
This paper is included in the Proceedings of
the 15th USENIX Conference on

File and Storage Technologies (FAST ’17).
February 27–March 2, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-36-2

Open access to the Proceedings of
the 15th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

Application Crash Consistency and
Performance with CCFS

Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan, and Lanyue Lu,
University of Wisconsin—Madison; Vijay Chidambaram, The University of Texas at Austin;

Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

https://www.usenix.org/conference/fast17/technical-sessions/presentation/pillai

Application Crash Consistency and Performance with CCFS
Thanumalayan Sankaranarayana Pillai 1 Ramnatthan Alagappan1 Lanyue Lu1

Vijay Chidambaram2 Andrea C. Arpaci-Dusseau1 Remzi H. Arpaci-Dusseau1

1University of Wisconsin-Madison 2The University of Texas at Austin

Abstract. Recent research has shown that applica-
tions often incorrectly implement crash consistency. We
present ccfs, a file system that improves the correctness
of application-level crash consistency protocols while
maintaining high performance. A key idea in ccfs is the
abstraction of a stream. Within a stream, updates are
committed in program order, thus helping correctness;
across streams, there are no ordering restrictions, thus
enabling scheduling flexibility and high performance.
We empirically demonstrate that applications running
atop ccfs achieve high levels of crash consistency. Fur-
ther, we show that ccfs performance under standard file-
system benchmarks is excellent, in the worst case on par
with the highest performing modes of Linux ext4, and in
some cases notably better. Overall, we demonstrate that
both application correctness and high performance can
be realized in a modern file system.

1 Introduction
“Filesystem people should aim to make ‘badly written’
code ‘just work’” – Linus Torvalds [52]

The constraint of ordering is a common technique
applied throughout all levels of computer systems to
ease the construction of correct programs. For example,
locks and condition variables limit how multi-threaded
programs run, making concurrent programming sim-
pler [2]; memory consistency models with stricter con-
straints (e.g., sequential consistency) generally make rea-
soning about program behavior easier [47]; fsync calls
in data management applications ensure preceding I/O
operations complete before later operations [5, 35].

Unfortunately, constraining ordering imposes a funda-
mental cost: poor performance. Adding synchroniza-
tion primitives to concurrent programs adds overhead
and reduces performance [19, 21]; stronger multiproces-
sor memory models are known to yield lower through-
put [16]; forcing writes to a disk or SSD can radically re-
duce I/O performance [5, 6]. While in rare cases we can
achieve both correctness and performance [39], in most
cases we must make an unsavory choice to sacrifice one.

Within modern storage systems, this same tension
arises. A file system, for example, could commit all up-
dates in order, adding constraints to ease the construction
of applications (and their crash-recovery protocols) atop
them [3, 35]. Many file system developers have deter-

mined that such ordering is performance prohibitive; as a
result, most modern file systems reduce internal ordering
constraints. For example, many file systems (including
ext4, xfs, btrfs, and the 4.4BSD fast file system) re-order
application writes [1], and some file systems commit di-
rectory operations out of order (e.g., btrfs [35]). Lower
levels of the storage stack also re-order aggressively, to
reduce seeks and obtain grouping benefits [22,23,41,43].

However, research has shown that user-level applica-
tions are often incorrect because of re-ordering [35, 56].
Many applications use a specialized write protocol to
maintain crash consistency of their persistent data struc-
tures. The protocols, by design or accident, frequently
require all writes to commit in their issued order [36].

The main hypothesis in this paper is that a carefully
designed and implemented file system can achieve both
ordering and high performance. We explore this hypoth-
esis in the context of the Crash-Consistent File System
(ccfs), a new file system that enables crash-consistent ap-
plications while delivering excellent performance.

The key new abstraction provided by ccfs, which en-
ables the goals of high performance and correctness to
be simultaneously met, is the stream. Each application’s
file-system updates are logically grouped into a stream;
updates within a stream, including file data writes, are
guaranteed to commit to disk in order. Streams thus en-
able an application to ensure that commits are ordered
(making recovery simple); separating updates between
streams prevents false write dependencies and enables
the file system to re-order sufficiently for performance.

Underneath this abstraction, ccfs contains numerous
mechanisms for high performance. Critically, while or-
dering updates would seem to overly restrict file-system
implementations, we show that the journaling machin-
ery found in many modern systems can be adopted to
yield high performance while maintaining order. More
specifically, ccfs uses a novel hybrid-granularity journal-
ing approach that separately preserves the order of each
stream; hybrid-granularity further enables other needed
optimizations, including delta journaling and pointer-less
metadata structures. Ccfs takes enough care to retain op-
timizations in modern file systems (like ext4) that appear
at first to be incompatible with strict ordering, with new
techniques such as order-preserving delayed allocation.

We show that the ordering maintained by ccfs im-

USENIX Association 15th USENIX Conference on File and Storage Technologies 181

Figure 1: Journaling Update Protocol. Pseudo-code for
a simple version of write-ahead journaling; each statement is
a system call. The normal text correspond directly to the proto-
col’s logic, while the bold parts are additional measures needed
for portability. Italicized comments show which measures are
needed under the default modes of ext2, ext3, ext4, xfs, and
btrfs, and the writeback mode of ext3/4 (ext3-wb, ext4-wb).
proves correctness by testing five widely-used applica-
tions, including Git and LevelDB (both of which are in-
consistent on many modern file systems [35]). We also
show that most applications and standard benchmarks
perform excellently with only a single stream. Thus, ccfs
makes it straightforward to achieve crash consistency ef-
ficiently in practice without much developer overhead.

The paper is structured as follows. We provide motiva-
tion and background (§2), present ccfs (§3) and evaluate
it (§4). We discuss related work (§5) and conclude (§6).

2 Motivation and Background
In this section, we first explain the extent to which cur-
rent data-intensive applications are vulnerable during a
crash. We then describe why a file system that preserves
the order of application updates will automatically im-
prove the state of application-level crash consistency. Fi-
nally, we discuss the performance overheads of preserv-
ing order, and how the overheads can be addressed.

2.1 State of Crash Consistency
To maintain the consistency of their user-level data struc-
tures in the event of a crash, many applications [20, 24,
32] modify the data they store in the file system via a
carefully implemented update protocol. The update pro-
tocol is a sequence of system calls (such as file writes
and renames) that updates underlying files and directo-
ries in a recoverable way. As an example, consider a sim-
ple DBMS that stores its user data in a single database
file. To maintain transactional atomicity across a sys-
tem crash, the DBMS can use an update protocol called
journaling (or write-ahead logging): before updating the
database file, the DBMS simply records the updates in
a separate journal file. The pseudocode for the update
protocol is shown in Figure 1. If a crash happens, the
DBMS executes a recovery protocol when restarted: if
the database file was only partially updated, the full up-
date from the journal is replayed.

Correctly implementing crash-consistency protocols
has proven to be difficult for a variety of reasons. First,

the correctness inherently depends on the exact seman-
tics of the system calls in the update protocol with respect
to a system crash. Because file systems buffer writes in
memory and send them to disk later, from the perspec-
tive of an application the effects of system calls can get
re-ordered before they are persisted on disk. For exam-
ple, in a naive version of the journaling update protocol,
the unlink of the journal file can be re-ordered before
the update of the database file. In Figure 1, an explicit
fsync system call is used to force the update to disk, be-
fore issuing the unlink. Also, the semantics of system
calls can differ between file systems; for example, the
aforementioned re-ordering occurs in the default config-
urations of ext2, ext4, xfs, and btrfs, but not in ext3.

Second, the recovery protocol must correctly consider
and recover from the multitude of states that are possible
when a crash happens during the update protocol. Appli-
cation developers strive for update protocols to be effi-
cient, since the protocols are invoked during each modi-
fication to the data store; more efficient update protocols
often result in more possible states to be reasoned about
during recovery. For example, the journal protocol in
Figure 1 is often extended to batch multiple transactions
onto the journal before the actual update to the database
file, so as to avoid performance-intensive fsync calls.

Finally, crash-consistency protocols are hard to test,
much like concurrency mechanisms, because the states
that might occur on a crash are non-deterministic. Since
efficient protocol implementations are inherently tied to
the format used by the application’s data structures and
concurrency mechanisms, it is impractical to re-use a sin-
gle, verified implementation across applications.

Unsurprisingly, past research [35, 56, 57] has found
many vulnerabilities in the implementations of crash
consistency protocols in widely used applications written
by experienced developers, such as Google’s LevelDB
and Linus Torvalds’s Git. However, in this paper, we
argue that it is practical to construct a file system that au-
tomatically improves application crash consistency. We
base our arguments on the following hypotheses:
The Ordering Hypothesis: Existing update and recov-
ery protocols (mostly) work correctly on an ordered and
weakly-atomic file system (the exact definition of these
terms is explained subsequently).
The Efficiency Hypothesis: An ordered and weakly-
atomic file system can be as efficient as a file system that
does not provide these properties, with the proper design,
implementation, and realistic application workloads.

2.2 Weak Atomicity and Order
We hypothesize that most vulnerabilities that exist in
application-level update protocols are caused because the
related application code depends on two specific file-
system guarantees. File systems that provide these guar-

182 15th USENIX Conference on File and Storage Technologies USENIX Association

Time (s) Seeks Median seek distance (sectors)
Re-ordered 25.82 23762 120

FIFO 192.56 38201 2002112
Table 1: Seeks and Order. The table shows the number of
disk seeks incurred and the total time taken when 25600 writes
are issued to random positions within a 2GB file in a HDD. Two
different settings are investigated: the writes can be re-ordered
or the order of writes is maintained using the FIFO strategy.
The number of seeks incurred in each setting and the LBA seek
distance shown are determined from a block-level I/O trace.
antees, therefore, automatically mask application vulner-
abilities. The first guarantee, and the major focus of our
work, is that the effect of system calls should be persisted
on disk in the order they were issued by applications; a
system crash should not produce a state where the system
calls appear re-ordered. The second (minor) guarantee is
that, when an application issues certain types of system
calls, the effect of the system call should be atomic across
a system crash. The second guarantee, which we term
weak atomicity, is specifically required for system calls
that perform directory operations (including the creation,
deletion, and renaming of files and hard links). Weak
atomicity also includes stipulations about writes to files,
but only at sector granularity (i.e., there is generally no
need to guarantee that arbitrarily large writes are atomic).
If a system call appends data to the end of a file, both in-
creasing the file size and the writing of data to the newly
appended portion of the file should be atomic together.

