
USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 255

When Slower is Faster: On Heterogeneous Multicores for Reliable Systems

Tomas Hruby Herbert Bos Andrew S. Tanenbaum
The Network Institute, VU University Amsterdam

{thruby,herbertb,ast}@few.vu.nl

Abstract

Breaking up the OS in many small components is attrac-
tive from a dependability point of view. If one of the
components crashes or needs an update, we can replace it
on the fly without taking down the system. The question
is how to achieve this without sacrificing performance and
without wasting resources unnecessarily. In this paper,
we show that heterogeneous multicore architectures allow
us to run OS code efficiently by executing each of the
OS components on the most suitable core. Thus, compo-
nents that require high single-thread performance run on
(expensive) high-performance cores, while components
that are less performance critical run on wimpy cores.
Moreover, as current trends suggest that there will be no
shortage of cores, we can give each component its own
dedicated core when performance is of the essence, and
consolidate multiple functions on a single core (saving
power and resources) when performance is less critical
for these components. Using frequency scaling to emu-
late different x86 cores, we evaluate our design on the
most demanding subsystem of our operating system—the
network stack. We show that less is sometimes more and
that we can deliver better throughput with slower and,
likely, less power hungry cores. For instance, we support
network processing at close to 10 Gbps (the maximum
speed of our NIC), while using an average of just 60% of
the core speeds. Moreover, even if we scale all the cores
of the network stack down to as little as 200 MHz, we
still achieve 1.8 Gbps, which may be enough for many
applications.

1 Introduction

More and more hardware vendors are developing hetero-
geneous multicore architectures. Well known examples
include the so-called big.LITTLE [1] ARM, the NVIDIA
Tegra-3 [2], its recently announced successor Tegra 4,
and the x86-compatible Xeon Phi [4]. The big.LITTLE

ARM combines two big Cortex-A15 cores with two little
Cortex-A7 on the same die, and Samsung recently an-
nounced a 4 + 4 version [5]. The Tegra-3 is a Cortex-A9-
based quad-core CPU that includes a fifth ”companion”
Cortex-A9 that is slower (capped at 500MHz) and less
power hungry. For sheer number of cores, the 50+ core
x86-compatible Intel Xeon Phi processor is especially
impressive. It serves as an extension of many little cores
to accompany the host’s big cores and lives on a separate
PCIe card.

In all three cases, the different cores share a large subset
of the instruction set architecture (ISA), so that the same
code can easily run on any of the cores in the system. The
main difference of the cores is their microarchitecture
which is designed for different optimal operation points.
This means that the LITTLE slower, simpler, and in-order
cores (designed for power efficiency at low frequencies)
cannot deliver performance equal to the big ones which
are out-of-order and operate at higher frequencies. The
same is true for the Tegra and Xeon Phi. For instance,
the host x86 processors feature out-of-order cores with a
deep pipeline while the Xeon Phi cores are much simpler,
in-order Pentium cores with shallow pipelines to allow for
efficient 4-way hyper-threading. In addition, they feature
new vector instructions to support scientific workloads.

The research community has advocated such hetero-
geneity for many years [15] to make processing more
efficient, in terms of both performance and power. How-
ever, the focus was primarily on applications, leaving the
operating system by the wayside. This is remarkable, be-
cause the operating system performs a significant amount
of work on behalf of the applications [23, 21].

Moreover, the changes to the system remain mostly
limited to making execution on different cores possible
and to finding the best schedule. Exceptions include the
proposal by Strong et al. [28] to migrate long-running
system calls to system cores—cores more suitable for
running OS workloads. FlexSC[26], meanwhile, aims to
remove the overhead of switching between applications

256 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

and the system by running each on different cores. As a
side effect, the system can run on core(s) that differ from
those that host applications.

The NewtOS operating system described in this paper
is a UNIX-like multiserver system that offers these major
benefits:

High reliability For instance, our operating system sup-
ports dynamic updates without any downtime and
survives crashes of core OS components. We de-
scribed these aspects in [11, 7], and [10], and will
not discuss them further in this paper.

High performance Building on a design described
in [11], we show that we support network processing
at 10 Gbps on COTS hardware (this paper).

The unique features of multiserver systems, composed
of independent user space servers, typically trade reliabil-
ity for performance. With many processes involved, the
communication and context switching to share the proces-
sor constitute a significant overhead. NewtOS [11], a high-
performance derivative of MINIX 3, shows that it is possi-
ble to mitigate this overhead by dedicating cores to system
servers, which communicate through asynchronous chan-
nels. With their own cores, the system servers can run
whenever needed from a warm cache, and without having
to compete with other processes or wait for the kernel
to schedule them. Moreover, the system’s asynchronous
communication channels allow the system servers to work
independently and thus increase the parallelism within
the system and streamline the processing. As a result, we
were able to support TCP-based network processing at up
to 5 Gbps [11]. Since then, we have further improved our
design. We will show in Section 4 that we now support
TCP at close to 10 Gbps—the maximum speed of our
network card.

The cores of common platforms are designed for
generic usage and over-provisioned [20] for running OS
code. Dedicating cores results in a very coarse grained
resource assignment, which leads to inefficient use of
the available hardware. Looking at current trends, we
anticipate more designs in the big.LITTLE fashion, which
will have plenty of smaller, slower, in-order cores with a
higher number of threads, accompanied by big, fast cores
that can efficiently use the instruction level parallelism of
application code. However, the big cores will become a
minority.

In this paper, we explore how such architectures can
help to balance performance and resource consumption.
Specifically, we show that we can run the OS compo-
nents on multiple slower cores, while still achieving high
performance. Alternatively, the system can consolidate
components on a few cores (saving power and resources)
and still achieve reasonable performance.

Our contributions are:
1. We explore the hardware design space by emulating

the future platforms on current hardware using fre-
quency scaling to find out how fast the processors
should be and what type of cores would suit systems
the best.

2. We show that our system can deliver the same or
better performance with smaller, simpler and slower
cores—without compromising reliability. Our case
study shows it is suitable for high-speed networking.

3. The system has a potential to dynamically recon-
figure itself to use the most appropriate resources
and free resources it does not need for a particular
workload.

In the rest of the paper we discuss our motivations and
the background in Section 2. We present details of the
NewtOS design in Section 3. We explore the design space
and evaluate various setups of our system in Section 4
and we put it in perspective of related work in Section 5.
Finally, we conclude in Section 6.

2 Big cores, little cores and combinations

Heterogeneous processor architectures are rapidly becom-
ing popular. In this section, we focus on Intel products
and sketch some of the properties of the architectures and
analyze some trends in this field.

