
USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  237

 Lessons Learned When Building a Greenfield High Performance Computing
Ecosystem
Andrew R. Keen

Michigan State University
Dr. William F. Punch

Michigan State University
Greg Mason

Michigan State University
ABSTRACT
Faced with a fragmented research computing environment
and growing needs for high performance computing
resources, Michigan State University established the High
Performance Computing Center in 2005 to serve as a
central high performance computing resource for MSU’s
research community. Like greenfield industrial
development, the center was unconstrained by existing
infrastructure. The lessons learned are useful when building
or maintaining an effective HPC resource and may provide
insight for developing other computational services.
TAGS
HPC, infrastructure, customer support, imaging &
automating builds, configuration management, security

1. UNDERSTANDING THE ECOSYSTEM
The primary goal of a capacity HPC resource is to meet the
resource’s users’ computational needs, rather than targeting
maximum theoretical performance. The whole HPC
ecosystem must be considered, including facilities, the
supporting computational services, the human resources
necessary to deliver these resources, and the policies to
ensure optimum system utilization. However, when
choosing HPC resources many administrators neglect these
requirements in pursuit of maximizing theoretical
performance. We learned this lesson early in the center’s
life.
The center began operations in 2005. The first system
implemented was a 64 processor, large memory SMP
system. The system performed very well on the original
benchmark suite as defined in the RFP, and the fast
floating-point performance, large per-processor cache, low-
latency inter-processor interconnect, and significant
memory bandwidth of the SMP system ensured that it
performed well on those benchmarks. However, after the
system was put into production, the system’s performance
proved unacceptable when multiple I/O-intensive jobs were
ran. It was determined that the performance of the supplied
locally attached disk system was inadequate.

• While the attached disk subsystem performed well
enough to support a single workload, the low
rotational speed (and low IOPS) of the attached
disks degraded performance significantly worse
than linearly as multiple requests were sent to the
array.

• The job management policy as implemented by
the job scheduler was designed to maximize
processor utilization instead of maximizing peak
efficiency. A more intelligent scheduling policy
could have limited the number of disk-intensive
jobs while leaving multiple processors unused.

• The benchmark cases, while reflective of the
individual workload components of the center, did
not reflect the center’s day-to-day workload.

After profiling the problematic applications at a system
(iostat, libffio [1], Performance CoPilot [2]) and storage
level (on-controller operation, bandwidth, and latency
statistics) the vendor and the center determined that a faster
storage subsystem was required to allow the server to run
multiple disk-intensive jobs. Implementing the storage
added about twenty percent to the original purchase price
of the system but it resolved the I/O bottleneck and reduced
time processes spent in iowait. The center was able to reuse
the original storage in a role it was better suited for.
2. CLUSTER ADMINISTRATION
When managing a HPC resource, we have found it to be
important to define our functional requirements and the
tools we use to address them. Issues involving hardware
and software management, data storage, environmental
constraints, availability, and security are some of the issues
we have had to address; cluster and workload management
tools have helped us address these challenges.
2.1 CLUSTER MANAGEMENT
A modern HPC resource requires many software
components, including: authentication and authorization,
data storage, data transfer, network management, hardware
management, job management, operating system and
configuration management. There are many software
packages available to HPC administrators to accomplish
each of these tasks; however, many have potential pitfalls
in their default configuration that are nonobvious to the
inexperienced administrator. First-time HPC service system
administrators should strongly consider using integrated
open source (e.g., Warewulf [3], ROCKS [4][5]) or
commercial (e.g., Bright [6], Platform HPC [7]) cluster
management solutions [8] as a way to avoid common
mistakes and as a way to familiarize staff with the
interactions between software subsystems. We have been
through three cluster management environments and have

238  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

found that there are a number of things to consider when
selecting cluster management software.

• How easily does it integrate with other
technologies? One integrated cluster management
product we used did not natively support using an
external LDAP server for client account
information. We had to build a RPM to manually
distribute the basic settings that were not
supported by the management software.

• Does the product lock you into a specific vendor?
An extensible product that uses standards like
IPMI and standard software distributions is
preferable. We have had issues with both
commercial and open source products not
supporting newer or exotic hardware.

• Consider firmware management options,
particularly when purchasing new clusters.
Important features include the ability to
automatically update firmware and the ability to
set commonly used configuration options. We
have used Dell’s OpenManage Deployment
Toolkit [9] and setupbios from the Dell
PowerEdge C System Management tools [10] to
manage these environments. In HPC
environments, BIOS configuration options
([11],[12]) can have significant performance
impacts.

• Do the configuration management options
provided match your policies? Does the software
reinstall a system to update installed software or
configuration? Will that interfere with scheduling
or your SLAs’ availability requirements? We’ve
found that keeping the software environment on
all compute nodes identical prevents problems
with incompatible software versions. However,
the problem is to find the appropriate balance
between the improved availability provided by
deploying changes while the system is running the
job (rather than making changes offline) versus
the possible problems caused by a temporarily
non-homogenous configuration? How sensitive
are your workloads to the CPU utilization of the
configuration management tool? Tightly coupled
MPI applications can be particularly sensitive to
small disruptions.

• Is your workload certified or well suited for a
given cluster management system? Some
applications have advanced integration with
certain workload management software
([13],[14].)