The fundamental reason that order simplifies the cre-
ation of update protocols is that it drastically reduces the
number of possible states that can arise in the event of a
crash, i.e., the number of states that the recovery protocol
has to handle. For example, consider an update protocol
that simply overwrites n sectors in a file; if the file sys-
tem maintains order and weak atomicity, only n crash
states are possible, whereas 2n states are possible if the
file system can re-order. Maintaining order makes it eas-
ier to reason about the correctness of recovery for both
humans and automated tools [35].

The effectiveness of maintaining weak atomicity and
order can be understood by considering the application-
level crash-consistency vulnerabilities discovered re-
cently [35]. Among 60 vulnerabilities in the study, the
authors state that 16 are masked by maintaining weak
atomicity alone. They also state that 27 vulnerabilities
are masked by guaranteeing order. Of the remaining
vulnerabilities, 12 are attributed to durability; however,
the authors observe that 8 of these 12 will be masked
if the file system guarantees order. Thus, in all, 50 of
the 60 vulnerabilities are addressed by maintaining order
and weak atomicity; the remaining 10 have minor conse-
quences and are readily masked or fixed [36].

2.3 Order: Bad for Performance
Most real-world deployed file systems (such as btrfs)
already maintain the weak atomicity required to

mask application-level crash-consistency vulnerabilities.
However, all commonly deployed file-system configura-
tions (including ext4 in metadata-journaling mode, btrfs,
and xfs) re-order updates, and the re-ordering only seems
to increase with each new version of a file system (e.g.,
ext4 re-orders more than ext3 [35]; newer versions of
ext4 re-order even more [53], as do newer systems like
btrfs [35]). While maintaining update order is important
for application crash consistency, it has traditionally been
considered bad for performance, as we now discuss.

At low levels in the storage stack, re-ordering is a
fundamental technique that improves performance. To
make this case concrete, we created a workload that is-
sues writes to random locations over a disk. Forcing
these writes to commit in issue order takes roughly eight
times longer than a seek-optimized order (Table 1). Re-
ordering is important for hard drives [43] and SSDs [23];
approaches that constrict write ordering are insufficient.

Higher up the stack, ordering can induce negative (and
sometimes surprising) performance degradations. Con-
sider the following code sequence:
write(f1); write(f2); fsync(f2); truncate(f1);

In this code, without mandated order, the forced writes
to f2 can move ahead of the writes to f1; by doing so,
the truncate obviates the need for any writes to f1 at all.
Similarly, if the user overwrites f1 instead of truncating
it, only the newer data needs to be written to disk.

We call this effect write avoidance: not all user-level
writes need to be sent to the disk, but can instead be ei-
ther forgotten due to future truncates or coalesced due
to future overwrites. Re-ordering allows write avoidance
across fsync calls. Global write ordering, in contrast,
implies that if writes to f2 are being forced to disk, so
must writes to f1. Instead of skipping the writes to f1,
the file system must now both write out its contents (and
related metadata), and then, just moments later, free said
blocks. If the write to f1 is large, this cost can be high.

We call this situation, where fsync calls or cache evic-
tion reduce write avoidance in an ordered file system, a
write dependence. Write dependence is not limited to
writes by a single application; any application that forces
writes to disk could cause large amounts of other (poten-
tially unneeded) I/O to occur. When write dependence
does not improve crash consistency, as when it occurs
between independent applications, we term it a false de-
pendence, an expected high-cost of global order.

Apart from removing the chance for write avoidance,
write dependence also worsens application performance
in surprising ways. For example, the fsync(f2) becomes
a high-latency operation, as it must wait for all previous
writes to commit, not just the writes to f2. The overheads
associated with write dependence can be further exac-
erbated by various optimizations found in modern file
systems. For example, the ext4 file system uses a tech-

USENIX Association 15th USENIX Conference on File and Storage Technologies 183

nique known as delayed allocation, wherein it batches
together multiple file writes and then subsequently allo-
cates blocks to files. This important optimization is de-
feated by forced write ordering.

2.4 Order with Good Performance
We believe it is possible to address the overheads associ-
ated with maintaining order in practice. To reduce disk-
level scheduling overheads, a variety of techniques have
been developed that preserve the appearance of ordered
updates in the event of a crash while forcing few con-
straints on disk scheduling.

For example, in ext4 data journaling, all file-system
updates (metadata and data) are first written to a jour-
nal. Once committed there, the writes can be propagated
(checkpointed) to their in-place final locations. Note
that there are no ordering constraints placed upon the
checkpoint writes; they can be re-ordered as necessary
by lower layers in the storage stack to realize the ben-
efits of low-level I/O scheduling. Further, by grouping
all writes into a single, large transaction, writes are ef-
fectively committed in program order: if a write to f1
occurs before a write to f2, they will either be committed
together (in the same transaction), or the write to f2 will
commit later; never will f2 commit before f1. We discuss
ext4 journaling in more detail in the next section.

Unfortunately, total write ordering, as provided with
data journaling, exacts a high performance cost: each
data item must be written twice, thus halving disk band-
width for some workloads. For this reason, most journal-
ing file systems only journal metadata, maintaining file-
system crash consistency but losing ordering among ap-
plication writes. What would be ideal is the performance
of metadata-only journaling combined with the ordering
guarantees provided by full data journaling.

However, even if an efficient journaling mechanism
is used, it does not avoid overheads due to false de-
pendence. To address this problem, we believe a new
abstraction is needed, which enables the file system to
separate update orderings across different applications.
Within an application, we believe that false dependence
is rare and does not typically arise.

Thus, we are left with two open questions. Can a
metadata-only journaling approach be adopted that main-
tains order but with high performance? Second, can a
new abstraction eliminate false dependence? We answer
these questions in the affirmative with the design of ccfs.

3 Crash-Consistent File System
In this section, we describe ccfs, a file system that em-
braces application-level crash consistency. Ccfs has two
goals: preserving the program order of updates and weak
atomicity, and performance similar to widely-used re-
ordering file systems. So as to satisfy these goals, we de-

rive ccfs from the ext4 file system. Ext4 is widely used,
includes many optimizations that allow it to perform ef-
ficiently in real deployments, and includes a journaling
mechanism for internal file-system consistency. In ccfs,
we extend ext4’s journaling to preserve the required or-
der and atomicity in an efficient manner without affecting
the optimizations already present in ext4.

The key idea in ccfs is to separate each application into
a stream, and maintain order only within each stream;
writes from different streams are re-ordered for perfor-
mance. This idea has two challenges: metadata struc-
tures and the journaling mechanism need to be sepa-
rated between streams, and order needs to be maintained
within each stream efficiently. Ccfs should solve both
without affecting existing file-system optimizations. In
this section, we first explain ext4’s journaling mechanism
(§3.1), then the streams abstraction (§3.2), how streams
are separated (§3.3) and how order is maintained within a
stream (§3.4), and our implementation (§3.5). We finally
discuss how applications can practically start using the
streams abstraction (§3.6).

3.1 Journaling in Ext4
To maintain internal file-system metadata consistency,
ext4 requires the atomicity of sets of metadata updates
(e.g., all metadata updates involved in creating a file) and
an order between these sets of updates. Ext4 uses an op-
timized journaling technique for this purpose. Specifi-
cally, the journaling occurs at block granularity, batches
multiple sets of atomic metadata updates (delayed log-
ging [11]), uses a circular journal, and delays forced
checkpointing until necessary. The block-granularity and
circular aspects prove to be a challenge for adoption in
ccfs, while delayed logging and checkpointing are im-
portant optimizations that ccfs needs to retain. We now
briefly explain these techniques of ext4 journaling.

Assume the user performs a metadata operation (such
as creating a file), causing ext4 to modify metadata struc-
tures in the file-system blocks b1, b2, b3. Ext4 associates
b1, b2, b3 with an in-memory data structure called the
running transaction, Ti. Instead of immediately per-
sisting Ti when the metadata operation completes, ext4
waits for the user to perform more operations; when this
happens, the resulting set of block modifications are also
associated with Ti (i.e., delayed logging). Periodically,
ext4 commits the running transaction, i.e., writes the up-
dated contents of all the associated blocks of Ti and some
bookkeeping information to an on-disk journal. When
Ti starts committing, a new running transaction (Ti+1)
is created to deal with future metadata operations. Thus,
ext4 always has one running transaction, and at most one
committing transaction. Once Ti finishes committing, its
blocks can be written to their actual locations on disk in
any order; this is usually done by Linux’s page-flushing

184 15th USENIX Conference on File and Storage Technologies USENIX Association

daemon in an optimized manner.
If a crash happens, after rebooting, ext4 scans each

transaction written in the journal file sequentially. If a
transaction is fully written, the blocks recorded in that
transaction are propagated to their actual locations on
disk; if not, ext4 stops scanning the journal. Thus, the
atomicity of all block updates within each transaction are
maintained. Maintaining atomicity implicitly also main-
tains order within a transaction, while the sequential scan
of the journal maintains order across transactions.

