120%

(the multi-threaded process uses multiple cores) at the

start of reducers, then gradually decreases and stabilizes

at 55%, at which moment it has caught up with map task

completion. This suggests at the steady state, the reducer

on fast nodes just needs 55% of CPU, but it can get as

much as 120% of CPU if needed.
The above finding suggests D3 needs to be adjusted

to use the potential progress rate of the reducer on fast
nodes, as opposed to the progress rate observed (so far).
The partition ratio P is now calculated as

P =
S f a

Ssl

∗
1

E f a

(1)

where E f a denotes the CPU efficiency (<1) of the re-

ducer on fast nodes, defined as the ratio of the CPU uti-

lization in the steady state (Tw in Figure 6 bottom) to the

CPU utilization when shuffle (on fast nodes) has caught

up with map tasks completed (Ts in Figure 6 top). In

practice, we observe the steady state Tw on fast nodes is

typically reached when 1 wave of map-tasks are com-

pleted after Ts. Note the CPU utilization on slow nodes

is fairly stable. Figure 6 shows the CPU utilization and

shuffle when the partition ratio is adjusted at time Tw us-

ing the refined scheme, denoted by D3’. The calculated

partition ratio was 4.34. It can be seen that the fast node

regains CPU utilization and both slow and fast nodes

shuffle data at the same rate.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 65

 0

 40

 80

 120

 160

 0 100 200 300 400 500 600 700 800

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Time (Sec)

Ts Tw
CPU-Fast CPU-Slow

 0

 60

 120

 180

 240

 300

 0 100 200 300 400 500 600 700 800

T
a
s
k
s
 C

o
m

p
le

te
d

Time (Sec)

Ts Tw
Map Tasks Shuffle-Fast Shuffle-Slow

Figure 6: Shuffling progress and CPU utilization by each

reducer on fast and slow nodes under D3’.

Lastly, D3’ can be easily extended to more than two

types of nodes. We skip the details due to page limit.

5 Implementation

We implemented our new load rebalancing scheme D3’

in Hadoop v0.20.203.0 [4] by adding ≈2KLOC. We

name the new system PIKACHU. Partition ratio P is cal-

culated at JobTracker based on Hadoop progress rates

and CPU efficiency of the reducer processes, which are

reported by TaskTracker on each node every 3 seconds.

We use virtual bins to dynamically change the load be-

tween fast nodes and slow nodes based on partition ratio

P. Each map task output is partitioned into 10 ·N splits,

where N is the total number of reducers. Initially each

reducer is mapped with 10 virtual bins. Once the Job-

Tracker determines the ratio P, it translates the ratio to

the target number of virtual bins for reducers on fast and

slow nodes. Let Ns and Nf be the total number of reducer

slots on all slow nodes and all fast nodes, respectively.

The numbers of virtual bins for a reducer on a slow node

Vs and on a fast node Vf are calculated as

Vs =
10 · (Ns +Nf)

Ns +P ·Nf

,Vf =
10 · (Ns +Nf) ·P

Ns +P ·Nf

(2)

Following this, the JobTracker assigns a new virtual bin

mapping to each reducer. Upon receiving the new map-

ping, the reducers on fast nodes need to fetch the newly

added virtual bins, while the reducers on slow nodes

will drop the existing sorted data corresponding to the

dropped virtual bins.

6 Evaluation

We also implemented Tarazu [6] in Hadoop (version

0.2.203.0). We compare job completion time under

PIKACHU, Tarazu, and Hadoop. We also measure the

overhead incurred in PIKACHU due to re-shuffling and

re-sorting. We use five benchmark applications: Word-

count, Sort, Multi-Wordcount, Inverted-index and Self-

join [6]. Wordcount counts the occurrences of every

word. Sort sorts the given dataset. Multi-Wordcount

 0

 0.5

 1

 1.5

 2

Wordcount Sort Multi-WC Inv-Index SelfJoin

S
p
e
e
d
u
p
 O

v
e
r

H
a
d
o
o
p

0.98

0.95

0.92 0.97

0.98

Hadoop
Tarazu

Pikachu
Optimal

Figure 7: Speedup of of Tarazu and PIKACHU over

Hadoop, under Config-1.

counts all unique sets of 3 consecutive words. Inverted-

index generates words-to-file indexing. Self-join gen-

erates association among k+1 fields given the set of k-

field association. Sort and Selfjoin are shuffle-intensive,

whereas the other 3 applications are compute-intensive.

