
USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  67

Preventing the Revealing of Online Passwords to Inappropriate

Websites with LoginInspector

Chuan Yue ∗

University of Colorado at Colorado Springs

Department of Computer Science

Colorado Springs, CO 80918, USA

cyue@uccs.edu

Abstract

Modern Web browsers do not provide sufficient protec-

tion to prevent users from submitting their online pass-

words to inappropriate websites. As a result, users

may accidentally reveal their passwords for high-security

websites to inappropriate low-security websites or even

phishing websites. In this paper, we address this limi-

tation of modern browsers by proposing LoginInspector,

a profiling-based warning mechanism. The key idea of

LoginInspector is to continuously monitor a user’s lo-

gin actions and securely store hashed domain-specific

successful login information to an in-browser database.

Later on, whenever the user attempts to log into a web-

site that does not have the corresponding successful lo-

gin record, LoginInspector will warn and enable the user

to make an informed decision on whether to really send

this login information to the website. LoginInspector can

also report users’ insecure password practices to system

administrators so that targeted training and technical as-

sistance can be provided to vulnerable users. We imple-

mented LoginInspector as a Firefox browser extension

and evaluated it on 30 popular legitimate websites, 30

sample phishing websites, and one new phishing scam

discovered by M86 Security Labs. Our evaluation and

analysis indicate that LoginInspector is a secure and use-

ful mechanism that can be easily integrated into modern

Web browsers to complement their existing protection

mechanisms. Security system administrators in our uni-

versity commented that such a tool could be very helpful

for them to strengthen campus IT security.

Keywords: Web browser, password, security, phish-

∗This work is based on Jeff Hinson’s master thesis titled “Pre-

venting the Revealing of Online Account Information to Non-Relevant

Websites” [18]. Jeff built the initial prototype of LoginInspector in his

thesis, and Chuan extended that prototype and completed this work.

Jeff also helped revise this final version of paper after acceptance. Jeff

prefers to be simply acknowledged rather than be an author of the pa-

per. Chuan respects Jeff’s choice and most sincerely appreciates him

for his important contributions to this work.

ing, JavaScript, Web, authentication

1 Introduction

Text passwords still occupy the dominant position in on-

line user authentication [2, 16, 17, 23], and they pro-

vide an effective protection to our valuable online ac-

counts. Password security heavily depends on creat-

ing strong passwords and protecting them from being

stolen. However, in recent years, especially with the ram-

pancy of Web-based malicious activities [31, 57], pass-

words have increasingly been targeted by various har-

vesting or stealing attacks. For example, one of the

most severe threats to online users is the phishing at-

tack [6, 8, 10, 11, 19, 28, 32, 34, 35, 40, 45, 47, 51],

which uses spoofed websites to steal users’ passwords

and financial information.

To protect users’ online passwords and accounts, mod-

ern Web browsers have already implemented many secu-

rity features and mechanisms. For example, the five most

popular browsers (Internet Explorer, Firefox, Google

Chrome, Safari, and Opera) all support extended valida-

tion (EV) certificates to help users verify the authentic-

ity of websites, and they also provide phishing detection

and warning mechanisms to help users stay away from

phishing websites. However, simply relying on a single

layer of protection is insufficient in many cases. Provid-

ing modern browsers with defense-in-depth mechanisms

to better protect users’ online passwords is definitely im-

portant and necessary.

In this paper, we investigate modern browsers’ limi-

tation in preventing users from submitting online pass-

words to inappropriate websites. We highlight that at

least in two cases, accidental online password revealing

may happen. The first case is that if a browser fails to de-

tect a phishing webpage, users may submit their online

passwords to the phishing website and become victims.

This case can happen because automatic phishing detec-

tion techniques are still not able to detect all the phish-

68  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

ing attacks in a timely manner and meanwhile maintain

a very low false positive rate [4, 13, 29, 39, 48, 49]. The

second case is that when users forget the passwords for

a certain website, a common practice for them is to try

the passwords for other websites that they do remem-

ber. However, this practice may reveal a user’s login

information for a high-security website such as a bank-

ing website to an inappropriate low-security website such

as a gaming website. This second case can happen and

we confirmed this possibility by conducting a user study

(Section 2). For ease of presentation, in this paper we

refer to the first case as undetected phishing attacks, and

the second case as risky password tries.

In both cases, users’ online passwords can be revealed

to inappropriate websites that should not receive them.

Unfortunately, modern browsers do not provide suffi-

cient protection to users in these two cases; meanwhile,

no previous research has been done to seriously address

this limitation of modern browsers. Indeed, in both cases,

the key problem is that browsers do not have the knowl-

edge to inform a user that such types of login actions

could reveal the user’s password to an inappropriate web-

site. More specifically, when a browser has no knowl-

edge (i.e., fails to detect) that a user is visiting a phish-

ing webpage, the browser is not able to warn the user to

leave this webpage; when a browser has no knowledge

that a user is trying some mismatching passwords (i.e.,

passwords for other websites), the browser is not able to

prevent the user from actually submitting the passwords

to the current website.

To address the limitation of modern browsers in

preventing users from submitting online passwords to

inappropriate websites, we propose LoginInspector, a

profiling-based warning mechanism. The key idea of

LoginInspector is to continuously monitor a user’s lo-

gin actions and securely store hashed domain-specific

successful login information to an in-browser database.

Later on, whenever the user attempts to log into a web-

site that does not have the corresponding successful lo-

gin record, LoginInspector will warn and enable the user

to make an informed decision on whether to really send

this login information to the website. LoginInspector can

also report users’ insecure password practices to system

administrators of an enterprise or campus environment

so that targeted training and technical assistance can be

provided to vulnerable users.

LoginInspector is more like a whitelist-based ap-

proach. Its in-browser database is like containing a

whitelist of a user’s successful login records for different

websites, and the whitelist is dynamically built up and

securely maintained. Using this whitelist, LoginInspec-

tor can enable a user to make informed decisions in both

the aforementioned cases. In particular, in the case of un-

detected phishing attacks, as long as the user had not al-

ready become a victim of this specific phishing website,

a corresponding successful login record for this phishing

website does not exist in the database. Similarly, in the

case of risky password tries, as long as a tried username

and password pair does not belong to a valid account of

the user on the current website, a corresponding success-

ful login record for this tried login information on the

current website does not exist in the database. There-

fore, in both cases, LoginInspector can accurately warn

a user and allow a user to cancel the actual submission of

the password to the website; it can also send the related

information to system administrators and assist them to

further protect and train users who cannot properly inter-

pret the warning messages.

LoginInspector is a pure browser-side mechanism. No

server-side deployment is needed, and no modification to

a user’s passwords is needed. LoginInspector is designed

as an auxiliary tool to help a user enhance the security of

the online passwords. Therefore, it will not incur any

functionality problem (albeit without providing protec-

tion) to a user’s login activities even if, for example, the

user needs to use a computer that does not have LoginIn-

spector installed.

We have implemented a prototype of LoginInspector

as a Firefox browser extension and evaluated it on 30

popular legitimate websites, 30 sample phishing web-

sites, and one new phishing scam discovered by M86 Se-

curity Labs. Our evaluation and analysis indicate that

LoginInspector is a secure and useful mechanism that

can help users prevent the accidental revealing of pass-

words to inappropriate websites. It is a simple mech-

anism that can be easily integrated into modern Web

browsers to complement their existing protection mech-

anisms. Security system administrators in our university

commented that such a tool could be very helpful for

them to strengthen campus IT security.

The remainder of the paper is organized as follows:

Section 2 motivates this work by reviewing related re-

search and presenting a user study of online login prac-

tices. Section 3 details the design of LoginInspector.

Section 4 analyzes the security, usability, and deploy-

ment of LoginInspector. Section 5 describes the im-

plementation and evaluation of LoginInspector. Finally,

Section 6 makes a conclusion and discusses the future

work.

2 Motivation

Password security heavily depends on creating strong

passwords and protecting them from being stolen. Weak

passwords suffer from brute-force and dictionary at-

tacks [30]; therefore, many online services require users

to create and use strong passwords that are sufficiently

long, random, and hard to crack by attackers. How-

2

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  69

ever, strong passwords are difficult to remember for

users [1, 9, 30, 42]. As demonstrated by a recent large-

scale usability study, many users write down or otherwise

store their passwords and especially those with a higher

entropy [25]. Furthermore, no matter how strong they

are, passwords are also vulnerable to harvesting or steal-

ing attacks.

