
This paper is included in the Proceedings of the
22nd USENIX Conference on File and Storage Technologies.

February 27–29, 2024 • Santa Clara, CA, USA
978-1-939133-38-0

Open access to the Proceedings
of the 22nd USENIX Conference on

File and Storage Technologies
is sponsored by

RFUSE: Modernizing Userspace Filesystem
Framework through Scalable Kernel-Userspace

Communication
Kyu-Jin Cho, Jaewon Choi, Hyungjoon Kwon, and Jin-Soo Kim,

Seoul National University
https://www.usenix.org/conference/fast24/presentation/cho

RFUSE: Modernizing Userspace Filesystem Framework
through Scalable Kernel-Userspace Communication

Kyu-Jin Cho, Jaewon Choi, Hyungjoon Kwon, and Jin-Soo Kim

Seoul National University

Abstract
With the advancement of storage devices and the increasing

scale of data, filesystem design has transformed in response to
this progress. However, implementing new features within an
in-kernel filesystem is a challenging task due to development
complexity and code security concerns. As an alternative,
userspace filesystems are gaining attention, owing to their
ease of development and reliability. FUSE is a renowned
framework that allows users to develop custom filesystems
in userspace. However, the complex internal stack of FUSE
leads to notable performance overhead, which becomes even
more prominent in modern hardware environments with high-
performance storage devices and a large number of cores.

In this paper, we present RFUSE, a novel userspace filesys-
tem framework that utilizes scalable message communication
between the kernel and userspace. RFUSE employs a per-core
ring buffer structure as a communication channel and effec-
tively minimizes transmission overhead caused by context
switches and request copying. Furthermore, RFUSE enables
users to utilize existing FUSE-based filesystems without mak-
ing any modifications. Our evaluation results indicate that
RFUSE demonstrates comparable throughput to in-kernel
filesystems on high-performance devices while exhibiting
high scalability in both data and metadata operations.

1 Introduction

Traditionally, filesystems have been implemented within the
OS kernel, primarily for direct-attached block devices, such as
Hard Disk Drives (HDDs) or Solid State Disks (SSDs). With
the advent of next-generation storage devices, there have been
significant shifts in filesystem design. Since these emerging
storage devices offer high performance and unique data ac-
cess interfaces, there have been proposals for new filesystems
specifically tailored to those innovative hardware advance-
ments. For Non-Volatile Memory (NVM) [6], which offers
low-latency performance comparable to main memory, many
filesystems are designed to support Direct-Access (DAX)
mode. This mode eliminates redundant memory copying and
facilitates direct access to NVM [24, 26, 38, 39]. Filesystems

optimized for Zoned-Namespace (ZNS) SSDs [11] actively
control data placement, ensuring alignment with the device’s
interface that mandates sequential data writes [16, 31].

Furthermore, the explosive growth in data scale has led
to the development of various distributed storage solutions.
These storage platforms offer finely tuned APIs that are opti-
mized for their internal architectures. Consequently, the cus-
tomization of filesystems to enhance performance for spe-
cific workloads and platforms has become a prevalent prac-
tice [5, 8, 10, 17, 37, 41].

Yet, developing and modifying an in-kernel filesystem is
challenging. Developers must possess a deep understanding
of intricate kernel subsystems, including page cache, memory
management, block layers, and device drivers, among others.
Additionally, there is a risk of inadvertently misusing complex
kernel interfaces. This inherent complexity often leads to
insecure implementations of in-kernel filesystems, rendering
them vulnerable to critical issues, including system crashes.
In addition, efforts to integrate specialized functionalities into
existing in-kernel filesystems can intensify these challenges.

Alternatively, userspace filesystems are gaining attention in
both industry and academia owing to their notable advantages.
They offer greater reliability and safety since programming
errors won’t compromise the whole system. They can also
leverage mature user-level libraries and debugging tools, sim-
plifying filesystem maintenance. Userspace filesystems are
easily portable across different operating systems, in contrast
to in-kernel filesystems which are intrinsically tied to a spe-
cific OS kernel interface.

FUSE [36] is a framework that allows users to develop
custom filesystems without requiring kernel-level modifica-
tions. It enables filesystem operations to be implemented in
userspace, making it easier to develop and maintain special-
ized filesystems for various purposes, including filesystems
for new types of storage devices, networked or distributed
filesystems, or user-specific data storage. FUSE has gained
popularity for its flexibility and compatibility, making it a
valuable tool for building user-level filesystem extensions.

However, FUSE is often criticized for the significant over-
head it incurs due to its complex software stack. Each FUSE

USENIX Association 22nd USENIX Conference on File and Storage Technologies 141

request, originating from the Virtual File System (VFS)
layer, must undergo multiple steps before finally reaching the
userspace implementation. During this process, FUSE incurs
several context switches between the kernel and userspace and
memory copy overhead. Also, the single queue used by the
FUSE driver to dispatch filesystem requests to the userspace
FUSE daemon prevents FUSE from achieving scalable per-
formance. These overheads become even more prominent in
modern hardware environments with a large number of cores
and high-performance devices.

Numerous efforts have been made to mitigate the inher-
ent overhead in FUSE [3, 15, 23]. These approaches primar-
ily focus on enhancing communication between the kernel
and userspace, aiming for performance on par with in-kernel
filesystems. However, they are only partially effective, since
they share the FUSE’s fundamental design that relies on a sin-
gle queue. Moreover, they often require developers to either
reimplement the filesystem functions or introduce new im-
plementations, which makes them incompatible with existing
FUSE-based filesystems.

In this paper, we introduce RFUSE, a novel userspace
filesystem framework designed to support scalable communi-
cation between the kernel and userspace. RFUSE is specifi-
cally engineered to mitigate the overheads in FUSE’s internal
architecture and offers improved support for modern hardware
environments. To achieve this, RFUSE leverages a ring buffer
data structure, commonly used for efficient message passing,
to facilitate kernel-userspace communication. RFUSE has the
following three design goals:

• Scalable kenel-userspace communication. RFUSE em-
ploys per-core, NUMA-aware ring channels, ensuring
that requests transmitted across distinct channels are
delivered free from lock contention. This approach max-
imizes the parallelism of request processing, resulting in
high scalability.

• Efficient request transmission. RFUSE maps the ring
channels as shared memory between the kernel and
userspace and uses hybrid polling to efficiently transmit
requests and replies. This approach effectively reduces
context switches and request copy overheads.

• Full compatibility with existing FUSE-based filesys-
tems. RFUSE provides the same set of APIs as FUSE,
allowing existing FUSE-based filesystems to run seam-
lessly on RFUSE without any modifications.

To demonstrate RFUSE’s scalability in a contemporary
hardware environment, we carried out a series of experiments,
comparing the results with other userspace filesystem frame-
works. Our evaluation shows that RFUSE effectively reduces
communication latency by 53%. In addition, RFUSE exhibits
significantly better performance in the majority of I/O work-
loads. Especially, RFUSE achieves 2.27x higher through-
put than FUSE in the random read workload. Furthermore,

Figure 1: The internal architecture of the FUSE framework.
For brevity, the forget queue and the interrupt queue are omit-
ted in this figure.

RFUSE achieves better scalability than other frameworks in
both data and metadata operations. Under the several mac-
robenchmarks that simulate real-world use cases, RFUSE
demonstrates high performance comparable to the in-kernel
filesystem. The source code of RFUSE is publicly available
at https://github.com/snu-csl/rfuse.

The rest of the paper is organized as follows. We first
present our background and motivation in Section 2. Sec-
tion 3 describes the design of RFUSE and Section 4 shows
the experimental results. We briefly introduce related work
in Section 5 and conclude the paper in Section 6.

2 Background and Motivation

2.1 FUSE (Filesystem in Userspace)

FUSE enables unprivileged users to develop their own filesys-
tems without modifying the kernel. Figure 1 illustrates the
internal architecture of the FUSE framework. FUSE consists
of two main components: the FUSE driver within the kernel
and the userspace FUSE daemon created when the FUSE-
based filesystem is mounted.