2.1 BOCs and SICs
We start our discussion with a comparison of fast cores
and slow cores. Specifically, the first two columns of
Table 1 compares the Intel Core i7 “Bloomfield” with the
Knights Ferry processor. The Core i7 is a prime example
of a big out-of-order core (BOC) with a design that is
geared for high single threaded throughput and produced
by 45nm technology. In contrast, the cores on the Knights
Ferry (45nm) are much simpler in-order cores (SICs) that
provide only a fraction of the i7’s performance.

Given the estimated die size of the Knights Ferry, the
table shows the space reduction of the simple cores com-
pared to the big i7 cores. Compared to the i7, the Knights
Ferry die hosts 8× the number of cores and 16× the num-
ber of threads. It is worth noting that the difference in
die size per core is 3× (and 6× per thread). While the
cache size per core is obviously smaller, threaded cores
can compensate for this [22]. Finally, the difference in
the peak clock speed is equally remarkable.

The last column of Table 1 shows data for the successor
of Knights Ferry, a recently released product called Xeon
Phi. Its core count is even larger, but its die size is not
public. Intel markets it as a “50+ core beast” and released
up to 62 cores on a single die. With each core hosting

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 257

Core i7 Bloomfield (45nm) Knights Ferry (45nm) Xeon Phi (22nm)

Die size 263mm2 est. 700mm2 not released

Cores / threads 4 / 8 32 / 128 50+ / 200+

Die area per core / thread 65.7/32.9mm2 21/5.5mm2 not released

Clock speed max 3.33 GHz 1.2 GHz 1 GHz

LL cache size 8 MB 8 MB 25+ MB

out-of-order in-order in-order

Table 1: Comparison of Core i7, Knights Ferry and Xeon Phi

Transistor count Die size

4-core i7 + GPU 1.4 bil. 160mm2

62-core Xeon Phi 5 bil. not released

(a) Transistor count

i7 cores # i7 threads # Phi cores # Phi threads

4 8 44 176
8 16 27 108
12 24 10 40

(b) Core i7 and Xeon Phi configurations

Table 2: Given the known transistor counts shown in (a)
and a 22nm production process, we can roughly project
the options for different configurations that merge Core i7
and Xeon Phi cores (b)

4 threads of execution, this amounts to 200+ threads on
a single chip. Interestingly, Xeon Phi is still a cache
coherent design, unlike one of its research predecessors—
the single chip cloud (SCC).

2.2 Configurations of BOCs and SICs
It is likely that future designs will see interesting new
combinations of BOCs and SICs. For instance, rather
than keep it as a separate co-processor, Intel may well
merge its Xeon Phi with other Intel cores on a single
die [17], in the same way that GPUs and general purpose
cores have merged on a single die. What sort of proces-
sor should we expect? Clearly, there are many options.
In this section, we explore possible combinations in an
approximate manner.

Table 2 shows different combinations of Core i7 “Sandy
Bridge” and Xeon Phi cores, taking into account the num-
ber of transistors for a quad-core Core i7 in 22nm tech-
nology as well as the number of transistors of a 62-core
Xeon Phi produced by the same technology. The Core i7
die may also contain an integrated GPU. Given these tran-

sistor counts, Table 2b shows different configurations that
would fit on a die with mixed cores. The simple division
also accounts for each core’s cache share as caches take
up a big portion of the die size. Each line represents a con-
figuration with the 5 billion transistor budget of Xeon Phi
die where some of the 62 cores are replaced by i7 cores.

Finally, for the sake of completeness, Table 2b also
shows the resulting number of threads. The number of
threads matters, because we will see that for OS function-
ality it is often not needed to dedicate a full core to each
component. Instead, a simple container for a process’
context is good enough, as long as we can let the hard-
ware do the context switching (and not the software) and
we can suspend and resume efficiently with instructions
like MWAIT and MONITOR. A hardware thread is well-
suited to serve as a container. It has a set of replicated
registers and, depending on the architectures, hardware
switches the threads automatically when the active one
stalls or it tries to schedule a different thread every cycle.

As consolidating multiple components on a single core
saves resources, more threads are attractive. Moreover,
many platforms today still do not offer enough cores for us
to be able to dedicate one to each component—although
the number of cores per die is growing steadily. By using
threads instead, we can implement our design even on
today’s platforms.

For instance, NewtOS has about 30 system processes in
its default installation out of which about 10 are important
for performance. These include the process manager, the
memory manager, the storage stack, the network stack,
the file systems, the disk and the network drivers. The
calculation in Table 2b shows that even with twelve i7
cores, there would be enough threads to dedicate one
to each of our system’s processes. Note that based on
previous research [20, 18], the Xeon Phi cores are most
likely a better match for the system processes than the i7
cores. The platform would therefore still offer plenty of
big cores for applications, while the small multithreaded
cores would optimize the resources for the system.

An alternative to chips preconfigured with a fixed num-

3

258 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

SC

TCP

UDP

IP

PF
DRV

DRV

DRV

Proc

Proc

Proc

Synchronous
Asynchronous

Synchronous IPC
Asynchronous Channels

Figure 1: Design of the NewtOS network stack

ber of BOCs and SICs, are architectures that can merge
smaller cores into bigger ones [12]. Another example
is MorphCore [13], an architecture which can switch a
core type between a i7-like BOC and a heavily threaded
Phi-like SIC in run time.

3 NewtOS

The crux of this paper is the following: while evaluating
the performance of the stack, we realized that it actually
delivered higher throughput when we scaled the frequency
of some cores down. In addition, we found that the per-
formance of fairly slow cores is good enough for many
use cases. We present an OS that explicitly exploits these
properties.

Specifically, NewtOS is a high-performance clone of
MINIX 3 that provides the same reliability with much re-
duced overhead. For instance, we completely redesigned
the network stack based on new communication principles
that allow different components to execute independent
request simultaneously. This distinguishes NewtOS from
other multiserver operating systems and increases the net-
work throughput from hundreds of megabits per second
to gigabits.

3.1 The NewtOS network stack
The heart of the NewtOS network stack is LwIP [8], a
simple and portable network stack for embedded systems
used by many research projects. Note that this stack is
not designed for high performance but rather for its small
memory footprint. As a result, its performance is not
directly comparable to highly tuned stacks of commodity
systems. Nevertheless, we support network processing at
10 Gbps even though we use slow cores.

