
This paper is included in the Proceedings of the
22nd USENIX Conference on File and Storage Technologies.

February 27–29, 2024 • Santa Clara, CA, USA
978-1-939133-38-0

Open access to the Proceedings
of the 22nd USENIX Conference on

File and Storage Technologies
is sponsored by

I/O in a Flash: Evolution of ONTAP
to Low-Latency SSDs

Matthew Curtis-Maury, Ram Kesavan, Bharadwaj V R, Nikhil Mattankot,
Vania Fang, Yash Trivedi, Kesari Mishra, and Qin Li, NetApp, Inc

https://www.usenix.org/conference/fast24/presentation/curtis-maury

I/O in a Flash: Evolution of ONTAP to Low-Latency SSDs

Matthew Curtis-Maury, Ram Kesavan*, Bharadwaj V R∗, Nikhil Mattankot, Vania Fang,
Yash Trivedi, Kesari Mishra†, and Qin Li

NetApp, Inc

Abstract
Flash-based persistent storage media are capable of sub-
millisecond latency I/O. However, a storage architecture op-
timized for spinning drives may contain software delays that
make it impractical for use with such media. The NetApp®

ONTAP® storage system was designed originally for spin-
ning drives, and needed alterations before it was productized
as an all-SSD system. In this paper, we focus on the changes
made to the read I/O path over the last several years, which
have been crucial to this transformation, and present them
in chronological fashion together with the associated perfor-
mance analyses.

1 Introduction

The advent of flash-based storage about a decade ago trans-
formed the business of data center storage controllers. De-
spite improvements in several dimensions, the time to ac-
cess any randomly selected data from storage had histori-
cally remained limited by physical constraints of spinning
hard disk drive (HDD) technology. NAND-based solid state
drives (SSDs) provided orders of magnitude lower latency
and higher IOPS. In the last decade, several SSD-optimized
or SSD-only architectures for data center storage controllers
have been built and productized.

NetApp’s® flagship feature-rich ONTAP® storage operat-
ing system is deployed in various configurations both within
the data-center and in the cloud. ONTAP and its propri-
etary WAFL® file system [19] were optimized over their first
two decades to maximize available I/O bandwidth on HDDs
(with multi-millisecond latencies) for both reads and writes,
and with a modular architecture to allow ongoing feature de-
velopment. Most features of the WAFL architecture are re-
quired of any enterprise-quality storage system regardless of
the underlying persistent media: data integrity [38], avail-
ability, data protection [51], recovery [28], etc. WAFL meta-
data was designed to optimize random metadata lookups
from media, efficiently write out data and metadata to stor-
age [25, 29], and to enable key functionality such as snap-

*Currently employed at Google, †Currently employed at Meta

shots. Compression and deduplication techniques in WAFL
improved efficiency in storage capacity. The WAFL consis-
tency point converted random updates of user data and meta-
data into sequential I/O [13, 30], and wrote blocks to areas
with the most free space, which turned out to be well-suited
to minimizing FTL write amplification in SSDs.

ONTAP also integrated flash technology—PCIe-attached
Flash Cache® [54] and SSD tiering in Flash Pool® [55]— but
due to software delays in the ONTAP legacy data path, appli-
cations benefitted only partially from SSD’s sub-millisecond
latency, particularly for random reads. As such, ONTAP was
faced with the challenge of making I/O software overhead
commensurate with device latency in order to ship a com-
petitive all-SSD system. Other legacy storage systems have
similarly found software overhead out of proportion to low-
latency device access times [8, 24, 32, 33, 40, 57, 62, 71].
Building a new storage architecture “from scratch” for SSDs
would have required reinventing dozens of battle-tested fea-
tures that were critical to our enterprise customers. As noted
above, ONTAP and WAFL already had most of the building
blocks necessary for building an all-SSD controller. There-
fore, we instead reworked the legacy read path to speed it up
incrementally over several software releases spanning multi-
ple years, primarily by eliminating message hops between
components of the storage software stack and moving to-
wards a run-to-completion execution model that minimizes
expensive message passing steps.

Although this paper focuses only on the optimization of
the read I/O path, a collection of other improvements were
also crucial to productizing the all-SSD controller. As de-
scribed in prior work [25], we changed the block allocator to
write contiguously down the SSD LBA-space in multiples of
the SSD erase page size, thereby mitigating the log-on-log
problem [67] and increasing SSD lifetimes. We redesigned
the compression and deduplication infrastructure to run in-
line with writes, which reduces the overall data written to
storage thereby further prolonging SSD lifetimes. We intro-
duced other key performance optimizations, including in the
write I/O path and journal replay.

This paper makes the following contributions: We analyze
the latency breakdown of the legacy read path of a success-

USENIX Association 22nd USENIX Conference on File and Storage Technologies 177

Figure 1: ONTAP modules involved in the data path.

ful enterprise storage system. We present a series of per-
formance improvements made by systematically removing
the primary sources of software delay. We analyze the im-
provements using data from detailed experiments across a
range of hardware platforms and a cloud-resident VM. Fi-
nally, we discuss two major lessons that we learned from
our experiences. Our improvements dropped software over-
head from multiple milliseconds to less than 160us (more
than 20X) generating large improvements in read latency and
throughput, which has been foundational to the all-SSD ON-
TAP controller becoming a multi-billion dollar product line.

2 Background

In this section, we provide a brief overview of ONTAP and
WAFL followed by a description and analysis of the legacy
read path. We refer readers looking for a deeper understand-
ing of WAFL to prior work [12, 13, 15, 19, 25, 26, 28, 29].

2.1 ONTAP Storage Stack
Fig. 1 shows the major ONTAP components in the data path.
The Protocol component receives requests from clients and
converts them into WAFL requests. The WAFL component
processes all requests to the file systems—I/Os, operations
related to data management, replication, etc. The layers be-
neath provide access to the storage media and implement
RAID protection across them. Each component has data
structures that are accessible typically only from thread pools
dedicated to the component, which simplifies the synchro-
nization between components. Component boundaries are
traversed by message-passing between their threads, which
means a request from a client undergoes multiple hops.

2.2 WAFL Processing Model
ONTAP houses and exports multiple file systems called vol-
umes from within a shared pool of storage called an aggre-
gate, and the WAFL component handles operations on them.
The WAFL file system stores all metadata and user data in
files which are organized in a hierarchical fashion. WAFL

blocks are 4KiB in size and alignment, and are indexed in
the aggregate by a PVBN (physical volume block number).
Detailed descriptions are available elsewhere [15, 19].

Requests are dispatched to the WAFL component as
WAFL messages. All data in the file systems are conceptu-
ally arranged into a hierarchy of data partitions called affini-
ties, in a model referred to as Waffinity [12]. Based on its
type and the data it intends to access, each request is dis-
patched to a specific affinity in the hierarchy. A dedicated
pool of Waffinity threads execute requests on a per-affinity
basis within the WAFL component in a thread-safe fashion.
Each message type has an associated handler, which is coded
in a load-modify transactional model: all resources neces-
sary for the operation are accumulated in the load phase dur-
ing which the message may suspend one or more times, af-
ter which the handler is completed in a single non-blocking
modify phase, during which any mutations to the file system
state are committed. This execution model together with the
guarantees of Waffinity ensures that WAFL operations exe-
cute in atomic fashion with parallelism-safety.

If a resource is unavailable, the message releases all re-
sources acquired thus far before it suspends (blocks) on an
appropriate wait-list, thereby avoiding resource dependen-
cies and deadlocks. When woken up, the message handler
restarts execution from the beginning to try and reacquire
the necessary resources. For example, a read message re-
quires that the data blocks are available in memory. If those
blocks are not in memory during the load phase, the read
handler initiates retrieval of those blocks from persistent
storage and suspends awaiting that retrieval. Upon restart,
it goes through the same steps, but likely finds the blocks in
memory this time and is able to complete its modify phase.
This model provides deadlock-free concurrent execution but
trades off CPU cycles for potential load phase re-execution.

2.3 Mutations to the File Systems

ONTAP was always designed to process mutations to the file
system state with low latency. Consider the example of a
write request. The load phase of the WAFL write message
handler ensures the necessary inode and ancestor indirect
blocks are in memory. The modify phase updates the file sys-
tem state in memory and journals the write to NVRAM1 be-
fore it responds to the Protocol component, which then sends
an acknowledgement to the client. The modify phase leaves
behind “dirty” file system state in memory—inodes, buffers,
and volumes. Dirty state is collectively and periodically per-
sisted on a per-aggregate basis as a single transaction called
a consistency point (or CP) [13, 25]. Dirty data is com-
pressed, deduplicated, and compacted [27] asynchronously
to the write but before the CP completes. Because the inode

1ONTAP systems are deployed as HA-pairs, and the journaled write
must get mirrored to the HA partner’s NVRAM as well.

