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Abstract

Software projects that use a compiled language are built
hundreds of thousands of times during their lifespan.
Hence, the compiler is invoked over and over again on an
incrementally changing source base. As previous work
has shown, up to 97 percent of these invocations are re-
dundant and do not lead to an altered compilation result.
In order to avoid such redundant builds, many developers
use caching tools that are based on textual hashing of the
source files. However, these tools fail in the presence of
modifications that leave the compilation result unchanged.
Especially for C projects, where module-interface defi-
nitions are imported textually with the C preprocessor,
modifications to header files lead to many redundant com-
pilations.

In this paper, we present the cHash approach and com-
piler extension to quickly detect modifications on the
language level that will not lead to a changed compilation
result. By calculating a hash over the abstract syntax tree,
we achieve a high precision at comparatively low costs.
While cHash is light-weight and build system agnostic,
it can cancel 80 percent of all compiler invocations early
and reduce the build-time of incremental builds by up to
51 percent. In comparison to the state-of-the-art CCache
tool, cHash is at least 30 percent more precise in detecting
redundant compilations.

1 Introduction

Software development for a project that uses a compiled
language involves a (seemingly) endless number of com-
piler invocations. Typically, a developer edits some source
files, builds the whole project, and then tests and debugs
the resulting binary. In this process, which is repeated
tens to hundreds of times a day by thousands of develop-
ers, the time taken for the (noninteractive) build step is a
crucial property to developer productivity [23].

After many incremental modifications, software devel-

opers typically commit their changes into a larger project-
wide repository. From there, the robots of a continuous in-
tegration platform might pull and merge them to perform
automated build tests, which involves some additional
thousand builds of the software. A prominent example
is Linux and the Intel 0-day robot! The robot monitors
more than 600 development repositories to run tests on
newly integrated changes, for which it builds more than
36000 Linux kernels on an average day in order to pro-
vide kernel developers with quick feedback on integration
issues. Again, the time of each build is a crucial property
for the effectiveness of the system — the more builds it can
handle each day, the more build tests can be performed.

1.1 Redundant Builds

In both settings, the build process itself can often be per-
formed as an incremental build: Compilation is generally
considered to be an idempotent operation. Hence, only the
source modules that are affected by a change or commit
— either directly or transitively via a dependency — need
to be recompiled into object files, while a large portion
of unchanged object files can be reused from a previous
build. In larger projects, build times thereby are reduced
from hours and minutes for a full build to seconds and
milliseconds for an incremental build.

The challenge here is to detect — in a reliable but fast
manner — which source modules are part of the increment
that needs to be recompiled. Ideally, a module becomes
part of the increment only if its recompilation would lead
to a program with a different behavior — which is unde-
cidable in the general sense. Therefore, we technically
reduce this to the decision if recompilation would lead to
a different program binary. The respective test needs to
be reliable in that it never produces a false negative (i.e.,
excludes some source module from the increment that is
affected by a change). False positives do not harm reliabil-
ity, but lead to costly redundant builds — which we wanted
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objects = network.o main.o filesys.o

program: $(objects)
cc -o program $(objects)

main.o: main.c types.h network.h filesys.h
cc -o main.o -c main.c

network.o: network.c network.h types.h
cc -o network.o -c mnetwork.c

filesys.o: filesys.c filesys.h types.h
cc -o filesys.o -c filesys.c

(a) Makefile describing the build process and its dependencies.

network.c

program

filesys.h

network.h | | types.h
oo - - - - I
! Header File Build Product | !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(b) The corresponding Make-internal build-dependency graph.

Figure 1: A minimal example of a software project written in C and built with Make.

to avoid with incremental building in the first place. How-
ever, the test itself also has to be fast — it gets executed
for every source module on every build. If the overhead
to decide which source modules are part of the increment
outweighs the cost of false positives, incremental building
also becomes pointless. In practice, the trade-off between
precision and overhead is tricky — precision often does not
pay off [1]. On the other hand, Zhang et al. [34] showed
that with the common timestamp-based tests performed
by Make [6] and other build systems, up to 97 percent of
calls to the compiler for C/C++ projects are unnecessary
and have to be considered as redundant builds.

1.2 About This Paper

We present cHash, an approach and compiler extension for
the Clang C compiler to quickly detect if a source module
is affected by some change and needs to be recompiled.
Our approach combines speed and precision by analy-
zing the effect of a change on the level of the (hashed)
abstract syntax tree (AST) of the program. Compared to
existing state-of-the-art techniques, such as CCache, we
can significantly reduce the number of false positives (by
48.18 %) at only moderate extra costs, resulting in up to
23.16 percent shorter build times for incremental builds.
In particular, we claim the following contributions:

e Efficient and reliable detection of semantic source-
code changes on the language level.

e Open-source implementation of the cHash concept
as a plugin for Clang C compiler.

e Detailed evaluation on six open-source projects and
comparison with the state-of-the-art CCache tool.

