
USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 115

Lightweight Memory Tracing

Mathias Payer
ETH Zurich

Enrico Kravina
ETH Zurich

Thomas R. Gross
ETH Zurich

Abstract
Memory tracing (executing additional code for every memory
access of a program) is a powerful technique with many
applications, e.g., debugging, taint checking, or tracking
dataflow. Current approaches are limited: software-only
memory tracing incurs high performance overhead (e.g., for
Libdft up to 10x) because every single memory access of the
application is checked by additional code that is not part of
the original application and hardware is limited to a small set
of watched locations.

This paper introduces memTrace, a lightweight memory
tracing technique that builds on dynamic on-the-fly cross-ISA
binary translation of 32-bit code to 64-bit code. Our software-
only approach enables memory tracing for unmodified, binary-
only x86 applications using the x64 extension that is available
in current CPUs; no OS extensions or special hardware is re-
quired. The additional registers in x64 and the wider memory
addressing enable a low-overhead tracing infrastructure that is
protected from the application code (i.e., uses disjunct registers
and memory regions). MemTrace handles multi-threaded ap-
plications. Two case studies discuss a framework for unlimited
read and write watchpoints and an allocation-based memory
checker similar in functionality to memgrind.

The performance evaluation of memTrace shows that
the time overhead is between 1.3x and 3.1x for the SPEC
CPU2006 benchmarks, with a geometric mean of 1.97x.

1 Introduction

Analyzing memory accesses in large applications is a hard
problem due to limitations of the current tracing infrastructure
and hardware. Dynamic program instrumentation that naively
instruments every memory access results in high execution
overhead (20x for Valgrind’s memcheck [18], up to 10x for
libdft [14], up to 21.1x for compression for PTT [9], and up
to 40x for taintcheck [19]), and the execution overhead makes
it often impossible to execute large instrumented applications
up to the point where a specific bug is triggered. Hardware
watchpoints are limited to a small set of memory locations
but allow tracing at native performance.

Memory tracing allows the execution of memlets for every
memory access of the instrumented application. Memlets are
code sequences that are woven into the executed application
code. These memlets can execute additional code for each
memory access depending on: (i) the data value that is read
or written, (ii) the address that is read from or written to,
or (iii) the state associated with the address that is read or

written (the tracing infrastructure may provide additional
state – a shadow value – for every memory location that is
used in an application). Memory tracing is lightweight if the
overall performance overhead added through the memlets is
low. Memlets can use the state and the value of each memory
location to implement high-level functionality like (unlimited)
watchpoints, dataflow tracking, or taint checking.

This paper presents memTrace, a framework for lightweight
memory tracing for single-threaded and multi-threaded 32-bit
applications. MemTrace combines an API to set and check
shadow values for every byte used in the application with an
interface to implement different user-defined memlets. We
present two example memlets that (i) support an unlimited
number of memory watchpoints and (ii) enforce explicit
safety regions around every memory allocation for C/C++
applications to find memory corruption bugs like buffer
overwrites and buffer underwrites, and these memlets handle
arbitrary unmodified 32-bit binary applications.

Current memory tracing systems use software binary
translation to instrument all memory accesses of an application
with a pre-determined set of instructions (i.e., current systems
do not support user-configurable memlets). Some systems
reuse “unused” registers (e.g., minemu [4] uses the SSE
registers and therefore only supports applications that do not
use SSE instructions, LIFT [23] uses x64 registers) while other
systems (e.g., PIN [15], or Valgrind [18]) reallocate registers
during the binary translation process. Unused registers speed
up memory tracing because the memlets and the memory
checks use these registers, and no spill code is needed.

All recent Intel and AMD x86 CPUs are x64 capable, on
the other hand most applications are based on the 32-bit x86
ISA (e.g., the recommended Ubuntu end-user image uses only
32-bit applications, and all Windows and MacOS operating sys-
tem images exist in a 32-bit and a 64-bit version). A drawback
of x64 is the increased memory usage due to the 64-bit pointer
width and the larger page tables. Most applications fit well into
a 32-bit memory space. MemTrace enables lightweight mem-
ory tracing for these common x86 applications and uses the
available features of the already dominant x64 hardware. The
combination of free registers to implement the lookup checks
and a data structure that supports fast and efficient lookup for
individual memory locations is key to low execution overhead.

MemTrace uses cross-ISA translation for 32-bit applications
to a 64-bit ISA to offer both a wider address space and
additional registers to user-defined memlets. The memTrace

1

116 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

prototype implementation leverages the x641 ISA to implement
efficient memory tracing for unmodified x86 applications. The
x86 code is dynamically translated to x64 code. The x64 ISA
is the 64-bit extension of x86. Most instructions are available
in both ISAs and can be translated easily. The cross-ISA trans-
lation provides 8 additional registers that can be used for the
memlets. A shadow memory area above the 4GB limit of the
32-bit x86 application (i.e., application code uses only 32-bit
pointers and is therefore unable to interfere with the shadow
memory area) is used to store the data used by the memlets.
Our prototype implementation of memTrace supports all x86
instructions, including all FPU and SSE extensions.

The flexible implementation of memlets combined with
shadow data enables additional fine-grained operations that
build on top of memory tracing like dataflow tracking or taint
checking. The memlets update the data or taint information
for each memory location and check the integrity of the data
upon every memory access.

A key observation of Greathouse et al. [12] is that a fast
memory tracing framework needs some form of additional
hardware extensions to achieve low overhead. This paper
shows that low overhead memory tracing can be achieved
in software by using additional hardware resources (more
registers and a wider address space) that are available through
dynamic cross-ISA translation. The memTrace memory
tracing technique offers new opportunities for debugging,
dataflow tracking, or other user-defined memlets that evaluate
fine-grained memory access.

The memTrace prototype implementation supports arbitrary
applications like the OpenOffice office suite or the Apache
webserver. A performance evaluation of the memTrace pro-
totype implementation for x64 Linux kernels with the SPEC
CPU2006 benchmarks shows low overhead with a geometric
mean of 1.97x. The contributions of this paper are as follows:

1. The architecture of memTrace, a lightweight memory
tracing technique for binary-only 32-bit applications that
supports user-defined memlets and leverages cross-ISA
translation.

2. A case study that shows two memlets: one that supports
unlimited watchpoints and a second one that checks
an application for memory allocation errors (allocation
over-writes and under-writes).

3. An evaluation and discussion of a prototype implemen-
tation of the memory tracing technique for x86/x64 and
the corresponding memlets.

The rest of the paper is organized as follows: Section 2
lists requirements for lightweight memory tracing; Section 3
describes cross ISA binary translation; Section 4 shows two
case studies that use memory tracing; Section 5 presents the
memTrace implementation; Section 7 discusses related work;
and Section 8 concludes.

1Multiple different names are used for the 64-bit extension of x86: x64,
EM64T, AMD64, IA-32e, and x86-64. This paper uses x64.

2 Requirements for lightweight memory tracing

MemTrace is a technique for lightweight memory tracing that
builds on dynamic cross-ISA binary translation. Dynamic
binary translation keeps the overhead low and cross-ISA
translation from 32-bit to 64-bit enables the memlets to access
a broader memory space than the original ISA permits. This
paper discusses 32-bit programs running on a 64-bit ISA. Other
combinations work analogously, e.g., 16-bit code running on
a 32-bit ISA, as long as the address space of the target ISA is
a super-set of the source ISA. A lightweight memory tracing
technique must fulfill the following requirements:

Unchanged application address space: the 32-bit applica-
tion has access to the full 4GB memory space. The larger
target address space allows memTrace to hide the binary
translation framework and all the data structures needed
by the memlets from the application. Neither the binary
translator nor the memlets store any internal state in the
application memory space. The memlets may change
application memory values as part of their functionality.
This requirement ensures that the binary translator does not
interfere with the original memory layout of the application
and, e.g., the placement of shared libraries.

