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Abstract

The Artificial Hormone System (AHS) is a completely
decentralized operation principle for a middleware which
can be used to allocate tasks in a system of heteroge-
neous processing elements (PEs) or cores. Tasks are
scheduled according to their suitability for the hetero-
geneous PEs, the current PE load and task relationships.
The AHS also provides properties like self-configuration,
self-optimization and self-healing in the context of task
allocation. In addition, it is able to guarantee real-time
bounds for such self-X-properties.

The operation principle of the AHS is based on the
hormone loop. This is a sequence of actions and wait
states executed periodically on each PE. We present a
formal specification of the hormone loop in this paper.
The outcome is to guarantee consistent hormone com-
putation (important for holding the real-time bounds of
the self-X properties) and a fast recognition of task or PE
failures. Even more, we present an algorithm to termi-
nate single PEs consistently.

1 Introduction

The complexity of technical systems — especially in the
area of embedded systems — has increased dramatically.
Reasons for the increase are the higher integration of cir-
cuits, shorter clock periods and lower power consump-
tion leading to a miniaturization of microprocessors, mi-
crocontrollers and Systems on Chip. A result is the
development and marketing of ubiquitous devices like
small PCs, handhelds, cell or smart phones. In addition,
several of these systems and devices are interconnected
by busses or via the internet. An example is a modern car
which contains up to 100 microcontrollers running cru-
cial tasks like ABS, ESP, engine control, and the naviga-
tion system. It is obvious that programming such devices
with their multiple interactions gets highly complex, es-
pecially if real-time aspects have to be considered. It is
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a grand challenge to develop and maintain such highly
integrated and often distributed systems.

As a response, the Organic Computing (OC) Initiative
was founded in 2002. It deals with theoretical and prac-
tical foundations to handle the complexity of technical
systems described above inspired by mechanisms found
in nature and biology. The Artificial Hormone System
(AHS) was developed in the scope of the OC initiative
as a powerful tool to handle the complexity of assigning
tasks to processor cores (so called processing elements,
PEs) in a self-organizing and completely decentralized
way. Features like self-configuration, self-optimization
and self-healing allow an autonomous and robust system
operation without user intervention, while the decentral-
ized approach avoids single-points-of-failure. The task
assignment done by the AHS uses different kinds of ar-
tifical hormones to build up distributed closed control
loops. These artificial hormones are represented by mes-
sages which are sent periodically by broadcast from a PE
to all other PEs or by multicast from a PE to its neighbor-
ing PEs. The effect of the artificial hormones is locally
defined by the receiving PEs. The assignment of differ-
ent tasks on different PEs is bounded by antagonistic ar-
tificial hormones. Each PE performs sending, receiving
and the computation of resulting hormones periodically.
This is called the hormone loop. The PEs are able to run
their hormone loops almost synchronously due to self-
synchronisation [5]. Former publications such as [6, 4]
show the properties of the AHS considering stability and
real-time capability. In this paper, we present a formal
specification of the time conditions for the different ac-
tions done by each PEs’ hormone loops. This is essential
to guarantee necessary properties such as strict timely
isolation of receiving different types of hormones and
consistent hormone computation.

The paper is structured as follows: In Section 2 we
shortly present the AHS and explain the hormone loop
in detail. The specification of the hormone loop is pre-
sented in Section 3 and discussed in Section 4. Section 5



presents the related work and finally, Section 6 concludes
the paper.

2 The Artificial Hormone System

The aim of the AHS is to assign tasks to PEs in a self-
organizing way i.e., it uses three main types of hormones:

Eager value This hormone type determines the suit-
ability of a PE to execute a task. The higher the hormonal
value the better the ability of the PE to execute the task.

Suppressor This hormone type lowers the suitability
of a task execution on a PE. Suppressors are subtracted
from eager values. There exist several subtypes of sup-
pressors e.g., the task suppressor to prevent duplicate
task allocation, the monitoring suppressor to indicate a
deteriorating PE state and the load suppressor to indicate
the current load of a PE caused by the executed tasks.
While the task suppressor is broadcasted to all PEs in
the system, the monitoring and load suppressors are only
used locally to limit the number of executed tasks on a
PE.