The remainder of this paper is structured as follows.
In Section 2 we analyze the problem of redundant builds
with a special focus on C projects. In Section 3, we de-
scribe the cHash approach and discuss its implementation
briefly in Section 4. We evaluate cHash on a set of six

open-source projects in Section 5 and discuss the previous
work in Section 6. Besides a discussion of our results, we
also elaborate on possible threats to the validity of our
findings in Section 7 and conclude the paper in Section 8.

2 Problem Analysis

All modern build systems, whether they are implemented
in Make [6] or use a more sophisticated toolchain [9, 4],
try to reduce the number of redundant builds in order to
achieve fast incremental rebuilds. However, the employed
mechanisms often fail to detect non-essential changes
precisely. For example, if a developer updates the mo-
dification timestamp of the file convolute.h? from the
CPython source-code repository, the build system takes
15.9 s to rebuild the entire project on our server described
in Section 5.3, about half of the time that is required for
a fresh build. In this scenario, all build operations were
redundant, so we should not have spent time on invoking
the compiler at all. With cHash, we can cut down the
rebuild time in this particular case to 0.72 s, a decrease of
95.5 percent.

2.1 Modular Decomposition

Incremental rebuilds are enabled by the decomposition
of software into modules, which is already around since
the 1970s [18]. While modules are a necessary means for
the separation of concerns on the logic level, they are also
often physically separated into different files. Integral to
modular decomposition is the export and import of inter-
faces to define whether others can use a particular field or
data type and if they can invoke a specific functionality.
For incremental builds, modularization entails the advan-
tage that an interface is logically split into declaration,
implementation, and invocation of the interface. Hence,
an invoking module is only required to be recompiled if

2Full path: Modules/_decimal/libmpdec/convolute.h
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Figure 2: Average run time of the compiler phases. We
compiled CPython with GCC on different optimization
levels (-O0: no optimization, -O3: heavy optimization)
and recorded the run time of the different compiler phases
(n=850 compiler invocations per variant).

the declaration of an imported and used interface has been
changed, which avoids many sources of redundant and
costly recompilation [33, 30, 28].

While many languages, like Haskell or Rust, have built-
in module support, the widely used C programming lan-
guage lacks this feature. In C projects, modules are im-
plemented purely idiomatically by means of the C pre-
processor (CPP) and the file system. Importing another
module’s interface is realized via the #include directive
of the CPP, which textually replaces #include direc-
tives with the content of the included file. Exporting an
interface is realized via the file system by explicitly expos-
ing the declarations (i.e., interfaces) in the corresponding
header. Consequently, module dependencies in C can
only be defined on granularity of files.

2.2 Build Systems and Dependencies

Since C and C-like programming languages are widely
spread, their file-system—level implementation of modules
heavily influenced build systems. For example, Figure 1
depicts the structure of a typical software project written
in C and its build system implemented in Make [6]. Logi-
cally, the program is decomposed into the three modules
main, network and filesys. On the file-system level,
the modules are further scattered across different source
files: For the network module, the interface declaration
is located in network.h, while the actual implementation
lives in network. c. Furthermore, the network module
also imports the types.h definition file. From these

source-code artifacts, build system and compiler generate
the object file network. o, which is finally linked into the
executable program file.

The developer describes all build products, their
dependencies, and the production rules in the Makefile
(see Figure 1a). During the build process, Make parses the
Makefile and internally builds the dependency graph (see
Figure 1b). The dependency graph is traversed bottom up
and for each node Make checks whether the production
rule has to be executed. For a clean build, all products are
missing and, therefore, all rules must be executed, while
for an incremental build Make examines the modification
timestamp to detect out-of-date build products.

2.3 Detecting Redundant Compilation

With a timestamp-based method to detect redundant
builds, like employed by Make, the build system com-
pares the modification timestamp of the dependencies and
the (already present) build product. If any prerequisite is
newer, the production rule is re-executed to generate an
updated build product, which again leads to the rebuild
of all dependent build products. While this mechanism is
reliable and fast, it leads to many false positives, as it is in-
sensitive to the actual file contents. Thus, updating a file’s
modification time stamp suffices to cause a (cascading)
recompilation.

A perfectly precise build system would only schedule
an object file for recompilation, if the production rule
will yield an altered binary representation. Modifying a
comment, for instance, has no effect on the binary since
the CPP removes comments from the token stream before
compilation. However, even the introduction of a new
identifier, such as a type or constant, will have no effect
on the binary if the new element is not referenced by the
module. Nevertheless, for such an ideal recompilation
predictor, the whole compilation process would have to
be done to the full extent in the same environment (e.g.,
optimization level). Since that would bear no benefit,
various heuristics are used instead in practice, which we
describe as follows.