Unmodified execution: the translated application follows
the same control flow pattern as the original application.
The application uses the original return addresses on the
stack, the original function pointers, and the original targets
for indirect jumps. The translated code executes additional
lookups in a mapping table to transparently map from
translated to untranslated code targets. This requirement
ensures that the application can use original addresses, e.g.,
as control flow targets.

Full isolation: the application has no access to data of
the binary translator or to data of the memlets. The
translated application cannot access any data above the
original application segment (due to the restriction of 32-bit
pointers). This requirement ensures that the application
cannot modify any internal data.

Flexible memlets: the memory tracing technique enables
the implementation of flexible memlets that use shadow
memory or registers as state. MemTrace allows the
implementation of any memlet that needs one or more bytes
of state for each byte that the application uses. The memlets
can use additional available free registers in the target ISA.

Low overhead: the overall overhead of the memory tracing
technique must be low, and the other requirements must
not preclude a fast implementation.

The technique for lightweight memory tracing presented
in this paper fulfills the criteria above.

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 117

3 Cross-ISA binary translation

Cross-ISA binary translation takes a program written in a
source ISA and executes the program on a different target
ISA. Multiple reasons for cross-ISA translation exist, e.g.,
program portability, or additional resources in the target ISA.
Depending on the differences between the two ISAs the
translation is non-trivial.

This paper discusses two different architectures that are
both extended from 32-bit to 64-bit, namely the Intel x86
platform and the ARM platform. The first example covers
the x86 ISA. The x86 ISA evolved over more than 20 years
and was extended multiple times. 32-bit x86 and the 64-bit
extension x64 are closely related. x64 widens the registers and
the address size to 64-bit, adds 8 general purpose registers, and
introduces new instructions. Some instructions are removed as
well: 16 one-byte x86 instructions are replaced and reused as
prefixes for the new x64 instructions. The original 16 instruc-
tions are no longer available on x64 and must be emulated
using longer instructions. Additional changes include (i) the
limitation of segmentation which makes binary translation
for x64 harder [27] and (ii) the way system calls are executed.

A second example is binary translation for the ARM
platform. The ARMv8-A architecture supports two ISAs: the
AArch64 ISA is a 64-bit extension of the 32-bit AArch32
ISA. Similar to the x64 extension of x86 AArch64 supports
a wider address space and a wider register file. The prototype
implementation focuses on x86/x64 but the design of the
memTrace technique is applicable to AArch64/AArch32 as
well because our technique relies on a wider address space
and similar instructions between the two ISAs. A notable
difference between x86 and ARM is that the instruction pointer
(EIP) cannot be accessed directly on x86 while it is a regular
register on ARM. The binary translator modifies the EIP to
execute translated code from the code cache but emulates all
instructions that indirectly use the EIP to keep up the illusion
of an unmodified application (e.g., call foo is translated
into push orig eip; jmp transl foo. In contrast to
x86, an ARM implementation must emulate all instructions
that use the program instruction counter directly as well.

There are two problems that must be solved for binary
translation for 32-bit x86 programs: register pressure and loca-
tion of internal data structures of the binary translator. Register
allocation on x86 is a hard problem [1, 2, 29] and register
reallocation in a binary translator without type information and
control-flow information is even more complex. Translating
32-bit x86 applications to x64 code solves the register pressure
problem. The 8 additional registers are used by both the
dynamic binary translator to implement the translation process
and the memlets to implement the memory tracing. The
translated application uses the unchanged original registers
except for the program counter. Same-ISA binary translators
modify the original memory address space of an application
by placing internal data structures somewhere into the existing

Translator

Opcode
table

1'

2'

3'

Code cache

0

1

2 3

4

Application code

3 3'
1 1'
2 2'

Mapping tableApplication data Shadow memory

32bit address space

64bit address space

Figure 1: Binary translator runtime layout. Basic blocks
are translated and placed in the code cache using opcode
tables. The mapping table maps addresses in the program to
translated addresses. Trampolines invoke the translator for
untranslated basic blocks.

memory space. Cross-ISA translation from x86 to x64 enables
a wider address space. Consequently, the translated application
uses the low 4GB of memory and the binary translator and
the memlets place their data in the upper memory areas. The
translated application keeps using 32-bit pointers and cannot
access the memory of the binary translator.

To summarize, the advantages of cross-ISA binary
translation are: (i) additional registers available for the
instrumentation, (ii) memory separation as translated x86
code cannot access the code of the translator, and (iii) full
encapsulation of the translated application.

A possible disadvantage is that some hardware features
like segmentation are limited. Fortunately segmentation is
not used in user-space applications except for thread local data.
Segmentation for thread local data is still supported on x64.

3.1 Dynamic binary translation

Dynamic binary translation instruments a user-space appli-
cation on the fly. Figure 1 shows the design of the dynamic
binary translator and the memory layout. The translator com-
piles individual basic blocks of the original x86 application on
demand and places the translated code in a code cache. Trans-
lated control flow transfers use the mapping table to translate
targets in the original application to targets in the code cache.
Untranslated target fall back to the translator. All executed
code is either a part of the translator or of the generated code.

Instructions are translated using a table-based translation
scheme as described in libdetox [21]. Most instructions are
copied verbatim. For cross-ISA translation some instructions
must be adapted due to different memory encodings or
addressing schemes, other instructions are emulated by
the translation layer. In addition, all instructions that alter
control flow (e.g., jump instructions, call instructions, return
instructions, system calls, or interrupts) are adapted so that the
binary translator keeps control of the translated application.

3

118 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

3.2 Memory layout

The x64 ISA uses 64-bit wide pointers (whereas the physical
memory bus is up to 48bit wide). The binary translator maps
the original application to the low 4GB. The binary translator
library, the code cache, the mapping table, and all shadow mem-
ory are placed above the 4GB limit of the translated application.

The translated application still uses 32-bit pointers and
32-bit registers and has therefore no access to any data of the
binary translator. This enables hardware enforced protection
of the internal data from the translated application as the
application is not able to generate a memory access to that
region due to the 32-bit wide pointers used in the source ISA.
In addition, the application has exclusive access to the original
32-bit address space; the binary translator keeps all data in
higher memory areas.

3.3 MemTrace design summary

All state for the memlets and the internal data for the binary
translator are stored in the area of the 64-bit address space
above the first 4GB. The wider address space of a 64-bit ISA
like x64 in comparison to a 32-bit address space allows the
binary translator to place the shadow memory data structure
and all binary translator data structures into an address area
that is not accessible from the original application. The
translated application uses the low 4 GB of the 64-bit address
space that overlaps with the complete 4 GB address space
of a 32-bit application. The binary translator is completely
concealed; translated code is put in a code cache and every
control flow transfer uses a mapping table to map the original
target in the application memory space to the translated target
in the binary translator space. The application is fully isolated
from the binary translator: all pointers in the application
domain are 32-bit; the application has no access to any data
of the binary translator. The evaluation of the prototype
implementation shows low performance overhead with a
geometric mean of 1.97x for the SPEC CPU2006 benchmarks.