In some cases, users may accidentally reveal the pass-

word for one website to another inappropriate website,

making their sensitive login information for the origi-

nal website at risk. We now justify that at least in the

cases of undetected phishing attacks and risky password

tries, accidental online password revealing may happen.

The case of undetected phishing attacks is related to

the ever-increasing prevalence of password harvesting at-

tacks. The case of risky password tries can be attributed

to the reality that Web users have more online accounts

than ever before, and they are forced to create and re-

member more and more usernames and passwords prob-

ably using insecure practices such as sharing passwords

across different websites [12, 36].

2.1 Undetected Phishing Attacks

This first case happens when browsers fail to detect a

phishing attack and give a warning about it. In such

a case, a vulnerable user may submit the password for

the real website to the inappropriate phishing website.

Phishers can directly use the obtained login information

to break into the user’s online account.

To protect Web users against phishing attacks [6, 8, 10,

11, 19, 28, 32, 34, 35, 40, 45, 47, 51], modern browsers

often employ automatic phishing detection and warning

mechanisms [54, 55, 56]. In terms of automatic phishing

detection, two general types of techniques are blacklist-

based techniques [29, 39, 48] and heuristic-based tech-

niques [4, 13, 49]. No matter what techniques are used,

browsers are still not able to detect all the phishing at-

tacks in a timely manner and meanwhile maintain a very

low false positive rate [4, 13, 29, 39, 48, 49]. Therefore,

modern browsers cannot protect vulnerable users if those

phishing attacks cannot be detected in the first place.

LoginInspector is more like a whitelist-based mecha-

nism: even if a browser fails to detect a phishing attack

and give a warning about it, our mechanism can still pro-

vide one more layer of protection by explictly giving a

warning to the user and informing the user that he or she

did not log into this website before. A related work, An-

tiPhish [24], can also generate a warning message when-

ever a user attempts to give away sensitive information to

a phishing website. However, LoginInspector uses pass-

word hashing techniques while AntiPhish uses password

encryption techniques. We believe hashing is more ap-

propriate than encryption in this application because es-

sentially what we need is an authenticator rather than a

reversible mapping. Moreover, the detection and warn-

ing capability of LoginInspector is more refined than that

of AntiPhish. In AntiPhish, whenever a mismatch on

password happens, a phishing attempt is assumed (Sec-

tion 3.2 of [24]). Such a decision criterion is not accu-

rate. For example, if a user types a wrong password on

a legitimate website, AntiPhish will assume the current

website is a phishing website, but LoginInspector will

display one of the two warnings (Figure 5) to provide

accurate information to the user.

2.2 Risky Password Tries

This second case happens when users forget the pass-

word for a certain website. In such a case, a common

practice for users is to try the passwords for other web-

sites they do remember. However, if a password for a

high-security website is tried on a low-security website,

then this password may be revealed to the low-security

website. For example, if a user attempts to use his or her

Gmail password on a low-security gaming website, the

Gmail password is revealed to the gaming website. The

user may also try the corresponding Gmail username,

may use the same username for Gmail and for the gam-

ing website, or may use the Gmail address as the contact

information on that gaming website. Therefore, both the

Gmail password and username could be known to the

gaming website. If this low-security gaming website is

hacked or even if its authentication log is unintentionally

released, the revealed Gmail login information could be

further acquired by attackers.

The authors of this paper are also guilty of this prac-

tice of risky password tries. To further validate that

this risky practice is indeed a common practice, we con-

ducted a user study. This user study was pre-approved

by the IRB (Institutional Review Board) of our univer-

sity. Thirty adults, 15 females and 15 males, participated

in our user study. They were voluntary students and fac-

ulty members randomly recruited in our campus library,

bookstore, and cafeteria; they came from 17 departments

of our university. Twenty-two participants were between

ages of 18 and 30, and eight participants were over 30

years old. We did not collect any other demographic

or sensitive information from participants. We did not

screen participants based on their Web browsing expe-

riences. We did not provide any incentive to the par-

ticipants. We interviewed the participants when we met

them on campus and asked each of them to answer a five-

point Likert-scale (Strongly disagree, Disagree, Neither

agree nor disagree, Agree, Strongly Agree) [58] ques-

tionnaire that consists of seven close-ended questions as

listed in Table 1. Note that we randomized the sequence

of the seven questions for each individual participant.

3

70  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

Table 1: The seven close-ended questions.
Q1: The security of online passwords is a concern.

Q2: Sometimes I forget my login username for a website.

Q3: Sometimes I forget my login password for a website.

Q4: Sometimes I type the username for one website to log into

another website.

Q5: Sometimes I type the password for one website to log into

another website.

Q6: When I type the username for one website to log into an-

other website, I hope the Web browser can give me a warning.

Q7: When I type the password for one website to log into an-

other website, I hope the Web browser can give me a warning.

Table 2: Summary of the responses to the seven close-

ended questions.

Strongly Disagree Neither agree Agree Strongly

disagree nor disagree Agree

Q1 0(0.0%) 3(10.0%) 1(3.3%) 17(56.7%) 9(30.0%)

Q2 1(3.3%) 5(16.7%) 2(6.7%) 20(66.7%) 2(6.7%)

Q3 1(3.3%) 3(10.0%) 0(0.0%) 24(80.0%) 2(6.7%)

Q4 1(3.3%) 1(3.3%) 3(10.0%) 20(66.7%) 5(16.7%)

Q5 0(0.0%) 3(10.0%) 3(10.0%) 18(60.0%) 6(20.0%)

Q6 0(0.0%) 3(10.0%) 11(36.7%) 12(40.0%) 4(13.3%)

Q7 0(0.0%) 2(6.7%) 9(30.0%) 13(43.3%) 6(20.0%)

A summary of the responses to the seven close-ended

questions is presented in Table 2. Because the data col-

lected are ordinal and do not necessarily have interval

scales, we use the median and mode to summarize the

data and use the percentages of responses to express the

variability of the data. Overall, the median and mode

responses are Agree for all the seven questions. Par-

ticularly in terms of passwords (Q3, Q5, and Q7), we

can see that: (1) 86.7% of participants agree or strongly

agree that sometimes they forget the password for a web-

site; (2) 80.0% of participants agree or strongly agree

that sometimes they try the password for one website on

another website; and (3) 63.3% of participants agree or

strongly agree that when they try the password for one

website on another website, they hope the Web browser

can give them a warning.

These results clearly indicate that users do sometimes

forget passwords, and trying passwords for other web-

sites is indeed a common practice. Answers to Q7 also

indicate that most participants are aware of the risks of

such type of password tries and they do expect browsers

to give them a warning for their risky actions. Unfortu-

nately, modern Web browsers do not provide protection

to prevent risky password tries; meanwhile, no previous

research has been done to seriously address this limita-

tion of modern browsers.

2.3 Related Work on Password Manage-

ment

To help Web users better manage their online accounts

and enhance their password security, researchers have

proposed a number of solutions such as password man-

agers [50, 61], single sign-on systems [63], graphical

passwords [7, 20], and password hashing systems [14,

33, 43]. These solutions have their own merits and ad-

vantages, but they also pose various reliability, secu-

rity, and usability concerns. Browsers’ built-in pass-

word managers as well as many third-party password

managers [50, 61] must be able to recover the original

passwords by decrypting the saved encrypted passwords.

This requirement provides many opportunities for attack-

ers to crack a password manager that is not well designed

or implemented. LoginInspector does not need to re-

cover the original passwords. Essentially, even if a user

does not want to use any password manager, LoginIn-

spector can still protect against undetected phishing at-

tacks and risky password tries.