One of the main design goals of NewtOS is reliability.
Thus, we allow even core components of the operating sys-
tems to be replaced on the fly, without taking the system
down (and often with no noticeable disruption at all) [9].
For instance, we can replace our implementation of IP or
the network driver while keeping all existing network con-
nections. Similarly, if one of its components crashes, the

OS recovers automatically and often transparently [11].
To make this possible, we split the stack into several

components (TCP, UDP, IP, drivers and packet filters) to
reduce the chance that an error in the stack may lead to a
crash of the entire stack. Likewise, we isolated functions
that are easy to restart from those which are not due
to large dynamic state. Besides IP, TCP, and UDP, the
network stack supports an optional BSD packet filter (PF).
The syscall server is the component that provides a POSIX
interface to user processes. Figure 1 shows individual
parts of the stack.

All shaded components in Figure 1 are fully asyn-
chronous, while the syscall server translates synchronous
system calls from user processes to asynchronous mes-
sages within the stack. The syscall server is the only
process of the stack which frequently uses traditional
rendez-vous based communication provided by the kernel.
All other components communicate using point-to-point
channels, which are shared user space memory queues ac-
companied by fast signaling. This mechanism is located
almost purely in user space to take the kernel out of the
loop (removing all overhead due to context switches, and
pollution of TLBs, caches, and branch predictors).

We take advantage of the x86-specific MWAIT instruc-
tion to suspend execution of cores. Thus, we need not
send high-overhead interprocessor interrupts, but wake
up a waiting core by a mere memory write. Unfortunately,
MWAIT is a privileged instruction in Intel chips1. If it
were not, there would be no need for the kernel for normal
mode of operation. We see it as a hardware deficiency.

Our most efficient communication model runs each
component on its own dedicated core, so scheduling is
not needed and the component can run at anytime out of a
warm cache. However, we also allow components to share
a core with other processes. In such a case, the scheduler
informs the components and they transparently fallback to
notifications, a standard method provided by microkernels.
It delivers special void messages in a similar way to how
devices send interrupts to the processor.

It is useful to emphasize that the key performance prob-
lems that plagued multiserver systems in the past have
been the high overheads due to context switching and
scheduling. While the research community heavily opti-
mized the interprocess communication on microkernels
like L4 [19] to achieve much better performance, neither
of these bottlenecks could ever be eliminated on a unipro-
cessor. However, dedicating a core to each component
fixes both. Further details of the design of the network
stack and the fast communication are discussed in [11].

3.2 Dynamic reconfiguration

In contrast to monolithic systems, NewtOS resembles a
distributed system. Such systems can embrace diversity

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 259

and accommodate to a changing environment. This is also
true for NewtOS. Each system component can run on a
dedicated core or share it with other process and the core
can be either big or little. Although we dedicate cores
for peak performance, we can consolidate processes on a
single core or even a thread if they are not used heavily.

For instance, most of today’s traffic uses the TCP pro-
tocol, and dedicating a core to the UDP component is
probably overkill. On the other hand, when UDP is used
heavily (e.g., for video streaming), NewtOS can migrate
UDP to its own core. Similarly, the network stack is not
used at all times in many deployments, or at least not at
its peak throughput. Thus, we can pin all its components
to a single dedicated core, or even have it share a core
with other processes most of the time. When the workload
changes and the system detects an overload of some cores,
it can redistribute itself to find the best configuration.

We argue that in many cases SICs are best for the
operating system, while BOCs are better suited for appli-
cations. However, this is not true always and depends on
the situation. For instance, for a web server-like workload,
running the server processes on threaded SICs probably
delivers higher throughput than using a small number of
threads on BOCs.

Even if it allows the stack to run at high speeds, dedicat-
ing the BOCs to the network stack is probably not a good
idea and the resources can be used more efficiently, unless
we run, for example, a complicated intrusion detection
algorithm in the packet filter. Likewise, it seems unwise
to sacrifice the BOCs to the storage stack. Storage needs
to do many unpredictable lookups with little instruction
level parallelism while briskly delivering data to the ap-
plications and writing them back to a disk. It is likely that
we can do so on slower cores, saving the BOCs for the
applications. Phrased differently, the components of the
system should get the resources they need and no more.

Besides good performance, power consumption is also
important. Here also, we should provision a system for
its peak performance, while using no more resources than
needed during quieter times. The system on a heteroge-
neous platform can find its sweet spot using only a handful
of cores. On platforms with fine-grained power gating,
the system can turn off the unused cores and thus save
power. Likewise, picking the right type of cores is crucial
to balance the performance per Watt ratio. As we show in
the evaluation in Section 4, slower cores frequently result
in only small drop in performance whereas the potential
for power savings is significant.

We do not consider the scheduling in this paper. As
there is a lot of work on scheduling in such environments
(discussed in Section 5), we are solely interested in the
performance and efficiency of different configurations
and designing the scheduler for NewtOS is future work.

3.3 Non-overlapping ISA

At this moment, we limit ourselves to heterogeneous ar-
chitectures with an overlapping ISA [15]. In this section,
we argue that by virtue of its design our system has the
potential to embrace architectures with different ISAs too.
We do not currently have a machine with non-overlapping
ISAs on the same processor to evaluate our solution, but
we briefly sketch how we can use existing features to
support such platforms.

Specifically, we can use NewtOS’ live update func-
tionality to change the version of a component to run
on a different architecture. We originally developed live
update to allow us to fix buggy components with new,
patched versions without the need of shutting the system
down. Doing so greatly reduces maintenance of the sys-
tem, disruption of its operation, and the time between
diagnosing a bug and application of the fix. However, we
can also replace a component with the same component
compiled for a different ISA.

The update is fairly straightforward since both versions
are based on the same code. Mere recompilation with
different compiler settings produces the desired version.
Moreover, the transition from one ISA type to another is
simple because it is done only when the state is stable and
the memory layout of data structures on both architectures
is likely the same. Finally, we initiate the transition only
at the top of the component’s main loop, so that we can
mostly forget about different layouts of the stack. In
case of a discrepancy between the memory layout for
each of the ISA versions, we provide an automatically
generated transition function [10]. In practice, changing a
component to a new architecture is simpler than updating
a component to a new version. In contrast to a proper
update, both versions for the different ISAs use identical
data structures which may differ by offsets and alignment,
but not by different items in structures. The system may
provide a version for different ISAs when installed or use
just-in-time compilation to generate one when need. If
migration between ISAs is frequent, the system can cache
a version for each to speed up the migration.

We can use the same mechanism as an optimization
for overlapping ISAs too. Some cores may have a feature
which allows the system code to run faster. For instance,
file systems can take advantage of checksum instructions
to verify data read from a disk or advanced instructions
to encrypt the data. In such cases, the system compo-
nent does not rely on the extra instructions for its correct
operation, but can benefit from them if available.

