
This paper is included in the Proceedings of the
24th USENIX Security Symposium

August 12–14, 2015 • Washington, D.C.

ISBN 978-1-939133-11-3

Open access to the Proceedings of
the 24th USENIX Security Symposium

is sponsored by USENIX

Under-Constrained Symbolic Execution:
Correctness Checking for Real Code

David A. Ramos and Dawson Engler, Stanford University

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ramos

USENIX Association 24th USENIX Security Symposium 49

Under-Constrained Symbolic Execution:
Correctness Checking for Real Code

David A. Ramos
ramos@cs.stanford.edu

Dawson Engler
engler@csl.stanford.edu

Stanford University

Abstract
Software bugs are a well-known source of security vul-
nerabilities. One technique for finding bugs, symbolic
execution, considers all possible inputs to a program but
suffers from scalability limitations. This paper uses a
variant, under-constrained symbolic execution, that im-
proves scalability by directly checking individual func-
tions, rather than whole programs. We present UC-KLEE,
a novel, scalable framework for checking C/C++ systems
code, along with two use cases. First, we use UC-KLEE
to check whether patches introduce crashes. We check
over 800 patches from BIND and OpenSSL and find 12
bugs, including two OpenSSL denial-of-service vulner-
abilities. We also verify (with caveats) that 115 patches
do not introduce crashes. Second, we use UC-KLEE as a
generalized checking framework and implement check-
ers to find memory leaks, uninitialized data, and unsafe
user input. We evaluate the checkers on over 20,000
functions from BIND, OpenSSL, and the Linux kernel,
find 67 bugs, and verify that hundreds of functions are
leak free and that thousands of functions do not access
uninitialized data.

1 Introduction
Software bugs pervade every level of the modern soft-
ware stack, degrading both stability and security. Cur-
rent practice attempts to address this challenge through
a variety of techniques, including code reviews, higher-
level programming languages, testing, and static analy-
sis. While these practices prevent many bugs from being
released to the public, significant gaps remain.

One technique, testing, is a useful sanity check for
code correctness, but it typically exercises only a small
number of execution paths, each with a single set of in-
put values. Consequently, it misses bugs that are only
triggered by other inputs.

Another broad technique, static analysis, is effective
at discovering many classes of bugs. However, static
analysis generally uses abstraction to improve scalability
and cannot reason precisely about program values and

pointer relationships. Consequently, static tools often
miss deep bugs that depend on specific input values.

One promising technique that addresses the limitations
of both testing and static analysis is symbolic execu-
tion [4, 5, 40]. A symbolic execution tool conceptually
explores all possible execution paths through a program
in a bit-precise manner and considers all possible input
values. Along each path, the tool determines whether any
combination of inputs could cause the program to crash.
If so, it reports an error to the developer, along with a
concrete set of inputs that will trigger the bug.

Unfortunately, symbolic execution suffers from the
well-known path explosion problem since the number of
distinct execution paths through a program is often ex-
ponential in the number of if-statements or, in the worst
case, infinite. Consequently, while symbolic execution
often examines orders of magnitude more paths than tra-
ditional testing, it typically fails to exhaust all interest-
ing paths. In particular, it often fails to reach code deep
within a program due to complexities earlier in the pro-
gram. Even when the tool succeeds in reaching deep
code, it considers only the input values satisfying the few
paths that manage to reach this code.

An alternative to whole-program symbolic execution
is under-constrained symbolic execution [18, 42, 43],
which directly executes an arbitrary function within the
program, effectively skipping the costly path prefix from
main to this function. This approach reduces the number
and length of execution paths that must be explored. In
addition, it allows library and OS kernel code without a
main function to be checked easily and thoroughly.

This paper presents UC-KLEE, a scalable framework
implementing under-constrained symbolic execution for
C/C++ systems code without requiring a manual speci-
fication or even a single testcase. We apply this frame-
work to two important use cases. First, we use it to check
whether patches to a function introduce new bugs, which
may or may not pose security vulnerabilities. Ironically,
patches intended to fix bugs or eliminate security vulner-
abilities are a frequent source of them. In many cases,

50 24th USENIX Security Symposium USENIX Association

UC-KLEE can verify (up to a given input bound and with
standard caveats) that a patch does not introduce new
crashes to a function, a guarantee not possible with ex-
isting techniques.

Second, we use UC-KLEE as a general code checking
framework upon which specific checkers can be imple-
mented. We describe three example checkers we im-
plemented to find memory leaks, uses of uninitialized
data, and unsanitized uses of user input, all of which
may pose security vulnerabilities. Additional checkers
may be added to our framework to detect a wide vari-
ety of bugs along symbolic, bit-precise execution paths
through functions deep within a program. If UC-KLEE
exhaustively checks all execution paths through a func-
tion, then it has effectively verified (with caveats) that the
function passes the check (e.g., no leaks).

We evaluated these use cases on large, mature, and
security-critical code. We validated over 800 patches
from BIND [3] and OpenSSL [36] and found 12 bugs,
including two OpenSSL denial-of-service vulnerabili-
ties [12, 16]. UC-KLEE verified that 115 patches did not
introduce new crashes, and it checked thousands of paths
and achieved high coverage even on patches for which it
did not exhaust all execution paths.

We applied our three built-in checkers to over 20,000
functions from BIND, OpenSSL, and the Linux kernel
and discovered 67 new bugs, several of which appear to
be remotely exploitable. Many of these were latent bugs
that had been missed by years of debugging effort. UC-
KLEE also exhaustively verified (with caveats) that 771
functions from BIND and OpenSSL that allocate heap
memory do not cause memory leaks, and that 4,088 func-
tions do not access uninitialized data.

The remainder of this paper is structured as follows:
§ 2 presents an overview of under-constrained symbolic
execution; § 3 and § 4 discuss using UC-KLEE for val-
idating patches and generalized checking, respectively;
§ 5 describes implementation tricks; § 6 discusses related
work; and § 7 concludes.

2 Overview
This paper builds upon our earlier work on UC-KLEE
[43], an extension to the KLEE symbolic virtual ma-
chine [5] designed to support equivalence verification
and under-constrained symbolic inputs. Our tool checks
C/C++ code compiled as bitcode (intermediate represen-
tation) by the LLVM compiler [29]. As in KLEE, it per-
forms bit-accurate symbolic execution of the LLVM bit-
code, and it executes any functions called by the code.
Unlike KLEE, UC-KLEE begins executing code at an ar-
bitrary function chosen by the user, rather than main.

With caveats (described in § 2.2), UC-KLEE provides
verification guarantees on a per-path basis. If it exhausts
all execution paths, then it has verified that a function has

the checked property (e.g. that a patch does not introduce
any crashes or that the function does not leak memory)
up to the given input size.

Directly invoking functions within a program presents
new challenges. Traditional symbolic execution tools
generate input values that represent external input
sources (e.g., command-line arguments, files, etc.). In
most cases, a correct program should reject invalid ex-
ternal inputs rather than crash. By contrast, individual
functions typically have preconditions imposed on their
inputs. For example, a function may require that pointer
arguments be non-null. Because UC-KLEE directly exe-
cutes functions without requiring their preconditions to
be specified by the user, the inputs it considers may
be a superset (over-approximation) of the legal values
handled by the function. Consequently, we denote UC-
KLEE’s symbolic inputs as under-constrained to reflect
that they are missing preconditions (constraints).

While this technique allows previously-unreachable
code to be deeply checked, the missing preconditions
may cause false positives (spurious errors) to be reported
to the user. UC-KLEE provides both automated heuristics
and an interface for users to manually silence these errors
by lazily specifying input preconditions using simple C
code. In our experience, even simple annotations may si-
lence a large number of spurious errors (see § 3.2.5) and
this effort is orders of magnitude less work than eagerly
providing a full specification for each function.

2.1 Lazy initialization
UC-KLEE automatically generates a function’s symbolic
inputs using lazy initialization [26, 46], which avoids
the need for users to manually construct inputs, even for
complex, pointer-rich data structures. We illustrate lazy
initialization by explaining how UC-KLEE executes the
example function listSum in Figure 1(a), which sums
the entries in a linked list. Figure 1(b) summarizes the
three execution paths we explore. For clarity, we elide er-
ror checks that UC-KLEE normally performs at memory
accesses, division/remainder operations, and assertions.

UC-KLEE first creates an under-constrained symbolic
value to represent the sole argument n. Although n is a
pointer, it begins in the unbound state, not yet pointing to
any object. UC-KLEE then passes this symbolic argument
to listSum and executes as follows:
Line 7 The local variable sum is assigned a concrete
value; no special action is taken.
Line 8 The code checks whether the symbolic variable
n is non-null. At this point, UC-KLEE forks execution
and considers both cases. We first consider the false path
where n = null, (Path A). We then return to the true path
where n ̸= null (Path B). On Path A, UC-KLEE adds n =
null as a path constraint and skips the loop.
Line 12 Path A returns 0 and terminates.

1 : struct node {
2 : int val;
3 : struct node *next;
4 : };
5 :
6 : int listSum(node *n) {
7 : int sum = 0;
8 : while (n) {
9 : sum += n−>val;
10: n = n−>next;
11: }
12: return sum;
13: }

(a) C code

7 : int sum = 0;

8 : while (n) { 12: return sum;

9 : sum += n->val;

10: n = n->next;

8 : while (n) {

9 : sum += n->val;

10: n = n->next;

8 : while (n) {

...

12: return sum;

12: return sum;

true

true

false

false

false

true

Path constraints:

n = null

n ≠ null
n = &node1
node1.next = null

n ≠ null
n = &node1
node1.next ≠ null
node1.next = &node2
node2.next = null

Path A

Path B

Path C
n

node1
val

next

node2
null

Symbolic inputs:

val
next

n

node1
val

next
null

n
null

(b) Paths explored

Figure 1: Example code fragment analyzed by UC-KLEE.

We now consider Path B.
Line 8 UC-KLEE adds the constraint n ̸= null and enters
the loop.
Line 9 The code dereferences the pointer n for the first
time on Path B. Because n is unbound, UC-KLEE allo-
cates a new block of memory, denoted node1, to sat-
isfy the dereference and adds the constraint n = &node1
to bind the pointer n to this object. At this point, n is
no longer unbound, so subsequent dereferences of that
pointer will resolve to node1 rather than trigger addi-
tional allocations. The (symbolic) contents of node1
are marked as unbound, allowing future dereferences of
pointers in this object to trigger allocations. This recur-
sive process is the key to lazy initialization. Next, sum is
incremented by the symbolic value node1.val.
Line 10 n is set to the value node1.next. Path B then
returns to the loop header.
Line 8 The code tests whether n (set to node1.next) is
non-null. UC-KLEE forks execution and considers both
cases. We first consider node1.next = null, which we
still refer to as Path B. We will then return to the true
path where node1.next ̸= null (Path C). On Path B,
node1.next = null is added as a path constraint and exe-
cution exits the loop.
Line 12 Path B returns node1.val and terminates.