Accelerator This hormone type favors the execution
of a task on a PE. Accelerators are added to eager
values. Like for suppressors there exist several sub-
types of accelerators. The most important one is the
organ accelerator used to cluster cooperating tasks in
the neighborhood. This accelerator is multicasted to
neighboring nodes to form so called ’virtual organs’ of
cooperating tasks. Another subtype is the monitoring
accelerator, which is used locally to indicate improved
PE capabilities.

More details on these subtypes of hormones are
presented when needed because they are used for fine
tuning of the AHS and do not contribute to its basic
understanding.

We have to distinguish between received hormones
and hormones to be sent and also between tasks and
processors. Therefore, we use Latin letters such as i as
task indices and Greek letters such as ¥ as processor in-
dices. A hormone of any type denoted by H'" with super-
scripted indices signifies that this hormone is dedicated
to and will be received by PE ¥ and task T;. For the op-
eration of the hormone loop it is not necessary to know
who the sender of this hormone is. A hormone of any
type denoted by H;y signifies that this hormone is sent
by PE v and task T; to other PEs. The receiver of this
hormone depends on the hormone type, as can be seen
below.

The task assignment happens in the following way:
Each PE periodically executes the hormone based con-
trol loop (hormone loop) presented in Figure 1. Each
iteration consists of three stages.

Receive stage PE y receives the modified eager values
Em'?, suppressors ' and accelerators A’ for each task
T; from each PE in the network. The communication be-
tween the different PEs is depicted by the dashed lines.

Compute and decision stage PE Y computes the mod-
ified eager values Em;y for all of its tasks in the follow-
ing way. The local static eager value E;, indicates how
suited PE 7 is to execute task 7;. From this value, all
suppressors S' received by task 7; are subtracted, and all
accelerators received by task 7; are added:

Emy=Ey—Y S7+Y A7

The modified eager value Em;y, of each task T; is then
waiting to be broadcasted to task 7; on the other PEs in
the send stage.

In each iteration a single task 7; is selected and the PE
decides on its allocation. For this purpose it compares its
own modified eager value Em;y with the received modi-
fied eager values Em'Y (from all other PEs) for this task.
If Em;y > Em' is true for all received modified eager
values PE 7 decides to take the task. In case of equality,
a second criterion e.g., the smallest position identifier of
the PEs, is used to get an unambiguous decision. Other-
wise another PE has the highest modified eager value for
task 7; and PE 7y decides not to take it.

In the next iteration step the PE selects another task
and decides whether it will be taken. A PE selects the
tasks in a cyclic way i.e., each task will be selected in
each m-th iteration if m tasks have to be assigned. By
selecting only one task at each iteration the suppressors
and accelerators can take effect. Otherwise the decision
of taking a task would happen instantaneously and the
hormones would have no effect.

Send stage As already mentioned above, PE 7y broad-
casts the modified eager values Em;y to each task 7; on
the other PEs. The strength of these values depends on
the results of the computation in the previous phase.

If a task T; is taken on PE 7, it also broadcasts sup-
pressors S;y dedicated to the same task on all other PEs.
On the one hand sending the suppressors indicates the
PE has taken the task, and on the other hand it limits the
number of allocations of this task.

Furthermore, the PE multicasts accelerators A;y to its
neighbored PEs to attract tasks cooperating with task T;
to neighbored PEs thus forming clusters of tasks.
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Figure 1: Hormone based control loop

Our approach is completely decentralized, each PE
is responsible for its own tasks and the communica-
tion with other PEs is realized by a unified hormone
concept. As explained in [4] the AHS offers self-X-
properties like self-configuration, self-optimization and
self-healing. In addition, the self-configuration is real-
time capable. Tight upper time bounds are given for self-
configuration, these are presented in detail in [6, 25].

The indices of the hormones are not needed in the fol-
lowing chapters. Therefore, we name the PEs with latin
indices henceforth for the sake of simplicity.

3 A Formal Specification of the Hormone
Loop

The general scheme of the hormone loop is 1) receiv-
ing hormones, 2) computation of the new hormone val-
ues and decision on the task assignment and 3) sending
of the new hormone values. It is obvious that these ac-
tions should work synchronously on all PEs of the sys-
tem because asynchronous execution could lead to mis-
behavior. As an example we consider two PEs running
asynchronously: Let us assume PE P; is in the sending
stage yet while PE P, is in the computation stage yet.
As a result, it may happen that PE P; did not receive the
hormones sent by PE P; in time because P;’s hormones
were sent too late. This means that the values of the hor-
mones are inconsistent on the two PEs which may lead
to an incorrect task assignment. Furthermore, the real-

time bounds of self-configuration, self-optimization and
self-healing may be harmed in case of PE asynchronity.
This can be fatal for hard real-time systems. Therefore,
we have to ensure synchronous execution of the partici-
pating PEs.