The on-disk journal file is circular: after the file
reaches a maximum size, committed transactions in the
tail of the journal are freed (i.e., checkpointed) and that
space is reused for recording future transactions. Ext4
ensures that before a transaction’s space is reused, the
blocks contained in it are first propagated to their ac-
tual locations (if the page-flushing mechanism had not
yet propagated them). Ext4 employs techniques that co-
alesce such writebacks. For example, consider that a
block recorded in Ti is modified again in Tj ; instead of
writing back the version of the block recorded in Ti and
Tj separately, ext4 simply ensures that Tj is committed
before Ti’s space is reused. Since the more recent version
(in Tj) of the block will be recovered on a crash without
violating atomicity, the earlier version of the block will
not matter. Similar optimizations also handle situations
where committed blocks are later unreferenced, such as
when a directory gets truncated.

For circular journaling to work correctly, ext4 requires
a few invariants. One invariant is of specific interest in
ccfs: the number of blocks that can be associated with a
transaction is limited by a threshold. To enforce the limit,
before modifying each atomic set of metadata structures,
ext4 first verifies that the current running transaction
(say, Ti) has sufficient capacity left; if not, ext4 starts
committing Ti and uses Ti+1 for the modifications.

3.2 Streams
Ccfs introduces a new abstraction called the stream;
each application usually corresponds to a single stream.
Writes from different streams are re-ordered for perfor-
mance, while order is preserved within streams for crash
consistency. We define the stream abstraction such that
it can be easily used in common workflows; as an ex-
ample, consider a text file f1 that is modified by a text
editor while a binary file f2 is downloaded from the net-
work, and they are both later added to a VCS repository.
Initially, the text editor and the downloader must be able
to operate on their own streams (say, A and B, respec-
tively), associating f1 with A and f2 with B. Note that
there can be no constraints on the location of f1 and f2:
the user might place them on the same directory. More-
over, the VCS should then be able to operate on another
stream C, using C for modifying both f1 and f2. In

such a scenario, the stream abstraction should guarantee
the order required for crash consistency, while allowing
enough re-ordering for the best performance possible.

Hence, in ccfs, streams are transient and are not
uniquely associated with specific files or directories: a
file that is modified in one stream might be later modified
in another stream. However, because of such flexibility,
while each stream can be committed independently with-
out being affected by other streams, it is convenient if the
stream abstraction takes special care when two streams
perform operations that affect logically related data. For
example, consider a directory that is created by stream A,
and a file that is created within the directory by stream B;
allowing the file creation to be re-ordered after the direc-
tory creation (and recovering the file in a lost+found di-
rectory on a crash) might not make logical sense from an
application’s perspective. Hence, when multiple streams
perform logically related operations, the file system takes
sufficient care so that the temporal order between those
operations is maintained on a crash.

We loosely define the term related such that related
operations do not commonly occur in separate streams
within a short period of time; if they do, the file system
might perform inefficiently. For example, separate di-
rectory entries in a directory are not considered related
(since it is usual for two applications to create files in the
same directory), but the creation of a file is considered
related to the creation of its parent. Section 3.5 further
describes which operations are considered logically re-
lated and how their temporal order is maintained.

Our stream interface allows all processes and threads
belonging to an application to easily share a single
stream, but also allows a single thread to switch between
different streams if necessary. Specifically, we provide a
setstream(s) call that creates (if not already existing)
and associates the current thread with the stream s. All
future updates in that thread will be assigned to stream
s; when forking (a process or thread), a child will adopt
the stream of its parent. The API is further explained in
Section 3.5 and its usage is discussed in Section 3.6.

3.3 Separating Multiple Streams
In ccfs, the basic idea used to separately preserve the or-
der of each stream is simple: ccfs extends the journaling
technique to maintain multiple in-memory running trans-
actions, one corresponding to each stream. Whenever a
synchronization system call (such as fsync) is issued,
only the corresponding stream’s running transaction is
committed. All modifications in a particular stream are
associated with that stream’s running transaction, thus
maintaining order within the stream (optimizations re-
garding this are discussed in the next section).

Using multiple running transactions poses a challenge:
committing one transaction without committing others

USENIX Association 15th USENIX Conference on File and Storage Technologies 185

Figure 2: Hybrid-granularity Journaling. Timeline show-
ing hybrid-granularity journaling in ccfs. Block X initially contains
the value 〈a0, b0〉, TA and TB are the running transactions of streams
A and B; when B commits, X is recorded at the block level on disk .

(i.e., re-ordering between streams) inherently re-orders
the metadata modified across streams. However, inter-
nal file-system consistency relies on maintaining a global
order between metadata operations; indeed, this is the
original purpose of ext4’s journaling mechanism. It is
hence important that metadata modifications in different
streams be logically independent and be separately asso-
ciated with their running transactions. We now describe
the various techniques that ccfs uses to address this chal-
lenge while retaining the existing optimizations in ext4.

3.3.1 Hybrid-granularity Journaling
The journaling mechanism described previously (§3.1)
works at block-granularity: entire blocks are associated
with running transactions, and committing a transaction
records the modified contents of entire blocks. Ccfs
uses hybrid-granularity journaling, where byte-ranges
(instead of entire blocks) are associated with the running
transaction, but transactional commits and checkpointing
still happen at block-granularity.

Ccfs requires byte-granularity journaling because sep-
arate metadata structures modified by different streams
might exist in the same file-system block. For example,
a single block can contain the inode structure for two files
used by different applications; in block-granularity jour-
naling, it is not possible to associate the inodes with the
separate running transactions of two different streams.

Block-granularity journaling allows many optimiza-
tions that are not easily retained in byte-granularity. A
major optimization affected in ext4 is data coalescing
during checkpoints: even if multiple versions of a block
are committed, only the final version is sent to its in-
place location. Since the Linux buffer cache and storage
devices manage data at block granularity, such coalesc-
ing becomes complicated with a byte-granularity journal.

To understand hybrid-granularity journaling, consider
the example illustrated in Figure 2. In this example,
block X initially contains the bytes 〈a0b0〉. Before al-
lowing any writes, ccfs makes an in-memory copy (say,
X0) of the initial version of the block. Let the first byte
of X be modified by stream A into a1; ccfs will associate

the byte range X0−0 with the running transaction TA of
stream A (Xi−j denotes the ith to jth bytes of block X),
thus following byte-granularity. Let stream B then mod-
ify the second byte into b1, associating X1−1 with TB ;
the final in-memory state of X will be 〈a1b1〉. Now,
assume the user calls fsync in stream B, causing TB

to commit (TA is still running). Ccfs converts TB into
block-granularity for the commit, by super-imposing the
contents of TB (i.e., X1−1 with the content b1) on the ini-
tial versions of their blocks (i.e, X0 with content 〈a0b0〉),
and committing the result (i.e., 〈a0b1〉). When TB starts
committing, it updates X0 with the value of X that it is
committing. If the user then calls fsync in A, X0−0 is
super-imposed on X0 (〈a0b1〉), committing 〈a1b1〉.

Thus, hybrid-granularity journaling performs in-
memory logging at byte-granularity, allowing streams
to be separated; the delayed-logging optimization of
ext4 is unaffected. Commits and checkpoints are block-
granular, thus preserving delayed checkpointing.

3.3.2 Delta Journaling
In addition to simply associating byte ranges with run-
ning transactions, ccfs allows associating the exact
changes performed on a specific byte range (i.e., the
deltas). This technique, which we call delta journaling,
is required when metadata structures are actually shared
between different streams (as opposed to independent
structures sharing the same block). For example, con-
sider a metadata tracking the total free space in the file
system: all streams need to update this metadata.

Delta journaling in ccfs works as follows. Assume
that the byte range X1−2 is a shared metadata field stor-
ing an integer, and that stream A adds i to the field and
stream B subtracts j from the field. Ccfs associates the
delta 〈X1−2 : + i〉 to the running transaction TA and the
delta 〈X1−2 : − j〉 to the running TB . When a trans-
action commits, the deltas in the committing transaction
are imposed on the initial values of their corresponding
byte ranges, and then the results are used for performing
the commit. In our example, if X1−2 initially had the
value k, and stream B committed, the value (k − j) will
be recorded for the byte range during the commit; note
that hybrid-granularity journaling is still employed, i.e..,
the commit will happen at block-granularity.

In ext4, shared metadata structures requiring delta
journaling are the free inode count and the free block
count, which concern the global state across the file sys-
tem. Delta journaling is also needed for the nlink and the
modification time fields of directory inodes, since multi-
ple streams can modify the same directory.

3.3.3 Pointer-less Data Structures
Metadata in file systems often use data structures such as
linked lists and trees that contain internal pointers, and
these cause metadata operations in one stream to update

186 15th USENIX Conference on File and Storage Technologies USENIX Association

pointers in structures already associated with another
stream. For example, deleting an entry in a linked list
will require updating the next pointer of the previous en-
try, which might be associated with another stream. Ccfs
eliminates the need to update pointers across streams by
adopting alternative data structures for such metadata.

Ext4 has two metadata structures that are of concern:
directories and the orphan list. Directories in ext4 have
a structure similar to linked lists, where each entry con-
tains the relative byte-offset for the next entry. Usually,
the relative offset recorded in a directory entry is simply
the size of the entry. However, to delete a directory entry
di, ext4 adds the size of di to the offset in the previous
entry (di−1), thus making the previous entry point to the
next entry (di+1) in the list. To make directories pointer-
less, ccfs replaces the offset in each entry with a deleted
bit: deleting an entry sets the bit. The insert and scan
procedures are modified appropriately; for example, the
insert procedure recognizes previously deleted entries in
the directory and uses them for new entries if possible.

The orphan list in ext4 is a standard linked list contain-
ing recently freed inodes and is used for garbage collect-
ing free blocks. The order of entries in the list does not
matter for its purposes in ext4. We convert the orphan
list into a pointer-less structure by substituting it with an
orphan directory, thus reusing the same data structure.