Let’s assume a given source file C uses a function func
declared in header H. There are several possible heuristics
to decide if C must be recompiled, each addressing a
different abstraction level of the source module:

(1) The metadata of H or C has been changed
(2) H or C has been changed textually
(3) H or C has been changed syntactically

(a) Syntactical change on the preprocessor level

(b) Syntactical change on the language level

(4) The declaration of func in H has been changed
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(b) Simplified AST with annotated hash values.
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Figure 3: The cHash Approach. From the source module, the (standard) parser builds the abstract syntax tree and the
semantic analysis establishes cross-tree references for types and variables. cHash calculates a recursive hash over the
AST to create a unique fingerprint of the program. In this example, we use three simplified hash rules depending only
on the node class (represented by the node’s color) and always take the modulo 100 from the result. Note that the
unused record declaration is irrelevant for the resulting AST hash.

In this schema, Make and other build systems usu-
ally apply heuristic (1) by means of timestamp-based
recompilation. In order to reach heuristic (2)-(4), we have
to gather detailed information about the source module
and its modifications. However, whether a more precise
heuristic is desirable depends on the ratio of two run
times: the time required to execute the redundant-build
detection and the time saved for avoiding the compilation.
A commonly used tool in this context is CCache [35],
which uses heuristic (3a): CCache calculates a textual
hash (i.e., MD4 hashes) over the preprocessed source code
and uses this fingerprint as an index into an object-file
cache of previous compilation results. The wide-spread
adoption of CCache can be explained by the run-time
proportions of the different compiler stages (see Figure 2).
Compared to the whole C compiler invocation, the pre-
processor takes up only 13.94 percent of the run time for
the commonly used optimization level -02.

In contrast to pure preprocessing, preprocessing and
parsing takes only slightly longer (24.9 % of the whole
invocation, -02). Hence, with a more precise fingerprint
of the parsed input we unlock potential higher build-time
reductions for incremental compilation. In this paper, we
present the cHash approach, an incremental-build accel-
eration that applies heuristic (4) by means of hashing the
abstract syntax tree within the compiler.

3 The cHash Approach

Technically, cHash operates similarly to the CCache tool.
Both intercept the compilation process, calculate a hash
value over the input, search in a cache for a previous
compilation result associated with the same hash, and
stop the compilation if the search was successful. Nev-
ertheless, cHash differs from CCache in two important
regards: (1) cHash calculates a hash over the abstract
syntax tree (AST), while CCache hashes the preprocessed
source code textually. (2) CCache only has to perform
preprocessing, while cHash must perform preprocessing,
parsing, and semantic analysis. Since cHash operates on
the language-level instead of the CPP-syntactical level,
we can easily avoid hashing of syntactic and semantic
constructs (e.g., an additional declaration) that will surely
not influence the compilation result. The underlying as-
sumption is that the additional overheads of parsing and
semantic analysis are only minor compared to the possi-
ble savings regarding redundant compilations, especially
if a higher optimization level is chosen (see Figure 2) .

The abstract syntax tree is the central data structure
compilers use during parsing and semantic analysis of
a program. Its nodes represent the language entities
(e.g., statements, expressions, types, ...) that were iden-
tified by the parser, while the tree edges represent their
syntactic nesting (e.g., statements within a function). Af-
ter parsing, the semantic analysis checks the program
for errors and introduces cross-tree references between
semantically related nodes. For example, all variable-
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definition nodes carry a reference to their respective type
node. So, if we also consider these references, the AST
effectively becomes a directed graph.

Figure 3a shows an example C source module with one
function and three record definitions. Figure 3b depicts
the corresponding (simplified) AST for the module (we
omitted the root node and duplicated the int type). In
our AST, three different classes of nodes are present:
definition, statements/expression, and type nodes. For
example, the function definition (inc) has a signature
type, which itself references other types, and a compound
block node that includes all statements from the function
body. Furthermore, through the cross-tree references,
cyclic structures can occur for recursive type definitions
(see struct unused).

In a nutshell, cHash operates directly within the com-
piler after the semantic analysis. In a depth-first search,
we start from all top-level definitions and calculate a hash
value over the semantically-enriched AST. For each node,
we combine the hash values of all referenced nodes and
all important node-local properties that influence the com-
pilation into a new hash value. However, since we operate
on a directed graph, nodes can be referenced more than
once and two situations can arise: (1) If we have visited
the node before and already calculated a hash value, we
reuse it. (2) If we are currently visiting the node and
encounter it again, we have detected a cycle and use a
surrogate hash value instead to avoid an endless recursion.
As a surrogate hash value, we use a textual representation
of the type name in order to avoid collisions. This is
necessary, since mutual referencing of types is possible:

struct x { struct y* link1l; }
struct y { struct x* link2; }

If our surrogate value would be constant, the hash for
the type struct x would be unchanged, if we make
1link2 of type struct *y. In both ASTs, the depth-first
search would visit the sequence (struct x — linkl —
struct y — surrogate(link2)). Therefore, the surrogate
value must depend on the type of 1ink2.

After the depth-first search, the hash is not only a fin-
gerprint of the program semantics, but it also covers only
elements that are reachable from the top-level definitions.