We now consider Path C.
Line 8 UC-KLEE adds node1.next ̸= null as a path con-
straint, and Path C enters the loop.
Line 9 Path C dereferences the unbound symbolic
pointer node1.next, which triggers allocation of a new
object node2. This step illustrates the unbounded nature
of many loops. To prevent UC-KLEE from allocating an
unbounded number of objects as input, the tool accepts
a command-line option to limit the depth of an input-
derived data structure (k-bounding [17]). When a path
attempts to exceed this limit, our tool silently terminates
it. For this example, assume a depth limit of two, which
causes UC-KLEE to terminate Path D (not shown) at line
9 during the next loop iteration.

Line 10 n is set to the value node2.next.
Line 8 UC-KLEE forks execution and adds the path con-
straint node2.next = null to Path C.
Line 12 Path C returns node1.val+node2.val and exits.

This example illustrates a simple but powerful recur-
sive technique to automatically synthesize data struc-
tures from under-constrained symbolic input. Figure 2
shows an actual data structure our tool generated as in-
put for one of the BIND bugs we discovered (Figure 5).
The edges between each object are labeled with the field
names contained in the function’s debug information and
included in UC-KLEE’s error report.

2.2 Limitations
Because we build on our earlier version of UC-KLEE, we
inherit its limitations [43]. The more important exam-
ples are as follows. The tool tests compiled code on a
specific platform and does not consider other build con-
figurations. It does not handle assembly (see § 4 for how
we skip inline assembly), nor symbolic floating point op-
erations. In addition, there is an explicit assumption that
input-derived pointers reference unique objects (no alias-
ing, and no cyclical data structures), and the tool assigns
distinct concrete addresses to allocated objects.

When checking whether patches introduce bugs, UC-
KLEE aims to detect crashing bugs and does not look for
performance bugs, differences in system call arguments,
or concurrency errors. We can only check patches that
do not add, remove, or reorder fields in data structures or
change the type signatures of patched functions. We plan
to extend UC-KLEE to support such patches by imple-
menting a type map that supplies identical inputs to each
version of a function in a “field aware” manner. How-

isc_event_t*
event

struct isc_event
uc_isc_event1

struct dns_zone
uc_dns_zone1

struct dns_rbtdb
uc_dns_rbt1

char*
uc_char_ptr1

char[8]
uc_char_arr1

struct dns_dbmethods
uc_dns_dbmethods1[88]

common.
methods

ev_arg

db_argv
*

*

Figure 2: BIND data structure allocated by UC-KLEE.

USENIX Association 24th USENIX Security Symposium 51

1 : struct node {
2 : int val;
3 : struct node *next;
4 : };
5 :
6 : int listSum(node *n) {
7 : int sum = 0;
8 : while (n) {
9 : sum += n−>val;
10: n = n−>next;
11: }
12: return sum;
13: }

(a) C code

7 : int sum = 0;

8 : while (n) { 12: return sum;

9 : sum += n->val;

10: n = n->next;

8 : while (n) {

9 : sum += n->val;

10: n = n->next;

8 : while (n) {

...

12: return sum;

12: return sum;

true

true

false

false

false

true

Path constraints:

n = null

n ≠ null
n = &node1
node1.next = null

n ≠ null
n = &node1
node1.next ≠ null
node1.next = &node2
node2.next = null

Path A

Path B

Path C
n

node1
val

next

node2
null

Symbolic inputs:

val
next

n

node1
val

next
null

n
null

(b) Paths explored

Figure 1: Example code fragment analyzed by UC-KLEE.

We now consider Path B.
Line 8 UC-KLEE adds the constraint n ̸= null and enters
the loop.
Line 9 The code dereferences the pointer n for the first
time on Path B. Because n is unbound, UC-KLEE allo-
cates a new block of memory, denoted node1, to sat-
isfy the dereference and adds the constraint n = &node1
to bind the pointer n to this object. At this point, n is
no longer unbound, so subsequent dereferences of that
pointer will resolve to node1 rather than trigger addi-
tional allocations. The (symbolic) contents of node1
are marked as unbound, allowing future dereferences of
pointers in this object to trigger allocations. This recur-
sive process is the key to lazy initialization. Next, sum is
incremented by the symbolic value node1.val.
Line 10 n is set to the value node1.next. Path B then
returns to the loop header.
Line 8 The code tests whether n (set to node1.next) is
non-null. UC-KLEE forks execution and considers both
cases. We first consider node1.next = null, which we
still refer to as Path B. We will then return to the true
path where node1.next ̸= null (Path C). On Path B,
node1.next = null is added as a path constraint and exe-
cution exits the loop.
Line 12 Path B returns node1.val and terminates.

We now consider Path C.
Line 8 UC-KLEE adds node1.next ̸= null as a path con-
straint, and Path C enters the loop.
Line 9 Path C dereferences the unbound symbolic
pointer node1.next, which triggers allocation of a new
object node2. This step illustrates the unbounded nature
of many loops. To prevent UC-KLEE from allocating an
unbounded number of objects as input, the tool accepts
a command-line option to limit the depth of an input-
derived data structure (k-bounding [17]). When a path
attempts to exceed this limit, our tool silently terminates
it. For this example, assume a depth limit of two, which
causes UC-KLEE to terminate Path D (not shown) at line
9 during the next loop iteration.

Line 10 n is set to the value node2.next.
Line 8 UC-KLEE forks execution and adds the path con-
straint node2.next = null to Path C.
Line 12 Path C returns node1.val+node2.val and exits.

This example illustrates a simple but powerful recur-
sive technique to automatically synthesize data struc-
tures from under-constrained symbolic input. Figure 2
shows an actual data structure our tool generated as in-
put for one of the BIND bugs we discovered (Figure 5).
The edges between each object are labeled with the field
names contained in the function’s debug information and
included in UC-KLEE’s error report.

2.2 Limitations
Because we build on our earlier version of UC-KLEE, we
inherit its limitations [43]. The more important exam-
ples are as follows. The tool tests compiled code on a
specific platform and does not consider other build con-
figurations. It does not handle assembly (see § 4 for how
we skip inline assembly), nor symbolic floating point op-
erations. In addition, there is an explicit assumption that
input-derived pointers reference unique objects (no alias-
ing, and no cyclical data structures), and the tool assigns
distinct concrete addresses to allocated objects.

When checking whether patches introduce bugs, UC-
KLEE aims to detect crashing bugs and does not look for
performance bugs, differences in system call arguments,
or concurrency errors. We can only check patches that
do not add, remove, or reorder fields in data structures or
change the type signatures of patched functions. We plan
to extend UC-KLEE to support such patches by imple-
menting a type map that supplies identical inputs to each
version of a function in a “field aware” manner. How-

isc_event_t*
event

struct isc_event
uc_isc_event1

struct dns_zone
uc_dns_zone1

struct dns_rbtdb
uc_dns_rbt1

char*
uc_char_ptr1

char[8]
uc_char_arr1

struct dns_dbmethods
uc_dns_dbmethods1[88]

common.
methods

ev_arg

db_argv
*

*

Figure 2: BIND data structure allocated by UC-KLEE.

52 24th USENIX Security Symposium USENIX Association

ever, our current system does not support this, and we
excluded such patches from our experiments.

3 Patch checking
To check whether a patch introduces new crashing bugs,
UC-KLEE symbolically executes two compiled versions
of a function: P, the unpatched version, and P′, the
patched version. If it finds any execution paths along
which P′ crashes but P does not (when given the same
symbolic inputs), it reports a potential bug in the patch.

Recall that due to missing input preconditions, we can-
not simply assume that all crashes are bugs. Instead, UC-
KLEE looks for paths that exhibit differing crash behav-
ior between P and P′, which usually share an identical
set of preconditions. Even if UC-KLEE does not know
these preconditions, in practice, real code tends to show
error equivalence [43], meaning that P and P′ both crash
(or neither crashes) on illegal inputs. For example, if a
precondition requires a pointer to be non-null and both
versions dereference the pointer, then P and P′ will both
crash when fed a null pointer as an argument.

In prior work, UC-KLEE [43] verified the equivalence
of small library routines, both in terms of crashes and
outputs. While detecting differences in functionality may
point to interesting bugs, these discrepancies are typi-
cally meaningful only to developers of the checked code.
Because this paper evaluates our framework on large,
complex systems developed by third parties, we limit our
discussion to crashes, which objectively point to bugs.

To check patches, UC-KLEE automatically generates
a test harness that sets up the under-constrained inputs
and invokes P and P′. Figure 3 shows a representa-
tive test harness. Lines 2–3 create an under-constrained
input n. Line 4 calls fooB (P′). Note that UC-KLEE
invokes P′ before P to facilitate path pruning (§ 3.1).

1 : int main() {
2 : node *n;
3 : ucklee make uc(&n);
4 : fooB(n); /* run P′ */
5 : ucklee reset address space();
6 : fooA(n); /* run P */
7 : return 0;
8 : }

Figure 3: Test harness.

Line 5 discards any writes
performed by fooB but pre-
serves the path constraints so
that fooA (P) will see the
same initial memory contents
and follow the corresponding
path. Line 6 invokes fooA.

If a path through fooB crashes, UC-KLEE unwinds
the stack and resumes execution at line 5. If fooA also
crashes on this path, then the two functions are crash
equivalent and no error is reported. However, if fooA
returns from line 6 without crashing, we report an error
to the user as a possible bug in fooB. For this use case,
we do not report errors in which fooA (P) crashes but
fooB (P′) does not, which suggest bugs fixed by a patch.

3.1 Path pruning
UC-KLEE employs several path pruning techniques to
target errors and avoid uninteresting paths. The underly-

ing UC-KLEE system includes a static cross-checker that
walks over the LLVM [29] control flow graph, conserva-
tively marking regions of basic blocks that differ between
the original function P and the patched function P′. This
algorithm is fairly straightforward, and we elide details
for brevity. UC-KLEE soundly prunes paths that:
1. have never executed a “differing” basic block, and
2. cannot reach a differing basic block from their cur-

rent program counter and call stack.
The second condition uses an inter-procedural reachabil-
ity analysis from the baseline UC-KLEE system. Paths
meeting both of these criteria are safe to prune because
they will execute identical instruction sequences.