We originally started out managing a single SMP system
by hand. When we purchased our first cluster, the vendor
implemented node imaging with SystemImager [15].
However, we struggled with maintaining the proper
workflow of making a change to a node, updating the

image on the server, and pushing it out. Instead, changed
files were frequently distributed using pdcp and commands
were used with pdsh [16]. Changes made would be lost
when systems were reinstalled; leading to regressions. To
address this, we’ve separated the node installation from the
node configuration. We have a very simple Kickstart [17]
installation to bootstrap into puppet [18][19], where all of
our configuration changes are stored. We also store the
puppet configuration manifests in git [20] and have
integrated branching with puppet’s dynamic environments
[21], which has simplified testing and implementing
changes.
Your cluster management environment, whether self-
maintained or part of a package, should include robust
monitoring and management infrastructure. We use Cacti
[22] for environmental and hardware-level device
monitoring, Nagios [23] for service monitoring and
alerting, and Ganglia [24][25] for performance information
on the compute nodes. Ganglia provides per-node OS
performance metrics, and Cacti is focused on out-of-band
metrics and polls less aggressively. We have also
developed automated regression testing that runs nightly
and after every maintenance event to ensure that the
systems are healthy; and implemented lightweight health
checks [26] that run periodically and before and after every
job. Nodes flagged offline by automated checks currently
require administrator attention, but we are working with
Moab’s event-based triggers [27] to automate a manual
testing workflow for hardware and software failures.
An isolated environment for testing infrastructure changes
that is as close to the real configuration as possible is
desirable. If you have automatic provisioning and
configuration software (like we have with xCAT [28] and
Puppet) you can install a test environment from your
existing configuration, or clone system infrastructure
virtual machines.
2.2 Workload Management
A HPC resource’s workload can be any mixture of
interactive and batch processing work. Understanding both
the technical and political requirements and choosing
software and policy that best reflects your users’ needs is
important. Poor choices can cripple the effectiveness of the
resource and frustrate users. We have had four major
iterations of our scheduling policy as we’ve learned and
adapted to our workload.
2.2.1 Workload Management Software
While UNIX and most of its descendants have supported
multi-user time-sharing since 1974 [29], the traditional
POSIX tools for managing user workloads break down at
multi-node scales and on modern hardware. Therefore,
most HPC sites use workload management software to
address these problems. The simplest method is to run
workload daemons provided by software vendors (like
Mathworks’ MATLAB [30] and Wolfram Alpha’s
Mathematica [31]) that integrate directly into the software’s
normal interface. While convenient, they are generally only

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  239

well suited for small clusters or clusters that are dedicated
to a single application. Anecdotally, most HPC resources
use multi-node batch queuing software for workload
management; we’ve used both PBSPro and TORQUE.
We’ve chosen to use OpenPBS-derived systems to
minimize disruption when transitioning between systems,
and some of our application software integrates well with
TORQUE and Moab.
2.2.2 Job Management versus Job Scheduling
Most resource management packages consist of two major
components: a job manager that starts, monitors, and stops
the workloads on the nodes in the cluster, and a job
scheduler that directs the actions of the job manager. While
TORQUE includes a scheduler, its functionality is very
limited. We use a Moab Workload Manager [32], a
commercial product from Adaptive Computing that allows
us to set policies that provide better service to our users.
2.2.3 Job Scheduling Policies
In our experience, determining appropriate scheduling
policy can be seen as balancing competing goals of
responsiveness and utilization. To generalize, users want
their work to complete as soon as possible (often expressed
as a desire to have their job start sooner), while
management wants high utilization to maximize return on
their investment. We’ve implemented a number of limits
(wall-clock, total jobs in use, the total number of CPUs
used) to ensure fair and reliable access. These limits impact
both user experience and system functionality. Limits
should be high enough to meet user needs while
maintaining fair access. Longer wall-clock limits limit the
effectiveness of fair-share, make it harder to schedule other
jobs and maintenance, and can increase the amount of work
at risk from power or equipment failures. We currently
allow up to a week of wall-time per job, but would like to
reduce this. We’ve encouraged users to reduce their wall-
clock time by allowing users who run less than four hours
to run on idle nodes that other users have bought priority
access to, by implementing trial support for system-level
checkpointing with BLCR [33][34], and by educating users
about ways to checkpoint and auto-resubmit their jobs [35].
We needed to choose the minimum resource increment that
users could request, whether per-core, per-node, or the
entire system. Our impression is that larger systems are
generally scheduled in per-node or larger increments, and
per-core was seen more frequently on small and medium-
sized resources. We’ve chosen to schedule the majority of
our cluster on a per-core basis, choosing throughput over
peak single job performance. We can combine a 1 CPU, 20
GB job and seven 1 CPU, 256 MB jobs on a single 8 CPU
node with 24 GB of RAM, or two jobs with 1 CPU and 1
GPU each, and 6 CPU-only jobs on a node with two GPUs
and eight CPU cores. While there can be a performance hit
when sharing nodes among workloads, we haven’t found it
to be problematic for most of our workload, as long as the
cores themselves are not shared. Memory or I/O bound
jobs, larger jobs, and benchmarking runs can still request