3.3.4 Order-less Space Reuse
Ccfs carefully manages the allocation of space in the
file system such that re-ordering deallocations between
streams does not affect file-system consistency. For ex-
ample, assume stream A deletes a file and frees its inode,
and stream B tries to create a file. The allocation rou-
tines in ext4 might allocate to B the inode that was just
freed by A. However, if B commits before A, and then
a crash occurs, the recovered state of the file system will
contain two unrelated files assigned the same inode.

Ext4 already handles the situation for block alloca-
tion (for reasons of security) by reusing blocks only after
the transaction that frees those blocks has fully commit-
ted. In ccfs, we extend this solution to both inode and
directory-entry reuse. Thus, in our example, B will reuse
A’s freed inode only if A has already been committed.

3.4 Maintaining Order Within Streams
We saw in the previous section how to separate depen-
dencies across independent streams; we now focus on
ordering the updates within the same stream. Ext4 uses
metadata-only journaling: ext4 can re-order file appends
and overwrites. Data journaling, i.e., journaling all up-
dates, preserves application order for both metadata and
file data, but significantly reduces performance because
it often writes data twice. A hybrid approach, selective
data journaling (SDJ) [5], preserves order of both data
and metadata by journaling only overwritten file data; it

Figure 3: Order-preserving Delayed Allocation. Time-
line of allocations performed, corresponding to a system-call sequence.

only journals the block pointers for file appends. Since
modern workloads are mostly composed of appends, SDJ
is significantly more efficient than journaling all updates.

We adopt the hybrid SDJ approach in ccfs. However,
the approach still incurs noticeable overhead compared
to ext4’s default journaling under practical workloads be-
cause it disables a significant optimization, delayed al-
location. In our experiments, the createfiles benchmark
results in 8795 ops/s on ext4 with delayed allocation on
a HDD, and 7730 ops/s without (12% overhead).

Without delayed allocation, whenever an application
appends to files, data blocks are allocated and block
pointers are assigned to the files immediately, as shown
in the second column of Figure 3. With delayed allo-
cation (third column), the file system does not imme-
diately allocate blocks; instead, allocations for multiple
appends are delayed and done together. For order to be
maintained within a stream, block pointers need to be
assigned immediately (for example, with SDJ, only the
order of allocations is preserved across system crashes):
naive delayed allocation inherently violates order.

Ccfs uses a technique that we call order-preserving
delayed allocation to maintain program order while al-
lowing delayed allocations. Whenever a transaction Ti

is about to commit, all allocations (in the current stream)
that have been delayed so far are performed and added
to Ti before the commit; further allocations from future
appends by the application are assigned to Ti+1. Thus,
allocations are delayed until the next transaction commit,
but not across commits. Since order is maintained within
Ti via the atomicity of all operations in Ti, the exact se-
quence in which updates are added to Ti does not matter,
and thus the program order of allocations is preserved.

However, the running transaction’s size threshold
poses a challenge: at commit time, what if we cannot add
all batched allocations to Ti? Ccfs solves this challenge
by reserving the space required for allocations when
the application issues the appends. Order-preserving
delayed allocation thus helps ccfs achieve ext4’s per-
formance while maintaining order. For the createfiles
benchmark, the technique achieves 8717 ops/s in ccfs,
and thus performs similar to the default configuration of
ext4 (8795 ops/s).

3.5 Implementation
Ccfs changes 4,500 lines of source code (ext4 total:
50,000 lines). We now describe our implementation.

USENIX Association 15th USENIX Conference on File and Storage Technologies 187

Stream API. The setstream() call takes a flags pa-
rameter along with the stream. One flag is currently sup-
ported: IGNORE FSYNC (ignore any fsync calls in this
stream). We provide a getstream() call that is used,
for example, to find if the current process is operating
on the init stream (explained in §3.6) or a more specific
stream. A streamsync() call flushes all updates in the
current stream.

Related Operations Across Streams. The current
version of ccfs considers the following operations as log-
ically related: modifying the same regular file, explicitly
modifying the same inode attributes (such as the owner
attribute), updating (creating, deleting, or modifying) di-
rectory entries of the same name within a directory, and
creating a directory and any directory entries within that
directory. To understand how ccfs maintains temporal or-
dering between related operations from different streams,
consider that stream A first performs operation OA at
time t1 and stream B then performs a related operation
OB at t2. If stream A gets committed between t1 and t2
(either due to an fsync or a periodic background flush),
the required temporal order is already maintained, since
OA is already on disk before OB is performed. If not,
ccfs temporarily merges the streams together and treats
them as one, until the merged streams get committed to
disk; the streams are then separated and allowed to pro-
ceed independently.
Maintaining Order Within Streams. An implementa-
tion challenge for order-preserving delayed allocation is
that the allocations need to be performed when a transac-
tion is about to commit, but before the actual committing
starts. We satisfy these requirements without much com-
plexity by performing the allocations in the T LOCKED

state of the transaction, a transient state in the begin-
ning of every commit when all file-system updates are
blocked. A more efficient implementation can carefully
perform these allocations before the T LOCKED state.

To correctly maintain the order of file updates, SDJ
requires careful handling when data is both appended and
overwritten on the same block. For example, consider an
append when Ti was running and an overwrite when Ti

is committing (when Ti+1 is running); to maintain order,
two versions of the block must be created in memory: the
old version (that does not contain the overwrite) must be
used as part of Ti’s commit, and the new version must be
journaled in Ti+1. Ccfs handles these cases correctly.

3.6 Discussion
We now discuss how we expect applications to use
streams. Overall, the abstraction is flexible: while we ex-
pect most applications to use a single stream, if needed,
applications can also use separate streams for individ-
ual tasks, or multiple applications can share a single
stream. In the current version of ccfs, the init process

Application ext4 ccfs
LevelDB 1 0

SQLite-Roll 0 0
Git 2 0

Mercurial 5 2
ZooKeeper 1 0

(a) Vulnerabilities found

Application ext4 ccfs

LevelDB Images 158 / 465 427 / 427
Time (s) 24.31 / 30 30 / 30

Git Images 84 / 112 96 / 96
Time (s) 9.95 / 40 40 / 40

(b) Consistent post-reboot disk states
produced by BoB

Table 2: Consistency Testing. The first table shows the re-
sults of model-based testing using Alice, and the second shows
experimental testing with BoB. Each vulnerability reported in
the first table is a location in the application source code that
has to be fixed. The Images rows of the second table show
the number of disk images reproduced by the BoB tool that
the application correctly recovers from; the Time rows show
the time window during which the application can recover cor-
rectly from a crash (x / y: x time window, y total workload run-
time). For Git, we consider the default configuration instead of
a safer configuration with bad performance (§4.4).
is assigned an init stream; hence, all applications in-
herit this stream by default. We expect most applica-
tions whose write performance are user visible to issue
a single setstream() call in the beginning of the appli-
cation (but to not make any other code changes). Thus,
applications by default will have improved crash consis-
tency, and applications issuing setstream() will have
both improved consistency and high performance. If so
desired, applications can also significantly improve their
performance (while maintaining consistency) by first set-
ting the IGNORE FSYNC flag and removing any O SYNC

flags, and issuing streamsync() calls only when dura-
bility is actually desired.

4 Evaluation
In our evaluation, we answer the following questions:
• Does ccfs improve application crash consistency?
• Does ccfs effectively use streams to eliminate the over-

head of write dependencies?
• How does ccfs perform in standard file system bench-

marks run in a single stream?
• What is the performance effect of maintaining order

on real applications?
We performed a set of experiments to answer these

questions. For the experiments, we use an Intel Core
2 Quad Processor Q9300 with 4 GB of memory run-
ning Linux 3.13, with either an SSD (Samsung 840 EVO
500 GB) or a HDD (Toshiba MK1665GSX 160 GB).

4.1 Reliability
We first examine whether the in-order semantics pro-
vided by ccfs improves application crash consistency
compared to the widely-used ext4 file system (which re-
orders writes). We follow a model-based testing strat-
egy to check application consistency on both file sys-
tems using the Alice tool [35]. The tool records the
system-call trace for a given application workload, and
then uses a file-system model to reproduce the possible
set of file-system states if a system crash occurs. We con-

188 15th USENIX Conference on File and Storage Technologies USENIX Association

figured Alice with the models of ext4 (model provided
with the tool) and ccfs (system calls are weakly atomic
and in-order). We tested five applications previously re-
ported [35] to exhibit crash inconsistencies on ext4: Lev-
elDB, SQLite, Git, Mercurial, and ZooKeeper. We use
workloads similar to the previous study, but newer ver-
sions of the applications; we do not check durability in
Git and Mercurial since they never call fsync.

The results of our testing are shown in Table 2(a).
Ext4 results in multiple inconsistencies: LevelDB fails to
maintain the order in which key-value pairs are inserted,
Git and Mercurial can result in repository corruption, and
ZooKeeper may become unavailable. With ccfs, the only
inconsistencies were with Mercurial. These inconsisten-
cies are exposed on a process crash with any file sys-
tem, and therefore also occur during system crashes in
ccfs; they result only in dirstate corruption, which can
be manually recovered from and is considered to be of
minor consequence [27]. Thus, our model-based test-
ing reveals that applications are significantly more crash
consistent on ccfs than ext4.

We used the BoB tool [35] to test whether our imple-
mentation of ccfs maintains weak atomicity and order-
ing, i.e., whether the implementation reflects the model
used in the previous testing. BoB records the block-level
trace for an application workload running on a file sys-
tem, and reproduces a subset of disk images possible if
a crash occurs. BoB generates disk images by persisting
blocks in and out of order; each image corresponds to a
time window during the runtime where a crash will result
in the image. These windows are used to measure how
much time the application remains consistent.