The main idea is to launch the PEs with a delay of i
time units (TUs) at most (0 < 7M1 < o) and to introduce
wait states after each critical action. Critical actions are
1) sending of suppressors and accelerators, 2) sending
of eager values and 3) computation of the new hormone
values and decision on the task assignment. The wait
states must be large enough to guarantee the completion
of each critical action on each PE. Figure 2 shows the
approach which also respects jitter in the wait states as
well as jitter in the execution of the actions.

We assume three conditions in the following:

1. The communication time (the time it takes from
sending a hormone by one arbitrary PE up to its re-
ceiving by any other arbitrary PE) is bounded and
we know its upper limit fx time units (0 < tx < o0).

2. The PEs are launched with a pairwise delay of n
time units at most.

3. The jitter of the wait states and of the actions is
bounded. The jitter of each wait state i is quanti-
fied by a factor p; with 0 < p; < 1. This results in
a minimal jitter of O time units and a maximal jit-
ter of the duration of the wait state itself which is a
reasonable assumption.
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Figure 2: Specification of the hormone loop

The jitter of the actions j is quantified by §; in the
following.

In detail, the hormone loop of our approach works as
follows: The PEs are launched with a delay of 7 time
units at most and each of them waits for & time units
at most (wait state W1); & := n + . Here, a maximal

*

jitter of %0 is allowed, see Fig. 2, and let y > % be
true.

There are two ways to exit wait state W1: The first
is by timeout. After waiting the time & each PE is in
the point 3¢ in Fig. 2. It immediately jumps to 3. The
second way to exit W1 is that a PE receives a hormone
(illustrated by the dashed line in Fig. 2). Then, it imme-
diately exits W1 and is also at the point S in Fig. 2. It
reaches 3 with a maximal delay of 7 time units (they
may occur due to hormone recognition time).

When a PE reaches 3 it immediately starts sending
suppressors and accelerators. This takes s; time units
including a maximal jitter of % Obviously, % < s is

true. After sending these hormones, each PE reaches 3,
and begins a wait state of € time units; & := 2tx + T+

O1 + 71. Here, a maximal jitter of %1 is allowed, see Fig.

2, and let y; > 171(2?%1?51) be true. After exiting the wait

state each PE starts sending its eager values. This takes
s> time units including a maximal jitter of % Obviously,

% < s is true.

This is continued up to point 3¢ in the same man-
ner. Therefore, we only provide the numbers for the wait
states and jitter duration:

& =22k +T+8 +0+E+p
- P22k + T+ 8 + & +¢f) (1)
1—p>

4ol

& =2k +T+8+6H+8&+e +& +7
9’2>p3(2t1<+f+51+52+53+8f+8§) )
1—ps3

Each PE exits the last wait state (beginning from 3¢) ei-
ther because of timeout or because it receives a hormone
(illustrated by the dashed line in Fig. 2). This is the same
process as in wait state W1.

Definition 1. The triple (P, 3, n) indicates PE P; which
reached the point 3, in its n-th run of the hormone loop

(x€{0,1,2,3,4,5,6}).

Definition 2. The map C assigns each triple (P, 3, n)
the point in time at which PE P; reached 3 in its n-th
run of the hormone loop.

We now provide seven invariants in the following the-
orem. Their main outcome is that the critical actions are
timley separated.

Theorem 1. Let M be a set of PEs launched with a maxi-
mal delay of M time units. Let 3(n) be the set containing
the PEs which are in their n-th run since the launch of
M. Then the invariants ly, I, b, I3, 14, Is, Ig are true in
the following order:

Ip—1L —bhL—L—14—1s—Ig— ...
The invariants are:

Ip ::=VP;, P; € B(n) :
|C(P;, S0, n) —C(Pj, 30, n)| <tx A
(P, S0, n) by timeout : C(P;, 31, n) = C(P;, 3o, n)

(P, S0, n) by hormones : |C(P,,31,n) —C(P;,S0,n)| < T A

(P, S0, n) A(n > 1)] — [[VP € P(n—1)] —

(P¢, 86, n— 1) passed since more than tg TUS]

