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Abstract
MBOX is a lightweight sandboxing mechanism for non-
root users in commodity OSes. MBOX’s sandbox usage
model executes a program in the sandbox and prevents
the program from modifying the host filesystem by layer-
ing the sandbox filesystem on top of the host filesystem.
At the end of program execution, the user can examine
changes in the sandbox filesystem and selectively com-
mit them back to the host filesystem. MBOX implements
this by interposing on system calls and provides a variety
of useful applications: installing system packages as a
non-root user, running unknown binaries safely without
network accesses, checkpointing the host filesystem in-
stantly, and setting up a virtual development environment
without special tools. Our performance evaluation shows
that MBOX imposes CPU overheads of 0.1–45.2% for var-
ious workloads. In this paper, we present MBOX’s design,
efficient techniques for interposing on system calls, our
experience avoiding common system call interposition
pitfalls, and MBOX’s performance evaluation.

1 Introduction
In this paper, we present MBOX, a lightweight sandbox-
ing mechanism for non-root users in commodity OSes.
MBOX provides two attractive benefits as a sandbox; first,
protection of the host filesystem from modifications by
sandboxed programs; and second, flexibility in control-
ling the execution of the sandboxed program.

To protect the host system, MBOX overlays the host
filesystem with a sandbox filesystem and confines all mod-
ifications made by the sandboxed program to the sandbox
filesystem. As MBOX stores the sandbox filesystem as
a regular directory in the host filesystem, users can use
standard Unix tools to examine the modifications, commit
them back to the host filesystem, or even archive them
for later use as a layered sandbox filesystem for other
programs.

MBOX implements the layered sandbox filesystem with
system call interposition. By interposing on system calls,
MBOX can provide additional features missing from com-
modity OSes, which are useful to non-root users in a
variety of real-world scenarios: enabling non-root users
to install system packages with standard package man-
agers, checkpointing the whole filesystem instantly, run-
ning unknown binaries safely without network access,
and setting up virtual development environments without

special tools. More importantly, all use cases neither re-
quire root privilege nor require modification to the OS
kernel and applications.

Overview MBOX aims to make running a program in a
sandbox as easy as running the program itself. For exam-
ple, one can sandbox a program (say wget) by running as
below:

$ mbox -- wget google.com
...
Network Summary:
> [11279] -> 173.194.43.51:80
> [11279] Create socket(PF_INET,...)
> [11279] -> a00::2607:f8b0:4006:803:0
...
Sandbox Root:
> /tmp/sandbox-11275
> N:/tmp/index.html
[c]ommit, [i]gnore, [d]iff, [l]ist, [s]hell, [q]uit ?>

wget is a utility to download files from the web. In
the above example, MBOX prevents wget from writing
the downloaded index.html to the host filesystem, and
instead redirects it to the sandbox filesystem (stored at
/tmp/sandbox-11275). Since the sandbox filesystem is
just a regular directory in the host filesystem, the user can
use standard Unix tools to perform operations on the files
modified by the program. For example, the user can com-
mit the index.html file back to the place where wget
would have downloaded the file if it was not sandboxed.

The advantages of using MBOX come from the fact that
we can restrict the sandboxed program or change its be-
havior while protecting the host filesystem. For example,
we can enable interesting use cases like monitoring where
wget connects to and what it downloads, or restricting its
remote network accesses (see §2).

Contributions In this paper, we

• describe the MBOX abstraction, usage model, and a
wide range of use cases.

• present seccomp/BPF as an efficient system call inter-
position technique, and our experience with avoiding
common system call interposition mistakes [4].

• implement and evaluate these ideas in MBOX, a Linux-
based open source tool that requires no changes to the
OS kernel or applications.

Outline §2 provides practical use cases of MBOX. §3
describes its design. §4 explains MBOX’s interposition
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technique. §5 discusses its implementation, §6 evaluates,
§7 compares MBOX with related work, and §8 concludes.

2 Use cases
We motivate the usefulness of MBOX by describing five
real-world use cases that are difficult to achieve in com-
modity OSes as a non-root user.

2.1 Installing packages without root access
$ mbox -R -- apt-get install git
(-R: emulate a fakeroot environment)

Installing packages requires root privilege in Linux be-
cause normal users do not have write access to system
directories such as /bin and /lib; so, to install a pack-
age, non-root users need to perform tedious jobs like
resolving dependencies manually and compiling source
code, even though package managers already perform
these jobs. With MBOX, users can instead install pack-
ages with standard package managers by running them in
a sandbox with a writable sandbox filesystem. As package
managers often check for root privilege, MBOX optionally
emulates a root-like environment (fakeroot) so users can
execute them without any modification. After installing
a package with MBOX, the sandbox filesystem contains
not only newly installed files, but also the correspond-
ing package databases, separate from the host filesystem.
Users, therefore, can even install or remove packages by
reusing the same sandbox filesystem (see §2.4). We tested
that MBOX supports Ubuntu’s apt-get, Debian’s dpkg,
and Python’s pip package managers.