Web Wallet [41] is an anti-phishing solution, and es-

sentially it is a password manager that can help users

fill login forms using stored information. However, as

pointed out by the authors, users have a strong ten-

dency to use traditional Web forms for typing sensitive

information instead of using the special browser sidebar

user interface. Centralized single sign-on systems such

as Microsoft Passport [63] may suffer from various at-

tacks that could cause disastrous consequences [26]. Se-

curity limitations of graphical passwords are analyzed

in [5, 38]. Security and usability limitations of password

hashing systems such as Password Multiplier [14] and

PwdHash [33] are analyzed in [3]. Both Password Multi-

plier and PwdHash require users to migrate their original

passwords to hashed passwords, and this is a biggest us-

ability limitation of those hashing-based password gen-

eration solutions as acknowledged in the Password Mul-

tiplier paper [14].

LoginInspector leverages the security advantages of

password hashing techniques, but it does not inherit

their usability disadvantages because it only uses hash-

ing techniques to generate authenticators for determin-

ing warning types. Overall, even if some of existing so-

lutions can to some extent help prevent accidental login

information revealing, the majority of users who stick to

the traditional way of using passwords (i.e., filling out

a login form based on what they remember in the mem-

ory and submitting their original passwords to the remote

website) still cannot be protected. What LoginInspector

aims to accomplish is to prevent these users from acci-

dentally revealing their sensitive login information.

Essentially, our key observation is that currently Web

browsers do not have the knowledge to identify the afore-

4

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  71

mentioned accidental login information revealing cases.

Therefore, they cannot help a user make informed deci-

sions to avoid submitting sensitive login information to

inappropriate websites. This observation motivated us to

explore a simple profiling-based warning mechanism to

provide an in-depth protection for Web users.

3 Design

In this section, we first give an overview on the design

of LoginInspector. We then detail the architecture and

components of LoginInspector.

3.1 Overview

The key idea of LoginInspector is to continuously mon-

itor a user’s login actions and securely store domain-

specific successful login information to an in-browser

database. Later on, whenever the user attempts to log

into a website that does not have the corresponding suc-

cessful login record, LoginInspector will warn and en-

able the user to make an informed decision on whether

to really send this login information to the website.

We design LoginInspector as a browser extension that

can be seamlessly integrated into modern Web browsers.

As illustrated in Figure 1, the functioning of the LoginIn-

spector browser extension consists of two main logical

phases: the profiling phase and the inspection and warn-

ing phase. These two phases are centered around an in-

browser successful login profile database.

Figure 1: The functioning of the LoginInspector browser

extension.

In the profiling phase, LoginInspector will build up

the successful login profile for a user. Basically, when-

ever a user successfully logs into a website account for

the first time, LoginInspector will insert a new record

into the successful login profile database. Each record

is uniquely determined by the domain name of the web-

site and the username/password pair used in this success-

ful login. For example, assume a user has two Twit-

ter accounts A and B. The username/password pair is

userA/pwdA for account A, and is userB/pwdB for ac-

count B. The first time the user successfully logs into

twitter.com using account A, one new record will be cre-

ated; the first time the user successfully logs into twit-

ter.com using account B, another new record will be

created. As will be elaborated in the next subsection,

LoginInspector only stores hashed domain names and

username/password pairs into the successful login pro-

file database, thus minimizing security and privacy risks

even if database records would be stolen by attackers.

In the inspection and warning phase, LoginInspector

will leverage the information stored in the successful lo-

gin profile database to enable a user to make informed lo-

gin decisions. Basically, when a user types the username

and password into a login form of a website, LoginIn-

spector will first intercept this information. Second, it

will inspect whether there is a corresponding success-

ful login record for this website account in the database.

Third, if there is a corresponding successful login record

in the database, LoginInspector will submit the inter-

cepted login information to the remote website; no warn-

ing will be given to the user and the user’s login interac-

tion is identical to that in the scenario of without using

LoginInspector. LoginInspector can also update the cor-

responding database record with information such as the

login timestamp.

However, if there is no corresponding successful login

record in the database, LoginInspector will warn the user

with accurate information regarding either the user did

not log into this website before or the current login infor-

mation does not match previous successful login records.

It will ask the user to confirm whether this login informa-

tion should really be submitted. If the user ignores the

warning, LoginInspector will submit the intercepted lo-

gin information to the website; if the user acknowledges

the warning, LoginInspector will cancel the submission

and allow the user to type in a new username and pass-

word.

LoginInspector is a pure browser-based solution –

both the profiling phase and the inspection and warning

phase happen inside of a user’s browser. LoginInspector

will ensure no password information will be transmitted

to a remote website unless: (a) one corresponding suc-

cessful login record exists in the database (indicating the

current website is an appropriate website), or (b) the user

ignores the warning and explictly confirms the transmis-

sion (indicating the user has made an informed decision

based on the given warning).

3.2 Architecture and Components

Figure 2 illustrates the high-level architecture of

LoginInspector, which consists of the successful login

profile database and seven logical components: login

fields identification and protection, login profile inspec-

tion, warning generation, admin report, successful login

detection, management, and import/export.

5

72  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

Figure 2: The architecture of the LoginInspector browser

extension.

3.2.1 The successful login profile database

LoginInspector uses an in-browser database that can

be implemented as an SQLite [62] database instance.

SQLite has already been equipped in popular browsers

such as Firefox and Google Chrome. Within the

database, a loginprofile table is created to store all the

successful login records. This table consists of six

columns as shown in Table 3.

Table 3: The loginprofile table in the successful login

profile database.

id domainHmac recordHmac timesUsed firstUsed lastUsed

In the loginprofile table, each successful login record

is uniquely identified by a recordHmac value. A unique

id is generated by the database for each record. The val-

ues of domainHmac and recordHmac are calculated us-

ing Formula 1 and Formula 2, respectively:

domainHmac = HMAC(key, d) (1)

recordHmac = HMAC(key, d || u || p) (2)

where key is a secret key either randomly generated by

the LoginInspector extension or directly specified by a

user when LoginInspector is installed; HMAC is the

Keyed-Hashing for Message Authentication [27] mecha-

nism together with the SHA-256 [59] cryptographic hash

function; d, u, and p represent domain name, username,

and password, respectively; “||” is the string concatena-

tion operator. The secret key is securely stored in the

password manager of a browser and transparently used

by LoginInspector. We allow a user to specify the se-

cret key when LoginInspector is installed so that the

records in the successful login profile database can be

conveniently exported and imported by LoginInspector.

A user can also use the master password mechanism of

a browser to further protect against the wrong people ex-

tracting the secret key.

The domain name d is extracted from each lo-

gin form’s owner document, and it includes the

full domain name prefixed with the protocol (e.g.,

https://www.amazon.com or http://en.wikipedia.org). In

other words, we are interested in where exactly a login

form comes from, instead of what the domain name of

the top-level document loaded from a browser’s URL ad-

dress bar is. This design choice is reasonable because

the owner document contains the most relevant informa-

tion of a form. For example, on a mashup website (e.g.,

www.mashup.com), if a login form is submitted from a

sub-frame document (e.g., specified by the src attribute

of a frame element), the domain name of this sub-frame

document will be extracted and used as the value for

domain name d. Therefore, the saved successful login

record can be matched no matter the owner document

of the login form is included in mashup websites as a

sub-frame document or is directly loaded as a top-level

document. Similar to browsers’ other features such as

the password manager, LoginInspector uses more reli-

able and stable domain names instead of IP addresses and

does not specifically consider pharming attacks which

we believe should be addressed by some general solu-

tions such as [21, 22].

The other three columns timesUsed, firstUsed, and las-

tUsed of the loginprofile table can keep track of the usage

statistics of each record and provide a user with more de-

tailed successful login information on a currently visited

website. Users can configure whether they want to save

these information to the database or not, by using the

management component of LoginInspector.

3.2.2 Login fields identification and protection

When a new webpage is loaded in the browser, the lo-

gin fields identification and protection component will

identify the username and password login fields on the

webpage; it will also intercept and protect a user’s pass-

word keystrokes. It follows the strategy of first identify-

ing the password field and then identifying the username

field. To identify the password field, it uses two com-

bined techniques: user-assisted identification and au-

tomatic identification. The user-assisted identification

technique was proposed by Ross et al. in their PwdHash

project [33]. This technique requires a user to either type

the “@@” prefix (two consecutive “at” signs) or press

the “F2” function key to explicitly indicate that an input

field is a password field. The advantage of this technique

is that it can effectively prevent malicious JavaScript on

phishing webpages from stealing users’ plaintext pass-

words. The disadvantage of this technique is that users

need to remember to perform this additional action [3].