When the FUSE driver is loaded, it creates a particular
device, /dev/fuse, which acts as an intermediary between the
Virtual File System (VFS) and the FUSE-based filesystem.
Internally, the FUSE driver has five types of queues: back-
ground, pending, processing, forget, and interrupt. The first
three queues are used to route requests for filesystem opera-
tions to the FUSE daemon. The forget queue is for interaction
with the directory cache (dcache), while the interrupt queue
handles interrupt requests, which are generated when the ker-
nel needs to interrupt an ongoing filesystem operation.

142 22nd USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/snu-csl/rfuse

Figure 2: Latency breakdown for processing an empty filesys-
tem operation (CREATE) in FUSE.

When applications initiate a file operation on a FUSE-
based filesystem, VFS sends the request to the FUSE driver.
The driver then enqueues the request in the appropriate queue
depending on whether it is a synchronous or an asynchronous
request. Synchronous requests are immediately added to the
pending queue. In contrast, asynchronous requests, such as
read-ahead or write-back requests, are initially put into the
background queue before making their way to the pending
queue. The FUSE driver limits the number of asynchronous re-
quests in the pending queue to prevent interference from bulk
asynchronous requests. This strategy is particularly beneficial
for preserving the responsiveness of synchronous requests
that are usually latency-sensitive.

When a FUSE-based filesystem is mounted, the FUSE dae-
mon is initiated and establishes a communication channel by
performing an open() system call on /dev/fuse. Subsequently,
the FUSE daemon creates a worker thread that performs a
read() system call on /dev/fuse to retrieve file operation re-
quests. If there are no pending requests, the thread sleeps in
a wait queue managed by the FUSE driver, until it receives
further requests. Otherwise, the FUSE driver responds to the
read() system call by returning the first request in the pend-
ing queue. Once the worker thread parses the request, it exe-
cutes the corresponding operation according to the opcode.

A FUSE request consists of the common header, the
operation-specific header, and argument(s). The common
header contains the essential information required by all oper-
ations, such as the opcode and flags that denote the request’s
status. The operation-specific header includes the additional
information specific to each operation. For metadata opera-
tions, the argument usually denotes the name of the target
file(s), whereas for data operations, it indicates the required
data for I/O. Both the FUSE driver and the FUSE daemon ex-
change these information by performing read() and write()
system calls on /dev/fuse. A FUSE reply also contains the
common header and the operation-specific header. In FUSE,
the headers for the request and reply are named in_header
and out_header, respectively.

A FUSE daemon can have multiple worker threads. When
the FUSE daemon finds no more remaining threads to receive
a request from the FUSE driver, it spawns a new worker thread
before handling the received request. There is no explicit

Figure 3: Scalability of random read throughput on StackFS
over EXT4 (FUSE) vs. native EXT4.

limitation on the number of worker threads in FUSE, but it is
implicitly controlled by the limitation imposed on the number
of asynchronous requests that can reside in the pending queue.

2.2 Overheads in FUSE

Although FUSE provides high flexibility in developing
userspace filesystems, its complex stack leads to notable per-
formance overhead.
Latency overhead. As a first step, we conducted a latency
analysis of the CREATE operation on NullFS. NullFS is a
userspace filesystem we developed, which simply returns zero
for any filesystem operation executed in userspace, except for
the LOOKUP operation on the root directory. Figure 2 presents
the latency breakdown of an empty CREATE operation, as ob-
served in our experimental setup (see Section 4.2). The graph
illustrates the various stages of the operation, highlighting the
time taken at each step.

First, we can see that accessing the VFS layer and path
lookup occupies 72% of the total time. Within the VFS layer,
the kernel performs iterative path traversal starting from the
root directory to check the existence of subdirectories and
files. This path-name resolution process results in several
LOOKUP operations directed towards the FUSE daemon in
userspace. Hence, the latency during the initial path lookup
phase (highlighted in green) encompasses the time taken for
multiple rounds of context switches between the kernel and
userspace. Second, the context switch and request copy over-
head between the kernel driver and the FUSE daemon is not
negligible. Even though NullFS does nothing but return the
result, the userspace execution took as long as 18.1 µsec, due
to the context switch overhead. Third, Figure 2 illustrates a
significant overhead, amounting to 39 µsec, when waking up
the application process that awaits a response from the FUSE
daemon.

Several optimizations have been proposed to address the
aforementioned latency issues in FUSE. Android 12 intro-

USENIX Association 22nd USENIX Conference on File and Storage Technologies 143

duced FUSE-passthrough [3] to achieve the performance of
FUSE comparable to direct access to the in-kernel filesystem.
With FUSE-passthrough, the FUSE driver directly forwards
the READ/WRITE requests to the underlying filesystem. How-
ever, this approach bypasses the FUSE daemon, thereby sacri-
ficing FUSE’s ability to support custom userspace filesystem
functions. For this reason, FUSE-passthrough is only effective
for stackable filesystems that pass the unmodified requests
directly to the underlying filesystem.

Another interesting approach is EXTFUSE [15]. It extends
the FUSE framework, enabling the userspace filesystem to
register simple eBPF [12] code snippets into the kernel. This
allows various filesystem functionalities to be executed di-
rectly within a safe sandboxed environment in the kernel,
avoiding costly context switches between the kernel and
userspace. However, EXTFUSE requires filesystem devel-
opers to craft new functionalities within the constraints of
eBPF, including limited code size, bounded loops, restricted
access to kernel data, constrained pointer usage, and so on.
Bandwidth overhead and scalability issues. In FUSE, all
requests from the VFS layer are placed into a shared pending
queue, leading to severe lock contention, especially when
multiple threads execute filesystem operations simultaneously.
Not only does this design fail to harness the full bandwidth
potential, but it also acts as a roadblock in the development
of scalable userspace filesystems.

We ran the FIO benchmark to assess the scalability of ran-
dom read throughput in FUSE, varying the number of FIO
threads from 1 to 321. Figure 3 contrasts the throughput of
the native EXT4 filesystem with that of StackFS over EXT4.
StackFS [4] is a userspace filesystem built on top of FUSE
that merely passes filesystem operations to the underlying
kernel filesystem (EXT4 in this experiment). Figure 3 shows
that the throughput of StackFS fails to scale once the number
of threads exceeds 16, while the throughput on the native
EXT4 filesystem increases linearly. We note that even with
a small number of threads, StackFS’s bandwidth lags behind
that of EXT4. We believe that the single queue-based commu-
nication in FUSE prevents StackFS from attaining scalable
performance.

Recently, XFUSE [23] proposes the use of multiple commu-
nication channels to increase parallelism in FUSE. However,
just adding more queues does not completely resolve the lock
contention. Furthermore, the inherent context switch overhead
from the original FUSE design still remains.

2.3 Motivation
Our work is inspired by io_uring [19], an efficient I/O inter-
face introduced by the Linux kernel to address the limitations
of the native asynchronous I/O interface. The io_uring inter-
face is built around two primary elements: the Submission
Queue (SQ) that holds I/O requests placed by applications,

1The experimental setup is same as in Figure 10 (d)

and the Completion Queue (CQ) that contains the results of
those I/O requests. Typically, io_uring notifies the kernel of
the submission of a new I/O request and fetches completion
events from the kernel by calling the io_uring_enter() sys-
tem call. However, io_uring offers an additional feature called
polled I/O mode to eliminate systems calls for low latency
devices. In this mode, a dedicated kernel thread monitors the
submission queue while the user application polls the comple-
tion queue. The polled I/O mode enables io_uring to operate
without frequently making system calls.

At its core, io_uring provides a shared memory-mapped
ring buffer between the kernel and userspace to process mes-
sages to/from block devices. Using a ring buffer offers nu-
merous advantages. First, messages (request commands or
completion entries) can be enqueued into the ring buffer atom-
ically with constant-time complexity. This capability allows
the ring buffer to handle burst messages with low latency,
yielding high throughput. Second, the ring buffer can be eas-
ily scaled to handle increased throughput by either enlarging
its size or adding more ring buffers. Especially, a separate
ring buffer can be allocated for each CPU core to minimize
potential lock contention.