2.2 Running unknown binary safely
$ mbox -n -- wget google.com
(-n: disable remote network accesses)

When running unknown binaries, users can protect the
host filesystem from modification by running them with
MBOX. However, if these binaries misbehave or are com-
promised, they still can access a user’s private data and
disclose it to attackers. To prevent this, MBOX provides
a way to restrict or monitor remote network accesses of
sandboxed processes. If users want to restrict network
accesses, MBOX blocks all socket-related system calls;
for example, the above command kills wget at the first
socket() system call. However, by default, MBOX inter-
prets socket-related system calls and summarizes network
activity, as in the wget example in §1.

2.3 Checkpointing filesystem
$ mbox -i -- sh
(-i: enable interactive commit-mode)

Using MBOX, one can instantly branch out a new filesys-
tem from the current host filesystem by running a new
shell. The shell and all subsequent processes created from
the shell run in the same sandbox, and share the same

layered filesystem view. For example, editing emacs con-
figuration files often requires killing and rerunning emacs
to check if it works with the new configuration. When it
fails with an error, we might need to run vanilla emacs
to continue fixing the error. With MBOX, one can check-
point the host filesystem and edit configuration files with
emacs running in the sandbox; emacs instances on the
host system still function correctly, even if the edited file
has an error. When done with editing, users can commit
the modified configuration files to the host filesystem, re-
vert them by discarding changes, or stash them for later
use. These workflows are what make users feel comfort-
able when using SCM tools like Git; with MBOX, users
get similar safety and convenience for filesystem data.

2.4 Build/development environment
$ mbox -r outdir -- make
(-r dir: specify a sandbox directory)

When building a project’s source tree, we often see the
directory entangled with both original source files and
generated object files. By running a build script with
MBOX, we can redirect all generated object files to the
sandbox filesystem; also, cleaning up the project directory
(say make clean) becomes a simple rm -rf outdir.
Combined with package installations (§2.1), any user can
conveniently setup a development environment that is
safely separated from the system libraries. For example,
without using virtualenv for Python and cabal-dev
for Haskell, we can create virtual environments with the
pip and cabal tools that major distributions come with.

2.5 Profile-based sandbox
$ mbox -p build.prof -- ./configure
(-p prof: enable profile-based policy)

MBOX supports another important use case poorly sup-
ported by commodity OSes. In Unix-like OSes, a process
created by a user runs with that user’s privilege, and can
access the user’s private files. In some cases, the pro-
cess needs access to the user’s files to do useful work;
however, often there are cases where the user does not
want to expose sensitive data to the process. For example,
when a user executes a ./configure script, she does
not want the script to read her private ssh key stored in
the $HOME/.ssh directory. With MBOX, users can easily
hide private directories, and allow access to only the nec-
essary parts of a filesystem by describing them as below.

# build.prof
[fs]

allow: .
hide: ~

If a user runs the ./configure script with the above
profile, MBOX hides the user’s home directory yet allows
access to the current working directory. Therefore, the
script cannot steal the user’s private files, but can still
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Figure 1: Overview of MBOX’s design. MBOX interposes on a sand-
boxed program’s system calls to provide a sandbox filesystem overlaid
on the host filesystem; to restrict network accesses; and to emulate a
fakeroot environment.

configure properly by accessing the system libraries and
header files. In addition, for scripts that are never expected
to access the network, users can additionally specify an
option to restrict network accesses (§2.2).

3 MBOX abstraction
When a user runs a program with MBOX, MBOX creates
a layered sandbox filesystem, where all modifications by
the program take place, on top of the host filesystem. The
host filesystem remains intact and is never modified by the
sandboxed program. When the sandboxed program ter-
minates, users can examine modified files in the sandbox
filesystem, and commit them back to the host filesystem
if they want. Since the sandbox filesystem is stored in
persistent storage, users have complete control over files
and directories afterward, and can even reuse them later
as a sandbox layer of other programs. We call this us-
age model the MBOX abstraction. Figure 1 provides an
overview of the MBOX design.