4 Memory tracing case studies

This section presents two case studies that use the lightweight
memory tracing technique. The first case study designs a
memlet for unlimited watchpoints. The memlet for unlimited
watchpoints supports both read and write watchpoints and
can be used to overcome the hardware limitation of 4 write
watchpoints on current x86 platforms.

The second case study implements a memory allocation
checker. Upon every allocation in a C or C++ program
the memory checker adds additional safe zones around the
allocated memory region. Any out-of-bounds reads and writes
are detected and stop the program.

4.1 Case study: a memlet for unlimited watchpoints

Watchpoints are used to debug applications and enable the
inspection of specific memory addresses. Read watchpoints
are triggered whenever the location is read and write

/* check */
lea 0x3d(%edx, %ecx, 4), %r8
cmpl (%r15, %r8), %r12w
jnz handler_92746
/* translated instruction */
addl 0x3d(%edx, %ecx, 4), %eax

addl 0x3d(%edx, %ecx, 4), %eax

Original 32bit instruction
64bit instructions with monitor

Figure 2: Translation of a memory accessing instruction.

watchpoints are triggered whenever the location is written.
For example, if a certain address is read or written by a bug
in the application then a watchpoint can be used to find the
code location and context where that read or write access is
executed. x86 supports up to 4 (up to 8 byte wide) hardware
watchpoints that can be set using debug registers. For many
use cases 4 watchpoints are not enough as a wider memory
region must be protected to find a specific bug.

The lightweight memory tracing technique facilitates
the design of a simple watchpoint memlet that implements
unlimited read and write watchpoints with constant overhead.
The overhead is constant for every memory access and does
not increase with the number of watchpoints.

The watchpoint memlet uses a shadow memory segment
of the same size as the original application. The shadow
memory is mapped with a 4GB offset (i.e., the address
0xdeadbeef is shadowed at 0x1deadbeef). Every byte
in shadow memory is either 0 (if no watchpoint should be
triggered) or non-0 if either a read or write watchpoint is
set. Figure 2 shows the translation of a sample instruction
that reads a memory address. The instruction is translated to
64-bit by expanding all pointers in the instruction. MemTrace
adds the memlet before the memory-accessing instruction and
checks if the shadow data is 0. The register %r15 holds the
constant offset 0x100000000, %r12 keeps the value 0, and
%r13 is used to store the watchpoint information.

The memlet is optimized for fast execution: the instruction
cache (i-cache) pressure is reduced by using shorter instruction
encodings for memlets and moving the watchpoint handler
(the cold path) out into a trampoline. The memlet uses
two registers (%r12 and %r15) to store constants. Each
replacement of a constant with a register saves 8 bytes in the
instruction length. In addition, the translator generates a cold
path trampoline for each instruction that accesses memory.
The trampoline stores the context (i.e., original IP of the
instruction that triggered the watchpoint) and transfers control
to the general watchpoint handler.

An interesting feature of the shadow memory segments
is that unaligned multi-byte memory accesses are supported.
If an instruction accesses a multi-byte value then the shadow
bytes of all bytes are combined. The memlet checks for non-0
and detects with a single check if a watchpoint is set for at
least a single byte of the multi-byte access.

The watchpoints can either be used by a debugging
script/program or can be used as regular watchpoints in GDB.
GDB allows remote stubs as backends with the standard GDB

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 119

frontend using a remote serial protocol [10]. The backend
implements a simple protocol to, e.g., read registers, set
breakpoints, and to set watchpoints. The remote stub starts
the application under the control of the lightweight memory
tracing prototype implementation. Watchpoints are forwarded
from the GDB frontend and activated using the watchpoint
memlets in translated code.

4.2 Case study: safe heap memory allocator

Ptmalloc2 [11], the standard allocator for C and C++ is
an in-place memory allocator that stores information about
each allocated memory block before and after the block.
This information may be overwritten by buffer overflows or
random memory writes. Such bugs are hard to find because
memory corruption bugs might only cause a segmentation
fault when the block is reused the next time.

This case study uses the watchpoint memlet to set watch-
points before and after every allocated memory block. Calls to
the memory allocator are intercepted by the binary translation
framework and new watchpoints are added dynamically. If
a block is collected (freed) then the watchpoints are removed.

If a bug in the application writes to a watchpoint or reads
a watchpoint (i.e. the application accesses an illegal memory
region) then the application is either terminated with an
information message or a debugger is attached dynamically
so that a programmer can analyze the problem.

5 Implementation

The prototype implementation of memTrace extends the
libdetox [21] binary translation platform. The libdetox
platform is a table-based x86 to x86 binary translator. Our
prototype implementation extends the translator with a
cross-ISA translation module that transforms x86 instructions
to equivalent x64 instructions. The complete prototype
implementation is released as open source.

The prototype implementation maps the 32-bit version of
the standard loader ld.so into the 32-bit address space and
prepares the application stack with the correct parameters that
ld.so expects for the initialization of a 32-bit application.
Next the binary translator starts translation and execution of
the loader code which loads and initializes all needed shared
libraries and starts the execution of the application.

The following sections discuss the translation of individual
instructions, present how the memory layout of a translated
application looks, and focus on specific translation details.

5.1 Instruction translation

Due to the similarity of the two ISAs the encoding of most
instructions is similar as well, the translation is straight-forward
and follows the concept of other table-based translators. For
most instructions the available encodings on x64 are a super-set
of the available encodings of x84. The binary translator uses
linked instruction tables to decode the current instruction. If
the instruction accesses memory then the pointers are zero

expanded to 64-bit memory addresses and the memlet is emit-
ted before the translated instruction. The binary translator uses
one of the following translation schemes for each instruction:

Emulation: instructions that are not available on x64 (e.g.,
pusha, or popa) are replaced by a sequence of instructions
that emulates the removed instruction transparently.

Exception: instructions that are no longer used (e.g., aaa,
or aad) raise an exception. The binary translator fails
gracefully and prints an error message. An emulation of
these instructions can be added if needed.

Encoding: some instructions are encoded differently on x64
(e.g., inc, or dec). These instructions are replaced during
the translation process.

Addressing mode: x64 uses an instruction pointer relative
addressing mode instead of an absolute addressing mode.
Absolute references are translated dynamically to absolute
addresses during code generation.

Different semantics: some instructions change their
semantics (e.g., push, or pop) and operate on quadwords
on x64. These instructions are translated to operate on
doublewords during the translation.

Rep prefix: the handling of the rep prefix changes for x64.
String operations (e.g., rep stosb) that use the rep prefix
are translated to loops during the translation process.

On x64 segment-based addressing is restricted compared
to x86. Current user-space x86 applications use segmenting
only for thread local storage in current applications. The x64
ISA supports segmentation for thread local storage and the
prototype implementation support 32-bit thread local storage
in a 64-bit environment.

5.2 Shadow memory

The 64-bit address space enables the implementation to use
address regions that cannot be encoded using 32-bit memory
pointers. The application uses the low 4GB of the 64-bit
address space and no data in that region is changed through
the binary translator (the data may be changed as a function of
the memlets). Figure 3 shows the memory layout of a running
application under the control of memTrace.

