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Message from the 
FAST ’24 Program Co-Chairs 

Welcome to the 22nd USENIX Conference on File and Storage Technologies (FAST ’24). As the second post-COVID FAST 
conference, this year’s event continues the tradition of bringing together researchers and practitioners from both industry and 
academia for a program of innovative and rigorous storage-related research. 

FAST ’24 has remained highly selective. We received 123 submissions from authors in academia, industry, government labs, 
and the open-source communities. Of these, we accepted 22 papers for an acceptance rate of 18%. 

As usual, we have employed a two-round online review process. The first round had three reviewers assigned to each paper, 
followed by intensive online discussion. Forty-five papers were advanced to the second round, with an early rejection 
notification sent to the rest of the papers in early November 2023. The second round solicited at least two more reviews for 
each remaining paper and was again followed by active discussions that led to a summary request by the discussion lead 
listing specific items that the authors needed to respond to. This is the fourth year that FAST has allowed author rebuttal, and 
all 45 papers participated. More online discussions happened after the three-day rebuttal period, resulting in 9 papers being 
pre-accepted and 12 pre-rejected. The rest of the papers were discussed in a two-day online PC meeting in December 2023, 
with PC members joining virtually from global locations across 10 different time zones.

We used HotCRP to manage all the stages of the review process, from submission to author notification. A total of 464 
reviews and 1742 comments were submitted on the FAST ’24 submission site. All accepted papers were assigned a shepherd 
from the PC, who worked with the authors to address comments from the reviews and provided editorial advice and feedback 
on the final manuscripts. 

The review process produced a program covering a wide range of topics, including cloud and remote storage, caching, key-
value stores, persistent memory and SSD systems, storage coding, learned storage systems, and new file system designs. We 
continued to accommodate a special category of deployed-systems papers, which share experiences with the practical design, 
implementation, analysis, or deployment of large-scale operational systems. We received five submissions in this category 
and accepted two. The program also includes posters and work-in-progress sessions. 

FAST ’24 marks the first time in the conference’s history to adopt an optional artifact evaluation (AE) process, in which 
most accepted papers participated. After extensive evaluation, 17 papers were awarded AE badges, with about half of them 
receiving all three badges (“available”, “functional”, and “reproduced”). 

In addition, this year’s conference maintained the FAST mentorship program designed to enhance the conference experience 
for student attendees. The program offers them the chance to connect with and gain valuable career insights from seasoned 
community members, as well as to receive constructive feedback on their research. 

We are utterly thankful to the many people who contributed to this conference. First and foremost, we are grateful to all 
the authors who submitted their work to FAST ’24, as well as our conference attendees and future readers of the published 
papers. We extend our thanks to the entire USENIX staff, who have provided outstanding support throughout the planning 
and organization of this conference with the highest degree of professionalism and friendliness. Most importantly, their 
behind-the-scenes work and meticulous care of details make this conference happen. We are also grateful to KAIST students 
Dohyun Kim and Juwon Kim for spending many hours supporting us in configuring, testing, and managing systems used in 
the review process and the online PC meeting. 

We would like to thank the Poster and Work-in-Progress Chairs, Ali Butt and Young-ri Choi, for managing the submission, 
review, and coordination of these sessions. We thank Haryadi Gunawi and Huaicheng Li for proposing and chairing the 
Artifact Evaluation process. We thank Aishwarya Ganesan and Dean Hildebrand for chairing the Mentorship program. Our 
thanks also go to the members of the FAST Steering Committee, and especially the recent FAST chairs to whom we reached 
out and who provided invaluable advice and feedback. We appreciate the support and suggestions from Keith Smith and 
Dean Hildebrand in organizing the panel session. We especially wish to acknowledge our Steering Committee Liaison, Gala 
Yadgar, for her continuous guidance on delicate issues, attention to things we missed, and encouragement on many occasions 
over the past year. 

Finally, we wish to thank our Program Committee members for their many hours of hard work reviewing, discussing, and 
shepherding the submissions. The reviewers’ evaluations, as well as their thorough and conscientious deliberations at the PC 
meeting, contributed significantly to the quality of our decisions. Similarly, the paper shepherds’ efforts led to significant 
improvements in the final quality of the program. We look forward to an exciting and enjoyable conference! 

Xiaosong Ma, Qatar Computing Research Institute, Hamad Bin Khalifa University 
Youjip Won, Korea Advanced Institute of Science and Technology (KAIST) 
FAST ’24 Program Co-Chairs
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TeRM: Extending RDMA-Attached Memory with SSD
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†Tsinghua University
‡Huawei Technologies Co., Ltd

Abstract
RDMA-based in-memory storage systems offer high perfor-
mance but are restricted by the capacity of physical memory.
In this paper, we propose TeRM to extend RDMA-attached
memory with SSD. TeRM achieves fast remote access on the
SSD-extended memory by eliminating page faults of RDMA
NIC and CPU from the critical path. We also introduce a set
of techniques to reduce the consumption of CPU and network
resources. Evaluation shows that TeRM performs close to
the performance of the ideal upper bound where all pages
are pinned in the physical memory. Compared with existing
approaches TeRM significantly improves the performance of
unmodified RDMA-based storage systems, including a file
system and a key-value system.

1 Introduction

RDMA networks are catalyzing innovative designs for a
wide range of in-memory storage systems, including file sys-
tems [12, 25, 41], key-value stores [26, 27, 37], and transac-
tional databases [14, 15, 34, 38]. Unlike traditional TCP/IP
networks, RDMA can expose server-side memory regions,
i.e., RDMA-attached memory, to clients in the form of virtual
addresses. Clients can directly access data in these regions
via one-sided requests. The execution of one-sided requests
at the server side bypasses the CPU: the RDMA NIC (RNIC)
performs virtual-to-physical address translation using RNIC
page table, and then DMAs data to physical memory. In this
way, RDMA provides low latency and high CPU efficiency.

However, memory is an expensive and limited resource
in datacenters [23, 39]. To improve cost-efficiency and ac-
commodate larger-than-memory data sets for RDMA-based
systems, it is desirable to exploit SSD to extend the space of
RDMA-attached memory by performing demand paging with
the physical memory and the SSD. A hardware mechanism
called ODP (On-Demand Paging) MR (memory region) [22]
is proposed to support it. When handling an RDMA request

∗Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).

with the ODP MR, the RNIC will trigger a page fault interrupt
for SSD-resident data, then the CPU promotes data from SSD
to memory and updates the RNIC page table.

Unfortunately, our experiments demonstrate that ODP MR
is not the silver bullet to extend RDMA-attached memory
with SSD. As an RDMA READ consumes only 3.66µs on
an in-memory page, the latency grows to 570.74µs on an
SSD-resident page. The root cause is that the RNIC hardware
has limited compute and memory resources [22], so it can
only handle exceptions of RNIC page faults in a simple but
inefficient manner (e.g., discard the received data and notify
the client-side RNIC to retransmit it).

Motivated by the analysis above, we propose TeRM, an ef-
ficient approach to extending RDMA-attached memory with
SSD. The key idea is to onload exception handling (i.e.,
RNIC page fault) from hardware to software. For all the
SSD-resident pages, TeRM makes the RNIC page table point
to a reserved physical page containing a predefined magic
pattern. In this way, the RNIC page fault is eliminated. For a
read request, the client first fetches data through an RDMA
READ and identifies whether the page is on the SSD. Then,
the client resorts to RPCs to retrieve an SSD-resident page
from the server, but does not require any additional operation
for memory-resident pages, ensuring fast remote accesses in
common cases. Meanwhile, we introduce a set of techniques
to reduce the network traffic.

The TeRM-induced RPCs will access SSD-extended virtual
memory. To eliminate the heavy CPU page fault [11, 30, 42]
from the critical path of RPC execution, we propose tiering IO.
The key idea is to access the SSD-extended virtual memory
via file IO interfaces instead of memory load/store inter-
faces. It reads/writes the SSD-extended virtual memory via
buffer IO when the data is cached in the physical memory,
and otherwise via direct IO that bypasses the page cache.

With the design techniques above, TeRM eschews both
RNIC and CPU page faults from the critical path. However,
it freezes data placement on the server, unfortunately. If a
hotspot is on the SSD, it will always be accessed by RPC
with direct IO. Therefore, TeRM designs a dynamic hotspot
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promotion mechanism, which relies on collaborative effort
from clients and the server.

We implement TeRM by building a userspace library
tLib with about 6,100 LoC, and modifying the Mellanox
RNIC driver with about 300 LoC. tLib overrides the APIs of
libibverbs and is compatible with existing RDMA applica-
tions. Using a microbenchmark, we demonstrate that TeRM
achieves 98.13% throughput of the ideal upper bound with
half physical memory. We also evaluate unmodified RDMA-
based storage systems, a file system, Octopus [25], and a
key-value system, XStore [37]. The results show that TeRM
outperforms the ODP MR and the software-only RPC ap-
proach by up to 642.23× and 7.68×. We open source TeRM
at https://github.com/thustorage/TeRM.

To sum up, we make the following contributions.
• We conduct an in-depth breakdown and analysis of the end-

to-end latency to access the ODP MR.
• We propose TeRM, an efficient approach to extending

RDMA-attached memory with SSD. It onloads exception
handling (i.e., RNIC page fault) from hardware to software.
We also introduce a set of techniques to reduce network
traffic and CPU overhead.

• We use microbenchmarks and unmodified RDMA-based
storage systems to demonstrate the effectiveness of TeRM.

2 Background

2.1 RDMA
RDMA registers and initializes two important resources on
the control path, queue pair (QP) and memory region (MR).
QP is the communication endpoint with another peer. MR
exposes an area in the application’s virtual memory, for the
RNIC to access. Atop the initialized QP and MR, RDMA
supports two types of requests on the data path, one-sided and
two-sided. READ and WRITE are typical one-sided requests.
RDMA applications leverage them to access data on a remote
MR, without involving the remote CPU. SEND and RECV
(receive) are typical two-sided requests that offer a message-
passing abstraction. They are usually used to build RPC.

MR plays an indispensable role in freeing the remote CPU
from being interrupted by a one-sided request. While initial-
izing an MR, the driver pins all the pages in the physical
memory, retrieves the virtual-to-physical mappings from the
CPU page table, and stores them in the RNIC page table. We
call the MR initialized in this way a pinned MR in the paper.
With the pinned MR, the RNIC finds the physical addresses of
the target virtual addresses in a one-sided request and accesses
the data directly on the physical memory.

Although the pinned MR is prevalent in RDMA applica-
tions, it has several limitations. It pins a large number of pages
in the physical memory (e.g., tens or hundreds of GBs), occu-
pying valuable DRAM resources. The application can only
initialize an MR no larger than the available physical memory.

v0 v1 v2 v3 v4 v5 v6

CPU 
Page Table

RNIC 
Page Table

Physical 
Memory

p0 p1 p2 p3
invalid virtual page

valid virtual page
v0 v1 v2 v3 v4 v5 v6

virt-to-phys mapping

physical page

Figure 1: ODP MR. We show the RNIC page table of an
ODP MR and compare it with the CPU page table. A valid
virtual page is mapped to a physical page in the page table.
An invalid virtual page is not mapped. v5 is valid in the CPU
page table but invalid in the RNIC page table. We explain the
figure detailedly in §2.2.