A comparable architecture is also employed as the com-
munication interface between CPUs and peripheral devices.
For instance, the NVMe protocol [13] utilizes a pair of ring
buffers, Submission Queue (SQ) and Completion Queue (CQ),
to interact with the NVMe SSDs. Similarly, Ethernet NICs
(Network Interface Cards) employ Transmit (TX) and Receive
(RX) ring buffers to manage outgoing and incoming network
packets.

In this paper, we propose RFUSE, a novel and scalable
FUSE framework that leverages a collection of ring buffers
for communication between the in-kernel FUSE driver and the
userspace FUSE daemon. RFUSE strives to enhance the scala-
bility of the FUSE framework and reduce both context switch
and request copy overheads by deploying ring buffer-based,
per-core communication channels between the kernel and
userspace. Another goal of RFUSE is to maintain the same
interface as FUSE so that existing FUSE-based userspace
filesystems can be executed easily over RFUSE.

3 Design

RFUSE utilizes the ring buffer structure for scalable com-
munication between the kernel and userspace, similar to the
io_uring interface. We could not directly utilize io_uring be-
cause io_uring performs request submission in the user-to-
kernel direction, which does not align with the FUSE structure
where kernel-to-user submission is necessary. Furthermore,
as io_uring has its own kernel context, we find it challenging
to facilitate flexible optimizations within the FUSE structure.

Instead, we have designed a novel ring channel based on
a ring buffer structure, specifically to meet the needs of the
FUSE framework. In this section, we delve into the mechan-

144 22nd USENIX Conference on File and Storage Technologies USENIX Association

Figure 4: The overall architecture of RFUSE

ics of our ring channels and describe the design challenges
associated with them.

3.1 Overall Architecture of RFUSE

RFUSE is designed to maximize performance and scalabil-
ity in modern hardware environments that are equipped with
many CPU cores and high-performance devices. Figure 4 de-
picts the overall architecture of RFUSE. Similar to FUSE,
RFUSE consists of two main components: the in-kernel
RFUSE driver and the userspace RFUSE daemon. However,
unlike FUSE which relies on a single queue for communi-
cation between the kernel and userspace, RFUSE employs
a ring channel-based message passing mechanism for each
core.

When the RFUSE driver is loaded, a ring channel is created
for each core in the machine along with a special device
/dev/rfuse. This architecture is intended to boost throughput by
enabling parallel processing of filesystem operation requests.
When a user mounts an RFUSE-based filesystem, the RFUSE
daemon maps the memory region of these ring channels into
the user’s virtual address space using mmap(). This allows the
userspace filesystem to exchange messages with the kernel
without any context switch (see Section 3.2 for details).

When the RFUSE driver forwards a request to the RFUSE
daemon, it determines the appropriate ring channel for request
delivery based on the CPU core ID where the current thread
is scheduled. For example, if an application thread issuing a
filesystem operation runs on core 3, the RFUSE driver trans-
mits the corresponding request to the RFUSE daemon via
ring channel #3.

RFUSE allocates the memory for ring channels and their
associated components in consideration of NUMA locality.
When a ring channel is allocated to a different NUMA node,
every access during request submission and completion in-
curs remote NUMA memory access penalties, resulting in
substantial latency. To mitigate this, RFUSE allocates each
ring channel to memory on the same NUMA node as its cor-
responding CPU core. This ensures that the RFUSE daemon

Figure 5: Components in a ring channel. For brevity, the
forget and interrupt ring buffers are omitted in this figure.

does not access memory from a different NUMA node while
processing requests.

Replacing the single queue in FUSE with per-core ring
channels looks seemingly straightforward to improve perfor-
mance, but it introduces several design challenges. In the
following subsection, we examine the components of the ring
channel and its internal operations in more detail. Section 3.3
explains how RFUSE manages worker threads on per-core
ring channels. We delve into how RFUSE mitigates context
switch and thread wake-up overhead through hybrid polling
in Section 3.4. Section 3.5 examines RFUSE’s strategies for
load balancing in the face of burst asynchronous requests.
Section 3.6 describes how the RFUSE daemon and the kernel
driver communicate with each other using logical identifiers.
The memory overhead caused by the ring channels is analyzed
in Section 3.7. Lastly, Section 3.8 outlines the extensions we
made in RFUSE to ensure compatibility with existing FUSE-
based filesystems.

3.2 Scalable Kernel-Userspace Communica-
tion

Figure 5 illustrates the internal components of a ring channel
that connects the RFUSE driver and the RFUSE daemon.
Each ring channel has three ring buffers: pending, forget, and
interrupt. In addition, there are two separate buffers and a
background queue exists for each ring channel. Similar to
FUSE, synchronous requests are enqueued directly into the
pending ring buffer, while asynchronous requests are initially
added to the background queue. These asynchronous requests
are subsequently moved to the pending ring buffer to prevent
them from exceeding the predefined maximum capacity of
that buffer.

In contrast to FUSE, which sends a request in response
to the system call, RFUSE utilizes a header buffer and an
argument buffer. Each entry in the header buffer consists of a
common header and an opaque header. The common header
contains the common information for all operations such as

USENIX Association 22nd USENIX Conference on File and Storage Technologies 145

an opcode and a completion flag. During request submission,
the opaque header holds an operation-specific header. Upon
returning the result from userspace, RFUSE reuses the same
header buffer entry as an out header. This approach allows
RFUSE to deliver the request’s outcome to the RFUSE driver
efficiently.

These components of a ring channel are mapped to the
virtual memory area (VMA) of the RFUSE daemon when
an RFUSE-based filesystem is mounted. This establishes a
shared memory space between the kernel and the RFUSE
daemon. Through these shared ring buffers, the kernel can
interact with the RFUSE daemon without the need to allocate
and copy a request for every filesystem operation.

For example, let us consider a scenario where the VFS
layer forwards a CREATE request to the RFUSE driver. The
RFUSE driver first retrieves the index of an empty entry from
the header buffer. Then, the driver fills the common parameter
in the common header part and uses the opaque header part
as create_in_header which is the operation-specific header
of the CREATE request. Additionally, since the CREATE op-
eration requires a filename as an argument, the driver gets a
single entry from the argument buffer and records its index
in the common header. After the preparation of the request,
the driver enqueues the index of the header buffer entry into
the pending ring buffer and increments the tail pointer. When
the RFUSE daemon dequeues from the pending queue, it re-
trieves the index of the header buffer and parses the header to
perform the appropriate userspace filesystem operation. In the
case of CREATE, it returns two operation-specific out headers:
entry_out_header containing metadata for the created file,
and open_out_header containing file descriptor information.
These are returned by reusing the opaque header and argu-
ment entry, which are used for request submission and the
reply is transmitted by setting the completion flag in the com-
mon header. This approach significantly reduces the need to
allocate and copy for each of requests and replies and makes
efficient communication between the kernel and userspace.

RFUSE uses bitmaps for both the header buffer and argu-
ment buffer to track the allocation status of entries in these
fixed-sized buffers. When all the bits in the bitmap are set,
indicating that no further requests can be added to the buffer,
application threads will go into a sleep state, waiting for the
completion of previously submitted requests. Upon request
completion, RFUSE resets the corresponding bit in the bitmap
and awakens one of the threads that is in a sleep state, awaiting
its turn.

3.3 Worker Thread Management

For each ring channel, the RFUSE daemon creates dedicated
worker threads responsible for handling the requests received
from that channel. A worker thread is bound to the corre-
sponding CPU core by setting its CPU affinity to the same
core ID as the assigned ring channel.

To completely eliminate lock contention among worker
threads, it is natural to have only one worker thread per ring
channel. However, this single-thread approach can negatively
impact the performance. For instance, when a time-consuming
operation such as FSYNC is in progress, other requests must
wait until the FSYNC operation finishes. Creating as many
worker threads as required, as is done in FUSE, is also not a
viable option. This is because the worker threads associated
with a ring channel are affinitized to the same CPU core,
leading to substantial contention on that particular core.