In addition, UC-KLEE introduces pruning techniques
aimed specifically at detecting errors introduced by a
patch. As our system executes P′ (fooB in Figure 3),
it prunes paths that either:
1. return from P′ without triggering an error, or
2. trigger an error without reaching differing blocks.

In the first case, we are only concerned with errors intro-
duced by the patch. In the second case, P and P′ would
both trigger the error.

Error uniquing. Our system aggressively uniques er-
rors by associating each path executing P with the pro-
gram counter (PC) of the error that occurred in P′. Once
our system executes a non-error path that returns from P
(and reports the error in P′), it prunes all current and fu-
ture paths that hit the same error (PC and type) in P′. In
practice, this enabled our system to prune thousands of
redundant error paths.

3.2 Evaluation
We evaluated UC-KLEE on hundreds of patches from
BIND and OpenSSL, two widely-used, security critical
systems. Each codebase contains about 400,000 lines of
C code, making them reasonable measures of UC-KLEE’s
scalability and robustness. For this experiment, we used
a maximum symbolic object size of 25,000 bytes and a
maximum symbolic data structure depth of 9 objects.

3.2.1 Patch selection and code modifications
We tried to avoid selection bias by using two complete
sets of patches from the git repositories for recent sta-
ble branches: BIND 9.9 from 1/2013 to 3/2014 and
OpenSSL 1.0.1 from 1/2012 to 4/2014. Many of the
patches we encountered modified more than one func-
tion; this section uses patch to refer to changes to a single
function, and commit to refer to a complete changeset.

We excluded all patches that: only changed copyright
information, had build errors, modified build infrastruc-
ture only, removed dead functions only, applied only
to disabled features (e.g., win32), patched only BIND
contrib features, only touched regression/unit tests, or
used variadic functions. We also eliminated all patches

USENIX Association 24th USENIX Security Symposium 53

Codebase Function Type Cause New Vulnerability
BIND receive secure db assert fail double lock acquisition ✓
BIND save nsec3param assert fail uninitialized struct ✓
BIND configure zone acl assert fail inconsistent null argument handling ✓
BIND isc lex gettoken assert fail input parsing logic ✓
OpenSSL PKCS5 PBKDF2 HMAC uninitialized pointer dereference uninitialized struct
OpenSSL dtls1 process record assert fail inconsistent null check
OpenSSL tls1 final finish mac null pointer dereference unchecked return value ✓
OpenSSL do ssl3 write null pointer dereference callee side effect after null check ✓ CVE-2014-0198
OpenSSL PKCS7 dataDecode null pointer dereference unchecked return value ✓
OpenSSL EVP DecodeUpdate out-of-bounds array access negative count passed to memcpy ✓ CVE-2015-0292
OpenSSL dtls1 buffer record use-after-free improper error handling ✓
OpenSSL pkey ctrl gost uninitialized pointer dereference improper error handling ✓

Figure 4: Summary of bugs UC-KLEE reported while checking patches. New indicates that the bug was previously unknown.

that yielded identical code after compiler optimizations.
Because of tool limitations, we excluded patches that
changed input datatypes (§ 2.2). Finally, to avoid inflat-
ing our verification numbers, we excluded three BIND
commits that patched 200-300 functions each by chang-
ing a pervasive linked-list macro and/or replacing all uses
of memcpy with memmove. Neither of these changes in-
troduced any errors and, given their near-trivial modifi-
cations, shed little additional light on our tool’s effec-
tiveness. This yielded 487 patches from BIND and 324
patches from OpenSSL, both from 177 distinct commits
to BIND and OpenSSL (purely by coincidence).

We compiled patched and unpatched versions of the
codebase for each revision using an LLVM 2.7 toolchain.
We then ran UC-KLEE over each patch for one hour. Each
run was allocated a single Intel Xeon E5645 2.4GHz
core and 4GB of memory on a compute cluster running
64-bit Fedora Linux 14. For these runs, we configured
UC-KLEE to target crashes only in patched routines or
routines they call. While this approach allows UC-KLEE
to focus on the most likely source of errors, it does not
detect bugs caused by the outputs of a function, which
may trigger crashes elsewhere in the system (e.g., if the
function unexpectedly returns null). UC-KLEE can report
such differences, but we elide that feature in this paper.
Code modifications. In BIND and OpenSSL, we canon-
icalized several macros that introduced spurious code
differences such as the LINE , VERSION, SRCID,
DATE, and OPENSSL VERSION NUMBER macros. To sup-
port function-call annotations (§ 3.2.5) in BIND, we con-
verted four preprocessor macros to function calls.

For BIND, we disabled expensive assertion-logging
code and much of its debug malloc functionality, which
UC-KLEE already provided. For OpenSSL, we added a
new build target that disabled reference counting and ad-
dress alignment. The reference counting caused many
false positives; UC-KLEE reported double free errors due
to unknown preconditions on an object’s reference count.

3.2.2 Bugs found
From the patches we tested, UC-KLEE uncovered three
previously unknown bugs in BIND and eight bugs in
OpenSSL, six of which were previously unknown. These
bugs are summarized in Figure 4.

1 : LOCK ZONE(zone);
2 : if (DNS ZONE FLAG(zone, DNS ZONEFLG EXITING)
3 : | | !inline secure(zone)) {
4 : result = ISC R SHUTTINGDOWN;
5 : goto unlock;
6 : }
7 : . . .
8 : if (result != ISC R SUCCESS)
9 : goto failure; /* ← bypasses UNLOCK ZONE */
10: . . .
11: unlock:
12: UNLOCK ZONE(zone);
13: failure:
14: dns zone idetach(&zone);

Figure 5: BIND locking bug found in receive secure db.

Figure 5 shows a representative double-lock bug in
BIND found by cross-checking. The patch moved the
LOCK ZONE earlier in the function (line 1), causing exist-
ing error handling code that jumped to failure (line 9)
to bypass the UNLOCK ZONE (line 12). In this case, the
subsequent call to dns zone idetach (line 14) reac-
quires the already-held lock, which triggers an asser-
tion failure. This bug was one of several we found
that involved infrequently-executed error handling code.
Worse, BIND often hides goto failure statements in-
side a CHECK macro, which was responsible for a bug
we discovered in the save nsec3param function (not
shown). We reported the bugs to the BIND developers,
who promptly confirmed and fixed them. These exam-
ples demonstrate a key benefit of UC-KLEE: it explores
non-obvious execution paths that would likely be missed
by a human developer, either because the code is obfus-
cated or an error condition is overlooked.

UC-KLEE is not limited to finding new bugs introduced
by the patches; it can also find old bugs in patched code.
We added a new mode where UC-KLEE flags errors that
occur in both P and P′ if the error must occur for all
input values following that execution path (must-fail er-
ror described in § 3.2.5). This approach allowed us to
find one new bug in BIND and four in OpenSSL. It also
re-confirmed a number of bugs found by cross-checking
above. This mode could be used to find bugs in functions
that have not been patched, but we did not use it for that
purpose in this paper.

Figure 6 shows a representative must-fail bug, a
previously unknown null pointer dereference (denial-
of-service) vulnerability we discovered in OpenSSL’s

54 24th USENIX Security Symposium USENIX Association

1 : if (wb−>buf == NULL) /* ← null pointer check */
2 : if (!ssl3 setup write buffer(s))
3 : return −1;
4 : . . .
5 : /* If we have an alert to send, lets send it */
6 : if (s−>s3−>alert dispatch) {
7 : /* call sets wb→buf to NULL */
8 : i=s−>method−>ssl dispatch alert(s);
9 : if (i <= 0)
10: return(i);
11: /* if it went, fall through and send more stuff */
12: }
13: . . .
14: unsigned char *p = wb−>buf; /* ← p = NULL */
15: *(p++)=type&0xff; /* ← null pointer dereference */

Figure 6: OpenSSL null pointer bug in do ssl3 write.

do ssl3 write function that led to security advi-
sory CVE-2014-0198 [12] being issued. In this case,
a developer attempted to prevent this bug by ex-
plicitly checking whether wb->buf is null (line 1).
If the pointer is null, ssl3 setup write buffers

allocates a new buffer (line 2). On line 6, the
code then handles any pending alerts [20] by calling
ssl dispatch alert (line 8). This call has the subtle
side effect of freeing the write buffer when the common
SSL MODE RELEASE BUFFERS flag is set. After freeing
the buffer, wb->buf is set to null (not shown), triggering
a null pointer dereference on line 15.

This bug would be hard to find with other approaches.
The write buffer is freed by a chain of function calls that
includes a recursive call to do ssl3 write, which one
maintainer described as “sneaky” [44]. In contrast to
static techniques that could not reason precisely about the
recursion, UC-KLEE proved that under the circumstances
when both an alert is pending and the release flag is set,
a null pointer dereference will occur. This example also
illustrates the weaknesses of regression testing. While
a developer may write tests to make sure this function
works correctly when an alert is pending or when the re-
lease flag is set, it is unlikely that a test would exercise
these conditions simultaneously. Perhaps as a direct con-
sequence, this vulnerability was nearly six years old.

3.2.3 Patches verified
In addition to finding new bugs, UC-KLEE exhaustively
verified all execution paths for 67 (13.8%) of the patches
in BIND, and 48 (14.8%) of the patches in OpenSSL.
Our system effectively verified that, up to the given in-
put bound and with the usual caveats, these patches did
not introduce any new crashes. This strong result is not
possible with imprecise static analysis or testing.

The median instruction coverage (§ 3.2.4) for the ex-
haustively verified patches was 90.6% for BIND and
100% for OpenSSL, suggesting that these patches were
thoroughly tested. Only six of the patches in BIND and
one in OpenSSL achieved very low (0-2%) coverage.
We determined that UC-KLEE achieved low coverage on
these patches due to dead code (2 patches); an insuffi-

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450

Pa
tc

h
in

st
r.

co
ve

ra
ge

(%
)

BIND patches

0

20

40

60

80

100

50 100 150 200 250 300

Pa
tc

h
in

st
r.

co
ve

ra
ge

(%
)

OpenSSL patches

Figure 7: Coverage of patched instructions: 100% cover-
age for 98 BIND patches (20.1%) and 124 OpenSSL patches
(38.3%). Median was 81.1% for BIND, 86.9% for OpenSSL.

cient symbolic input bound (2 patches); comparisons be-
tween input pointers (we assume no aliasing, 1 patch);
symbolic malloc size (1 patch); and a trivial stub func-
tion that was optimized away (1 patch).