whole nodes. Some sites use Moab’s generic consumable
resources to manage non-CPU resources as reserved
resources to prevent contention [36].
We’ve found that setting short default wall-clock limits (1
minute) encourages users to set an accurate request, which
makes scheduling more predictable. We’re implementing
further TORQUE submit filters [37] to give users
immediate feedback about potential problems with their
jobs.
We have learned to avoid linking queues to resource
selection if at all possible. It increases the barrier for new
users learning to use the systems, requiring them to
determine what queue is best suited for a particular job.
This proved to be frustrating to our users and non-
transferable to other sites. We originally had queues and
dedicated limits for given job categories (high CPU count
jobs, long running jobs.) Utilization suffered, and users
were unhappy because there were idle cores that were not
available for their workload. In addition, queues are usually
assigned at submit-time; if jobs are linked to specific
hardware by the queue the system is unable to take
advantage when other hardware becomes available. While
time and resource specifications are largely similar on most
HPC resources, queue names and their policies are unique
to each site. We use a combination of node features, job
attributes, credentials, node utilization, and reservations to
place jobs on appropriate hardware. By standardizing our
hardware and environment we’ve maximized the number of
nodes a given job can run on.
2.3 Understanding availability requirements
When building your system, consider the impact of a single
component’s failure. A single node crashing is not
disruptive to the center’s mission if your workload can be
restarted from a checkpoint file or resubmitted, but if one
of the critical services goes down you can lose the entire
cluster’s workload. Building a robust core infrastructure is
important if the total cost of a downtime including lost
productivity is considered. When building a HPC resource,
you should consider building infrastructure at a higher
reliability level than the general compute cluster.
One of our clusters was designed with two network fabrics,
a high-speed Infiniband network and a gigabit Ethernet
network. However, there was a significant amount of traffic
on the gigabit Ethernet network that regularly caused the
entry-level gigabit switches it was connected to to crash.
By replacing these switches with higher quality switches
we were able to prevent these interruptions in service. If we
had better understood our user workloads we could have
specified better Ethernet switching hardware in the bid
instead of incurring the cost of replacing them later.
Initially, a single physical node served both as the user
login server and the infrastructure server. This proved to be
very extremely problematic, as a single user with a
misconfigured application on the login node could disrupt
important system-wide resources such as the LDAP server.

240  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

By separating user nodes and infrastructure systems, we
provided a clear divide between the service environment
and user environment. As the center has added additional
systems (now numbering in the thousands of general
purpose cores as well as specialized hardware) our
infrastructure has grown as well. Where appropriate, we
added redundancy to services. Later, we migrated from
physical machines to virtual machines for all non-storage
infrastructure systems, minimizing the impact of hardware
failure. Using that framework we are now deploying user-
requested VMs from templates for applications with special
needs, such as web services.
2.4 Storage
Data management is an important component of a HPC
environment. There are at least three categories of storage
that you may need to consider in a HPC environment: home
directories, temporary storage, and archives.
2.4.1 Temporary Storage
Initially, the only scratch space provided was directly
attached to the large memory systems, as described
previously. Beginning with our first cluster in 2005 we
have deployed three generations of the Lustre [38][39] file
system.
There are a number of challenges when dealing with
parallel I/O. Our first Lustre installation was too heavily
biased towards reliability; the lack of capacity significantly
impeded users’ ability to do large research. Our second
implementation concentrated too heavily on capacity and
had no server-level redundancy; a single server failure
would cause disruptions in scheduling. That is, jobs with
files on the failed server that would normally complete
within the time originally requested would be delayed long
enough to push them past the scheduled end-date, at which
point it would be killed by the job scheduler. We designed
our most recent purchase to be well balanced between
performance, capacity, and reliability. The Lustre servers
are once again highly available, and no single point of
failure exists in the storage stack. As scratch is designed to
be temporary storage, we automatically purge files older
than 45 days from scratch. This too has proven problematic
and requires gentle "reminders" as files age on scratch. We
are greatly cognizant that permanently removing files is
potentially disastrous to the user so we often rotate files to
offline storage before deletion, where the length of time
they remain there depends largely on the available storage.
2.4.2 Persistent Storage
For permanent home directory storage, the center provides
hundreds of terabytes to internal clients via NFS and
campus and VPN clients via CIFS. We added ZFS-based
[40] storage in 2009 as a replacement for a 15 TB Linux
server that used XFS [41] and LVM. The cost,
performance, ease of administration, and data integrity
features were compelling reasons to choose ZFS.
We use 7,200-RPM SATA or near-line SAS hard drives for
bulk storage, and use SSDs for read (L2ARC) and write