Considering these constraints, RFUSE permits multiple
workers per ring channel but caps the maximum thread count.
Because the RFUSE daemon spawns only a small number
of worker threads (two, by default) within a ring channel,
contention on a single core remains limited. Note that there
is no lock contention among worker threads operating on
different ring channels.

3.4 Hybrid Polling

In FUSE, the communication between the FUSE driver and
the FUSE daemon relies on read()/write() system calls on
the /dev/fuse device. When the worker threads in the FUSE
daemon no longer have incoming requests to handle, or when
application threads are waiting for a response from the FUSE
daemon, they go into a sleep state until an event wakes them
up. Using system calls leads to frequent context switches, and
the event-wait mechanism between processes adds noticeable
delays on the order of microseconds. This can result in sig-
nificant overhead, particularly for metadata operations which
typically require short latency.

Similar to the polled I/O mode in io_uring, RFUSE also
supports a polling mechanism. In RFUSE, the worker threads
poll the head pointer of the pending ring buffer in userspace
for incoming requests, while the application threads monitor
the completion flag of their submitted requests in the header
buffer, waiting for a response. The use of polling eliminates
not only the context switches caused by system calls, but also
the delays associated with awakening threads from the sleep
state. However, if polling is used in a naive manner, it can
lead to the wastage of CPU resources. This inefficiency is fur-
ther exacerbated in RFUSE, where both kernel and userspace
threads running on the same CPU core.

As a solution, RFUSE adopts a hybrid polling approach.
There is a user-defined period (50µsec, by default) during
which a thread can perform busy-waiting idly. If the appli-
cation thread in the polling state exceeds this period, it will
enter the sleep state, waiting for the completion flag to be
set. For requests that can be quickly handled by the userspace
implementation, the application thread can receive a reply
during polling and return promptly. Otherwise, for requests
with longer latency, it will enter the sleep state, thus avoiding
unnecessary CPU wastage. The worker threads in the RFUSE
daemon also behave similarly; if there are no incoming re-

146 22nd USENIX Conference on File and Storage Technologies USENIX Association

Figure 6: Encoding ring channel information in a 64-bit
integer.

quests while polling the pending ring buffer, they will sleep
in the wait queue.

3.5 Load Balancing of Asynchronous Requests
In the RFUSE driver, asynchronous requests are handled in
a manner similar to FUSE, where they are first added to the
background queue for congestion control before being trans-
ferred to the pending ring buffer. This design aims to minimize
the impact of burst asynchronous requests on synchronous
operations.

However, such a policy poses a problem when it is com-
bined with RFUSE’s ring selection strategy. Because RFUSE
chooses the ring channel based on CPU core ID, a large num-
ber of asynchronous requests can overwhelm a single ring
channel, especially for read-ahead or write-back requests that
are generated in bursts by a single kernel thread. Further-
more, given the limited number of worker threads allocated to
each ring, the throughput of asynchronous operations can be
significantly affected. To address the skewed distribution of
asynchronous requests, RFUSE implements a load-balancing
policy when congestion occurs.

When enqueuing asynchronous requests into the back-
ground queue, RFUSE identifies congestion and attempts to
perform load balancing based on the following two criteria:
(1) when the number of requests waiting in the background
queue exceeds the maximum number of asynchronous re-
quests that can reside in the pending ring buffer, and (2) when
there is a thread in the sleep state due to the prolonged ex-
ecution time within the RFUSE daemon. If congestion is
detected in a ring channel, RFUSE schedules the incoming
asynchronous requests onto different ring channels in a round-
robin fashion. This helps alleviate the load on the congested
ring channel and maximize the utilization of multiple ring
channels, thus increasing the overall throughput.

3.6 Transmission of Ring Channel Information
The RFUSE daemon needs to identify the locations of in-
kernel data structures such as ring buffers, header buffers,
and argument buffers for the following internal operations:
(1) mapping the components of a ring channel in the VMA

by performing mmap() on /dev/rfuse during the initialization
phase, (2) identifying data pages prepared for READ/WRITE
requests from application threads, (3) transitioning to a sleep
state on the wait queue associated with the ring buffer by
ioctl() when the worker thread needs to stop its polling,
and (4) waking up an application thread by ioctl() that has
entered a sleeping state while waiting for completion.

However, the userspace RFUSE daemon cannot know the
exact addresses of those data structures since they are allo-
cated and managed by the kernel driver. Therefore, rather than
relying on physical addresses, the RFUSE daemon utilizes
logical identifiers, such as ring channel IDs, ring buffer types,
and header buffer indexes, to communicate with the kernel
driver. Through these logical identifiers, the userspace dae-
mon can communicate more securely as they do not need
to directly communicate via physical addresses. When the
mmap() system call is invoked, these logical identifiers are
encoded and then passed to the kernel driver using the 64-bit
offset parameter of the mmap() system call.

Figure 6 depicts an example of how to encode ring channel
information in a 64-bit integer. We exclude bits [15:0] due
to page alignment constraints in the offset parameter of
the mmap() system call. We use bits [23:16] to indicate the
ID of the ring channel and bits [31:24] for ring buffer types.
The remaining bits [32:63] are used to specify an entry index
within the header buffer. For the ioctl() system call, this
information is passed as the third parameter.

3.7 Memory Usage of Ring Channels

Throughout the lifespan of a userspace filesystem, ring chan-
nels remain mapped to the RFUSE daemon, retaining memory
until the filesystem is unmounted. The number of ring chan-
nels matches the number of CPU cores, with both the ring
buffer and the header buffer having the same number of en-
tries. Due to some operations such as RENAME that require
two arguments, the argument buffer has twice as many entries
as the ring buffer. With these considerations, we can calculate
the total memory usage due to ring channels as follows:

MemUsage = Nc ×Nr × (Sp +S f +Si +Sh +2×Sa) (1)

where Nc and Nr denote the number of cores and the number
of entries in the ring buffer, respectively. Sp, S f , and Si repre-
sent the entry size of the pending, forget, and interrupt ring
buffer, respectively. Finally, Sh and Sa indicate the entry size
of the header buffer and the argument buffer, respectively.

By default, RFUSE uses the following parameter values (in
bytes): Nr = 4096, Sp = 4 (integer index to the header buffer),
S f = 32, Si = 8, Sh = 256 (the common and opaque header
size), and Sa = 256 (the maximum length of the file name).
Considering an 80-core machine with 256GB of memory, the
estimated memory footprint of ring channels is approximately
250MB. Given that this accounts for about 0.1% of the to-

USENIX Association 22nd USENIX Conference on File and Storage Technologies 147

Figure 7: Latency breakdown for processing an empty filesys-
tem operation (CREATE) in RFUSE.

tal memory size, we believe this level of memory usage is
acceptable.

3.8 Compatibility with FUSE
To make use of the ring channels, we have modified the FUSE
kernel driver and the low-level layer of libfuse that handles
message communication. In RFUSE, the READ/WRITE han-
dlers in the kernel driver, previously used for message com-
munication in FUSE, are now dedicated solely to data trans-
mission for I/O requests.

Nevertheless, RFUSE retains all FUSE APIs exposed to
developers of userspace filesystems. RFUSE also provides the
same splicing I/O interface as FUSE, enabling data transfer
between two in-kernel buffer without data copy into userspace.
Thus, RFUSE ensures full compatibility with existing FUSE-
based filesystems. Users do not need to rewrite their FUSE-
based filesystem code when using RFUSE. The only action
required is to re-link their filesystems with the librfuse library.

Since requests are submitted based on the CPU core ID,
RFUSE requests can be executed out-of-order. Nevertheless,
RFUSE ensures the same level of correctness as FUSE re-
garding request ordering. While FUSE utilizes a single com-
munication queue, the userspace FUSE daemon may have
multiple worker threads. This implies that simultaneous en-
queuing of dependent requests may yield varying outcomes
depending on the userspace filesystem implementation within
FUSE. Consequently, the ordering of requests transmitted in
parallel should be managed either by the VFS layer or through
FSYNC-like operations initiated by applications.

