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ABSTRACT 
Faced with a fragmented research computing environment 
and growing needs for high performance computing 
resources, Michigan State University established the High 
Performance Computing Center in 2005 to serve as a 
central high performance computing resource for MSU’s 
research community. Like greenfield industrial 
development, the center was unconstrained by existing 
infrastructure. The lessons learned are useful when building 
or maintaining an effective HPC resource and may provide 
insight for developing other computational services.  
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1. UNDERSTANDING THE ECOSYSTEM  
The primary goal of a capacity HPC resource is to meet the 
resource’s users’ computational needs, rather than targeting 
maximum theoretical performance. The whole HPC 
ecosystem must be considered, including facilities, the 
supporting computational services, the human resources 
necessary to deliver these resources, and the policies to 
ensure optimum system utilization. However, when 
choosing HPC resources many administrators neglect these 
requirements in pursuit of maximizing theoretical 
performance. We learned this lesson early in the center’s 
life. 
The center began operations in 2005. The first system 
implemented was a 64 processor, large memory SMP 
system. The system performed very well on the original 
benchmark suite as defined in the RFP, and the fast 
floating-point performance, large per-processor cache, low-
latency inter-processor interconnect, and significant 
memory bandwidth of the SMP system ensured that it 
performed well on those benchmarks. However, after the 
system was put into production, the system’s performance 
proved unacceptable when multiple I/O-intensive jobs were 
ran. It was determined that the performance of the supplied 
locally attached disk system was inadequate.  

• While the attached disk subsystem performed well 
enough to support a single workload, the low 
rotational speed (and low IOPS) of the attached 
disks degraded performance significantly worse 
than linearly as multiple requests were sent to the 
array. 

• The job management policy as implemented by 
the job scheduler was designed to maximize 
processor utilization instead of maximizing peak 
efficiency. A more intelligent scheduling policy 
could have limited the number of disk-intensive 
jobs while leaving multiple processors unused.  

• The benchmark cases, while reflective of the 
individual workload components of the center, did 
not reflect the center’s day-to-day workload.  

After profiling the problematic applications at a system 
(iostat, libffio [1], Performance CoPilot [2]) and storage 
level (on-controller operation, bandwidth, and latency 
statistics) the vendor and the center determined that a faster 
storage subsystem was required to allow the server to run 
multiple disk-intensive jobs. Implementing the storage 
added about twenty percent to the original purchase price 
of the system but it resolved the I/O bottleneck and reduced 
time processes spent in iowait. The center was able to reuse 
the original storage in a role it was better suited for. 
2. CLUSTER ADMINISTRATION 
When managing a HPC resource, we have found it to be 
important to define our functional requirements and the 
tools we use to address them. Issues involving hardware 
and software management, data storage, environmental 
constraints, availability, and security are some of the issues 
we have had to address; cluster and workload management 
tools have helped us address these challenges.  
2.1 CLUSTER MANAGEMENT  
A modern HPC resource requires many software 
components, including: authentication and authorization, 
data storage, data transfer, network management, hardware 
management, job management, operating system and 
configuration management. There are many software 
packages available to HPC administrators to accomplish 
each of these tasks; however, many have potential pitfalls 
in their default configuration that are nonobvious to the 
inexperienced administrator. First-time HPC service system 
administrators should strongly consider using integrated 
open source (e.g., Warewulf [3], ROCKS [4][5]) or 
commercial (e.g., Bright [6], Platform HPC [7]) cluster 
management solutions [8] as a way to avoid common 
mistakes and as a way to familiarize staff with the 
interactions between software subsystems. We have been 
through three cluster management environments and have 
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found that there are a number of things to consider when 
selecting cluster management software.  

• How easily does it integrate with other 
technologies? One integrated cluster management 
product we used did not natively support using an 
external LDAP server for client account 
information. We had to build a RPM to manually 
distribute the basic settings that were not 
supported by the management software.   

• Does the product lock you into a specific vendor? 
An extensible product that uses standards like 
IPMI and standard software distributions is 
preferable. We have had issues with both 
commercial and open source products not 
supporting newer or exotic hardware.  