178 22nd USENIX Conference on File and Storage Technologies USENIX Association

Figure 2: Message passing steps across ONTAP components for a
read request.

and ancestor blocks of “hot” byte ranges are typically mem-
ory resident and appends to NVRAM are fast, the write la-
tency is mostly independent of storage access times. There-
fore, the read path was the main focus of the performance
work required for productization of the all-SSD controller.

2.4 Legacy Read Path
Fig. 2 shows the message passing hops in the legacy read
path and is applicable to all supported protocols—SCSI,
NVMe, NFS, and SMB. In step 1, ONTAP receives the read
request over the network in the context of a Protocol thread,
which parses the request and translates it to a WAFL read
message. A Waffinity thread picks up and executes the mes-
sage in step 2. The read handler traverses file system data
structures to find the requested data blocks. If the required
data are found in memory during the load phase, the data is
assembled into a reply payload in the modify phase and sent
back to the Protocol thread, which replies to the client in step
3b. If not, the handler suspends until the data is available in
memory. One such example is when all required interme-
diate data—inode, indirect blocks, etc.—are found, but the
data blocks are not. In this case, the handler allocates, ini-
tializes, and inserts one buffer per missing block in the file
system tree, places them in one or more RAID read mes-
sages that it sends to the RAID component, and suspends
the WAFL read message on the completion of all required
I/Os. WAFL uses the PVBNs of the blocks to determine the
required number of RAID read messages.

A RAID thread processes each RAID read message, uses
its knowledge of the drive mappings to translate each PVBN
to drive ID and LBA, and sends a message to the Storage
component in step 3a. In step 4, a Storage thread processes
this message, dispatches a read to the physical drive, and
sends a read-done to the RAID component upon comple-
tion of the I/O. In step 5, RAID validates checksums and

Figure 3: Latency across ONTAP components with increasing load
for a 4KiB random read request.

sends a read-done to the WAFL component if no errors are
found. In step 6, a WAFL thread does further validation2,
marks the buffers valid, and restarts all waiters. The original
WAFL read message is awoken once all issued RAID mes-
sages (from step 2) have completed. In step 7, a Waffinity
thread runs the original message by re-executing the handler,
eventually finds all valid buffers in cache, and replies to the
Protocol component, which replies to the client in step 8.

Three different data reduction techniques—compression,
deduplication, and sub-block compaction [27]—are used in
combination by WAFL to efficiently store data; the data is
also encrypted just before it is stored. Decryption occurs in
step 4 while reading from storage, but the choice of where
(in one of the steps in the reply path) the reduced data gets
rehydrated is made dynamically based on various conditions.
We consider the topic of data reduction outside the scope of
this paper for two reasons: it is too large a topic to cover
comprehensively, and it would be a distraction because the
techniques and results presented in this paper are fundamen-
tally unchanged with or without data reduction.

This architecture is modular, which facilitates continuous
feature development, and error handling can be performed in
the corresponding component. A WAFL read that does not
hit in the buffer cache may incur several message hops in-
cluding multiple suspensions and restarts within WAFL be-
fore completion. Such hops become expensive under CPU
pressure, when a message must wait for the next thread to be
scheduled or when running threads cannot keep up with in-
coming load. In the case of HDDs, these scheduling delays
are typically dwarfed by drive I/O latencies. Such delays
become noticeably large for SSDs.

2.5 Components of Read Latency
Fig. 3 shows the breakdown of server-side latency for a read
request to ONTAP across the steps outlined in Fig. 2 under

2WAFL stores a context together with each written block [60] to iden-
tify its file and offset to protect against lost or misdirected writes [3], and
identify a block that has been moved for defragmentation purposes [26].

USENIX Association 22nd USENIX Conference on File and Storage Technologies 179

increasing levels of load, using a matching color scheme for
each step. This data was collected on ONTAP 8.2.2 (circa
2014), which predates the optimizations discussed in this pa-
per. A random read workload—which ensures a low buffer
cache hit rate and frequent drive access—was run on a 2x10-
core Intel Xeon 2.8GHz controller with 128 GiB of DRAM,
the high-end ONTAP system from that time. The controller
had twelve 400GiB SAS SSD drives, which collectively pro-
vided sufficient I/O throughput for the highest load of this
experiment. A set of LUNs were configured on ONTAP and
a number of clients sent 4KiB reads to random offsets using
the FCP storage protocol over an underlying Fibre Channel
network to cumulatively create the desired load. Throughout
this paper, time within each component is measured using
start/stop timers in the software stack. Network component
time is included within the Protocol layer, which collectively
remain a small source of delay due to their relative efficiency
compared to other components in the stack.

Protocol corresponds to steps 1 and 8. Read Message and
Read-Done Message depict time in the WAFL component,
the former for the sum of steps 2 and 7 and the latter for step
6. Storage+RAID SW corresponds to steps 3, 4, and 5 minus
SSD Driver+Device, which depicts the latency in the device
driver and media. The raw CPU cycles in the WAFL and
Protocol components (steps 1, 2, 6, 7, and 8) are negligible
(each less than 30us); in other words, most of the latency is
the message waiting to be picked up by WAFL or Protocol
threads. Although SSD Driver+Device time does increase
with load, all of that increase is attributed to software de-
lays in the device drivers due to increased CPU wait times.
We confirm this later in Fig. 7, which shows consistent SSD
Driver+Device times when CPU wait times are not a major
factor. Increased load amplifies the cost of each hop because
threads are busier and CPUs are closer to saturation.

At 80% of maximum throughput of the system
(960MiB/s), the device latency is less than 30% of the to-
tal read latency. The primary non-device delays are in the
RAID/Storage components and wait times in WAFL for the
read and read-done messages. While such delays were ac-
ceptable for HDDs with media latency of several millisec-
onds, their impact became outsized for SSDs with media la-
tency of a few 100’s of microseconds. Clean-sheet design
approaches for the read path were discarded because of the
inherent complexities around handling myriad error condi-
tions and integrating with existing ONTAP features. Instead,
we used the latency data to iteratively improve the read path
for the most common cases while retaining the legacy path
for error handling and other complicated conditions.

3 Fastpaths: WAFL Reply and RAID

Optimization of the read path for SSDs started as a
skunkworks project in the WAFL team, and we began with
the WAFL reply path. Because the latency breakdown was

Figure 4: Steps with WAFL Reply and Storage Fastpaths.

Figure 5: WAFL buffer cache and page header hash.

dominated by wait-times due to message passing hops, we
chose to eliminate hops, steps 6 and 7, instead of optimizing
code. We call this work WAFL Reply Fastpath. Next, the
RAID and Storage teams eliminated steps 3a and 5, called
RAID Fastpath. These changes are shown in Fig. 4.

3.1 Bypassing WAFL Read-done

The WAFL read-done message validates the data, updates
the WAFL buffer state to reflect the I/O completion, and
restarts the original WAFL read message. We explored
whether the error-free path of this handler could be executed
directly by the RAID component as part of RAID read-done
(step 5). We refer to this technique as bypassing layers. Data
blocks and indirect blocks of a file are represented in mem-
ory as WAFL buffers, which are logical headers that point
to 4KiB data block pages. WAFL buffers are arranged into
per-file inode block trees. A multi-level LRU structure [14],
labeled Priority Queue in Fig. 5, tracks the aging and prior-
ity of buffers, and is designed to be accessible from within
and outside of the WAFL component as a result of earlier
performance improvement work.

A given data block can be shared by several inodes’ block
trees; this capability is used by many ONTAP features, such
as snapshots, deduplication, cloning, etc. Hence, multiple
WAFL buffers can point to a data block page. Each block
page also has a statically-associated page header, that stores
metadata about the page such as a reference count of the
WAFL buffers pointing to it. The page headers are tracked
in a header hash indexed by aggregate ID and PVBN, which

180 22nd USENIX Conference on File and Storage Technologies USENIX Association

is looked up before issuing I/O. Fig. 5 shows two example
block pages with PVBNs 71 and 72. Access to block pages
and page headers are protected by range locks on the page
header hash from any component. A block page can only
be scavenged when its page header refcount is zero, which
implies all buffers pointing to it have been evicted.

In the legacy read path, a WAFL buffer (per block) was
sent with the RAID read message. The RAID and Storage
components could safely update certain flags/fields in those
buffers to track I/O state, error states, the checksum, etc.
However, marking the buffer valid could happen only within
the WAFL component, hence the need for WAFL read-done.
In the new model, we add a valid state in the page header
and leverage a new iobuffer object that is used exclusively
for the purpose of I/O and is therefore exempt from many of
the rules that govern WAFL buffers. As in the legacy path,
the WAFL read message inserts a WAFL buffer but now also
initializes an iobuffer per block, which it instead sends with
the RAID read message. The iobuffer is private to the read
request and cannot be found otherwise. Both buffers point
to the same block page, as shown in Fig. 5. The WAFL read
message now suspends on a page header (instead of a WAFL
buffer) waiting for it to become valid. The RAID read-done
message first validates the data block then directly invokes a
WAFL function that performs the file system specific valida-
tion, marks the page header valid, wakes up the suspended
WAFL read message, and frees the iobuffer. If it encounters
any errors, it can safely fail through to WAFL at any point,
because WAFL messages always restart execution from the
beginning of the message handler.