6

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  73

Figure 3: The password field indication message in a

chrome notification box.

The automatic identification technique examines the spe-

cial attribute type=“password” in the DOM [53] tree to

locate a password field. This technique can be evaded by

phishers [33], but it is completely automatic.

The two identification techniques are combined in

such a way that if a user indicates a password field,

this field will be directly identified; otherwise, the au-

tomatic identification result will be used. Basically, once

an input field is automatically identified as a password

field, LoginInspector will mark that field as a protected

field. Then, if and only if the input focus is on that field,

LoginInspector will display a chrome type of notification

box to a user below the browser’s tab bar to make the user

aware of that password field. Figure 3 illustrates a snap-

shot of the notification box. The notification box is of a

chrome type, so that a LoginInspector user can customize

it by putting special text or images into it. Therefore, a

malicious webpage cannot easily spoof the notification

box.

The user-assisted identification may be needed in two

cases. One is when the automatic identification does not

identify any password field. The other is when the au-

tomatically identified password field is inconsistent with

the should-be password field as perceived by a user. In

both cases, a user can set the input focus on the should-

be password field and specify it as the password field

using either the “@@” prefix or the “F2” function key
1. LoginInspector will mark this user-specified password

field as a protected field, and will similarly display the

notification box if and only if the input focus is on this

field. Note that usually this user-assisted identification

may only need to be performed on phishing webpages,

on which a password field could be deliberately made

inaccurate [33].

If no password field is identified (either automatically

or by the user), LoginInspector will do nothing any-

more. Otherwise, the current webpage is regarded as a

login webpage and LoginInspector will further identify

the corresponding username field. Our experimental re-

sults (Section 5) indicate that the visible text input field

1To discard any identification result, a user can simply press the

“F2” function key when the input focus in on that field.

immediately preceding the password field can be reliably

identified as the username field. We found that Fire-

fox also uses this username identification technique in its

password manager. Even if the username field cannot be

confidently identified on a login webpage, the function-

ality of LoginInspector will not be affected. In such a

case, an empty string will be used as the username value

for calculating the recordHmac. Therefore, the only ef-

fect is that the granularity of the successful login record

becomes coarse if a user has multiple accounts sharing

the same password on this website. Note that if a user

has successfully logged into a website (Section 3.2.6),

the username will be remembered by LoginInspector for

this login session. Thus, if a user visits the change pass-

word webpage of this website, LoginInspector can still

properly replace the old successful login record with the

new calculated one.

After identifying the username and password fields

of a login webpage, LoginInspector will monitor these

two fields and will extract the login information typed

by a user into these two fields. To prevent malicious

JavaScript on a webpage such as a phishing webpage

from recording a user’s password keystrokes, LoginIn-

spector will (1) intercept the password keystrokes as soon

as a user begins to type, (2) prevent the real keypress

events from propagating to the webpage, and (3) fire

fake keypress events to generate the random fake pass-

word value. These three steps are basically the same

as the ones developed by Ross et al. in their PwdHash

project [33]. Later on, if the login form really needs to be

submitted, LoginInspector will use the intercepted real

password value to replace the generated fake password

value, allowing the login process to proceed smoothly.

3.2.3 Login profile inspection

When a user submits a login form, the login profile in-

spection component will compare the intercepted user

login information with the records stored in the success-

ful login profile database. First, it will compute a cur-

rentDomainHmac and a currentRecordHmac using For-

mula 1 and Formula 2, respectively, based on the do-

main name extracted from the current login form’s owner

document and the username and password values inter-

cepted from the current login form. Next, it will look

up the database using the login profile inspection pro-

cedure illustrated in Figure 4. It passes the (currentDo-

mainHmac, currentRecordHmac) pair to the procedure

to get one of the three return results. The result Exact-

Match means that there is an existing record with the

recordHmac value equal to currentRecordHmac. The re-

sult DomainMatch means that there is no existing record

with the recordHmac value equal to currentRecordHmac,

but there is at least one record with the domainHmac

7

74  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

Inspection (currentDomainHmac, currentRecordHmac)

1. if a record with recordHmac=currentRecordHmac exists

2. return ExactMatch;

3. else

4. if a record with domainHmac=currentDomainHmac exists

5. return DomainMatch;

6. else

7. return NoMatch;

8. endif

9. endif

Figure 4: The login profile inspection procedure.

value equal to currentDomainHmac. The result No-

Match means that there is no existing record with the

domainHmac value equal to currentDomainHmac.

If the return result of the procedure is ExactMatch,

the login profile inspection component will simply sub-

mit the login form using the intercepted real password,

and no warning will be given to the user. The timesUsed

and lastUsed information of the existing successful login

record can also be updated. However, if the return result

of the procedure is either DomainMatch or NoMatch, the

login profile inspection component will further instruct

the warning generation component to trigger a warning

message.

3.2.4 Warning generation

This component will generate two types of warning mes-

sages based on the instruction from the login profile in-

spection component. One type of message, referred to

as Initial Visit, corresponds to the return result NoMatch.

In this case, the warning message will remind a user that

the user may not have previously logged into this web-

site, and will ask whether the user really wants to pro-

ceed with the login action. The other type of message,

referred to as Credential Mismatch, corresponds to the

return result DomainMatch. In this case, the warning

message will remind a user that the user may not have

previously used this username and password pair to suc-

cessfully log into the current website, and will also ask

whether the user really wants to proceed with the login

action. In both cases, the warning message will be dis-

played in a modal chrome dialog box. This dialog box is

of a modal type, so that before continuing to perform any

other browsing interactions, a user must respond to the

warning by either clicking the “OK” button to ignore it

or clicking the “Cancel” button to acknowledge it. Sim-

ilar to the notification box illustrated in Figure 3, this

dialog box is also of a chrome type; therefore, it can be

customized and cannot be easily spoofed by a malicious

webpage. Figure 5(a) and Figure 5(b) illustrate the snap-

shots of the dialog boxes for the two types of warning

messages, respectively.

The Initial Visit warning message can be triggered

when a user tries to log into a new legitimate website or

a phishing website. The Credential Mismatch warning

message can be triggered when a user tries to log into a

website using the username and password information of

a new account for the first time or using the username and

password information for another website. These warn-

ing messages intend to help users make informed deci-

sions, and we expect users can properly interpret these

messages and make the correct decisions. If a user ig-

nores a warning message, the login action continues and

the username and password information will be sent to

the website; if a user acknowledges a warning message,

login action stops and nothing will be sent to the website.

A user can follow three basic principles to decide

whether to ignore or acknowledge a warning message.

First, at the beginning when LoginInspector is installed

and used, the Initial Visit warning message will be given

on each website because no existing record exists in the

database. A user normally should ignore the warning.

Second, after a user has successfully logged into most

of his or her online accounts (e.g., after a couple of

weeks), the occurrence of the Initial Visit warning mes-

sage should be rare. Therefore, a user should be very

cautious about this type of warning message and should

carefully inspect whether the current website is a phish-

ing website. The user should acknowledge the warning

if the website is suspicious, and should otherwise ig-

nore the warning. Third, the Credential Mismatch warn-

ing message should be rare all the time. If a user has

two accounts on the same website, then ideally this type

of message should only occur once when the user logs

into the website using the second account for the first

time. Therefore, a user should be very cautious about

this type of message and should think about whether

the tried login information is for another website (thus

the warning should be acknowledged) or for another ac-

count on the same website (thus the warning should be

ignored). These principles can be provided in the man-

ual of LoginInspector to help users properly interpret the

warning messages.

3.2.5 Admin report

This component will generate and send reports to sys-

tem administrators if it is enabled by either a system ad-

ministrator or a user. In an enterprise or campus envi-

ronment, system administrators can configure LoginIn-

spector so that even if some users cannot properly inter-

pret the above warning messages, the related information

can be reported to an internal website of administrators

through a POST type HTTP request.