• Consider firmware management options, 
particularly when purchasing new clusters. 
Important features include the ability to 
automatically update firmware and the ability to 
set commonly used configuration options. We 
have used Dell’s OpenManage Deployment 
Toolkit [9] and setupbios from the Dell 
PowerEdge C System Management tools [10] to 
manage these environments. In HPC 
environments, BIOS configuration options 
([11],[12]) can have significant performance 
impacts.  

• Do the configuration management options 
provided match your policies? Does the software 
reinstall a system to update installed software or 
configuration? Will that interfere with scheduling 
or your SLAs’ availability requirements? We’ve 
found that keeping the software environment on 
all compute nodes identical prevents problems 
with incompatible software versions. However, 
the problem is to find the appropriate balance 
between the improved availability provided by 
deploying changes while the system is running the 
job (rather than making changes offline) versus 
the possible problems caused by a temporarily 
non-homogenous configuration? How sensitive 
are your workloads to the CPU utilization of the 
configuration management tool? Tightly coupled 
MPI applications can be particularly sensitive to 
small disruptions.  

• Is your workload certified or well suited for a 
given cluster management system? Some 
applications have advanced integration with 
certain workload management software 
([13],[14].) 

We originally started out managing a single SMP system 
by hand. When we purchased our first cluster, the vendor 
implemented node imaging with SystemImager [15]. 
However, we struggled with maintaining the proper 
workflow of making a change to a node, updating the 

image on the server, and pushing it out. Instead, changed 
files were frequently distributed using pdcp and commands 
were used with pdsh [16]. Changes made would be lost 
when systems were reinstalled; leading to regressions. To 
address this, we’ve separated the node installation from the 
node configuration. We have a very simple Kickstart [17] 
installation to  bootstrap into puppet [18][19], where all of 
our configuration changes are stored. We also store the 
puppet configuration manifests in git [20] and have 
integrated branching with puppet’s dynamic environments 
[21], which has simplified testing and implementing 
changes. 
Your cluster management environment, whether self-
maintained or part of a package, should include robust 
monitoring and management infrastructure. We use Cacti 
[22] for environmental and hardware-level device 
monitoring, Nagios [23] for service monitoring and 
alerting, and Ganglia [24][25] for performance information 
on the compute nodes. Ganglia provides per-node OS 
performance metrics, and Cacti is focused on out-of-band 
metrics and polls less aggressively. We have also 
developed automated regression testing that runs nightly 
and after every maintenance event to ensure that the 
systems are healthy; and implemented lightweight health 
checks [26] that run periodically and before and after every 
job. Nodes flagged offline by automated checks currently 
require administrator attention, but we are working with 
Moab’s event-based triggers [27] to automate a manual 
testing workflow for hardware and software failures. 
An isolated environment for testing infrastructure changes 
that is as close to the real configuration as possible is 
desirable. If you have automatic provisioning and 
configuration software (like we have with xCAT [28] and 
Puppet) you can install a test environment from your 
existing configuration, or clone system infrastructure 
virtual machines. 
2.2 Workload Management 
A HPC resource’s workload can be any mixture of 
interactive and batch processing work. Understanding both 
the technical and political requirements and choosing 
software and policy that best reflects your users’ needs is 