We used Git and LevelDB to test our implementation
and compare it with ext4; both have crash vulnerabilities
exposed easily on a re-ordering file system. Table 2(b)
shows our results. With ext4, both applications can eas-
ily result in inconsistency. LevelDB on ext4 is consis-
tent only on 158 of the 465 images reproduced; a system
crash can result in being unable to open the datastore af-
ter reboot, or violate the order in which users inserted
key-value pairs. Git will not recover properly on ext4 if
a crash happens during 30.05 seconds of the 40 second
runtime of the workload. With ccfs, we were unable to
reproduce any disk state in which LevelDB or Git are
inconsistent. We conclude that our implementation pro-
vides the desired properties for application consistency.

Thus, our results show that ccfs noticeably improves
the state of application crash consistency. We next eval-
uate whether this is achieved with good performance.

4.2 Multi-stream Benefits
Maintaining order causes write dependence during
fsync calls and imposes additional overheads, since
each fsync call must flush all previous dirty data. In the

Micro- File fsync fsync Total
Benchmark system latency (s) written (MB) written (MB)

ext4 0.08 0.03 100.19
Append ccfs-1 1.28 100.04 100.18

ccfs-2 0.08 0.03 100.20
ext4 0.07 0.03 0.18

Truncate ccfs-1 1.28 100.04 100.21
ccfs-2 0.05 0.03 0.20
ext4 0.08 0.03 100.19

Overwrite ccfs-1 1.27 100.04 300.72
ccfs-2 0.07 0.03 100.20

Table 3: Single-fsync Experiments. fsync latencies in
the first column correspond to the data written by the fsync
shown in the second column on HDD, while the total data
shown in the third column affects the available device band-
width and hence performance in more realistic workloads.
simplest case, this results in additional fsync latency;
it can also prevent writes from being coalesced across
fsync calls when data is overwritten, and prevent writes
from being entirely avoided when the previously writ-
ten data is deleted. We now evaluate if using separate
streams in ccfs prevents these overheads.

We devised three microbenchmarks to study the per-
formance effects of preserving order. The append mi-
crobenchmark appends a large amount of data to file A,
then writes 1 byte to file B and calls fsync on B; this
stresses the fsync call’s latency. The truncate bench-
mark truncates file A after calling fsync while over-
write overwrites A after the fsync; these benchmarks
stress whether or not writes are avoided or coalesced.

We use two versions of each benchmark. In the sim-
pler version, we write 100 MB of data in file A and mea-
sure the latency of the fsync call and the total data sent
to the device. In another version, a foreground thread re-
peatedly writes B and calls fsync every five seconds; a
background thread continuously writes to A at 20 MB/s,
and may truncate A or overwrite A every 100 MB, de-
pending on the benchmark. The purpose of the multi-
fsync version is to understand the distribution of fsync
latencies observed in such a workload.

We ran the benchmarks on three file-system configu-
rations: ext4, which re-orders writes and does not incur
additional overheads, ccfs using a single stream (ccfs-
1), and ccfs with modifications of A and B in separate
streams (ccfs-2). Table 3 and Figure 4 show our results.

For the append benchmark, in ext4, the fsync com-
pletes quickly in 0.08 seconds since it flushes only B’s
data to the device. In ccfs-1, the fsync sends 100 MB
and takes 1.28 seconds, but ccfs-2 behaves like ext4 since
A and B are modified in different streams. Repeated
fsync follows the same trend: most fsync calls are
fast in ext4 and ccfs-2 but often take more than a sec-
ond in ccfs-1. A few fsync calls in ext4 and ccfs-2 are
slow due to interference from background activity by the
page-flushing daemon and the periodic journal commit.

With truncates, ext4 and ccfs-2 never send file A’s data
to disk, but ccfs-1 sends the 100 MB during fsync, re-

USENIX Association 15th USENIX Conference on File and Storage Technologies 189

Figure 4: Repeated fsync Experiments Histogram of user-
observed foreground latencies in our multi-fsync experiments. Each
experiment is run for two minutes on a HDD.

sulting in higher latency and more disk writes. Most
repeated fsync calls in ext4 and ccfs-2 are fast, as ex-
pected; they are slow in ccfs-1, but still quicker than the
append benchmark because the background thread would
have just truncated A before some of the fsync.

With overwrites, in both ext4 and ccfs-2, only the final
version of A’s data reaches the disk: in ccfs-2, SDJ con-
siders the second modification of A an append because
the first version of A is not yet on disk (this still main-
tains order). In ccfs-1, the first version is written dur-
ing the fsync, and then the second version (overwrite)
is both written to the journal and propagated to its actual
location, resulting in 300 MB of total disk writes. Re-
peated fsync calls are slow in ccfs-1 but quicker than
previous benchmarks because of fewer disk seeks: with
this version of the benchmark, since A is constantly over-
written, data is only sent to the journal in ccfs-1 and is
never propagated to its actual location.

These results show that ccfs is effective at avoiding
write dependence overheads when multiple streams are
used (in comparison to a file system providing global or-
der). The results also show that, within a stream, write
dependence can cause noticeable overhead. For certain
applications, therefore, it is possible that dividing the ap-
plication into multiple streams is necessary for perfor-
mance. The subsequent sections show that the majority
of the applications do not require such division.

4.3 Single-stream Overheads
The previous experiments show how ccfs avoids the per-
formance overheads across streams; we now focus on
performance within a stream. The performance effects
of maintaining order within a stream are affected by
false dependencies between updates within the stream,
and hence depend significantly on the pattern of writes.
We perform our evaluation using the Filebench [12, 51]
suite that reflects real-world workload patterns and mi-
crobenchmarks, and compare performance between ext4
(false dependencies are not exposed) and ccfs (false
dependencies are exposed because of ordering within
streams). Another source of overhead within streams is
the disk-level mechanism used to maintain order, i.e., the

SDJ technique used in ccfs. Hence, we compare perfor-
mance between ext4 (no order), ccfs (order-preserving
delayed allocation and SDJ), and ext4 in the data=journal
mode (ext4-dj, full data journaling). We compare per-
formance both with a HDD (disk-level overheads domi-
nated by seeks) and an SSD (seeks less pronounced).

The overall results are shown in Figure 5; performance
is most impacted by overwrites and fsync calls. We now
explain the results obtained on each benchmark.

The varmail benchmark emulates a multithreaded mail
server, performing file creates, appends, deletes, reads,
and fsync calls in a single directory. Since each append
is immediately followed by an fsync, there is no addi-
tional write dependence due to ordering. Performance
is dominated by seek latency induced by the frequent
fsync calls, resulting in similar performance across ext4
and ccfs. Ext4-dj issues more writes but incurs less seeks
(since data is written to the journal rather than the in-
place location during each fsync), and performs 20%
better in the HDD and 5% better in the SSD.

Randwrite overwrites random locations in an existing
file and calls fsync every 100 writes. Since the fsync

calls always flush the entire file, there is no additional
write dependence due to ordering. However, the over-
writes cause both ccfs (SDJ) and ext4-dj (full journal-
ing) to write twice as much data as ext4. In the HDD,
all file systems perform similarly since seeks dominate
performance; in the SSD, additional writes cause a 12%
performance decrease for ccfs and ext4-dj.

Createfiles and seqwrite keep appending to files, while
fileserver issues appends and deletes to multiple files;
they do not perform any overwrites or issue any fsync

calls. Since only appends are involved, ccfs writes the
same amount of data as ext4. Under the HDD, simi-
lar performance is observed in ccfs and in ext4. Under
SSDs, createfiles is 4% slower atop ccfs because of de-
layed allocation in the T LOCKED state, which takes a no-
ticeable amount of time (an average of 132 ms during
each commit); this is an implementation artifact, and can
be optimized. For all these benchmarks, ext4-dj writes
data twice, and hence is significantly slower. Webserver
involves mostly reads and a few appends; performance is
dominated by reads, all file systems perform similarly.

Figure 5(c) compares the CPU usage of ccfs and ext4.
For most workloads, our current implementation of ccfs
has moderately higher CPU usage; the significant us-
age for fileserver and seqwrite is because the workloads
are dominated by block allocations and de-allocations,
which is especially CPU intensive for our implementa-
tion. This can be improved by adopting more optimized
structures and lookup tables (§3.5). Thus, while it does
not noticeably impact performance in our experiments,
reducing CPU usage is an important future goal for ccfs.