4 Evaluation

4.1 Experimental Setup
Hardware setup. We used two types of testbeds to con-
duct our experiments. The first testbed is a Dell PowerEdge
R750xs server equipped with two Intel(R) Xeon(R) Silver
4316 CPUs (80 logical cores in total) and 256GB of DDR4
memory. This testbed is also equipped with a 2TB Fadu Delta
PCIe 4.0 SSD and a Mellanox ConnectX-6. Note that unless

Figure 8: FIO throughput of StackFS and native EXT4.

Figure 9: FIO throughput of Fuse-nfs and in-kernel NFS.

otherwise explicitly specified about the machine configura-
tion, all experiments were carried out using this testbed. The
second testbed is a Supermicro 7049GP-TRT server with two
Intel(R) Xeon(R) Gold 5218R CPUs (80 logical cores in to-
tal) and 256GB of DDR4 memory. This testbed is equipped
with Mellanox ConnectX-5. For the experiment on Fuse-nfs
in Section 4.3.1, we used this testbed as the client and the first
testbed as the server. Both testbeds run Ubuntu 20.04 LTS
with the Linux kernel version 5.15.0.
FUSE frameworks tested. We conduct a comparative analy-
sis of RFUSE against other userspace filesystem frameworks,
specifically FUSE [36] v3.10.5 and the latest version of EXT-
FUSE [15] available on GitHub. Additionally, we have de-
veloped an emulated version of XFUSE [23], as its source
code is not in the public domain. This emulation encompasses
multiple FUSE communication channels corresponding to the
number of CPU cores and the adaptive waiting strategy that
dynamically adjusts the busy-wait period within the FUSE
driver. We have excluded the RAS feature for supporting
online upgrades of user-level filesystems, as it does not sig-
nificantly impact filesystem performance.
User-level filesystems tested. For our experiments, we con-
sider three userspace filesystem implementations: NullFS,
StackFS [4], and Fuse-nfs [2]. To analyze and contrast the la-
tency associated with request handling in FUSE and RFUSE,
we implemented a very simple userspace filesystem called
NullFS. NullFS only supports the LOOKUP operation on the
root directory, and it merely returns zero for all other op-
erations. StackFS is a stackable userspace filesystem that
forwards incoming filesystem operations to an underlying

148 22nd USENIX Conference on File and Storage Technologies USENIX Association

Figure 10: Scalability with FIO benchmark

in-kernel filesystem, such as EXT4. We evaluate the perfor-
mance of StackFS on top of the EXT4 filesystem across three
different frameworks, FUSE, EXTFUSE, and RFUSE, as well
as that of the native EXT4 filesystem within the kernel. Fuse-
nfs is a userspace implementation of the Network File System
(NFS) client using the libnfs user-level library. Since EXT-
FUSE lacks a ported implementation of Fuse-nfs, our com-
parison focuses on Fuse-nfs running on FUSE and RFUSE,
in addition to the in-kernel implementation of NFS.

4.2 Latency Breakdown
Figure 7 depicts the latency breakdown of a CREATE operation
to NullFS on the root directory, which promptly returns with-
out performing any action in RFUSE. In comparison to the
same operation’s latency in FUSE, as illustrated in Figure 2,
RFUSE demonstrates a 53% lower latency. The substantial
improvement in latency can be attributed to three primary
factors.

First, RFUSE eliminates the need for context switches
when processing requests and results. By accessing the pend-
ing ring buffer, RFUSE can retrieve the requests to be exe-
cuted and quickly return the results by setting the completion
flag of the corresponding entry in the header buffer. Thus,
RFUSE improves the time taken in userspace by 6.46x com-
pared to FUSE (highlighted in white in Figure 2 and Figure 7).

Second, RFUSE effectively minimizes the wake-up over-
head within the kernel driver using a hybrid polling technique.
After sending a request, the application thread polls the com-
pletion flag for a certain duration. Since NullFS returns the
result instantly upon receiving a request, the completion is
detected while the application thread is still polling, enabling
immediate result retrieval.

The last factor is the improved time required for path traver-
sal to verify the existence of subdirectories and files. As men-
tioned in Section 2.2, the path-name resolution initiated by
the VFS layer triggers internal LOOKUP operations to the
FUSE daemon along the path of the target file. Each of these
LOOKUP operations results in a round trip between the kernel
and userspace. Due to the reduced latency in processing a

single request in RFUSE, LOOKUP operations are executed
faster than in FUSE, considerably decreasing the time taken
for path-name resolution.

4.3 Micro-benchmark

4.3.1 FIO Performance

To demonstrate RFUSE’s ability to deliver high throughput,
we perform the FIO benchmark [1] on StackFS and Fuse-nfs.
The FIO benchmark is executed using 32 threads, varying both
the data access pattern and the request size. For sequential
I/O workloads, we use a request size of 128KB and invoke
FSYNC at the end of the sequential writes. For random I/O
workloads, we use a 4KB request size and trigger FDATASYNC
after every write operation during random writes. Each FIO
thread operates on a 4GB file with a total file size of 128GB.
We also conducted the FIO benchmark using the splicing I/O
interface of FUSE and RFUSE. However, we omit the results
as they did not show significant differences. Note that we were
unable to measure the random write throughput of EXTFUSE
as it returned errors in our testing environment.

Figure 8 displays the FIO results for the native EXT4
filesystem and StackFS deployed on various frameworks.
In Figure 8(a), both FUSE and RFUSE exhibit compara-
ble throughput to EXT4 for both sequential read and write
workloads. This is because, for sequential reads, the data is
prefetched into the page cache through read-ahead opera-
tions, and for sequential writes, the written data is collected
in the page cache before being written back in bulk. How-
ever, EXTFUSE exhibits lower throughput even for sequential
workloads compared to other frameworks. EXTFUSE pro-
vides a functionality similar to fuse-passthrough, allowing I/O
operations to be directly passed to the underlying filesystem
via eBPF. However, this functionality was not available in
the open-source version of EXTFUSE on GitHub, limiting its
performance capabilities.

In Figure 8(b), RFUSE shows performance comparable to
the native EXT4 filesystem for random workloads. In particu-
lar, RFUSE achieves 2.27x higher throughput than FUSE in

USENIX Association 22nd USENIX Conference on File and Storage Technologies 149

Figure 11: Scalability with FXMARK metadata operations

random reads. This is due to the effectiveness of RFUSE’s
hybrid polling mechanism in reducing the context switch and
wake-up overhead. Considering that 4KB I/O operations typi-
cally have short execution times, FIO threads can receive the
results while they are polling for them.

We conduct the same workloads on in-kernel NFS and
Fuse-nfs deployed on both FUSE and RFUSE. Although it
may be difficult to make a direct comparison between in-
kernel NFS and Fuse-nfs due to the inherent differences in
their client implementations, we consider the results from
in-kernel NFS as a reference point for theoretical maximum
performance. In Figure 9, RFUSE achieves higher throughput
than FUSE across all workloads due to its scalable communi-
cation interface and a reduction in the average latency.

4.3.2 I/O Scalability

To investigate RFUSE’s scalability compared to FUSE, we
conducted experiments on StackFS with the same workloads
in Section 4.3.1. We gradually increased the number of FIO
threads from 1 to 32, and the results are presented in Figure 10.
We have omitted the results of using splicing I/O as they
followed a similar trend to those in Figure 10.

For sequential workloads, EXT4 demonstrates significantly
higher throughput at lower thread counts. This can be at-
tributed to the inherent characteristics of the FUSE and
RFUSE frameworks that require communication between
the kernel and userspace. Achieving sufficient throughput
with fewer threads is challenging due to the communication
overhead, even with the assistance of the page cache and
read-ahead operations. However, when the number of threads
exceeds 8, RFUSE exhibits throughput comparable to EXT4

Workload Description
MWCL Create empty files in a private directory
MWCM Create empty files in a shared directory
MRDL Enumerate a private directory
MRDM Enumerate a shared directory
MWUL Unlink empty files in a private directory
MWUM Unlink empty files in a shared directory
MRPL Open and close private files in a directory
MRPM Open and close arbitrary files in a directory
MRPH Open and close the same file in a directory

Table 1: Summary of metadata operation in FXMARK.

due to increased parallelism.
In Figure 10(b), we can observe that the sequential read

throughput of RFUSE is lower than that of FUSE when us-
ing only one FIO thread. During the execution for sequential
reads, read-ahead is performed to prefetch data. However, in
RFUSE, this operation can lead to congestion on the ring
channel, triggering RFUSE to initiate load balancing. Conse-
quently, when there is only one thread, RFUSE experiences
a minor performance decline due to the overhead associated
with request reallocation. Nevertheless, with a higher number
of threads, the increased parallelism allows RFUSE to achieve
throughput comparable to EXT4.