3.2 Bypassing the Restart of WAFL Read

The removal of step 6 resulted in significant improvements,
and encouraged us to next explore eliminating step 7. In
the legacy read path, the restarted WAFL read message en-
sured that all data was present in memory, assembled them
into a vector, and replied to the Protocol component. As
with the WAFL read-done message, this work is now exe-
cuted inline by the RAID read-done (step 5) message by us-
ing iobuffers. The original WAFL read message is attached
to the RAID read message, in which we keep count of the
outstanding I/Os to storage. This count is atomically decre-
mented upon each I/O completion, and the last completion
replies to the Protocol component. If any errors are en-
countered, the legacy path is triggered by sending the read
message back into WAFL. When a Protocol thread receives
the reply, the embedded WAFL read message is freed. The
original WAFL buffer is marked valid only if accessed by
some subsequent WAFL message (or the restarted WAFL
read message in case of an error) on finding that the buffer
points to a valid block page. If never accessed, the buffer
eventually ages out like any other. The elimination of steps
6 and 7 is collectively called the WAFL Reply Fastpath.

Figure 6: Latency vs achieved throughput with increasing 4KiB
random read load with and without Fastpaths.

3.3 RAID Fastpath

We next worked to bypass the RAID component (steps 3a
and 5) entirely on the read path. The RAID component main-
tains an up-to-date topology data structure of the aggregate;
it knows which drives are in some failure state or are getting
reconstructed. RAID uses that information in RAID read
(step 3a) to map the PVBN of each buffer supplied by WAFL
to the physical drive and LBA. RAID exports a read-only
cache of the topology, which is now used by the WAFL read
message for the translations and to directly send I/O mes-
sages to the Storage component. Changes in the aggregate,
such as addition of drives, failure of drives, or RAID recon-
struction, will require updating the topology. Though rare,
when such events occur the RAID component flags the cache
as stale, and the WAFL read message fails through to using
the legacy RAID read. In the case of a race—say the topol-
ogy is tagged stale after a Fastpath is triggered—the Storage
component detects the staleness in step 4 and returns an er-
ror, and the restarted WAFL read message now fails through
to the legacy path. The Fastpath resumes once a new topol-
ogy cache has been built and exported by RAID.

Upon completion of a device I/O in step 4, the Storage
component now directly calls a thread-safe version of the
checksum validation used in RAID read-done (step 5), fol-
lowed by the WAFL Reply Fastpath described in Sec. 3.1 and
Sec. 3.2. As elsewhere, the legacy path is used as a fail-safe
whenever any error is encountered.

3.4 Performance Analysis of Fastpaths

Fig. 6 and 7 show results from the same 4KiB random read
experiment on the same 20-core platform from Sec. 2.5 with
the Fastpaths enabled. No Fastpath data was collected by
using ONTAP 8.2.2 (circa 2014), which precedes our opti-
mizations, WAFL Reply Fastpath using ONTAP 8.3.0 (early
2015), and then with RAID Fastpath using ONTAP 8.3.1
(late 2015). Although not strictly apple-to-apples because
we are comparing different releases, the performance impact
seen in these graphs is primarily due to the Fastpaths. Fig. 6

USENIX Association 22nd USENIX Conference on File and Storage Technologies 181

Figure 7: Latency across ONTAP components with and without
improvements at two specific loads of 4KiB random reads.

plots the average server-side latency vs achieved load, and
shows how these improvements have significantly shifted the
system saturation points to the right. The read throughput at
the average latency of around 1ms (the industry expectation
for SSD-controller latency in the mid-2010’s) quadrupled
from 150MiB/s to 600MiB/s with WAFL Reply Fastpath,
and increased another 50% from 600MiB/s to 900MiB/s with
RAID Fastpath. Fig. 7 shows the latency breakdown at two
specific load points. The sharp increase in latency with the
legacy path is attributable primarily to the RAID and Stor-
age components. From mining finer grained statistics in ON-
TAP, the savings at 880 MiB/s compute to 300us of wait time
for the WAFL read-done message, 480us wait time for the
restarted WAFL read message, and a smaller 17us of CPU
time across both messages. More interestingly, the reduction
in CPU utilization due to the elimination of steps 6 and 7
results in lowered wait times for threads in all components,
lowering the overhead of remaining message hops and de-
ferring CPU saturation to higher levels of load. Adding the
RAID Fastpath at 880 MiB/s results in a further reduction in
wait times in RAID and Storage components and a reduction
in device driver wait time. In the end, software overhead is
on par with device times.

It should be noted that latency variance in ONTAP is al-
most always due to variance in wait times, which gets worse
only with increased CPU utilization. Therefore, latency vari-
ance is high only to the right of the “knee” of the latency-
throughput curve [50]. Because Fastpaths (and the improve-
ments presented subsequently in this paper) significantly re-
duce wait times, their benefits for p90 and p99 latencies have
an outsized impact to the right of the knee of the curve. For
example, p90 latency drops from 7ms (for legacy) to 2ms
(with both Fastpaths) in this experiment. Therefore, we use
average latency as a conservative showcase of the improve-
ments throughout this paper.

In this section, we presented and evaluated a collection
of optimizations to minimize message hops in the read I/O
path. We showed that component layers can be effectively
bypassed by running limited elements of one layer within

Figure 8: Read path steps with TopSpin read design.

another layer to constrain software overhead. This work was
crucial to NetApp shipping a feature-rich all-SSD ONTAP
controller in 2015 instead of creating an SSD-optimized file
system from scratch. Further, the success from Fastpaths en-
couraged the continued use of this approach in ONTAP. The
next section discusses how we used bypassing to tackle the
dominant remaining delay.

4 TopSpin Read: Bypassing WAFL Read

By the early 2010s, it was obvious that traditional intercon-
nects such as SAS and SATA were inadequate for SSD speed
and bandwidth. Based on the new NVM Express technol-
ogy [52], enterprise-quality SSDs boasting at least one or-
der of magnitude better performance were available by the
late 2010s. NVMe storage drivers were added to ONTAP to
access these new SSDs. Additionally, Linux and Windows
clients were now able to unlock these performance bene-
fits by connecting over the network using the NVMe over
Fabrics (NVMe-oF) protocol. In response, an NVMe server-
side module optimized for parallelism and low latency was
added to the ONTAP Protocol component. With these tech-
nological improvements, tackling the remaining large soft-
ware delay—the wait time for WAFL Read (step 2) as seen
in Fig. 7—became a competitive imperative.

To that end, we developed TopSpin, an optimization to
allow the common-case read request to bypass the WAFL
component, as shown in Fig. 8. TopSpin leverages direct
access to WAFL data structures from within the Protocol
component (step 1) to check if the required data is in mem-
ory and to issue I/Os to storage, while handling all poten-
tial races with requests that modify file system state running
in parallel within the WAFL component. This design has
three advantages: (1) It avoids the queueing delays within
WAFL. (2) The reimplemented read handler is light-weight
and avoids the suspend-restart CPU overhead. (3) It bypasses
the strict data partitioning within WAFL that can restrict par-
allelism. It was productized in ONTAP 9.3 (2017) and en-
abled for all block-based protocols—SCSI and NVMe.

4.1 Storage Location Cache
We introduce the Storage Location Cache (SLC) to allow the
Protocol component to directly and safely discover data lo-

182 22nd USENIX Conference on File and Storage Technologies USENIX Association

Figure 9: Overall SLC and HAC architecture, which integrates with the existing WAFL buffer cache and page header hash.

cations. The SLC is a hash table that maps file handle and
file block number (or FBN, the 4KiB file offset) to PVBN;
its hash buckets are protected by range locks. The lowest
level indirect blocks in a WAFL inode tree (Level-1 blocks,
or L1s) comprise this map, along with per-FBN auxiliary in-
formation used for data validation. The location of the ith

FBN is found in the (i%span)th index of the (i
span)

th L1,
where the fixed span is the maximum number of children an
L1 can have. As Fig. 9 shows, each SLC entry points directly
to a block page of one L1 and the SLC entry takes a refcount
through the corresponding page header. SLC entries are in-
serted (when an L1 block page is loaded into memory) and
updated only from the WAFL component, including being
removed when the L1 page is scavenged.