4 Evaluation on a high-performance stack

We now evaluate the network stack of NewtOS on a dual
socket quad-core Intel Xeon E5520 with hyper-threading.

5

260 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

The peak clock speed of the chips is 2267 MHz and it
is possible to scale it down to 1600 MHz in steps of
133 MHz. According to ACPI, power consumption of
each chip at its maximal frequency may be as much as
80W and at the lowest frequency 34W. Unfortunately, it
is not possible to scale frequencies of the cores indepen-
dently and all cores of each chip run at the same speed.

However, modern Intel processors like the E5520 can
still scale each core independently using thermal throt-
tling2 to allow further scaling in steps of 12.5% of the
clock speed. Thermal throttling means that by setting
the chip to 1600 MHz, it is possible to scale down to
200 MHz in the same-sized steps. Although the core still
runs at the base frequency (1600 MHz), some cycles are
”thrown away” and the execution slows down proportion-
ally. We can do this for each core individually, however
both threads on the same core are throttled equally. Thus,
the Xeon E5520 allows us to explore both threading, and
high/low frequency trade-offs. While we cannot compare
in-order versus out-of-order microarchitectures, we be-
lieve that a 200 MHz core is slow enough to match the
performance of wimpy cores.

To remove bandwidth limitations, and to show that a
multiserver system can scale to multigigabit range, we
implemented a driver for the i82599 10G Intel network
chip. The driver is fairly simplistic but has standard of-
floading features for the outgoing traffic. We connect our
machine to a Linux 3.7.1 system running on a 12-core
AMD Opteron 6168 at 1.9 GHz.

Our test case is the same as in [11] which we used to
stress the system when demonstrating its reliability. We
run an iperf server on the Linux machine and connect
from NewtOS. Iperf is a standard tool for measuring
and tuning network performance. The clients send data as
fast as possible, trying to saturate the network hardware,
the buses, the memory, or the CPU. We verified that the
Linux machine is able to receive at 10G by connecting
from Linux running on the same machine as we use to
run NewtOS. We use multiple streams to get the best per-
formance. LwIP does not support TCP window scaling,
and is therefore not able to have enough data in transition
to saturate the 10G link on a single stream.

4.1 Test configurations

We experimentally evaluated several configurations of the
network stack to determine the most demanding compo-
nents of the stack. Not surprisingly, TCP ranked highly.
Based on these experiments, in performance-critical sce-
narios, the OS must choose between the two basic setups
shown in Figure 2. We will evaluate them across a range
of clock settings.

In both cases we place all processes of the core system
(OS) on the first CPU and the network stack components

OS
&

SYSCALL

TCP
IP

IXGBE

client ...
&

client ...

client ...
&

client ...

client ...
&

client ...

client ...
&

client ...

(a) Configuration #1 - dedicated cores

OS
&

SYSCALL

TCP

IP
&

IXGBE

client ...
&

client ...

client ...
&

client ...

client ...
&

client ...

client ...
&

client ...

client ...
&

client ...

(b) Configuration #2 - hyper-threading

Figure 2: Test configurations - large squares represent the
quad-core chips, small squares individual cores and ‘&’
separates processes running on different hyper-treads.

involved in processing TCP traffic on the remaining 3
cores of the same chip. These components are TCP, IP
and the 10G ethernet driver (IXGBE). Communication
between components on different chips is slower as they
do not share cache.

The syscall server shares its core with the rest of the
system (OS), but runs in a different thread (denoted by
the ‘&’ symbol). It extensively uses kernel communi-
cation, but uses the CPU lightly. Nevertheless, it needs
its own thread to use the fast signaling when translating
synchronous messages from the clients to the TCP com-
ponent and back. Otherwise, TCP would need to use
notifications for correct operation when replying to the
syscall server, resulting in a serious performance hit.

In both configurations, TCP has its own dedicated core,
the spare hyper-thread is idle. The two configurations dif-
fer in only one thing. The first configuration (Figure 2a)
also dedicates a full core to IP and the driver while the re-
spective other threads are idle. The second configuration
(Figure 2b) places both IP and the driver on the same core,
but runs them in different threads. The rationale behind
this choice is that TCP is the most demanding component
while IP and the driver have similar CPU utilization as
we demonstrate in the remainder of this section. We de-
note the second configuration with HT for employment
of hyper-threading.

The test clients run on the remaining cores and threads.
In other words, in configuration #1 (Sections 4.3 and 4.4),
they all run on the other quad-core chip, while in configu-
ration #2 (Section 4.5), they also run on one of the cores
of the first chip. The scheduler distributes them equally.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 261

MHz drop Mbps drop TDP(W) drop

2267 – 8641 – 80 –

1867 18% 8152 6% 48 40%

1600 30% 7840 9% 34 57%

Table 3: Performance loss versus potentially saved power

4.2 Methodology of measurements

Throughout our experiments, we measure two basic val-
ues: (1) CPU utilization for each component, and (2) bi-
trate. We use time stamp counters to time the events. Intel
guarantees that they are synchronized across all cores
and tick at a constant rate regardless of frequency scaling.
Each component has its log for events which we process
after a test run finishes.

To measure the CPU utilization, we mark an event right
before the kernel call which suspends the core and right
after the call returns. In fact, this measures time actively
spent in each component, so the actual CPU utilization is
higher. Measuring the time this way is closer to using a
single long latency instruction instead of a kernel call.

4.3 Frequency scaling 2267–1600 MHz

The first experiment is to explore how configuration #1
behaves when we change the frequency of the chip. We
present the measurements in Table 3. The first line rep-
resents the baseline: all the cores run at the peak clock
speed and the chip draws maximum power. As expected,
we see that the bitrate drops when the clock speed goes
down. As the drop is fairly small, we show only one
intermediate value. The last line stands for the lowest
frequency and power consumption.

Observe that scaling the cores down to the lowest fre-
quency can save up to 57% of power, but the drop in
throughput is not nearly as significant, a mere 9%. There
are many cases in which 7.8 Gbps is more than enough
while the opportunity to save 46 Watts is important. Also
note that at maximum power the throughput is 8.6 Gbps.
Later in this section we show that it is possible to throttle
the cores even more and deliver better throughput than at
the peak clock speed.

The CPU utilization measurements show that running
the stack on high frequencies is probably suboptimal.
The TCP component uses the core at approximately 70%
while IP and the driver use their cores below 40%. The
components spend much of their time polling the com-
munication channels. If there is no work to do, they poll
for a little while longer and eventually call the kernel to
block them on MWAIT.