(ZFS Intent Log) caches. While we have found that a write
cache can significantly improve NFS performance (an
order of magnitude in improved performance on one user
benchmark), we have found that the separate read cache
device is unnecessary for our workload (by looking at read
and write statistics from the Illumos [42] kernel), so we
will not use them in future systems. In our environment,
separate read-cache devices would only be helpful with
per-filesystem tuning. For us, it is much more efficient to
simply add more DRAM to a system to leverage the ZFS
ARC and kernel page cache.
With ZFS, creating new snapshots is non-disruptive. We
create hourly and daily snapshots locally, which are
directly available to the user. Nightly backups are
replicated from the snapshots offsite to an external server.
We’ve used the zfs-auto-snapshot SMF service in
OpenSolaris and are migrating to a simplified version of
this same process on new systems. An internally developed
script handles offsite replication.
ZFS also provides robust on-disk data integrity protection.
We have not lost a single bit of data to either silent data
corruption or hardware failures.
The ability to do thin provisioning is also useful when
creating new user accounts. Later updates to ZFS have
added block-level deduplication [43] and compression [44].
Compression is quite useful for offsite backups. We've
found it quite easy to achieve 2x or greater savings with the
gzip compression found in later versions of OpenSolaris
and Illumos with our users’ datasets.
2.4.3 Archival Storage
We do not provide archival storage, but are working with
university departments to meet the needs of the research
community, including ways to provide components of
future NSF grants’ data management plan requirements.
Currently, we work with users to migrate data to national
data repositories.
2.5 Physical Concerns
HPC system density has increased well beyond the
traditional datacenter standard of three to five kilowatts per
rack [45]. The center has undergone three major
renovations as density has increased. The first systems
were low-density that could be cooled with a forced air
raised floor. The second set of systems averaged about 12
KW per rack with two CPU sockets per rack U. Presently,
we target a density of twenty five kilowatts per compute
rack, using blades or blade-like systems, with two systems
with two CPU sockets (a total of 4 sockets) per rack U. Our
data center is space constrained, so density is important. It
would not be possible to cool these dense systems with
traditional forced air distributed by the 12” raised floor in
our facility. While some new facilities (like NCSA’s
National Petascale Computing Facility [46]) are able to
support systems of similar or greater densities with a 6’
raised floor, that is not feasible in our facility. We instead
use Liebert XD [47] high-density refrigerant-cooled in-row

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  241

spot cooling systems to supplement the existing under floor
cooling. We are also considering higher density water-
cooled rack systems in the future. We’ve seen significant
improvements by implementing cold aisle containment.
We were able to prototype closing the cold aisle by using
cardboard and were able to observe a significant reduction
in overall room and system inlet, component, and output
temperatures. We then chose to implement a permanent
installation based on this evidence.
It is important to coordinate new purchases with the people
responsible for your facilities to understand what your
constraints are and choose the cluster configuration that
best meets your needs within those constraints. We cannot
add any more power in our current facility. This has
informed our hardware retirement policy; we retire
hardware sooner to make room for new, denser, more
efficient hardware.
2.6 Security
HPC resources can be more difficult to secure than
standard Unix systems, given that most environments allow
users compiler access and the ability to upload arbitrary
binaries and scripts. Most HPC systems do not use common
security features like firewalls and virus scanners on
individual nodes due to the associated performance penalty.
Choosing the right balance between usability and security
is a decision that each site must address based on the risk of
attack and the institutional, regulatory, and legislative
requirements for data security. The full range of
permissions has been fielded, from only allowing
administrator-installed executables and validated input files
to allowing users root access to systems.
Administrators can limit the utility of stolen credentials by
limiting the sources that those credentials are valid from
and by using implementing two-factor authentication. We
have mitigated the potential risks by separating user-
accessible systems from administrative systems, by
isolating system control traffic from the user accessible
research networks and by isolating most cluster systems
from the public Internet. We are also implementing
SELinux [48] on infrastructure systems where appropriate
and use Fail2Ban [49] to limit brute force attacks.
It is useful to think about the trust relationships between
systems. Some cluster management software’s default
configuration allows any root user on a system that it
manages to access any other system in the cluster as root,
including administrative systems. This can effectively
compromise the entire cluster if a single machine is
compromised. In general, systems that are trusted should
minimize the number of systems that they trust. Remote
root access, when needed, should be restricted to
connections from hardened hosts and should rely on agent-
based public key authentication from external systems
rather than password-based authentication.

3. User Experience
3.1 Provide a Stable Environment
It is important to choose an appropriate operating system
whose lifecycle matches your needs and resources. The
advantage of enterprise distributions (like Red Hat
Enterprise Linux [50] and derivatives like Scientific
Linux[51]) is that the long support window reduces the
number of disruptions users from major upgrades.
However, the adaptation of new hardware support, system
libraries, and kernel features often lag community or
development distributions like Fedora [52]. Many
commercial software packages only support commercial
enterprise distributions or their derivatives.
On our first system, user access was constrained to queue
submissions to ensure that processors were not
oversubscribed. Since the login system's architecture
(x86_64) was incompatible with the SMP system (ia64),
users were forced to submit a job or request an interactive
job to compile or test their code. Depending on utilization,
users could face significant delays for development. Rather
than dedicating expensive processor slots on the large
system to interactive or debugging queues, we instead
purchased a small development system where users could
do development work and simple testing without wait and
at a much lower cost per processor. This has worked so
well that we have replicated this model for our cluster
systems. We’ve also added specialized development nodes
that don’t have a corresponding cluster as a way to allow
users to develop, test and evaluate their applications on new
systems. Some have shown significant adoption by users
and lead to larger cluster purchases (GPUs) and some have
not (Cell processors.)
An environment modules system allows administrators to
deploy multiple versions of software such that the user can
choose which versions and combinations of software are
appropriate for their work. Furthermore, bundles of
software modules can be created for common workflows.
We have switched to lmod [53] [54] in March 2012, as it
addressed a longstanding bug with Environment Modules
[55]. When loading modules within modules (important for
some tool chains and in particular bioinformatics, where
the outputs and inputs of several independently-developed
tools must be combined), we would see intermittent
memory corruption [56].
3.2 Naming
As the center added systems and users, the naming
conventions became more of an issue. The center's first
system and its partner node were named after the
university's colors. After we (predictably) ran out of school
colors, we expanded the naming system to use notable
former faculty, but they had additional, unintended
meanings. In addition, we used the same name for the host
name of the development node for that cluster and as an
alias for cluster as a whole. Users often misunderstood the
relationship between the cluster name and the login node.
To address this we designed a functional and consistent