4.2 Hierarchical Attributes Cache

For a read request to be safely processed in the Protocol com-
ponent, it must synchronize with changes to file system state
occurring in parallel within the WAFL component. For in-
stance, changes to the mount state of a volume or the size
of a file may interact with a read request. We introduce the
Hierarchical Attributes Cache (HAC) to track properties of
file system objects—inodes and volumes—to facilitate such
checks. Each user file or LUN is represented by an HAC in-
ode object that caches various attributes of the inode, such
as size and permissions. Each volume is represented by an
HAC volume object that caches mount state, encryption key,
etc. As Fig. 9 shows, the objects are organized into two
hash tables indexable by file handle (which includes a vol-
ume identifier). Access to these objects is protected by a lock
per hash bucket. Much like the SLC, HAC objects are con-
sulted from the Protocol component but created and updated
only from the WAFL component; a volume (inode) object is
added to the HAC when it is mounted (loaded into memory).

4.3 TopSpin Read from Protocol Component

We implement TopSpin read, a version of the WAFL read
handler that is called directly by the Protocol thread towards

the end of step 1. Fig. 9 shows the system state for an exam-
ple TopSpin read of FBN2 and FBN3 of a file. It first looks
up the SLC using file handle and offset to determine if the
requisite L1 block pages are in memory; the actual lookup
converts the offset to the FBN aligned to L1 span, which
is FBN0 in this case. If found, it confirms the freshness of
the SLC entries by consulting the HAC inode and volume
objects; Sec. 4.5 details the the freshness check. Next, it
indexes the L1 page to obtain the PVBNs (and auxiliary in-
formation), 17 and 18 in the figure, and looks them up along
with aggregate ID in the page header hash. If all block pages
are found in memory, it inserts them into the reply vector and
replies to the client, holding a page refcount until complete.
Otherwise, much like the WAFL read handler, TopSpin uses
the PVBN and auxiliary information to instantiate iobuffers,
block pages, and page headers, and sends the appropriate
I/Os to the Storage component for the missing Level-0 file
data blocks (or L0s). The Protocol component resumes pro-
cessing this request after receiving a reply from Storage,
much as in Sec. 3.3. If TopSpin read fails for any reason,
such as missing L1 block pages or freshness check failure, it
falls through to the legacy WAFL path. Both caches—HAC
and SLC—use LRUs to age their entries, thereby increasing
the chances of TopSpin reads to “hot” file byte ranges com-
pleting successfully.

As noted in the Fastpath sections, some data struc-
tures were already safe to access from outside the WAFL
component—the block pages, page headers and hash, the
RAID topology cache, etc. TopSpin limits itself to accessing
only those shared structures. When an I/O completes, step 4
now inserts the iobuffer directly into the buffer cache LRU,
unlike in the Fastpath case where the iobuffer is discarded
and the WAFL buffer is preserved. TopSpin reads access L0
block pages directly through the page header hash, and incre-
ment a newly added touches count field in the page header to
track hotness (shown in Fig. 9). Before an iobuffer can be
scavenged, any such references are transferred from the cor-
responding page header into the iobuffer thereby preventing
eviction. We next look at how the SLC and HAC guarantee
correctness.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 183

4.4 Keeping SLC Consistent

A write request executing in parallel within the WAFL com-
ponent may conflict with a TopSpin read, and we use the
SLC entry for synchronization. Each SLC entry uses a dirty-
bitmask to track whether its children data blocks have been
“dirtied” by any operation running in the WAFL component,
one bit per child. In its modify phase, the WAFL write han-
dler locks up to 3 SLC entries—the largest write supported
(1 MiB) may span up to 3 L1s—to set the dirty bit for each
FBN. A TopSpin read looks up the dirty bits after locking
the necessary SLC entries, and fails through to WAFL if any
is set. Otherwise, it obtains the PVBNs and either finds the
block pages through the page header hash or issues I/Os.

The subsequent CP walks through each dirty buffer and
allocates a new location for it in storage, a previously free
PVBN. Then, it rehashes the dirty block page using the new
PVBN in the page header hash, after which the page is sent
together with several other pages as a write I/O to a RAID
group in the aggregate; more details in other work [13, 25].
In theory, each dirty bit in an SLC entry can be cleared
when the CP rehashes the child L0 block page with the new
PVBN—a subsequent TopSpin read can now safely read that
block page. Instead, to amortize locking costs, all dirty bits
in an SLC entry are cleared together by locking the SLC
entry just once after the CP is done with the L1 and all its
children. It typically takes anywhere from 2-5 seconds for a
subsequent CP to process that parent L1 and clear the dirty
bits in the SLC entry. This is rarely a problem for our cus-
tomer environments, where immediate reads after writes are
rare, but would result in failing through to WAFL.

4.5 Keeping HAC Consistent

SLC entries may be invalidated by various infrequently oc-
curring operations, such as a volume remount or a file resize.
These are tracked by versioning HAC objects. Each HAC
object records two version numbers: a self version vs for its
child relationships and a parent version vp for its parent re-
lationship; Fig. 9 refers to them as SelfVer and ParentVer,
respectively. The former is initialized when an object is cre-
ated and incremented when any of its attributes change. For
example, if a file is resized its inode object’s vs gets incre-
mented. Each SLC entry also records a vp. A hierarchy ex-
ists: each SLC entry has a parent inode, and each inode HAC
object has a parent volume HAC object. When an HAC ob-
ject is created (updated), its vp is initialized to its parent’s vs
and its own vs is set (incremented). An object or entry is con-
firmed to be fresh only if its vp matches its parent object’s vs.
A check must recurse up the hierarchy to confirm freshness.

A failed SLC entry check at the inode (or volume level)
indicates that the corresponding file (or volume) has since
been modified in some way that makes the SLC entry stale.
When that happens, TopSpin sends the read to the WAFL

component. Stale SLC entries and HAC objects age out of
their respective caches. Version numbers are incremented
only by operations running within the WAFL component.
Incrementing the version of an object implicitly invalidates
all its descendent objects, which may be numerous—a vol-
ume may comprise hundreds of files, each with thousands of
“hot” L1s. It should be noted that version bumps occur infre-
quently, and therefore the fast 3-level recursive check done
by a TopSpin read succeeds most of the time.

4.6 TopSpin and File-based Protocols
The improvements in Sec. 3 moved portions of the read path
from WAFL and RAID down to the Storage component, and
are therefore independent of the client protocol. All proto-
cols can benefit from the Fastpaths. In contrast, TopSpin read
requires changes to the code in the Protocol component. We
implemented TopSpin first for block-based (SAN) protocols
because SAN applications—such as databases, server vir-
tualization, and business applications—require consistently
low latency. NAS protocols require that a read check other
metadata, such as file permissions, ACLs, and lock state.
These structures are currently accessible only from within
the WAFL component. An inode’s access time (atime) also
needs to be updated on reads, which results in mutations that
need to be persisted. A TopSpin read would need to safely
access the corresponding structures.

In this section, we extended Fastpath to bypass the WAFL
layer in the read I/O path, by developing an alternative
method for scalable, thread-safe file system accesses. Thus
far, it has been narrowly deployed within ONTAP, but it can
be applied to other protocols and file system operations. Ex-
tending TopSpin to NFS and SMB is a work in progress.

5 Client-Visible Consistency Semantics

In the previous sections, we discussed correctness in the face
of race conditions within and between components. We now
look at correctness from the client’s point of view. Clients
communicate with ONTAP using one of several protocols—
NFS, SMB, SCSI, and NVMe-oF—each with its correspond-
ing correctness semantics. To maximize code reuse and to
simplify design and testing, ONTAP implements a conser-
vative and consistent interpretation of the semantics across
all protocols. Changing these interpretations is disallowed
across ONTAP releases because it risks destabilizing client
libraries and customer applications. All improvements pre-
sented in this paper preserve ONTAP’s interpretations of
these semantics. We look at only two rules that are rele-
vant to this paper. In this section, we use the term “write”
generically for any operation that mutates file system state
and “read’ for any that does not.

For example, if a client issues a read R after it has re-
ceived the acknowledgement to a write W, then R must never

184 22nd USENIX Conference on File and Storage Technologies USENIX Association

see any file system state prior to W. Because a server can-
not know the exact moment when an acknowledgement is
received by a client, we implement rules based on when re-
quests (acknowledgements) enter (exit) the networking stack
of the Protocol component. (1) Read-After-Write (RAW):
ONTAP guarantees that once the Protocol component has is-
sued an acknowledgement of a write, a read request received
subsequently by the Protocol component sees only the state
after the write. (2) Concurrent-Read-Write (CRW): If a read
and write overlap in time when processed by ONTAP, the
read sees state only from before or after the write, but never
both; except for SCSI, where CRW applies only for sizes up
to 64 KiB3. Both rules hold even if the read and write are sent
by different clients using different protocols. In legacy ON-
TAP, every file system request was processed by the WAFL
component in both the request and reply paths. The load-
modify transactional model together with Waffinity guaran-
teed serialization of a read and a write if they conflicted in
file byte range; this trivially satisfied both rules. The im-
provements presented in this paper are relevant only to read
requests—one of the many possible “reads” as used generi-
cally in this section.