3.2.4 Patches partially verified
This section measures how thoroughly we check non-
terminating patches using two metrics: (1) instruction
coverage, and (2) number of execution paths completed.

We conservatively measure instruction coverage by
counting the number of instructions that differ in P′ from
P and then computing the percentage of these instruc-
tions that UC-KLEE executes at least once. Figure 7
plots the instruction coverage. The median coverage was
81.1% for BIND and 86.9% for OpenSSL, suggesting
that UC-KLEE thoroughly exercised the patched code,
even when it did not exhaust all paths.

Figure 8 plots the number of completed execution
paths for each patch we did not exhaustively verify
(§ 3.2.3) that hit at least one patched instruction. These
graphs exclude 31 patches for BIND and 32 patches
for OpenSSL for which our system crashed during the
one hour execution window. The crashes were primarily
due to bugs in our tool and memory exhaustion/blowup
caused by symbolically executing cryptographic ciphers.

For the remaining patches, UC-KLEE completed a me-
dian of 5,828 distinct paths per patch for BIND and 1,412
for OpenSSL. At the upper end, 154 patches for BIND
(39.6%) and 79 for OpenSSL (32.4%) completed over
10,000 distinct execution paths. At the bottom end, 58
patches for BIND (14.9%) and 46 for OpenSSL (18.9%)
completed zero execution paths. In many cases, UC-
KLEE achieved high coverage on these patches but nei-
ther detected errors nor ran the non-error paths to com-

USENIX Association 24th USENIX Security Symposium 55

Pa
th

s

BIND patches

1

10

100

1000

10000

100000

1000000

50 100 150 200 250 300 350

Pa
th

s

OpenSSL patches

1

10

100

1000

10000

100000

1000000

50 100 150 200

Figure 8: Completed execution paths (log scale). Median was
5,828 paths per patch for BIND and 1,412 for OpenSSL. Top
quartile was 17,557 paths for BIND and 21,859 for OpenSSL.

pletion. A few reasons we observed for paths not running
to completion included query timeouts, unspecified sym-
bolic function pointers, or ineffective search heuristics.

These numbers should only be viewed as a crude
approximation of thoroughness; they do not measure
the independence between the paths explored (greater
is preferable). On the other hand, they grossly under-
count the number of distinct concrete values each sym-
bolic path reasons about simultaneously. One would gen-
erally expect that exercising 1,000 or more paths through
a patch, where each path simultaneously tests all feasi-
ble values, represents a dramatic step beyond the current
standard practice of running the patch on a few tests.

3.2.5 False positives
This section describes our experience in separating true
bugs from false positives, which were due to missing in-
put preconditions. The false positives we encountered
were largely due to three types of missing preconditions:
1. Data structure invariants, which apply to all instances

of a data structure (e.g., a parent node in a binary
search tree has a greater value than its left child).

2. State machine invariants, which determine the se-
quence of allowed values and the variable assign-
ments that may exist simultaneously (e.g., a counter
increases monotonically).

3. API invariants, which determine the legal inputs to
API entry points (e.g., a caller must not pass a null
pointer as an argument).

Figure 9 illustrates a representative example of a false
positive from BIND, which was caused by a missing data
structure invariant. The isc region t type consists of
a buffer and a length, but UC-KLEE has no knowledge
that the two are related. The code selects a valid buffer

1 : typedef struct isc region {
2 : unsigned char * base;
3 : unsigned int length;
4 : } isc region t;
5 :
6 : int isc region compare(isc region t *r1, isc region t *r2) {
7 : unsigned int l;
8 : int result;
9 :
10: REQUIRE(r1 != NULL);
11: REQUIRE(r2 != NULL);
12:
13: /* chooses min. buffer length */
14: l = (r1−>length < r2−>length) ? r1−>length : r2−>length;
15:
16: /* memcmp reads out-of-bounds */
17: if ((result = memcmp(r1−>base, r2−>base, l)) != 0)
18: return ((result < 0) ? −1 : 1);
19: else
20: return ((r1−>length == r2−>length) ? 0 :
21: (r1−>length < r2−>length) ? −1 : 1);
22: }

Figure 9: Example false positive in BIND. UC-KLEE does not
associate length field with buffer pointed to by base field.
Consequently, UC-KLEE falsely reports that memcmp (line 17)
reads out-of-bounds from base.

length at line 14, the shorter of the two buffers. At line
17, the code calls memcmp and supplies this length. Inside
memcmp, UC-KLEE reported hundreds of false positives
involving out-of-bounds memory reads. These errors oc-
curred on false paths where the buffer pointed to by the
base field was smaller than the associated length field.

UC-KLEE manages false positives using two ap-
proaches: manual annotations and automated heuristics.

Manual annotations. UC-KLEE supports two types of
manual annotations: (1) data type annotations, and (2)
function call annotations. Both are written in C and
compiled with LLVM. UC-KLEE invokes data type an-
notations at the end of a path, prior to emitting an error.
These are associated with named data types and spec-
ify invariants on symbolic inputs of that type (inferred
from debug information when available). For the exam-
ple above, we added the following simple annotation for
the isc region t data type:

INVARIANT(r−>length <= OBJECT SIZE(r−>base));

The INVARIANT macro requires that the condition hold.
If it is infeasible (cannot be true) on the current path, UC-
KLEE emits an error report with a flag indicating that the
annotations have been violated. We use this flag to filter
out uninteresting error reports. This one simple anno-
tation allowed us to filter 623 errors, which represented
about 7.5% of all the errors UC-KLEE reported for BIND.

Function call annotations are used to run specific code
immediately prior to calling a function. For example,
we wrote a function call annotation for BIND that runs
before each call to isc mutex lock, with the same ar-
guments:

void annot isc mutex lock(isc mutex t *mp) {
EXPECT(*mp == 0);

}

56 24th USENIX Security Symposium USENIX Association

P′ only P and P′

Reports Patches Reports Patches
Heuristic Tot. Bugs Tot. Bugs
Total errors 2446 3 141 5829 - 260
Manual annotations 1419 3 125 1378 - 153

must-fail 44 3 8 1378 - 153
concrete-fail 26* 2 6* 878 - 110
belief-fail 35* 3 7* 1053 - 127

excluding inputs 30* 3 7* 852 - 102
True bugs 3* 3 3* 1 1 1

(a) BIND (487 patches, 4 distinct bugs)

P′ only P and P′

Reports Patches Reports Patches
Heuristic Tot. Bugs Tot. Bugs
Total errors 1423 5 79 579 11 125
Manual annotations 1286 5 79 451 11 124

must-fail 41 5 22 451 11 124
concrete-fail 14* 5 12* 224 11 98
belief-fail 25* 5 18* 316 11 117

excluding inputs 17* 5 11* 90* 11 47*
True bugs 5* 5 4* 11* 11 10*

(b) OpenSSL (324 patches, 8 distinct bugs)

Figure 10: Effects of heuristics on false positives. Tot. indicates the total number of reports, of which Bugs are true errors; Patches
indicates the number of patches that reported at least one error. P′ only refers to errors that occurred only in function P′; P and P′

occurred in both versions. Indent indicates successive heuristics; * indicates that we reviewed all the reports manually.

Macro Description
INVARIANT(condition) Add condition as a path constraint; kill

path if infeasible.
EXPECT(condition) Add condition as a path constraint if feasi-

ble; otherwise, ignore.
IMPLIES(a, b) Logical implication: a → b.
HOLDS(a) Returns true if condition a must hold.
MAY HOLD(a) Returns true if condition a may hold.
SINK(e) Forces e to be evaluated; prevents compiler

from optimizing it away.
VALID POINTER(ptr) Returns true if ptr is valid; false otherwise.
OBJECT SIZE(ptr) Returns the size of the object pointed to by

ptr; kills path if pointer is invalid.

Figure 11: C annotation macros.

The EXPECT macro adds the specified path constraint
only if the condition is feasible on the current path and
elides it otherwise. In this example, we avoid consid-
ering cases where the mutex is already locked. How-
ever, this annotation has no effect if the condition is not
feasible (i.e., the lock has definitely been acquired along
this path). This annotation allows UC-KLEE to detect er-
rors in lock usage while suppressing false positives un-
der the assumption that if a function attempts to acquire
a lock supplied as input, then a likely input precondi-
tion is that the lock is not already held. This annotation
did not prevent us from finding the BIND locking bug in
receive secure db shown in Figure 5.

Figure 11 summarizes the convenience macros we
provided for expressing annotations using C code. While
annotations may be written using arbitrary C code, these
macros provide a simple interface to functionality not
expressible with C itself (e.g., determining the size of
a heap object using OBJECT SIZE). The HOLDS and
MAY HOLD macros allow code to check the feasibility of
a Boolean expression without causing UC-KLEE to fork
execution and trigger path explosion.

For BIND, we wrote 13 function call annotations and
31 data type annotations (about 400 lines of C). For
OpenSSL, we wrote six data type annotations and no
function call annotations (60 lines). We applied a single
set of annotations for each codebase to all the patches we
tested. In our experience, most of these annotations were

simple to specify and often suppressed many false posi-
tives. We felt the level of effort required was reasonable
compared to the sizes of the codebases we checked. We
added annotations lazily, in response to false positives.

Figure 10 illustrates the effects of the annotations and
heuristics on the error reports for BIND and OpenSSL.
The P′ only column describes errors that only occurred
in the patched function, while P and P′ describes errors
that occurred in both versions. In this experiment, we are
primarily concerned with bugs introduced by a patch, so
our discussion describes P′ only unless otherwise noted.

The manual annotations suppressed 42% of the re-
ports for BIND but only 9.6% for OpenSSL. We attribute
this difference to the greater effort we expended writing
manual annotations for BIND, for which the automated
heuristics were less effective without the annotations.

Automated heuristics. We tried numerous heuristics to
reduce false reports. UC-KLEE augments each error re-
port with a list of the heuristics that apply. The must-
fail heuristic identifies errors that must occur for all in-
put values following that execution path, since these are
often true errors [18]. For example, assertion failures are
must-fail when the condition must be false.

A variation on the must-fail heuristic is the belief-fail
heuristic, which uses a form of belief analysis [19]. The
intuition behind this heuristic is that if a function contra-
dicts itself, it likely has a bug. For example, if the code
checks that a pointer is null and then dereferences the
pointer, it has a bug, regardless of any input precondi-
tions. On the other hand, a function is generally agnostic
to the assumptions made by the functions it calls. For
example, if strcmp checks whether two strings have the
same address, the caller does not acquire this belief, even
if the path constraints now indicate that the two addresses
match. Following this intuition, the belief-fail heuristic
identifies errors that occur for all input values satisfying
the belief set, which is the set of constraints (i.e., branch
conditions) added within the current function or inher-
ited from its caller, but not its callees. We track belief
sets for each stack frame.