The report does not contain passwords or their hash

values; it only needs to contain the LoginInspector us-

8

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  75

(a) (b)

Figure 5: The modal chrome dialog boxes for (a) the Initial Visit warning message, (b) the Credential Mismatch

warning message.

age information. For example, it can contain statisti-

cal information on a user’s responses to the two types

of warning messages in a session such as {“userid”:

“123456”, “ignored Initial Visit warning”: “10 times”,

“ignored Credential Mismatch warning”: “6 times”,

“sessionStartTime”: “1345846451434”, “sessionEnd-

Time”: “1345846648635”,}. If necessary, it can

also contain the URLs of the websites on which warn-

ing messages were ignored. System administrators can

then leverage the reported information to identify users’

insecure password practices such as risky password tries

or improper interpretation of warning messages, and they

can further take actions to protect and train those vulner-

able users. Administrators could also aggregate the re-

ports received from different users to predict a phishing

wave. For example, if suddenly a large number of Initial

Visit messages are ignored by a bunch of users on some

associated IP addresses or domain names, the likelihood

of a new phishing scam is high. Security system adminis-

trators in our university commented that LoginInspector

and its report capability could be very helpful for them

to strengthen campus IT security.

3.2.6 Successful login detection

This component will detect whether a user’s login at-

tempt is successful in the case when the user ignores a

warning (Figure 5) and LoginInspector submits the login

information to the website. The case that the login pro-

file inspection procedure returns ExactMatch is directly

considered as a successful login and is not handled by

this component. Originally, we intended to make this

detection process completely automatic. We found that

one reliable heuristic for automatically detecting a suc-

cessful login is to examine whether the login response

webpage loaded on the browser also contains a visible

password field. If so, this login action is considered un-

successful because normally a failed login webpage asks

a user to type in the username and password informa-

tion again. Otherwise, the login action is considered suc-

cessful. This technique works accurately on over 95% of

websites that we tested (Section 5), but in rare cases the

detection result was wrong. For example, the response

webpage for a failed login may simply contain a link or

button, which can take a user to the re-login webpage. In

such a case, a failed login will be incorrectly identified

as a successful login.

To overcome the limitation of the automatic detec-

tion, we introduced a user-assisted successful login de-

tection method. Basically, once a login response web-

page is fully loaded on the browser, LoginInspector will

explictly ask a user to confirm whether this login at-

tempt is successful. This confirmation message is also

displayed in a modal chrome dialog box, and a user’s

response on the “Yes” or “No” button will be directly

used as the detection result. This method is intuitive

because a well-designed login response webpage often

clearly manifests the status of the login action, which can

be easily and accurately identified by a user. Moreover,

this method will not impose too much burden on a user

because the confirmation is needed only when a warning

(Figure 5) is given and meanwhile the warning is ignored

by the user. Once a successful login is confirmed by a

user, a new record (Table 3) will be added to the login-

profile database table.

3.2.7 Management and import/export

Finally, the management component will enable a user

to perform tasks such as customizing warning mes-

sages, removing successful login records, and configur-

ing whether to track the timesUsed, firstUsed, and las-

tUsed information. The import/export component will

enable a user to export the successful login records to a

9

76  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

file and later to import those records from this file to a

new browser on another computer. This import/export

functionality is similar to that of the bookmark feature in

Web browsers. We mentioned in Section 3.2.1 that the

secret key used in Formula 1 and Formula 2 can be spec-

ified by a user. The advantage is that when a user imports

the successful login records to a new browser on another

computer, the user can directly type the specified key into

LoginInspector through its management user interface.

Otherwise, the randomly generated secret key also needs

to be exported from the original browser and then sup-

plied to the new browser, and such a functionality should

only be accessed by authorized users. A user’s profile

should be synchronized between computers so that previ-

ously processed warning messages will not appear again.

Currently, users can use this import/export functionality

to achieve profile synchronization. In the future, we plan

to enable users to take advantage of the data synchroniza-

tion mechanism of browsers such as Firefox and Google

Chrome to easily perform profile synchronization.

4 Analysis

We now analyze the security, usability, and deployment

of LoginInspector.

4.1 Security

On the one hand, LoginInspector itself is designed to be

secure. A user’s login information for a website is hashed

using the HMAC [27] message authentication mecha-

nism together with the cryptographically strong SHA-

256 [59] hash function, and only hashed values are stored

in the successful login profile database. Therefore, even

if attackers can manage to steal the complete database

file or some successful login records, it is computation-

ally infeasible for them to figure out the original plaintext

username/password and domain name values that map to

those HMAC values. Meanwhile, because this mecha-

nism does not send the intercepted login information or

hashed successful login records to any third-party server,

it will not incur any new security or privacy problems.

On the other hand, LoginInspector can provide secu-

rity benefits to a user by giving two types of warning

messages (Figure 5) based on the previous successful lo-

gin history of the user. This capability of LoginInspector

is unique and is exactly what is lacking in existing Web

browsers. Moreover, thanks to domain-based hashing,

this capability is robust regardless of whether a user will

reuse usernames and passwords across different websites

or not. We now further analyze this capability for three

categories of users based on the two accidental login in-

formation revealing cases defined in Section 2.

The first category of users are security conscious users

who will never visit phishing websites and never per-

form risky password tries. These users do not need to

use LoginInspector. If they do use, they will see very

few warning messages once their successful login pro-

files become stable, and they can simply ignore those

messages. The second category of users may acciden-

tally visit phishing websites and become victims. When-

ever a user in this category tries to log into a phishing

website, regardless of the browser’s ability to detect the

attack, LoginInspector will display the Initial Visit warn-

ing message and explicitly inform the user that he or she

may not have previously logged into the website. The

third category of users may sometimes perform risky

password tries. Whenever a user in this category per-

forms a risky password try, LoginInspector will display

the Credential Mismatch warning message and explicitly

inform the user that he or she may not have previously

used this username and password pair to successfully log

into the current website. Note that there could be an over-

lap between the second category and the third category of

users.

Modern Web browsers display “active” warnings to

boost the effectiveness of their phishing and SSL error

protection mechanisms [8, 37]. Because LoginInspec-

tor displays warning messages in a modal chrome dialog

box, these warnings are also “active” and a user has to

take an action. Therefore, it is reasonable to expect that

by following the principles suggested in Section 3.2.4,

users in the second and third categories can, to some ex-

tent, properly interpret the warning messages and pro-

tect themselves from accidentally revealing login infor-

mation. Training users to read, understand, and (most

importantly) pay serious attention to the warning mes-

sages is absolutely critical to the effectiveness of secu-

rity warning mechanisms. Herley discussed that “users’

rejection of the security advice they receive is entirely

rational from an economic perspective” [15]. Following

the recommendations provided in [15], we suggest that

such a training should target at-risk population, that is,

those who are vulnerable to phishing attacks and/or who

have the practice of risky password tries, so that a better

cost-benefit ratio can be achieved.

4.2 Usability

LoginInspector has two major usability advantages. One

is that a user does not need to change the original pass-

words for any website. Some existing password man-

agement or phishing protection solutions such as Pass-

word Multiplier [14], PwdHash [33], and Passpet [43]

all require users to visit the “change password” page of

each individual website to migrate the original unman-

aged password to a hashed password. However, such a

10

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  77

requirement imposes a big burden on a user. As pointed

out in the Password Multiplier paper [14], “all the hash-

based schemes have difficulty with the transition from

unmanaged passwords.”

The other usability advantage is that the login action

of a LoginInspector user will not be affected at all, even

if the user needs to use a browser on a computer that

does not have LoginInspector installed. This is because

LoginInspector is designed as an auxiliary tool to help a

user enhance the security of the online passwords. The

regular login functionality will be enhanced with one

more layer of security protection, but it will not be de-

graded or disrupted when LoginInspector becomes un-

available. This usability advantage is lacking in those

password hashing solutions [14, 33, 43]; it is also lack-

ing in browsers’ built-in or third-party password man-

agers [50, 61].

LoginInspector also has two main usability disadvan-

tages. One is that the two types of warning messages,

especially the Initial Visit, will be frequently displayed

during the profiling phase, and a user should ignore the

warnings to build up the successful login profile. To bet-

ter ensure the quality of this profiling phase, we suggest a

user to perform it in a batch manner once LoginInspector

is installed. For example, if a user has 30 online accounts

on 20 websites, the user can log into those 30 accounts

in about one hour to establish his or her successful login

profile. During this process, if the user carefully sub-

mits the valid login information for all the 30 accounts,

then 20 Initial Visit warning messages will be displayed

and 10 Credential Mismatch warning messages will be

displayed. The user simply needs to ignore all these 30

warnings to finish the profiling phase. Later on, the user

will not see any warning message if the login information

of those 30 accounts are used to log into the correspond-

ing websites. The user only needs to be cautious about

the two types of warning messages if they appear again.