3.1 Layered filesystems
Unlike traditional filesystems in which every process has
the same namespace, MBOX needs to provide a private
filesystem to each process running in different sandboxes.
MBOX stacks a private filesystem layer on top of the host
filesystem, and provides a logically unified view of both
filesystems to a sandboxed program. We call the private
filesystem layer, where all modification happens by the
program, the sandbox filesystem, and call both the sand-
box and host filesystems together the layered filesystem.
To provide a layered filesystem, MBOX interposes on sys-
tem calls of a sandboxed program. On every system call
entry, MBOX decides which system call arguments should
be rewritten so that changes by the system call redirect
to the sandbox filesystem, rather than affecting the host
filesystem.

Copy-on-write The sandbox filesystem is created with
no content when a user executes a program with MBOX.
Since the sandbox filesystem is empty, all reads by the pro-
gram will be forwarded to the host filesystem. Once the
sandboxed program writes to a file, the sandbox filesystem
will contain the modified file and subsequent reads will be
redirected to the sandbox filesystem. Thus, the application
running inside the sandbox is able to access the modified
file and works as it would without the sandbox. The
layered filesystem in effect implements copy-on-write:
MBOX duplicates the file into the sandbox filesystem and
protects the original file from modifications.

Persistent storage The sandbox filesystem is not a
filesystem, but is a regular directory in the host filesystem,
so it can persist even after the sandboxed program termi-
nates. The persistent sandbox gives users more freedom to
examine, archive, and even duplicate the sandbox filesys-
tem, as normal files and directories, with familiar utilities.
Also, users can reuse the previous sandbox filesystem as
a sandbox layer of any other program, so that users can
consider the layered filesystem persistently branched out
of the host filesystem, yet easy to discard.

3.2 Committing changes
When a sandboxed program terminates, users can commit
modified files back to the host filesystem with tools that
MBOX provides. To help users decide what files to com-
mit, MBOX allows the user to check the differences of
files in host and sandbox filesystems before committing.

When committing a modified file back to the host
filesystem, the original file that the sandbox branched
out from might have been changed by programs running
on the host filesystem. Faced with such concurrent modi-
fications to the same file in both the host and the sandbox
filesystem, MBOX flags a conflict, and requires the user to
decide how to merge the changes, much like any version
control system.

To detect conflicts, MBOX records a hash of the orig-
inal file contents when creating a copy of the file in the
sandbox filesystem, and checks if the contents of the file
in the host filesystem still match the hash before com-
mitting any changes from the sandbox. For conflicts in
text files, standard Unix tools like diff and patch can
often resolve the conflict, but in other cases like custom
or binary files, users should manually merge them with
application-specific tools.

4 Interposing system calls
In this section, we describe the recently introduced
seccomp/BPF [1] as a means for interposing system calls;
common pitfalls of using ptrace and seccomp/BPF for
sandboxing; and how to use them to restrict network ac-
cesses and construct a fakeroot environment.
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Figure 2: Interposing a system call with seccomp/BPF and ptrace. At startup, the tracer invokes the tracee, sets up ptrace and installs a BPF
program. When the tracee generates a system call 1 , the BPF program runs and decides whether to intercept or not 2 . If the system call needs to be
handled by MBOX, BPF will send a seccomp event 3 to the tracee waiting for a ptrace event 4 . Then, the tracer queries the states of the tracee via
the ptrace interface 5 , or overwrites the tracee’s memory with the process_vm_writev() system call 6 . To continue the tracee, but stop at the
exit of the current system call, the tracer needs to invoke ptrace with SYSCALL.

4.1 Using seccomp/BPF
seccomp [2] is a mechanism for isolating a process by
allowing only a certain set of system calls. Linux 3.5
further introduced support for using Berkeley Packet Fil-
ter (BPF) bytecode to examine system calls when using
seccomp [1]; for example, the BPF bytecode can decide
whether the process can invoke the socket() system
call. In seccomp/BPF, the input to the BPF program is
the system call number, its arguments, and the instruction
pointer, and it is invoked on every entry and exit of a
system call. The BPF program decides whether to allow
the system call to proceed or not; an additional option
is to generate a ptrace event to the tracer, if the cur-
rent process has one. Using seccomp/BPF, the tracer can
download a BPF program and wait for a ptrace event, as
described in Figure 2, instead of stopping on every tracee
system call. This allows MBOX to interpose on just the
necessary system calls, improving overall performance,
as we show in §6.

4.2 Avoiding common pitfalls
It is easy to make mistakes when implementing a sandbox
mechanism, making the resulting implementation vulner-
able to adversaries due to minor mistakes. In particular,
ptrace and seccomp/BPF are difficult to use correctly
for interposing on system calls. We will now describe our
experience in trying to avoid some of the pitfalls in using
ptrace and seccomp/BPF for system call interposition.