USENIX Association 24th USENIX Security Symposium 57

A second variation on must-fail is concrete-fail,
which indicates that an assertion failure or memory er-
ror was triggered by a concrete (non-symbolic) condi-
tion or pointer, respectively. In practice, this heuristic
and belief-fail were the most effective.

These heuristics reduced the total number of reports to
a small enough number that we were able to inspect them
all manually. While only 8.6% of the belief-fail errors for
BIND and 20% of those for OpenSSL were true bugs, the
total number of these errors (60) was manageable relative
to the number of patches we tested (811). In total, the
annotations and belief-fail heuristic eliminated 98.6% of
false positives for BIND and 98.2% for OpenSSL.

A subset of the belief-fail errors were caused by read-
ing past the end of an input buffer, and none of these
were true bugs. Instead, they were due to paths reaching
the input bound we specified. In many cases, our system
would emit these errors for any input bound because they
involved unbounded loops (e.g., strlen). The excluding
inputs row in Figure 10 describes the subset of belief-fail
errors not related to input buffers. This additional fil-
ter produced a small enough set of P and P′ errors for
OpenSSL that we were able to manually inspect them,
discovering a number of additional bugs. We note that
the true errors listed in Figure 10 constitute 12 distinct
bugs; some bugs showed up in multiple error reports.

4 Generalized checking
In addition to checking patches, UC-KLEE provides an
interface for rule-based checkers to be invoked during
symbolic path exploration. These checkers are similar to
tools built using dynamic instrumentation systems such
as Valgrind [34] or Pin [30]. Unlike these frameworks,
however, UC-KLEE applies its checkers to all possible
paths through a function, not to a single execution path
through a program. In addition, UC-KLEE considers all
possible input values along each path, allowing it to dis-
cover bugs that might be missed when checking a single
set of concrete inputs.

Conceptually, our framework is similar to WOOD-
PECKER [8], a KLEE-based tool that allows system-
specific checkers to run on top of (whole program) sym-
bolic execution. In this paper, however, we focus on
generic checkers we implemented for rules that apply to
many systems, and we directly invoked these checkers
on individual functions deep within each codebase.

UC-KLEE provides a simple interface for implement-
ing checkers by deriving from a provided C++ base class.
This interface provides hooks for a checker to intercept
memory accesses, arithmetic operations, branches, and
several types of errors UC-KLEE detects.

A user invoking UC-KLEE provides a compiled LLVM
module and the name of a function to check. We re-
fer to this function as the top-level function. Generally,

the module has been linked to include all functions that
might be called by the top-level function. When UC-
KLEE encounters a function call, it executes the called
function. When UC-KLEE encounters a call to a func-
tion missing from the LLVM module, however, it may op-
tionally skip over the function call rather than terminate
the path with an error message. When UC-KLEE skips
a function call, it creates a new under-constrained value
to represent the function’s return value, but it leaves the
function’s arguments unchanged. This approach under-
approximates the behaviors that the missing function
might perform (e.g., writing to its arguments or globals).
Consequently, UC-KLEE may miss bugs and cannot pro-
vide verification guarantees when functions are missing.

We briefly experimented with an alternative approach
in which we overwrote the skipped function’s argu-
ments with new under-constrained values, but this over-
approximation caused significant path explosion, mostly
involving paths that could not arise in practice.

In addition to missing functions due to scalability lim-
itations, we also encountered inline assembly (Linux ker-
nel only) and unresolved symbolic function pointers. We
skipped these two cases in the same manner as missing
functions. For all three cases, UC-KLEE provides a hook
to allow a checker to detect when a call is being skipped
and to take appropriate actions for that checker.

In the remainder of this section, we describe each
checker, followed by our experimental results in § 4.4.

4.1 Leak checker
Memory leaks can lead to memory exhaustion and pose
a serious problem for long-running servers. Frequently,
they are exploitable as denial-of-service vulnerabili-
ties [10, 13, 14]. To detect memory leaks (which may or
may not be remotely exploitable, depending on their lo-
cation within a program), we implemented a leak checker
on top of UC-KLEE. The leak checker considers a heap
object to be leaked if, after returning from the top-level
function, the object is not reachable from a root set of
pointers. The root set consists of a function’s (symbolic)
arguments, its return value, and all global variables. This
checker is similar to the leak detection in Purify [23] or
Valgrind’s memcheck [34] tool, but it thoroughly checks
all paths through a specific function, rather than a single
concrete path through a whole program.

When UC-KLEE encounters a missing function, the
leak checker finds the set of heap objects that are reach-
able from each of the function call’s arguments using a
precise approach based on pointer referents [42, 43]. It
then marks these objects as possibly escaping, since the
missing function could capture pointers to these objects
and prevent them from becoming unreachable. At the
end of each execution path, the leak checker removes any
possibly escaping objects from the set of leaked objects.

58 24th USENIX Security Symposium USENIX Association

Doing so allows it to report only true memory leaks, at
the cost of possibly omitting leaks when functions are
missing. However, UC-KLEE may still report false leaks
along invalid execution paths due to missing input pre-
conditions. Consider the following code fragment:

1 : char* leaker() {
2 : char *a = (char*) malloc(10); /* not leaked */
3 : char *b = (char*) malloc(10); /* maybe leaked */
4 : char *c = (char*) malloc(10); /* leaked! */
5 :
6 : bar(b); /* skipped call to bar */
7 : return a;
8 : }

When UC-KLEE returns from the function leaker, it in-
spects the heap and finds three allocated objects: a, b,
and c. It then examines the root set of objects. In this
example, there are no global variables and leaker has
no arguments, so the root set consists only of leaker’s
return value. UC-KLEE examines this return value and
finds that the pointer a is live (and therefore not leaked).
However, neither b nor c is reachable. It then looks at its
list of possibly escaping pointers due to the skipped call
to bar on line 6, which includes b. UC-KLEE subtracts
b from the set of leaked objects and reports back to the
user that c has been leaked. While this example is trivial,
UC-KLEE discovered 37 non-trivial memory leak bugs in
BIND, OpenSSL, and the Linux kernel (§ 4.4).

4.2 Uninitialized data checker
Functions that access uninitialized data from the stack
or heap exhibit undefined or non-deterministic behavior
and are particularly difficult to debug. Additionally, the
prior contents of the stack or heap may hold sensitive
information, so code that operates on these values may
be vulnerable to a loss of confidentiality.

UC-KLEE includes a checker that detects accesses to
uninitialized data. When a function allocates stack or
heap memory, the checker fills it with special garbage
values. The checker then intercepts all loads, binary
operations, branches, and pointer dereferences to check
whether any of the operands (or the result of a load) con-
tain garbage values. If so, it reports an error to the user.

In practice, loads of uninitialized data are often in-
tentional; they frequently arise within calls to memcpy

or when code manipulates bit fields within a C struct.
Our evaluation in § 4.4 therefore focuses on branches and
dereferences of uninitialized pointers.

When a call to a missing function is skipped, the unini-
tialized data checker sanitizes the function’s arguments
to avoid reporting spurious errors in cases where missing
functions write to their arguments.

4.3 User input checker
Code that handles untrusted user input is particularly
prone to bugs that lead to security vulnerabilities since

an attacker can supply any possible input value to exploit
the code. Generally, UC-KLEE treats inputs to a function
as under-constrained because they may have unknown
preconditions. For cases where inputs originate from un-
trusted sources such as network packets or user-space
data passed to the kernel, however, the inputs can be con-
sidered fully-constrained. This term indicates that the set
of legal input values is known to UC-KLEE; in this case,
any possible input value may be supplied. If any value
triggers an error in the code, then the error is likely to be
exploitable by an attacker, assuming that the execution
path is feasible (does not violate other preconditions).

UC-KLEE maintains shadow memory (metadata) asso-
ciated with each symbolic input that tracks whether each
symbolic byte is under-constrained or fully-constrained.
UC-KLEE provides an interface for system-specific C an-
notations to mark untrusted inputs as fully-constrained
by calling the function ucklee clear uc byte. This
function sets the shadow memory for each byte to the
fully-constrained state.

UC-KLEE includes a system-configurable user in-
put checker that intercepts all errors and adds
an UNSAFE INPUT flag to errors caused by fully-
constrained inputs. For memory access errors, the
checker examines the pointer to see if it contains fully-
constrained symbolic values. For assertion failures, it
examines the assertion condition. For division-by-zero
errors, it examines the divisor.

In all cases, the checker inspects the fully-constrained
inputs responsible for an error and determines whether
any path constraints compare the inputs to under-
constrained data (originating elsewhere in the program).
If so, the checker assumes that the constraints may prop-
erly sanitize the input, and it suppresses the error. Oth-
erwise, it emits the error. This approach avoids reporting
spurious errors to the user, at the cost of missing errors
when inputs are partially (but insufficiently) sanitized.

We designed this checker primarily to find security
vulnerabilities similar to the OpenSSL “Heartbleed” vul-
nerability [1, 11] from 2014, which passed an untrusted
and unsanitized length argument to memcpy, triggering
a severe loss of confidentiality. In that case, the code
never attempted to sanitize the length argument. To
test this checker, we ran UC-KLEE on an old version of
OpenSSL without the fix for this bug and confirmed that
our checker reports the error.

4.4 Evaluation
We evaluated UC-KLEE’s checkers on over 20,000 func-
tions from BIND, OpenSSL, and the Linux kernel. For
BIND and OpenSSL, we used UC-KLEE to check all
functions except those in the codebases’ test directo-
ries. We used the same minor code modifications de-
scribed in § 3.2.1, and we again used a maximum input

USENIX Association 24th USENIX Security Symposium 59

Leak Checker Uninitialized Data Checker User Input Checker
Pointer Pointer Branch

Funcs. Bugs Reports False Funcs. Bugs Reports False Reports Funcs. Bugs Reports False
BIND 6239 9 138 2.2% 6239 3 0 - 244* 6239 0 67 100%
OpenSSL 6579 5 272† 90.1% 6579 6 197 92.90% 564* 6579 0 5 100%
Linux kernel 5812 23 127 76.4% 7185 10 72 83.30% 494* 1857 11 145 80.0%

Figure 12: Summary of results from running UC-KLEE checkers on Funcs functions from each codebase. Bugs shows the number
of distinct true bugs found (67 total). Reports shows the total number of errors reported by UC-KLEE in each category (multiple
errors may point to a single bug). False reports the percentage of errors reported that did not appear to be true bugs (i.e., false
positives). †excludes reports for obfuscated ASN.1 code. *denotes that we inspected only a handful of errors for that category.