A



I :=VP, P; € B(n) :
|IC(P;,31,n)—C(P;,31,n)| <txg+7T A

(OB Sam) ~C(B S1m) 1 < 2

L ::=VYP, P; € B(n) :
|C(P;,32,n) —C(Pj,32,n)| <tx+T+8 A
|C(P;, 33,n) —C(P;, 32, n) —&1] < €f

I :=VP, P; € B(n):

|IC(P;,S3,n) —C(P;,S3,n)| <tk +T+61 +& A
(C(P. S4,m) —~C(P S ) —s2] < 2 A
(P, 33,n) — (P}, 32, n) passed since more

than tx TUs

Iy :=VP, P; € B(n):
|C(P;, S4,n) —C(Pj, 34, n)| <tg +7+ 8
+oh+e A
|C(P,, 8s,n)—C(P,3s5,n)—&| <&

Is ::=VYP;, P; € B(n) :
‘C(Pla 357 n) 7C(P]7 SS?”)‘ S tK+T+51
+&h+e+e A

(OB S m) —C(P. S5.m) 53] < & A
(B, 35,n) — (Pj, S4, n) passed since more
than tx TUs

I ::==VYP, P; € B(n):
|C(P,-,S6,n)—C(Pj,S6,n)|SIK—FT-‘F(S]
+0+0+e +& A
|C(Pi,30,n+1)—C(P;,36,n) — &3] < &

Proof.

Base case (n =1).

Iy: If a PE has launched its wait state W1 takes at least
the time

& — pogo = (1—po)(N+ W)
> (1= po) (TH- Lot )

1—po

:’rl_

This means that all PEs are in their wait state W1 at least
when the first PE leaves its wait state W1 (especially,
PB(1) = M is true). As mentioned above, this first PE

jumps from 3 to 3 immediately and starts sending hor-
mones. These hormones are received by each PE with a
delay of 7x time units at most. If they are in W1, they
jump to 3¢ immediately. This means the first clause of
I is true considering the first PE to reach 3y. The ab-
solute value of the difference of the arrival times of all
other PEs is obviously smaller or equal than #g, too. This
proves the first clause of Iy. The second and third clause
of Iy are obviously true due to the assumptions in the de-
tailed description of the hormone loop. The last clause
of Iy does not match here because n = 1.

I;: We know from Ij that each PE of §3(1) has passed the
point 3¢ with a maximal delay of tx. Each PE needs T
time units at most to reach the point 3;. This means all
PEs will eventually reach 3 (for the first time, n = 1).
Thus, each PE will reach 3 at most fx + 7 time units af-
ter the first PE has reached 3 ;. This is obviously true for
the absolute value of the differences of the arrival times
of all other PEs. This proves the first clause of I;. The
second clause is true due to the the assumptions in the
detailed description of the hormone loop.

I,: We know from /; that each PE of 3(1) has passed
the point 3; with a maximal delay of tx 4+ T time units.
Each PE will reach the point 3, due to the assumptions
in the detailed description of the hormone loop after the
time s; (a jitter of % time units is possible). As shown
in the proofs of Iy and /; and due to the maximal jitter of
% per PE, the first clause of I, holds. The second clause
is true due to the assumptions in the detailed description
of the hormone loop.

I3: The proof of the first and the second clause is similar
to the proofs in I. Now we consider the third clause. The
first PE to reach 33 (for the first time) has been waiting
in its waiting state the time & — p € at least. It holds:

e —pier=(1—p1)er=(1—-p1)2x+7+01+n)
p1(2t1(—|—7:+51))
1—pi
=(1=p1)QRix+7+61)+p1 (2t + 7+ 1)
=2tK+T+51.

> (1=p1) <2t;<+r+61 +

Each PE of B(1) reaches the point 3 (see ). It waits
for more than 2tx + T 4 0; time units then. We know
(from 1) that the PEs pass 3, with a maximal delay of
tx + T+ Oy time units: Therefore, it holds that if any PE
is at 3, any other PE will be in its waiting state for more
than rg time units. Thus, the time to reach 33 takes more
than tx time units for these other PEs. We conclude that
if any PE reaches the point 33 any other PE has passed
the point 3, since more than g time units.