242  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

naming convention that reflected the underlying hardware
architecture of the cluster at an appropriate level of detail,
providing useful but not over-specific information about
the cluster. We chose to identify clusters based on the year
acquired and the processor or accelerator family. However,
naming critical infrastructure after the platform can be
problematic when hardware is added or replaced. Our first
generation ZFS file servers were named ‘thor-XX’, Sun’s
product codename for the Sun Fire X4540s. When we
added new file servers, we had to name them ‘thor-XX’,
despite not being X4540s, because of assumptions made
when implementing the initial systems. We’ve since
stopped extracting configuration information from
hostnames, and instead use metadata from Facter [57].
When choosing naming standards, it is useful to keep the
user in mind, as their insight can be most valuable. The
default batch queue was originally named 'dque', but the
abbreviation was unclear to the users; we renamed it to
‘main’ based on user suggestions.
Upgrading and changing software components should be
done incrementally when not visible to the user, as it
simplifies diagnostics if problems are detected. We’ve
upgraded the components of the workload management and
infrastructure software incrementally, but have tied major
changes in user experience together (compute node
operating system upgrades and changes to module
structure) to minimize the overall number of changes users
have to make to their workflow.
4. Communication
Ultimately, a HPC resource is a service organization and it
is important that users feel informed about the resources
they use. In particular, we have found that transparency is
the key to this connection. Users should be able to see
monitoring and utilization statistics and predictions as to
when their jobs will run. It is important to avoid making
changes to the system without communication. In the end,
the administrators will have much more latitude in their
ability to effectively administer a system if users are
informed. Even what may be minor changes from a system
administrator’s perspective can be important to users.
Effective user communication is an ongoing challenge. It
has been our experience that direct, personally addressed
emails are only read slightly more often than
announcements on mailing lists. Thus we have explored
other avenues of communication and utilize many
regularly. We send out weekly newsletters with upcoming
events and funding opportunities. We post blog updates on
our documentation wiki, which is syndicated via RSS. This
information is republished via two Twitter accounts; one
focused on system availability and maintenance
information [58], and one for general center information
[59].
Another important point of feedback is provided when the
user can track the status of requests for help. We use
RequestTracker [60] as both a help desk and a request

tracking system to ensure that user requests are responded
to in a reasonable timeframe and to gather metrics on staff
responsiveness for reporting. While not quantified,
informal feedback from users indicates perceived
responsiveness improves when we use a ticketing system.
Even basic monitoring, like the number of new tickets,
open tickets, and resolved tickets can provide visibility to
managers as to the current effectiveness of the staff.
Collaboration tools like wikis can be very effective, with
some caveats. If you allow users to modify wiki content,
staff should monitor changes. Don’t anticipate that users
will reduce the administrators’ documentation workload;
the vast majority of edits on our wiki are by staff.
If you frequently bring new users online, we have found
that holding user training on standard issues (login, module
system, parallel tools, etc.) in addition to one-on-one help.
Such sessions can provide excellent feedback on how to
improve the system or documentation. We have begun the
process of moving those training sessions to video. We will
provide them online, allowing users the opportunity to pick
when they want to learn (or review) a topic.
User data is very, very important. You should communicate
clearly with users the guarantees of the data they should
expect and be sure to update them aggressively when those
policies change. A failure to communicate with users early
in the center’s life about deletion from another temporary
directory resulted in a researcher losing a significant
amount of work. When implementing a new automatic
deletion policy on our scratch system, after previously
relying on the honor system, we archived data after the first
few passes and were able to recover data for users who had
not noticed the announcements we had published.
Reporting is important for internal and external use. Hard
metrics like CPU-time consumed, utilization, and average
wait time are useful, but soft metrics like papers published,
grants received, resources discovered or products designed
can be more useful for the majority of resources that are not
leadership-class facilities [61].
Inspired by a conversation with staff from the University of
Michigan’s CAEN Advanced Computing Group, we’ve
also instrumented our environment module infrastructure
with syslog to track software usage. Harvard University’s
FAS Research Computing has also implemented a similar
approach [62].
Well-developed internal technical documentation aids
consistency in implementation and between administrators
and reduces the amount of time administrators spend re-
implementing fixes. External technical documentation
(ideally, with domain examples) reduces the learning curve
for new users significantly. If policies for users are not
visible, they don’t exist. Users have perceived the
enforcement of poorly documented procedures as
capricious targeting by administrators. When users can see
the potential benefit of enforcement they usually accept the
need for such measures.