Overall, our results show that maintaining order does

190 15th USENIX Conference on File and Storage Technologies USENIX Association

0

1

2

3

4
N

o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

varmail

randwrite

createfiles

seqwrite

fileserver

webserver

8
4
7
.5

 o
p
s
/s

5
8
 o

p
s
/s

3
0
4
4
 o

p
s
/s

2
8
.9

 M
B

/s

7
1
.4

1
7
 o

p
s
/s

1
3
2
1
2
 o

p
s
/s

7
0
1
.3

8

5
8

8
7
9
6

8
7
.8

1
2
3
.6

6

1
3
2
4
4

6
8
0
.8

3

5
8

8
7
1
8

8
7
.5

1
2
5
.9

1

1
3
1
9
6

ext4-dj ext4 CCFS

0

1

2

3

varmail

randwrite

createfiles

seqwrite

fileserver

webserver

6
2
1
2

3
6
4
6

8
2
9
4

8
8
.9

5
3
1

1
3
4
3
7

5
8
7
5

4
1
1
8

1
1
0
6
4

2
6
8

1
1
3
2

1
3
6
1
4

5
8
2
3

3
5
9
7

1
0
7
8
7

2
6
9

1
1
1
1

1
3
5
5
2

Writes CPU
(KB/op) (µs/op)

ext4-dj ext4 ccfs ext4 ccfs
varmail 3.42 2.91 2.98 59.9 67.2

randwrite 8.1 4.1 8.1 16.8 24.4
createfiles 12.22 5.53 5.49 89.1 94.4
seqwrite 2.0 1.0 1.0 0.9 2.4
fileserver 1093 321 327 1040 2937
webserver 0.49 0.24 0.15 74.4 75.5

(a) HDD Performance (b) SSD Performance (c) HDD Writes and CPU usage
Figure 5: Imposing Order at Disk-Level: Performance, Data Written, and CPU usage. (a) and (b) show throughput
under standard benchmarks for ccfs, ext4, and ext4 under the data=journal mode (ext4-dj), all normalized to ext4-dj. (c) shows the total writes and
CPU usage with a HDD. Varmail emulates a multithreaded mail server, performing file creates, appends, deletes, reads, and fsync in a single
directory. Randwrite does 200K random writes over a 10 GB file with an fsync every 100 writes. Webserver emulates a multithreaded web server
performing open-read-close on multiple files and a log file append. Createfiles uses 64 threads to create 1M files. Seqwrite writes 32 GB to a new
file (1 KB is considered an op in (c)). Fileserver emulates a file server, using 50 threads to perform creates, deletes, appends, and reads, on 80K
files. The fileserver, varmail, and webserver workloads were run for 300 seconds. The numbers reported are the average over 10 runs.

not incur any inherent performance overhead for stan-
dard workloads when the workload is run in one stream.
False dependencies are rare and have little impact for
common workloads, and the technique used to maintain
order within streams in ccfs is efficient.

4.4 Case Studies
Our evaluation in the previous section shows the perfor-
mance effects of maintaining order for standard bench-
marks. We now consider three real-world applications:
Git, LevelDB, and SQLite with rollback journaling; we
focus on the effort required to maintain crash consistency
with good performance for these applications in ccfs and
the default mode (data=ordered) of ext4. For ext4, we
ensure that the applications remain consistent by either
modifying the application to introduce additional fsync
calls or using safe application configuration options. All
three applications are naturally consistent on ccfs when
run on a single stream.
Single Application Performance. We first ran each ap-
plication in its own stream in the absence of other ap-
plications, to examine if running the application in one
stream is sufficient for good performance (as opposed
to dividing a single application into multiple streams).
Specifically, we try to understand if the applications have
false dependencies. We also consider their performance
when fsync calls are omitted without affecting consis-
tency (including user-visible durability) on ccfs.

The results are shown in Table 4. For Git, we use a
workload that adds and commits the Linux source code
to an empty repository. While Git is naturally consistent
atop ccfs, it requires a special option (fsyncobjectfiles) on
ext4; this option causes Git to issue many fsync calls.
Irrespective of this option, Git always issues 242 MB
of appends and no overwrites. In ccfs, the 242 MB is
sent directly to the device and the workload completes in
28.9 seconds. In ext4, the fsync calls needed for cor-
rectness prevent updates to metadata blocks from being
coalesced; for example, a block bitmap that is repeatedly

updated by the workload needs to be written to the jour-
nal on every fsync. Moreover, each fsync call forces a
separate journal transaction, writing a separate descrip-
tor block and commit block to the disk and causing two
disk cache flushes. Thus, in ext4, the workload results
in 1.4 GB of journal commits and takes 2294 seconds to
complete (80× slower).

For SQLite, we insert 2000 rows of 120 bytes each
into an empty table. SQLite issues fsync calls fre-
quently, and there are no false dependencies in ccfs.
However, SQLite issues file overwrites (31.83 MB dur-
ing this workload), which causes data to be sent to the
journal in ccfs. Sending the overwritten data to the
journal improves the performance of ccfs in comparison
to ext4 (1.28×). Because SQLite frequently issues an
fsync after overwriting a small amount (4 KB) of data,
ext4 incurs a seek during each fsync call, which ccfs
avoids by writing the data to the journal. SQLite can also
be heavily optimized when running atop ccfs by omitting
unnecessary fsync calls; with our workload, this results
in a 685× improvement.

For LevelDB, we use the fillrandom benchmark from
the db bench tool to insert 250K key-value pairs of 1000
bytes each to an empty database. Atop ext4, we needed
to add additional fsync calls to improve the crash con-
sistency of LevelDB. LevelDB on ccfs and the fixed ver-
sion on ext4 have similar write avoidance, as can be seen
from Table 4. Since LevelDB also does few file over-
writes, it performs similarly on ccfs and ext4. With
ccfs, existing fsync calls in LevelDB can be omitted
since ccfs already guarantees ordering, increasing per-
formance 5×.

Thus, the experiments suggest that false-dependency
overheads are minimal within an application. In two of
the applications, the ordering provided by ccfs can be
used to omit fsync calls to improve performance.
Multiple Application Performance. We next test
whether ccfs is effective in separating streams: Figure 6
shows the performance when running Git and SQLite

USENIX Association 15th USENIX Conference on File and Storage Technologies 191

Throu
User-level Metrics Disk-level Metrics

-ghput
fsync() Append Overw- Flushes Data (MB)

(MB) rite(kB) Journal Total

G
it

ext4 17

fil
es

/s 38599 242 0 77198 1423 1887
ccfs 1351 0 242 0 10 18 243

ccfs+ 1351 0 242 0 10 18 243

SQ
Li

te ext4 5.23
op

s/
s 6000 31.56 31.83 12000 70 170

ccfs 6.71 6000 31.56 31.83 12000 117 176
ccfs+ 4598 0 0.32 0 0 0 0

Le
ve

lD
B ext4 5.25

M
B

/s 598 1087 0.01 1196 16.3 1131
ccfs 5.1 523 1087 0 1046 16.2 1062

ccfs+ 25.5 0 199 0 2 0.074 157
Table 4: Case Study: Single Application Performance.
The table shows the performance and observed metrics of Git,
LevelDB, and SQLite-rollback run separately under different
file-system configurations on HDD. Ccfs+ denotes running ccfs
with unnecessary fsync calls omitted; in both ccfs configura-
tions, the application runs in a single stream. The user-level
metrics characterize each workload; “appends” and “over-
writes” show how much appended and overwritten data needs
to be flushed by fsync calls (and also how much remain
buffered when the workload ends). Overhead imposed by main-
taining order will be observed by fsync calls in the ccfs con-
figuration needing to flush more data. The disk-level metrics
relate the characteristics to actual data written to the device.
simultaneously. The situation in current real-world de-
ployments is exemplified by the ext4-bad configuration
in Figure 6: both applications are run on ext4, but Git
runs without the fsyncobjectfiles option (i.e., consistency
is sacrificed). The ccfs-2 configuration is the intended
use case for ccfs: Git and SQLite are in separate streams
on ccfs, achieving consistency while performing similar
to ext4-bad. (SQLite performs better under ccfs-2 be-
cause ccfs sends some data to the journal and reduces
seeks, as explained previously.) Thus, ccfs achieves real-
world performance while improving correctness.

The ccfs-1 configuration demonstrates the overhead
of global order by running Git and SQLite in the same
stream on ccfs; this is not the intended use case of
ccfs. This configuration heavily impacts SQLite’s perfor-
mance because of (false) dependencies introduced from
Git’s writes. Running applications in separate streams
can thus be necessary for acceptable performance.

The ext4 configuration re-iterates previous findings:
it maintains correctness using Git’s fsyncobjectfiles on
ext4, but Git is unacceptably slow due to fsync calls.
The ccfs+ configuration represents a secondary use case
for ccfs: it runs the applications in separate streams on
ccfs with unneeded fsync calls omitted, resulting in bet-
ter SQLite performance (Git is moderately slower since
SQLite uses more disk bandwidth).

Thus, running each application in its stream achieves
correctness with good performance, while global order
achieves correctness but reduces performance.
Developer Overhead. Achieving correctness atop ccfs
(while maintaining performance) required negligible de-
veloper overhead: we added one setstream() call to
the beginning of each application, without examining the

0

1

10

100

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

ext4-bad CCFS-2 ext4 CCFS-1 CCFS+

2
.6 4
.3

4
.2

 o
p

s
/s

0
.9

7

1
1

2
2

1
0

6
5

9
6

3

9
.7

3
 f

ile
s
/s 1

2
6

9

8
0

4 SQLite

Git

Figure 6: Case Study: Multiple Application Perfor-
mance. Performance of Git and SQLite-rollback run simultane-
ously under different configurations on HDD, normalized to perfor-
mance under ext4 configuration. Ext4-bad configuration runs the
applications on ext4 with consistency sacrificed in Git. CCFS-2 uses
separate streams for each application on ccfs. Ext4 uses ext4 with
consistent Git. CCFS-1 runs both applications in the same stream on
ccfs. CCFS+ runs applications in separate streams without unnecessary
fsync. Workload: Git adds and commits a repository 25 times the size
of Linux; SQLite repeatedly inserts 120-byte rows until Git completes.

applications any further. To omit unnecessary fsync

calls in ccfs and improve performance (i.e., for the ccfs+
configuration), we used the IGNORE FSYNC flag on the
setstream() calls, and added streamsync() calls to
places in the code where the user is guaranteed durabil-
ity (one location in LevelDB and two in SQLite).

Correctness with ext4 required two additional fsync
calls on LevelDB and the fsyncobjectfiles option on Git.
The changes in ext4 both reduced performance and were
complicated; we carefully used results from the Alice
study to determine the additional fsync calls necessary
for correctness. Note that, while we happened to find
that Git’s fsyncobjectfiles makes it correct on ext4, other
changes are needed for other file systems (e.g., btrfs).

Thus, developer effort required to achieve correctness
atop ccfs while maintaining performance is negligible;
additional effort can improve performance significantly.

