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Abstract

The past few years have been witnessing a surging demand
for cloud computing services, resulting in a huge carbon
footprint and making energy cost one of the top operational
costs of data centers. Meanwhile, as sustainable computing
has become increasingly important, data centers are con-
stantly pressured to cap the long-term usage of their ener-
gy produced from carbon-intensive sources (a.k.a., “brown”
energy). In this paper, we study energy budgeting and pro-
pose a novel online resource management algorithm, called
ORM, to control the number of active servers for delay-
sensitive workloads in a data center for minimizing the
operational cost while satisfying the energy capping con-
straint. We rigorously prove that ORM achieves a close-to-
minimum operational cost compared to the optimal offline
algorithm with future information, while bounding the po-
tential violation of energy capping, in an almost arbitrarily
random environment. We also perform a trace-based sim-
ulation study to complement the analysis and validate the
effectiveness of ORM.

1 Introduction

With the increasing popularity of cloud computing services,
data centers are growing continuously in both number and
scale, resulting in hundreds of thousands of server in one da-
ta center and requiring many megawatts of electricity. Re-
cent studies have shown that the combined electricity con-
sumption of the data centers is 623 billion kWh globally and
would rank 5th among countries if the data centers were a
country [8]. Consequently, for sustainable computing, large
IT companies have been increasingly pressured to power
their data centers using green energy while capping their
brown energy usage, either mandated by governments in the
form of Kyoto-style protocols or required by utility compa-
nies [7, 11, 20, 24].

While on-site renewable energy has been available in
modern data centers, the intermittent nature makes it pro-
hibitive to use renewables as the only energy source for
large data centers. In practice, a significant portion of da-

ta center energy supply still comes from electricity which is
often produced from carbon-intensive sources [7], making
capping the brown (electricity) usage one of the top priori-
ties for data center operators. In addition to highly-desired
sustainability, capping the electricity usage also enables oth-
er remarkable benefits for data centers such as tax reduction,
favorable accreditation, lower-cost contracts with utilities.
Achieving energy capping clearly involves deciding the en-
ergy usage over a long term (e.g., 6 months or a year), and
hence, we call this process energy budgeting, in comparison
with power budgeting which allocates the peak power to d-
ifferent servers in a data center [12]. Nonetheless, energy
budgeting fundamentally differs from power budgeting and
faces a significant challenge: the data center operator needs
to decide its energy usage in an online manner that cannot
possibly foresee the far future time-varying workloads or in-
termittent on-site green/renewable energy supplies. Recent-
ly, some initial efforts have been made to achieve energy
capping for data centers [11, 20, 24], but they require accu-
rate prediction of long-term future information (e.g., work-
loads, renewable energy availability) that is typically un-
available in practice (e.g., due to business upgrades and/or
unpredicted traffic spikes [5, 22]). Thus, to cope with the
lack of accurate future information, online algorithms that
can be applied based on the currently available information
are required to achieve long-term energy capping.

In this paper, we study the long-term energy budgeting
and propose a provably-efficient online resource manage-
ment algorithm, called ORM, to control the number of ac-
tive servers for minimizing the data center operational cost
(incorporating both electricity and delay costs) while satis-
fying the energy capping constraint. As the foundation of
ORM, a virtual energy budget deficit queue is constructed
and used to guide data center decisions: a large queue length
will prohibit the data center operator from continuing using
a lot of electricity in order not to deviate too much from the
energy capping constraint. Essentially, the budget deficit
queue is updated as a feedback loop that takes the current
electricity consumption as the input and aims at pushing the
queue length to zero (i.e., satisfying the energy capping con-
straint). We conduct a rigorous performance analysis and



prove that ORM can achieve a parameterized operational
cost that is arbitrarily close to the minimum cost achieved by
the optimal offline algorithm with T -step lookahead infor-
mation, while bounding the maximum energy budget deficit
for almost any workload and renewable energy availability
trajectories over the course of operation. We also perform a
trace-based simulation study to complement the analysis.