1a 1c 1d

1bCPU Page Table

OS Kernel

RNIC Driver

RNIC Page Table

2a

2b

2c

3a

3b

1) Faulting 2) Invalidation 3) Advising

Figure 2: Flows to Synchronize CPU and RNIC Page Tables.

Meanwhile, it loses the opportunities for overcommitment,
page migration, transparent huge-page, etc. Facing these limi-
tations, ODP (On-Demand Paging) MR is proposed [22].

2.2 ODP MR
An ODP MR differs from a pinned MR in that it does not
pin pages in the physical memory, as we depict in Figure 1.
The RNIC page table maps some virtual pages to physical
pages — we call them valid virtual pages — and leaves the
rest unmapped, i.e., invalid virtual pages. Since the pages
are no longer pinned, the OS kernel can swap and migrate
pages. The application is able to expose an MR larger than the
physical memory. As the virtual-to-physical mappings may
be changed, CPU and RNIC page tables are synchronized by
three flows illustrated in Figure 2.

1) Faulting. When an RDMA request accesses data on
invalid virtual pages, (1a) the RNIC stalls the QP and
raises an RNIC page fault1 interrupt. (1b) The driver re-
quests the OS kernel for virtual-to-physical mappings via
hmm_range_fault [2]. The OS kernel triggers CPU page
faults on these virtual pages and fills the CPU page table if
necessary. (1c) The driver updates the mappings on the RNIC
page table and (1d) resumes the QP.

2) Invalidation. When the OS kernel tries to unmap virtual

1we call the RNIC-triggered page fault an RNIC page fault in this paper,
to distinguish it from a CPU page fault triggered by load/store in this paper
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pages in scenarios like swapping out or page migration, (2a)
it notifies the RNIC driver to invalidate virtual pages via
mmu_interval_notifier [2]. (2b) The RNIC driver erases
the virtual-to-physical mapping from the RNIC page table.
(2c) The driver notifies the kernel that the physical pages are
no longer used by the RNIC. Then, the OS kernel modifies
the CPU page table and reuses the physical pages.

ODP MR relies on faulting and invalidation flows to syn-
chronize CPU and RNIC page tables. All the valid virtual
pages in the RNIC page table are guaranteed valid in the CPU
page table, but not vice versa. When the kernel changes an
invalid virtual page to a valid one, it does not inform the driver.
As we illustrate in Figure 1, v5 is valid in the CPU page table
but still left invalid in the RNIC page table.

3) Advising flow tackles the issue above. An application
can proactively request the RNIC driver to populate a range
in the RNIC page table. The RNIC driver completes advising
by steps (3a) – (3b), which are identical to steps (1b) – (1c).

3 Motivation

In this section, we introduce RDMA-attached memory and
analyze how ODP MR performs in extending it with SSD.
We summarize two principles for designing TeRM.

3.1 RDMA-Attached Memory
An RDMA cluster includes several server and client machines
that are equipped with RNICs and connected by RDMA net-
work. By exposing the server’s virtual memory with an MR,
clients can directly read and write the RDMA-attached mem-
ory through RDMA READ/WRITE. Clients and servers may
also exchange messages and data through RPC based on
RDMA SEND/RECV. The RDMA-attached memory targets
storage systems, e.g., file system and key-value system.

Note that the server’s virtual memory is accessed both
locally and remotely. Local accesses are from the CPU via
load/store. Remote accesses are from clients via RDMA
READ/WRITE. We take Octopus [25], an RDMA-based file
system, as an example. The Octopus server initializes memory
layout, maintains file metadata, and boots an RPC service for
receiving and handling metadata requests. After retrieving file
metadata (e.g., data addresses) via RPC, the Octopus client
directly reads/writes the server-side MR to access file data.

As the server typically registers a pinned MR, it is restricted
by the capacity of physical memory, as we explain in §2.1.
To improve cost-efficiency and accommodate larger-than-
memory data sets, we explore extending the RDMA-attached
memory with SSD in this paper.

3.2 ODP MR Is Not the Silver Bullet
ODP MR enables a straightforward approach to extending
RDMA-attached memory with SSD. The server-side applica-
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Figure 3: Read Throughput with (a) One Client Thread and
(b) 64 Client Threads. PIN: pinned MR. ODP: ODP MR.
Read size: 4KB. MR size: 64GB. Physical memory for ODP
MR: 32GB. SSD: Intel Optane P5800X. More detailed experi-
mental setups are listed in §6.1.
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Figure 4: Time Breakdown of Read 4KB on an ODP MR.
(1a) – (1d): the steps introduced in Figure 2. HW: the step is
executed by the RNIC hardware. SW: the step is executed by
the software on the CPU.

tion mmap-s an SSD to get a virtual memory area that exceeds
the physical memory. Then it initializes an ODP MR for
clients to access remotely.

We use a microbenchmark to evaluate the performance of
accessing a server-side ODP MR from the client. We mmap
64GB virtual memory from an Intel Optane P5800X SSD, and
initialize a pinned MR (annotated as PIN) and an ODP MR
(annotated as ODP) respectively; physical memory is limited
to 32GB for the ODP MR. We evaluate the throughput of
reading 4KB data on the MR. §6.1 offers more details about
experimental setups. Figure 3 reports the results. The pinned
MR outperforms the ODP MR by 66.64× with one client
thread. The gap grows greatly to 290.76× with 64 client
threads. The experiment shows that ODP MR exhibits poor
performance, which is also reported by other works [16, 36].
Therefore, ODP MR is not the silver bullet for extending
RDMA-attached with SSD.

We break down the end-to-end time to read 4KB on an ODP
MR that triggers the RNIC page fault. Figure 4 depicts the
time of four steps we introduce in §2.2. We do not draw the
time of transferring 4KB data after resolving the RNIC page
fault, because it occupies less than 5µs, which is negligible
in the whole time. Notably, the CPU page fault (step(1b))
in our experiment is a major one where the OS kernel swaps
data between the physical memory and the SSD, instead of a
minor one [32]. We also evaluate the end-to-end latency with
a minor page fault for comparison, which is 431.22µs. The
latency difference stems from the software overhead of page
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cache mechanisms to access the SSD, as the Intel Optane
P5800X SSD has a read/write latency of only about 10µs.

The end-to-end time is composed of hardware time on the
RNIC (steps (1a), (1c), and (1d)) and software time on the
CPU (step (1b)). As shown in the figure, hardware steps take
up more than half of the whole. When identifying an invalid
virtual page during processing an RDMA request (step (1a)),
the server-side RNIC returns a receiver-not-ready (RNR)
negative acknowledgment packet (NACK) to the client-side
RNIC [16, 22]. Then the QP is stalled on the request until
it is resumed by step (1d). We presume that the latency of
steps (1a) and (1d) arises from changing the QP state, which
is reported to take up about 100µs [10, 40].

The root cause of the hardware’s long latency is its ineffi-
ciency in handling exception cases. The limited compute and
memory resources of the RNIC result in the simple approach
of stalling the transmission. The RNIC circuitry of handling
exception path operates relatively slowly, compared to the
fast path of processing a normal RDMA request. Therefore,
complex handling logic is too difficult to implement, as re-
ported by researchers from Mellanox [22]. Given the above,
we propose the first principle for designing TeRM. Principle
#1: onload exception handling from hardware to software.

The other source of the end-to-end latency is software, the
CPU page fault. The CPU page fault is known to perform
poorly [11, 21, 28, 29] and does not scale well with the num-
ber of threads [30]. However, ODP MR makes the case even
worse. During handling a CPU page fault, the kernel recycles
a physical page, invalidates the virtual page mapped to it, and
finally reuses it for the faulting virtual address. As we describe
in §2.2, the kernel triggers the invalidation flow when inval-
idating a virtual page, where the driver spends considerable
time updating the RNIC page table. Thus, the long latency
of CPU page fault shown in Figure 4 implicitly includes in-
validating the RNIC page table. Considering the above, we
propose the second principle for designing TeRM. Principle
#2: eliminate CPU page faults from the critical path.

4 Design

4.1 Overview
Figure 5 shows the overview of TeRM. We explain it below.

4.1.1 Architecture

Cluster infrastructure. The cluster has several servers and
clients; we draw one server and one client in Figure 5 due to
space limit. They are equipped with RNICs and connected via
RDMA network. tLib is TeRM’s userspace library (§5). It has
two instances on the server (tLib-S) and the client (tLib-C).
CPU VM serves local access, i.e., CPU load/store from the
server-side application. The server creates an area of virtual
memory larger than the physical memory through mmap-ing
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RDMA App
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Figure 5: TeRM Overview. Red ones are introduced by TeRM.
tLib is TeRM’s userspace library. We distinguish tLib on the
client and the server by tLib-C and tLib-S respectively.
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Figure 6: TeRM MR. We show the RNIC page table of TeRM
MR and compare it with the CPU page table. v0 – v6 are
virtual pages. p0 – p3 and M are physical pages. The read
request starts at the offset of 10KB with a length of 8KB.

an SSD. TeRM leverages the Linux kernel to do the demand
paging between the physical memory and the SSD, and man-
ages the virtual-to-physical mappings in the CPU page table.
In this way, the unmodified server-side application can access
the virtual memory to maintain in-memory runtime data.

TeRM MR serves remote access from the client-side applica-
tion. During initialization, the server-side application registers
a TeRM MR to expose the virtual memory. tLib-S cooper-
ates with the modified RNIC driver (§5) to manage the RNIC
page table of the TeRM MR. Recall principle #1: onload ex-
ception handling from hardware to software. We orchestrate
the RNIC page table and remove RNIC page faults, i.e., the
faulting flow (Figure 2) from the TeRM MR.

As illustrated in Figure 6, For all the valid virtual pages
(v0, v1, v3, v5), the RNIC page table maps them to normal
physical pages (p0 – p3), the same ones that the CPU page
table points to. When an RDMA READ accesses valid virtual
pages, it retrieves the true data on the correct physical pages.
For all the invalid virtual pages (v2, v4, v6), TeRM maps
them to one magic physical page (M). TeRM reserves the
magic physical page and populates it with a magic pattern.
When an RDMA READ accesses invalid virtual pages, the
server-side RNIC follows the mapping and retrieves the data
on the magic physical page. In this way, the RDMA READ
completes normally without triggering the RNIC page fault.
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4.1.2 Workflow

Read. A client reads data on the server-side TeRM MR by sub-
mitting a read request to tLib-C. The read request describes
the addresses of both sides and the length. In Figure 5, tLib-C
processes the read request in three steps. ❶ tLib-C generates
an RDMA READ according to the user-submitted read re-
quest and sends the RDMA READ via the client-side RNIC.
❷ The server-side RNIC returns the data without interacting
with the CPU. ❸ tLib-C checks whether the data contains the
predefined magic pattern. If no magic pattern is found, all the
data are on valid virtual pages. tLib-C has retrieved the valid
data and thus completes the read request. In this way, TeRM
completes the read request by a one-sided RDMA READ.