In an enterprise or campus environment, system admin-

istrators can also help regular users build up the profile,

thus reducing the number of required actions from regu-

lar users and making the profiling stage of LoginInspec-

tor easier, faster, and less error-prone.

Note that the impact of webpage redirection to

LoginInspector is very limited because similar to

browsers’ built-in password managers, LoginInspector

only extracts URLs from the final login webpage instead

of from an intermediate redirection webpage. It is very

rare for the same website to use different URLs to host

the login webpage for the same type of accounts2; if such

a case happens, LoginInspector may display the Initial

Visit warning message, and browsers’ built-in password

2A bank website may use different login URLs, but normally they

correspond to different types of accounts such as credit card accounts

and saving accounts.

managers may ask a user to save another record to the

database.

The other main usability disadvantage is that the es-

tablished successful login profile is associated with a

browser on one computer, and is not directly accessible

on other computers. To address this issue, we suggest

that if a user has multiple computers, the user can simply

export the established successful login profile and im-

port it to other computers. Therefore, the aforementioned

profiling phase still only needs to be performed once in

a batch manner, minimizing the burden on a user. How-

ever, if a user simply wants to temporarily use another

computer such as a public computer [46], we do not sug-

gest the user import his or her successful login profile

to that computer. In other words, LoginInspector mainly

focuses on protecting a user on his or her own computers.

4.3 Deployment

LoginInspector can be incrementally deployed and the

deployment is very simple. One reason is this mecha-

nism is a pure browser-based solution and it can be seam-

lessly integrated into modern Web browsers as an exten-

sion. No server-side modification is needed. The other

reason is that this mechanism simply provides one ad-

ditional layer of protection to Web users. It only uses

the existing login information of a user and it does not

require any modification to the existing online user au-

thentication mechanisms.

5 Evaluation

LoginInspector is designed to be implementable on dif-

ferent Web browsers. In-browser databases such as

SQLite [62] are equipped in popular browsers such as

Firefox and Google Chrome, making the implementation

of the successful login profile database feasible. Mean-

while, the end-user extensibility of modern browsers

such as Firefox, Internet Explorer, and Google Chrome

also makes the implementation of other LoginInspector

components feasible. We have implemented a proto-

type of LoginInspector as a Firefox browser extension.

It works well as tested on Firefox versions from 3 to 9,

which was the latest version at the time of this writing.

We do not anticipate problems with newer versions. The

extension is purely written in JavaScript with approxi-

mately 1600 lines of code. We believe LoginInspector

can also be easily implemented as the extension for other

popular browsers.

We have evaluated this LoginInspector extension on

30 popular legitimate websites, 30 sample phishing web-

sites, and one new phishing scam discovered by M86 Se-

curity Labs [60]. We selected the 30 popular legitimate

websites (as listed in Table 4) from two sources. One

11

78  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

source is the top 50 websites listed by Alexa.com; how-

ever, we removed non-English websites, gray content

(e.g., adult) websites, and the websites that did not allow

us to create an account. The other source is some of our

frequently used websites. Websites such as paypal.com

and wellsfargo.com set the autocomplete=“off” prop-

erty on their password fields or login forms; therefore,

browsers’ autocomplete feature [44] will not save users’

form filling history to help speed up their future form

filling process [44]. LoginInspector only stores hashed

values to dramatically reduce the risk of having users’

passwords cracked by attackers; thus its current version

does not respect the autocomplete property and can work

well on websites with the “autocomplete=false” prop-

erty. Note that LoginInspector may not work well on

websites that use one-time passwords because it could al-

ways raise the Credential Mismatch warning after the ini-

tial visit. What a user can do is to configure LoginInspec-

tor to ignore those sites based on their domain names.

We selected the 30 phishing websites from phish-

tank.com, which is a community based anti-phishing ser-

vice widely used in research [29, 48, 49]. These phish-

ing websites were randomly sampled with the criteria

that they were online during our experiments, they were

containing login webpages, and they were hosted on dif-

ferent domains or IP addresses. In our experiments, we

mainly focused on evaluating the correctness and perfor-

mance of this LoginInspector extension.

Table 4: The 30 popular legitimate websites.
mail.google.com facebook.com mail.yahoo.com

wikipedia.com twitter.com amazon.com

linkedin.com wordpress.com ebay.com

fc2.com craigslist.org imdb.org

aol.com digg.com careerbuilder.com

buy.com aaa.com newegg.com

tumblr.com alibaba.com 4shared.com

cnn.com nytimes.com foxnews.com

weather.com groupon.com photobucket.com

myspace.com webmail.uccs.edu portal.prod.cu.edu

5.1 Correctness

We verified that this LoginInspector extension integrates

seamlessly with the Firefox Web browser and works cor-

rectly on all of the 30 popular legitimate websites, the

30 sample phishing websites, and the new phishing scam

discovered by M86 Security Labs [60].

5.1.1 Results on legitimate websites

On the 30 popular legitimate websites, LoginInspector

can correctly and automatically identify the password

field and the username field on each of the login web-

pages. It can correctly intercept password keystrokes

and replace the intercepted password with a generated

fake password; it can properly replace back the inter-

cepted password when the login information really needs

to be sent to the website. We observed the heuristic for

automatic successful login detection that we originally

planed to use (Section 3.2.6) works correctly on 29 web-

sites except for aaa.com, which uses an extra response

webpage that contains a link “Return to sign in page”

for a failed login attempt. As discussed in Section 3.2.6,

we switched to a user-assisted successful login detection

method to overcome the limitation of the automatic de-

tection. This method works correctly based on the user

confirmation action.

Through logging all the operations and manually

checking the content of the loginprofile table, we veri-

fied that all the database operations – including insert,

update, and select – were correctly performed for the 30

websites. Meanwhile, the login profile inspection proce-

dure illustrated in Figure 4 works correctly based on the

existing records in the loginprofile database table, and the

decisions on whether and what type of warning messages

(Section 3.2.4) should be displayed were also precisely

made. Note that in these correctness evaluations, when-

ever doable, we created at least two accounts on each

website to test all the possible usage scenarios.

5.1.2 Results on phishing websites

On the 30 sample phishing websites, we observed that

the password field and the username field can be cor-

rectly and automatically identified on 29 login webpages.

Only on one login webpage the password field was not

automatically identified by LoginInspector. We checked

that the password field on that login webpage has the

property type=“text”, and every password character was

displayed to a user in the input field. These results indi-

cate that, overall, the sophisticated phishing attacks pre-

sented by Ross et al. [33] are not yet used in many phish-

ing attacks. However, as analyzed in Section 3.2.2, if

the automatic identification does not work well on phish-

ing websites like in the above type=“text” case, a user

should specify the password field using either the “@@”

prefix or the “F2” function key.

We also verified that the Initial Visit warning mes-

sage was correctly displayed by LoginInspector on all

the phishing login webpages. In our experiments, we ac-

knowledged all those warnings because we do not want

to save any phishing website record to the successful lo-

gin profile database. In addition, among these 30 phish-

ing websites, we observed that Firefox failed to detect

seven of them and Google Chrome failed to detect eight

12

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  79

of them3. Therefore, on those phishing websites, no

warning was displayed by these two popular browsers.

This observation further justifies one of the motivations

of our work, that is, undetected phishing attacks are com-

monplace.

5.1.3 Results on one new phishing scam

A new phishing scam was discovered by M86 Security

Labs in 2011 [60]. Basically in this scam, phishers attach

an HTML file to the spam email, luring a user to open

the attached HTML file and submit a form to perform

some urgent tasks. Once a user submits the form, the

stolen sensitive information will be transmitted through

a POST type HTTP request to a hacked legitimate web-

site. This new phishing scam is very stealthy because:

(1) a browser simply loads the phishing webpage as a lo-

cal file such as file:///C:/Users/.../home.html; (2) the form

submission target is a legitimate, albeit hacked, website.