The Fastpaths avoid the RAID and WAFL components on
only the reply path, so trivially preserve RAW. Because the
results of a write are committed to the in-memory file system
state by the WAFL component before its acknowledgement
can be sent, it is impossible for a TopSpin read to see content
from prior to the write. Thus, TopSpin also preserves RAW.

With both Fastpaths and TopSpin, if the write runs first
then the read sees data from only after the write. In the case
of TopSpin, the write first locks all SLC entries and sets the
dirty bits in them, so the read fails the freshness check and
falls through to WAFL. If the read runs first and finds all data
in memory, it replies with data from only before the write in
both Fastpaths and TopSpin. The TopSpin read locks all the
SLC entries it needs. If the read runs first and finds that
all its L0 pages are missing, it uses PVBNs from the L1s
to issue I/Os to the Storage component. TopSpin finds the
PVBNs via the SLC entries and the WAFL read handler via
the L1 buffers. Even if a subsequent write dirties one or more
of those FBNs, the read replies with only the persisted data
prior to the write. Any read with a mix of hits and misses
in the page header hash fails through to the legacy path. Al-
though this case can be improved, it does not occur often in
our customers’ applications. Thus, CRW is preserved.

6 Performance Evaluation of TopSpin

A typical ONTAP controller hosts datasets for multiple in-
stances of different applications that are accessed at the same
time. No individual workload represents all outcomes in

3The SCSI specification does not require atomicity. ONTAP does not
support WRITE ATOMIC.

such multi-tenant environments. Therefore, we primarily
used micro-benchmarks to study the performance, knowing
that the results extend to any workload comprising those traf-
fic patterns. We also tested with an in-house benchmark
identical to the industry-standard SPC-1 [11], which models
the query and update operations of an OLTP/DB application
and simulates real world environments [17]. Lastly, we used
a standardized load to Oracle. All experiments used a re-
cent internal build based of ONTAP 9.13.1, unless otherwise
indicated. We picked a mid-range controller with 2.2GHz
Intel Xeon Silver 2x10 cores, 144GiB of DRAM, 16GiB of
NVRAM, and 23 3.84TiB NVMe SSD drives to study the
benefits when CPU resources are tight and a high-end con-
troller with 2.2GHz Intel Xeon Platinum 2x32 cores, 1TiB
of DRAM, 64GiB of NVRAM, and 46 3.84TIB NVMe SSD
drives. The NVMe SSD drives support 100K IOPS of ran-
dom reads with latency under 100us, and are configured into
RAID double parity [10]. These configurations are realis-
tic and are sufficient to make most workloads CPU-limited.
A given IOPS load is collectively initiated in an open loop
by a set of remote clients, such that queuing in the server
becomes significant under heavy load. Latency is measured
on the ONTAP server from when a read request enters to
when its corresponding reply exits the controller. The Top-
Spin SLC is backed by L1 block pages in the WAFL buffer
cache which can consume the majority of a system’s DRAM
and prioritizes indirect blocks. An L1 page in WAFL can
reference 255 child blocks, so TopSpin can be effective with
sizes significantly smaller than an application’s working set.

Controllers are deployed as a high-availability pair, but we
report only per-controller results. Only half of NVRAM is
used by a controller because the other half is used to mirror
the HA-partner’s journal. Although compression, dedupli-
cation, and compaction [27] are now enabled by default on
ONTAP all-SSD controllers, we disabled them in these ex-
periments for three reasons: (1) Enabling them on datasets
with realistic compressibility and dedupe savings does not
change the character of the results. (2) We have not pre-
sented the designs of these data reduction techniques and
how they interact with the read path. (3) We lack the space
to explore the range of datasets that yield different combina-
tions of compressibility and dedupe savings. Available CPU
cycles in all-SSD systems can be used for running data re-
duction, both inline and in the background. Thus, savings in
CPU cycles can directly benefit storage efficiency.

6.1 Reads: NVMe-oF Clients

In the first experiment, the load-generating clients used the
NVMe-oF protocol (over a Fibre Channel network) to com-
municate with LUNs configured on ONTAP. Together with
NVMe SSDs, when compared to earlier results, the latency
and throughput numbers are both an order of magnitude bet-
ter. At these low latencies, the experiment is more sensitive

USENIX Association 22nd USENIX Conference on File and Storage Technologies 185

Figure 10: Latency vs achieved throughput on the 20-core system
with increasing random read (RR) and sequential read (SR) load.

Figure 11: Latency across ONTAP components with and without
TopSpin at three specific loads of random reads.

to software delays in ONTAP. Fig. 10 presents the latency
vs achieved throughput on the mid-range 20-core controller
with 8KiB random read (RR) 4 and 64KiB sequential read
(SR) workloads. Baseline now includes the Fastpaths.

6.1.1 Random Read Performance

TopSpin shifts the curve to the right, for example doubling
throughput at 400us latency. Customers can also oper-
ate their systems for higher throughput, with a tolerance for
higher latency (e.g., 5ms). The peak throughput of a sys-
tem is that achieved as the system approaches saturation and
beyond which latencies grow exponentially. As with the
Fastpaths, TopSpin delivers a 27% higher peak throughput
because the streamlined I/O path reduces the CPU costs per
operation (3.0GiB/s at 2.9ms latency vs. 2.4GiB/s at 3.2ms).
In this test, TopSpin finds the required data in memory in
1.9% of reads, issues storage I/O directly in 97.7% of reads,
and falls through to WAFL in only 0.4% of reads for reasons
such as an unavailable SLC entry. Fig. 11 shows the per-
component latency at three loads, and WAFL and Protocol
latencies are now further divided into CPU time vs wait time.
The data at low load (800MiB/s) approximates the break-

4By this time, the official SPC-1 as well as our internal benchmarks had
switched the I/O size from 4KiB to 8KiB for random I/O workloads.

Figure 12: Latency across ONTAP components with and without
TopSpin at two specific loads of sequential reads.

down for a single outstanding I/O. As load increases, the
WAFL read message wait time becomes a significant factor
(195us at 2GiB/s), and TopSpin eliminates it. Reduction in
CPU consumption also yields lower wait times in other com-
ponents. As we are now evaluating with NVMe SSDs, SSD
Driver+Device latency ranges from 115us to 160us with-
out TopSpin, compared to older generation SAS SSDs from
Fig. 7. With TopSpin, this drops to 108us to 123us, due to
decreases in driver scheduling delay. TopSpin replaces 24us
of WAFL read message CPU time with a 10us increase in the
Proto CPU time, which results in CPU cost per read drop-
ping from 66us down to 52us. At 2GiB/s, the non-device
related time drops from 690us to 160us, in better proportion
with the 123us SSD Driver+Device. With TopSpin, device
latency is now the largest single component and non-device
latencies remain below 60% of the total.

6.1.2 Sequential Read Performance

In general, ONTAP is capable of much higher sequential
read throughput because it uses speculative readahead to
prefetch required data into memory. This effectively elim-
inates SSD Driver+Device from the latency path, as shown
in Fig. 12. As expected, TopSpin eliminates WAFL Read
Wait and replaces substantial WAFL Read CPU time (56us
at 3840MiB/s) with a small increase in Proto CPU (20us),
resulting in significant increase in throughput—e.g., a 40%
increase at 800us latency. Peak throughput goes up by 19%
(6.0GiB/s at 3.0ms vs. 5.0GiB/s at 3.2ms), due to a reduction
in the per operation CPU cost from 251us to 209us. Thanks
to readahead, TopSpin finds data in memory in over 99.99%
of reads and avoids failing through to WAFL.

Unlike TopSpin random reads, readahead prefetching in-
stantiates and inserts WAFL buffers. We next optimized the
readahead engine to use iobuffers. This carries two ben-
efits: (1) iobuffers are lighter-weight because they main-
tain less state and so access fewer cache lines, which re-
duces the CPU cost of processing both their insertion and
eventual eviction. At 5.1GiB/s load, the average CPU cost

186 22nd USENIX Conference on File and Storage Technologies USENIX Association

Figure 13: Latency vs achieved throughput on the 20-core sys-
tem with TopSpin on sequential read load, using WAFL buffers and
iobuffers for readhead.

Figure 14: Latency vs achieved throughput on the 64-core system
with increasing random read (RR) and sequential read (SR) load.

of readahead drops from 24.5% of all cores to 16.5%, and
buffer scavenging drops from 15.0% of all cores to 6.0%. (2)
iobuffers can be scavenged from outside of the WAFL com-
ponent, which helps reduce overall WAFL wait times; none
of that 6.0% scavenging CPU cost is in the WAFL compo-
nent. Fig. 13 shows the results of this approach, including
a 19% increase in peak throughput (7.2GiB/s at 2.3ms vs.
6.0GiB/s at 3.0ms).