If the magic pattern is found, the client determines that it
accesses invalid virtual pages and data on these pages are
missing. The client fetches the missing data in three steps. ①
tLib-C submits an RPC to retrieve the missing data; we call it
RPC READ hereinafter. ② Receiving an RPC READ, tLib-S
reads the missing data to a preallocated and registered bounce
buffer. ③ tLib-S returns data to the client. As the bounce
buffer has been registered, tLib-S sends the data via RDMA
WRITE without triggering RNIC page faults. Afterward, the
server notifies the client of the completion. Finally, with all
the data fetched, tLib-C completes the read request.
Write. A client writes data to the server-side TeRM MR by
submitting a write request to tLib-C. tLib-C processes the
write request in three steps like processing a missing read
request. ① tLib-C submits an RPC to the server to write the
data; we call it RPC WRITE hereinafter. ② tLib-S fetches the
data from the client to the bounce buffer by RDMA READ.
Then it copies the data on the bounce buffer to the virtual
memory. ③ tLib-S notifies the client, and tLib-C completes
the write request to the application.

4.1.3 Challenges

There are several challenges in the design.
1) As a read request is in byte granularity but the virtual-

to-physical mapping of the TeRM MR is in page granularity,
precisely identifying invalid virtual pages becomes challeng-
ing. We tackle the challenge in a hierarchical manner, from
the request level to the page level. We also introduce a set of
techniques to reduce network traffic during identification. We
detail the design in §4.2.

2) As mentioned in the workflow, TeRM may introduce
internal RPCs, i.e., RPC READ and RPC WRITE that access
the SSD-extended virtual memory. An intuitive approach is
performing load/store, inducing heavy CPU page faults.
Following principle #2: eliminate CPU page faults from
the critical path, we propose tiering IO. Instead of memory
load/store interfaces, tiering IO resorts to file IO interfaces,
i.e., selectively uses buffer IO and direct IO to access the
SSD-extended virtual memory. We describe how tiering IO
operates at length in §4.3.

3) As TeRM MR and tiering IO eliminate RNIC and CPU
page faults from the critical path, it freezes the data placement
on the server, unfortunately. A fixed part of the virtual memory
is in the physical memory and mapped in the TeRM MR.
Without promotion on the critical path by the page faults,
a hotspot may be always on the SSD. Facing the challenge,
TeRM makes the client and the server collaborate to determine
and promote hotspots to physical memory in the background
dynamically (§4.4).

4.2 Identifying Invalid Virtual Pages

As a read request is in byte granularity, it leads to two issues
during identifying invalid virtual pages, the inter-page issue at
the request level and the intra-page issue at the page level. The
inter-page issue is that a read request may span multiple vir-
tual pages, some of which are valid but others are invalid. For
efficiency, TeRM should identify and fetch only the missing
data on invalid virtual pages via RPC. The intra-page issue
is that a read request may access only part of a virtual page.
TeRM should be able to determine whether a virtual page
is valid with any part of the virtual page. Moreover, TeRM
should reduce network traffic in identification.
Page division. To tackle the inter-page issue, TeRM adopts
page division. It splits the received data at page boundaries
into several parts and checks each part separately. Take the
read request in Figure 6 as an example. TeRM cuts the data
into three parts (on v4 – v6) and checks them one by one.
Byte detection. To tackle the intra-page issue, TeRM adopts
byte detection. On the server side, the magic pattern covers all
the bytes — not just the beginning or the end — of the magic
physical page, e.g., setting every byte to a magic number. On
the client side, tLib-C compares the retrieved part of a virtual
page with the magic pattern byte by byte. If matched, tLib-
C assumes that the part belongs to an invalid virtual page.
The read request in Figure 6 accesses the first half of v4 and
the last half of v6, which match the magic pattern, so tLib-C
determines v4 and v6 are invalid. The data on v5 does not
match the magic pattern and thus v5 is valid.
Sparse fetching. After identifying all the invalid virtual pages
precisely, tLib-C fetches data sparsely. It submits an RPC
READ and tLib-S fetches only the missing data on them.
Apart from the addresses of both sides and the access length,
the RPC READ also contains a page bitmap to indicate
whether each page is valid. With the read request in Figure 6
as an example, the page bitmap is b’010, as the first (v4)
and the last (v6) virtual pages are invalid. Receiving the RPC
READ, tLib-S bypasses all the valid virtual pages. It parses
the bitmap to locate and read all the invalid virtual pages.

Combining page division, byte detection, and sparse fetch-
ing, TeRM identifies invalid virtual pages of a read request
and only fetches the missing data on these pages via RPC.
Compared with fetching all the data of a read request, of
which only some virtual pages are invalid, TeRM reduces the
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amount of data transfer and thus speeds up the miss path.

False positive cases. Identifying invalid virtual pages by the
magic pattern may lead to false positive cases. If the server-
side application fills a valid virtual page with the magic pat-
tern, the client will determine it as an invalid virtual page
falsely. TeRM overcomes the issue with three key insights.
First, for random data, the possibility of false positive cases
is low. For a single byte (i.e. 8 bits) of random data, the prob-
ability is only 1/28 = 1/256. As the data length grows to n
bytes, the probability drops exponentially to 1/256n, which
is negligible. Moreover, TeRM varies the magic pattern dy-
namically for different processes at different times, to prevent
an application from always producing the same data as one
specific magic pattern. Finally, even if a false positive case
occurs, TeRM handles it as accessing an invalid virtual page
and fetches the data again via an RPC READ, without com-
promising the correctness.

Page bitmap. As tLib-C identifies an invalid virtual page
from the magic pattern, RDMA READ for it consumes extra
network bandwidth. To reduce the network traffic, we pro-
pose a page bitmap to identify an invalid virtual page before
RDMA READ. tLib-S maintains a page bitmap for a TeRM
MR to indicate whether each virtual page is valid. tLib-C pulls
the page bitmap periodically, e.g., per second in our evalua-
tion. For a read request, tLib-C queries the page bitmap first
and only sends RDMA READ for valid virtual pages. After-
ward, tLib-C submits RPC READ for all invalid virtual pages
identified by both the page bitmap and the magic pattern.

Note that the client-side page bitmap may be inaccurate but
does not harm read correctness and the overhead is acceptable.
If an invalid virtual page is indicated as valid by the bitmap,
RDMA READ will return the magic pattern and thus tLib-C
can identify it correctly. In contrast, for a valid virtual page
indicated as invalid, RPC READ will retrieve the correct data.

One may wonder why we do not use the page bitmap to
guide a write request, i.e.,sending RDMA WRITE for a valid
virtual page and RPC WRITE for an invalid one. This is be-
cause the overhead due to inaccuracy is unacceptable. If an
invalid virtual page is indicated as valid, RDMA WRITE on
it will trigger an RNIC page fault, which stalls the transmis-
sion and consumes no less time than a read-triggered one
(hundreds of microseconds as shown in Figure 4).

We discuss the overhead of pulling the page bitmap. With
one bit for each 4KB page, the page bitmap size is only
0.003% of the MR. For a 64GB MR, each client pulls 2MB
each time, which is negligible against the RNIC bandwidth.

Although TeRM introduces extra network traffic in identi-
fying an invalid virtual page, we argue that the ODP MR also
causes additional network traffic due to the RNR NACK. It
stalls the QP and wastes more network resources (§3.2).
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Figure 7: Tiering IO.

4.3 Accessing Data via Tiering IO

As we state in the workflow (§4.1), tLib-S reads and writes
the virtual memory to/from the bounce buffer during han-
dling RPC READ/WRITE. Recall that TeRM mmaps an SSD
to create an area of virtual memory, so that the unmodified
server-side application on the CPU can load/store the SSD-
extended virtual memory. Therefore, tLib-S must also access
the virtual memory through a kernel-exposed interface, in-
stead of a kernel-unaware interface, e.g., SPDK [7].

Although memcpy between the virtual memory and the
bounce buffer is an intuitive choice, it triggers heavy CPU
page faults (Figure 4) on invalid virtual pages that have been
swapped out to the SSD. Following principle #2: eliminate
CPU page faults from the critical path (§3.2), we propose
tiering IO to access the SSD-extended virtual memory, as
illustrated in Figure 7. Our key idea is resorting to file IO
interfaces instead of memory load/store interfaces.

Tiering IO orchestrates two interfaces — buffer IO and
direct IO — to access different states of virtual pages. Buffer
IO invokes pread/pwrite to access the page cache. Direct
IO bypasses the page cache with the O_DIRECT flag.

Tiering IO selects the interface to access a virtual page
according to its state. 1) If the virtual page resides in the page
cache, tiering IO accesses it via buffer IO. The IO can be
completed fast by the page cache, without communicating
with the SSD. 2) If the virtual page is uncached, accessing the
data via buffer IO will incur the page replacement of the page
cache. The replacement is time-consuming [5, 8], especially
when the page cache is nearly full. Therefore, tiering IO
chooses direct IO to bypass the page cache.

We identify three issues to support tiering IO, virtual-to-
block mapping, virtual page state, and direct IO granularity.
We discuss and tackle them below.
Virtual-to-block mapping. RPC READ/WRITE provides
the virtual address to access, we have to convert it to a logical
block address (LBA) on SSD for invoking IO. Fortunately,
the Linux kernel offers an efficient static virtual-to-block
mapping. By mmap-ing a given LBA range [slba, slba +
length) of the SSD, we get a virtual address range [saddr,
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saddr + length). For a server-side virtual address addr,
tLib-S calculates its LBA by addr - saddr + slba.
Virtual page state. TeRM queries the page cache to learn
whether a page is cached. Notably, the page state may be
stale by the time invoking the IO call. For example, tiering
IO determines that a virtual page is uncached and then ac-
cesses it via direct IO, but the page may be cached just before
the call begins. We argue that the stale page state does not
compromise the correctness, because direct IO read and write
flushes and invalidates the page cache respectively, so as to
guarantee data consistency [1].
Direct IO granularity. The granularity of RPC READ-
/WRITE and direct IO does not match. The former is a byte,
while the latter is a block, typically 512B or 4KB. To bridge
the granularity gap for RPC READ, we pad offset and length
of pread to block boundaries. As for RPC WRITE unaligned
to a block, we adopt a read-modify-write operation. We use
an exclusive lock for each block to control the concurrent
read-modify-write operations on the same block.

4.4 Determining and Promoting Hotspots

With the design of TeRM MR and tiering IO, TeRM eliminates
RNIC and CPU page faults form the critical path. Although
the elimination streamlines the critical path, it freezes the
data placement on the server, unfortunately. A fixed part of
the virtual memory is in the physical memory and mapped
in the TeRM MR. If a hotspot is on the SSD, it will always
be accessed by an RPC READ/WRITE with direct IO. Con-
sidering the server is unaware of one-sided RDMA accesses
from the client, we propose making the client and the server
collaborate to determine hotspots and then promote hotspots
dynamically, so as to improve the overall performance.
Determining hotspots. TeRM employs client-side tracking
and server-side accumulating to count the frequency of read-
/write requests and find the hotspots.