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  243

5. Other Resources
We have used external resources when we found them to be
particularly suitable. The center was able to use our campus
Kerberos authentication and to gather information about
users from the campus LDAP. Some of our Ethernet
network switches and our external firewall are managed by
campus IT, and HPC staff manages HPC-focused resources
(storage, high speed networking.) We try to avoid
duplication of efforts and try to focus our resources on the
goals of our center.
External resources include people as well as technology.
We’ve worked with IT staff from other departments on
campus that use our systems to add domain-specific
support for users in their departments. By utilizing their
knowledge, we were able to provide a better service for the
resource’s users.
Domain experts are valuable resources for users and for
administrators as a bridge between dedicated systems
administrators and users. They are as important of a
component of the ecosystem as the hardware, software, and
facilities.
The Information Technology Infrastructure Library [63]
has been useful when addressing some of the challenges in
this paper. While the author was initially skeptical, there
have been a number of times it has been helpful when
understanding the ways our procedures could improve. The
library’s sheer size and scope make it difficult implement
whole cloth. We’ve had the best luck when using
components of that fit well within the environment and as a
reference when implementing support workflows.
Attending technical conferences, joining mailing lists,
listening to technical podcasts and reading personal and
professional blogs has been very helpful; networking with
peers can provide some valuable insight into HPC.
6. CONCLUSION
We have encountered many challenges when deploying a
HPC resource; understanding the service sponsor’s goals,
the requirements of the resource’s users, the technologies
and policies best suited to meet them, and the risks
associated with providing that resource. We have found
that published best practices and advice from colleagues
can help staff understand HPC requirements more easily.
Have a clearly defined service sponsor and understand what
their goals are for the service. Ideally, the service sponsor
would be the person responsible for deciding whether to
continue the project. A single person who can arbitrate
between different stakeholders ensures that there is clear
direction for the staff.
Make sure that you understand your stakeholders’ needs
and bring them into the decision making process; try to
ensure that you have a representative sampling on any
advisory boards. Your users should be invested in the
success of the resource. Your harshest critics can provide
useful information about your areas for improvement.

7. Acknowledgements
Michigan State University, for its recognition and support
of HPC services on campus. Dr. Wolfgang Bauer, the
current Institute director. Dr. Leo Kempel, who helped
found the Center. Dr. Dirk Colbry and Dr. Ben Ong,
research specialists, current and previous colleagues at the
Center, including Kelly Osborn, Ed Symanzik, Ed Kryda,
Eric McDonald, Jim Leikert, Greg Mason and John
Johnston. The Practice of System and Network
Administration by Thomas A. Limoncelli, Christina J.
Hogan, and Strata R. Chalup, great reading for any system
administrator. Doug Hughes for his invaluable help with
this paper, and the LISA09 workshop on HPC.
[1] “SGI TPL (Linux: Developer/LX_AppTune - Chapter

7. Flexible File I/O).” [Online]. Available:
http://techpubs.sgi.com/library/tpl/cgi-
bin/getdoc.cgi?coll=linux&db=bks&fname=/SGI_De
veloper/LX_AppTune/ch07.html. [Accessed: 12-Sep-
2012].

[2] “Performance Co-Pilot.” [Online]. Available:
http://oss.sgi.com/projects/pcp/. [Accessed: 12-Sep-
2012].

[3] “Warewulf.” [Online]. Available:
http://warewulf.lbl.gov/trac. [Accessed: 12-Sep-
2012].

[4] “www.rocksclusters.org | Rocks Website.” [Online].
Available: http://www.rocksclusters.org/wordpress/.
[Accessed: 12-Sep-2012].

[5] P. M. Papadopoulos, M. J. Katz, and G. Bruno,
“NPACI Rocks: tools and techniques for easily
deploying manageable Linux clusters,” Concurrency
and Computation: Practice and Experience, vol. 15,
no. 7–8, pp. 707–725, Jun. 2003.

[6] “Bright Cluster Manager - Advanced Linux Cluster
Management Software.” [Online]. Available:
http://www.brightcomputing.com/Bright-Cluster-
Manager.php. [Accessed: 12-Sep-2012].

[7] “IBM Platform HPC.” [Online]. Available:
http://www-
03.ibm.com/systems/technicalcomputing/platformco
mputing/products/hpc/index.html. [Accessed: 12-
Sep-2012].

[8] D. Cable and M. Diakun, A Review of Commodity
Cluster Managment Tools. Science and Technology
Facilities Council, 2011.

[9] “Dell OpenManage Deployment Toolkit - Systems
Management - Wiki - Systems Management - Dell
Community.” [Online]. Available:
http://en.community.dell.com/techcenter/systems-
management/w/wiki/1772.dell-openmanage-
deployment-toolkit.aspx. [Accessed: 17-Sep-2012].

[10] “Dell PowerEdge C Server | System Management.”
[Online]. Available: http://poweredgec.com/.
[Accessed: 12-Sep-2012].

[11] “Optimal BIOS settings for HPC workloads - High
Performance Computing - Blog - High Performance
Computing - Dell Community.” [Online]. Available:

244  26th Large Installation System Administration Conference (LISA ’12)	 USENIX Association

http://en.community.dell.com/techcenter/high-
performance-
computing/b/weblog/archive/2012/08/17/optimal-
bios-settings-for-hpc-workloads.aspx. [Accessed: 17-
Sep-2012].