For random workloads, RFUSE demonstrates higher
throughput than FUSE while increasing the number of threads.
Notably, in the random read workload, the throughput of
FUSE ceased to scale beyond 16 threads, while RFUSE con-
tinues to show the scalable throughput. RFUSE exhibits better
scalability due to its utilization of per-core ring channels. In
addition, as mentioned in Section 4.3.1, the reduction in con-

150 22nd USENIX Conference on File and Storage Technologies USENIX Association

Figure 12: Thoughput of filebench workloads

text switch and wake-up overhead enabled by hybrid polling
significantly enhances RFUSE’s overall performance.

4.3.3 Metadata Operation Scalability

To evaluate the scalability of RFUSE when performing meta-
data operations, we ran the FXMARK benchmark [29] on
StackFS. Table 1 summarizes the details of the FXMARK bench-
mark used in the experiment. We used all the metadata work-
loads defined in FXMARK, with the exception of the RENAME
workloads named MWRL and MWRM, as StackFS does not sup-
port RENAME operation. Note that we failed to measure the
throughput of MWUL and MWUM on EXTFUSE, as it resulted in
errors in our environment.

Figure 11 depicts the scalability of metadata operations
for the evaluated userspace filesystem frameworks. The re-
sults show that RFUSE consistently demonstrates superior
scalability compared to FUSE and EXTFUSE across the var-
ious workloads. RFUSE leverages per-core, NUMA-aware
ring channels, enhancing the parallelism of metadata oper-
ations and eliminating inter-NUMA accesses, which could
lead to high latency. Furthermore, RFUSE’s hybrid polling
proves particularly effective in metadata operations, because
most of these operations can be completed quickly. This al-
lows RFUSE to achieve both high scalability and superior
throughput in workloads with contention for shared resources
compared to other frameworks.

We note that EXTFUSE shows lower scalability, especially
in MWCL and MWCM. It is possibly due to the key-value maps
used for storing custom data structures in EXTFUSE, which
may not be designed to scale effectively. For the workloads
MRPL, MRPM, and MRPH, all the evaluated frameworks show
similar throughput and scalability. This is because these work-
loads operate on a directory structure with a depth of five,
where path-name resolution becomes the primary operation.
As this operation heavily depends on the dcache in the VFS
layer, there is little variation among the frameworks.

4.4 Macro-benchmarks
Filebench. We performed the filebench benchmark [35]
on StackFS using predefined workloads, namely, fileserver

Figure 13: Thoughput of YCSB benchmark on RocksDB and
sysbench OLTP benchmark on PostgreSQL

and webserver, which contain a mixed set of data and meta-
data operations. The fileserver workload simulates the
behavior of a file server that serves files to multiple clients.
Files are initially created with a size of 128KB and then ex-
panded through 16KB APPEND operations. We executed the
fileserver workload using 200,000 files and 50 threads.
The webserver workload mimics the behavior of a web
server that serves web pages and files to clients over the In-
ternet. Files in the webserver workload are created with a
relatively small size of 16KB. We executed the webserver
workload with 1.25M files using 100 threads. For both work-
loads, the unit size of the READ operation was set to 1MB.

We present the results of these workloads in Figure 12.
In both workloads, RFUSE outperforms FUSE and XFUSE
in throughput and shows performance comparable to EXT4.
XFUSE exhibits superior performance compared to FUSE
due to increased parallelism and its adaptive waiting strat-
egy. However, XFUSE still suffers from context switching
and request copying overhead, resulting in lower throughput
compared to RFUSE. RFUSE, on the other hand, leverages
communication through a ring channel, effectively eliminat-
ing these overheads and achieving higher performance than
other frameworks when handling a mixed set of operations.
YCSB. To evaluate an application-level performance of
each framework on a real-world workload, we deployed
RocksDB [7] on StackFS and measured a throughput using
the YCSB benchmark [18]. For the YCSB workloads in Fig-
ure 13(a), we initially load 50M KV pairs and run each YCSB
workload with a uniform distribution. The results indicate
that RFUSE can attain significant performance improvements
compared to FUSE, demonstrating throughput akin to EXT4
across all YCSB workloads.
OLTP. We also deployed PostgreSQL [21] on StackFS
and measured a TPS (Transactions Per Second) using the
sysbench OLTP benchmark [25]. For the OLTP workload, we
load 50M rows across 10 tables before running the benchmark.
In Figure 13(b), RFUSE demonstrates a 42% higher TPS
compared to FUSE. The results indicate that RFUSE can
handle transaction processing more effectively compared to
FUSE, owing to the enhanced parallelism by per-core ring

USENIX Association 22nd USENIX Conference on File and Storage Technologies 151

Figure 14: Impact of each technique in RFUSE

channels. We can also observe that the TPS results of the
frameworks are relatively lower than EXT4. This is primarily
due to frequent FSYNC operations induced by logging in the
OLTP workload. For the FSYNC operation, both FUSE and
RFUSE initially writeback dirty pages of the target file to the
userspace daemon and wait for the completion of all pending
WRITE requests before dispatching the FSYNC request. This
incurs significant processing overhead for OLTP workloads
on the frameworks, leading to lower throughput compared
to EXT4. To validate this, we measured the performance of
RFUSE after turning off the FSYNC option in the PostgreSQL
(labeled as RFUSE-FO). The result demonstrates that the TPS
of RFUSE-FO is nearly on par with that of EXT4.

4.5 Factor Analysis

To assess the influence of the proposed techniques incor-
porated into RFUSE, we measured the throughput of the
fxmark:MWCL workload on StackFS. Figure 14 illustrates
how throughput varies as we introduce each technique one
by one to FUSE. When we add per-core ring channels, we
observe 2.2x higher throughput compared to the native FUSE,
thanks to the enhanced parallelism. Furthermore, the man-
agement of worker threads with a CPU affinity yields a note-
worthy improvement by mitigating inter-NUMA accesses.
Finally, applying hybrid polling not only reduces latency but
also leads to an observed improvement in throughput, while
reducing contention within CPU cores.

4.6 CPU Utilization

Lastly, we measured the CPU utilization while executing the
fileserver workload used in Section 4.4 on StackFS. Fig-
ure 15 displays the variations in CPU utilization for both
FUSE and RFUSE. Considering that the fileserver work-
load operates with 50 threads on our 80-core machine, the
theoretical maximum CPU utilization is 62.5%.

Owing to its hybrid polling mechanism, RFUSE exhibits

Figure 15: CPU utilization for the fileserver workload

roughly 7% higher CPU usage during execution compared to
FUSE. However, due to RFUSE’s higher throughput on the
fileserver workload, we can see that RFUSE has a shorter
execution time than FUSE. From an energy consumption
perspective, despite its architecture based on hybrid polling,
RFUSE is thought to consume either less or a comparable
amount of energy as FUSE.

5 Related Work

Library Filesystem. A Library Filesystem (libFS, for short),
provides a set of APIs implementing filesystem functionalities
in the form of a user-level library. To access the filesystem
service, applications must be directly linked to libFS during
compile time. LibFS typically does not provide the standard
POSIX interface. Instead, it offers filesystem APIs optimized
either for specific application data access patterns or for the
underlying storage platforms. Due to these benefits, many
distributed filesystems are designed in the form of libFS. Ex-
amples include libhdfs for the Hadoop Distributed File Sys-
tem (HDFS) [17], libcephfs for CephFS [37], and many more
tailored for large-scale storage systems [22, 28, 33, 41]

However, using libFS may pose some challenges. Since
they do not adhere to any standardized API, applications
using the POSIX API cannot directly utilize those filesystems.
Also, application developers need to be familiar with the
intentions and specifics of the target libFS, complicating its
seamless integration with the application. Finally, a change in
the filesystem API or the implementation of new funtionality
require either rewriting or recompiling the application.