The rest of this paper is organized as follows. Related
work is reviewed in Section 2. Section 3 describes the mod-
el. In Section 4 and 5, we present the problem formulation
and develop our online algorithm, ORM. Section 6 provides
a simulation study and finally, concluding remarks are of-
fered in Section 7.

2 Related Work

We provide a snapshot of the related work from the follow-
ing aspects.

Data center optimization. There has been a growing in-
terest in optimizing data center operation from various per-
spectives such as cutting electricity bills [9, 19, 21] , mini-
mizing response times [4, 13] and reducing the brown en-
ergy usage [6, 15]. In particular, power proportionality via
dynamically turning on/off servers has been extensively s-
tudied for energy saving [9, 13]. However, none of these
studies have addressed the long-term energy capping or “en-
ergy budgeting”.

Energy capping. The increasing pressure on sustainable
cloud computing has recently catapulted energy capping as
one of the most significant challenges for data center oper-
ators. The existing studies, e.g., [3, 11, 20], rely on long-
term prediction of the future information, which may not be
feasible in practice. Similarly, [24] utilizes the prediction
of long-term future workloads to cap the monthly energy
cost. These studies only use empirical evaluations without
providing any performance guarantees. In comparison, OR-
M offers provable analytical guarantees on the average cost
while bounding the deviation from long-term energy cap-
ping, and our simulation results also demonstrate the bene-
fits of ORM over the existing method empirically.

3 Model

We consider a discrete-time model by dividing the entire
budgeting period (e.g., 6 months or a year) into K time slot-
s. Each time slot has a duration that matches the timescale
of prediction window for which the data center operator
can accurately predict the future information (including the
workload arrival rate, renewable energy supply, and elec-
tricity price). For example, if the operator can only pre-
dict the hour-ahead future information, then each time s-
lot corresponds to one hour and the operator can update it-
s resource management decisions at the beginning of each
hour. In the following analysis, we mainly focus on hour-
ahead prediction for the convenience of presentation, while

noting that the model applies as well to longer-term predic-
tion. Throughout the paper, we also use environment to col-
lectively refer to electricity price, on-site renewable energy
supplies and workloads.

3.1 Workloads
We consider J types of workloads (or jobs, as interchange-
ably used in the paper). Different types of jobs differ in
terms of the relative importance in the total cost function
as well as their service rates (i.e. a server may process
one type of jobs faster than another type). We denote by
λ j(t) ∈ [0,λmax, j] the arrival rate of type- j jobs and by µ j
the service rate of a server for type- j jobs. We assume that
λ j(t) is available at the beginning of each time slot t, as
widely considered in prior work [2, 11, 15]. Nonetheless,
even though λ j(t) is not accurately known, our results (in
Section 6) show that ORM only incurs a very marginal ad-
ditional cost. In our study, we focus on delay-sensitive in-
teractive jobs (as in [15]), whereas delay-tolerant batch jobs
can be easily maintained by a separate batch job queue as
in [21, 23]. All jobs first arrive at a load distributor before
they are distributed to servers for processing.

We denote the delay cost for type- j jobs by d j(λ j,m j),
which is intuitively increasing in λ j and decreasing in m j
where m j is the number of (homogeneous) servers allocated
to type- j jobs [15]. As a concrete example, we model the
service process at each server as an M/M/1 queue and use
the average response time (multiplied by the arrival rate) to
represent the delay cost. Specifically, it is well known that
the average response time for the M/M/1 queue at a server
processing type- j jobs is 1

µ j−λ j/m j
[19] and hence, the total

delay cost at time t can be written as

d(λ (t),m(t)) =
J

∑
j=1

w jd j(λ j(t),m j(t))

=
J

∑
j=1

w j ·
λ j(t)

µ j(t)− λi(t)
m j(t)