[12] “How to Enable ‘HPC-mode’ to Achieve up to 6%
Improvement in HPL Efficiency - General HPC -
High Performance Computing - Dell
Community.”[Online]. Available:
http://en.community.dell.com/techcenter/high-
performance-
computing/b/general_hpc/archive/2012/07/05/how-
to-enable-quot-hpc-mode-quot-to-achieve-up-to-6-
improvement-in-hpl-efficiency.aspx. [Accessed: 17-
Sep-2012].

[13] “MATLAB Distributed Computing Server - Supported
Schedulers.” [Online]. Available:
http://www.mathworks.com/products/distriben/suppo
rted/index.html. [Accessed: 17-Sep-2012].

[14] “ANSYS High Performance Computing Features.”
[Online]. Available:
http://www.ansys.com/Products/Workflow+Technolo
gy/High-Performance+Computing/Features.
[Accessed: 17-Sep-2012].

[15] “SystemImager.” [Online]. Available:
http://systemimager.sourceforge.net/. [Accessed: 17-
Sep-2012].

[16] “pdsh - Parallel Distributed Shell - Google Project
Hosting.” [Online]. Available:
https://code.google.com/p/pdsh/. [Accessed: 17-Sep-
2012].

[17] “Anaconda/Kickstart - FedoraProject.” [Online].
Available:
http://fedoraproject.org/wiki/Anaconda/Kickstart.
[Accessed: 17-Sep-2012].

[18] “What is Puppet? | Puppet Labs.” [Online]. Available:
http://puppetlabs.com/puppet/what-is-puppet/.
[Accessed: 17-Sep-2012].

[19] L. Kanies, “Puppet: Next-generation configuration
management,” The USENIX Magazine. v31 i1, pp.
19–25, 2006.

[20] “Git - About.” [Online]. Available: http://git-
scm.com/about. [Accessed: 17-Sep-2012].

[21] “Git Workflow and Puppet Environments | Puppet
Labs.” [Online]. Available:
http://puppetlabs.com/blog/git-workflow-and-puppet-
environments/. [Accessed: 17-Sep-2012].

[22] “Cacti® - The Complete RRDTool-based Graphing
Solution.” [Online]. Available: http://www.cacti.net/.
[Accessed: 17-Sep-2012].

[23] “Nagios - The Industry Standard in IT Infrastructure
Monitoring.” [Online]. Available:
http://www.nagios.org/. [Accessed: 17-Sep-2012].

[24] “Ganglia Monitoring System.” [Online]. Available:
http://ganglia.sourceforge.net/. [Accessed: 17-Sep-
2012].

[25] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E.
Culler, “Wide area cluster monitoring with ganglia,”
in Cluster Computing, 2003. Proceedings. 2003
IEEE International Conference on, 2003, pp. 289–
298.

[26] “10.2 Compute Node Health Check.” [Online].
Available:
http://www.clusterresources.com/torquedocs/10.2hea
lthcheck.shtml. [Accessed: 17-Sep-2012].

[27] “Moab Workload Manager - Object Triggers.”
[Online]. Available:
http://www.adaptivecomputing.com/resources/docs/
mwm/19.0triggers.php. [Accessed: 17-Sep-2012].

[28] “xCAT - Extreme Cloud Administration Toolkit.”
[Online]. Available: http://xcat.sourceforge.net/.
[Accessed: 17-Sep-2012].

[29] D. M. Ritchie and K. Thompson, “The UNIX time-
sharing system,” Commun. ACM, vol. 17, no. 7, pp.
365–375, 1974.

[30] “MATLAB Distributed Computing Server - Level of
Support for Schedulers.” [Online]. Available:
http://www.mathworks.com/products/distriben/suppo
rted/level-of-support.html#MWjobmanager.
[Accessed: 17-Sep-2012].

[31] “Introduction to the Wolfram Lightweight Grid
System - Wolfram Mathematica 8 Documentation.”
[Online]. Available:
http://reference.wolfram.com/mathematica/Lightweig
htGridClient/tutorial/Introduction.html. [Accessed:
17-Sep-2012].

[32] “Moab HPC Suite Basic Edition.” [Online]. Available:
http://www.adaptivecomputing.com/products/hpc-
products/moab-hpc-basic-edition/. [Accessed: 17-
Sep-2012].

[33] “BLCR  » FTG.” [Online]. Available:
https://ftg.lbl.gov/projects/CheckpointRestart/.
[Accessed: 17-Sep-2012].

[34] P. H. Hargrove and J. C. Duell, “Berkeley lab
checkpoint/restart (blcr) for linux clusters,” in
Journal of Physics: Conference Series, 2006, vol. 46,
p. 494.

[35] “New Powertool to help checkpoint jobs - Dirk Joel-
Luchini Colbry - HPCC Wiki.” [Online]. Available:
https://wiki.hpcc.msu.edu/display/~colbrydi@msu.ed
u/2011/10/06/New+Powertool+to+help+checkpoint+
jobs. [Accessed: 17-Sep-2012].

[36] “Moab Workload Manager - Managing Consumable
Generic Resources.” [Online]. Available:
http://www.adaptivecomputing.com/resources/docs/
mwm/12.6consumablegres.php. [Accessed: 17-Sep-
2012].

[37] “Appendix J: Job Submission Filter (aka ‘qsub
Wrapper’)*.”[Online]. Available:
http://www.clusterresources.com/torquedocs21/a.jqs
ubwrapper.shtml. [Accessed: 18-Sep-2012].