5 Related Work
We briefly describe how ccfs differs from previous work:
Atomicity interfaces. Transactional file-system inter-
faces have a long history [44] and allow applications
to delegate most crash-consistency requirements to the
file system. Recent work in this space includes file sys-
tems providing ACID semantics such as Amino [55],
Valor [48], and Windows TxF [28], atomicity-only file
systems as proposed by Vermat et al. [54], Park et
al. [33], and CFS [29], and OS-level transaction sup-
port as advocated by TxOS [37]. Such interfaces allow
adding crash consistency easily to applications which do
not already implement them, and help heavily optimized
applications that trade portability for performance [26].

For applications with existing consistency implemen-
tations, proponents of atomicity interfaces and transac-
tional file systems advocate replacing the existing imple-
mentation with the interface provided by the file system.
This is not trivial to achieve (though perhaps much easier
than writing a new consistency implementation). For in-

192 15th USENIX Conference on File and Storage Technologies USENIX Association

stance, consider the SQLite database, and assume that we
replace its consistency implementation using a straight-
forward begin atomic()–end atomic() interface provided
by the file system. This does not work for two rea-
sons. First, it does not offer SQLite’s ROLLBACK com-
mand [50] (i.e., abort transaction) and the SAVEPOINT
command (which allows an aborted transaction to con-
tinue from a previous point in the transaction). Second,
unless the file system provides isolation (which recent re-
search argues against [29]), it requires re-implementing
isolation and concurrency control, since SQLite’s iso-
lation mechanism is inherently tied to its consistency
mechanism [49]. With applications such as LevelDB,
where the consistency mechanism is tightly coupled to
query-efficient on-disk data structures [24, 32], adopting
alternative consistency mechanisms will also cause un-
necessary performance changes.

To summarize, adopting atomicity interfaces to over-
come vulnerabilities is nonoptimal in applications with
existing consistency implementations. One challenge is
simply the changes required: CFS [29], with arguably the
most user-friendly atomic interface, requires changing
38 lines in SQLite and 240 lines in MariaDB. Another
challenge is portability: until the interfaces are widely
available, the developer must maintain both the existing
consistency protocol and a protocol using the atomic in-
terface; this has deterred such interfaces in Linux [9]. Fi-
nally, the complexity of data structures and concurrency
mechanisms in modern applications (e.g., LSM trees) are
not directly compatible with a generic transactional inter-
face; Windows TxF, a transactional interface to NTFS, is
being considered for deprecation due to this [28]. In con-
strast, streams focus on masking vulnerabilities in exist-
ing application-level consistency implementations. Ccfs
advocates a single change to the beginning of applica-
tions, and running them without more modification on
both stream-enabled and stream-absent file systems.
Ordering interfaces. Fine-grained ordering inter-
faces [4, 5, 13] supplement the existing fsync call, mak-
ing it less costly for applications to easily achieve crash
consistency. They allow better performance, but re-
quire developers to specify the exact ordering required,
and as such are not optimal for fixing existing proto-
col implementations. Ext4’s data-journaled mode and
LinLogFS [10] provide a globally ordered interface,
but incur unacceptable disk-level ordering and false-
dependence overhead. Xsyncfs [31] provides global or-
der and improves performance by buffering user-visible
outputs; this approach is complementary to our approach
of reducing false dependencies. Other proposed ordering
interfaces [8, 34] focus only on NVMs.
Implementation. Ccfs builds upon seminal work in
database systems [17, 30] and file-system crash consis-
tency [7, 11, 14, 15, 18, 40, 42, 45], but is unique in as-

sembling different techniques needed for efficient imple-
ment of the stream API. Specifically, ccfs uses journal-
ing [7, 18] for order within a stream, but applies tech-
niques similar to soft updates [14, 15, 45] for separating
streams. Such design is necessary: using soft updates
directly for a long chain of dependent writes ordered
one after the other (as ccfs promises within a stream)
will result in excessive disk seeks. Block-level guaran-
tees of atomicity and isolation, such as Isotope [46] and
TxFlash [38], can simplify ccfs’ separation of streams;
however, techniques in Section 3 are still necessary.
IceFS [25] extends ext3 to support multiple virtual jour-
nals, but requires data journaling within each journal to
support ordered data writes, and hence cannot be directly
used to improve application consistency without reduc-
ing performance. IceFS also does not use techniques
similar to soft updates to separate the virtual journals,
associating only a static and coarse-grained partition of
the file-system namespace to each journal (compared to
the dynamic and fine-grained stream abstraction).

In principle, one should be able to easily construct a
stream-ordered file system atop a fine-grained ordering
interface. However, the direct implementation of order-
ing in Featherstitch [13] uses the soft-updates approach,
which is incompatible as described. OptFS’ interface [5]
is insufficient for implementing streams. Ccfs uses the
SDJ technique from OptFS but optimizes it; the original
relies on specialized hardware (durability notifications)
and decreased guarantees (no durability) for efficiency.

6 Conclusion
In this paper, we present the stream abstraction as a
practical solution for application-level crash consistency.
We describe the stream API and the ccfs file system,
an efficient implementation of the API. We use real ap-
plications to validate consistency atop the file system
and compare performance with ext4, finding that ccfs
maintains (and sometimes signficantly improves) perfor-
mance while improving correctness. Our results suggest
that developer effort for using the streams API is negli-
gible and practical.

Acknowledgments. We thank the anonymous review-
ers and Ashvin Goel (our shepherd) for their insight-
ful comments. We thank the members of the ADSL
for their valuable discussions. This material was sup-
ported by funding from NSF grants CNS-1419199, CNS-
1421033, CNS-1319405, and CNS-1218405, DOE grant
DE-SC0014935, as well as donations from EMC, Face-
book, Google, Huawei, Microsoft, NetApp, Samsung,
Seagate, Veritas, and VMware. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and may not reflect the
views of NSF, DOE, or other institutions.

USENIX Association 15th USENIX Conference on File and Storage Technologies 193

References
[1] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-

Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 0.9 edition, 2014.

[2] Andrew D. Birrell. An Introduction to Program-
ming with Threads. Technical Report SRC-RR-35,
January 1989.

[3] James Bornholt, Antoine Kaufmann, Jialin
Li, Arvind Krishnamurthy, Emina Torlak, and
Xi Wang. Specifying and Checking File System
Crash-Consistency Models. In Proceedings of the
21st International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (ASPLOS 21), Atlanta, Georgia, April
2016.

[4] Nathan C. Burnett. Information and Control in File
System Buffer Management. PhD thesis, University
of Wisconsin-Madison, October 2006.

[5] Vijay Chidambaram, Thanumalayan Sankara-
narayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Optimistic Crash Con-
sistency. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP ’13),
Nemacolin Woodlands Resort, Farmington, Penn-
sylvania, October 2013.

[6] Vijay Chidambaram, Tushar Sharma, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Consistency Without Ordering. In Proceedings of
the 10th USENIX Symposium on File and Storage
Technologies (FAST ’12), pages 101–116, San Jose,
California, February 2012.

[7] Sailesh Chutani, Owen T. Anderson, Michael L.
Kazar, Bruce W. Leverett, W. Anthony Mason, and
Robert N. Sidebotham. The Episode File System.
In Proceedings of the USENIX Winter Technical
Conference (USENIX Winter ’92), pages 43–60,
San Francisco, California, January 1992.

[8] Jeremy Condit, Edmund B. Nightingale, Christo-
pher Frost, Engin Ipek, Benjamin Lee, Doug
Burger, and Derrick Coetzee. Better I/O Through
Byte-addressable, Persistent Memory. In Proceed-
ings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP ’09), Big Sky, Montana,
October 2009.

[9] Jonathan Corbet. Better than POSIX?,
March 2009. Retrieved April 2016 from
https://lwn.net/Articles/323752/.

[10] Christian Czezatke and M. Anton Ertl. LinLogFS:
A Log-structured Filesystem for Linux. In Pro-
ceedings of the USENIX Annual Technical Con-
ference (FREENIX Track), San Diego, California,
June 2000.

[11] Linux Documentation. XFS Delayed Log-
ging Design. Retrieved April 2016 from
https://www.kernel.org/doc/Documentation
/filesystems/xfs-delayed-logging-design.txt.

[12] Filebench. Filebench. Retrieved March 2016 from
https://github.com/filebench/filebench/wiki.

[13] Christopher Frost, Mike Mammarella, Eddie
Kohler, Andrew de los Reyes, Shant Hovsepian,
Andrew Matsuoka, and Lei Zhang. Generalized
File System Dependencies. In Proceedings of
the 21st ACM Symposium on Operating Systems
Principles (SOSP ’07), pages 307–320, Stevenson,
Washington, October 2007.

[14] Gregory R. Ganger, Marshall Kirk McKusick,
Craig A. N. Soules, and Yale N. Patt. Soft Updates:
A Solution to the Metadata Update Problem in File
Systems. ACM Transactions on Computer Systems
(TOCS), 18(2), May 2000.

[15] Gregory R. Ganger and Yale N. Patt. Metadata Up-
date Performance in File Systems. In Proceedings
of the 1st Symposium on Operating Systems De-
sign and Implementation (OSDI ’94), pages 49–60,
Monterey, California, November 1994.

[16] Kourosh Gharachorloo, Daniel Lenoski, James
Laudon, Phillip Gibbons, Anoop Gupta, and John
Hennessy. Memory Consistency and Event Order-
ing in Scalable Shared-Memory Multiprocessors.
In Proceedings of the 17th Annual International
Symposium on Computer Architecture (ISCA ’90),
Seattle, Washington, May 1992.

[17] Jim Gray and Andreas Reuter. Transaction Pro-
cessing: Concepts and Techniques. Morgan Kauf-
mann, 1993.

[18] Robert Hagmann. Reimplementing the Cedar File
System Using Logging and Group Commit. In Pro-
ceedings of the 11th ACM Symposium on Operat-
ing Systems Principles (SOSP ’87), Austin, Texas,
November 1987.