6.1.3 High-end Read Performance

Fig. 14 reports the results of the same random and sequential
read experiments on the high-end 64-core controller to study
TopSpin on controllers with more CPU cores. Compared to
the 20-core system, TopSpin benefits are similar for SR but
are somewhat lower for RR. This shows that TopSpin bene-
fits are greater for certain workloads when CPU resources are
more limited. The latency bump around 2GiB/s for both RR
graphs is due to the time-lag to activate the optimal number
of threads in the (NVMe) Protocol component on this high-
end controller; as mentioned earlier, ONTAP dynamically
scales this number. The per-component latency breakdown
(not shown) matches that of the 20-core controller.

Figure 15: Latency vs achieved throughput on a VM in AWS with
increasing random read (top) and sequential read (bottom) load.

6.2 Read Performance in Cloud Deployments

We next deployed a VM in the AWS public cloud contain-
ing 128 cores and 512GiB of DRAM, and used iSCSI clients
to send a load of 8KiB random reads and 64KiB sequen-
tial reads, using a 2:1 compressible dataset. We attached
io1 EBS [1] volumes to the VM over the network, exposed
as NVMe SSD drives, with an EC2 entitlement of 160K
ops/sec. We experimented with ONTAP 9.14.0, in which
TopSpin was enabled for cloud VMs. Fig. 15 presents the
measurements of server-side latencies and throughput. For
random read, an abundance of CPU cores reduces inter-
nal queuing times and the benefits of TopSpin, and latency
improvements range between 30us and 65us. In contrast,
sequential read leverages readahead to hide the drive ac-
cess times, and TopSpin nearly halves latencies at all loads.
TopSpin-enabled cloud deployments will be available using
Amazon FSx for NetApp ONTAP (FSxN [2]) later in 2024.

6.3 Mixed Read and Write Workloads

To measure the impacts of TopSpin on mixed read-write
workloads and mixed random-sequential workloads, we ran
the internal SPC-1 macrobenchmark on the 64-core con-
troller, with clients connected to ONTAP using FCP. SPC-1
issues 40% reads and 60% writes, of which each are 40%
sequential and 60% random [17]. These results are shown in
Fig. 16, where Write Baseline and Write TopSpin are the ob-
served write latency without and with TopSpin read enabled,
respectively. In this case, overall throughput is not changed
through the use of TopSpin, but the same peak throughput is
achieved with 4.9% lower CPU usage. Read latency at peak
throughput dropped 67%, from 442us to 147us. Further, with

USENIX Association 22nd USENIX Conference on File and Storage Technologies 187

Figure 16: Read and write latencies vs achieved throughput on the
64-core system with increasing SPC-1 load.

Figure 17: Latency vs achieved throughput on the 64-core system
with increasing 8KiB random read load to a single volume.

the majority of reads now bypassing the WAFL component,
write latency dropped from 637us down to 517us because
wait time for WAFL write messages dropped from 350us to
189us. In this test, 82.4% of reads hit in the cache, 9.2%
successfully read from storage, and 8.5% failed through to
WAFL due to missing L1s or dirty L0s.

We next evaluated load to an Oracle database. Clients con-
nected over FCP to a 2x18-core controller with 512GiB of
DRAM. We compared ONTAP 9.2 to ONTAP 9.3, the first
release with TopSpin. Load was generated to an Oracle 12c
database using SLOB2 [9], comprising 75% SELECT and
25% UPDATE SQL commands. Peak throughput from the
storage server increased from 345K I/Os per second to 400K
I/Os per second. As explained earlier, WAFL is designed to
complete writes quickly, so UPDATEs do not impact user
sessions much. However, storage read latencies directly im-
pact SELECTs, which dropped from 1.13ms to 0.95ms as
reported by the database server.

6.4 Additional Benefits to Bypassing WAFL
Beyond the benefits already discussed, TopSpin also pro-
vides an effective way to work around a long-standing bottle-
neck in WAFL parallelism. The Waffinity model translates
the WAFL file system into a static hierarchy of data parti-
tions [12], with a single active thread per partition. How-

ever, the fixed number of partitions at each level of the hier-
archy cannot guarantee optimal performance across all work-
loads. Although rarely encountered, Waffinity-unfriendly
workloads are limited by the data partitioning to using a sub-
set of the available cores. Some examples: the entire system
load is to a single volume, all load is to a single LUN or
file, or sequential read streams to a single LUN or file where
consecutive I/Os move lockstep one partition at a time. Dy-
namically changing the number of data partitions based on
observing the current workload is feasible, but has signifi-
cant technical challenges. By avoiding the WAFL message,
TopSpin parallelism for such a workload is limited only by
the number of Protocol component threads. To evaluate one
such case, we issued an 8KiB random read load from NVMe-
oF clients directed to a single volume on the 2x32-core con-
troller. Fig. 17 shows the results. Waffinity has only 9
client-facing data partitions per volume for WAFL read mes-
sages, so the baseline system saturates early once WAFL has
utilized 9 cores. With TopSpin enabled, ONTAP activates
more Protocol threads to use up to 31.5 cores for process-
ing read operations. Combined with lower processing costs
and fewer queuing delays, the increased parallelism yields
226.7% higher peak throughput, and even higher gains un-
der 0.4ms. While this is an extreme case, TopSpin improves
many similar scenarios with limited WAFL parallelism.

This section provides further evidence of the value of by-
passing layers in ONTAP. It also encourages the continued
adoption of TopSpin in other code paths. TopSpin has al-
lowed us to incrementally achieve device-proportional over-
heads without requiring clean-sheet designs.

7 Lessons Learned

Lesson 1: Bypassing layers for the error-free data path is
an effective and safe way to eliminate software overhead in
a modular system. This approach retains useful component
divisions and fails through to the component itself for special
cases (only the error-free path needs to be optimized). Fail
through correctness requires that such cases disregard any
changes to message and system state caused by the partial
Fastpath execution. Each successful optimization fueled the
next project, and continues to do so. The optimization of
other file system operations and protocols using TopSpin are
in various stages of development and the design presented
for reads has provided a strong foundation for these.
Lesson 2: Incremental optimization for SSD was the right
approach for ONTAP. Before the Fastpath work, it was
widely assumed that ONTAP would not be able to achieve
device-proportional software overhead. NetApp thus de-
veloped and productized the alpha version of a clean-
sheet design SSD-optimized storage system called FlashRay.
FlashRay was discontinued for two primary reasons: (a) the
roadmap to achieve feature-parity with ONTAP was multiple
years and (b) the success of the Fastpaths demonstrated that

188 22nd USENIX Conference on File and Storage Technologies USENIX Association

ONTAP could be optimized to achieve SSD-proportional la-
tencies. Our incremental approach enabled NetApp to pro-
ductize all-SSD ONTAP systems that were competitive on
price and performance, while preserving legacy features.
Critically, the WAFL file system architecture was already
well-suited for SSD properties. In our experience, building a
fast I/O path was significantly easier than building an entirely
new file system with a rich feature set.

These lessons are applicable to other legacy systems and
can influence designs of storage systems for new media. As
new and faster media become available, future systems will
need to go further in lowering software overhead. The re-
maining non-error message hops will need to be eliminated,
such as special cases in TopSpin and even for device access.
Subsequently, all I/O code paths will need to be further ana-
lyzed (such as for cache line misses) and optimized.

8 Related Work

I/O path optimization for low-latency SSD drives is an area
of substantial study, notably bringing software overhead in
proportion with device latencies. Shin, et al. [57] eliminate
interrupt bottom halves and queue running contexts in the
I/O completion path. BarrierFS [65] reduces software over-
head by replacing expensive storage device I/O order guar-
antee approaches. ReFlex [35] builds a highly-optimized,
run-to-completion execution model for remote NVMe Flash
storage on top of the IX dataplane OS [4]. With only 21us
software overhead, ReFlex is fast.

Kernel bypass is another popular approach. NVMeDi-
rect [33] allows user-space applications direct access to the
I/O device. Demikernel [69] is a datapath OS that uses
kernel bypass devices and an optimized core scheduler for
microsecond-scale latencies, even while retaining critical OS
functionality. XRP [71] allows the user to embed application
logic within the device driver’s interrupt handler using eBPF.
These hooks include file system state that can traverse on-
disk structures and initiate new I/Os without returning con-
trol back to the application. These approaches are largely
orthogonal to our work because the components of ONTAP
discussed in this paper all run inside the kernel.