I4: Similar to the proof of I, using I3 as precondiction.
Is: Similar to the proof of I3 using /4 as precondiction.
Is: Similar to the proof of I, using /5 as precondiction.



Inductive step (n — n+1).

We know from I that all of 3(n)’s PEs will eventually
reach 3¢ for the (n+ 1)-th time (induction hypothesis).
Thus, P(rn+ 1) = P(n) is true. We know from I that
each PE of J3(n) is in its waiting state for &3 — p3&3 time
units at least. It holds

&s—p3&=(1—p3)&§
=1—-p3)2x+T+8+6+0+¢€ +¢&
+7)

> (1p3)<2tK+r+61+52+53+£f+£§+

P32k +T+01+8+ 6+ +&)
1—p3 >
=(1—p3)2ix+7+81 4+ & + &ef +&)+
p3 (2 + 7461+ 6 + 83¢] + &)
=2k +T+0+0H+85+E+&.

Each PE of J3(n) reaches the point S¢ (because of I of
the induction hypothesis) and then, it waits more than
2tg + T+ 81 + 0>+ 83 + €] + €5 time units and reaches 3
for the (n+1)-th time. We also know (from the induction
hypothesis) that the PEs passed 3¢ with a delay of tx +
T+ 01 + 6, + 83 + € + & time units at most. Thus, if a
PE passes 3¢ (at the n-th time) we know that each other
PE is in the corresponding waiting state for 7x time units
at least.

If the first PE of P3(n) passes S for the (n+ 1)-th time
by timeout it is obviously in B (n + 1). Furthermore, we
know that all other PEs of J3(n) have passed 3¢ for the n-
th time since tx time units at least. This proves the fourth
clause of .

If the first PE reaches 3¢ for the (n+ 1)-th time all
other PEs are in the last waiting state of their hormone
loop n at least. Thus, the first clause of [y holds. The sec-
ond and third clauses of Iy hold due to the assumptions
in the detailed description of the hormone loop.

The invariants I; up to I of the induction step are
proven as in the base case. O

4 Discussion

The invariants of Theorem 1 make the understanding of
the hormone loop’s workflow simpler. Let us consider
the third clause of I3: It says that each PE has passed 3,
since more than tx time units if any PE passes 33. This
means that each PE has finished sending suppressors and
accelerators for more than 7x time units if any PE exits its
wait state at 33. Therefore, any suppressors and acceler-
ators sent in run n are received by any PE before it exits
its wait state at 33. As a result, each PE can calculate
its eager values based on the up-to-date values of these
hormones.

The sending and receiving of the eager values of each
PE is finished in its n-th run before any PE launches its
hormone computation and task assignment process. This
follows from the third clause of /s with a similar argu-
mentation as for the suppressors and accelerators.

The last clause of [ states that each PE has passed 3¢
(thus, it is in its last wait state in run n) if the first PE
reaches 3 for the (n+ 1)-th time. This is the reason that
the PEs can be re-synchronized to a maximal delay of #x
time units: Either they hold it by timeout or they hold it
by activation due to hormone receiving. The latter option
is possible as each PE of 3(n) is in its last wait state at
least.

These observations show that the PEs obeying the
specification provided in the last section are able to run
with a maximal determined delay. Furthermore, we can
guarantee that all relevant hormones are received by each
PE before it starts to execute resulting actions or deci-
sions. Thus, the AHS runs in a consistent way'.

We also observe that the hormone loop presented in
Fig. 2 differs from the characterisation in Section 2. The
sending of suppressors and accelerators (3 up to 3») is
separated from the sending of eager values (33 up to 34).
As a result the receiving of suppressors and accelerators
(32 up to 33) is separated from the receiving of eager
values (34 up to 35). This means that we have two in-
dependant sending stages and two independant receiving
stages considering the formalized hormone loop whereas
there is only one sending and one receiving stage in Sec-
tion 2.

A major advantage of this hormone loop is the simple
detection of failing PEs. If a PE misses the suppressors
and accelerators of another PE until it reaches 33 or it
misses the eager values of another PE until it reaches Is
it marks the other PE as failing. Then it may skip the
hormones of the failing PE and start with the bidding for
the tasks of the failing PE from the beginning of the next
cycle.

Consistent termination of single PEs. A user of the
AHS may want to deactivate a single PE or several PEs.
We assume that the maximal communication time to
send a message between the user and any PE (and vice
versa) is fg.