Performance on Local Cluster. Figure 7 shows the

speedup (in terms of job completion time) achieved by

PIKACHU and Tarazu against Hadoop for 5 different ap-

plications using Config-1. In addition to Hadoop, Tarazu

and PIKACHU, we also measure the job completion time

at the optimal partition ratio found using trial-and-error

method. The numbers above the bars denote the per-

centage of the optimal performance PIKACHU achieves.

For Sort and Selfjoin applications, the initial configura-

tion was close to optimal (the difference between the job

completion time of Hadoop and Optimal was <4%) and

there was little room for improvement. For the remaining

applications, PIKACHU outperforms Hadoop by 33-42%

and Tarazu by 14-22% because of better accuracy in cal-

culating P. Furthermore, PIKACHU achieves 92-98% of

the optimal job completion time, showing there is not

much room to improve over PIKACHU.

Table 1 summarizes the partition ratios calculated by

Tarazu (T), PIKACHU (P) and Optimal (O). The parti-

tion ratio calculated using PIKACHU is closer to Optimal

compared to Tarazu. Table 1 also shows the overhead

incurred by PIKACHU, measured as the extra data shuf-

fled by all the nodes in PIKACHU compared to Hadoop.

We see PIKACHU incurs a low overhead 0.96-4.75% in

re-shuffling and re-sorting.

Figure 8 shows the breakdown of the job completion

time under PIKACHU normalized to the job completion

time under Tarazu for all 5 applications on slow and fast

nodes. It can be seen that in all 5 cases, the difference

between the shuffle-only execution time, and more im-

portantly the difference between the reducer task com-

pletion time, on the nodes are within 10% on PIKACHU

and 31% on Tarazu.

Performance on EC2 Cluster. Finally, we compared

PIKACHU with Tarazu and Hadoop on a 60-node het-

erogeneous cluster in EC2, consisting of 40 m1.small

(slow) and 20 m1.xlarge (fast) nodes. We evaluated

the performance using 3 applications, Wordcount, Sort

and Multi-Wordcount under Config-1 and Config-2 for

5

66 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Table 1: Partitioning ratio P and overhead under Tarazu, PIKACHU, and optimal partition for the five applications.

Observation
Wordcount Sort Multi-Wordcount Inverted-Index Self-join

T P O T P O T P O T P O T P O

Calculated P 2 4.5 4 1.1 0.67 0.9 2.37 3.7 3.5 2.44 3.4 3.3 1 1.1 1.2

Shuffle-Overhead 3.86% 4.13% 4.58% 4.75% 0.96%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Tarazu Pikachu

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(a) Wordcount

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Tarazu Pikachu

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(b) Sort

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Tarazu Pikachu

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(c) Multi-Wordcount

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Tarazu Pikachu

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(d) Inverted Index

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Slow Fast Slow Fast

B
re

a
k
d
o
w

n
 o

f
jo

b
 c

o
m

p
le

ti
o
n

ti
m

e
 (

N
o
rm

a
liz

e
d
)

Tarazu Pikachu

Map-Only
Map-Shuffle
Shuffle-Only

User-Reducer

(e) Selfjoin

Figure 8: Job completion time breakdown on fast and slow nodes (Normalized to Tarazu).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Wordcount Sort Multi-WC

S
p
e
e
d
u
p
 O

v
e
r

H
a
d
o
o
p Tarazu-C1

Pikachu-C1
Tarazu-C2

Pikachu-C2

Figure 9: Speedup of Tarazu and PIKACHU over Hadoop

on the 60-node EC2 cluster on 2 configurations.