Therefore, neither a browser nor a user can easily iden-

tify such a phishing attack. As reported by M86 Se-

curity Labs [60], popular browsers such as Firefox and

Google Chrome did not detect any such malicious ac-

tivity; meanwhile, there is an increase in these types of

phishing spam campaigns over the last few months.

We decided to test whether LoginInspector can defend

against this new phishing scam. We created emails to

attach various login webpages, and then opened those

attachments using latest versions of Firefox, Google

Chrome, and Internet Explorer browsers. Obviously, no

phishing warning was given by those Web browsers, and

it seems those browsers currently do not use heuristic-

based phishing detection techniques to inspect locally

opened (i.e., file:///...) HTML webpages. As ex-

pected, LoginInspector also works correctly on the lo-

cally opened HTML webpages. It correctly displayed

the Initial Visit warning message, thus enabling a user

to make the informed decision to acknowledge warnings

and cancel the submissions when those undetected phish-

ing attacks occur.

5.2 Performance

We also measured the performance overhead of LoginIn-

spector on the 30 popular legitimate websites. Firefox

and the LoginInspector browser extension were installed

on a laptop with a 2.67GHz CPU. Other JavaScript op-

erations and HMAC calculations (Formula 1 and For-

mula 2) cause negligible overhead. For example, all the

tested HMAC calculations were completed within 3 mil-

liseconds. The overhead is mainly on the SQLite [62]

3Both Firefox and Chrome use the same blacklist provided by

Google [52]; this slight difference in false negative rate could be caused

by the blacklist download time difference between the two browsers.

database operations invoked by the JavaScript code. On

each of the 30 legitimate websites, we measured the over-

head of the database operations five times. We observed

that all the select operations were completed within one

millisecond. The average performance overhead for the

insert operations is 140.6 milliseconds with a standard

deviation of 47.2. The average performance overhead for

the update operations is 70.2 milliseconds with a stan-

dard deviation of 13.1. We can see that, overall, the

database operation overhead is still very low, and is only

incurred when a login form is submitted. In addition,

the insert operation overhead is only incurred when a

new successful login record needs to be added to the

database.

6 Conclusion and Future Work

In this paper, we determined that modern Web browsers

do not provide sufficient protection to prevent users

from submitting their online passwords to inappropri-

ate websites. We highlighted that in the cases of unde-

tected phishing attacks and risky password tries, users

may accidentally reveal their passwords for high-security

websites to inappropriate low-security websites or even

phishing websites. We proposed and presented LoginIn-

spector, a profiling-based warning mechanism to address

this limitation of modern browsers. LoginInspector es-

tablishes a successful login profile for a user and lever-

ages this profile to enable a user to make informed lo-

gin decisions and also enable system administrators to

provide further protection or targeted training to vulner-

able users. We analyzed the security, usability, and de-

ployment of LoginInspector. We also evaluated the cor-

rectness and performance of the Firefox LoginInspector

browser extension on legitimate and phishing websites.

Our evaluation and analysis indicate that LoginInspector

is a secure and useful mechanism, and it can comple-

ment Web browsers’ existing mechanisms to provide an

in-depth protection to a user’s online login process.

In our future work, we plan to design a visual way

(e.g., by using icons) to clearly differentiate the two types

of warning messages (Figure 5). We want to evaluate

whether a visually distinguishing factor could help users

better understand what is happening without having to

read those warning messages. We also plan to evalu-

ate the usability of this standalone browser extension and

then integrate it into the password managers of modern

browsers. This integration can leverage the existing com-

ponents of browsers’ password managers. However, this

integration will still allow users to independently enable

either the LoginInspector or the password manager in

case some users do not want to use both features.

13

80  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

7 Acknowledgments

We thank anonymous reviewers for their insightful com-

ments and valuable suggestions. We thank our shepherd

Mario Obejas for his great help in improving the final

version of this paper. We also thank all the voluntary

students and faculty members who participated in our

user study. Jeff Hinson made important contributions to

this work as highlighted on the first page of the paper.

This work was partially supported by a UCCS 2011-2012

CRCW research grant.

References

[1] ADAMS, A., AND SASSE, M. A. Users are not the enemy. Com-

mun. ACM 42, 12 (1999), 40–46.

[2] BONNEAU, J., HERLEY, C., VAN OORSCHOT, P. C., AND STA-

JANO, F. The quest to replace passwords: A framework for

comparative evaluation of web authentication schemes. In Pro-

ceedings of the IEEE Symposium on Security and Privacy (2012),

pp. 553–567.

[3] CHIASSON, S., VAN OORSCHOT, P. C., AND BIDDLE, R. A

usability study and critique of two password managers. In Pro-

ceedings of the USENIX Security Symposium (2006), pp. 1–16.

[4] CHOU, N., LEDESMA, R., TERAGUCHI, Y., AND MITCHELL,

J. C. Client-side defense against web-based identity theft. In

Proceedings of the NDSS (2004).

[5] DAVIS, D., MONROSE, F., AND REITER, M. K. On user choice

in graphical password schemes. In Proceedings of the USENIX

Security Symposium (2004), pp. 151–164.

[6] DHAMIJA, R., AND J.D.TYGAR. The battle against phishing:

Dynamic security skins. In Proceedings of the SOUPS (2005),

pp. 77–88.

[7] DHAMIJA, R., AND PERRIG, A. Dejà vu: A user study using im-

ages for authentication. In Proceedings of the USENIX Security

Symposium (2000), pp. 45–58.

[8] EGELMAN, S., CRANOR, L. F., AND HONG, J. You’ve been

warned: An empirical study of the effectiveness of web browser

phishing warnings. In Proceedings of the CHI (2008), pp. 1065–

1074.

[9] FELDMEIER, D. C., AND KARN, P. R. Unix password secu-

rity – ten years later. In Proceedings of the Annual International

Cryptology Conference (CRYPTO) (1989), pp. 44–63.

[10] FELTEN, E. W., BALFANZ, D., DEAN, D., AND WALLACH,

D. S. Web Spoofing: An Internet Con Game. In Proceedings

of the 20th National Information Systems Security Conference

(1997).

[11] FLORÊNCIO, D., AND HERLEY, C. Password rescue: A new

approach to phishing prevention. In Proceedings of the HotSEC

(2006).

[12] FLORÊNCIO, D., AND HERLEY, C. A large-scale study of web

password habits. In Proceedings of the WWW (2007), pp. 657–

666.

[13] GARERA, S., PROVOS, N., CHEW, M., AND RUBIN, A. D. A

framework for detection and measurement of phishing attacks. In

Proceedings of the Workshop on Rapid Malcode (WORM) (2007).

[14] HALDERMAN, J. A., WATERS, B., AND FELTEN, E. W. A con-

venient method for securely managing passwords. In Proceedings

of the WWW (2005), pp. 471–479.

[15] HERLEY, C. So long, and no thanks for the externalities: the

rational rejection of security advice by users. In Proceedings of

the New security Paradigms Workshop (NSPW) (2009), pp. 133–

144.

[16] HERLEY, C., AND VAN OORSCHOT, P. C. A research agenda

acknowledging the persistence of passwords. IEEE Security &

Privacy 10, 1 (2012), 28–36.

[17] HERLEY, C., VAN OORSCHOT, P. C., AND PATRICK, A. S.

Passwords: If we’re so smart, why are we still using them? In

Proceedings of the Financial Cryptography (2009), pp. 230–237.

[18] HINSON, J. Preventing the Revealing of Online Account Infor-

mation to Non-Relevant Websites. Master’s Thesis (advised by

Chuan Yue) at UCCS, http://library.uccs.edu/search/

o693952729.

[19] JAKOBSSON, M., AND MYERS, S. Phishing and Countermea-

sures: Understanding the Increasing Problem of Electronic Iden-

tity Theft. Wiley-Interscience, ISBN 0-471-78245-9, 2006.

[20] JERMYN, I., MAYER, A., MONROSE, F., REITER, M. K., AND

RUBIN, A. D. The design and analysis of graphical passwords.

In Proceeding of the USENIX Security Symposium (1999), pp. 1–

14.