T
C

P
 t
h
ro

u
g
h
p
u
t
(G

b
p
s
)

%
 o

f
p
e
a
k
 p

e
rf

o
rm

a
n
c
e
 o

f
a
ll

c
o
re

s
n
o
rm

a
liz

e
d
 t
o
 a

ll
a
t
1
6
0
0
M

H
z

TCP core throttled clock speed (MHz)

TCP
IP

IXGBE
throughput
resources

 0

 2

 4

 6

 8

 10

200 400 600 800 1000 1200 1400 1600
 0

 20

 40

 60

 80

 100

Figure 3: Throughput compared to the combined perfor-
mance of the resources in use — the best combinations

4.4 Throttling below 1600 MHz
To demonstrate how our system behaves on much slower
cores we use thermal throttling to artificially slow the
cores down. We start our measurements by scaling all
3 cores to the minimum. Since TCP is the component
which uses its core the most, we scale it up by one step
for each new measurement and we try to match it with the
best setting for the other 2 cores. Our experience is that
if we increase the speed of the TCP core and the bitrate
does not improve proportionally, we must speed up the
other cores by one step too. Adding more does not help
and may even lead to throughput degradation. We present
our results for the best configurations in Figure 3, which
compares the bitrate (the thin line) and the performance
of the cores we need (the bars). In this case, 100% is the
combined performance of all 3 cores running unthrottled
at 1600 MHz. The thick line connects tops of the bars
to highlight how the throughput scales with the added
resources.

The important observations in Figure 3 are :

• Scaling the 3 cores to 12.5% of their total perfor-
mance (200 MHz) delivers 1.8 Gbps which is enough
for many applications like video streaming, web
browsing or online gaming.

• The stack achieves approximately the same or higher
throughput (7.9 Gbps) at 50% of resource utilization
(bar 1200 MHz) than when all cores run unthrottled
(7.8 Gbps as we reported in Table 3).

• Using TCP core clocked at 1600 MHz and the other
two at 600 MHz is just 60% of performance of all of
them running at 1600 MHz and only 40% of all run-
ning at 2267 MHz. This “low-power” configuration
exceeds the performance of all cores at 1600 MHz
as well as at 2267 MHz.

We emphasize that results are average bitrates of each
test run. The average throughput at 60% of the combined

7

262 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

T
C

P
 t

h
ro

u
g

h
p

u
t

(G
b

p
s
)

U
ti
liz

a
ti
o

n
 o

f
e

a
c
h

 c
o

re
a

t
it
s
 f

re
q

/t
h

ro
tt

le

TCP | IP | IXGBE core throttled clock speed (MHz)

TCP
IP

IXGBE
throughput

 0

 2

 4

 6

 8

 10

200 | 200 | 200 400 | 200 | 200 600 | 200 | 200 800 | 400 | 400 1000 | 400 | 400 1200 | 600 | 600 1400 | 600 | 600 1600 | 600 | 600
 0

 20

 40

 60

 80

 100

Figure 4: Configuration #1 – CPU utilization of each core throttled to % of 1600 MHz.

T
C

P
 t

h
ro

u
g

h
p

u
t

(G
b

p
s
)

U
ti
liz

a
ti
o

n
 o

f
e

a
c
h

 c
o

re
 n

o
rm

a
liz

e
d

to
 u

n
th

ro
tt

le
d

 c
o

re
s

TCP | IP | IXGBE core throttled clock speed (MHz)

TCP
IP

IXGBE
throughput

 0

 2

 4

 6

 8

 10

200 | 200 | 200 400 | 200 | 200 600 | 200 | 200 800 | 400 | 400 1000 | 400 | 400 1200 | 600 | 600 1400 | 600 | 600 1600 | 600 | 600
 0

 20

 40

 60

 80

 100

Figure 5: Configuration #1 – CPU utilization normalized to cores at 1600 MHz unthrottled.

resources (the rightmost result in Figure 3) reaches up
to 9.1 Gbps with peaks approximating 10 Gbps. Slower
sometimes really is faster!

Figure 4 presents CPU utilization of each core. The
utilization is with respect to each core’s throttling and
each set of bars stands for one configuration. The sets
form three clusters determined by the speed of the slower
cores. The three sets in the first cluster show how the
utilization of the IP and driver cores increases as the
higher frequency permits TCP to process more data. In
the third set the utilization of the slower cores approaches
100% and exceeds utilization of the TCP core. Therefore
we must match speeding up TCP by speeding up the
others too, if the current throughput is not enough. The
same pattern repeats in each of the clusters.

Although the relative utilization of the TCP core drops
slightly, Figure 5 clearly shows that the CPU time ob-
tained by TCP directly determines the final throughput.
Figure 5 presents the same data as Figure 4, but normal-
ized to a core running unthrottled. The important obser-
vation is that the utilization of the other two cores does
not grow equally fast. The main reason is that unlike TCP,
IP and the driver do not touch the TCP payload. TCP
must copy all the data from the client applications to the
address space of the stack. It is a lengthy operation which
thrashes caches and makes the core stall while the time is
reported as used. The copy overhead can be significant,
between 60 and 70%.

Interestingly, the faster the core, the higher the over-
head. The explanation is that the difference between
CPU speed and memory speed grows leading to more
stalls. Without the copy overhead, CPU utilization would
be comparable to the other two components. For com-
pleteness, we mention that some of this overhead can
be reduced by letting the network devices transfer data
directly from and to the user space buffers.

We did not measure throttling for higher clock speeds
than 1600 MHz, because the results show that increasing
the speed does not yield significant benefits, and because
we want to make the point that lower clock speeds are
good enough for even the most demanding OS compo-
nents. Although we can only guess how much energy
would our emulated low power cores use, for example,
Intel reports that the thermal design power is less or equal
to 3.5W for its Atom N2600 processors at 1.6GHz.

4.5 Hyper-threading

The same set of experiments for configuration #2 evalu-
ates the effect of threaded cores. Threads are not equal to
full cores as they share the same pipeline. Their advan-
tage is that they allow the core to use cycles which would
be otherwise wasted when the pipeline stalls due to slow
memory. If the code running on one of the threads has a
high cache hit rate and good branch prediction, execution
of additional threads has diminishing returns. However,
we do not expect system code to behave optimally. Mes-

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 263

T
C

P
 t

h
ro

u
g

h
p

u
t

(G
b

p
s
)

U
ti
liz

a
ti
o

n
 (

%
)

o
f

e
a

c
h

 c
o

re
a

t
it
s
 f

re
q

/t
h

ro
tt

le

TCP core throttle (%) | IP & IXGBE core throttled clock speed (MHz)

TCP
IP

IXGBE
throughput

 0

 2

 4

 6

 8

 10

200 | 200 400 | 400 600 | 400 800 | 600 1000 | 800 1200 | 800 1400 | 800 1600 | 1000
 0

 20

 40

 60

 80

 100

Figure 6: Configuration #2 (HT) – CPU utilization of each core throttled to % of 1600 MHz.