Techniques to reduce software overheads for low-latency
I/O devices include RAID optimizations [63], CPU-scalable
drive access [45], transparent zero-copy [59], and overlap-
ping processing with device access [40]. i10 [21] provides
a CPU-efficient RDMA remote storage stack, which mini-
mizes the number of cores required to saturate both network
and storage devices. SpanFS [24] partitions the file system
into independent micro-services by file and directory to in-
crease parallelism of the storage software, which is some-
what similar to Waffinity. Blk-switch [22] treats the storage
stack like a network switch, and adapts networking optimiza-
tions to minimize software overhead and maximize drive
throughput. Many systems optimize for predictable latency

from SSD drives [5, 20, 62, 70, 34, 31, 61, 43, 56, 58, 22, 35],
some using machine learning [18]. Fast core scheduling can
provide QoS at microsecond granularity to latency-sensitive
applications [49, 16].

Previous work analyzed low-latency drive perfor-
mance [36] and its impact on the Linux storage stack [53].
Oh, et al. [48] optimize Ceph to adapt from HDDs to SSDs.
I/O schedulers have been optimized [68] for low-latency
devices and even evaluated as software overhead [64]. Per-
formance requirements of Key-Value stores have inspired
optimizations for these drives, including optimized CPU
usage [41, 37, 42] and CPU bypass [46]. Lastly, persistent
memory technologies place even more emphasis on low
processing costs [6, 66, 39, 23], kernel bypass [8, 7], and
indexing overheads [39, 23, 47, 44].

Our work was done on a 30+ year old legacy system with-
out compromising the dozens of enterprise quality features
that are critical to our customers. The interactions of our im-
provements with these features created additional challenges
in our designs and implementations. We achieved signifi-
cant performance gains while retaining the existing behavior
of millions of lines of WAFL and ONTAP code outside the
read path, despite potentially operating on the same data.

9 Conclusion

Although several aspects of the decades-old ONTAP archi-
tecture were well-suited for building an all-SSD controller,
the software delays (proportional to HDD latencies) in its
legacy I/O path had made that impractical. In this paper,
we presented the multi-year journey of incremental improve-
ments to the read path that have reigned in software overhead
and made the all-SSD ONTAP controller a success. In fu-
ture work, we plan to present data reduction technologies
that were also crucial to this productization, as well as exten-
sions of TopSpin to other operations, such as writes.

Acknowledgments

We thank the anonymous reviewers and our shepherd, An-
gelos Bilas, whose suggestions have significantly improved
this paper. This paper discusses the results of a decade of en-
gineering effort by a huge group of talented engineers: Ab-
dul Basit, Joseph Brown, Yong Cho, Roopesh Chuggani, Pe-
ter Denz, Ravi Dronamraju, Manish Katiyar, Rajesh Khan-
delwal, Aditya Kulkarni, Szu-wen Kuo, Asif Pathan, James
Pitcairn-Hill, Parag Sarfare, Girish Hebbale Venkata Sub-
baiah, Ananthan Subramanian, Venkateswarlu Tella, Daniel
Ting, Sriram Venketaraman, Jungsook Yang, Xiaoyan Yang,
and many others.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 189

References
[1] Amazon. Amazon elastic block store. https://aws.amazon.

com/ebs/.

[2] Amazon. What is Amazon FSx for NetApp ONTAP? https:
//docs.aws.amazon.com/fsx/latest/ONTAPGuide/
what-is-fsx-ontap.html.

[3] Wendy Bartlett and Lisa Spainhower. Commercial fault tolerance: A
tale of two systems. IEEE Transactions on dependable and secure
computing, 1(1), 2004.

[4] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. IX: A protected data-
plane operating system for high throughput and low latency. In 11th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 14), October 2014.

[5] Matias Bjørling, Javier González, and Philippe Bonnet. LightNVM:
The linux open-channel SSD subsystem. In Proceedings of Confer-
ence on File and Storage Technologies (FAST), 2017.

[6] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup De,
Joel Coburn, and Steven Swanson. Providing safe, user space access
to fast, solid state disks. In Proceedings of the Seventeenth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XVII, 2012.

[7] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Jiwu Shu. Scalable persistent mem-
ory file system with Kernel-Userspace collaboration. In 19th USENIX
Conference on File and Storage Technologies (FAST 21), February
2021.

[8] Jungsik Choi, Jiwon Kim, and Hwansoo Han. Efficient memory
mapped file I/O for In-Memory file systems. In 9th USENIX Work-
shop on Hot Topics in Storage and File Systems (HotStorage 17), July
2017.

[9] Kevin Closson. SLOB resources. https://kevinclosson.net/
slob/.

[10] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven
Kleiman, James Leong, and Sunitha Sankar. Row-Diagonal parity
for double disk failure correction. In 3rd USENIX Conference on File
and Storage Technologies (FAST 04), March 2004.

[11] Storage Performance Council. Storage performance council-1 bench-
mark. www.storageperformance.org.

[12] Matthew Curtis-Maury, Vinay Devadas, Vania Fang, and Aditya
Kulkarni. To waffinity and beyond: A scalable architecture for incre-
mental parallelization of file system code. In Proceeding of Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2016.

[13] Matthew Curtis-Maury, Ram Kesavan, and Mrinal Bhattacharjee.
Scalable write allocation in the WAFL file system. In Proceedings
of the Internal Conference on Parallel Processing (ICPP), 2017.

[14] Peter Denz, Matthew Curtis-Maury, and Vinay Devadas. Think global,
act local: A buffer cache design for global ordering and parallel pro-
cessing in the WAFL file system. In Proceedings of the Internal Con-
ference on Parallel Processing (ICPP), 2016.

[15] John K Edwards, Daniel Ellard, Craig Everhart, Robert Fair, Eric
Hamilton, Andy Kahn, Arkady Kanevsky, James Lentini, Ashish
Prakash, Keith A Smith, et al. FlexVol: flexible, efficient file vol-
ume virtualization in WAFL. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2008.

[16] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
Caladan: Mitigating interference at microsecond timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 20), November 2020.

[17] Binny Gill. SPC-1 benchmark. https://www.usenix.org/
legacy/events/fast05/tech/full_papers/gill/gill_
html/node28.html.

[18] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim,
Henry Hoffmann, and Haryadi S. Gunawi. LinnOS: Predictability
on unpredictable flash storage with a light neural network. In 14th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 20), November 2020.

[19] Dave Hitz, James Lau, and Michael Malcolm. File system design
for an NFS file server appliance. In Proceedings of USENIX Winter
Technical Conference, 1994.

[20] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta
Sengupta, Bikash Sharma, and Moinuddin K. Qureshi. FlashBlox:
Achieving both performance isolation and uniform lifetime for virtu-
alized SSDs. In 15th USENIX Conference on File and Storage Tech-
nologies (FAST 17), February 2017.

[21] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal.
TCP=RDMA: CPU-efficient remote storage access with i10. In 17th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 20), February 2020.

[22] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agar-
wal. Rearchitecting linux storage stack for µs latency and high
throughput. In 15th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 21), pages 113–128. USENIX Asso-
ciation, July 2021.

[23] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. Splitfs: Reducing software
overhead in file systems for persistent memory. In Proceedings of the
Symposium on Operating System Principles (SOSP), SOSP ’19, 2019.

[24] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu, Lian Du, Shuai
Ma, and Jinpeng Huai. SpanFS: A scalable file system on fast stor-
age devices. In 2015 USENIX Annual Technical Conference (USENIX
ATC 15), July 2015.

[25] Ram Kesavan, Matthew Curtis-Maury, and Mrinal Bhattacharjee. Ef-
ficient search for free blocks in the WAFL file system. In Proceedings
of the Internal Conference on Parallel Processing (ICPP), 2018.

[26] Ram Kesavan, Matthew Curtis-Maury, Vinay Devadas, and Kesari
Mishra. Storage gardening: Using a virtualization layer for efficient
defragmentation in the wafl file system. In 17th Usenix Conference on
File and Storage Technologies (FAST), 2019.

[27] Ram Kesavan, Matthew Curtis-Maury, Vinay Devadas, and Kesari
Mishra. Countering fragmentation in an enterprise storage system.
ACM Transactions on Storage, 15(4), jan 2020.

[28] Ram Kesavan, Harendra Kumar, and Sushrut Bhowmick. Wafl iron:
Repairing live enterprise file systems. In 16th Usenix Conference on
File and Storage Technologies (FAST), 2018.

[29] Ram Kesavan, Rohit Singh, Travis Grusecki, and Yuvraj Patel. Al-
gorithms and data structures for efficient free space reclamation in
WAFL. In Proceedings of Conference on File and Storage Technolo-
gies (FAST), 2017.

[30] Ram Kesavan, Rohit Singh, Travis Grusecki, and Yuvraj Patel. Effi-
cient free space reclamation in WAFL. ACM Transactions on Storage
(ToS), 13, October 2017.