For illustration purposes, we executed a simplified ver-
sion of the AST hashing (see Figure 3b) and annotated
the intermediate hashes at the visited nodes. Here, we
use a very simplistic hashing rule that incorporates only
the node class (Declaration, Type, and Expression) as
a node-local property. To keep the numbers small, we
always calculate the modulo 100 of the result. For the
top-level definition node (inc), the hash value calculates
as follows: We add the hashes of all referenced nodes
(754 91), apply the node-class rule (1 + 2% (166)), and
get a hash value of 33. However, not all nodes influenced
this top-level hash: The record type unused and its chil-

dren were never referenced and therefore are not covered
by the top-level AST hash.

In practice, we have to be very careful when calculating
the AST hash. If we omit an important property, two pro-
grams that are semantically different will end up having
the same AST hash and, therefore, would be considered
equal. Furthermore, we have to include all compiler flags
that can influence the compilation result. In order to be
on the safe side, we textually include all compiler flags
into the top-level hash. If consistency between compiler
upgrades is desired, we also must consider the compiler
version. We also have to choose a sufficiently good hash
function to avoid hash collisions. Since we are not de-
fending against an evil attacker, we choose the efficient
but non-cryptographic MurMur3 [2] hash function.

With the AST hash as a fingerprint of the source
module, we can search for previous compilation results
in a cache and abort the compilation process if we were
successful, thereby avoiding the costly compiler phases
of optimization and assembling. If the AST hash was not
found, we continue the compilation process and copy the
result to the cache for future invocations.

4 Implementation

We implemented the cHash approach as a CLang [3]
plugin for the C programming language. CLang is the
C/C++/Objective-C/C++ front end of the LLVM [14]
project. CLang only performs parsing and the seman-
tic analysis of programs and hands the results, in form of
LLVM intermediate representation (IR), over to LLVM
for optimization and actual code generation.

The CLang plugin interface allows us to load a shared
library into the compiler that is called during the compila-
tion process. We instructed CLang to invoke cHash after
the semantic analysis, but right before the IR is generated
and handed over to LLVM. At this point all cross-tree
AST references are established, while optimizations and
code generation are yet to come.

After an actual compilation, we store the AST hash for
the source file and the object file for future compilations.
On the next compiler invocation for the same source file,
we calculate the AST hash again, compare it to the stored
hash, and, in case of equality, hard link the last object file
to the correct location and terminate CLang by calling
exit (). The hard link is necessary as some build systems
(CMake) remove the old object file before invoking the
compiler. In contrast to the CCache tool, our current
implementation stores only the last compilation result for
every file instead of all previous ones. For an incremental
application scenario, this has a minor influence if a change
is reverted to a previous revision.
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Source Files

Build Opt.
Project Version ~ SLOC .c .h System Level
LUA 534 18k 35 26 Make -02
mbedTLS 2.4.1 56k 123 83 CMake -02
musl 7597fc25 73k 1322 16 Make -0s
bash 4.4-p5 103k 253 117 AutoConf -02
CPython 3.7-al 403k 324 325  AutoConf -03
PostgreSQL €72059f 742k 1152 747 AutoConf -02

Table 1: Summary of the evaluated C project repositories.

5 Experimental Results

For the evaluation, we validated the correctness of our
implementation and quantified the influence of cHash
on the run time of incremental rebuilds. We chose six
open-source projects to cover a wide range of possible
application scenarios and applied cHash in two typical us-
age scenarios. We compare our results to the CCache [35]
tool (version 3.2.4) and quantify our absolute and relative
prediction precision.

5.1 Evaluated Applications

We used a set of six real-world open source C projects (see
Table 1) for our evaluation. This set of software projects
covers a broad range of possible project properties, since
they vary in size, application domain, and the employed
build system.

The probed source-code bases range from small
projects, like the LUA [11] language interpreter, which is
mainly developed by one person, to large multi-decade,
multi-person projects, like the CPython language inter-
preter [20]. They also differ in their usage of C lan-
guage extensions: While some projects, like the musl C
library [38], aim for portable and simple-structured code,
others, like the mbedTLS SSL library [37] use compiler-
specific features (e.g., vector types) to achieve a higher
performance. The examined projects also develop at dif-
ferent speeds: While the PostgreSQL [19] repository lists
40000 changes for 20 years of development, the bash
command-line interpreter [7] reaches only 128 for the
same period.

Furthermore, the projects employ different build sys-
tems: Small projects, like LUA and mbedTLS, often stick
to plain GNU makefiles [8] and encode their dependencies
manually. Larger projects often use configuration systems
like CMake [4] or GNU AutoConf [9] that act as makefile
generators. All examined build systems compare time-
stamps to detect compilation results that have to be rebuilt
from the source files.

The musl C library deserves special mention, since
their build system ignores some actual dependencies on
purpose. Their manually encoded dependencies exclude
all exported header files (515 files), since changing them

would break the library’s binary interface, which by defi-
nition is immutable. Hence, we exclude the public header
files from our evaluation and treat them as unchangeable.