The next 4GB are used as shadow memory of the
application memory at offset 0x100000000. The memlets
store information about the corresponding memory addresses
of the application in the shadow memory. The shadow
memory regions are mapped at the same time when the
application memory is mapped. Virtual memory allocates
physical pages only if the page is accessed by a memlet
(e.g., code regions are not accessed by our memlets and the
physical pages are therefore not allocated). An upper bound
for the memory consumption for the shadow memory is 1x the

5

120 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Translator memoryShadow memory
(used by monitors)

Application memory

C
o

d
e
 &

 d
a
ta

H
e

a
p

S
ta

c
k

C
o
d

e
 c

a
c
h

e
 &

tra
n
s
la

t o
r d

a
ta

T
ra

n
s
la

to
r c

o
d
e

C
o
d

e
' &

 d
a
ta

'

H
e

a
p
'

S
ta

c
k
'

T
ra

n
s
la

to
r s

ta
c
k

0x0'FFFF'FFFF (4GB) 0x1'FFFF'FFFF (8GB)0x0'0000'0000

Figure 3: Memory layout of the translated application.

memory that the application uses. Memlets may use multiple
shadow memory regions to store additional information (i.e.,
at offsets 0x200000000, 0x300000000, and so on).

5.3 Register allocation

The x64 ISA offers 8 additional general registers (%r8 to
%r15) that can be used by the lightweight memory tracing
technique. The binary translator component is compiled for the
x64 ISA and uses all available registers during the translation
of x86 code. The transition between translator and translated
application code saves and restores all general purpose registers.
The memlets are native x64 code and can use the 8 additional
x64 registers during the execution of the translated code.

Both memlets discussed here use registers %r8 and %r9

as temporary scratch registers. The memory watchpoint
memlet uses three registers %r10, %r11, and %r13 to track
usage of the eflags register. Saving and restoring the
eflags register before and after the execution of a memlet
adds overhead, therefore reducing the number of save and
restore operations is important.

The register %r12 holds the constant 0x0 and the
register %r15 holds the constant offset to the shadow
memory (0x100000000). Using registers to hold constants
instead of encoding constants in the instruction itself saves
8 bytes per used constant in the emitted code. If needed, these
registers may be used for other purposes.

5.4 String instructions

String instructions use the rep prefix to repeat a single
instruction n times. String instructions access multiple memory
locations in a sequence of incrementing or decrementing
addresses.

MemTrace replaces string instructions with a short loop
that first checks the source address and the destination address,
executes a single instruction with the current parameters, and
increments or decrements the source and target registers.

5.5 System calls, signals, and threads

An x86 application requests system calls either using interrupts
(int $0x80) or using the sysenter instruction. On x64
the application uses the syscall instruction. The mapping
between system call and system call number is different

between x86 and x64. The parameters of individual system
calls can change as well (i.e., 64-bit wide addresses instead
of 32-bit wide addresses).

MemTrace uses a mapping table to map between x86 and
x64 system calls. Most system calls can be mapped easily.
For system calls that access memory, pointers are dynamically
extended to 64-bit and returned pointers from the kernel
are truncated to 32-bit. All memory management system
calls (mmap, munmap, mremap, and brk) are redirected to
a special handler function that checks and adapts the specified
parameters and manages the shadow memory as well.

Signals are handled in the binary translator as well. The bi-
nary translator intercepts all system calls that install signals and
replaces the signal handlers with its own internal signal handler.
This signal handler then handles the switch to the application
stack if the signal was caught while in the translator and ex-
ecutes the corresponding translated application signal handler.

The cross-ISA binary translator supports Linux pthreads
by translating thread-related system calls of the application
into the necessary 64-bit system calls. Thread support is
a difficult problem for memory tracing due to possible
synchronization issues. Two threads may concurrently modify
the same memory address and the corresponding memlets
may therefore access the same shadow value. As long as the
application synchronizes access to the memory location the
access to the shadow value is implicitly synchronized as well.
If the original program has a data-race then the memlets must
synchronize concurrent writes, e.g., by using regional locks.
Simply adding a lock prefix to the original memory access
is not enough as the memlet will access a second memory
location. Adding explicit locks for each memory access adds
high overhead and is currently not implemented.

The accesses of the memlets to the shadow table follow the
same pattern as the memory accesses in the original application.
If the application locks the memory region for a specific thread
then the corresponding shadow memory region is implicitly
locked as well. No other application thread can access the
original memory region, therefore no memlet of another thread
will access the implicitly locked shadow memory region. This
implicit locking approach only works if the application has
no data races between threads. User-defined memlets that
analyze inter-thread behavior, e.g., to check for data races,
must lock the shadow memory themselves.

5.6 Flag tracking optimizations

This section presents two optimizations for the binary
translator that help lowering the overhead for memory tracing.
The first optimization tracks the usage of the eflags register
and allows the memlets to change the eflags register if the
eflags register is not used between instructions that affect
the flags. The second optimization stores the operands of
the relevant arithmetic instruction in two free registers and
reexecutes the instruction with a bogus target.

A big advantage of the cross-ISA translation is that

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 121

addl %ebx , %eax # sets flags , unused

subl %ecx , %eax # sets flags , used

movl (0 xdeadbeef), %ebx # mem. read

movl %eax , (0 xdeadbeef) # mem. write

jnz next_block # uses flag

Listing 1: Example of a basic block in an application

memTrace can use additional free registers without the need
for register reallocation. Unfortunately one register is shared
between the binary translator, the memlets, and the translated
application code: the eflags register. The situation is
worsened by the fact that access to this register is very slow
when using pushf and popf instructions. Instead of using
pushf and popf instructions we use a short sequence of
instructions (lahf and seto to save and addb and sahf

to restore) to handle the eflags register.
On x86 all arithmetic instructions, the “compare” instruc-

tion, and the “test” instructions set the eflags register.
But the eflags register is only read after a subset of the
instructions. Table-based binary translators do not build an
intermediate representation (IR) which makes eflags-usage
tracking more complicated. MemTrace uses a triple-pass
approach to track usage of the eflags register in each basic
block. The first two passes decode all instructions and analyze
which instructions use the eflags register. The third pass
emits translated instructions (including the memlets which
change the application-set eflags register) but inserts code
that saves the eflags register only when necessary.

The second optimization saves the operands of the
eflags-relevant arithmetic instruction in two x64 registers
(%r10, and %r11). In front of the instruction that reads
the eflags register the arithmetic instruction is executed
again (with the saved operands) to reproduce the state of the
eflags register. This optimization reduces the overhead of
saving and restoring the eflags register in tight loops.

Listing 1 shows an example of a basic block. The first two
instructions set the eflags registers, but only the result of
the subl instruction is used. The two movl instructions
execute memory accesses and the memlets in the instrumented
code overwrite the status of the subl instruction. MemTrace
restores the status of the eflags register of the last
arithmetic instruction before the jnz instruction.

6 Evaluation

The prototype implementation is stable and runs applications
like, e.g., the parsec benchmarks, OpenOffice, gedit, and
the complete set of SPEC CPU2006 benchmarks. The
evaluation uses the SPEC CPU2006 benchmarks to evaluate
the performance of the memTrace prototype implementation,
including two different user-defined memlets.

This evaluation uses all SPEC CPU2006 benchmarks
except 481.wrf which no longer compiles on modern systems.

This is not a limitation of our prototype implementation but
a limitation of the SPEC CPU2006 benchmarks.

All benchmarks are executed on a 64-bit version of Ubuntu
12.04. The machine uses an Intel Core i7-2640M CPU with
2 cores at 2.80 GHz with 4 GB of memory. The benchmarks
are compiled using gcc version 4.6.3 and use the glibc version
2.15. The benchmarks are compiled for 32-bit.

6.1 SPEC CPU2006

This section evaluates the performance of memTrace, our
prototype implementation, using the SPEC CPU2006 version
1.0.1 benchmarks using the flags -O3 -m32. We evaluate
different configurations of memTrace to show the overall
overhead and relative performance changes for individual
optimizations. The evaluations use the runspec script to
produce reproducible runs with 3 iterations.