[31] Bryan S. Kim, Hyun Suk Yang, and Sang Lyul Min. AutoSSD: an
autonomic SSD architecture. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18), July 2018.

[32] Byungseok Kim, Jaeho Kim, and Sam H. Noh. Managing array of
SSDs when the storage device is no longer the performance bottle-
neck. In 9th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 17), July 2017.

[33] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. NVMeDirect:
A user-space I/O framework for application-specific optimization on
NVMe SSDs. In 8th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 16), June 2016.

190 22nd USENIX Conference on File and Storage Technologies USENIX Association

[34] Sangwook Kim, Hwanju Kim, Joonwon Lee, and Jinkyu Jeong. En-
lightening the I/O path: A holistic approach for application perfor-
mance. In 15th USENIX Conference on File and Storage Technologies
(FAST 17), February 2017.

[35] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote
flash = local flash. In Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 18), ASPLOS ’17, April
2017.

[36] Sungjoon Koh, Changrim Lee, Miryeong Kwon, and Myoungsoo
Jung. Exploring system challenges of Ultra-Low latency solid state
drives. In 10th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 18), July 2018.

[37] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. Reaping
the performance of fast NVM storage with uDepot. In 17th USENIX
Conference on File and Storage Technologies (FAST 19), February
2019.

[38] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith Makam.
High performance metadata integrity protection in the WAFL copy-
on-write file system. In 15th Usenix Conference on File and Storage
Technologies (FAST), 2017.

[39] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A cross media file system.
In Proceedings of the Symposium on Operating System Principles
(SOSP), SOSP ’17, 2017.

[40] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee,
and Jinkyu Jeong. Asynchronous I/O stack: A low-latency kernel I/O
stack for Ultra-Low latency SSDs. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), July 2019.

[41] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel.
Kvell: The design and implementation of a fast persistent key-value
store. In Proceedings of the Symposium on Operating System Princi-
ples (SOSP), SOSP ’19, 2019.

[42] Haoyu Li, Sheng Jiang, Chen Chen, Ashwini Raina, Xingyu Zhu,
Changxu Luo, and Asaf Cidon. RubbleDB: CPU-Efficient replica-
tion with NVMe-oF. In 2023 USENIX Annual Technical Conference
(USENIX ATC 23), July 2023.

[43] Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin, Gregory R.
Ganger, and Haryadi S. Gunawi. Ioda: A host/device co-design for
strong predictability contract on modern flash storage. In Proceedings
of the Symposium on Operating System Principles (SOSP), SOSP ’21,
2021.

[44] Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael Stumm, and Ding
Yuan. ctFS: Replacing file indexing with hardware memory trans-
lation through contiguous file allocation for persistent memory. In
20th USENIX Conference on File and Storage Technologies (FAST
22), February 2022.

[45] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. Max: A Multicore-
Accelerated file system for flash storage. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), July 2021.

[46] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using One-Sided
RDMA reads to build a fast, CPU-Efficient Key-Value store. In 2013
USENIX Annual Technical Conference (USENIX ATC 13), June 2013.

[47] Ian Neal, Gefei Zuo, Eric Shiple, Tanvir Ahmed Khan, Youngjin
Kwon, Simon Peter, and Baris Kasikci. Rethinking file mapping for
persistent memory. In 19th USENIX Conference on File and Storage
Technologies (FAST 21), February 2021.

[48] Myoungwon Oh, Jugwan Eom, Jungyeon Yoon, Jae Yeun Yun, Seung-
min Kim, and Heon Y. Yeom. Performance optimization for all flash
scale-out storage. In 2016 IEEE International Conference on Cluster
Computing (CLUSTER), 2016.

[49] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving high CPU efficiency for

latency-sensitive datacenter workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), Febru-
ary 2019.

[50] Naresh M. Patel. Half-latency rule for finding the knee of the latency
curve. SIGMETRICS Perform. Eval. Rev., 43(2), sep 2015.

[51] Hugo Patterson, Stephen Manley, Mike Federwisch, Dave Hitz, Steve
Kleiman, and Shane Owara. SnapMirror: File-system-based asyn-
chronous mirroring for disaster recovery. In Proceedings of the 1st
USENIX Conference on File and Storage Technologies. USENIX As-
sociation, 2002.

[52] Samsung. Pm1725 nvme pcie ssd. https://
www.samsung.com/us/labs/pdfs/collateral/
pm1725-ProdOverview-2015.pdf.

[53] Eric Seppanen, Matthew T. O’Keefe, and David J. Lilja. High per-
formance solid state storage under linux. In 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST), pages 1–12,
2010.

[54] Skip Shapiro. Technical report: Flash cache best prac-
tice guide. https://www.netapp.com/pdf.html?item=
/media/19754-tr-3832.pdf.

[55] Skip Shapiro. Technical report: Flash pool design and implemen-
tation guide. https://www.netapp.com/pdf.html?item=
/media/19681-tr-4070.pdf.

[56] Kai Shen and Stan Park. FlashFQ: A fair queueing I/O scheduler for
Flash-Based SSDs. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13), June 2013.

[57] Woong Shin, Qichen Chen, Myoungwon Oh, Hyeonsang Eom, and
Heon Y. Yeom. OS I/O path optimizations for flash solid-state drives.
In 2014 USENIX Annual Technical Conference (USENIX ATC 14),
June 2014.

[58] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos
Maltzahn, and Scott Brandt. Flash on rails: Consistent flash per-
formance through redundancy. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), June 2014.

[59] Timothy Stamler, Deukyeon Hwang, Amanda Raybuck, Wei Zhang,
and Simon Peter. zIO: Accelerating IO-Intensive applications with
transparent Zero-Copy IO. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), July 2022.

[60] Rajesh Sundaram. The Private Lives of Disk Drives.
https://www.netapp.com/atg/publications/publications-the-private-
lives-of-disk-drives-20064017/, 2006.

[61] Amy Tai, Igor Smolyar, Michael Wei, and Dan Tsafrir. Optimizing
storage performance with calibrated interrupts. In 15th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 21),
July 2021.

[62] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie
Kim, Yixin Luo, Yaohua Wang, Nika MansouriGhiasi, Lois Orosa,
Juan Gomez-Luna, and Onur Mutlu. Flin: Enabling fairness and
enhancing performance in modern nvme solid state drives. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Ar-
chitecture (ISCA), 2018.

[63] Shucheng Wang, Qiang Cao, Ziyi Lu, Hong Jiang, Jie Yao, and
Yuanyuan Dong. StRAID: Stripe-threaded architecture for parity-
based RAIDs with ultra-fast SSDs. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22), July 2022.

[64] Caeden Whitaker, Sidharth Sundar, Bryan Harris, and Nihat Altipar-
mak. Do we still need io schedulers for low-latency disks? In 10th
USENIX Workshop on Hot Topics in Storage and File Systems (Hot-
Storage 23), HotStorage ’23, 2023.

[65] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek Oh, Seongbae
Son, Jooyoung Hwang, and Sangyeun Cho. Barrier-Enabled IO stack
for flash storage. In 16th USENIX Conference on File and Storage
Technologies (FAST 18), February 2018.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 191

[66] Jian Xu and Steven Swanson. NOVA: A log-structured file system
for hybrid volatile/non-volatile main memories. In Proceedings of
Conference on File and Storage Technologies (FAST), 2016.

[67] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and Swami-
nathan Sundararaman. Don’t stack your log on my log. In INFLOW,
2014.

[68] Suli Yang, Tyler Harter, Nishant Agrawal, Salini Selvaraj Kowsalya,
Anand Krishnamurthy, Samer Al-Kiswany, Rini T. Kaushik, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Split-level
i/o scheduling. In Proceedings of the Symposium on Operating Sys-
tem Principles (SOSP), SOSP ’15, 2015.

[69] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob
Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Ko-
rnfeld Simpson, Sujay Jayakar, Pedro Henrique Penna, Max De-
moulin, Piali Choudhury, and Anirudh Badam. The demikernel dat-
apath os architecture for microsecond-scale datacenter systems. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, page 195?211, New York, NY, USA, 2021.
Association for Computing Machinery.

[70] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon Koh,
Changlim Lee, Mohammad Alian, Myoungjun Chun, Mahmut Tay-
lan Kandemir, Nam Sung Kim, Jihong Kim, and Myoungsoo Jung.
FlashShare: Punching through server storage stack from kernel to
firmware for Ultra-Low latency SSDs. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), Octo-
ber 2018.

[71] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, and Asaf Cidon. XRP: In-Kernel storage functions with
eBPF. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), July 2022.

NETAPP, the NETAPP logo, and the marks listed at
http://www.netapp.com/TM are trademarks of NetApp, Inc. Other
company and product names may be trademarks of their respective owners.

192 22nd USENIX Conference on File and Storage Technologies USENIX Association