1 : int gssp accept sec context upcall(struct net *net,
2 : struct gssp upcall data *data) {
3 : . . .
4 : ret = gssp alloc receive pages(&arg);
5 : . . .
6 : gssp free receive pages(&arg);
7 : . . .
8 : }
9 : int gssp alloc receive pages(struct gssx arg accept sec context *arg) {
10: arg−>pages = kzalloc(. . .);
11: . . .
12: return 0;
13: }
14: void gssp free receive pages(struct gssx arg accept sec context *arg) {
15: for (i = 0; i < arg−>npages && arg−>pages[i]; i++)
16: free page(arg−>pages[i]);
17: /* missing: kfree(arg–>pages); */
18: }

Figure 13: Linux kernel memory leak in RPCSEC GSS proto-
col implementation used by NFS server-side AUTH GSS.

size of 25,000 bytes and a depth bound of 9 objects.

For the Linux kernel, we included functions relevant
to each checker, as described below. Unlike our evalua-
tion in § 3.2, we did not use any manual annotations to
suppress false positives. We ran UC-KLEE for up to five
minutes on each function from BIND and the Linux ker-
nel, and up to ten minutes on each OpenSSL function.
We used the same machines as in § 3.2.

For BIND, we checked version 9.10.1-P1 (12/2014).
For OpenSSL, we checked version 1.0.2 (1/2015). For
the Linux kernel, we checked version 3.16.3 (9/2014).

Figure 12 summarizes the results. UC-KLEE discov-
ered a total of 67 previously-unknown bugs1: 12 in
BIND, 11 in OpenSSL, and 44 in the Linux kernel. Fig-
ure 14 lists the number of functions that UC-KLEE ex-
haustively verified (up to the given input bound and with
caveats) as having each property. We omit verification
results from the Linux kernel because UC-KLEE skipped
many function calls and inline assembly, causing it to
under-approximate the set of possible execution paths
and preventing it from making any verification guaran-
tees. We did link each Linux kernel function with other
modules from the same directory, however, as well as the
mm/vmalloc.c module.

1A complete list of the bugs we discovered is available at:
http://cs.stanford.edu/~daramos/usenix-sec-2015

No leaks No malloc No uninitialized data
BIND 388 1776 2045
OpenSSL 383 1648 2043

Figure 14: Functions verified (with caveats) by UC-KLEE.

4.4.1 Leak checker
The leak checker was the most effective. It reported the
greatest number of bugs (37 total) and the lowest false
positive rate. Interestingly, only three of the 138 leak re-
ports for BIND were spurious errors, a false positive rate
of only 2.2%. For OpenSSL, we excluded 269 additional
reports involving the library’s obfuscated ASN.1 [25]
parsing code, which we could not understand. Of the
remaining 272 reports, the checker found five bugs but
had a high false positive rate of 90.1%.

For the Linux kernel, we wrote simple C annotations
(about 60 lines) to intercept calls to kmalloc, vmalloc,
kfree, vfree, and several similar functions, and to for-
ward these to UC-KLEE’s built-in malloc and free func-
tions. Doing so allowed us to track memory management
without the overhead of symbolically executing the ker-
nel’s internal allocators. We then ran UC-KLEE on all
functions that directly call these allocation functions.

Our system discovered 23 memory leaks in the Linux
kernel. One particularly interesting example (Figure 13)
involved the SunRPC layer’s server-side implementation
of AUTH GSS authentication for NFS. Each connection
triggering an upcall causes 512 bytes allocated at line
10 to be leaked due to a missing kfree that should be
present around line 17. Since this leak may be trig-
gered by remote connections, it poses a potential denial-
of-service (memory exhaustion) vulnerability. The NFS
maintainers accepted our patch to fix the bug.

UC-KLEE found that at least 2909 functions in BIND
and at least 3700 functions in OpenSSL (or functions
they call) allocate heap memory. As shown in Figure 14,
UC-KLEE verified (with caveats) that 388 functions in
BIND and 383 in OpenSSL allocate heap memory but
do not leak it. Our system also verified that 1776 func-
tions in BIND and 1648 functions in OpenSSL do not
allocate heap memory, making them trivially leak-free.

4.4.2 Uninitialized data checker
The uninitialized data checker reported a total of 19 new
bugs. One illustrative example, shown in Figure 15, in-

60 24th USENIX Security Symposium USENIX Association

1 : points = OPENSSL malloc(sizeof (EC POINT*)*(num + 1));
2 : . . .
3 : for (i = 0; i < num; i++) {
4 : if ((points[i] = EC POINT new(group)) == NULL)
5 : goto err; /* leaves ’points’ only partially initialized */
6 : }
7 : . . .
8 : err:
9 : . . .
10: if (points) {
11: EC POINT **p;
12: for (p = points; *p != NULL; p++)
13: EC POINT free(*p); /* dereference/free of uninitialized pointer */
14: OPENSSL free(points);
15: }

Figure 15: OpenSSL dereference/free of uninitialized pointer
in ec wNAF precompute mult function.

volves OpenSSL’s elliptic curve cryptography. If the call
to EC POINT new on line 4 fails, the code jumps to line
8, leaving the points array partially uninitialized. Line
13 then passes uninitialized pointers from the array to
EC POINT free, which dereferences the pointers and
passes them to free, potentially corrupting the heap.
This is one of many bugs that we found involving infre-
quently executed error-handling code, a common source
of security bugs.

UC-KLEE discovered an interesting bug (Figure 16)
in BIND’s UDP port randomization fix for Kamin-
sky’s cache poisoning attack [9]. To prevent spoofed
DNS replies, BIND must use unpredictable source port
numbers. The dispatch createudp function calls
the get udpsocket function at line 9, which selects
a pseudorandom number generator (PRNG) at line 18
based on whether we are using a UDP or TCP connec-
tion. However, the socktype field isn’t initialized in
dispatch createudp until line 12, meaning that the
PRNG selection is based on uninitialized data. While it
appears that the resulting port numbers are sufficiently
unpredictable despite this bug, this example illustrates
UC-KLEE’s ability to find errors with potentially serious
security implications.

For the Linux kernel, we checked the union of the
functions we used for the leak checker and the user in-
put checker (discussed below) and found 10 bugs.

Due to time limitations, we exhaustively inspected
only the most serious category of errors: uninitialized
pointers. The checker reported too many uninitialized
branches for us to examine completely, but we did in-
spect a few dozen of these errors in an ad-hoc manner.
All three of the bugs from BIND and one bug from the
Linux kernel fell into this category. The remaining bugs
were uninitialized pointer errors. We did not inspect the
error reports for binary operations or load values.

Finally, our system verified (with caveats) that about a
third of the functions from BIND (2045) and OpenSSL
(2043) do not access uninitialized data. We believe that
providing this level of guarantee on such a high percent-

1 : #define DISP ARC4CTX(disp) \
2 : ((disp)−>socktype == isc sockettype udp) \
3 : ? (&(disp)−>arc4ctx) : (&(disp)−>mgr−>arc4ctx)
4 : static isc result t dispatch createudp(. . ., unsigned int attributes, . . .) {
5 : . . .
6 : result = dispatch allocate(mgr, maxrequests, &disp);
7 : . . .
8 : if ((attributes & DNS DISPATCHATTR EXCLUSIVE) == 0) {
9 : result = get udpsocket(mgr, disp, . . .);
10: . . .
11: }
12: disp−>socktype = isc sockettype udp; /* late initialization */
13: . . .
14: }
15: static isc result t get udpsocket(. . ., dns dispatch t *disp, . . .) {
16: . . .
17: /* PRNG selected based on uninitialized ’socktype’ field */
18: prt = ports[dispatch uniformrandom(DISP ARC4CTX(disp), nports)];
19: . . .
20: }

Figure 16: BIND non-deterministic PRNG selection bug.

age of functions with almost no manual effort is a strong
result not possible with existing tools.

4.4.3 User input checker
The user input checker required us to identify data orig-
inating from untrusted sources. Chou [6] observed that
data swapped from network byte order to host byte or-
der is generally untrusted. We applied this observa-
tion to OpenSSL and used simple annotations (about 40
lines of C) to intercept calls to n2s, n2l, n2l3, n2l6,
c2l, and c2ln, and mark the results fully-symbolic. We
also applied a simple patch to OpenSSL to replace byte-
swapping macros with function calls so that UC-KLEE
could use our annotations. We hope to explore automated
ways of identifying untrusted data in future work.

For BIND, we annotated (about 50 lines) the byte-
swapping functions ntohs and ntohl, along with
isc buffer getuint8 and three other functions that
generally read from untrusted buffers.

For the Linux kernel, we found that many network
protocols store internal state in network byte order, lead-
ing to spurious errors if we consider these to be un-
trusted. Instead, we annotated (about 40 lines) the
copy from user function and get user macro (which
we converted to a function call). In addition, we used
an option in UC-KLEE to mark all arguments to the sys-
tem call handlers sys * as untrusted. Finally, we used
UC-KLEE to check the 1502 functions that directly in-
voke copy from user and get user, along with the
355 system call handlers in our build.

Reassuringly, this checker did not discover any bugs
in the latest versions of BIND or OpenSSL. We attribute
this both to the limited amount of data we marked as un-
trusted and to our policy of suppressing errors involving
possibly sanitized data (see § 4.3). However, we were
able to detect the 2014 “Heartbleed” vulnerability [1, 11]
when we ran our system on an old version of OpenSSL.

Interestingly, we did discover 11 new bugs in the
Linux kernel. Seven of these bugs were division- or

USENIX Association 24th USENIX Security Symposium 61

1 : static int dg dispatch as host(. . ., struct vmci datagram *dg) {
2 : /* read length field from userspace datagram */
3 : dg size = VMCI DG SIZE(dg);
4 : . . .
5 : dg info = kmalloc(sizeof(*dg info) +
6 : (size t) dg−>payload size, GFP ATOMIC);
7 : . . .
8 : /* unchecked memcpy length; read overrun */
9 : memcpy(&dg info−>msg, dg, dg size);
10: . . .
11: }

Figure 17: Linux kernel VMware Communication Interface
driver unchecked memcpy length (buffer overread) bug.

remainder-by-zero operations that would trigger floating-
point exceptions and crash the kernel. The remaining
four bugs are out-of-bounds dereferences.