5.2 Validation of cHash Implementation

As a first step, we validated the robustness of our cHash
implementation. In our targeted scenario, a robust imple-
mentation produces equal AST hashes for two inputs iff
the compilation result is also equal.

For the validation, we built 2368 changes taken from
the development history of the musl library independently.
For every change and every object file, we recorded the
AST hash, a textual hash of the object file, and a run-time
report of the compiler-internal phases.

Over all examined changes, the compiler ran 5.68 mil-
lion times and emitted 13 199 different object files. Our
implementation proved to be correct and no AST hash
was associated with more than one object file.

A perfectly precise predictor would exactly produce
one fingerprint for every object file. For cHash, we
collected 55829 different AST hashes over all changes,
which results in a ratio of 1 object file : 4.23 AST hashes.
Through manual investigation, we traced back 55.3 per-
cent of the AST hashes to only 16 changes. While some
of them included a major source-code reorganization, 11
changes caused a new AST hash for every source file,
since they modified the compiler flags (e.g., enabled a new
warning). Without these compiler-configuration changes,
the ratio of object files and fingerprints drops to 1 : 2.5.

From the collected data, we could also confirm that
the run-time impact of cHash is minimal. On a 16-core
Intel i7-2600 @ 3.4 Ghz, cHash needed 9 ms on average
for the AST-hash calculation. In comparison, the parser
took an average 187 ms, while the rest of the compilation
(i.e., optimizer, assembler) executed in 1082 ms.

5.3 Rebuild with Minimal Changes

Our first end-to-end evaluation resembles a typical sce-
nario for an individual developer. In an already built
working copy of the source code (all build products are
up to date), the developer makes a minimal change and
instructs the build system to update all products. The
duration of this rebuild cycle is critical for the developer,
since it is often hundreds of time a day.

We used two methods to introduce an artificial minimal
change to a single file: (1) As the most minimal possible
change, we set the modification timestamp to the current
time to mimic the editor’s save command. (2) To mimic a
minimal textual change, we introduce a #1ine 1 direc-
tive to the beginning of the file, which is left alone by
the CPP and has no influence on the debug information.
While both modification are surely artificial, they will
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Updated Timestamp Textual Change
Project Initial Build  #files Baseline  CCache cHash Baseline = CCache cHash
LUA 2.03s 61 1.09s —673% —59.5% 1.10s 16.4% —59.6%
mbedTLS 3.57s 204 1.33s —241% —4.1% 1.33s 189% —43%
musl 14.29s 1338 0.86s —20.6% —45% 0.86s 17.6% —4.7%
bash 6.06s 370 149s —-709% —65.8% 148s —92% —653%
CPython 34.30s 649 8.16s —77.7% —63.7% 822s —-247% —64.1%
PostgreSQL 61.35s 1891 3.16s —653% —422% 3.12s 86% —41.8%

Table 2: Average rebuild duration after a minimal change. In a built working copy of the examined project, we repeated
a modify—rebuild cycle for every file and measured the duration of the recompilation. Baseline shows the arithmetic
average over the rebuild times, relative percentages are in respect to the baseline (n=#files).

result in an unchanged object file. Therefore, this is a
best-case scenario for recompilation avoidance, since all
compiler invocations are actually redundant.

We repeated the modify—rebuild cycle for every source
file (headers included), measured the required rebuild
time on a 48-core AMD Opteron 6180 system with 64GB
of memory running Ubuntu 16.04.1, and calculated the
arithmetic-average rebuild time. While our test system
is an older server system, its performance is compara-
ble to a modern developer work station. For all experi-
ments, we instructed the build system to utilize all cores
(make -3j48). Since the initial build was done just before
the actual experiment, all files were served from the main
memory and disk contention was no issue.

The results are listed in Table 2. As an orientation, we
also measured the time to build the project from a fresh
checkout after the build system is set up. The second
column holds the number of files for which the modify—
rebuild cycle was executed.

For updated timestamps, CCache outperforms cHash
in all cases, since it only has to invoke the preprocessor
and skips all subsequent compilation steps. In contrast,
cHash must at least wait for the parser and the semantic
analysis to start calculating the AST hash.

If we introduce a textual change, CCache cannot detect
the redundant rebuild and the build-time improvement di-
minishes or even turns negative, since CCache still has to
pay the cost of maintaining the object cache. For the mod-
ification scenario, the improvements for cHash remain
stable and we achieve a maximum rebuild-time reduction
of —65.3 percent for bash.

However, for two projects (mbedTLS and musl), we
see a much smaller influence of CCache and almost no
improvement by cHash. Both projects have a very sparse
dependency structure where a change to a source file
often leads only to a single compiler invocation, while the
majority of the time is spent in the linking process.