[21] JUELS, A., JAKOBSSON, M., AND JAGATIC, T. N. Cache cook-

ies for browser authentication (extended abstract). In Proceedings

of the IEEE Symposium on Security and Privacy (2006), pp. 301–

305.

[22] KARLOF, C., SHANKAR, U., TYGAR, J. D., AND WAGNER, D.

Dynamic pharming attacks and locked same-origin policies for

web browsers. In Proceedings of the CCS (2007), pp. 58–71.

[23] KELLEY, P. G., KOMANDURI, S., MAZUREK, M. L., SHAY,

R., VIDAS, T., BAUER, L., CHRISTIN, N., CRANOR, L. F.,

AND LOPEZ, J. Guess again (and again and again): Measuring

password strength by simulating password-cracking algorithms.

In Proceedings of the IEEE Symposium on Security and Privacy

(2012), pp. 523–537.

[24] KIRDA, E., AND KRUEGEL, C. Protecting users against phish-

ing attacks with antiphish. In Proceedings of the Annual Interna-

tional Computer Software and Applications Conference (COMP-

SAC) (2005), pp. 517–524.

[25] KOMANDURI, S., SHAY, R., KELLEY, P. G., MAZUREK,

M. L., BAUER, L., CHRISTIN, N., CRANOR, L. F., AND

EGELMAN, S. Of passwords and people: Measuring the effect

of password-composition policies. In Proceedings of the CHI

(2011), pp. 2595–2604.

[26] KORMANN, D. P., AND RUBIN, A. D. Risks of the passport

single signon protocol. Comput. Networks 33, 1-6 (2000), 51–58.

[27] KRAWCZYK, H., BELLARE, M., AND CANETTI, R. RFC 2104,

HMAC: Keyed-Hashing for Message Authentication, 1997.

http://www.ietf.org/rfc/rfc2104.txt.

[28] KUMARAGURU, P., RHEE, Y., ACQUISTI, A., CRANOR, L. F.,

HONG, J., AND NUNG, E. Protecting people from phishing: The

design and evaluation of an embedded training email system. In

Proceedings of the CHI (2007), pp. 905–914.

[29] LUDL, C., MCALLISTER, S., KIRDA, E., AND KRUEGEL, C.

On the effectiveness of techniques to detect phishing sites. In

Proceedings of the DIMVA (2007).

[30] MORRIS, R., AND THOMPSON, K. Password security: a case

history. Commun. ACM 22, 11 (1979), 594–597.

[31] PROVOS, N., RAJAB, M. A., AND MAVROMMATIS, P. Cy-

bercrime 2.0: when the cloud turns dark. Commun. ACM 52,

4 (2009), 42–47.

[32] RACHNA DHAMIJA, J.D.TYGAR, AND MARTI HEARST. Why

phishing works. In Proceedings of the CHI (2006), pp. 581–590.

14

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  81

[33] ROSS, B., JACKSON, C., MIYAKE, N., BONEH, D., AND

MITCHELL, J. C. Stronger password authentication using

browser extensions. In Proceedings of the USENIX Security Sym-

posium (2005), pp. 17–32.

[34] SCHECHTER, S. E., DHAMIJA, R., OZMENT, A., AND FIS-

CHER, I. The emperor’s new security indicators: An evaluation

of website authentication and the effect of role playing on usabil-

ity studies. In Proceedings of the IEEE Symposium on Security

and Privacy (2007), pp. 51–65.

[35] SHENG, S., MAGNIEN, B., KUMARAGURU, P., ACQUISTI, A.,

CRANOR, L. F., HONG, J., AND NUNGE, E. Anti-Phishing Phil:

the design and evaluation of a game that teaches people not to fall

for phish. In Proceedings of the Symposium on Usable Privacy

and Security (SOUPS) (2007), pp. 88–99.

[36] STONE-GROSS, B., COVA, M., CAVALLARO, L., GILBERT, B.,

SZYDLOWSKI, M., KEMMERER, R. A., KRUEGEL, C., AND

VIGNA, G. Your botnet is my botnet: analysis of a botnet

takeover. In Proceedings of the CCS (2009), pp. 635–647.

[37] SUNSHINE, J., EGELMAN, S., ALMUHIMEDI, H., ATRI, N.,

AND CRANOR, L. F. Crying wolf: an empirical study of ssl

warning effectiveness. In Proceedings of the 18th conference on

USENIX security symposium (2009), pp. 399–416.

[38] THORPE, J., AND VAN OORSCHOT, P. Human-seeded attacks

and exploiting hot-spots in graphical passwords. In Proceedings

of the USENIX Security Symposium (2007), pp. 103–118.

[39] WHITTAKER, C., RYNER, B., AND NAZIF, M. Large-scale au-

tomatic classification of phishing pages. In Proceedings of the

NDSS (2010).

[40] WU, M., MILLER, R. C., AND GARFINKEL, S. L. Do security

toolbars actually prevent phishing attacks? In Proceedings of the

CHI (2006), pp. 601–610.

[41] WU, M., MILLER, R. C., AND LITTLE, G. Web wallet: pre-

venting phishing attacks by revealing user intentions. In Proceed-

ings of the Symposium on Usable Privacy and Security (SOUPS)

(2006), pp. 102–113.

[42] YAN, J., BLACKWELL, A., ANDERSON, R., AND GRANT, A.

Password memorability and security: Empirical results. IEEE

Security and Privacy 2, 5 (2004), 25–31.

[43] YEE, K.-P., AND SITAKER, K. Passpet: convenient password

management and phishing protection. In Proceedings of the Sym-

posium on Usable Privacy and Security (SOUPS) (2006), pp. 32–

43.

[44] YUE, C. Mitigating cross-site form history spamming attacks

with domain-based ranking. In Proceedings of the DIMVA

(2011), pp. 104–123.

[45] YUE, C., AND WANG, H. Anti-Phishing in Offense and Defense.

In Proceedings of the ACSAC (2008), pp. 345–354.

[46] YUE, C., AND WANG, H. SessionMagnifier: A Simple Ap-

proach to Secure and Convenient Kiosk Browsing. In Proceed-

ings of the Ubicomp (2009), pp. 125–134.

[47] YUE, C., AND WANG, H. BogusBiter: A Transparent Protection

Against Phishing Attacks. ACM Transactions on Internet Tech-

nology (TOIT) 10, 2 (2010), 1–31.

[48] ZHANG, Y., EGELMAN, S., CRANOR, L. F., AND HONG, J.

Phinding phish: Evaluating anti-phishing tools. In Proceedings

of the NDSS (2007).

[49] ZHANG, Y., HONG, J., AND CRANOR, L. CANTINA: A

content-based approach to detecting phishing web sites. In Pro-

ceedings of the WWW (2007), pp. 639–648.

[50] 1Password. http://agilebits.com/products/1Password.

[51] Anti-Phishing Working Group. http://www.antiphishing.

org.

[52] Client specification for the Google Safe Browsing v2.2 protocol.

http://code.google.com/p/google-safe-browsing/

wiki/Protocolv2Spec.

[53] Document Object Model (DOM). http://www.w3.org/DOM/.

[54] Firefox Phishing and Malware Protection. http://www.

mozilla.com/en-US/firefox/phishing-protection/.

[55] Google Chrome and Browser Security. http://www.google.

com/chrome/intl/en/more/security.html.

[56] Internet Explorer 8 Readiness Toolkit. http://www.

microsoft.com/windows/internet-explorer/

readiness/new-features.aspx.

[57] Internet Security Threat Report, Security research and analysis —

Symantec. http://www.symantec.com/business/theme.

jsp?themeid=threatreport.

[58] Likert scale. http://en.wikipedia.org/wiki/Likert_

scale.

[59] NIST: Secure Hashing. http://csrc.nist.gov/groups/ST/

toolkit/secure_hashing.html.

[60] Phishing Scam in an HTML Attachment.

http://labs.m86security.com/2011/03/

phishing-scam-in-an-html-attachment/.

[61] RoboForm Password Manager. http://www.roboform.com/.

[62] SQLite Home Page. http://www.sqlite.org.

[63] Windows Live ID. http://msdn.microsoft.com/en-us/

library/bb288408.aspx.

15