important. Poor choices can cripple the effectiveness of the 
resource and frustrate users. We have had four major 
iterations of our scheduling policy as we’ve learned and 
adapted to our workload.  
2.2.1 Workload Management Software 
While UNIX and most of its descendants have supported 
multi-user time-sharing since 1974 [29], the traditional 
POSIX tools for managing user workloads break down at 
multi-node scales and on modern hardware. Therefore, 
most HPC sites use workload management software to 
address these problems. The simplest method is to run 
workload daemons provided by software vendors (like 
Mathworks’ MATLAB [30] and Wolfram Alpha’s 
Mathematica [31]) that integrate directly into the software’s 
normal interface. While convenient, they are generally only 
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well suited for small clusters or clusters that are dedicated 
to a single application. Anecdotally, most HPC resources 
use multi-node batch queuing software for workload 
management; we’ve used both PBSPro and TORQUE. 
We’ve chosen to use OpenPBS-derived systems to 
minimize disruption when transitioning between systems, 
and some of our application software integrates well with 
TORQUE and Moab. 
2.2.2 Job Management versus Job Scheduling 
Most resource management packages consist of two major 
components: a job manager that starts, monitors, and stops 
the workloads on the nodes in the cluster, and a job 
scheduler that directs the actions of the job manager. While 
TORQUE includes a scheduler, its functionality is very 
limited. We use a Moab Workload Manager [32], a 
commercial product from Adaptive Computing that allows 
us to set policies that provide better service to our users.  
2.2.3 Job Scheduling Policies 
In our experience, determining appropriate scheduling 
policy can be seen as balancing competing goals of 
responsiveness and utilization. To generalize, users want 
their work to complete as soon as possible (often expressed 
as a desire to have their job start sooner), while 
management wants high utilization to maximize return on 
their investment. We’ve implemented a number of limits 
(wall-clock, total jobs in use, the total number of CPUs 
used) to ensure fair and reliable access. These limits impact 
both user experience and system functionality. Limits 
should be high enough to meet user needs while 
maintaining fair access. Longer wall-clock limits limit the 
effectiveness of fair-share, make it harder to schedule other 
jobs and maintenance, and can increase the amount of work 
at risk from power or equipment failures. We currently 
allow up to a week of wall-time per job, but would like to 
reduce this. We’ve encouraged users to reduce their wall-
clock time by allowing users who run less than four hours 
to run on idle nodes that other users have bought priority 
access to, by implementing trial support for system-level 
checkpointing with BLCR [33][34], and by educating users 
about ways to checkpoint and auto-resubmit their jobs [35].  
We needed to choose the minimum resource increment that 
users could request, whether per-core, per-node, or the 
entire system. Our impression is that larger systems are 
generally scheduled in per-node or larger increments, and 
per-core was seen more frequently on small and medium-
sized resources. We’ve chosen to schedule the majority of 
our cluster on a per-core basis, choosing throughput over 
peak single job performance. We can combine a 1 CPU, 20 
GB job and seven 1 CPU, 256 MB jobs on a single 8 CPU 
node with 24 GB of RAM, or two jobs with 1 CPU and 1 
GPU each, and 6 CPU-only jobs on a node with two GPUs 
and eight CPU cores. While there can be a performance hit 
when sharing nodes among workloads, we haven’t found it 
to be problematic for most of our workload, as long as the 
cores themselves are not shared. Memory or I/O bound 
jobs, larger jobs, and benchmarking runs can still request 