TeRM tracks requests at the client, because a hit read re-
quest finishes by a one-sided RDMA READ without involv-
ing the server-side CPU. tLib-C splits the address space of a
TeRM MR at the granularity of a sample unit and creates a
counter for each unit. When the application submits a read-
/write request, tLib-C locates all the requests’ spanning sam-
ple units and increases their counters. A smaller sample unit
results in finer counting, but the TeRM MR is divided into
more units and thus the counters occupy a larger memory
space. TeRM sets the sample unit to 1MB to achieve the
balance between the counting granularity and the counters’
memory footprint. With a 32-bit counter for each sample unit,
the counters take up only 0.00003% memory space compared
to a TeRM MR, which is negligible.

TeRM accumulates counters at the server, given that multi-
ple clients in the cluster may access one TeRM MR. In every
sample period, tLib-S pulls all the counters from the clients
and sums them up. Then it gets a global view of the counters

and knows how many times each unit has been accessed in
the latest period. A shorter sample period leads to a more
timely counting but consumes more network bandwidth dur-
ing transferring the counters. TeRM sets the sample period to
1 second to balance these two aspects.

The more times that a sample unit is accessed, the hotter
TeRM thinks it is. TeRM sorts the units by their counters in
descending order and determines the hottest units that can be
placed in the physical memory as hotspots.
Promoting hotspots. TeRM promotes hotspots one by one.
A unit is skipped if it has been promoted in an earlier period.
Otherwise, TeRM invokes the advising flow (Figure 2) to pro-
mote the unit. The unit is swapped into the physical memory
and mapped in the RNIC page table. Then a later read request
on the unit is completed via an RDMA READ and a write
one is done via buffer IO write in RPC WRITE.

The advising flow is also time-consuming due to triggering
the CPU page fault and updating the RNIC page table. Thus,
TeRM does not promote all the hotspots in one promotion.
Instead, TeRM promotes as many units as possible within the
time of a sample period. Then it begins the next period of
determining and promoting hotspots.

The promotion design balances effectiveness and flexibility.
If the hotspots remain stable for consecutive periods, TeRM
promotes the hottest proportion in the beginning periods and
then the less hot ones in the later periods. All the determined
hotspots are promoted eventually. However, if the hotspots
have changed since the last sample period, promotion for the
last period completes fast, and TeRM shifts to promote the
latest hotspots immediately. As the promotion is conducted
periodically, it occupies little CPU resources.
Consistency discussion. As the promotion and tiering IO
in RPC READ/WRITE may access the same page, we dis-
cuss the concurrency consistency here. As both trap into the
Linux kernel, TeRM reuses the concurrency control in the
Linux kernel to guarantee consistency. Note that the promo-
tion always accesses the page cache. If tiering IO performs
buffer IO, accesses are routed to the page cache, and hence
the concurrency consistency is maintained by the page cache.
If tiering IO performs direct IO, read requests do not raise any
consistency issue since the SSD always contains the newest
version of data. At the beginning and end of write requests
in direct IO, the kernel invalidates the page cache so as to
prevent old data in the cache and guarantees the consistency.

5 Implementation

We implement TeRM for the Mellanox RNIC. We build the
userspace library tLib with about 6,100 lines of C++ code and
modify the RNIC driver with about 300 lines of C code.
tLib. It overrides the APIs to manipulate the
MR (ibv_register_mr) and the RDMA request
(ibv_post_send, ibv_poll_cq). tLib is transparent
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to the upper-layer application via LD_PRELOAD and has two
instances tLib-S and tLib-C.

The server-side application invokes ibv_register_mr to
register an MR. In the overridden ibv_register_mr, tLib-S
interacts with the modified RNIC driver to create a TeRM
MR and starts an RPC service in the userspace to serve the
RPC READ/WRITE from clients. We adopt coroutine in
the RPC service and libaio to submit direct IO to the SSD
asynchronously, so as to enhance the CPU efficiency.

The client-side application calls ibv_post_send to sub-
mit a read/write request and polls the completion via
ibv_poll_cq. For a write request, tLib-C converts it to an
RPC WRITE in the overridden ibv_post_send and submits
it to the server. For a read request, tLib-C identifies invalid
virtual pages in the overridden ibv_poll_cq and submits an
RPC READ to the server if necessary.

Considering RDMA requests enjoy low latency, we aim
to make tLib execute efficiently. We employ multithreading-
friendly and cacheline-aware data structures and mechanisms
throughout the implementation, to reduce the extra running
overhead introduced by tLib.
RNIC driver. We modify the RNIC driver to support the
TeRM MR. We reuse the mechanisms of the ODP MR, in-
cluding the RNIC page table and the synchronization flows
with the CPU page table§2.2. When creating a TeRM MR,
the RNIC driver allocates a physical page from the kernel and
fills it with the magic pattern. TeRM eliminates the faulting
flow as we state in §4 and modifies the invalidation flow in
the driver. When the Linux kernel notifies the RNIC driver of
invalidating a virtual page, the RNIC driver does not clear the
virtual-to-physical mapping as it does for the ODP MR, but
instead makes the mapping point to the magic physical page.

6 Evaluation

We evaluate TeRM by microbenchmarks and RDMA-based
storage systems to answer the following questions.
• How does TeRM compare with existing approaches? (§6.2)
• How do the design techniques contribute to the end-to-end

performance of TeRM? (§6.3)
• How does TeRM perform on dynamic workloads? (§6.4)
• How do workload characteristics affect TeRM? (§6.5)
• How can RDMA-based storage systems benefit from

TeRM? (§6.6)

6.1 Experimental Setup
Testbed. We conduct the experiments on a cluster of one
server machine and two client machines. The server machine
has a 56-core Intel Xeon Gold 6330 CPU, 96GB DRAM, and
a 400GB Intel Optane 5800X SSD. The SSD has 1.25/1.16
Mops/s of 4KB random read/write and 4.21/0.69 Mops/s of
512B random read/write. Each client machine has a 36-core
Intel Xeon Gold 5220 CPU and 64GB DRAM. We equip the
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Figure 8: Read Throughput. The vertical axis is in a logarith-
mic scale.

machines with a ConnectX-5 RNIC on each and connect them
by a 100Gbps IB RDMA switch.
Comparing Targets. We compare TeRM with two ap-
proaches ODP and RPC. Moreover, we use PIN to show the
ideal upper bound of performance where all data pages are
pinned in the physical memory.
• PIN. Only in this approach, we do not restrict the available

physical memory. The server registers the virtual memory
as a pinned MR. The clients read and write the server-side
pinned MR by one-sided RDMA READ/WRITE through
the original libibverbs.

• ODP. On the server machine, we register the virtual mem-
ory as an ODP MR. The clients also use the original
libibverbs to submit read/write requests. All the requests
are handled by one-sided RDMA READ/WRITE and trig-
ger RNIC page faults on invalid virtual pages.

• RPC. All the read/write requests are handled by RPC
READ/WRITE. The server-side RPC service accesses the
virtual memory via memcpy and thus triggers CPU page
faults when a virtual page is not mapped.

• TeRM. The server registers the virtual memory as a TeRM
MR. tLib-C interacts with tLib-S to handle read/write re-
quests submitted by the client, as we describe in the design
and implementation.

Workloads. We use a microbenchmark to evaluate the per-
formance. We run it for 60 seconds and report the average
throughput. It creates a 64GB virtual memory by mmap-ing the
SSD on the server machine. We limit the available physical
memory to 32GB, 50% size of the virtual memory. The mi-
crobenchmark runs 64 client threads, 32 threads on each client
machine. Each client thread issues read and write requests
to the server, where the accessing positions follow a skewed
distribution (Zipfian θ=0.99). For both the RPC approach
and TeRM, we create 16 threads for the RPC service on the
server machine and bind these threads on eight physical CPU
cores. We keep the settings above as the default throughout
the experiments unless stated otherwise.

6.2 Overall Performance

In this experiment, we evaluate the read and write perfor-
mance of access sizes from 64B to 16KB.
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Read 256B Read 4KB
p50 lat. p99 lat. p50 lat. p99 lat.

PIN 3.10 4.21 21.20 24.03
ODP 3.03 29,103.92 4.60 45,781.38
RPC 38.55 109.79 26.01 93.62
TeRM 3.50 30.07 16.51 52.02

Table 1: Read Latency (µs)

6.2.1 Read

We report read throughput in Figure 8 and latency in Table 1.
We analyze the performance of TeRM against ODP, RPC, and
PIN respectively in the following.
TeRM vs. ODP. The throughput of TeRM and ODP achieves
6.93Mops/s and 24.09Kops/s respectively. TeRM outperforms
ODP by 30.46× – 549.63×. ODP has the lowest p50 latency
of all four approaches. This is because most read requests are
hit in the physical memory. The RNIC on the ODP approach
is the least utilized in transferring data and thus shows the
lowest latency to finish a hit RDMA READ. However, the
long p99 latency demonstrates that ODP suffers from heavy
RNIC and CPU page faults on the miss path. TeRM reduces
the p99 latency by up to 967.74×, thanks to the much more
efficient miss path.

Notably, PART [32], a hardware solution like the ODP MR,
reports a 31µs latency of a faulting RDMA request, which is
lower than ODP in our experiment. The latency difference
mainly arises from the fact that PART evaluates a minor page
fault while we evaluate a major one. A major page fault has to
load data from the SSD. Nevertheless, TeRM incurs a lower
average latency of 26.61µs for a missed read request. This is
because TeRM leveragers tiering IO to build an efficient miss
path that bypasses the CPU page fault.
TeRM vs. RPC. The RPC approach reaches a throughput of
320.75Kops/s. It does not provide the maximum throughput,
because the RPC approach triggers CPU page faults when
pages are not mapped. The CPU page fault performs poorly
and does not scale well with more server threads, which is
also reported by previous studies [11, 21, 28–30]. The RPC
approach performs better than ODP because clients use two-
sided RDMA primitives to submit read requests. In this way,
the RPC approach avoids RNIC page faults. TeRM surpasses
the throughput of the RPC approach by 9.05× – 45.19×. It
decreases the p50 and p99 latency by 11.02× and 1.57×
respectively. TeRM has significant improvement because it
utilizes the server CPU more efficiently in two aspects. First,
TeRM tries one-sided RDMA READ and only handles the
missed read requests via the RPC service on the server CPU,
but the RPC approach involves the server CPU in processing
all the read requests. Moreover, TeRM proposes tiering IO
to avoid CPU page faults, while the RPC approach may still
trigger CPU page faults during memcpy.
TeRM vs. PIN. When the read size is less than 1KB, the

PIN ODP RPC TeRM

Th
ro

ug
hp

ut
 (K

op
s/

s)

1

102

104

Write Size
64B 128B 256B 512B 1KB 2KB 4KB 8KB 16KB

Figure 9: Write Throughput.The vertical axis is in a logarith-
mic scale.

Write 256B Write 4KB
p50 lat. p99 lat. p50 lat. p99 lat.