We perform the measurements on both the reference dataset
and on the test dataset. The test dataset is used to evaluate
the overhead for short running programs while the reference
dataset shows the overhead for long running benchmarks. The
following configurations are used:

NAT: A native configuration that runs without binary
translation or memory tracing.

ID: The benchmarks execute with binary translation.

EFL: This configuration measures the overhead for storing
and restoring the eflags register for memory tracing.
Code that saves and restores the eflags register is added
before as if memory tracing is executed but no memlets
are added. All optimizations discussed in Section 5.6 are
enabled.

MT: This configuration shows the performance of the
baseline memory tracing framework. MT extends the EFL
extension and measures the impact of reading the shadow
memory address for each memory access.

WP: This configuration executes full memory tracing using
the watchpoint memlets (without any active watchpoints).

Table 1 shows the overhead of the four different memTrace
configurations compared to native execution of the 32-bit bina-
ries. Most benchmarks exhibit moderate overhead for the dif-
ferent memTrace configurations. The overhead is always below
3.11x and for 16 of 28 applications the overhead is below 2x.

The ID configuration measures the overhead for cross-ISA
translation. The overhead for cross-ISA binary translation is
low, 15% on average with a geometric mean of 17%. The usual
culprits 400.perlbench, 403.gcc, 445.gobmk, 458.sjeng, and
453.povray result in an overhead of more than 40% for binary
translation due to the high number of indirect control flow
transfers. The ID configuration shows that the binary translator
is a reasonable baseline to implement memory tracing.

7

122 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Benchmark NAT [s] ID EFL MT WP
400.perlbench 324.00 1.74 2.10 2.60 2.82
401.bzip2 498.00 1.08 1.28 1.91 1.97
403.gcc 305.00 1.40 1.65 2.08 2.20
429.mcf 278.00 1.10 1.10 2.00 2.21
445.gobmp 434.00 1.49 1.85 2.26 2.74
456.hmmer 433.00 1.01 1.43 2.63 2.63
458.sjeng 485.00 1.56 1.99 2.35 2.72
462.libquantum 543.00 1.01 1.03 1.23 1.24
464.h264ref 609.00 1.22 1.42 2.71 2.86
471.omnetpp 308.00 1.37 1.44 1.89 1.94
473.astar 412.00 1.09 1.25 1.60 1.62
483.xalancbmk 252.00 1.90 2.23 2.68 2.99
410.bwaves 405.00 1.01 1.20 1.96 1.97
416.gamess 760.00 1.09 1.57 2.30 2.43
433.milc 441.00 1.00 1.06 1.32 1.34
434.zeusmp 540.00 1.02 1.22 1.69 1.72
435.gromacs 658.00 1.01 1.15 1.43 1.49
436.cactusADM 1120.00 0.99 1.24 2.21 3.11
437.leslie3d 447.00 1.02 1.11 1.44 1.44
444.namd 412.00 1.02 1.23 1.61 1.63
447.dealII 318.00 1.35 1.56 2.08 2.13
450.soplex 298.00 1.07 1.23 1.46 1.51
453.povray 181.00 1.49 2.05 2.62 2.78
454.calculix 696.00 1.03 1.21 1.55 1.59
459.GemsFDTD 503.00 1.04 1.14 1.61 1.66
465.tonto 559.00 1.15 1.35 1.71 1.81
470.lbm 440.00 1.00 1.02 1.13 1.14
482.sphinx3 521.00 1.05 1.23 1.59 1.61
Average 470.71 1.15 1.36 1.90 2.06
Geo. mean 439.54 1.17 1.37 1.86 1.97

Table 1: Performance evaluation using the SPEC CPU
2006 benchmarks (reference dataset). NAT shows native
execution in seconds, the remaining columns show memTrace
configurations relative to NAT.

The EFL configuration measures the performance overhead
induced by eflags tracking, saving, and restoring needed
if additional code is executed for every memory-accessing
instruction. No memlet code is executed for this configuration.
The average performance overhead for this configuration is
36% and the geometric mean is 37%. Different benchmarks
show different increase in the performance overhead. These
differences hint at the number of memory-accessing instruc-
tions that are executed for each benchmark. If the overhead
increases over-proportional, then the benchmark executes more
memory accessing instructions than the average benchmark.

The MT configuration extends the EFL configuration
by reading the shadow value for each accessed memory
location. No additional computation is executed. The
performance difference between EFL shows the impact of one
additional mov instruction per memory-accessing instruction

Benchmark NAT [s] ID EFL MT WP VAL VMEM
400.perlbench 3.57 1.67 1.75 1.88 1.95 6.53 err
401.bzip2 5.79 1.10 1.30 2.09 2.16 4.40 16.29
403.gcc 1.00 2.01 2.27 2.74 3.07 11.42 err
429.mcf 1.69 1.15 1.19 2.17 2.27 3.44 10.00
445.gobmk 15.00 1.49 1.85 2.26 2.71 8.07 31.20
456.hmmer 2.51 1.10 1.49 2.37 2.39 5.66 28.53
458.sjeng 3.39 1.53 1.87 2.25 2.58 7.73 31.27
462.libquantum 0.05 1.40 1.56 2.01 2.01 8.30 17.35
464.h264ref 12.30 1.24 1.59 2.60 2.72 4.73 34.47
471.omnetpp 0.31 3.66 4.33 4.90 5.92 18.15 73.25
473.astar 7.93 1.08 1.23 1.54 1.59 2.86 11.92
483.xalancbmk 0.08 4.36 4.52 5.39 5.79 22.93 65.79
410.bwaves 5.13 1.02 1.21 2.03 2.05 5.85 61.79
416.gamess 0.33 1.47 1.79 2.40 2.58 11.23 43.69
433.milc 5.06 1.12 1.34 1.77 1.77 6.52 31.03
434.zeusmp 13.80 1.01 1.24 1.64 1.64 err err
435.gromacs 1.37 1.11 1.25 1.52 1.60 5.64 20.44
436.cactusADM 2.47 1.02 1.44 3.00 4.66 6.15 err
437.leslie3d 11.50 1.02 1.13 1.48 1.48 4.83 12.00
444.namd 11.10 1.05 1.26 1.63 1.65 7.09 23.78
447.dealII 13.20 1.42 1.58 2.20 2.24 err err
450.soplex 0.03 2.57 2.79 3.03 3.19 err err
453.povray 0.50 1.62 2.11 2.68 2.88 11.15 52.52
454.calculix 0.05 2.38 2.75 3.24 3.22 16.57 44.01
459.GemsFDTD 2.10 1.32 1.45 2.00 2.07 5.62 17.14
465.tonto 0.80 1.43 1.71 2.10 2.25 8.39 31.54
470.lbm 3.27 1.00 1.02 1.10 1.11 3.24 11.77
482.sphinx3 1.45 1.30 1.49 1.84 2.00 8.90 34.69
Average 4.49 1.22 1.45 1.98 2.12 5.24 24.30
Geo. mean 1.68 1.43 1.67 2.21 2.36 7.13 26.39

Table 2: Performance evaluation using the SPEC CPU2006
benchmarks (test dataset). NAT shows native execution in
seconds, the next four columns compare different memTrace
configurations to NAT. The last two columns compare
Valgrind nullgrind (VAL) and memcheck (VMEM) to NAT.

combined with additional cache pressure for accessing twice
as many memory locations in hot code regions. Several
benchmarks exhibit a performance impact of 2.0x to 2.7x
for this configuration. The average overhead is 1.90x with
a geometric mean of 1.86x. This configuration shows the
overhead for memory tracing without executing any memlets.