5.4 Rebuild with Commit-Sized Changes

Our second evaluation scenario resembles a usage pattern
that is found in continuous-integration systems. Source-
code changes are uploaded to a build server and automati-
cally integrated into the mainline repository. For every in-
cremental change, the build server verifies that the source
code compiles and informs the developers about compila-
tion errors. This scenario is distinct from the former one,
since an uploaded change reflects the condensed editing
effort of a single developer over a time period.

For this evaluation, we selected the last 500 (127 for
bash) non-merge changes from the source-code reposito-
ries of the examined projects. We excluded all changes
that were broken in the original repository and failed to
compile. For every change, we set up the working copy
to the previous (parent) change and built the project as a
starting point. After applying the change, we measured
the recompilation time on the same 48-core Opteron that
was used for the previous scenario and calculate the arith-
metic average over all non-failing changes. We repeated
the evaluation for the unmodified baseline build system,
CCache, cHash, and a combined variant (CCache+cHash).
We recorded the build times, as well as the number of de-
tected redundant builds, which we will call “hits” for
brevity. The summarized results can be found in Table 3.

Our largest improvement for a single change occurred
in the change 90d3da11c9 in PostgreSQL that fixes
a spelling mistake in a comment located in a central
header. Normally, the rebuilding of this change takes
15.6s. While CCache correctly identifies the situation,
its cache-maintenance overhead keeps the recompilation
time at 3.5s. With the compiler-internal approach of
cHash, we only require 2 s (—87.4 %) to rebuild.

Over all projects, and all examined changes, cHash
aborted the compilation in 79.75 percent of all invocations
and decreased the average build time by —29.64 percent.
For CPython, we even achieved an improvement of more
than 50 percent. In contrast to that, CCache has a much
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Changes Baseline CCache cHash CCache + cHash

OK  Fail Time  #Invoc. Time #hits Time #hits Time #hits
LUA 479 21 2.14s 16765 —38.8% 13761 —493% 15748 —46.7% 15748
mbedTLS 498 2 2.13s 36654 —-20.7% 24124 —73% 25750 —21.6% 26764
musl 500 0 1.25s 28655 —3.8% 19587 0.7% 19457 —-32% 23104
bash 108 19 2.88s 1931 —11% 326 —22.7% 1281 —16% 1354
CPython 500 0 8.27s 20338 —46.4% 14551 —51.4% 19102 —53.7% 17859
PostgreSQL 498 2 5.63s 25934 —11% 7184 —-31.6% 22209 —253% 20909

Table 3: Rebuild time for the last 500 non-merge changes. For every change, we prepared a fully built working copy
with the previous (parent) change. After applying the change, we measure the rebuild duration, as well as the number of
detected redundant build operations. For the baseline, we give the arithmetic average over the time required to build one
change and the number of compiler invocations. For the modified build processes, we give the change in average build
time (n=#OK changes) and the accumulated numbers of detected redundant builds (#hits, higher is better).

lower hit ratio (61.05 %) and could decrease the average
rebuild time by only —23.63 percent. From the total
number of hits, we can quantify that cHash’s semantic
fingerprint is at least 30.19 percent more precise than
CCache’s textual one.

Similar to the results of the previous scenario (Sec-
tion 5.3), we see little influence of cHash on the rebuild
times of musl and mbedTLS. For musl, we even have
a small decrease in performance due to its dependency
structure. Since the developers intentionally omitted al-
most all dependencies on header files, the majority of
compiler invocations is caused by a modified source file,
which almost always involves a semantic modification.

We also combined CCache and cHash by chaining their
execution: First, CCache searches for the textual hash
and, if unsuccessful, hands over the preprocessed code
to cHash. In the last two columns of Table 3, we see
the result of the combined experiment. However, in our
implementation, CCache interferes with the operation of
cHash such that the hit number decreases (CPython, Post-
greSQL): CCache includes a deeper history of previous
builds. If a compilation is aborted by CCache due to its
cache, cHash is not invoked and can, therefore, not fill its
shallow cache, which is only one object file deep. If the
respective source file is then modified in a way that the
textual hash changes but the AST hash remains the same,
cHash is not able to detect the redundant build because its
cache is empty. Nevertheless, the combination of CCache
and cHash comes close or even exceeds the best result
of both methods if applied in isolation. With a combined
caching strategy, this interference between CCache and
cHash could be avoided.

6 Related Work

As building software is an important part of the devel-
opment process, attempts to reduce the build time are
numerous and focus on different aspects and phases of

the process. Since multiple C/C++ compilation units can
be built independently, the process can be distributed over
several machines. The free distcc [36] tool acts as a
compiler wrapper and sends the preprocessed source code
over the network for remote compilation. Microsoft’s
in-house build service CloudBuild [5] employs the same
technique and distributes 20000 builds per day on up to
10000 machines and attaches to various build systems.
CONCORD [21], which is Microsoft’s internal alternative
to CloudBuild, also uses distributed builds and speeds up
the Windows build process by up to 100 times. Google’s
build infrastructure [12] relies on reproducible builds and
distributes the work over thousands of machines.