PIN 2.91 3.89 21.29 23.40
ODP 56,158.64 71,006.89 19,884.87 41,636.82
RPC 43.89 131.52 317.12 1,772.35
TeRM 15.22 117.27 21.18 59.73

Table 2: Write Latency (µs)

throughput of TeRM is stable around 6.86Mops/s, achieving
up to 37.79% of the PIN throughput. With 256B as an exam-
ple, the hit ratio of read requests is 69.44%, and the latency is
as low as PIN. The slowdown of TeRM mainly arises from
the missed read requests, each of which costs about 19.26µs.
In this scenario, the RPC service becomes the bottleneck of
the overall performance.

For large read requests above 1KB, TeRM greatly narrows
the gap with PIN. It achieves 54.55% throughput of PIN at
1KB and the ratio goes up to 96.71% at 4KB. The narrowing
gap results from the shrinking latency difference between hit
(16.51µs) and missed (26.61µs) read requests. In this case,
TeRM saturates the RNIC bandwidth.

6.2.2 Write

We show write throughput in Figure 9 and latency in Table 2.
We compare TeRM with ODP, RPC, and PIN.
TeRM vs. ODP. TeRM and ODP have throughput up to
2.58Mops/s and 1.18Kops/s respectively. We output the
throughput second by second and find that ODP is unstable
and jitters sharply. It reaches a peak throughput of 4.28Kop-
s/s at some time but may also stall for more than a second.
Nevertheless, TeRM surpasses ODP’s peak throughput by up
to 1,195.81×. ODP performs worse on write than read, be-
cause write incurs higher swapping overhead. To swap out a
read-only page, the OS kernel just drops it from the physical
memory because it is clean. But to swap out a written page,
the OS kernel has to write the dirty page back to the SSD.
TeRM vs. RPC. The RPC approach reaches a throughput of
308.34Kops/s. Even though TeRM also handles write requests
via RPC WRITE, it outperforms the RPC approach by up to
12.60×. TeRM reduces the p50 and p99 latency by 14.97×
and 29.67×. The results demonstrate the effectiveness of
tiering IO and promoting hotspots compared to memcpy.
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Figure 10: Contribution of Each Technique.

TeRM vs. PIN. When the write size is smaller than 512B,
the throughput is around 1.71Mops/s. Taking 256B as an
example, 72.53% of write requests hit the page cache and fin-
ished by buffer IO. The rest of write requests are completed
by the read-modify-write operation as we describe in §4.3,
which limits the overall performance. When the size grows
to 512B, the write throughput climbs to 2.19Mops/s. This is
because tiering IO writes uncached data simply by a direct
IO write rather than the time-consuming read-modify-write.
The SSD can provide 694Kops/s of 512B write operations
and becomes the bottleneck. As the write size goes up, the
SSD’s throughput increases and so does the write through-
put of TeRM. TeRM reaches the throughput of 2.38Mops/s
at 4KB, 78.69% of the PIN throughput, where the SSD ex-
hibits 1.16Mops/s of 4KB write. When the write size is even
larger, TeRM further reduces its gap with the PIN approach.
TeRM achieves 727.28Kops/s throughput at 16KB, 96.32%
of the PIN approach. In this scenario, the RNIC bandwidth
dominates the overall performance.

6.3 Contribution of Each Technique
In this experiment, we analyze how each technique contributes
to TeRM, as reported in Figure 10. We choose 256B and
4KB as representatives of small and large read/write sizes.
We use three baselines, RPC, RPC_buffer, and RPC_direct.
RPC_buffer and RPC_direct are the same as the RPC ap-
proach, except that we replace the server-side memcpy with
buffer IO and direct IO respectively. We introduce these
two baselines to study the advantage of tiering IO com-
pared with existing IO interfaces. Then we gradually en-
able tiering IO (§4.3), promoting hotspots (§4.4), and TeRM
MR (§4.1&§4.2) atop RPC_direct. Three techniques are an-
notated as +tiering, +hotspot, and +magic in Figure 10. We
test Read 4KB using eight RPC threads, which are enough for
TeRM in this case; we analyze server-side CPU usage in more
detail later in §6.5.4. We apply the TeRM MR last because it
can function better when hotspots are promoted. Notably, the
TeRM MR does not apply to write requests.

The experimental results demonstrate that all techniques
contribute to the performance improvement of TeRM.
Baselines. We first compare three baselines. RPC_buffer per-
forms as poorly as RPC. It avoids CPU page faults but cannot
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Figure 11: Performance of Dynamic Workloads. We change
the hotspots at the 60th second.

eschew the heavy page replacement [5, 8]. RPC_direct sur-
passes RPC_buffer by 1.90× – 12.05×. It bypasses the page
cache but loses the opportunity to access cached data fast.
+tiering. Tiering IO improves the performance by 1.16× –
3.10× over RPC_direct. It accesses data via the page cache
whenever possible. When the data is on the SSD, tiering IO
accesses it directly through the device. In this way, tiering IO
manages to exploit the high-performance physical memory
and avoid the heavy page cache maintenance simultaneously.
+hotspot. Determining and promoting hotspots further in-
creases the throughput by 1.16× – 2.31×. With the hotspots
promoted in the physical memory, tiering IO completes more
hot data requests from the page cache.
+magic. TeRM MR raises the throughput by 1.56× – 1.73×.
The hit read requests are handled through one RDMA READ
operation without bothering the server-side CPU. As the RPC
service only handles miss read requests instead of all read
requests, TeRM utilizes both the RNIC and the server-side
CPU more efficiently.

More specifically, the page bitmap also plays a remark-
able role in performance improvement. The hit ratio of read
4KB requests is about 73%. Without the page bitmap, the
remaining 27% read requests are transferred twice, the first
time via RDMA READ and the second time via RPC READ.
The end-to-end throughput is 2.37Mops/s, only 78.97% of
the PIN approach. With the page bitmap, less than 0.1% read
requests are transferred twice. The throughput is 2.90Mops/s,
achieving 96.71% of the PIN approach.

6.4 Dynamic Workloads

We evaluate how TeRM reacts to dynamic hotspots and plot
the results in Figure 11. We run the benchmark for 120 sec-
onds and change the hotspots at the 60th second. We have
two observations from the results. 1) TeRM performs more
stably than ODP and RPC. TeRM is stable at 2.89Mops/s and
drops by only 6.82% after switching hotspots. The through-
put of ODP and RPC jitters sharply and drops by 1.77× and
3.03× after the switching. 2) TeRM determines and promotes
hotspots effectively and efficiently. The throughput of TeRM
returns to the peak quickly in one second, while it takes ODP
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Figure 12: Performance with Varying (a) Skewness and (b)
Write Ratios.

and RPC six seconds.

6.5 Sensitivity Analysis

We evaluate how the characteristics of workloads impact the
performance of TeRM. We show the read performance of
4KB in these experiments by default, unless otherwise stated.

6.5.1 Skewness

Figure 12(a) plots the performance of approaches with vary-
ing skewness. For the uniform distribution (θ = 0), TeRM
exhibits more significant improvement against existing ap-
proaches, compared with the skewed distribution. It outper-
forms ODP and RPC by 265.24× and 40.40× respectively,
achieving 91.22% of PIN. The hotspots are more concentrated
when θ increases. The PIN approach is stable with varying
skewness. ODP, RPC, and TeRM show higher throughput as
the skewness grows, because more requests are within the
hotspots that reside in the physical memory.

6.5.2 Write Ratio

Figure 12(b) depicts the throughput with five different write
ratios, 0% (read-only), 25% (read-most), 50% (read-write),
75% (write-most), and 100% (write-only). The PIN approach
shows improvement on read-write-mixed requests because it
exploits the full-duplex performance of the RDMA network.
As for TeRM, mixing read and write slows down the direct
IO performance and restricts the overall throughput. ODP
and RPC do not perform better for read-write-mixed requests
compared with the read-only or write-only scenario.

6.5.3 Client Threads

Figure 13(a) reports the throughput with different numbers of
client threads. As the number of client threads goes up, the
throughput of TeRM grows linearly and reaches 2.48Mops/s
at 32 threads. The throughput of PIN also increases linearly
and hits the peak at 16 threads. ODP and RPC scale poorly
with the increasing number of client threads.
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Figure 13: Performance with Different Numbers of (a) Client
Threads and (b) Server Threads.
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6.5.4 Server Threads

Figure 13(b) shows the throughput with different numbers
of server threads for the RPC service. TeRM scales with the
increasing number of server threads and reaches the peak at
eight threads. The RPC approach does not scale well because
the CPU page fault scales poorly [30]. TeRM outperforms
the RPC approach by 2.84×– 10.76×. Even with one server
thread, TeRM exceeds the peak throughput of the RPC ap-
proach. The results demonstrate the CPU efficiency of TeRM.

6.5.5 DRAM Ratio

As shown in Figure 14, we evaluate the performance with dif-
ferent sizes of DRAM, i.e., available physical memory. TeRM
performs well with varying DRAM sizes. Even with only 20%
DRAM, TeRM provides 95.10% and 61.93% throughput of
the PIN approach on skewed and uniform workloads. It out-
performs ODP and RPC by up to 388.29× and 41.78×. The
enhancement is higher compared with the default 50% DRAM
setting in our experiments. This demonstrates that TeRM still
acts efficiently under a low DRAM ratio. All approaches have
higher throughput with more DRAM. With the 90% DRAM
ratio, the RPC approach increases to 1.95Mops/s.

It is worth noting the performance with a 100% DRAM
ratio, where all data fits in the physical memory. This scenario
shows the extra overhead of each approach. Compared with
PIN, TeRM introduces 2.63% overhead, which is negligible.
ODP and RPC also exhibit performance close to PIN.
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Figure 15: Performance with Different SSDs of (a) Read 256B
and (b) Read 4KB. The vertical axis is in a logarithmic scale.
SSD 1: Intel Optane P5800X. SSD 2: Intel Optane P4800X.
SSD 3: Samsung PM9A3. More details about SSDs are listed
in Table 3.

ID Product Model Read 512B Read 4KB
SSD 1 Intel Optane P5800X [4] 4,216 1,255
SSD 2 Intel Optane P4800X [3] 586 586
SSD 3 Samsung PM9A3 [6] 600 619

Table 3: Throughput of Different SSDs (Kops/s). We test
their random throughput on a 64GB area using fio with 16
threads and libaio (queue depth = 4). SSD 1 & 2 use Intel
Optane memory as the storage media. SSD 3 uses NAND flash
as the storage media.

6.5.6 SSD

We evaluate how different SSDs impact the performance and
plot the results in Figure 15. The details of the SSDs are listed
in Table 3. TeRM running on SSD 2 and SSD 3 achieves
close throughput at about 1.95Mops/s. It outperforms ODP
and RPC by up to 158.83× and 9.22×. SSD 2 and SSD 3
have similar IO throughput and limit the overall performance.
The experimental results show that TeRM acts effectively on
different SSDs with different types of storage media.

6.6 RDMA-based Storage Systems
We evaluate how existing RDMA-based storage systems can
benefit from TeRM. We choose an RDMA-based file system,
Octopus [25], and an RDMA-based key-value system, XStore
[37]. We keep the programs unmodified, except mmap-ing the
SSD to get a large area of virtual memory and registering it
as a pinned, ODP, or TeRM MR in their initialization stage.