T
C

P
 t

h
ro

u
g

h
p

u
t

(G
b

p
s
)

U
ti
liz

a
ti
o

n
 (

%
)

o
f

e
a

c
h

 c
o

re
a

t
it
s
 f

re
q

/t
h

ro
tt

le

TCP | IP & IXGBE core throttled clock speed (MHz)

TCP
IP + IXGBE
throughput

 0

 2

 4

 6

 8

 10

200 | 200 400 | 400 600 | 400 800 | 600 1000 | 800 1200 | 800 1400 | 800 1600 | 1000
 0

 20

 40

 60

 80

 100

Figure 7: Configuration #2 (HT) – CPU utilization of each core normalized to 1600 MHz.

T
C

P
 t
h
ro

u
g
h
p
u
t
(G

b
p
s
)

N
o
rm

a
liz

e
d
 C

P
U

 u
s
a
g
e
 (

%
)

TCP core throttled clock speed (MHz)

HT
no HT

HT
no HT

 0

 2

 4

 6

 8

 10

200 400 600 800 1000 1200 1400 1600
 0

 20

 40

 60

 80

 100

Figure 8: Comparison of configuration #1 (no HT) and
#2 (HT). Lines represent bitrate, bars represent CPU uti-
lization normalized to 3 cores at 1600 MHz

sages created on different cores are not in the remote
cache until read for the first time and the CPU can hardly
guess which execution path the code takes in the next loop.
Therefore system code should benefit from threading.

Based on the previous measurements of configura-
tion #1 and the fact that a thread is not a full-blown core,
we expected that the core which hosts IP and the driver
should run at least at double the speed of a core hosting
either IP or the driver to deliver the same throughput. Fig-
ure 6 shows that the actual clock speed we require is some-
times equal to, but mostly less than what we expected.
Figure 7 shows the normalized values. The crosshatched
bar represents the utilization of IP and the driver running

on the same core. Since each component also accounts
the time when their threads are not active the utilization
of a single core could exceed 100%. Therefore, the bar
represents mean value of both threads.

The main reason why we could run at lower clock
speeds than we originally expected, is that running more
threads on the same core, uses the cycles of the core more
efficiently and reduces the amount of sleep time. Since the
execution of both processes is interleaved, there is a higher
probability that while a processes’ thread is inactive, the
other processes of the stack create some new jobs. Thus,
when the thread activates again, instead of finding the
work queues empty, the process can carry on. The benefits
of sharing a core between IP and the driver is the easiest to
observe when comparing the experiments with the slowest
cores. Although using two cores at 200 MHz is just 66%
of the resources of 3 dedicated cores at the same speed,
the throughput is 77% or 1.4 Gbps.

Figure 8 compares the performance of configurations
#1 and #2. As long as the variance in the bitrate is low,
using the threaded core outperforms configuration #1 with
an extra core. The bars present the combined CPU uti-
lization of both configurations normalized to all 3 cores
running unthrottled at 1600 MHz. In all cases the nor-
malized utilization is lower for configuration #2 while the
performance is higher when TCP core runs at or below
1000 MHz. As the transmission of data gets more bursty,
the ability to use more cycles per time unit on the dedi-
cated cores to get the work done quicker, outweighs the

9

264 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Immediate return
from kernel

kernel
userspace

(a) Job arrives between deciding to sleep and halting the core

MWAIT
blocks

MWAIT
unblocks

kernel
userspace

(b) Job arrives when execution is suspended on MWAIT

MWAIT
blocks

Execution resumes
after MWAIT

IRQ

Reenable IRQ line

kernel
userspace

IRQ handler

(c) Driver - an IRQ arrives when execution is suspended

Figure 9: Sleep overhead in different situations. The thick
line represents transition between execution in user space
and kernel in time. Arrows mark job arrivals, loops denote
execution of the main loop and spirals denote polling.

benefits of threading. Higher bitrate leads then to higher
CPU utilization.

4.6 Why is slower faster?

When a job queue is empty, we can either keep on polling
which is fine only when jobs arrive frequently. Otherwise
the cores use energy while not doing any useful work.
The common (and probably right) thing to do is to put the
cores to sleep when there is no work to do. Idly waiting
for new jobs to arrive is costly when we sleep at the wrong
moments, because we reduce the time we could have used
for processing until the overhead due to sleeping becomes
so high that we observe the “slower is faster” effect.

As we cannot predict the future, we may put a core to
sleep just before a new job arrives (Figure 9a). As we still
use a kernel call for sleeping, the call introduces some
latency, even though the execution does not block and
returns to user space immediately. The way back through
the kernel is not free. It is even more expensive when
a job arrives just after suspending the core (Figure 9b)
as MWAIT has a relatively long latency, in the order
of microseconds. Nevertheless, blocking on MWAIT is
much faster than using traditional kernel IPC. Especially,
since such IPC would slow down the sending core too.

The worst case is when an interrupt wakes up a driver
core. The interrupt handling routine adds up to the
MWAIT latency. In addition, the interrupt line should
stay disabled until the driver masks the interrupt in the

Clock speed (MHz) Bitrate (Gbps)

2267 4.3

1600 3.4

200 0.4

Table 4: Bitrate vs. CPU clock speed on a single core

device. At that point, it has to reenable the interrupt line,
which incurs another trip to the kernel (Figure 9c). Thus,
drivers are the most sensitive to frequent sleeping. The
solution may be to run the driver in the privileged mode
of a virtual machine.

Polling harder eliminates some of the “slower is faster“
effect. However, designing a polling algorithm which
adapts to unpredictable conditions is complicated. The
ideal solution is to use an efficient sleep instruction in
user space. On the other hand, sleeping will always have
some latency. The take-away message is the following:
to avoid the expensive idle time, the scheduler should
pick the cores and hyper-threads on which it places the
components carefully and scale them so that they are
always highly used—with little opportunity to sleep.