,

(1)

where λ (t) = (λ1(t),λ2(t), · · · ,λJ(t)), m(t) =
(m1(t),m2(t), · · · ,mJ(t)), and w j ≥ 0 is the weight in-
dicating the relative importance of type- j jobs (i.e., a larger
weight means the delay performance is more important).
Note that we ignore the network delay cost, which can
be approximately modeled as a certain constant [15] and
added into (1) without affecting our approach of analysis. It
should be made clear that the M/M/1 queueing model may
not capture the exact response time in practice because: (1)
workload service time often follows a heavy-tailed distribu-
tion such as Pareto distribution [10]; and (2) the inter-arrival
time may not be exponentially distributed [18]. However,
as queuing models with non-exponentially distributed
inter-arrival and service times are difficult to analyze, the
M/M/1 model has been widely used as an analytic vehicle
to provide a reasonable approximation for the actual service
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process [4, 15]. In addition, our analysis is not restricted
to the specific delay cost given by (1). Finally, we note
that the considered delay cost model is mainly intended
to characterize the overall data center performance: if the
overall delay cost is very high (e.g., too few servers are
turned on), we will expect that the tenants/applications
residing in the data center also experience a significant
delay because of server overloading.

3.2 Data center
We consider a data center with on-site renewable energy
plants (e.g., solar panels) as a complementary energy source
and with M homogeneous servers, while noting that hetero-
geneous servers can also be easily incorporated.1 Given a
specific job type, processing speed of a server is quantified
according to the service rate (rather than the actual clock
rates), i.e., how many jobs can be processed on average in
a unit time. Specifically, the service rate of a server for
processing type- j jobs is µ j. We denote by m j(t) the num-
ber of servers allocated to process type- j jobs at time t. In
our study, we focus on server power consumption, while
the power consumption of other parts such as power supply
system and cooling system are captured by the power usage
effectiveness (PUE) factor which, multiplied by the server
power consumption, gives the total data center power con-
sumption [14]. Mathematically, we denote the total power
consumption2 during time t by p(λ (t),m(t)), which can be
expressed as

p(λ (t),m(t)) = γ ·
J

∑
j=1

m j(t) ·
[

e0 + ec
λ j(t)

m j(t)µ j

]
, (2)

where γ > 1 is the PUE, e0 is the static server power re-
gardless of the workloads (as long as a server is turned on)
and ec is the computing power incurred only when a serv-
er is processing workloads. As in [14, 15], we ignore the
possible toggling costs incurred when changing the resource
management decisions (i.e., turning a server off or into deep
sleep) that can be dealt with using techniques as develope-
d in [13], since the decisions are updated infrequently (i.e.,
hourly in our study).

We denote the electricity price at time t by u(t), which is
known to the data center no later than the beginning of time
t and may change over time if the data center participates
in a real-time electricity market (e.g., hourly market [15]).
Assuming that the available on-site renewable energy sup-
ply during time t by r(t) ∈ [0,rmax], we can express the in-
curred electricity cost during time t as

e(λ (t),m(t)) = u(t) · [p(λ (t),m(t))− r(t)]+ , (3)

where [ · ]+ = max{·,0} indicating that no electricity will
be drawn from the power grid if on-site renewable energy

1If multiple types of heterogeneous servers are considered, we need to
decide how many servers of each type are allocated to the workloads.

2This is equivalent to energy consumption, since the length of each time
slot is the same.

is already sufficient. While we use Eqn. (3) to represent
the electricity cost (as considered by [15]), our analysis is
not restricted to a linear electricity cost function and can
also model other electricity cost functions such as nonlinear
convex functions (e.g., data centers are charged at a higher
price if it consumes more power).

4 Problem Formulation

In this section, we specify the optimization objective as well
as constraints, and present an offline formulation for our re-
source management problem. We also introduce an offline
algorithm as a benchmark to compare ORM with.