The WP configuration extends the MT configuration with
the memlet for unlimited watchpoints. No watchpoints are set
in this configuration, but the difference in execution time be-
tween configurations with set watchpoints and configurations
without set watchpoints is negligible if no watchpoints are
taken. If watchpoints are taken then the execution time of the
watchpoint handlers must be added to the overhead as well. We
measure the highest performance impact for the cactusADM
benchmark with 3.11x performance impact compared to native
execution due to the high frequency of memory accesses.
The average overhead is 2.06x and the geometric mean is
1.97x. These two values show that the additional overhead

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 123

for the user-defined memlet is low compared to the execution
overhead of the baseline memory tracing framework.

The performance analysis shows that the overall overhead
for the prototype of the lightweight memory tracing framework
using cross-ISA translation (the MT configuration) is
below 2.0x and that the additional performance impact for
the execution of user-definable memlets is low (the WP
configuration). Lightweight memory tracing is a technique
that can be used in practice to trace every single memory
access of an application using user-definable memlets with
tolerable execution overhead.

6.2 Comparison to other systems

This section evaluates the prototype implementation of the
memTrace technique with other, similar software products
that are capable of memory tracing. We tried running the
minemu 0.8 open-source version on a 64-bit Ubuntu 12.04
system. Unfortunately the current version of minemu crashes
during the initialization of thread local storage of the SPEC
CPU2006 benchmarks when running 32-bit x86 binaries on
an x64 system.

6.2.1 Valgrind

We evaluate valgrind [18] version 3.7.0-0ubuntu3 as the second
system in two configurations: nullgrind (VAL) to evaluate
the Valgrind overhead and (VMEM) to evaluate Valgrind’s
memcheck overhead. Table 2 shows the timings of the SPEC
CPU2006 benchmarks and compare different configurations
against the native execution of the test dataset. The test dataset
uses shorter input files and simpler problems. This comparison
uses only the test dataset due to the higher translation overhead
of Valgrind. The 434.zeusmp, 447.dealII, and 450.soplex
benchmarks did not complete under Valgrind’s nullgrind
configuration and the 400.perlbench, 403.gcc, 434.zeusmp,
436.cactusADM, 447.dealII, and 450.soplex benchmarks
did not complete under Valgrind’s memcheck configuration.
MemTrace uses the same configurations as in Section 6.1.

The evaluation for memTrace shows a similar picture like
the performance analysis of the ref dataset. In general the
overhead increases due to the fact that translated code in the
code cache is reused less often. The geometric mean for the
MT configuration is 2.21x and the average overhead is 1.98x
(compared to a geometric mean of 1.86x and an average of
1.90 for the ref dataset).

Valgrind on the other hand exhibits an average overhead
of 5.24x and a geometric mean of 7.13x for the test dataset
in the nullgrind configuration. The nullgrind configuration is
comparable to the ID configuration of memTrace and does not
execute any memlets or other user-defined code. The mem-
check configuration of Valgrind results in an average overhead
of 24.3x and a geometric mean of 26.4x. The memcheck
configuration is comparable to memTrace’s WP configuration.

1 WP [s] 10 WP [s] 100 WP [s]
GDB SW WP 180 330 1670
memTrace 0.01 0.01 0.01

Table 3: Evaluation of the microbenchmark in with the first
watchpoint at the 1,000 element.

6.2.2 GDB

We use a CPU-bound microbenchmark to evaluate the
performance of the watchpoint memlet compared to GDB.
The microbenchmark sets W consecutive watchpoints in a
large array and processes the array in multiple passes, where
the nth pass accesses the first n elements of the array. In
each pass, the elements are accessed using several patterns:
a forward linear sweep, a convolution, and a sparse backward
sweep. The microbenchmark measures the time until the first
watchpoint is hit and handled by the debugger.

To compare memTrace performance with hardware
watchpoint performance we configure the microbenchmark
with the first watchpoint at the 500,000 array element (i.e.,
memTrace needs to execute a large amount of memlets that
do not trigger a watchpoint). With one active watchpoint
the hardware watchpoint configuration executes in 52.8
seconds while the memTrace implementation uses 80.5
seconds, resulting in 52% overhead compared to the hardware
implementation. While hardware watchpoints support only up
to 4 simultaneous watchpoints memTrace supports unlimited
watchpoints at a constant overhead (104 watchpoints in 80.5
seconds and 108 watchpoints in 81.5 seconds). Even at 108

watchpoints the performance of memTrace remains stable.
Table 3 compares memTrace performance with the

performance of GDB software watchpoints with the first
watchpoint at the 1,000 array element. Even for 1 GDB
software watchpoint memTrace is 18,000x faster than software
watchpoints. For 100 GDB software watchpoints memTrace
is 167,000x faster. The prototype implementation of the
memTrace watchpoint memlet fully supports the remote serial
protocol of GDB and works as a fast drop-in replacement for
the GDB software watchpoints.

6.3 Memory overhead

Table 4 presents an analysis of the memory overhead for the
SPEC CPU2006 benchmarks when run natively and under the
control of the memTrace prototype implementation. The table
shows the peak amount of mapped memory of the benchmark.
This benchmark measures the number of mapped memory
pages, not the number of allocated memory pages. The allo-
cated memory pages are a subset of the mapped memory pages.

The memory overhead for binary translation only is low
with an average of 9.2 MB and a maximum of 12.7 MB.
Binary translation only needs few data structures (8 MB for
the mapping table plus data structures for the code cache,
signal handlers, and trampolines). These numbers show that

9

124 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Benchmark NAT [MB] ID [MB] Ovhd. WP [MB] Ovhd.
400.perlbench 565.24 574.92 1.7% 1142.16 102.1%
401.bzip2 628.27 636.76 1.4% 1265.34 101.4%
403.gcc 84.05 96.74 15.1% 186.92 122.4%
429.mcf 856.22 864.64 1.0% 1721.12 101.0%
445.gobmk 38.66 48.66 25.9% 89.76 132.2%
456.hmmer 21.07 29.61 40.5% 51.11 142.6%
458.sjeng 192.09 200.64 4.4% 393.17 104.7%
462.libquantum 114.02 122.44 7.4% 236.78 107.7%
464.h264ref 81.00 89.97 11.1% 172.15 112.5%
471.omnetpp 119.57 129.02 7.9% 250.28 109.3%
473.astar 140.52 149.00 6.0% 289.96 106.3%
483.xalancbmk 329.77 340.42 3.2% 673.82 104.3%
410.bwaves 891.57 900.11 1.0% 1792.19 101.0%
416.gamess 655.31 665.31 1.5% 1323.43 102.0%
433.milc 687.87 696.41 1.2% 1384.78 101.3%
434.zeusmp 1136.98 1146.00 0.8% 2284.24 100.9%
435.gromacs 34.60 43.39 25.4% 78.87 127.9%
436.cactusADM 1017.70 1026.80 0.9% 2045.81 101.0%
437.leslie3d 141.02 149.68 6.1% 291.39 106.6%
444.namd 63.85 72.52 13.6% 137.12 114.7%
447.dealII 501.38 510.89 1.9% 1014.33 102.3%
450.soplex 509.26 518.04 1.7% 1028.18 101.9%
453.povray 21.84 31.10 42.4% 54.44 149.3%
454.calculix 179.23 188.73 5.3% 369.89 106.4%
459.GemsFDTD 845.69 855.01 1.1% 1702.32 101.3%
465.tonto 53.91 64.46 19.6% 122.37 127.0%
470.lbm 426.93 435.35 2.0% 862.53 102.0%
482.sphinx3 57.81 66.59 15.2% 125.16 116.5%
Average 371.27 380.47 2.5% 753.20 102.9%
Geo. mean 201.55 219.56 8.9% 413.58 105.2%

Table 4: Memory consumption in megabytes of the SPEC
CPU2006 benchmarks (NAT) and additional memory
consumption of different configurations of the memTrace
prototype implementation. ID represents a binary translation
only configuration.

the memory overhead for cross-ISA binary translation is low.
The last column of Table 4 shows the memory overhead

of the WP configuration. The amount of mapped memory
is roughly doubled due to the shadow memory region.