4.7 Stack on a single core
In case of shortage of cores due to high demand from
applications, or when cores are turned off to save power,
the entire network stack of NewtOS can keep operating
on a single core. Table 4 presents measurements of the
stack’s performance as a function of the core speed. The
stack has a throughput of up to 4.3 Gbps on a big fast core
and 400 Mbps on a 200 MHz wimpy core. The through-
put of the slow core is good enough for many common
activities, but the fast core cannot scale further. More
importantly, a network stack running on a single core has
a much higher latency. If a process has work to do, it hogs
the core until it exhausts its time quantum while others are
on hold. Then the scheduler is free to pick any runnable
process of the stack which increases non-determinism
in the execution. Running the stack on dedicated cores
removes these deficiencies and the throughput of a single
fast core is similar to the configuration with a TCP core
at 600MHz and IP and driver cores at 200MHz.

5 Related work

Kumar et al. proposed single-ISA heterogeneous mul-
ticores for power reduction [15] and to improve perfor-
mance of multithreaded workloads [16]. They demon-
strated that applications need a good mix of single-
threaded performance and high throughput. Due to the

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 265

diversity in application code, heterogeneous platforms
outperform homogeneous ones with the same die size.
This makes the heterogeneity promising for the future.
Although we do not focus primarily on applications but
on the operating system code, the similarity is that we
also exploit the fact that each system component has its
own requirements for optimal execution. Moreover, the
system components are user space processes like applica-
tions. However, the system code differs from applications,
thus its optimal requirements are different too.

Operating systems are key to leveraging the heteroge-
neous platforms as only the scheduler can make decisions
where each application runs, therefore the schedulers got
the most attention. Kumar et al. [16] proposed a whole
range of sampling heuristics that permute threads on cores
to find the best assignment. As the execution of applica-
tions changes during different phases, Becchi et al. [6]
proposed a dynamic algorithm which constantly measures
the IPC ratio of threads and tries to run on the big cores
those threads that would benefit the most.

Permuting the threads and sampling them on all types
of cores is an overhead. Therefore Koufaty et al. [14]
designed a scheduler which monitors execution of each
thread on its current core only. It uses existing low over-
head performance monitoring counters to collect perfor-
mance related data which the system can use to estimate
what type of a core is the most suitable for the given
thread. This algorithm relies on a model which translates
the performance statistics to the bias of each thread to a
certain type of a core.

Most heterogeneous scheduling algorithms use the
speed up factor, the ratio between how fast an application
runs on a small and a big core. Saez et al. [25] suggest a
more comprehensive utility factor of how effectively the
whole mix of running application uses the machine.

Instead of using available performance counters to feed
data into the models which predict the performance of the
threads on different types of cores, hardware monitoring
and prediction engines [27] and performance impact esti-
mators [29] were proposed as hardware extensions. The
hardware estimates the possible speed-up on its own and
the scheduler can use this direct feedback to decide which
applications would benefit from running on the big cores
and which can run on the small ones.

In contrast to this work, we do not focus on the perfor-
mance of applications, instead our main focus is on the
system. First of all, our system can use all the different
heuristics or hardware estimations to schedule application
on the cores which are not dedicated to the system. Sec-
ond, our system is a collection of user space processes and
the scheduler can use the same or similar techniques to
find their optimal placement. On the other hand, execution
of the system differs in several aspects. Each component
is responsible for a small subset of all the system tasks,

therefore they have little variance during their execution
as the requests they serve are similar. The system code
follows the same patterns which differ from application
code. The scheduler’s goal is not to let the system finish
as quickly as possible, but to deliver optimal service to
the changing mix of applications and workloads using the
available resources. In contrast to the applications, which
are opaque for the system, the system designer knows
more about the system components and the components
themselves can help the scheduler by providing various
hints. For instance, a component can detect and signal
when the recipient of its messages cannot keep up and
thus may benefit from a faster core. Similarly, applica-
tions can give hints to the system, for instance, when the
estimated time of downloading a file is in minutes, the
application can tell the system, that it is not a sudden
spike in the load and reconfiguring is worthwhile.

Mogul et al. proposed operating system friendly cores
in [20], primarily to save power. They argue that many
features which the operating systems do not use draw a
lot of power while not contributing to performance of the
operating system. They propose that the system should
run on the optimized cores and the execution should trans-
fer from the application cores to the system cores when
necessary. The migration is a bottleneck which they ad-
dress in [28]. Migrating the execution means that the
cache locality is poor. In contrast to their experiments
with Linux, we have a system which is more suitable
for heterogeneous platforms. NewtOS moves execution
only by sending a message to another core and benefits
from cache locality of the code and data of the component
running on the core. Of course, locality of the user data
passed between the cores is poor, however, in many cases
the components do not need to touch the data until the
DMA of a device transfers them. Cache locality of the
messages is also poor, but this data should not be cached
after the message is sent in the first place. Unfortunately,
the current hardware does not allow us such a fine-grained
control over cache and data transfers. Strong et al. [28]
also use networking for evaluation. They model the power
usage of the hypothetical cores while we use frequency
scaling to approximate performance of such a hardware.

Netmap [24] and OpenOnload [3] projects demon-
strated high bandwidth networking in user space. In con-
trast to NewtOS, both need a driver in a monolithic kernel.
Although most of the faults crash only the application,
there is still a chance that a bug in the driver can bring the
whole system to a halt. Netmap shows that a 900 MHz
core is good enough to transfer 10 Gbps of small pack-
ets between the device and the user space application,
however, netmap only deals with routing and does not
offer a generic networking support to applications. On
the other hand, OpenOnload transparently intercepts any
application requests and uses a library with custom made

11

266 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

hardware to transfer data directly between applications
and devices. We endorse this approach as it would remove
the copying overhead between applications and our stack.

6 Conclusions

We have demonstrated that a processor’s fast cores may
not be ideal for system workloads and that less can be
more in some situations. We presented a network stack
evaluation of a reliable and dependable system. The re-
sults support our claim that it is possible for such a system
to perform well, using much more constrained resources
than usually available. We use current hardware to ap-
proximate future processors and we show the potential
benefits. Unlike many other researchers, we do not focus
on the applications. The operating system plays a key
role in the execution of applications and we should give it
equal attention. However, performance should not be the
only criterion, the system is also responsible for security,
reliable execution and easy maintenance. NewtOS design
recovers from crashes and allows administrators to update
its components while it is running. Although our case
study covers only one part of a generic operating system,
we are confident that the findings apply to other parts and
to other systems as well.

Acknowledgments

This work has been supported by the ERC Advanced
Grant 227874 and EU FP7 SysSec project. We would like
to thank Valentin Priescu for implementing the frequency
scaling driver. Likewise, we would like to thank Dirk
Vogt for implementing the IXGBE driver for MINIX 3.

References
[1] ARM - big.LITTLE Processing. http://www.arm.com/products/

processors/technologies/biglittleprocessing.php.