4.1 Objective and constraints
Objective. We focus on operational costs rather than cap-
ital costs (e.g., building data centers, installing renewal en-
ergy generators), although capital costs are also significant
and need to be minimized using separate techniques (e.g.,
optimizing the energy portfolio [20]). In data center op-
eration, both electricity cost and delay cost are important,
as the former takes up a dominant fraction of the opera-
tional cost while the later affects the user experiences and
revenues [13]. Our study incorporates both costs by consid-
ering a parameterized cost function as follows

g(λ (t),m(t)) = e(λ (t),m(t))+β ·d(λ (t),m(t)), (4)

where β ≥ 0 is the weighting parameter adjusting the im-
portance of delay cost relative to the electricity cost [15].

ḡ =
1
K

K−1

∑
t=0

g(λ (t),m(t)) , (5)

where K is the total number of time slots over the entire
budgeting period.

Constraints. To avoid server overloading and over-
provisioning, resource management decisions need to sat-
isfy

λ j(t)≤ θ ·µ j ·m j(t), ∀ j, t, (6)
J

∑
j=1

m j(t)≤M, ∀t, (7)

where θ ∈ (0,1) is the maximum utilization constraint for
each server (i.e., λ j(t)

µ j ·m j(t)
≤ θ ).

Next, assuming that electricity energy is “brown”, we
specify the brown energy capping constraint as follows

1
K

K−1

∑
t=0

[p(λ (t),m(t))− r(t)]+ ≤ Z
K
, (8)

where Z is the capping constraint over the entire budget-
ing period. While we mathematically express the energy
capping in (8) as as a hard constraint, it is in fact a desired
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energy capping goal/target (e.g., as specified by utility com-
panies and/or governments). If the energy cap is exhaust-
ed, mechanisms such as “cap-and-trade” (i.e., purchasing
renewable energy credits to offset the exceeded electricity
usage) may be adopted as proposed in [11], but they are
orthogonal to our study. Note that our study can also ad-
dress the scenario in which part of the electricity is pro-
duced by green energy sources: by multiplying the electric-
ity usage with a certain factor that indicates the percentage
of “brown” electricity, (8) specifies the constraint on the ac-
tual “brown” electricity usage.

4.2 Offline problem formulation
This subsection presents an offline problem formulation for
resource management as follows.

P1 : min
A

ḡ =
1
K

K−1

∑
t=0

g(λ (t),m(t)) (9)

s.t., constraints (6), (7), (8), (10)

where A represents a sequence of decisions, i.e., m(t), for
t = 0,1, · · · ,K−1, which we need to optimize. It is natural
that optimally solving P1 requires complete offline infor-
mation (i.e., workload arrivals, renewable energy supplies,
and electricity prices) over the entire budgeting period that
is very difficult, if not impossible, to accurately predict in
advance, especially in view of the frequent traffic surges
due to breaking events that can significantly boost the work-
loads [5,22] and unpredictability of weather conditions that
heavily affect the renewable energy availability [14].

T -step lookahead algorithm. We introduce an offline al-
gorithm with T -step lookahead information as a benchmark.
Specifically, we divide the entire budgeting period into R
frames, each having T ≥ 1 time slots, such that K = RT .
There exists an oracle that has the complete information
over the entire frame (i.e., T time slots) at the beginning
of each frame. Then, at the beginning of the r-th frame, for
r = 0,1, · · · ,R− 1, the oracle chooses a sequence of deci-
sions to solve the following problem:

P2 : min
m(t)

1
T

(r+1)T−1

∑
t=rT

g(λ (t),m(t)) (11)

s.t., constraints (6), (7), (12)
(r+1)T−1

∑
t=rT

[p(λ (t),m(t))− r(t)]+ ≤ Z
R
. (13)

Note that (13) is a stronger version of the original energy
capping constraint in (8), as it requires the satisfaction of
energy capping for every T time slots. Nonetheless, if T is
sufficiently large, (13) will be almost equivalent to (8) and
the oracle can still approximately solve the original problem
P1 [17]. In essence, P2 encapsulates a family of offline al-
gorithms parameterized by the lookahead information win-
dow size T . Next, to ensure there exists at least one feasible

solution to P2, we make the two assumptions that are very
mild in practice.