A too coarse-grained module structure often leads to
redundant builds if one of the central “God” modules are
touched. Therefore, Yu, Dayani-Fard, and Mylopoulos
[33] proposed a technique to refactor large header files
into multiple smaller ones and thereby achieved a speedup
of the compilation by nearly 32 percent. However, with
higher optimization levels their speedup dropped to 12
percent. Furthermore, automatic restructuring of headers
can be in conflict with the developers’ intentions.

Morgenthaler et al. [17] proposed the CLIPPER tool,
which automatically finds build system targets that are too
coarse-grained and aids the developer in removing them.
Vakilian et al. [30] examined build-system dependencies
and found that nearly 50 percent of the 40000 build
targets of a Google internal Java library are too coarse-
grained and can be further refined. However, Miller [16]
discusses that incomplete dependency graphs, which can
stem from the usage of recursive GNU make systems, can
yield incorrect compilation results and render incremental
builds useless. Developers then often fall back to compile
the software always from scratch.

Besides general build-system organization, several re-
searchers proposed techniques to speed up the compiler
invocation itself; cHash being one of them. Often these
propositions focus on a single compiler phase and are
composable. Pre-compiled headers are an old technique
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that was already used for Mesa [10, 26] and NeXT [15]
and is still employed in industry [13]. For this technique,
header files are translated to an intermediate format which
then can be loaded faster by the compiler for all subse-
quent invocations.

The CCache [35] tool intercepts the compilation after
the preprocessor and calculates a textual hash over the
preprocessed code to detect redundant builds. For dis-
tributed build services the problem of redundant builds
becomes especially severe, since many developers start
compile jobs for very similar code bases. Therefore, both
Microsoft and Google use textual hashing in their build
services [32, 5]. However, the employed hashing method
is orthogonal to the caching method and cHash could act
as a drop-in replacement for the textual hashes in these
systems. Actually, Google’s build system allows the inte-
gration of language-specific hashing methods.

For languages with a module system, Tichy [29] pro-
posed the smart recompilation approach, which was ex-
tended by Schwanke and Kaiser [22] and Shao and Appel
[24]. For smart recompilation, each exported module
interface is annotated with a version stamp. Dependent
modules only have to be recompiled if one of their im-
ported interfaces has an updated version stamp. By in-
corporating only referenced declarations, cHash achieves
the same effect for languages without a proper module
system. Furthermore, cHash does not only include the
called function signatures, but also ignores all syntactic
changes that are removed by preprocessor and parser.

Zhang et al. [34] introduce the ABC tool to generate an
additional unoptimized object file for each compilation
unit. For each compilation unit, ABC invokes the com-
piler without optimizations and aborts the subsequent, but
more expensive compilation process with optimizations
if the unoptimized object remains unchanged. However,
in case of a redundant build, cHash pays only the price
for parsing, while ABC has to finish the compilation.

Whaley [31] uses dynamic execution profiles to de-
termine rarely executed code regions in Java programs,
which can either be excluded from optimization or entirely
from compilation. During the execution, the program falls
back to using unoptimized code or even an interpreter
solution. Suganuma, Yasue, and Nakatani [25] used a
similar approach for dynamic compilation of Java soft-
ware by focusing optimization efforts only on non-rare
code paths.

7 Discussion

As we have shown in the evaluation, cHash provides
a significant speed up for realistic usage scenarios that
occur during the development of software. In this section
we want to discuss threats to the validity of our results,
benefits, and give hints for future work.

7.1 Threats to Validity

One threat to the validity of our experimental results is
the selection of software projects we used to evaluate
the effects of cHash. If their code organization and/or
their change-recording policies were highly favorable for
cHash, our results would be overly optimistic. For exam-
ple, if a project had one central header file that is updated
in every single change to the repository, the time savings
cHash induces would be optimal. However, as discussed
in Section 5.1, the chosen projects cover a broad range
of properties and we have not encountered such a pattern.
Furthermore, our evaluation scenarios would yield totally
different results for a project with this pattern.

Another threat to our experimental validity is our im-
plementation of cHash. Although we have rigorously val-
idated our implementation (see Section 5.2) it is not veri-
fied formally. However, the examination of 500 changes
from several open-source projects and over 2000 changes
for musl makes us confident in the reliability of our im-
plementation.

Currently, we implemented the cHash only for the C
programming language. However, the general concept
is suitable for every language that can be expressed as
an AST with cross-tree references, even if it includes
cyclic references. If a programming language cannot
be expressed as such a structure, cHash cannot be ap-
plied. One prominent example is the TgX programming
language: In TgX, the program flow can influence and
feedback data back to the lexer and, therefore, the actual
structure becomes only visible during execution. How-
ever, such languages are rare and will only be executed in
an interpreter.