7 Related work

There are several areas of related work that are relevant for
lightweight memory tracing. Binary translation is needed to
dynamically weave the memlets into the executed application
code. The following sections discuss different systems for
binary translation and different systems that implement some
forms of memory tracing.

7.1 Binary translation

Binary translation enables late code modification to, e.g.,
instrument a binary application, to offer late code optimization,
or to execute an application on a different ISA than it was
originally compiled for.

Full-ISA emulation is too slow for real-world scenarios and
mostly used for evaluation of new hardware features. Efficient
binary translation is implemented using either table-based
approaches or IR-based approaches.

Same-ISA binary translation translates an application to the
same ISA (x86 to x86). A drawback of same-ISA translation
is the register pressure on x86. Only 8 general purpose
registers are available for x86 applications and only 6 or 7
registers are available for general computation (depending
on the calling conventions). Memlets used for memory tracing
need to execute additional computation for each memory
access, starving the register allocator even further.

IR-based binary translators translate the application by
using a traditional compiler approach. The binary translator
transforms code into an IR, adds the desired instrumentation,
and generates machine code for the desired platform.
Translation is either dynamic like in a just-in-time compiler or
static ahead-of-time. DynamoRIO [5], PIN [15], QEMU [3],
and Valgrind [18] are dynamic IR-based binary translators.
The IR-based approach enables compiler optimization to
produce high-quality code at some translation cost.

Dynamic table-based binary translators (e.g., HDTrans [25],
fastBT/libdetox [20, 21], or StarDBT [28]) use translation
tables to decode original instructions and to generate translated
instructions. The advantage is the low-overhead translation
speed combined with reasonable code quality.

StarDBT [28] and QEMU [3] are two binary translation
systems that support cross-ISA translation. StarDBT translates
x86 code to x64 code and QEMU translates (almost) any ISA
to (almost) any other ISA.

MemTrace is a cross-ISA table-based dynamic binary
translator that translates user-space applications from x86
to x64. The binary translator component offers near-native
performance. The StarDBT binary translator is similar
to our binary translator but uses two compilation stages
(baseline and optimized) while memTrace uses only one fast
table-based translation scheme. In addition, memTrace allows
the definition of user-defined memlets that may use fixed
registers to speed up memlet execution.

7.2 Memory tracing and watchpoints

Memory tracing allows the execution of memlets for each
memory access. A baseline memory tracing infrastructure
is needed to implement higher-level memlets like watchpoints,
or taint checking.

Greathouse et al. [12] present a case for unlimited
watchpoints and light-weight, hardware-assisted memory
tracing. They reason that additional hardware is needed to
achieve low overhead for unlimited watchpoints. MemTrace
shows that cross-ISA translation realizes low-overhead
memory tracing (and watchpoints) for x86 applications when
executed on modern processors that support x64 extensions.

Metric [16] is a memory tracing framework that collects
and stores selected memory access traces. Memcheck [17],

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 125

System Arch. Underlying BT Shadow memory Overhead
memTrace x86 to x64 libdetox 1 byte per byte 2.0x for SPEC CPU2006
Libdft [14] x86 to x86 PIN flexible 1.14x to 10x slowdown SPEC CPU2000
Minemu [4] x86 to x86 dynamic BT, no SSEa 1 byte per byte 2.4x for SPEC INT2006
PTT [9] x86 to x86 QEMU 32-bit vector per byte 21.1x for compression benchmark
Saxena et al. [24] x86 to x86 static BT 1 bit per byte 1.9x (stack only) to 2.8x (SPEC INT95 subset)
Panorama [30] x86 to x86 QEMU 4 byte pointer per byte 20x on selected benchmarks
Dytan [7] x86 to x86 static BT 1 bit vector per byte 30x to 50x for gzip
LIFT [23] x86 to x64 StarDBT 1 bit per byte 1.7-7.9x, 3.6x for SPEC INT2000
Argos [22] x86 to x86 QEMU 1 bit per byte (phys. mem) “at least 16x overhead”
Xentaint [13] x86 to x86 Xen and QEMU 1 bit per byte 61.5x to 88.4x for micro-benchmarks
Vigilante [8] x86 to x86 static BT on start-up 1 bit per 4k page no numbers on performance overhead reported
Taintcheck [19] x86 to x86 Valgrind 4 byte pointer per byte 1.5x to 40x
Suh et al. [26] Alpha HW extension 1 bit per page/quad word/byte 1.44% for SPEC CPU2000

aMinemu internally uses the SSE registers and cannot support any SSE instructions in applications. Modern compilers use SSE instructions to speed up
memory transfers, for vectorization, and for floating point computation.

Table 5: Comparison of different taint checking and dataflow analysis systems.

Umbra [31], EDDI [32], and Dr. Memory [6] are four
frameworks for memory tracing that use same-ISA binary
translation to add hard-coded memlets for watchpoints.
Memcheck builds on Valgrind and reports an overhead of
22.2x for the SPEC CPU2000 benchmarks. Umbra, EDDI,
and Dr. Memory build on DynamoRIO. Umbra reports an
overhead of 2.33x for SPEC CPU2006 for memory tracing of
an x64 application; an example tool that extends Umbra with
a memlet that monitors thread’s memory accesses imposes
a 6.49x overhead for a set of benchmarks. EDDI reports an
overhead of 2.59x for 0 watchpoints and 3.68x for watching
the complete data region on the SPEC CPU2000 benchmarks
in the FI configuration. The PI configuration of EDDI only
reports on a subset of the SPEC CPU2000 benchmarks. Dr.
Memory reports a slowdown of 10.2x for the SPEC CPU2006
benchmarks. Umbra implements memory tracing without
additional memlets; memcheck, EDDI, and Dr. Memory add
hard-coded instructions into the executed application code
to check memory accesses for validity.

MemTrace improves on related work by offering
user-definable memlets that implement high-level memory
checkers and offers better performance than previous solutions:
memTrace reports an average overhead of 2.06x and a
geometric mean of 1.97x for tracing all memory accesses of
all SPEC CPU2006 benchmarks.

7.3 Taint checking and dataflow analysis

Taint checking and data flow analysis extend memory tracing
and analyse the flow of data inside an application. Every
memory cell and every register has an associated tag. Taint
checking uses a single taint bit per address while dataflow
analysis supports multiple different tags. Compared to
single-threaded approaches of other related work memTrace
fully supports memlets for concurrent threads.

Some of the systems in the following list use taint checking

or dataflow analysis as a technique in their system. Table 5
focuses on the taint checking or dataflow analysis component
of the presented systems.