Boundedness assumption: The workload arrival rate
λ (t), electricity price u(t), as well as renewable energy sup-
plies r(t) are finite, for t = 0,1, · · · ,K−1.

Feasibility assumption: For the r-th frame, where r =
0,1, · · · ,R−1, there exists at least one sequence of resource
management decisions that satisfy the constraints of P2.

The boundedness assumption, combined with (6), en-
sures that the cost function is finite, while the feasibility as-
sumption guarantees that the oracle can make a sequence of
feasible decisions to solve P2. We denote the minimum av-
erage cost for the r-th frame by G∗r , for r = 0,1, · · · ,R, con-
sidering all the decisions that satisfy the constraints (12)(13)
and that have perfect information over the frame. Thus, the
long-term minimum average cost achieved by the oracle’s
optimal T -step lookahead algorithm is given by 1

R ∑R−1
r=0 G∗r ,

which is the benchmark that we compare ORM with.

5 Online Resource Management for Energy
Capping

In this section, we present an online algorithm, ORM, which
is provably efficient in terms of cost minimization compared
to the optimal offline algorithm with T -step look ahead in-
formation.

5.1 ORM
The long-term energy capping constraint couples the online
decisions across different time slots: the current decisions
will implicitly affect the future decisions (e.g., using more
electricity at this time slot will result in less energy budget
available for future uses), while they have to be made with-
out foreseeing the future. As the foundation of ORM, we
construct a (virtual) brown energy budget deficit queue that
replaces the long-term constraint (8), thereby decoupling
the decisions for different time slots and enabling an online
algorithm. Specifically, assuming q(0) = 0, we construct
an energy budget deficit queue whose dynamics evolves as
follows

q(t +1) =
{

q(t)+ [p(λ (t),m(t))− r(t)]+− z
}+

, (14)

where q(t) is the queue length indicating how far the cur-
rent electricity usage deviates from the energy capping con-
straint, and z = Z

K is the average electricity (or brown) en-
ergy budget per time slot. Intuitively, a larger queue length
implies that the data center has drawn more electricity than
the total energy budget thus far, and it needs to reduce the
electricity usage for long-term energy capping. Leveraging
this intuition, we develop our online algorithm, ORM, as
presented in Algorithm 1.

ORM is purely online and requires only the currently
available information (i.e., λ (t), r(t), u(t)) as the inputs. We
use V0,V1, · · · ,VR−1 to denote a sequence of positive control
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Algorithm 1 ORM
1: Input: λ (t), r(t) and u(t) at the beginning of each time

t = 0,1, · · · ,K−1
2: if t = rT , ∀r = 0,1, · · · ,R−1 then
3: q(t)← 0 and V ←Vr
4: end if
5: Choose m(t) subject to (6)(7) to minimize

V ·g(λ (t),m(t))+q(t) · [p(λ (t),m(t))− r(t)]+ (15)

6: Update q(t) according to (14).

parameters (also referred to as cost-budget parameters) to
dynamically adjust the tradeoff between cost minimization
and electricity usage over the R frames, each having T time
slots. Line 5 defines an optimization problem to decide m(t)
based on online information. When q(t) increases (i.e., the
current electricity usage further exceeds the allowed ener-
gy budget), minimizing the electricity usage is more criti-
cal for the data center operator due to the energy capping
constraint. Thus, q(t) can be essentially viewed as a feed-
back parameter to push the system towards a zero-queue
state (i.e., satisfying energy capping).

5.2 Performance analysis
This subsection presents the performance analysis of ORM
in Theorem 1, whose proof is available in [16].