4.2.1 Time-of-check-to-time-of-use (TOCTTOU)

Using ptrace to intercept system call entry allows us to
examine, sanitize, and rewrite the system call’s arguments.
If an argument points to process memory, we can read
remote memory and interpret it as the system call handler
does. However, the read value can be different from what
the system call handler will see in the kernel. For example,
an adversary’s thread can overwrite the memory that the
current argument points to, right after the tracer checks
the argument. Even verifying that sanitized arguments

still point to the right value at system call exit does not
help, because an adversary can restore it by that time.

To avoid TOCTTOU problems in rewriting memory
arguments, MBOX takes advantage of two properties of
ptrace. First, system call arguments examined using
PTRACE_GETREGS are the actual values that the handler
will see, because x86-64 uses registers to pass system
call arguments, and copies them to kernel space when
entering the system call handler. Second, ptrace allows
the tracer to write to read-only memory in the tracee with
PTRACE_POKEDATA.

MBOX avoids TOCTTOU problems by mapping a page
of read-only memory in the tracee process. When MBOX
needs to examine, sanitize, or rewrite an in-memory data
structure, such as a path name, used as a system call ar-
gument, MBOX copies the data structure to the read-only
memory (using PTRACE_POKEDATA or the more efficient
process_vm_writev()), and changes the system call
argument pointer to point to this copy. For example, at
the entry of an open(path, O_WRONLY) system call, the
tracer first gets the system call’s arguments, rewrites the
path argument to point to the read-only memory, and up-
dates the read-only memory with a new path pointing to
the sandbox filesystem. Since no other threads can over-
write the read-only memory without invoking a system
call (e.g., mprotect()), MBOX avoids TOCTTOU prob-
lem when rewriting path arguments. To ensure that the
sandboxed process cannot change this read-only virtual
memory mapping (e.g., using mprotect(), mmap(), or
mremap()), MBOX intercepts these system call and kills
the process if it detects an attempt to modify MBOX’s
special read-only page.

4.2.2 Replicating OS state

Another common mistake is to improve performance by
replicating some state of the tracee process in the tracer.
For example, in handling an openat(fd, . . .) system
call, one might think that keeping track of a path for
fd whenever opening a path can improve performance,
instead of reading the actual path for fd. However, it is
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impractical to correctly emulate in userspace all subtle
system calls that can change the state of a file descriptor.
In MBOX, we design a set of stateless rules for deciding
whether to rewrite a path argument of the current system
call, by paying the cost of examining states at its entry.
By controlling how a process can obtain a file descriptor
in the first place, MBOX does not need to interpose on
system calls that take only file descriptor arguments.

Rules for rewriting path arguments MBOX rewrites
a path argument as follows:

• If path exists in the sandbox filesystem, then it was
already modified by previous write operations. MBOX
rewrites path to point at the sandbox filesystem, so
that subsequent read/write should see the one in the
sandbox filesystem.

• If path was deleted before, then to pretend that path
in the host filesystem is deleted, path is rewritten to
the non-existent path in the sandbox filesystem.

• If the current system call will modify the host filesys-
tem, then, since path does not exist in the sand-
box filesystem, MBOX copies the file from the host
filesystem to the sandbox filesystem. The subsequent
read/write will see the duplicated copy in the sandbox
filesystem, by the first rule.

As one example, at the entry of an open(path, O_RDWR)
system call, if path does not exists in the sandbox filesys-
tem and was not deleted before, MBOX will copy the
file from the host filesystem to the sandbox filesystem by
the last rule, and rewrite the path to point to the sandbox
filesystem, where any later write()s will be reflected.
Any subsequent open(path, O_RDONLY) on the same
path will also be rewritten to access the sandbox filesys-
tem, by the first rule.

5 Implementation
We implemented a prototype of MBOX for Linux by ex-
tending strace 4.7, which is a system utility to trace
system calls. To improve performance, we modified
strace to use seccomp/BPF. For OSes that do not
support seccomp/BPF yet, MBOX falls back to using
ptrace as the main system call interposition mechanism
(seccomp/BPF is supported on Linux 3.5 and above).
MBOX has been tested on the x86-64 Arch distribution
with the 3.8.10 Linux kernel, and the Ubuntu 12.04.1-LTS
distribution with the 3.2.0-36 Linux kernel.

6 Evaluation
To analyze the performance characteristics of MBOX, we
ran benchmarks used in Apiary [10] in three environ-
ments: without a sandbox, with MBOX using ptrace,
and with MBOX using seccomp/BPF to intercept system
calls. We carried out all experiments on a system with

an Intel Core i7-2640M CPU, using one core with hyper-
threads disabled, and 16GB RAM, running Arch Linux
with kernel 3.8.10, if not stated specifically. Table 1 sum-
marizes the results.