6.6.1 Octopus: A File System

Octopus is an RDMA-based file system. The server initializes
a large area of virtual memory to store metadata and data,
and exposes it via an MR. Meanwhile, it runs an RPC service
for processing metadata. During accessing a file, the client
first communicates with the server via the metadata RPC, to
retrieve metadata of a file, e.g., data addresses. Then it reads
or writes the server-exposed MR to access file data.
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Figure 17: XStore Performance. The vertical axis is in a
logarithmic scale. We use the YCSB-C workload with 8B keys
and 128B values.

On the server machine, we boot 16 threads for metadata
service on 16 cores. We run 32 client processes. Each of
them reads/writes 4KB/16KB on a 1GB file, where the access
positions follow a skewed distribution (Zipfian θ= 0.99). The
metadata and data occupy about 35GB of virtual memory on
the server; we limit the available physical memory to 18GB.

Figure 16 reports the results. TeRM achieves 82.99–
642.23× ODP and 1.77–7.68× RPC. It performs almost the
same as PIN on Read 16KB and Write 4KB. Accessing 4KB
is slower than 16KB because the client fetches metadata be-
fore transferring data. In this scenario, the metadata service
bottlenecks the throughput.

6.6.2 XStore: A Key-Value System

XStore is an RDMA-based key-value system. The server
maintains a B+ tree and trains a learned index on the virtual
memory. It exposes the virtual memory via an MR. The client
leverages the learned index to predict the value’s address and
reads the server-side MR to get it. XStore handles put oper-
ations via RPC. The server runs an RPC service to process
put requests from the client.

In our experiment, the server initializes a B+ tree contain-
ing 8B keys and 128B values. XStore occupies 32GB of vir-
tual memory on the server and we limit the available physical
memory to 16GB. Since put operations are based on XStore’s
own RPC, we evaluate how TeRM benefits the get perfor-
mance. We use a YCSB-C workload and vary the skewness
of the keys’ distribution.

Figure 17 shows the experimental results. TeRM outper-
forms the ODP and RPC approach by up to 102.97× and
2.69× respectively. As the skewness increases, get through-
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put increases because hotspots are more concentrated in the
physical memory. TeRM achieves 30.07% throughput of the
PIN approach at Zipfian θ = 0.99.

The experiments of Octopus and XStore show that RDMA-
based storage systems can gain significant performance en-
hancement from TeRM compared to the ODP and RPC ap-
proaches. TeRM saves physical memory and achieves compa-
rable performance against the PIN approach.

7 Related Work

Extending local memory. With the advent of high-
performance SSD and network, a host of works focus on
extending local memory with the SSD or remote memory in
recent years. They extend local memory from different levels,
the application programming level [33,35], the virtual address
level [11,18,21,28–30,42], and the hardware level [9,13,31].
Then the application process can run on a memory space
larger than the physical memory and swap memory pages to
the SSD or remote memory.

TeRM differs from these works in target problems and ap-
plications. These works focus on extending the private virtual
memory of a CPU process and optimizing CPU page faults.
Local memory is not exposed and only accessible by the pro-
cess. Therefore, they target applications like in-memory graph
processing systems (e.g., PowerGraph [17]) and big data sys-
tems (e.g., Spark [43]). TeRM extends the RDMA-attached
memory exposed by the RNIC and tackles RNIC page faults.
The memory is shared in the cluster and can be concurrently
accessed by the server (via CPU) and multiple clients (via the
RNIC). TeRM mainly aims at RDMA-based storage systems,
e.g., Octopus [25] and XStore [37] in our evaluation.
ODP MR and RNIC page fault. Lesokhin et al. introduce
ODP MR and page fault support for the RNIC [22], so that
initializing an MR need not pin pages in physical memory.
PART [32] also builds a mechanism to handle RNIC page
faults on a prototype hardware platform. These works han-
dle the exception in the hardware and thus are restricted by
the limited hardware resources. TeRM proposes onloading
exception handling from hardware to software.
Onloading from RNIC. Researchers from system and net-
work communities also propose onloading functionalities
from the RNIC to the CPU. For example, FaSST [20] and
eRPC [19] reimplement reliability on the CPU, to address the
scalability issues of the RC connection. Flor [24] onloads flow
control from the RNIC to the CPU to support heterogeneous
RNIC deployment. In contrast, TeRM targets page fault.

8 Conclusion

We present TeRM in this paper, an efficient approach to ex-
tending RDMA-attached memory with SSD. It onloads ex-
ception handling (i.e., RNIC page fault) from hardware to

software. The experimental results on the microbenchmark
and unmodified RDMA-based storage systems demonstrate
the effectiveness of TeRM.
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A Artifact Appendix

Abstract
The artifact provides implementation source code and evalua-
tion scripts of TeRM. It overloads the APIs of libibverbs
and can be integrated with an existing RDMA application
transparently by LD_PRELOAD.

Scope
The artifact helps understanding our design and implemen-
tation details better, including those that we do not mention
in the paper due to space limit. It allows to reproduce the ex-
perimental results in the paper. It also provides examples for
developers to integrate TeRM with their RDMA applications.

Contents
The implementation source code in the artifact contains two
parts, the userspace shared library libterm (tLib) and the
modified RNIC driver. Moreover, the artifact provides evalua-
tion scripts and the third-party applications, including XStore
and Octopus.

Hosting
The artifact is available at https://github.com/thustor
age/TeRM. The main branch has the latest contents.
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Abstract
Direct I/O allows I/O requests to bypass the Linux page

cache and was introduced over 20 years ago as an alternative
to the default buffered I/O mode. However, high-performance
computing (HPC) applications still mostly rely on buffered
I/O, even if direct I/O could perform better in a given situation.
This is because users tend to use the I/O mode they are most
familiar with. Moreover, with complex distributed file systems
and applications, it is often unclear which I/O mode to use.

In this paper, we show under which conditions both I/O
modes are beneficial and present a new transparent approach
that dynamically switches to each I/O mode within the file sys-
tem. Its decision is based not only on the I/O size but also on
file lock contention and memory constraints. We exemplary
implemented our design into the Lustre client and server and
extended it with additional features, e.g., delayed allocation.
Under various conditions and real-world workloads, our ap-
proach achieved up to 3× higher throughput than the original
Lustre and outperformed other distributed file systems that
include varying degrees of direct I/O support by up to 13×.

1 Introduction

High-performance computing (HPC) clusters traditionally
store data on parallel file systems [4, 9, 14, 15, 49, 57]. They
export local file or object storage from a collection of server
nodes to clients, allowing applications on a client to access
files on remote servers as if they were stored locally. Exist-
ing applications constantly scale to higher core counts and
proportionally increase their I/O volume. New HPC applica-
tions from machine learning and AI are creating new access
patterns that challenge previous optimizations for parallel file
systems by increasing random accesses and heavy metadata
traffic. As a result, I/O is increasingly becoming a perfor-
mance bottleneck for many scientific applications.

File systems typically cache data and metadata in main
memory to reduce the number of required I/Os to the storage
backend. For example, Linux’s default I/O mode is buffered

I/O where the kernel caches read and write operations in the
Linux page cache to help optimize I/O submitted to storage.
Almost all standard applications running on a single server
can benefit from page caching during I/O. Buffered I/O also
improves the performance of many HPC applications that run
on large clusters and store data on parallel file systems.

An alternative to buffered I/O is direct I/O. Files opened
with the O_DIRECT flag bypass the caching layer in the kernel
and send I/Os directly to the storage system. This is particu-
larly useful when an application itself buffers read and write
operations, avoiding a “double buffer” situation, such as in
databases. To use direct I/O, an application must meet certain
alignment criteria. The alignment constraints are usually de-
termined by the disk driver, the disk controller, and the system
memory management hardware and software. This require-
ment severely limits the use of direct I/O by applications.

Intuitively, buffered I/O should perform better than direct
I/O because the read-ahead and write-back optimizations of
buffered I/O can bring the performance of buffered I/O mode
close to the level of memory access. Using direct I/O therefore
typically results in a prolonged process. However, this paper
shows that this is not always the case.

The reason is that caching data in the kernel page cache is
not free, especially if the cached data has poor reuse character-
istics. First, buffered I/O induces additional copy operations
to move data between the kernel cache and the application.
Second, the overhead of interacting with the kernel page cache
and page management is considerable. Moreover, when mem-
ory becomes scarce, page reclamation must free old pages to
allocate memory for the current I/O operation. The resulting
cache thrashing can then significantly degrade performance.

An additional cost of buffered I/O in parallel file systems
is the cost of managing complex distributed range locks to
support client-side caching with strong consistency. If the
file system locks only the necessary (small) portions of a
concurrently accessed file, it requires many remote procedure
calls (RPCs) between clients and the lock manager, while
using larger expanding locks may lead to false lock contention
between clients and many lock revocation messages [39].
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Figure 1: Local ldiskfs performance with various I/O sizes
for buffered I/O (BIO) and direct I/O (DIO).

The primary benefit of direct I/O is to reduce CPU utiliza-
tion for file reads and writes by eliminating the copy from
the cache to the user buffer and minimizing the number of
lock revocations. Therefore, the advantages and drawbacks
of the two I/O modes complement each other. Buffered I/O
simplifies programming and can yield performance benefits
in many situations. However, for sequential I/O to very large
files, direct I/O with large transfer sizes can provide the same
or better performance as buffered I/O with much less CPU
overhead and memory usage. In addition, direct I/O can also
improve performance for small writes when many nodes with
interleaved file offsets concurrently modify a file.

Figure 1 shows an example of this tradeoff when 16 threads
run the fio benchmark on a local Lustre ldiskfs device.
Each thread used separate files and wrote and read 20 GiB
of data for I/O sizes between 4 KiB and 256 MiB. The write
aggregation and read-ahead optimizations of buffered I/O re-
sulted in a stable write performance of 3 GiB/s and a read
performance of 11 GiB/s, almost independent of access sizes.
This performance wall for buffered I/O depends on available
memory for caching and page cache overhead and is indepen-
dent of available storage bandwidth or number of the attached
storage system. We also experienced the same behavior for
other file systems like BeeGFS [25] or NFS [22].

The performance of direct I/O for small I/O sizes in Figure 1
is significantly lower than in buffered I/O mode. In this case,
direct I/O suffers from latencies induced by synchronous
writes to the storage backend. For bigger I/O sizes however,
direct I/O benefits from not performing unnecessary copy
operations and not having to manage the page cache, reaching
a performance that exploits the potential of the backend SSDs.

To the best of our knowledge, we are the first to evaluate
combining buffered I/O and direct I/O in the parallel file sys-
tem itself. Based on our empirical results, we designed and
implemented a new I/O path engine for the Lustre parallel
file system that can automatically switch between buffered
I/O and direct I/O modes. In contrast to previous work on
BeeGFS [5], this switch is not only based on the size of re-
quests but also considers memory pressure on compute nodes
and lock contention on files. We also introduce a mechanism
that supports adaptive switching between buffered I/O and

direct I/O on storage servers.
We compare this new architecture with BeeGFS and Or-

angeFS [2]. We chose these two file systems as BeeGFS can
switch between buffered I/O and direct I/O based on a fixed
threshold [5], whereas OrangeFS in the tested implementation
only performs direct I/O [17] on the client side. Our evalua-
tion uses a variety of workloads, including microbenchmarks,
macrobenchmarks, and real-world HPC workloads.