Theorem 1. Suppose that boundedness and feasibility as-
sumptions are satisfied. Then, for any T ∈ Z+ and R ∈ Z+

such that K = RT , the following statements hold.
a. The energy capping constraint is approximately satis-

fied with a bounded deviation:

1
K

K−1

∑
t=0

[p(λ (t),m(t))− r(t)]+

≤ Z
K
+

∑R−1
r=0

√
C(T )+Vr (G∗r −gmin)

R
√

T
,

(16)

where C(T ) = B+D(T −1) with B and D being finite con-
stants defined in [16], G∗r is the minimum average cost
achieved over the r-th frame by the optimal offline algorith-
m with T -slot lookahead information, for r = 0,1, · · · ,R−1,
and gmin is the minimum hourly cost that can be achieved
by any feasible decisions throughout the budgeting period.

b. The average cost ḡ∗ achieved by ORM satisfies:

ḡ∗ ≤ 1
R

R−1

∑
r=0

G∗r +
C(T )

R
·

R−1

∑
r=0

1
Vr

. (17)

Theorem 1 shows that, given a fixed value of T and R,
ORM is O(1/V )-optimal with respect to the average cost
against the optimal T -step lookahead policy, i.e., ORM in-
curs no more than O(1/V ) additive cost than the minimum

value, while the energy capping constraint is guaranteed to
be approximately satisfied with a bounded “fudge factor” of
∑R−1

r=0

√
C(T )+Vr(G∗r−gmin)

R
√

T
. With a larger V , the cost is closer

to the minimum but the potential deviation of electricity us-
age from the capping constraint can be larger, and vice ver-
sa. While admittedly (16) and (17) may not be tight for all
scenarios, the established bounds hold under very mild as-
sumptions (boundness and feasibility assumptions) that al-
most all the practical scenarios can easily satisfy. Thus, our
analysis is still useful and it provides a robust performance
guarantee. We will also consider case studies using real-
world traces to provide more accurate estimates of costs and
electricity usage for ORM.

6 Simulation

This section presents trace-based simulation studies to vali-
date our analysis.

6.1 Data sets

We consider a data center with a peak power of 50MW and
an average PUE of 2.0.3 The data center consists of 100,000
servers in total, each with a maximum power of 250W and
idle power of 150W. The budgeting period in our study is 6
months and the default energy capping constraint is 1.39×
105MWh. The weight converting the delay cost to monetary
cost in (4) is set to β = 0.003.
• Workloads: We use three different types of workloads

with equal weights in the delay cost (i.e., w1 = w2 = w3 =
1). We obtain the workload trace by profiling the server
usage log of Florida International University (a large public
university in the U.S.) from January 1 to June 30, 2012.
We also adopt workload traces for Microsoft Research and
Hotmail shown in [13] and repeat the traces for 6 months
by adding random noises of up to ±40%. The normalized
service rates of each server for these three workloads are
0.95, 1.00 and 1.05, respectively. We scale these workloads
in proportion to the total maximum service rate provided by
the data center.
• On-site renewable energy: We obtain from [1] the

hourly renewable energies (generated through solar panels
and wind turbines) during the first six months of 2012, and
scale them proportionally such that on-site renewable ener-
gy supply takes up approximately 10% of the total energy
demand in the data center.
• Electricity: We obtain hourly electricity prices from one

trading node in California available in [1] from January 1 to
June 30, 2012.

Since the access to commercial data centers is unavail-
able, we obtain the trace data from various sources, but it
captures the variation of workloads, renewable energy sup-
plies and electricity prices over the budgeting period. Thus,

3State-of-the-art techniques have reduced this value of around 1.12 [7].

5



0 100 200 300 400
1200

1250

1300

1350

1400

V

A
ve

ra
ge

 C
os

t (
$)

 

 
ORM
Capping−Unaware

(a) Cost versus V .

0 100 200 300 400
−3

−2

−1

0

1

2

3

V

B
ud

ge
t D

ef
ic

it 
(M

W
h)

 

 

ORM
Capping−Unaware

(b) Budget deficit versus V .

Figure 1: Impact of V .

it serves the purpose of evaluating the performance and ben-
efits of ORM.