6.1 End-to-end performance overhead
In the computation-heavy Octave benchmark, Octave [6]
in Table 1, MBOX exhibits negligible performance over-
heads, 0.1%, because it spends 98% of its execution time
in userspace, with few system calls. However, when
compressing files (Zip), decompressing files (Untar) or
building the Linux kernel (Build Linux), MBOX incurs
more significant overheads, 12.0%–20.9%, because these
benchmarks invoke a lot of file-related system calls.

6.2 Interposing system calls
In the Zip and Untar benchmarks in Table 1, using
seccomp/BPFwas a lot more efficient than using ptrace.
With seccomp/BPF, MBOX can intercept just the system
calls that it needs to examine, and skip system calls such
as read() and write() that take a file descriptor as an
argument. Untar generates a total of 543k system calls,
out of which 330k (60.8%) are read() and write().
Using seccomp/BPF, MBOX interposes on just 90k sys-
tem calls (16.5%). These results show that seccomp/BPF
helps MBOX reduce interposition overhead.

6.3 Concurrency
With seccomp/BPF, we can improve concurrency by
avoiding unnecessary serialization of system calls, which
enables each process to invoke system calls without being
interleaved by the tracer. For example, ptrace imposed
110.1% overhead when building the Linux kernel in par-
allel, but using seccomp/BPF incurred 45.2% overhead,
because the tracer interposed only on the necessary system
calls, thereby allowing multiple system calls to execute
simultaneously.

7 Related work
Layered filesystems UnionFS [8, 11] strongly influ-
enced the design of MBOX; we follow its namespace
unification rules and strategies for copy-on-write. How-
ever, MBOX enables them for non-root users by using
seccomp/BPF in Linux, and also provides a variety of
applications without requiring any modification of exist-
ing software. Cowdancer [12] and FL-COW [7] similarly
provide a way to redirect modifications by a process, but
since they use LD_PRELOAD, they cannot isolate a mali-
cious process, unlike MBOX. Apiary [10] confines appli-
cations using UnionFS, but its main purpose of using the
layered filesystem is to save storage by sharing package
dependencies of confined applications.
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Task Normal Sandbox DescriptionPtrace Seccomp/BPF

Zip 15.6s 21.2s 36.5% 17.4s 12.0% Compressing all files of linux-3.8
Octave 2.1s 2.1s 0.1% 2.1s 0.1% Octave Benchmark [6] calculating matrix
Untar 13.6s 19.0s 40.3% 16.4s 20.9% Decompressing linux-3.8 source files
Build Linux (-j1) 43.6s 53.2s 21.9% 49.7s 13.9% Compiling linux-3.8 kernel

Build Linux (-j4) 21.7s 45.6s 110.1% 31.5s 45.2% Compiling linux-3.8 kernel with 4 parallel jobs

Table 1: Performance benchmark results. Following the benchmark from Apiary [10], we measure the total execution time of each benchmark in
normal execution, and in the sandbox using either ptrace and seccomp/BPF; for sandbox execution times, we also report the percent overhead on
top of normal execution. We used two cores with hyperthreads enabled for the last benchmark, building the Linux kernel with 4 parallel jobs.

System call interposition Garfinkel used the system
call interposition technique for enforcing security policies
in Ostia [5], and studied common mistakes and pitfalls
when using it for implementing a security tool [4]. In this
paper, we summarized our experiences of avoiding those
mistakes, especially the TOCTTOU attack, when using
seccomp/BPF as a means for rewriting system calls.

Namespace The effectiveness of MBOX comes from
the fact that every process can have a private namespace,
detached from the host filesystem. Plan9 [9] originally
proposed this idea; MBOX implements private names-
paces by using ptrace, which commodity OSes provide
to all users for debugging. MBOX, therefore, can use
private namespaces for sandboxing without changing the
kernel or applications. Docker [3] provides a container
for applications by using namespaces, newly introduced
in Linux 3.8, as a means to migrate processes transpar-
ently between OSes. We expect that the mnt, net and
ipc namespaces, combined with Aufs [8], can be used for
implementing an efficient layered filesystem, but without
enabling all applications that MBOX provides with system
call interposition.

8 Summary
We presented MBOX, a lightweight sandboxing mecha-
nism for non-root users in commodity OSes. MBOX pro-
tects the host filesystem by layering the sandbox filesys-
tem on top of it using efficient system call interposition
based on seccomp/BPF. We showed that MBOX is ef-
fective in a variety of applications, and incurs reason-
able CPU overhead. MBOX is available for download at
http://pdos.csail.mit.edu/mbox/.
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