Furthermore, cHash is only usefully applicable if the
compilation process is dominated by the middle- and
back-end (optimizer, code generation) and the front end is
considerably fast. However, since most modern languages
offer a more expressive semantic than C (e.g., Haskell,
Rust), the efficient code generation and the optimizations
take longer. Therefore, we are confident that cHash will
perform even better for these languages than for C.

Another general impediment for a wide-ranged adop-
tion of cHash is its requirement to access internal compiler
data structures. If a compiler does not provide an appro-
priate plugin structure or is developed as a closed-source
project, cHash cannot be applied. Furthermore, the AST
hashing must be implemented for every programming lan-
guage and for every compiler, a general implementation
does not exist. However, C and C-style languages are still
the most prominent compiled languages [27] and both
widely used free-software compiler suites (clang, GCC)
include a powerful plugin interface.
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7.2 Advantages of cHash

Besides the apparent benefits of faster rebuilds, cHash is
also build-system agnostic. Similar to the widely-adopted
CCache tool, cHash does not require modifications on
the build-system level. We, therefore, think our unintru-
sive approach fosters a wide-spread adoption of cHash.
We demonstrated this property in the evaluation, where
three different build systems were handled without any
modification (see Section 5).

During the compilation process, the compiler always
builds an abstract syntax tree of the program and holds it
in memory. This availability allows cHash to be a light-
weight and self-contained mechanism that is easy to test in
isolation. Furthermore, the calculation of an AST hash is
computationally cheap, since only one depth-first search
graph-traversal is required to calculate it. During the
compilation process, such traversals are already executed
dozens of times.

Since the AST is a semantic representation of the pro-
gram, cHash is able to detect various changes that do
not lead to a changed compilation result. First of all,
many syntactic modifications, like comments, whitespace-
changes, or even the presence of braces are not present
on the AST level.

Besides the syntactical modifications, cHash is also
able to ignore language-semantic changes to the compila-
tion unit. Per default, we already ignore unused declara-
tions and type definitions, which leads to a fine-grained
dependency tracking on the symbol and the type level.
As mentioned in Section 6, this property of cHash brings
the benefits of smart recompilation [29] to the C program-
ming language, which in other respects lacks any module
support. As C projects handle modules on the file-system
level, the whole interface definition of another module
is included if the header file is referenced (#include).
With cHash, we narrow this import down to the actually
used interfaces and consequentially detect dependencies
between modules more precisely.

7.3 AST Hash Precision

The predictive power of the AST hash in regard to de-
tecting redundant builds is determined by two factors: (1)
Which AST nodes are considered during the depth-first
search. (2) What attributes of the visited nodes are in-
cluded into the hash. Currently, cHash is conservative in
both dimensions in order to avoid false-negative compiler
abortions.

On the node-selection part, cHash currently ignores
all AST nodes which are not referenced, directly or in-
directly, from the top-level definitions of a compilation
unit. However, with a more complex and compiler-aware
strategy, cHash could also ignore other AST nodes that

will not lead to changed object file (e.g., defined but un-
used functions marked as static). A normalization step
— like sorting the order of local-variable definitions — is
also possible.

In regard to the AST-node fields, we ignore only fields
that are known to not influence the resulting code, like
origin line numbers in the source code (if correct debug-
ging information is desired, this information should be
included). In order to increase the predictive power, we
could furthermore exclude variable and type-name fields.
With a more relaxed equivalence relation for object files,
we could additionally exclude modifiers (e.g., inline) if
they are known to have no effect on the resulting program
behavior. However, every introduction of in-depth com-
piler knowledge increases the complexity of the hashing
mechanism, which, most probably, would make cHash
more fragile, especially in terms of changes in future
compiler versions.

7.4 Future Work

We see several directions of future work: In order to
allow co-evolution of the implementation and to do more
validation, we will work on integrating cHash into the
CLang mainline repository. This effort also includes the
integration of the cHash approach into other open-source
compilers (i.e., gcc).

Furthermore, we plan the implementation of the cHash
approach for more complex languages. As a first target,
we will extend our CLang plugin to the C++ programming
language. There, the usage of templates and their location
in header files promises huge savings by cHash.

Another direction of research is the possibility of cHash
to provide more fine-grained information about changed
definitions and language constructs. With cHash, a com-
piler can not only detect that the whole compilation pro-
cess is redundant, but also that the compilation of a single
function can be skipped. For such a partial-compilation
scheme, we would start the depth-first search at the func-
tion level instead of the AST’s root node.

8 Conclusion

The detection of redundant builds, which can increase the
throughput of the development-testing cycle significantly,
is a trade-off between precision and cost. In this paper we
show how this trade-off can be optimized towards higher
precision at low costs by applying language-level anal-
yses directly in the compiler. The results for our cHash
approach show that on average 80 percent of all compiler
invocations can already be canceled after the semantic
analysis. For single projects, we speed-up the recompi-
lation process by up to 51 percent, while single changes
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even compiled up to 87 percent faster. In comparison
to the state-of-the-art CCache tool, cHash’s AST hash
fingerprinting is over 30 percent more precise.
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