6.2 Results
We present three sets of simulation results using the above
trace data to complement the analysis.

Impact of V . We first consider a constant V throughout
the budgeting period. Fig. 1(a) and Fig. 1(b) show the im-
pact of V on the average hourly cost (i.e., ḡ) and average
hourly energy budget deficit (i.e., average hourly electrici-
ty usage minus the desired budget), respectively. Note that
The result conforms with our analysis that with a greater V ,
ORM is less concerned with the budget deficit while caring
more about the cost. In the extreme case in which V goes
to infinity, ORM reduces to a capping-unaware algorith-
m that minimizes the cost without considering the energy
capping constraint. Clearly, the capping-unaware algorithm
achieves a cost that is a lower bound on the cost that can
be possibly achieved by any algorithm It can be seen from
Fig. 1(a) and Fig. 1(b) that the cost achieved by ORM is
fairly close to the lower bound on the cost achieved by the
capping-unaware algorithm when V is approximately 100,
whereas still satisfying the energy capping constraint.

Performance comparison. We compare ORM with
three other algorithms in Fig. 2(a) under various energy bud-
gets. Under our simulation settings, the capping-unaware
algorithm consumes 1.47×105MWh electricity energy over
6 months, which we normalize to 1. We appropriately
choose V such that ORM achieves a zero budget deficit.

Comparison with capping-unaware: We see that even
given a 85% energy budget, ORM only exceeds the
capping-unaware algorithm by approximately 10% in terms
of the average cost, while still being able to satisfy the
budget constraint (whereas the capping-unaware algorith-
m clearly violates the budget constraint), as shown in
Figs. 2(a). Furthermore, when the energy budget exceeds
approximately 95%, ORM achieves almost the same cost as
the capping-unaware algorithm while consuming less elec-
tricity energy over the budgeting period.

Comparison with OPT: The optimal offline algorithm
(called OPT) has complete information over the entire bud-
geting period, and it achieves the minimum cost among all
the possible algorithms satisfying the budget constraint. It
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Figure 2: Performance comparison and sensitivity study.

can be seen from Fig. 2(a) that ORM is remarkably close
to OPT in terms of the cost, demonstrating the flexibility of
ORM in satisfying various budget constraints while result-
ing in a satisfactory cost.

Comparison with PerfectHP: We now consider a heuristic
variant of the best known existing prediction-based solution
studied in [11, 20, 24]: PerfectHP, which perfectly predicts
the workloads over the next 48 hours and allocates the en-
ergy budget in proportion to the hourly workloads. Predic-
tion of on-site renewable supply is not considered due to the
practical difficulty of weather forecasting. Fig. 2(a) demon-
strates that, while satisfying the energy capping constraint,
ORM significantly outperforms PerfectHP by reducing the
cost (by even more than 50% when the budget is low).

Sensitivity study. In practice, it may not be possible to
perfectly predict hour-ahead workload arrivals. To cope
with possible traffic spikes, we can either turn on more
servers as a backup or directly overestimate the workload
arrival rate by a certain overestimation factor ϕ : the higher
ϕ , the more overestimates. We choose the later approach,
and Fig. 2(b) shows that the total cost only increases by
less than 0.8% even when we overestimate the workloads
by 20%. This is because although workload overestimation
may turn on more servers and incur a higher electricity cost
at some time slots, the delay cost will be decreased.

Other sensitivity studies are also performed, demonstrat-
ing that ORM provides a satisfactory performance giv-
en various workloads and even with server toggling costs.
These results are omitted due to space limitations.

7 Conclusions

In this paper, we studied “energy budgeting” and proposed
a provably-efficient online resource management algorithm,
ORM, to dynamically control the number of active servers
for minimizing the data center operational cost while satis-
fying energy capping constraint. It was rigorously proved
that ORM achieves a close-to-minimum operational cost
compared to the optimal offline algorithm with future in-
formation, while bounding the potential violation of energy
capping constraint, in an almost arbitrarily random environ-
ment. We also performed a trace-based simulation study to
complement the analysis.
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