We show that our approach can effectively combine
buffered I/O and direct I/O, selecting the best-performing
I/O mode for a given I/O size and system state. Compared
with the original Lustre version, our approach achieved up
to 3× higher throughput for real-world workloads (that use
many heterogeneous I/O sizes) and outperformed BeeGFS
and OrangeFS by up to 13× and up to 10×, respectively.
Moreover, we present the I/O statistics in which the I/O mode
switch was triggered.

The remainder of this paper is organized as follows. First,
Section 2 discusses the necessary background and motivates
our work. Section 3 presents our new Lustre I/O engine. Next,
Section 4 evaluates different parameter settings and compares
our approach with BeeGFS and OrangeFS. Section 5 dis-
cusses related work, and we conclude with Section 6.

2 Background and motivation

In this section, we present a detailed comparative analysis
between buffered I/O and direct I/O and then introduce the
performance impact of page caching and I/O lock contention
on buffered I/O to motivate our design for higher I/O perfor-
mance in HPC systems.

2.1 Buffered I/O vs. direct I/O
Linux and most other operating systems offer buffered and
direct I/O modes for file access. In the buffered I/O mode, the
virtual file system first buffers all read and write requests in
the kernel page cache. This is the default file access mode and
is easy to integrate into applications as they do not need to deal
with I/O size and alignment constraints. A major advantage of
buffered I/O is that it can hide the latency of storage accesses
when data is accessed more than once. The direct I/O mode
in contrast transfers data directly between the application and
the storage device without a data copy, but the data must meet
specific size and alignment constraints.

Table 1 provides a high-level comparison of the two I/O
modes. A key advantage of buffered I/O is its ability to
prefetch data using read-ahead and to aggregate small writes
using write-back caching. In both cases, small I/O requests
from the application can be transformed into large I/O opera-
tions to the underlying storage system. Asynchronous write-
back caching and read-ahead are perfect for hiding the latency
of slow storage devices, such as spinning disks, and can per-
form close to the speed of the memcpy() operation. Buffered
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Table 1: Comparison between two I/O modes.

I/O case Buffered I/O Direct I/O

Small I/O size ✓ X
High latency storage ✓ X
Unaligned I/O ✓ X
Large, sequential I/O X ✓
Many running processes/nodes X ✓
System under memory pressure X ✓

I/O also has no requirements on the read and write size and
alignment and is therefore convenient to use by programmers.

A major drawback of buffered I/O is its poor single-stream
performance when data cannot be reused multiple times. It
also creates many lock conflicts when multiple processes
from different nodes write to a shared file on a networked
file system with strong consistency guarantees. There is also
contention within a single node’s page cache when multiple
cores are writing to a single file.

Direct I/O does not use page caching and transfers data
directly between application memory and the storage device.
It can provide near-device performance for large I/O sizes and
does not slow down when scaling the number of processes
and nodes. It can also reduce memory pressure because data
is not prefetched or cached. The downside is that direct I/O
cannot hide the latency for slow devices or small I/Os. Also,
direct I/O requires that the I/O size and the offset in memory
are aligned with the page size, so most applications must be
significantly modified to use this I/O mode.

2.2 Impact of page caching and data copies on
buffered I/O

The page cache used by buffered I/O induces additional copies
between user space and the page cache. Its management re-
quires, e.g., page allocation, locking, and LRU list manage-
ment for aging and reclaiming. We therefore designed an
experiment to measure the page cache overhead for sequen-
tial write operations from a single thread for a total I/O size of
2,560 GiB. We used the IOR benchmark [1] and the perf [28]
profiling utility to collect and analyze the corresponding per-
formance and trace data. Figure 2 shows the results for the
local file system Ext4 and the network file systems Lustre and
BeeGFS. These file systems spent about 20% of their time
on copying data between the application and the page cache
and more than 40% on page cache management. The figure
also shows the resulting buffered I/O performance and the
performance of direct I/O in the same setting.

This page cache overhead was also observed in previous
work. For example, Corbet [16] describes that even (seem-
ingly harmless) reads that span a dataset larger than the mem-
ory size can lead to page cache thrashing and huge perfor-
mance drops once the page cache is full (see also [35, 44]). It
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Figure 2: I/O time breakdown for buffered I/O writes.

is therefore interesting to understand why page cache man-
agement is so costly, even for such simple use cases.

Page cache management includes page allocation and page
reclaim, among others. The page allocation process allocates
clean pages for newly accessed data and adds the pages to
the page cache. During memory pressure, Linux must reclaim
some of the previously allocated pages from the cache to
make room for newly allocated pages. In our example, re-
claiming pages requires not only evicting pages from the page
cache but also writing the data back to the storage system (see
also [21]). A closer look at the profiling data shows that IOR
running on BeeGFS, for example, spent more than 42% of its
time in the pagecache_get_page() function. The reason is
that pagecache_get_page() can only return under memory
pressure after it has received a clean page. These clean pages
must first be generated by the kswapd daemon. kswapd there-
fore constantly launched many kworker background threads
that asynchronously wrote back these dirty pages using the
native BeeGFS write functions, which in turn can impose an
overhead and can lead to page cache thrashing. An additional
page management overhead of 20% attributed to setting pages
dirty by calling __set_page_dirty_nobuffers().

Direct I/O does not interact with the page cache and can
perform large sequential writes directly to the backend storage.
The performance comparison in Figure 2 therefore shows
that direct I/O on the local file system Ext4 can increase
performance by nearly five times, while Lustre and BeeGFS
have smaller gains because they require additional bulk data
transfers over the network.

2.3 I/O locking and contention in Lustre
The Lustre file system stores data on object storage targets
(OSTs) exporting local disk file systems through object stor-
age servers (OSSs). Similarly, metadata is stored on metadata
targets (MDTs) which are accessed through metadata servers
(MDSs). Both data and metadata performance and capacity
can be scaled by including more servers [9]. Lustre clients
run on the compute nodes and access the storage and meta-
data servers through a high-speed network. Lustre supports
client-side caching of data and metadata to reduce the impact
of network round-trip times [45,46]. It uses a distributed lock
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Figure 3: Lock blocking callback under write-back.

manager (DLM) [31, 37, 49] to protect the cached data and
metadata from concurrent accesses by other clients. Lustre
manages DLM locks in namespaces, where each Lustre OST
or MDT has a separate lock namespace for its local objects.

Files are protected by read and write byte-range locks,
allowing multiple clients to access or modify different parts
of a shared file. A client requests a lock covering exactly
the required I/O range (aligned with the page cache). The
server attempts to optimize this request by expanding the lock
to the largest non-conflicting range. The locks cached by a
client are not released immediately and are instead revoked
asynchronously through a callback in case of a lock conflict
due to age or when exceeding cache sizes. Based on the
locality principle, this can reduce lock traffic between clients
and servers and improve performance, especially when only a
single client accesses a file. Nevertheless, it can also result in
heavy lock contention and false lock sharing for concurrent
writes on a shared file from multiple clients [39].

Figure 3 shows the required steps to allocate a lock for
write-back caching data in the range [a2,b2] by client B. We
assume that client A previously wrote data to the same file and
still keeps a lock L1=<[a1, b1]> in its local lock namespace.
Now, client B requests a lock L2=<[a2, b2]> on the same
object. The server detects that L2 conflicts with L1 because
the two lock ranges [a2, b2] and [a1, b1] intersect and
notifies client A to revoke L1 via the lock-blocking callback.
Client A then flushes the dirty pages to the server, clears the
client cache, and releases L1. Afterward, the server grants L2
to client B, and then client B can write to the file.

Lock conflict resolution and possible lock ping-pong are
expensive processes and can significantly reduce I/O perfor-
mance when writing to shared files. Therefore, we present a
mechanism for using direct I/O with server-side locking to
eliminate the lock callbacks for conflict I/Os next.

3 Design and implementation

Our design consists of four main components. Its switching
algorithm automatically selects the I/O mode on both the
client and the server to match request sizes and access pat-
terns. Server-side adaptive locking reduces lock congestion
on shared files when the I/O pattern has no access locality
or when many clients access a file in parallel. Server-side
delayed allocation improves strided I/O performance, and sup-
port for unaligned direct I/O accesses simplifies programma-
bility. We have implemented our approach in the Lustre par-
allel file system. However, the general idea is applicable to
other distributed file systems that also use a DLM.

3.1 Combining buffered I/O and direct I/O
We introduce a fully transparent hybrid I/O path engine that
automatically switches between buffered I/O and direct I/O
in the Lustre client and server.

autoIO – transparent direct I/O in the client: autoIO uses
the I/O request size, lock contention, memory pressure, and ac-
cess locality to decide whether a client’s I/O request should be
handled as buffered or direct I/O. Algorithm 1 shows the cor-
responding decision tree for autoIO to automatically switch
between buffered I/O and direct I/O.

If an I/O request is smaller than the small I/O threshold, au-
toIO uses buffered I/O. If the I/O request size is larger or equal
to the large I/O threshold, autoIO uses direct I/O. Between
both thresholds, autoIO uses buffered I/O by default and first
checks whether the file is under lock contention due to con-
flicting accesses from multiple clients, and if so, switches
to direct I/O. This is advantageous in combination with our
adaptive server-side locking, which is discussed later in this
section. Next, autoIO considers the client’s current memory
pressure and cache reuse. AutoIO therefore limits the number
of cached pages of a file to 1 GiB (default) and switches to
direct I/O when the cached pages or a corresponding cgroup
reach 95% of their allowed limit. Also, if the I/O workload

Algorithm 1 The autoIO decision algorithm
1: function DECIDE_IO_MODE(file, io_size, cfg)
2: if (io_size ≥ cfg.large_io_threshold) then
3: return DIO;
4: else if (io_size < cfg.small_io_threshold) then
5: return BIO;
6: else if file_is_under_lock_contention(file) then
7: return DIO;
8: else if client_is_under_memory_pressure(file, cfg) then
9: return DIO;

10: else if file_lacks_access_locality(file, io_size, cfg) then
11: return DIO;
12: else
13: return BIO;
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Figure 4: I/O streaming throughput for autoIO with various
small and large I/O thresholds.

lacks access locality and the cached pages are not reused, au-
toIO switches to direct I/O for subsequent I/O accesses larger
than the small I/O threshold.

For lock contention detection, autoIO leverages an already
existing detection mechanism in Lustre. The other default
parameters are based on preliminary experiments and are
configurable by the user.