[2] NVIDIA - Variable SMP architecture. http://www.nvidia.
com/content/PDF/tegra_white_papers/tegra-whitepaper-
0911b.pdf.

[3] OpenOnload. http://www.openonload.org/.

[4] The Intel Xeon Phi Coprocessor. http://www.intel.com/content/
www/us/en/processors/xeon/xeon-phi-detail.html.

[5] Samsung to outline 8-core big.LITTLE ARM processor in February.
http://www.engadget.com/2012/11/20/samsung-to-outline-8-
core-big-little-arm-processor-in-february/, Nov. 2012.

[6] BECCHI, M., AND CROWLEY, P. Dynamic Thread Assignment on Metero-
geneous Multiprocessor Architectures. In Proceedings of the 3rd confer-
ence on Computing frontiers (2006), CF ’06.

[7] CRISTIANO GIUFFRIDA, L. C., AND TANENBAUM, A. S. We Crashed,
Now What? In Proceedings of the 6th International Workshop on Hot
Topics in System Dependability (2010).

[8] DUNKELS, A. Full TCP/IP for 8-bit architectures. In International Confer-
ence on Mobile Systems, Applications, and Services (2003).

[9] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM, A. S. Safe and Au-
tomatic Live Update for Operating Systems. In Proceedings of ASPLOS-
XVIII (2013).

[10] GIUFFRIDA, C., AND TANENBAUM, A. S. Safe and Automated State
Transfer for Secure and Reliable Live Update. In Proceedings of the Fourth
International Workshop on Hot Topics in Software Upgrades (2012).

[11] HRUBY, T., VOGT, D., BOS, H., AND TANENBAUM, A. S. Keep Net
Working - On a Dependable and Fast Networking Stack. In Proceedings of
Dependable Systems and Networks (DSN 2012) (Boston, MA, June 2012).

[12] IPEK, E., KIRMAN, M., KIRMAN, N., AND MARTINEZ, J. F. Core Fu-
sion: Accommodating Software Diversity in Chip Multiprocessors. In Pro-
ceedings of the 34th annual international symposium on Computer archi-
tecture (2007).

[13] KHUBAIB, SULEMAN, M. A., HASHEMI, M., WILKERSON, C., AND
PATT, Y. N. MorphCore: An Energy-Efficient Microarchitecture for High
Performance ILP and High Throughput TLP. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture.

[14] KOUFATY, D., REDDY, D., AND HAHN, S. Bias Scheduling in Hetero-
geneous Multi-Core Architectures. In Proceedings of the 5th European
conference on Computer systems (2010), EuroSys ’10.

[15] KUMAR, R., FARKAS, K. I., JOUPPI, N. P., RANGANATHAN, P., AND
TULLSEN, D. M. Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction. In Proceedings of the 36th
annual IEEE/ACM International Symposium on Microarchitecture (2003).

[16] KUMAR, R., TULLSEN, D. M., RANGANATHAN, P., JOUPPI, N. P., AND
FARKAS, K. I. Single-ISA Heterogeneous Multi-Core Architectures for
Multithreaded Workload Performance. In Proceedings of the 31st annual
international symposium on Computer architecture (2004), ISCA ’04.

[17] LATIF, L. IDF: Intel is looking at ARM’s Big Little archi-
tecture. http://www.theinquirer.net/inquirer/news/2205764/
idf-intel-is-looking-at-arms-big-little-architecture.

[18] LI, T., AND JOHN, L. K. Operating system power minimization through
run-time processor resource adaptation. Microprocessors and Microsys-
tems 30, 4 (2006).

[19] LIEDTKE, J., ELPHINSTONE, K., SCHÖNBERG, S., HRTIG, H., HEISER,
G., ISLAM, N., AND JAEGER, T. Achieved IPC Performance (Still The
Foundation For Extensibility), 1997.

[20] MOGUL, J. C., MUDIGONDA, J., BINKERT, N., RANGANATHAN, P.,
AND TALWAR, V. Using Asymmetric Single-ISA CMPs to Save Energy
on Operating Systems. IEEE Micro 28, 3 (May 2008).

[21] NELLANS, D., BALASUBRAMONIAN, R., AND BRUNV, E. A Case for
Increased Operating System Support in Chip Multiprocessors. In In Proc.
of 2nd IBM Watson P=ac 2 (2005).

[22] OLUKOTUN, K., HAMMOND, L., AND LAUDON, J. Chip Multiprocessor
Architecture: Techniques to Improve Throughput and Latency. 2007.

[23] REDSTONE, J. A., EGGERS, S. J., AND LEVY, H. M. An Analysis of
Operating System Behavior on a Simultaneous Multithreaded Architecture.
In Proceedings of ASPLOS-IX (New York, NY, USA, 2000).

[24] RIZZO, L. Netmap: A Novel Framework for Fast Packet I/O. In Pro-
ceedings of the 2012 USENIX conference on Annual Technical Conference
(2012), USENIX ATC’12.

[25] SAEZ, J. C., FEDOROVA, A., KOUFATY, D., AND PRIETO, M. Lever-
aging Core Specialization via OS Scheduling to Improve Performance on
Asymmetric Multicore Systems. ACM Trans. Comput. Syst. 30 (Apr. 2012).

[26] SOARES, L., AND STUMM, M. FlexSC: Flexible System Call Scheduling
with Exception-Less System Calls. In Proc. of Symp. on Oper. Sys. Des.
and Impl. (2010).

[27] SRINIVASAN, S., ZHAO, L., ILLIKKAL, R., AND IYER, R. Efficient Inter-
action Between OS and Architecture in Heterogeneous Platforms. SIGOPS
Oper. Syst. Rev. 45, 1 (Feb. 2011), 62–72.

[28] STRONG, R., MUDIGONDA, J., MOGUL, J. C., BINKERT, N., AND
TULLSEN, D. Fast Switching of Threads Between Cores. SIGOPS Oper.
Syst. Rev. 43 (April 2009).

[29] VAN CRAEYNEST, K., JALEEL, A., EECKHOUT, L., NARVAEZ, P., AND
EMER, J. Scheduling heterogeneous multi-cores through Performance Im-
pact Estimation (PIE). In Proceedings of the 39th Annual International
Symposium on Computer Architecture (2012), ISCA ’12.

Notes
1MWAIT is optionally unprivileged in AMD chips starting with

family 10h, but we use Intel due to hyper-threading and better scaling.
2It is usually possible to scale AMD chips to lower speeds than

Intel ones (e.g., from 1.9 GHz to 800 MHz). However, the Intel-specific
mechanism of thermal throttling allows us to emulate much lower speeds

12