A user could send a termination signal to a PE at any
point of time. The PE would be deactived at the moment
it received the signal. The correct workflow of the overall
AHS is not affected by this way of deactivating a PE. The
reason is that it is identical to the failing of the deactived
PE to the other PEs. However, this is not a nice way
because the running PEs may still have hormones of the
deactived PE in their buffers.

Therefore, we propose the following algorithm to de-
activate one or several PEs:



e The user snoops on eager values.

e As soon as the user snoops eager values from any
PE, it sends the termination signals to the PEs to be
deactivated.

e Each PE receiving a termination signal continues its
hormone loop until it reaches 3¢ the next time. At
this point it stops running the hormone loop.

This algorithm works properly because if the user re-
ceives eager values, all PEs will be in their wait state
before the point 3s. If the user sends the termination sig-
nal now, all PEs will be in their n-th run of the hormone
loop. This is true because their last wait state takes more
than tx time units. This means that a termination signal
sent in the n-th run of the PEs (according to the algo-
rithm) will be received in the n-th run. Each receiving
PE stops its execution consistently at the point 3 of the
(n+ 1)-thrun. A result of this algorithm is that the user is
able to terminate PEs consistently and no hormones are
still in the buffers of the remaining PEs.

Hormone loop duration. In this paragraph, we want
to study the impact of the hormone loop specification on
the hormone loop duration. Former publictions like [2]
provide a time limit of about 37x time units for the hor-
mone loop duration. We use this value as a reference.

The duration #yy;, of the hormone loop as specified in
Section 3 without jitter can be calculated by summing up
the initial duration of the reaction time, the duration of
the sending and computing actions and the duration of
the wait states:

mHL=T+s1t&+s2+&+53+83

First, we calculate a lower limit for fy.. It is reason-
able to assume the reaction time to be T = 0 time units
because a PE has to set a launch flag only if it receives a
hormone. Furthermore, we assume the sending and com-
puting action time to be 0 according to the hormone loop
specification and as we search a lower limit. An estima-
tion of the lower limit of the wait states is provided in the
proof of Theorem 1. We obtain

tur, > 2tk +01)+ (2tg + 61 + 62+ &)
+ Q2+ 01+ 6+50+¢e +8) (3)
> 6btk.

The estimation in (3) shows that a single hormone loop as
specified in Section 3 takes 6fx time units at least. This
means the hormone loop duration is about twice the du-
ration (at least) as in the reference literature.

Second, we try to estimate an upper limit for ¢g. We
have to estimate the upper limit for the duration of the

wait states €1, & and &;. They depend on the jitter pa-
rameters p1, p> and p3 in the absorption summands ¥, 7>
and 3. Each of the summands is of the form ”f"fn“
which diverges if p tends towards 1. Therefore, there
is no finite upper limit for the duration of gy 2.

The result of this section is that we can ensure a proper
workflow of the hormone loop on the distributed PEs.
This has numerous advantages: The consistency of the
hormone communication is guaranteed even in presence
of jitter, the fast recognition of PE or task failures and
the consistent termination algorithm. However, we have
to pay the costs in return: The hormone loop duration
takes 6¢g time units at least and can take even longer de-
pending on the strength of the jitter. Nonetheless, the
approach in this paper is a major improvement regard-
ing previous publications on the AHS as they neither do
guarantee consistency of the hormones nor do they deal
with jitter and other reaction times.

5 Related Work

Self-organization has been a research focus for several
years. Publications like [16] or [26] deal with basic prin-
ciples of self-organizing systems, like e.g. emergent be-
havior, reproduction etc. Regarding self-organization in
computer science, several projects and initiatives can be
listed.

IBM’s Autonomic Computing project [13, 17] deals
with self-organization of IT servers in networks. Several
so called self-X properties like self-optimization, self-
stabilization, self-configuration, self-protection and self-
healing have been postulated. The MAPE cycle consist-
ing of Monitor, Analyze, Plan and Execute was defined
to realize these properties. This MAPE cycle is executed
in the background and in parallel to normal server activ-
ities similar to the autonomic nervous system.

The German Organic Computing Initiative was
founded in 2003. Its basic intention is to improve the
controllability of complex embedded systems by using
principles found in organic entities [24, 23]. Organi-
zation principles successful in biology are adapted to
embedded computing systems. The DFG priority pro-
gramme 1183 ”Organic Computing” [9] has been estab-
lished to deepen research on this topic.