[19] Timothy L. Harris. A Pragmatic Implementation of
Non-blocking Linked-lists. DISC, 2001.

[20] Tyler Harter, Chris Dragga, Michael Vaughn, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. A File is Not a File: Understanding the

194 15th USENIX Conference on File and Storage Technologies USENIX Association

I/O Behavior of Apple Desktop Applications. In
Proceedings of the 23rd ACM Symposium on Oper-
ating Systems Principles (SOSP ’11), Cascais, Por-
tugal, October 2011.

[21] Maurice Herlihy. Wait-Free Synchronization.
Transactions on Programming Languages, 11(1),
January 1991.

[22] D. M. Jacobson and J. Wilkes. Disk Scheduling Al-
gorithms Based on Rotational Position. Technical
Report HPL-CSP-91-7, Hewlett Packard Laborato-
ries, 1991.

[23] Jaeho Kim, Jongmoo Choi, Yongseok Oh, Donghee
Lee, Eunsam Kim, and Sam H. Noh. Disk Sched-
ulers for Solid State Drives. In EMSOFT, Grenoble,
France, October 2009.

[24] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Val-
ues in SSD-conscious Storage. In Proceedings of
the 14th USENIX Conference on File and Storage
Technologies (FAST ’16), Santa Clara, California,
February 2016.

[25] Lanyue Lu, Yupu Zhang, Thanh Do, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Physical Disentan-
glement in a Container-Based File System. In
Proceedings of the 11th Symposium on Operating
Systems Design and Implementation (OSDI ’14),
Broomfield, Colorado, October 2014.

[26] MariaDB. Fusion-io NVMFS Atomic
Write Support. Retrieved April 2016 from
https://mariadb.com/kb/en/mariadb/fusion-io-
nvmfs-atomic-write-support/.

[27] Mercurial. Dealing with Repository
and Dirstate Corruption. Retrieved
April 2016 from https://www.mercurial-
scm.org/wiki/RepositoryCorruption.

[28] Microsoft. Alternatives to using Trans-
actional NTFS. Retrieved April 2016
from https://msdn.microsoft.com/en-
us/library/hh802690.aspx.

[29] Changwoo Min, Woon-Hak Kang, Taesoo Kim,
Sang-Won Lee, and Young Ik Eom. Lightweight
Application-Level Crash Consistency on Transac-
tional Flash Storage. In Proceedings of the USENIX
Annual Technical Conference (USENIX ATC ’15),
Santa Clara, CA, July 2015.

[30] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh,
and P. Schwarz. ARIES: A Transaction Recov-
ery Method Supporting Fine-Granularity Locking
and Partial Rollbacks Using Write-Ahead Logging.
ACM Transactions on Database Systems, 17(1):94–
162, March 1992.

[31] Edmund B. Nightingale, Kaushik Veeraraghavan,
Peter M Chen, and Jason Flinn. Rethink the Sync.
In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06),
pages 1–16, Seattle, Washington, November 2006.

[32] Patrick ONeil, Edward Cheng, Dieter Gawlick,
and Elizabeth ONeil. The Log-Structured Merge-
Tree (LSM-tree). Acta Informatica, 33(4):351–385,
1996.

[33] Stan Park, Terence Kelly, and Kai Shen. Failure-
Atomic Msync (): a Simple and Efficient Mecha-
nism for Preserving the Integrity of Durable Data.
In Proceedings of the EuroSys Conference (EuroSys
’13), Prague, Czech Republic, April 2013.

[34] Steven Pelley, Peter M. Chen, and Thomas F.
Wenisch. Memory Persistency. In Proceedings
of the 41st International Symposium on Computer
Architecture (ISCA ’14), Minneapolis, MN, USA,
June 2014.

[35] Thanumalayan Sankaranarayana Pillai, Vijay
Chidambaram, Ramnatthan Alagappan, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. All File Systems Are
Not Created Equal: On the Complexity of Crafting
Crash-Consistent Applications. In Proceedings of
the 11th Symposium on Operating Systems Design
and Implementation (OSDI ’14), Broomfield,
Colorado, October 2014.

[36] Thanumalayan Sankaranarayana Pillai, Vijay
Chidambaram, Ramnatthan Alagappan, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Crash Consistency.
Communications of the ACM, 58(10), October
2015.

[37] Donald E. Porter, Owen S. Hofmann, Christopher J.
Rossbach, Alexander Benn, and Emmett Witchel.
Operating Systems Transactions. In Proceedings of
the 8th Symposium on Operating Systems Design
and Implementation (OSDI ’08), San Diego, Cali-
fornia, December 2008.

[38] Vijayan Prabhakaran, Thomas L. Rodeheffer, and
Lidong Zhou. Transactional Flash. In Proceedings
of the 8th Symposium on Operating Systems Design

USENIX Association 15th USENIX Conference on File and Storage Technologies 195

and Implementation (OSDI ’08), San Diego, Cali-
fornia, December 2008.

[39] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild!:
A Lock-free Approach to Parallelizing Stochastic
Gradient Descent. Advances in Neural Information
Processing, 2011.

[40] Mendel Rosenblum and John Ousterhout. The De-
sign and Implementation of a Log-Structured File
System. ACM Transactions on Computer Systems,
10(1):26–52, February 1992.

[41] Chris Ruemmler and John Wilkes. An Introduc-
tion to Disk Drive Modeling. IEEE Computer,
27(3):17–28, March 1994.

[42] Margo Seltzer, Keith Bostic, Marshall Kirk McKu-
sick, and Carl Staelin. An Implementation of a
Log-Structured File System for UNIX. In Proceed-
ings of the USENIX Winter Technical Conference
(USENIX Winter ’93), pages 307–326, San Diego,
California, January 1993.

[43] Margo Seltzer, Peter Chen, and John Ousterhout.
Disk Scheduling Revisited. In Proceedings of the
USENIX Winter Technical Conference (USENIX
Winter ’90), pages 313–324, Washington, D.C, Jan-
uary 1990.

[44] Margo I. Seltzer. File System Performance and
Transaction Support. PhD thesis, EECS Depart-
ment, University of California, Berkeley, Jun 1993.

[45] Margo I. Seltzer, Gregory R. Ganger, M. Kirk
McKusick, Keith A. Smith, Craig A. N. Soules, and
Christopher A. Stein. Journaling Versus Soft Up-
dates: Asynchronous Meta-data Protection in File
Systems. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’00), pages 71–84,
San Diego, California, June 2000.

[46] Ji-Yong Shin, Mahesh Balakrishnan, Tudor Mar-
ian, and Hakim Weatherspoon. Isotope: Transac-
tional Isolation for Block Storage. In Proceedings
of the 14th USENIX Conference on File and Stor-
age Technologies (FAST ’16), Santa Clara, Califor-
nia, February 2016.

[47] Daniel J. Sorin, Mark D. Hill, and David A. Wood.
A Primer on Memory Consistency and Cache Co-
herence. Synthesis Lectures on Computer Archi-
tecture, November 2011.

[48] Richard P. Spillane, Sachin Gaikwad, Manjunath
Chinni, Erez Zadok, and Charles P. Wright. En-
abling Transactional File Access via Lightweight
Kernel Extensions. In Proceedings of the 7th

USENIX Symposium on File and Storage Technolo-
gies (FAST ’09), San Francisco, California, Febru-
ary 2009.

[49] SQLite. Isolation In SQLite. Retrieved Dec 2016
from https://www.sqlite.org/isolation.html.

[50] SQLite. SQL As Understood By SQLite. Retrieved
Dec 2016 from https://www.sqlite.org/lang.html.

[51] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A Flexible Framework for File System
Benchmarking. ;login: The USENIX Magazine,
41(1), June 2016.

[52] Linus Torvalds. Linux 2.6.29. Retrieved April 2016
from https://lkml.org/lkml/2009/3/25/632.

[53] Theodore Ts’o. ext4: remove calls
to ext4 jbd2 file inode() from delalloc
write path. Retrieved April 2016 from
http://lists.openwall.net/linux-ext4/2012/11/16/9.

[54] Rajat Verma, Anton Ajay Mendez, Stan Park,
Sandya Srivilliputtur Mannarswamy, Terence P.
Kelly, and Charles B. Morrey III. Failure-Atomic
Updates of Application Data in a Linux File Sys-
tem. In Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies (FAST ’15),
Santa Clara, California, February 2015.

[55] Charles P. Wright, Richard Spillane, Gopalan Si-
vathanu, and Erez Zadok. Extending ACID Seman-
tics to the File System Via Ptrace. ACM Transac-
tions on Storage (TOS), 3(2):1–42, June 2007.

[56] Junfeng Yang, Can Sar, and Dawson Engler. EX-
PLODE: A Lightweight, General System for Find-
ing Serious Storage System Errors. In Proceedings
of the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), Seattle, Washing-
ton, November 2006.

[57] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng
Qin, Mark Lillibridge, Elizabeth S. Yang, Bill W
Zhao, and Shashank Singh. Torturing Databases for
Fun and Profit. In Proceedings of the 11th Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI ’14), Broomfield, Colorado, October
2014.

196 15th USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Motivation and Background
	State of Crash Consistency
	Weak Atomicity and Order
	Order: Bad for Performance
	Order with Good Performance

	Crash-Consistent File System
	Journaling in Ext4
	Streams
	Separating Multiple Streams
	Hybrid-granularity Journaling
	Delta Journaling
	Pointer-less Data Structures
	Order-less Space Reuse

	Maintaining Order Within Streams
	Implementation
	Discussion

	Evaluation
	Reliability
	Multi-stream Benefits
	Single-stream Overheads
	Case Studies

	Related Work
	Conclusion