whole nodes. Some sites use Moab’s generic consumable 
resources to manage non-CPU resources as reserved 
resources to prevent contention [36]. 
We’ve found that setting short default wall-clock limits (1 
minute) encourages users to set an accurate request, which 
makes scheduling more predictable. We’re implementing 
further TORQUE submit filters [37] to give users 
immediate feedback about potential problems with their 
jobs.  
We have learned to avoid linking queues to resource 
selection if at all possible. It increases the barrier for new 
users learning to use the systems, requiring them to 
determine what queue is best suited for a particular job.  
This proved to be frustrating to our users and non-
transferable to other sites. We originally had queues and 
dedicated limits for given job categories (high CPU count 
jobs, long running jobs.) Utilization suffered, and users 
were unhappy because there were idle cores that were not 
available for their workload. In addition, queues are usually 
assigned at submit-time; if jobs are linked to specific 
hardware by the queue the system is unable to take 
advantage when other hardware becomes available. While 
time and resource specifications are largely similar on most 
HPC resources, queue names and their policies are unique 
to each site. We use a combination of node features, job 
attributes, credentials, node utilization, and reservations to 
place jobs on appropriate hardware. By standardizing our 
hardware and environment we’ve maximized the number of 
nodes a given job can run on. 
2.3 Understanding availability requirements 
When building your system, consider the impact of a single 
component’s failure. A single node crashing is not 
disruptive to the center’s mission if your workload can be 
restarted from a checkpoint file or resubmitted, but if one 
of the critical services goes down you can lose the entire 
cluster’s workload. Building a robust core infrastructure is 
important if the total cost of a downtime including lost 
productivity is considered. When building a HPC resource, 
you should consider building infrastructure at a higher 
reliability level than the general compute cluster.  
One of our clusters was designed with two network fabrics, 
a high-speed Infiniband network and a gigabit Ethernet 
network. However, there was a significant amount of traffic 
on the gigabit Ethernet network that regularly caused the 
entry-level gigabit switches it was connected to to crash. 
By replacing these switches with higher quality switches 
we were able to prevent these interruptions in service. If we 
had better understood our user workloads we could have 
specified better Ethernet switching hardware in the bid 
instead of incurring the cost of replacing them later. 
Initially, a single physical node served both as the user 
login server and the infrastructure server. This proved to be 
very extremely problematic, as a single user with a 
misconfigured application on the login node could disrupt 
important system-wide resources such as the LDAP server. 
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By separating user nodes and infrastructure systems, we 
provided a clear divide between the service environment 
and user environment. As the center has added additional 
systems (now numbering in the thousands of general 
purpose cores as well as specialized hardware) our 
infrastructure has grown as well. Where appropriate, we 
added redundancy to services. Later, we migrated from 
physical machines to virtual machines for all non-storage 
infrastructure systems, minimizing the impact of hardware 
failure. Using that framework we are now deploying user-
requested VMs from templates for applications with special 
needs, such as web services. 
2.4 Storage  
Data management is an important component of a HPC 
environment. There are at least three categories of storage 
that you may need to consider in a HPC environment: home 
directories, temporary storage, and archives. 
2.4.1  Temporary Storage 
Initially, the only scratch space provided was directly 
attached to the large memory systems, as described 
previously. Beginning with our first cluster in 2005 we 
have deployed three generations of the Lustre [38][39] file 
system.  
There are a number of challenges when dealing with 
parallel I/O. Our first Lustre installation was too heavily 
biased towards reliability; the lack of capacity significantly 
impeded users’ ability to do large research. Our second 
implementation concentrated too heavily on capacity and 
had no server-level redundancy; a single server failure 
would cause disruptions in scheduling. That is, jobs with 
files on the failed server that would normally complete 
within the time originally requested would be delayed long 
enough to push them past the scheduled end-date, at which 
point it would be killed by the job scheduler. We designed 
our most recent purchase to be well balanced between 
performance, capacity, and reliability. The Lustre servers 
are once again highly available, and no single point of 
failure exists in the storage stack. As scratch is designed to 
be temporary storage, we automatically purge files older 
than 45 days from scratch. This too has proven problematic 
and requires gentle "reminders" as files age on scratch. We 
are greatly cognizant that permanently removing files is 
potentially disastrous to the user so we often rotate files to 
offline storage before deletion, where the length of time 
they remain there depends largely on the available storage. 
2.4.2 Persistent Storage 
For permanent home directory storage, the center provides 
hundreds of terabytes to internal clients via NFS and 
campus and VPN clients via CIFS. We added ZFS-based 
[40] storage in 2009 as a replacement for a 15 TB Linux 
server that used XFS [41] and LVM. The cost, 
performance, ease of administration, and data integrity 
features were compelling reasons to choose ZFS.  
We use 7,200-RPM SATA or near-line SAS hard drives for 
bulk storage, and use SSDs for read (L2ARC) and write 