Self-organizing and organic computing is also fol-
lowed on an international level by a task force of the
IEEE Computational Intelligence Society (IEEE CIS
ETTC OCTF) [14]. Several other international research
programs have also addressed self-organization aspects
for computing systems, e.g. [10, 7].

So far, there are several approaches for clustered task
allocation in middleware.

The authors of [3] present a scheduling algorithm for
distributing tasks onto a grid. It is implemented in the



Xavantes Grid Middleware and arranges the tasks in
groups. Their approch is completely different from ours
because it uses central elements for the grouping: the
Group Manager (GM), the Process Manager (PM) and
the Activity Managers (AM). The GM is a single point
of failure. If it fails, there is no possibility of obtain-
ing group information from this group anymore. Our ap-
proach does not apply a central task distribution instance
and therefore single point of failures are avoided.

Another approach is presented in [21]. The authors
propose two algorithms for task scheduling. The first
algorithm, Fast Critical Path (FCP), ensures that time
constrains are kept. The second one, Fast Load Balanc-
ing (FLB), schedules the tasks equally on processors ac-
cording to current loads. Different from our approach,
task relationships are not regarded to allocate cooperat-
ing tasks closely together. Furthermore, these algorithms
do not consider the failing of processing elements.

[22] presents a load balancing scheme for task alloca-
tion based on local workpiles (of processors) storing the
tasks to be executed. The authors propose a load bal-
ancing algorithm which is applied to two processors to
balance their workload. The algorithm is executed with
a probability inversely proportional to the length of the
workpile of a PE. Although this approach is distributed
it does not consider aspects like self-healing or real-time
constraints.

Other approaches of load balancing are presented in
[1, 8, 12, 11, 27]. None of them cover the whole spec-
trum of self-X properties, task clustering, and real-time
conditions like our approach.

A research project regarding self-organizing task allo-
cation with respect to real-time properties is the CAR-
SoC project [18, 19]. This project uses agent based prin-
ciples and an auction mechanisms to achieve self-X fea-
tures. This approach is not completely decentralized like
the AHS, since an auction manager is responsible for a
certain set of tasks.

The DoDOrg project [15] researches the use of bio-
inspired principles to build a new, self-organizing robust
processor architecture. Within this project, we invented
a first version of the AHS to assign software tasks to
distributed processing cells. In [20] we improved this
first approach to distribute time dependent tasks in a dis-
tributed system.

6 Conclusion

We presented an approach to formally specify the work-
flow of the hormone loop of the artificial hormone sys-
tem in this paper. The specification includes time lim-
its for the actions to be executed and wait states to be
passed. We proved seven invariants regarding important
properties of the hormone loop guaranteeing its correct

progress. They also ensure a strict timely isolation of the
sending (and receiving) of suppressors and accelerators
on the one hand and the sending (and receiving) of ea-
ger values on the other hand. This is important to ensure
the correct computation of resulting hormone values. In
addition, the specification allows to recognize the fail-
ing of a task or a PE in a fast way. We also provided
an algorithm to terminate PEs in a consistent way. The
specification also allows to deal with jitter in the action
exection and in the waiting states. The cost of this advan-
tages is a longer duration of the hormone loop depending
on the strength of the jitter.

The future work will be two-fold: One the one hand
we want to reduce the hormone loop duration by reduc-
ing the duration of the wait states. On the other hand we
want to include additional features in the specification of
the hormone loop such as launching additional PEs while
other PEs are running the loop yet. This is a complex
task because a just launched PE has to recognize if it is
launched concurrently with all other PEs (it is a system
start) or if there are other PEs just running yet (the PE is
added to a running system). In addition, we plan to spec-
ify the hormone loop allowing to launch additional PEs
concurrently to terminating running PEs.
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Notes

INote that the AHS described in Section 2 only guarantees co-
herency: It ensures the receiving of either suppressors and accelerators
or the receiving of eager values. The AHS avoids false multiple task
assignements in this way, however, sub-optimal decisions are possible.
Our new approach in this paper also ensures optimal decisions.

2Qbviously, this is only a technical restriction: In a real-world sce-
nario, we assume that we can estimate the parameters p;. Therefore,
we can compute a finite upper limit for #y, as a result.