Figure 17 shows a buffer overread bug we discovered
in the kernel driver for the VMware Communication In-
terface (VMCI) that follows a pattern nearly identical to
“Heartbleed.” The userspace datagram dg is read using
copy from user. The code then allocates a destina-
tion buffer on line 5 and invokes memcpy on line 9 with-
out sanitizing the dg size field read from the datagram.
An attacker could potentially use this bug to copy up to
69,632 bytes of private kernel heap memory and send it
from the host OS to the guest OS. Fortunately, this vul-
nerability is only exploitable by code running locally on
the host OS. The maintainers quickly patched this bug.

Figure 18 shows an unsanitized remainder-by-zero
bug we found in the kernel driver for the CEPH dis-
tributed filesystem. The check at line 6 aims to prevent
this bug with a 64-bit comparison, but the divisor at line 8
uses only the low 32 bits of the untrusted stripe unit

field (read from userspace using copy from user). A
value such as 0xffffffff00000000 would pass the
check but result in a remainder-by-zero error. An un-
privileged local attacker could potentially issue an ioctl
system call to crash the machine. We notified the devel-
opers, who promptly fixed the bug.

Because of the ad-hoc nature of this checker, we did
not use it to exhaustively verify any properties about the
functions we checked.

5 Implementation
This section details optimizations and techniques we im-
plemented to scale our framework and address problems
we encountered while applying it to large systems.

5.1 Object sizing
Recall that when an unbound symbolic pointer is deref-
erenced, UC-KLEE must allocate memory and bind the
pointer to it. One challenge in implementing this func-
tionality is picking a useful object size to allocate. If the
size is too small, later accesses to this object may trigger
out-of-bounds memory errors. On the other hand, a size
that is too large can hide legitimate errors. We handled
this tradeoff using two approaches.

1 : static long validate layout(. . ., struct ceph ioctl layout *l) {
2 : . . .
3 : /* validate striping parameters */
4 : if ((l−>object size & ˜PAGE MASK) | |
5 : (l−>stripe unit & ˜PAGE MASK) | |
6 : (l−>stripe unit != 0 && /* ← 64-bit check */
7 : /* 32-bit divisor: */
8 : ((unsigned)l−>object size % (unsigned)l−>stripe unit)))
9 : return −EINVAL;
10: . . .
11: }

Figure 18: Linux kernel CEPH distributed filesystem driver
remainder-by-zero bug in ioctl handler.

The first approach, which we used for our experiment
in § 3.2, implemented a form of backtracking. At each
unbound pointer dereference, UC-KLEE checkpoints the
execution state and chooses an initial allocation size us-
ing a heuristic that examines any available type informa-
tion [42]. If the path later reads out-of-bounds from this
object, UC-KLEE (1) emits the error to the user, and (2)
restores the checkpoint and uses an allocation size large
enough to satisfy the most recent memory access. UC-
KLEE records the sequence of branches taken after each
checkpoint, and it forces the path to replay the sequence
of branches after increasing the allocation size. In prac-
tice, replaying branches exposed many sources of non-
determinism in the baseline KLEE tool and its system
modeling code, which we were able to eliminate through
significant development effort.

An alternative approach that we recently incorporated
into UC-KLEE is to use symbolically-sized objects, rather
than selecting a single concrete size. Doing so avoids the
need for backtracking in most cases by simultaneously
considering many possible object sizes. At each memory
access, UC-KLEE determines whether the offset could ex-
ceed the object’s symbolic size. If so, it emits an error
to the user. It also considers a path on which the offset
does not exceed this bound and adds a path constraint
that sets a lower bound on the object’s size. We used this
approach for our evaluation in § 4.4.

5.2 Error reporting
With whole program symbolic execution, symbolic in-
puts typically represent unstructured strings or byte ar-
rays from command line arguments or file contents. In
this case, an error report typically contains a single set
of concrete inputs that trigger the error, along with a
backtrace. With under-constrained symbolic execution,
however, the inputs are often complex, pointer-rich data
structures since UC-KLEE directly executes individual
functions within a program. In this case, a single set of
concrete values is not easily understood by a user, nor
can it be used to trivially reproduce the error outside of
UC-KLEE because pointer inputs expect memory objects
(i.e., stack, heap, and globals) to be located at specific
addresses.

To provide more comprehensible error reports, UC-

62 24th USENIX Security Symposium USENIX Association

KLEE emits a path summary for each error. The path
summary provides a complete listing of the source code
executed along the path, along with the path constraints
added by each line of source. The path constraints are ex-
pressed in a C-like notation and use the available LLVM
debug information to determine the types and names of
each field. Below we list example constraints that UC-
KLEE included with error reports for BIND (§ 3.2):

Code: REQUIRE(VALID_RBTDB(rbtdb));
Constraint: uc_dns_rbtdb1.common.impmagic == 1380074548

Code: if (source->is_file)
Constraint: uc_inputsource1.is_file == 0

Code: if (c == EOF)
Constraint: uc_var2[uc_var1.current + 1] == 255

5.3 General KLEE optimizations
We added several scalability improvements to UC-KLEE
that apply more broadly to symbolic execution tools.
To reduce path explosion in library functions such as
strlen, we implemented special versions that avoid
forking paths by using symbolic if-then-else constructs.
We also introduced scores of rules to simplify symbolic
expressions [42]. We elide further details due to space.

5.3.1 Lazy constraints
During our experiments, we faced query timeouts and
low coverage for several benchmarks that we traced to
symbolic division and remainder operations. The worst
cases occurred when an unsigned remainder operation
had a symbolic value in the denominator. To address
this challenge, we implemented a solution we refer to
as lazy constraints. Here, we defer evaluation of expen-
sive queries until we find an error. In the common case
where an error does not occur or two functions exhibit
crash equivalence along a path, our tool avoids ever is-
suing potentially expensive queries. When an error is
detected, the tool re-checks that the error path is feasible
(otherwise the error is invalid).

Figure 19(a) shows a simple example. With eager con-
straints (the standard approach), the if-statement at line
2 triggers an SMT query involving the symbolic integer
division operation y / z. This query may be expensive,
depending on the other path constraints imposed on y

and z. To avoid a potential query timeout, UC-KLEE in-
troduces a lazy constraint (Figure 19(b)). On line 1, it
replaces the result of the integer division operation with
a new, unconstrained symbolic value lazy x and adds
the lazy constraint lazy x = y / z to the current path.
At line 2, the resulting SMT query is the trivial expres-
sion lazy x > 10. Because lazy x is unconstrained,
UC-KLEE will take both the true and false branches fol-
lowing the if-statement. One of these branches may vi-
olate the constraints imposed on y and z, so UC-KLEE
must check that the lazy constraints are consistent with
the full set of path constraints prior to emitting any errors

1 : int x = y / z;
2 : if (x > 10) /* query: y / z > 10 */
3 : . . .

(a) Eager constraints (standard)

1 : int x = lazy x; /* adds lazy constraint: lazy x = y / z */
2 : if (x > 10) /* query: lazy x > 10 */
3 : . . .

(b) Lazy constraints

Figure 19: Lazy constraint used for integer division operation.

to the user (i.e., if the path later crashes).
In many cases, the delayed queries are more effi-

cient than their eager counterparts because additional
path constraints added after the division operation have
narrowed the solution space considered by the SMT
solver. If our tool determines that the path is infeasible,
it silently terminates the path. Otherwise, it reports the
error to the user.

5.4 Function pointers
Systems such as the Linux kernel, BIND, and OpenSSL
frequently use function pointers within struct types to
emulate object-oriented methods. For example, differ-
ent function addresses may be assigned depending on the
version negotiated for an SSL/TLS connection [20]. This
design poses a challenge for our technique because sym-
bolic inputs contain symbolic function pointers. When
our tool encounters an indirect call through one of these
pointers, it is unclear how to proceed.

We currently require that users specify concrete func-
tion pointers to associate with each type of object (as the
need arises). When our tool encounters an indirect call
through a symbolic pointer, it looks at the object’s debug
type information. If the user has defined function point-
ers for that type of object, our tool executes the speci-
fied function. Otherwise, it reports an error to the user
and terminates the path. The user can leverage these er-
rors to specify function pointers only when necessary.
For BIND, we found that most of these errors could be
eliminated by specifying function pointers for only six
types: three for memory allocation, and three for internal
databases. For OpenSSL, we specified function pointers
for only three objects: two related to support for multiple
SSL/TLS versions, and one related to I/O.

When running UC-KLEE’s checkers, we optionally al-
low the tool to skip unresolved function pointers, which
allows it to check more code but prevents verification
guarantees for the affected functions (see § 4).

6 Related work
This paper builds on prior work in symbolic execu-
tion [4], particularly KLEE [5] and our early work on UC-
KLEE [43]. Unlike our previous work, which targeted
small library routines, this paper targets large systems

USENIX Association 24th USENIX Security Symposium 63

and supports generalized checking.
Other recent work has used symbolic execution to

check patches. DiSE [39] performs whole program sym-
bolic execution but prunes paths unaffected by a patch.
Differential Symbolic Execution (DSE) [38] and regres-
sion verification [21] use abstraction to achieve scala-
bility but may report false differences. By contrast, our
approach soundly executes complete paths through each
patched function, eliminating this source of false posi-
tives. Impact Summaries [2] complement our approach
by soundly pruning paths and ignoring constraints unaf-
fected by a patch.

SymDiff [27] provides a scalable solution to check the
equivalence of two programs with fixed loop unrolling
but relies on imprecise, uninterpreted functions. Differ-
ential assertion checking (DAC) [28] is the closest to our
work and applies SymDiff to the problem of detecting
whether properties that hold in P also hold in P′, a gen-
eralization of crash equivalence. However, DAC suffers
from the imprecisions of SymDiff and reports false dif-
ferences when function calls are reordered by a patch.
Abstract semantic differencing [37] achieves scalability
through clever abstraction but, as with SymDiff, suffers
additional false positives due to over-approximation.

Recent work has used symbolic execution to gener-
ate regression tests exercising the code changed by a
patch [41, 31, 32]. While they can achieve high coverage,
these approaches use existing regression tests as a start-
ing point and greedily redirect symbolic branch decisions
toward a patch, exploring only a small set of execution
paths. By contrast, our technique considers all possible
intermediate program values as input (with caveats).

Dynamic instrumentation frameworks such as Val-
grind [34] and PIN [30] provide a flexible interface for
checkers to examine a program’s execution at runtime
and flag errors. However, these tools instrument a sin-
gle execution path running with concrete inputs, making
them only as effective as the test that supplies the inputs.