MemTrace does not change the address space layout of
the original application, all data of the memlets is stored at
a higher location in the 64-bit memory space. This design
decision solves the problem of accesses to the shadow memory
by the application. For the shadow memory itself memTrace
uses 1 byte per byte, enabling threads to update the (shared)
shadow memory data structure concurrently without locking.
Only if memlets rely on bit-granularity then the programmer
must add a locking scheme to ensure correctness.

8 Conclusion

This paper presents memTrace, a technique for dynamic
lightweight memory tracing for unmodified binary applica-
tions. This technique adds shadow memory and state for each
memory address of an application and allows the execution
of user-defined memlets to inspect memory accesses.

The practical value of memTrace is demonstrated by the
implementation of two memlets: a memory checking memlet
that allows the debugging of memory errors and a memlet
that allows an unlimited number of watchpoints in a running
application. We evaluated the prototype implementation and
show that the overhead for SPEC CPU2006 is low with a
geometric mean of 1.97x and an average of 2.05x.

The open source release of the memTrace prototype is avail-
able at http://nebelwelt.net/projects/memTrace

and can be used to implement other memlets, e.g., for taint
checking, dataflow analysis, or control flow integrity checks.

Acknowledgments

We thank the anonymous reviewers for their comments,
Albert Noll for his comments on an early draft of this paper,
and Jonas Pfefferle and Tobias Hartmann for working on a
same-ISA version of a simple memory tracing infrastructure.

11

126 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

References

[1] ADL-TABATABAI, A.-R., CIERNIAK, M., LUEH, G.-Y.,
PARIKH, V. M., AND STICHNOTH, J. M. Fast, effective code
generation in a just-in-time java compiler. In PLDI’98 (1998),
pp. 280–290.

[2] ALPERN, B., BUTRICO, M. A., COCCHI, A., DOLBY, J.,
FINK, S. J., GROVE, D., AND NGO, T. Experiences porting
the jikes rvm to linux/ia32. In Java Virtual Machine Research
and Technology Symposium (2002), pp. 51–64.

[3] BELLARD, F. QEMU, a fast and portable dynamic translator.
In Proc. USENIX ATC (2005), pp. 41–41.

[4] BOSMAN, E., SLOWINSKA, A., AND BOS, H. Minemu: the
world’s fastest taint tracker. In RAID’11: Proc. 14th conf. on
Recent Advances in Intrusion Detection (2011), pp. 1–20.

[5] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An
infrastructure for adaptive dynamic optimization. In CGO ’03
(2003), pp. 265–275.

[6] BRUENING, D., AND ZHAO, Q. Practical memory checking
with dr. memory. In CGO’11 (2011), pp. 213–223.

[7] CLAUSE, J. A., LI, W., AND ORSO, A. Dytan: a generic
dynamic taint analysis framework. In Intl. Symp. on Software
Testing and Analysis (2007), pp. 196–206.

[8] COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A.
I. T., ZHOU, L., ZHANG, L., AND BARHAM, P. Vigilante:
End-to-End Containment of Internet Worms. In SOSP’05
(2005), vol. 39, pp. 133–147.

[9] ERMOLINSKIY, A., KATTI, S., SHENKER, S., FOWLER,
L. L., AND MCCAULEY, M. Towards practical taint tracking.
Tech. Rep. UCB/EECS-2010-92, EECS Department, Univer-
sity of California, Berkeley, Jun 2010.

[10] GDB. GDB remote serial protocol. http://sourceware.
org/gdb/onlinedocs/gdb/Remote-Protocol.html,
2010.

[11] GLOGER, W. Dynamic memory allocator implementa-
tions in linux system libraries. http://www.dent.med.

uni-muenchen.de/~wmglo/malloc-slides.html, May
1997.

[12] GREATHOUSE, J. L., XIN, H., LUO, Y., AND AUSTIN, T.
A case for unlimited watchpoints. In ASPLOS’12 (2012),
pp. 159–172.

[13] HO, A., FETTERMAN, M., CLARK, C., WARFIELD, A.,
AND HAND, S. Practical taint-based protection using demand
emulation. In EuroSys’06 (2006), pp. 29–41.

[14] KEMERLIS, V. P., PORTOKALIDIS, G., JEE, K., AND

KEROMYTIS, A. D. libdft: practical dynamic data flow track-
ing for commodity systems. In VEE’12 (2012), pp. 121–132.

[15] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WOOD, K. Pin: building customized program analysis tools
with dynamic instrumentation. In PLDI’05 (2005), pp. 190–
200.

[16] MARATHE, J., MUELLER, F., MOHAN, T., MCKEE, S. A.,
DE SUPINSKI, B. R., AND YOO, A. Metric: Memory tracing

via dynamic binary rewriting to identify cache inefficiencies.
ACM Trans. Program. Lang. Syst. 29, 2 (Apr. 2007).

[17] NETHERCOTE, N., AND SEWARD, J. How to shadow every
byte of memory used by a program. In VEE’07 (2007), pp. 65–
74.

[18] NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In PLDI’07
(2007), pp. 89–100.

[19] NEWSOME, J., AND SONG, D. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of exploits
on commodity software. In NDSS’05 (2005).

[20] PAYER, M., AND GROSS, T. R. Generating low-overhead
dynamic binary translators. In Proc. 3rd Annual Haifa Experi-
mental Systems Conf. (2010), SYSTOR ’10, ACM, pp. 22:1–
22:14.

[21] PAYER, M., AND GROSS, T. R. Fine-grained user-space
security through virtualization. In VEE’11: Proc. 7th Int’l Conf.
Virtual Execution Environments (2011), pp. 157–168.

[22] PORTOKALIDIS, G., SLOWINSKA, A., AND BOS, H. Argos:
an emulator for fingerprinting zero-day attacks. In EuroSys’06
(2006).

[23] QIN, F., WANG, C., LI, Z., KIM, H.-S., ZHOU, Y., AND WU,
Y. Lift: A low-overhead practical information flow tracking
system for detecting security attacks. In MICRO’06 (2006),
pp. 135–148.

[24] SAXENA, P., SEKAR, R., AND PURANIK, V. Efficient
fine-grained binary instrumentationwith applications to taint-
tracking. In CGO’08 (2008), pp. 74–83.

[25] SRIDHAR, S., SHAPIRO, J. S., AND BUNGALE, P. P. HD-
Trans: a low-overhead dynamic translator. SIGARCH Comput.
Archit. News 35, 1 (2007), 135–140.

[26] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Se-
cure program execution via dynamic information flow tracking.
In ASPLOS’04 (2004), pp. 85–96.

[27] VMWARE. Software and hardware techniques for x86
virtualization. http://www.vmware.com/files/pdf/

software_hardware_tech_x86_virt.pdf, 2009.
[28] WANG, C., HU, S., KIM, H.-S., NAIR, S., BRETERNITZ, M.,

YING, Z., AND WU, Y. Stardbt: An efficient multi-platform
dynamic binary translation system. In Advances in Computer
Systems Architecture, vol. 4697. 2007, pp. 4–15.

[29] WIMMER, C., AND FRANZ, M. Linear scan register allocation
on ssa form. In CGO’10 (2010), pp. 170–179.

[30] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: capturing system-wide information flow for
malware detection and analysis. In CCS’07 (2007), pp. 116–
127.

[31] ZHAO, Q., BRUENING, D., AND AMARASINGHE, S. Umbra:
efficient and scalable memory shadowing. In CGO’10 (2010),
pp. 22–31.

[32] ZHAO, Q., RABBAH, R., AMARASINGHE, S., RUDOLPH, L.,
AND WONG, W. How to do a million watchpoints: Efficient
debugging using dynamic instrumentation. In CC’08.

12