180 GB data (2880 map tasks). Figure 9 shows the

speedup achieved by Tarazu and PIKACHU over Hadoop

for the 2 configurations.

In Config-1, Tarazu and PIKACHU outperform Hadoop

by 0-18% and 25-42%, respectively. Config-2 was op-

timal configuration for Hadoop for Wordcount without

much scope for improvement. Tarazu and PIKACHU per-

formance was lower than Hadoop by 6% and 2%. For the

other 2 applications, Tarazu and PIKACHU outperformed

Hadoop by up to 10% and 18%, respectively.

7 Related Work

Many implementations, extensions, and domain specific

libraries of MapReduce have been developed to support

large-scale data processing [3, 4, 14, 2, 16, 5]. None of

them explicitly study optimizing MapReduce execution

on heterogeneous hardware. LATE [18] was one of the

first work to show the shortcomings of MapReduce on

heterogeneous clusters. However, it focused on strag-

gler detection and mitigation. Mantri [8] further explores

the causes of stragglers/outliers. Such designs treat the

symptoms of heterogeneity, i.e., stragglers, as opposed

to the root cause, and speculatively re-execute tasks on

fast nodes, wasting utilization of slow nodes.

Lee et al. also considered heterogeneity in the MapRe-

duce scheduler [13, 12] and proposed a fair sched-

uler [12] for a multi-tenant heterogeneous cluster. This

work is orthogonal to ours as it improves the perfor-

mance of multiple jobs rather than a single job. Finally,

Tarazu [6] has already been discussed previously.

8 Conclusion

We showed that the prior-art MapReduce scheduler for

heterogeneous clusters, Tarazu, poorly balances the load

among reducers on fast and slow nodes. We pro-

posed PIKACHU, which strikes a balance between ac-

curacy and overhead in estimating the load adjustment

and doubles Tarazu’s improvement over Hadoop. We

have released PIKACHU at http://github.com/

mapreduce-pikachu.

Acknowledgment. This work was supported in part by

NSF grant CNS-1065456.

References

[1] Amazon ec2. aws.amazon.com/ec2/.
[2] Apache mahout: Scalable machine learning and data min-

ing. http://mahout.apache.org.
[3] Facebook hive. hadoop.apache.org/hive.
[4] Hadoop. http://lucene.apache.org/hadoop.
[5] X-rime: Hadoop based large scale social network analy-

sis. http://xrime.sourceforge.net/.
[6] F. Ahmad, et al. Tarazu: optimizing mapreduce on het-

erogeneous clusters. In ASPLOS ’12.
[7] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-

ica. Why let resources idle? aggressive cloning of jobs
with dolly. In HotCloud’12.

[8] G. Ananthanarayanan, et al. Reining in the outliers in
map-reduce clusters using mantri. In OSDI’10.

[9] E. Bortnikov, et al. Predicting execution bottlenecks in
map-reduce clusters. In HotCloud’12.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI’04.

[11] B. Farley, et al. More for your money: exploiting perfor-
mance heterogeneity in public clouds. In SoCC ’12.

[12] G. Lee, et al. Heterogeneity-aware resource allocation
and scheduling in the cloud. In HotCloud’11.

[13] G. Lee, et al. Topology-aware resource allocation for
data-intensive workloads. In APSys ’10.

[14] C. Olston, et al. Pig latin: a not-so-foreign language for
data processing. In SIGMOD ’08.

[15] C. Reiss, et al. Heterogeneity and dynamicity of clouds
at scale: Google trace analysis. In SoCC ’12.

[16] Y. Yu, et al. Dryadlinq: a system for general-purpose dis-
tributed data-parallel computing using a high-level lan-
guage. In OSDI’08.

[17] M. Zaharia, et al. Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling.
In EuroSys ’10.

[18] M. Zaharia, et al. Improving mapreduce performance in
heterogeneous environments. In OSDI’08.

6