System Call Hooking. Several state-of-the-art NVM
(Non-Volatile Memory) filesystems [14, 20, 24, 30] are
implemented using a system call hooking mechanism, which
allows them to directly access the NVM without going
through the kernel by intercepting system calls. This is
typically achieved through LD_PRELOAD [32] which is
an environment variable provided by the dynamic linker,

152 22nd USENIX Conference on File and Storage Technologies USENIX Association

allowing users to specify shared libraries to be loaded prior to
initiating the program execution. By intercepting libc [9] with
LD_PRELOAD, one can create a userspace filesystem using
a custom library that redefines system call wrappers related
to filesystem functions. However, recent studies warn about
the pitfalls of implementing a userspace OS subsystem using
the LD_PRELOAD hook. For example, zpoline [40] argues
that LD_PRELOAD is designed to hook function calls, not
system calls. System calls that are internally invoked through
the syscall or systenter instruction in libc cannot be
successfully hooked by LD_PRELOAD. This can lead to
unexpected behaviors, such as FD inconsistency [27, 40],
as they disrupt the synchronization between the kernel and
userspace subsystems.

Restartable Userspace Filesystem. Although userspace
filesystems are easy to use, a crash in a userspace filesys-
tem remains a significant concern. Recovery from a sudden
crash requires manual intervention, potentially causing dis-
ruption in services to users throughout the recovery period.
Re-FUSE [34] introduces extensions into the FUSE frame-
work for transparent and correct filesystem restart following a
crash. Moreover, XFUSE [23] not only provides transparent
restart capabilities but also supports online upgrades, allowing
the integration of new features into the FUSE-based userspace
filesystem with minimal service downtime. Such restartability
feature enhances the deployment of userspace filesystems in
production environments.

6 Conclusion

RFUSE is a userspace filesystem framework supporting scal-
able kernel-userspace communication. By harnessing per-
core, NUMA-aware ring channels, RFUSE minimizes con-
tention between worker threads and achieves high scalabil-
ity. The ring channels shared between the kernel driver and
the RFUSE daemon also enable RFUSE to perform efficient
message transmission without the need for request copying.
Moreover, a hybrid polling mechanism of RFUSE effectively
reduces the costly context switches. Since RFUSE maintains
the same set of APIs as FUSE, existing FUSE-based filesys-
tems can be used without any modifications. Our evaluation
results shows that RFUSE can seamlessly support modern
hardware environment with its superior throughput and high
scalability.

Acknowledgments

We would like to thank our shepherd, Youyou Lu, and the
anonymous reviewers for their valuable feedback. This work
was supported by the National Research Foundation of Korea
(NRF) grant (No. 2019R1A2C2089773 and No. RS-2023-
00222663), and the Institute of Information & communica-

tions Technology Planning & Evaluation (IITP) grant (No.
IITP-2021-0-01363) funded by the Korea government (MSIT).
This work was also supported in part by a research grant from
Samsung Electronics.

References

[1] fio: Flexible I/O tester. https://fio.readthedocs.
io/en/latest/fio_doc.html.

[2] fuse-nfs: A FUSE module for NFS. https://github
.com/sahlberg/fuse-nfs.

[3] FUSE passthrough. https://source.android.com
/docs/core/storage/fuse-passthrough.

[4] fuse-stackfs. https://github.com/sbu-fsl/fuse-
stackfs.

[5] Gluster Docs. https://docs.gluster.org/en/la
test/Quick-Start-Guide/Architecture/.

[6] Non-Volatime Memory (NVM). https://www.intel.
com/content/www/us/en/products/details/mem
ory-storage/optane-memory.html.

[7] RocksDB: A Persistent Key-Value Store for Flash and
RAM Storage. https://github.com/facebook/ro
cksdb.

[8] S3FS: FUSE-based file system backed by Amazon S3.
https://github.com/s3fs-fuse/s3fs-fuse.

[9] Standard C libraries on Linux. https://man7.org/l
inux/man-pages/man7/libc.7.html.

[10] SwiftFS: a userspace filesystem to mount OpenStack
container in Swift. https://github.com/wizzard/S
wiftFS.

[11] Zoned Namespace (ZNS) SSDs. https://nvmexpre
ss.org/specification/nvme-zoned-namespaces
-zns-command-set-specification/.

[12] eBPF: extended Berkley Packet Filter. https://www.
iovisor.org/technology/ebpf, 2017.

[13] NVMe Express Base Specification. https://nvmexp
ress.org/specifications/, 2017.

[14] Thomas E Anderson, Marco Canini, Jongyul Kim, De-
jan Kostić, Youngjin Kwon, Simon Peter, Waleed Reda,
Henry N Schuh, and Emmett Witchel. Assise: Perfor-
mance and Availability via Client-local NVM in a Dis-
tributed File System. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 1011–1027, 2020.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 153

https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://github.com/sahlberg/fuse-nfs
https://github.com/sahlberg/fuse-nfs
https://source.android.com/docs/core/storage/fuse-passthrough
https://source.android.com/docs/core/storage/fuse-passthrough
https://github.com/sbu-fsl/fuse-stackfs
https://github.com/sbu-fsl/fuse-stackfs
https://docs.gluster.org/en/latest/Quick-Start-Guide/Architecture/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Architecture/
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://github.com/s3fs-fuse/s3fs-fuse
https://man7.org/linux/man-pages/man7/libc.7.html
https://man7.org/linux/man-pages/man7/libc.7.html
https://github.com/wizzard/SwiftFS
https://github.com/wizzard/SwiftFS
https://nvmexpress.org/specification/nvme-zoned-namespaces-zns-command-set-specification/
https://nvmexpress.org/specification/nvme-zoned-namespaces-zns-command-set-specification/
https://nvmexpress.org/specification/nvme-zoned-namespaces-zns-command-set-specification/
https://www.iovisor.org/technology/ebpf
https://www.iovisor.org/technology/ebpf
https://nvmexpress.org/specifications/
https://nvmexpress.org/specifications/

[15] Ashish Bijlani and Umakishore Ramachandran. Exten-
sion framework for file systems in user space. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 121–134, 2019.

[16] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R Ganger,
and George Amvrosiadis. ZNS: Avoiding the block
interface tax for flash-based SSDs. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages
689–703, 2021.

[17] Dhruba Borthakur et al. HDFS Architecture Guide.
Hadoop apache project, 53(1-13):2, 2008.

[18] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[19] Diego Didona, Jonas Pfefferle, Nikolas Ioannou,
Bernard Metzler, and Animesh Trivedi. Understand-
ing modern storage APIs: a systematic study of libaio,
SPDK, and io_uring. In Proceedings of the 15th ACM
International Conference on Systems and Storage, pages
120–127, 2022.

[20] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and protection in the ZoFS
user-space NVM file system. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
pages 478–493, 2019.

[21] Joshua D Drake and John C Worsley. Practical Post-
greSQL. " O’Reilly Media, Inc.", 2002.

[22] Hao Guo, Youyou Lu, Wenhao Lv, Xiaojian Liao,
Shaoxun Zeng, and Jiwu Shu. SingularFS: A Billion-
Scale Distributed File System Using a Single Metadata
Server. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23), pages 915–928, 2023.

[23] Qianbo Huai, Windsor Hsu, Jiwei Lu, Hao Liang, Haobo
Xu, and Wei Chen. XFUSE: An Infrastructure for
Running Filesystem Services in User Space. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pages 863–875, 2021.

[24] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing software overhead in file systems
for persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 494–
508, 2019.

[25] Alexey Kopytov. Sysbench manual. MySQL AB, pages
2–3, 2012.

[26] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 460–
477, 2017.