[38] “Wiki Front Page - Whamcloud Community Space -
Whamcloud Community.” [Online]. Available:

USENIX Association 	 26th Large Installation System Administration Conference (LISA ’12)  245

http://wiki.whamcloud.com/display/PUB/Wiki+Front
+Page. [Accessed: 17-Sep-2012].

[39] P. Schwan, “Lustre: Building a file system for 1000-
node clusters,” in Proceedings of the 2003 Linux
Symposium, 2003, vol. 2003.

[40] J. Bonwick and B. Moore, “Zfs: The last word in file
systems,” online][retrieved on Jan. 22, 2008]
Retrieved from the Internet, 2007.

[41] “SGI - Developer Central Open Source | XFS.”
[Online]. Available: http://oss.sgi.com/projects/xfs/.
[Accessed: 17-Sep-2012].

[42] “About illumos - illumos - illumos wiki.” [Online].
Available:
http://wiki.illumos.org/display/illumos/About+illumo
s. [Accessed: 17-Sep-2012].

[43] “ZFS Dedup FAQ (Community Group zfs.dedup) -
XWiki.” [Online]. Available:
http://hub.opensolaris.org/bin/view/Community+Gro
up+zfs/dedup. [Accessed: 17-Sep-2012].

[44] “The Blog of Ben Rockwood.” [Online]. Available:
http://cuddletech.com/blog/pivot/entry.php?id=983.
[Accessed: 17-Sep-2012].

[45] N. Rasmussen, “Air distribution architecture options
for mission critical facilities,” ELEKTRON
JOURNAL-SOUTH AFRICAN INSTITUTE OF
ELECTRICAL ENGINEERS, vol. 22, no. 10, p. 68,
2005.

[46] “National Petascale Computing Facility.” [Online].
Available:
http://www.ncsa.illinois.edu/AboutUs/Facilities/npcf.
html. [Accessed: 17-Sep-2012].

[47] “Precision Cooling - High Density Modular Cooling.”
[Online]. Available:
http://www.emersonnetworkpower.com/en-
US/Products/PrecisionCooling/HighDensityModular
Cooling/Refrigerant-Based/Pages/Default.aspx.

[48] “Main Page - SELinux Wiki.” [Online]. Available:
http://selinuxproject.org/page/Main_Page.
[Accessed: 17-Sep-2012].

[49] “Fail2ban.” [Online]. Available:
http://www.fail2ban.org/wiki/index.php/Main_Page.
[Accessed: 17-Sep-2012].

[50] “Red Hat | Red Hat Enterprise Linux for Scientific
Computing – HPC.” [Online]. Available:
http://www.redhat.com/products/enterprise-
linux/scientific-computing/. [Accessed: 17-Sep-
2012].

[51] “Scientific Linux - Welcome to Scientific Linux (SL).”
[Online]. Available: https://www.scientificlinux.org/.
[Accessed: 17-Sep-2012].

[52] “Fedora Project - What is Fedora and what makes it
different?” [Online]. Available:
http://fedoraproject.org/en/about-fedora. [Accessed:
17-Sep-2012].

[53] “Lmod | Free Development software downloads at
SourceForge.net.” [Online]. Available:

http://sourceforge.net/projects/lmod/. [Accessed: 17-
Sep-2012].

[54] R. McLay, K. W. Schulz, W. L. Barth, and T.
Minyard, “Best practices for the deployment and
management of production HPC clusters,” in State of
the Practice Reports, 2011, p. 9.

[55] “Modules -- Software Environment Management.”
[Online]. Available: http://modules.sourceforge.net/.
[Accessed: 17-Sep-2012].

[56] “Modules that load modules segfault when unloading
due to invalid memory accesses.” [Online].
Available:
http://sourceforge.net/mailarchive/forum.php?thread_
name=201204201559.01764.twhitehead%40gmail.co
m&forum_name=modules-interest. [Accessed: 17-
Sep-2012].

[57] “The Facter Program Quickly Gathers Basic Node
Information | Puppet Labs.” [Online]. Available:
http://puppetlabs.com/puppet/related-projects/facter/.
[Accessed: 17-Sep-2012].

[58] “HPCC@MSU (hpccmsu) on Twitter.” [Online].
Available: https://twitter.com/hpccmsu. [Accessed:
17-Sep-2012].

[59] “iCER (icermsu) on Twitter.” [Online]. Available:
https://twitter.com/icermsu. [Accessed: 17-Sep-
2012].

[60] “RT: Request Tracker - Best Practical.” [Online].
Available: http://bestpractical.com/rt/. [Accessed: 17-
Sep-2012].

[61] S. C. Ahalt, A. Apon, A. H. P. C. C. Director, D.
Lifka, and H. Neeman, “Sustainable Funding and
Business Models for Academic Cyberinfrastructure
Facilities: Workshop Report and Recommendations,”
in Workshop Report and Recommendations, 2010.

[62] “fasrc/module-usage · GitHub.” [Online]. Available:
https://github.com/fasrc/module-usage. [Accessed:
18-Sep-2012].

[63] “ITIL® Home.” [Online]. Available: http://www.itil-
officialsite.com/. [Accessed: 18-Sep-2012].