(ZFS Intent Log) caches. While we have found that a write 
cache can significantly improve NFS performance (an 
order of magnitude in improved performance on one user 
benchmark), we have found that the separate read cache 
device is unnecessary for our workload (by looking at read 
and write statistics from the Illumos [42] kernel), so we 
will not use them in future systems. In our environment, 
separate read-cache devices would only be helpful with 
per-filesystem tuning. For us, it is much more efficient to 
simply add more DRAM to a system to leverage the ZFS 
ARC and kernel page cache. 
With ZFS, creating new snapshots is non-disruptive. We 
create hourly and daily snapshots locally, which are 
directly available to the user. Nightly backups are 
replicated from the snapshots offsite to an external server. 
We’ve used the zfs-auto-snapshot SMF service in 
OpenSolaris and are migrating to a simplified version of 
this same process on new systems. An internally developed 
script handles offsite replication. 
ZFS also provides robust on-disk data integrity protection. 
We have not lost a single bit of data to either silent data 
corruption or hardware failures. 
The ability to do thin provisioning is also useful when 
creating new user accounts. Later updates to ZFS have 
added block-level deduplication [43] and compression [44]. 
Compression is quite useful for offsite backups. We've 
found it quite easy to achieve 2x or greater savings with the 
gzip compression found in later versions of OpenSolaris 
and Illumos with our users’ datasets. 
2.4.3  Archival Storage 
We do not provide archival storage, but are working with 
university departments to meet the needs of the research 
community, including ways to provide components of 
future NSF grants’ data management plan requirements. 
Currently, we work with users to migrate data to national 
data repositories. 
2.5 Physical Concerns 
HPC system density has increased well beyond the 
traditional datacenter standard of three to five kilowatts per 
rack [45]. The center has undergone three major 
renovations as density has increased. The first systems 
were low-density that could be cooled with a forced air 
raised floor.  The second set of systems averaged about 12 
KW per rack with two CPU sockets per rack U. Presently, 
we target a density of twenty five kilowatts per compute 
rack, using blades or blade-like systems, with two systems 
with two CPU sockets (a total of 4 sockets) per rack U. Our 
data center is space constrained, so density is important. It 
would not be possible to cool these dense systems with 
traditional forced air distributed by the 12” raised floor in 
our facility. While some new facilities (like NCSA’s 
National Petascale Computing Facility [46]) are able to 
support systems of similar or greater densities with a 6’ 
raised floor, that is not feasible in our facility. We instead 
use Liebert XD [47] high-density refrigerant-cooled in-row 
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spot cooling systems to supplement the existing under floor 
cooling. We are also considering higher density water-
cooled rack systems in the future. We’ve seen significant 
improvements by implementing cold aisle containment.  
We were able to prototype closing the cold aisle by using 
cardboard and were able to observe a significant reduction 
in overall room and system inlet, component, and output 
temperatures.  We then chose to implement a permanent 
installation based on this evidence. 
It is important to coordinate new purchases with the people 
responsible for your facilities to understand what your 
constraints are and choose the cluster configuration that 
best meets your needs within those constraints. We cannot 
add any more power in our current facility. This has 
informed our hardware retirement policy; we retire 
hardware sooner to make room for new, denser, more 
efficient hardware. 
2.6 Security 
HPC resources can be more difficult to secure than 
standard Unix systems, given that most environments allow 
users compiler access and the ability to upload arbitrary 
binaries and scripts. Most HPC systems do not use common 
security features like firewalls and virus scanners on 
individual nodes due to the associated performance penalty. 
Choosing the right balance between usability and security 
is a decision that each site must address based on the risk of 
attack and the institutional, regulatory, and legislative 
requirements for data security. The full range of 
permissions has been fielded, from only allowing 
administrator-installed executables and validated input files 
to allowing users root access to systems.  
Administrators can limit the utility of stolen credentials by 
limiting the sources that those credentials are valid from 
and by using implementing two-factor authentication. We 
have mitigated the potential risks by separating user-
accessible systems from administrative systems, by 
isolating system control traffic from the user accessible 
research networks and by isolating most cluster systems 
from the public Internet. We are also implementing 
SELinux [48] on infrastructure systems where appropriate 
and use Fail2Ban [49] to limit brute force attacks. 
It is useful to think about the trust relationships between 
systems. Some cluster management software’s default 
configuration allows any root user on a system that it 
manages to access any other system in the cluster as root, 
including administrative systems. This can effectively 
compromise the entire cluster if a single machine is 
compromised. In general, systems that are trusted should 
minimize the number of systems that they trust. Remote 
root access, when needed, should be restricted to 
connections from hardened hosts and should rely on agent-
based public key authentication from external systems 
rather than password-based authentication. 