[27] James Lembke, Pierre-Louis Roman, and Patrick Eug-
ster. DEFUSE: An Interface for Fast and Correct User
Space File System Access. ACM Transactions on Stor-
age (TOS), 18(3):1–29, 2022.

[28] Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan, and
Jiwu Shu. InfiniFS: An Efficient Metadata Service for
Large-Scale Distributed Filesystems. In 20th USENIX
Conference on File and Storage Technologies (FAST 22),
pages 313–328, 2022.

[29] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and
Taesoo Kim. Understanding manycore scalability of file
systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 71–85, 2016.

[30] Nafiseh Moti, Frederic Schimmelpfennig, Reza
Salkhordeh, David Klopp, Toni Cortes, Ulrich Rückert,
and André Brinkmann. Simurgh: a fully decentral-
ized and secure NVMM user space file system. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, pages 1–14, 2021.

[31] Myounghoon Oh, Seehwan Yoo, Jongmoo Choi,
Jeongsu Park, and Chang-Eun Choi. ZenFS+: Nurtur-
ing Performance and Isolation to ZenFS. IEEE Access,
11:26344–26357, 2023.

[32] Kevin Pulo. Fun with ld_preload. In linux. conf. au,
volume 153, page 103, 2009.

[33] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson.
IndexFS: Scaling file system metadata performance with
stateless caching and bulk insertion. In SC’14: Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 237–248. IEEE, 2014.

[34] Swaminathan Sundararaman, Laxman Visampalli, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
Refuse to crash with Re-FUSE. In Proceedings of the
sixth conference on Computer systems, pages 77–90,
2011.

[35] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A flexible framework for file system bench-
marking. USENIX; login, 41(1):6–12, 2016.

[36] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and
Erez Zadok. To FUSE or not to FUSE: Performance of
User-Space file systems. In 15th USENIX Conference on

154 22nd USENIX Conference on File and Storage Technologies USENIX Association

File and Storage Technologies (FAST 17), pages 59–72,
2017.

[37] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation, pages 307–320, 2006.

[38] Matthew Wilcox. Add support for NV-DIMMs to ext4.
https://lwn.net/Articles/613384/.

[39] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid Volatile/Non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, 2016.

[40] Kenichi Yasukata, Hajime Tazaki, Pierre-Louis Aublin,
and Kenta Ishiguro. zpoline: a system call hook mech-
anism based on binary rewriting. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23), pages
293–300, 2023.

[41] Qing Zheng, Kai Ren, Garth Gibson, Bradley W Settle-
myer, and Gary Grider. DeltaFS: Exascale file systems
scale better without dedicated servers. In Proceedings
of the 10th Parallel Data Storage Workshop, pages 1–6,
2015.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 155

https://lwn.net/Articles/613384/.

A Artifact Appendix

A.1 Abstract
RFUSE is a novel userspace filesystem framework that uti-
lizes scalable message communication between the kernel
and userspace using a per-core ring channel as a communica-
tion channel. This artifact comprises the RFUSE source code
and scripts utilized in the benchmarks presented in the pa-
per. RFUSE is implemented by modifying both the user-level
library and the kernel driver of FUSE. Furthermore, this ap-
pendix provides comprehensive instructions on accessing our
artifact and reproducing the results achieved in our research.

A.2 Scope
The following items represent major claims that our artifact
allows to validate. For detailed descriptions and insights into
the relationship between the artifact and experiments, please
refer to claims.md
(Claim 1): For sequential I/O operations, all frameworks

and EXT4 show similar throughput due to the aid of
page cache in the kernel. For random I/O operations,
RFUSE demonstrates higher throughput than FUSE due
to the hybrid polling mechanism in reducing context
switch and wake-up overhead.

(Claim 2): RFUSE scales well for common data operations
due to its utilization of per-core ring channels.

(Claim 3): RFUSE scales well for common metadata oper-
ations due to enhancing the parallelism of metadata
operations and eliminating inter-NUMA accesses. For
MRPL, MRPM and MRPH workloads, all frameworks and
EXT4 show similar scalability due to the aid of dcache
in the kernel.

(Claim 4): For filebench macro workloads, RFUSE out-
performs FUSE and shows performance comparable
to EXT4, which indicate that RFUSE is well-suited for
handling a mixed set of operations.

(Claim 5): RFUSE demonstrates shorter latency than FUSE
on NullFS due to the reduction of communication over-
heads.

A.3 Contents
The submitted artifact consists of 5 components:

1. The kernel drivers, which contain the kernel driver codes
for both FUSE and RFUSE.

2. The user-level libraries, which contain the user-level
library for both FUSE and RFUSE.

3. The linux kernel source code (v5.15.0).

4. The filesystems, which include the source code of NullFS
and StackFS.

5. The benchmarks, which are used in the experiments in
the paper.

A.4 Hosting
The source code of RFUSE is publicly available at https:
//github.com/snu-csl/rfuse and the latest version of
RFUSE is uploaded on the master branch.

A.5 Requirements
A.5.1 Hardware Requirements

We evaluated RFUSE on the machine equipped with Fadu
Delta PCIe 4.0 SSD and 80 logical cores. For machines with
older PCIe generation devices and the small number of cores,
the benchmarks may not show similar results we present in
the paper, but we believe the overall trends should be similar.

A.5.2 Software Requirements

We developed the RFUSE kernel driver compatible with Linux
kernel version 5.15.0. To ensure the correct compilation of
our artifact, please verify that your machine’s kernel version
matches v5.15.0.

All provided instructions are tailored for the Ubuntu OS
distribution. If you intend to utilize a different Linux distribu-
tion, adjust the environment setup instructions based on the
specific distribution you are using.

A.6 Set-up
This section provides concise instructions for setting up the
environment and installing RFUSE from scratch. For com-
prehensive details including steps for mounting user-level
filesystems, please refer to README.md.

1. Git clone our repository. The rest of the instructions
assume you are in the project directory.

2. Install the Linux kernel v5.15.0 and reboot using the
installed Linux kernel.

(a) cd linux && make menuconfig

(b) Configure CONFIG_FUSE_FS=m

(c) make-kpkg –initrd –revision=1.0 kernel_image ker-
nel_headers

(d) cd .. && dpkg -i *.deb

(e) Update grub to load the kernel v5.15.0 and reboot.

3. Configure the number of ring channel as the number of
CPU cores in the machine.

(a) vi lib/libfuse/include/rfuse.h driver/rfuse/rfuse.h

156 22nd USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/snu-csl/rfuse/blob/master/bench/claims.md
https://github.com/snu-csl/rfuse
https://github.com/snu-csl/rfuse
https://github.com/snu-csl/rfuse/blob/master/README.md

(b) Change the value of RFUSE_NUM_IQUEUE in each
file to the number of cores in machine.

4. Compile and install the user library and kernel driver of
RFUSE.

(a) cd lib/librfuse && ./librfuse_install.sh

(b) cd driver/rfuse && make && ./rfuse_insmod.sh

5. Add the location of the library to tell the dynamic link
loader where to search for the library.

A.7 Experiments
For artifact evaluation, we have provided convenient scripts to
execute the benchmarks used in our experiments. Please refer
to bench/README.md for detailed instructions. Note that this
guideline assumes the use of a machine with an additional
storage device for conducting the experiments.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 157

https://github.com/snu-csl/rfuse/blob/master/bench/README.md

	Introduction
	Background and Motivation
	FUSE (Filesystem in Userspace)
	Overheads in FUSE
	Motivation

	Design
	Overall Architecture of RFUSE
	Scalable Kernel-Userspace Communication
	Worker Thread Management
	Hybrid Polling
	Load Balancing of Asynchronous Requests
	Transmission of Ring Channel Information
	Memory Usage of Ring Channels
	Compatibility with FUSE

	Evaluation
	Experimental Setup
	Latency Breakdown
	Micro-benchmark
	FIO Performance
	I/O Scalability
	Metadata Operation Scalability

	Macro-benchmarks
	Factor Analysis
	CPU Utilization

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Scope
	Contents
	Hosting
	Requirements
	Hardware Requirements
	Software Requirements

	Set-up
	Experiments