Similar to our use of generalized checking in UC-KLEE
is WOODPECKER [8], which uses symbolic execution to
check system-specific rules. Unlike UC-KLEE, WOOD-
PECKER applies to whole programs, so we expect it
would not scale well to large systems. However, WOOD-
PECKER aggressively prunes execution paths that are re-
dundant with respect to individual checkers, a technique
that would be useful in UC-KLEE.

Prior work in memory leak detection has used static
analysis [45], dynamic profiling [24], and binary rewrit-
ing [23]. Dynamic tools such as Purify [23] and Val-
grind [34] detect a variety of memory errors at run-
time, including uses of uninitialized data. CCured [33]
uses a combination of static analysis and runtime checks
to detect pointer errors. Our user input checker re-
lates to prior work in dynamic taint analysis, including

TaintCheck [35] and Dytan [7].

7 Conclusions and future work
We have presented UC-KLEE, a novel framework for
validating patches and applying checkers to individual
C/C++ functions using under-constrained symbolic ex-
ecution. We evaluated our tool on large-scale systems
code from BIND, OpenSSL, and the Linux kernel, and
we found a total of 79 bugs, including two OpenSSL
denial-of-service vulnerabilities.

One avenue for future work is to employ UC-KLEE as
a tool for finding general bugs (e.g., out-of-bounds mem-
ory accesses) in a single version of a function, rather than
cross-checking two functions or using specialized check-
ers. Our preliminary experiments have shown that this
use case results in a much higher rate of false positives,
but we did find a number of interesting bugs, including
the OpenSSL denial-of-service attack for which advisory
CVE-2015-0291 [15, 22, 42] was issued.

In addition, we hope to further mitigate false positives
by using ranking schemes to prioritize error reports, and
by inferring invariants to reduce the need for manual an-
notations. In fact, many of the missing input precondi-
tions can be thought of as consequences of a weak type
system in C. We may target higher-level languages in the
future, allowing our framework to assume many built-in
invariants (e.g., that a length field corresponds to the size
of an associated buffer).

Acknowledgements
The authors would like to thank Joseph Greathouse and
the anonymous reviewers for their valuable feedback.
In addition, the authors thank the LibreSSL developers
for their quick responses to our bug reports, along with
Evan Hunt and Sue Graves of ISC for granting us ac-
cess to the BIND git repository before it became public.
This work was supported by DARPA under agreements
1190029-276707 and N660011024088, by the United
States Air Force Research Laboratory (AFRL) through
contract FA8650-10-C-7024, and by a National Science
Foundation Graduate Research Fellowship under grant
number DGE-0645962. The views expressed in this pa-
per are the authors’ own.

References
[1] Alert (TA14-098A): OpenSSL ’Heartbleed’ vulnerability (CVE-

2014-0160). https://www.us-cert.gov/ncas/alerts/

TA14-098A, April 2014.
[2] BACKES, J., PERSON, S., RUNGTA, N., AND TKACHUK, O.

Regression verification using impact summaries. In Proc. of SPIN
Symposium on Model Checking of Software (SPIN) (2013).

[3] BIND. https://www.isc.org/downloads/bind/.
[4] BOYER, R. S., ELSPAS, B., AND LEVITT, K. N. Select – a

formal system for testing and debugging programs by symbolic
execution. ACM SIGPLAN Notices 10, 6 (June 1975), 234–45.

[5] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted
and automatic generation of high-coverage tests for complex sys-

64 24th USENIX Security Symposium USENIX Association

tems programs. In Proc. of Symp. on Operating Systems Design
and Impl (OSDI) (2008).

[6] CHOU, A. On detecting heartbleed with static analysis.
http://security.coverity.com/blog/2014/Apr/

on-detecting-heartbleed-with-static-analysis.

html, 2014.
[7] CLAUSE, J., LI, W., AND ORSO, A. Dytan: a generic dynamic

taint analysis framework. In Proc. of Intl. Symp. on Software
Testing and Analysis (ISSTA) (2007).

[8] CUI, H., HU, G., WU, J., AND YANG, J. Verifying systems
rules using rule-directed symbolic execution. In Proc. of Intl.
Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2013).

[9] CVE-2008-1447: DNS Cache Poisoning Issue (”Kaminsky
bug”). https://kb.isc.org/article/AA-00924.

[10] CVE-2012-3868. https://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2012-3868, Jul 2012.

[11] CVE-2014-0160. https://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2014-0160, April 2014.

[12] CVE-2014-0198. https://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2014-0198, May 2014.

[13] CVE-2014-3513. https://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2014-3513, Oct 2014.

[14] CVE-2015-0206. https://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2015-0206, Jan 2015.

[15] CVE-2015-0291. https://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2015-0291, Mar 2015.

[16] CVE-2015-0292. https://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2015-0292, Mar 2015.

[17] DENG, X., LEE, J., AND ROBBY. Bogor/kiasan: A k-bounded
symbolic execution for checking strong heap properties of open
systems. In Proc. of the 21st IEEE International Conference on
Automated Software Engineering (2006), pp. 157–166.

[18] ENGLER, D., AND DUNBAR, D. Under-constrained execution:
making automatic code destruction easy and scalable. In Proc.
of the Intl. Symposium on Software Testing and Analysis (ISSTA)
(2007).

[19] ENGLER, D., YU CHEN, D., HALLEM, S., CHOU, A., AND
CHELF, B. Bugs as deviant behavior: A general approach to
inferring errors in systems code. In Proc. of the 18th ACM Sym-
posium on Operating Systems Principles (SOSP ’01) (2001).

[20] FREIER, A. RFC 6101: The Secure Sockets Layer (SSL) Protocol
Version 3.0. Internet Engineering Task Force (IETF), Aug 2011.

[21] GODLIN, B., AND STRICHMAN, O. Regression verification:
proving the equivalence of similar programs. Software Testing,
Verification and Reliability 23, 3 (2013), 241–258.

[22] GOODIN, D. OpenSSL warns of two high-severity bugs, but no
Heartbleed. Ars Technica (March 2015).

[23] HASTINGS, R., AND JOYCE, B. Purify: Fast detection of mem-
ory leaks and access errors. In Proc. of the USENIX Winter Tech-
nical Conference (USENIX Winter ’92) (Dec. 1992), pp. 125–
138.

[24] HAUSWIRTH, M., AND CHILIMBI, T. M. Low-overhead mem-
ory leak detection using adaptive statistical profiling. In Proc. of
the Intl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS) (2004).

[25] INTERNATIONAL TELECOMMUNICATION UNION. ITU-T Rec-
ommendation X.680: Abstract Syntax Notation One (ASN.1):
Specification of basic notation, Nov 2008.

[26] KHURSHID, S., PASAREANU, C. S., AND VISSER, W. Gen-
eralized symbolic execution for model checking and testing. In
Proc. of Intl. Conf. on Tools and Algos. for the Construction and
Analysis of Sys. (2003).

[27] LAHIRI, S., HAWBLITZEL, C., KAWAGUCHI, M., AND RE-
BELO, H. SymDiff: A language-agnostic semantic diff tool for
imperative programs. In Proc. of Intl. Conf. on Computer Aided
Verification (CAV) (2012).

[28] LAHIRI, S. K., MCMILLAN, K. L., SHARMA, R., AND HAW-
BLITZEL, C. Differential assertion checking. In Proc. of Joint
Meeting on Foundations of Software Engineering (FSE) (2013).

[29] LATTNER, C., AND ADVE, V. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proc.
of the Intl. Symp. on Code Generation and Optimization (CGO)
(2004).

[30] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. Pin: building customized program analysis tools with dy-
namic instrumentation. In Proc. of ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (PLDI) (2005).

[31] MARINESCU, P. D., AND CADAR, C. High-coverage symbolic
patch testing. In Proc. of Intl. SPIN Symp. on Model Checking
Software (2012).

[32] MARINESCU, P. D., AND CADAR, C. KATCH: High-coverage
testing of software patches. In Proc. of 9th Joint Mtg. on Foun-
dations of Software Engineering (FSE) (2013).

[33] NECULA, G. C., MCPEAK, S., AND WEIMER, W. Ccured:
type-safe retrofitting of legacy code. In Proc. of Symp. on Princi-
ples of Programming Languages (POPL) (2002).

[34] NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In Proc. of
the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation (PLDI ’07) (June 2007), pp. 89–100.

[35] NEWSOME, J., AND SONG, D. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of exploits on
commodity software. In Proc. of Network and Distributed Sys-
tems Security Symp. (NDSS) (2005).

[36] OpenSSL. https://www.openssl.org/source.
[37] PARTUSH, N., AND YAHAV, E. Abstract semantic differencing

for numerical programs. In Proc. of Intl. Static Analysis Sympo-
sium (SAS) (2013).

[38] PERSON, S., DWYER, M. B., ELBAUM, S., AND PĂSĂREANU,
C. S. Differential symbolic execution. In Proc. of ACM SIGSOFT
Intl. Symposium on Foundations of Software Engineering (FSE)
(2008), pp. 226–237.

[39] PERSON, S., YANG, G., RUNGTA, N., AND KHURSHID, S. Di-
rected incremental symbolic execution. In Proc. of ACM SIG-
PLAN Conf. on Programming Language Design and Implemen-
tation (PLDI) (2011).

[40] PĂSĂREANU, C. S., AND RUNGTA, N. Symbolic PathFinder:
Symbolic execution of java bytecode. In Proc. of the IEEE/ACM
International Conf. on Automated Software Engineering (ASE)
(2010).

[41] QI, D., ROYCHOUDHURY, A., AND LIANG, Z. Test generation
to expose changes in evolving programs. In Proc. of IEEE/ACM
Intl. Conf. on Automated Software Engineering (ASE) (2010).

[42] RAMOS, D. A. Under-constrained symbolic execution: correct-
ness checking for real code. PhD thesis, Stanford University,
2015.

[43] RAMOS, D. A., AND ENGLER, D. R. Practical, low-effort equiv-
alence verification of real code. In Proc. of Intl. Conf. on Com-
puter Aided Verification (CAV) (2011).

[44] UNANGST, T. Commit e76e308f (tedu): on today’s episode of
things you didn’t want to learn. http://anoncvs.estpak.

ee/cgi-bin/cgit/openbsd-src/commit/lib/libssl?

id=e76e308f, Apr 2014.
[45] XIE, Y., AND AIKEN, A. Context- and path-sensitive memory

leak detection. In Proc. of the Intl. Symp. on Foundations of Soft-
ware Engineering (FSE) (2005).

[46] XIE, Y., AND AIKEN, A. Scalable error detection using boolean
satisfiability. In Proc. of the 32nd ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages (POPL) (2005),
pp. 351–363.