3. User Experience 
3.1 Provide a Stable Environment 
It is important to choose an appropriate operating system 
whose lifecycle matches your needs and resources. The 
advantage of enterprise distributions (like Red Hat 
Enterprise Linux [50] and derivatives like Scientific 
Linux[51]) is that the long support window reduces the 
number of disruptions users from major upgrades. 
However, the adaptation of new hardware support, system 
libraries, and kernel features often lag community or 
development distributions like Fedora [52]. Many 
commercial software packages only support commercial 
enterprise distributions or their derivatives.  
On our first system, user access was constrained to queue 
submissions to ensure that processors were not 
oversubscribed. Since the login system's architecture 
(x86_64) was incompatible with the SMP system (ia64), 
users were forced to submit a job or request an interactive 
job to compile or test their code. Depending on utilization, 
users could face significant delays for development. Rather 
than dedicating expensive processor slots on the large 
system to interactive or debugging queues, we instead 
purchased a small development system where users could 
do development work and simple testing without wait and 
at a much lower cost per processor. This has worked so 
well that we have replicated this model for our cluster 
systems. We’ve also added specialized development nodes 
that don’t have a corresponding cluster as a way to allow 
users to develop, test and evaluate their applications on new 
systems. Some have shown significant adoption by users 
and lead to larger cluster purchases (GPUs) and some have 
not (Cell processors.) 
An environment modules system allows administrators to 
deploy multiple versions of software such that the user can 
choose which versions and combinations of software are 
appropriate for their work. Furthermore, bundles of 
software modules can be created for common workflows. 
We have switched to lmod [53] [54] in March 2012, as it 
addressed a longstanding bug with Environment Modules 
[55]. When loading modules within modules (important for 
some tool chains and in particular bioinformatics, where 
the outputs and inputs of several independently-developed 
tools must be combined), we would see intermittent 
memory corruption [56].  
3.2 Naming 
As the center added systems and users, the naming 
conventions became more of an issue. The center's first 
system and its partner node were named after the 
university's colors. After we (predictably) ran out of school 
colors, we expanded the naming system to use notable 
former faculty, but they had additional, unintended 
meanings. In addition, we used the same name for the host 
name of the development node for that cluster and as an 
alias for cluster as a whole. Users often misunderstood the 
relationship between the cluster name and the login node. 
To address this we designed a functional and consistent 
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naming convention that reflected the underlying hardware 
architecture of the cluster at an appropriate level of detail, 
providing useful but not over-specific information about 
the cluster. We chose to identify clusters based on the year 
acquired and the processor or accelerator family. However, 
naming critical infrastructure after the platform can be 
problematic when hardware is added or replaced. Our first 
generation ZFS file servers were named ‘thor-XX’, Sun’s 
product codename for the Sun Fire X4540s. When we 
added new file servers, we had to name them ‘thor-XX’, 
despite not being X4540s, because of assumptions made 
when implementing the initial systems. We’ve since 
stopped extracting configuration information from 
hostnames, and instead use metadata from Facter [57]. 
When choosing naming standards, it is useful to keep the 
user in mind, as their insight can be most valuable. The 
default batch queue was originally named 'dque', but the 
abbreviation was unclear to the users; we renamed it to 
‘main’ based on user suggestions.  
Upgrading and changing software components should be 
done incrementally when not visible to the user, as it 
simplifies diagnostics if problems are detected. We’ve 
upgraded the components of the workload management and 
infrastructure software incrementally, but have tied major 
changes in user experience together (compute node 
operating system upgrades and changes to module 
structure) to minimize the overall number of changes users 
have to make to their workflow.  
4. Communication 
Ultimately, a HPC resource is a service organization and it 
is important that users feel informed about the resources 
they use. In particular, we have found that transparency is 
the key to this connection. Users should be able to see 
monitoring and utilization statistics and predictions as to 
when their jobs will run. It is important to avoid making 
changes to the system without communication. In the end, 
the administrators will have much more latitude in their 
ability to effectively administer a system if users are 
informed. Even what may be minor changes from a system 
administrator’s perspective can be important to users.  
Effective user communication is an ongoing challenge. It 
has been our experience that direct, personally addressed 
emails are only read slightly more often than 
announcements on mailing lists. Thus we have explored 
other avenues of communication and utilize many 
regularly. We send out weekly newsletters with upcoming 
events and funding opportunities. We post blog updates on 
our documentation wiki, which is syndicated via RSS. This 
information is republished via two Twitter accounts; one 
focused on system availability and maintenance 
information [58], and one for general center information 
[59].  
Another important point of feedback is provided when the 
user can track the status of requests for help. We use 
RequestTracker [60] as both a help desk and a request 

tracking system to ensure that user requests are responded 
to in a reasonable timeframe and to gather metrics on staff 
responsiveness for reporting. While not quantified, 
informal feedback from users indicates perceived 
responsiveness improves when we use a ticketing system. 
Even basic monitoring, like the number of new tickets, 
open tickets, and resolved tickets can provide visibility to 
managers as to the current effectiveness of the staff.  
Collaboration tools like wikis can be very effective, with 
some caveats. If you allow users to modify wiki content, 
staff should monitor changes. Don’t anticipate that users 
will reduce the administrators’ documentation workload; 
the vast majority of edits on our wiki are by staff.  
If you frequently bring new users online, we have found 
that holding user training on standard issues (login, module 
system, parallel tools, etc.) in addition to one-on-one help. 
Such sessions can provide excellent feedback on how to 
improve the system or documentation. We have begun the 
process of moving those training sessions to video. We will 
provide them online, allowing users the opportunity to pick 
when they want to learn (or review) a topic. 
User data is very, very important. You should communicate 
clearly with users the guarantees of the data they should 
expect and be sure to update them aggressively when those 
policies change. A failure to communicate with users early 
in the center’s life about deletion from another temporary 
directory resulted in a researcher losing a significant 
amount of work. When implementing a new automatic 
deletion policy on our scratch system, after previously 
relying on the honor system, we archived data after the first 
few passes and were able to recover data for users who had 
not noticed the announcements we had published.  
Reporting is important for internal and external use. Hard 
metrics like CPU-time consumed, utilization, and average 
wait time are useful, but soft metrics like papers published, 
grants received, resources discovered or products designed 
can be more useful for the majority of resources that are not 
leadership-class facilities [61]. 
Inspired by a conversation with staff from the University of 
Michigan’s CAEN Advanced Computing Group, we’ve 
also instrumented our environment module infrastructure 
with syslog to track software usage. Harvard University’s 
FAS Research Computing has also implemented a similar 
approach [62]. 
Well-developed internal technical documentation aids 
consistency in implementation and between administrators 
and reduces the amount of time administrators spend re-
implementing fixes. External technical documentation 
(ideally, with domain examples) reduces the learning curve 
for new users significantly. If policies for users are not 
visible, they don’t exist. Users have perceived the 
enforcement of poorly documented procedures as 
capricious targeting by administrators. When users can see 
the potential benefit of enforcement they usually accept the 
need for such measures.   
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5. Other Resources 
We have used external resources when we found them to be 
particularly suitable. The center was able to use our campus 
Kerberos authentication and to gather information about 
users from the campus LDAP. Some of our Ethernet 
network switches and our external firewall are managed by 
campus IT, and HPC staff manages HPC-focused resources 
(storage, high speed networking.) We try to avoid 
duplication of efforts and try to focus our resources on the 
goals of our center.  
External resources include people as well as technology. 
We’ve worked with IT staff from other departments on 
campus that use our systems to add domain-specific 
support for users in their departments. By utilizing their 
knowledge, we were able to provide a better service for the 
resource’s users. 
Domain experts are valuable resources for users and for 
administrators as a bridge between dedicated systems 
administrators and users. They are as important of a 
component of the ecosystem as the hardware, software, and 
facilities. 
The Information Technology Infrastructure Library [63] 
has been useful when addressing some of the challenges in 
this paper. While the author was initially skeptical, there 
have been a number of times it has been helpful when 
understanding the ways our procedures could improve. The 
library’s sheer size and scope make it difficult implement 
whole cloth. We’ve had the best luck when using 
components of that fit well within the environment and as a 
reference when implementing support workflows. 
Attending technical conferences, joining mailing lists, 
listening to technical podcasts and reading personal and 
professional blogs has been very helpful; networking with 
peers can provide some valuable insight into HPC.  
6. CONCLUSION 
We have encountered many challenges when deploying a 
HPC resource; understanding the service sponsor’s goals, 
the requirements of the resource’s users, the technologies 
and policies best suited to meet them, and the risks 
associated with providing that resource. We have found 
that published best practices and advice from colleagues 
can help staff understand HPC requirements more easily. 
Have a clearly defined service sponsor and understand what 
their goals are for the service. Ideally, the service sponsor 
would be the person responsible for deciding whether to 
continue the project. A single person who can arbitrate 
between different stakeholders ensures that there is clear 
direction for the staff. 
Make sure that you understand your stakeholders’ needs 
and bring them into the decision making process; try to 
ensure that you have a representative sampling on any 
advisory boards. Your users should be invested in the 
success of the resource. Your harshest critics can provide 
useful information about your areas for improvement.  
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