We ran I/O streaming experiments on a Lustre system with
eight storage servers to determine the initial small and large
I/O thresholds (see Section 4 for the experimental setup). We
used IOR [1] with various I/O request sizes ranging from
4 KiB to 256 MiB. Figure 4 presents the results for each I/O
size for two cases: First, the small I/O threshold was set larger
than the I/O request size, resulting in buffered I/O. Second,
the large I/O threshold was set smaller than the I/O request
size, resulting in direct I/O. Based on the results, we set the
large I/O threshold to 2 MiB by default. We further set the
small I/O threshold to 32 KiB. Therefore, if Lustre detects
lock contention, memory pressure, or a lack of access locality,
autoIO switches to direct I/O in the range [32 KiB, 2 MiB).
Section 4 provides additional I/O statistics when a specific
case was triggered and shows the performance benefits of
switching to direct I/O across workloads within this range.

Note that autoIO does not switch to buffered I/O when a
user opens a file with the O_DIRECT flag.

Adaptive server-side locking for direct I/O Bulk-
synchronous applications [10] represent some of the most
dominant workloads in HPC, where applications typically
alternate compute and I/O phases at step boundaries. Often,
such workloads access a single shared file at a step bound-
ary, where each process accesses its own non-conflicting
region. Examples include Nek5000 [20] for computational
fluid dynamics, VPIC for large-scale plasma physics simula-
tions [8, 12], and checkpointing to a single shared file [7].

This workload type is so common that it is included in the
IO500 [32] ior-hard-write benchmark where each MPI rank
concurrently writes into a single shared file with an I/O size
of 47,008 bytes in strided I/O mode. Although the I/O regions
do not overlap, this can cause significant lock contention.
The reason is that clients must obtain page-aligned extent
locks before performing their non-page-aligned I/Os. This

can result in many ping-pong lock callbacks that negatively
affect I/O throughput.

For direct I/O, our implementation leverages an existing
server-side locking mechanism in which clients send their
I/O requests directly to the server, which acquires the DLM
lock on the client’s behalf. Compared to the client-side extent
lock, the server-side extent lock has a much lower latency
because the server can take the lock before proceeding with
the bulk transfer (and free it directly after), saving lock round-
trip traffic. Therefore, when a file is under lock contention,
the benefits of direct I/O shift towards smaller I/O sizes.

For autoIO, this means that, according to our experiments,
it is beneficial to use direct I/O already below the large I/O
size threshold but above the small I/O size threshold (see
Algorithm 1 line 6) when a file is under lock contention.
To determine whether a lock resource is under contention
and to what degree, our detection algorithm uses a sliding
window counter [59]. If at least 16 (by default) conflicting
lock requests are seen over a sliding window of 4 seconds (by
default), the file object is considered under contention, which
the server reports to the client via the reply. Overall, this can
increase the efficiency for I/O requests that fall between the
small and large I/O thresholds, as shown later in Section 4.

Server-side adaptive write-back and write-through Lus-
tre servers implement a thread pool model for incoming re-
quests from many clients in parallel. Specifically, Lustre uses
an out-of-band data transfer mode, combined with remote di-
rect memory access (RDMA) network transfers, to minimize
CPU and memory utilization while providing high through-
put and scalability. For large incoming I/O requests, each I/O
service thread uses a pre-allocated buffer (between 4 MiB
and the maximum bulk RPC size) for bulk data transfers to
avoid the overhead of the kernel page cache. Depending on
the server load, the number of I/O threads can vary from 2
to 512 threads. Therefore, the total memory requirement can
be several GiB (RPC size times 512 threads). By default, all
I/O requests are immediately submitted to storage by the I/O
service thread to avoid memory contention (write-through).

Although this works well for large I/O requests, especially
when using large bulk RPCs (up to 64 MiB in Lustre), the
write-through mode does not fully utilize the available disk
bandwidth for small I/O requests (see Figure 1). This is par-
ticularly noticeable for latency-sensitive I/O requests, such as
when many small files are written and read.

We added an adaptive write-back cache mode to improve
I/O performance on the server for such latency-sensitive use
cases. Similar to how the Lustre client can switch to direct
I/O for non-O_DIRECT requests, the Lustre server can switch
to buffered I/O mode (write-back). According to the results in
Figure 1, all I/O requests smaller than 64 KiB are processed in
write-back mode using the page cache. For larger I/O requests,
Lustre uses its default write-through mode via direct I/O. This
allows the server to use the available memory to cache small
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I/Os while not overwhelming the cache with large I/Os.
Moreover, we do not implement server-side read-ahead.

The reason is that 1. the server memory is a limited resource
shared by all clients, and read-ahead data may overwhelm the
cache space on a server; and 2. client-driven read-ahead in
Lustre is a more efficient way and has already achieved very
good performance in most cases.

Note that when using write-back, limited data availability
after a crash is a challenge, with the potential to lose non-
persisted data. However, this is also the case with buffered
I/O in general. Here, fsync() is essential to ensure data
consistency and durability within the file system. This is
in accordance with POSIX which states that a successful
write() does not guarantee that the data has been committed
to disk unless fsync() is called. Interestingly, this applies
also to direct I/O. Although it bypasses the client’s kernel
cache, a storage system may or may not apply O_DIRECT to
other layers of the I/O stack where caching is used. Therefore,
it is important to use fsync() to flush all cached data to disk.

Overall, our work does not affect metadata durability and
consistency as the file system can always recover to a consis-
tent state after a crash. For example, Lustre’s recovery mech-
anism can resend (replay) uncommitted I/O operations on
clients to the server once the server resumes operations [43].

Cross-file batching for buffered writes For single files,
Lustre clients accumulate an application’s dirty pages and
asynchronously send them as large bulk RPCs (1 MiB) to
the storage servers. This method avoids many small RPCs,
and it is therefore more network and disk-efficient. For many
small files, however, there may not be enough dirty pages
to accommodate a full bulk RPC, delaying the write-back
operation. Moreover, I/O RPCs sending dirty pages to the
storage servers are restricted to a single file and thus many
small RPCs are sent.

Cross-file batching for buffered writes is an optimization
strategy for such use cases that involve many small writes
across many small files. It batches dirty pages of multiple
files into one large bulk RPC, improving network efficiency.
The configurable threshold small_write_threshold (de-
fault 64 KiB) allows Lustre to distinguish whether a file is
small enough to benefit from this optimization. Essentially,
Lustre clients maintain a small-file list that contains files be-
low the threshold. Once enough dirty pages are placed in the
list, batched I/O bulk RPCs are sent to the storage servers.

Consistency challenges Whenever our algorithm triggers
transparent and dynamic switching between buffered I/O and
direct I/O, there is the potential for data regions from the two
I/O modes to overlap. For instance, on the Lustre client, a file
region could be written via direct I/O while parts have not
been flushed yet and remain in page cache as they were part
of a prior buffered I/O operation. If not handled properly, this
can cause a consistency conflict. A similar situation could

occur on the server with the above-described write-back cache
and the default direct I/O path.

On the client, overlapping regions are detected, and dirty
pages in that region are flushed first before direct I/O is per-
formed. On the server side, with write-back enabled, dirty
pages are not flushed and are reused instead as part of the
direct I/O operation. Thus, because clients must flush their
cache and servers merge overlapping data, our approach does
not change Lustre’s strong consistency guarantees. Similar
arguments hold for aligning unaligned direct I/O, which we
discuss next.

3.2 Unaligned direct I/O
One of the challenges of using direct I/O is that the O_DIRECT
open flag typically imposes alignment constraints on the
length and address of user space buffers and the file offset of
I/Os, where the I/O size and offset must be a multiple of 512
bytes and the memory buffer address must also be aligned to
512 bytes [26]. In this context, the 512-byte boundary refers
to the logical block size of the underlying storage device,
although modern devices use a sector size of 4096 bytes or
more [36]. If not all conditions are true, direct I/O is not
supported and the error code EINVAL is returned.

In general, I/O alignment provides several benefits. For
example, it can resolve conflicting read-modify-write (RMW)
operations on the same block. However, not all applications
can align their I/O. This is especially true for applications
with a complex I/O stack that is not under the control of the
application. Therefore, to maximize the benefits of direct
I/O, the underlying file system should handle misaligned I/O
in the kernel. We implemented a buffering scheme in the
Lustre client to address this challenge. When the user buffer
is misaligned, Lustre creates an aligned buffer in the kernel
by remotely reading data outside the user buffer up to the
alignment boundary. Direct I/O then uses this aligned buffer.

Nevertheless, because aligning a user buffer potentially re-
quires additional memory allocation and data copying, it may
be less efficient than using an existing user buffer. However,
our analysis showed that allocating and copying to an aligned
buffer in the kernel still outperforms buffered I/O, especially
for large I/O sizes. This is because buffered I/O spends less
than 20% of its time allocating a buffer and copying data to
that buffer, while the remaining time is spent locking page
caches and managing the kernel cache.

3.3 Efficient RAID I/O via delayed allocation
When Lustre receives I/O write requests for a small file, blocks
are allocated at write time, even if the data is written in write-
back mode. This strategy can lead to severe file fragmentation
for strided I/O (discussed above) when multiple clients are
writing data to a single file and are therefore constantly allo-
cating blocks simultaneously. Since magnetic disks are still
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used as the primary backend for storing data in parallel file
systems, we try to reduce file fragmentation by delaying block
allocation on the backend storage.

A common technique to mitigate such file fragmentation
is to use delayed (block) allocation by deferring data block
allocation until the last possible moment before data is flushed
to disk. Delayed block allocation is featured in many modern
file systems, e.g., EXT4 [13], XFS [29], or BtrFS [48] to
reduce fragmentation [51].

Therefore, we have enabled delayed allocation in write-
back mode on the server to collect and merge small or non-
contiguous I/O requests into large, contiguous I/O requests.
This can reduce head thrashing on magnetic disks. It can also
reduce the number of RMWs on RAID systems by consoli-
dating full stripes before flushing the data. Small fragmented
I/O, on the other hand, immediately writes the data to the
RAID controller cache before flushing it in an RMW fashion,
significantly impacting I/O performance.

Delayed allocation uses the kernel’s write-back mechanism
to flush dirty pages and allocate blocks at flush time. By de-
fault, Linux’s periodic flushing interval is five seconds, during
which the disk bandwidth may be underutilized. To flush
data continuously, we leverage extent status trees (available
in Ext4 and ldiskfs) – a data structure to track the status of
delayed allocation extents. When a server receives a write
request from a client, it allocates an in-memory delayed ex-
tent and inserts it into the delayed extent status tree. During
insertion, the server looks for other delayed extents to form
a contiguous extent. If Lustre detects that a merged extent
can form a full extent write, e.g., offset and length are both
1 MiB aligned, the dirty pages from this extent are flushed by
a worker thread. In summary, this allows larger continuous
I/O buffers to be flushed to the underlying RAID disk system
outside of the periodic flushing interval, reducing RMW oper-
ations caused by otherwise small extents and improving the
overall I/O performance in the process.

4 Evaluation

This section evaluates the performance and benefits of our
work under various workloads, including microbenchmarks,
macrobenchmarks, and real application workloads. Most of
these experiments are compared to BeeGFS and OrangeFS.
We chose these two distributed file systems for comparison
because BeeGFS supports switching between buffered I/O
and direct I/O based on a fixed threshold value [5], whereas
OrangeFS, in the tested implementation, only performs direct
I/O on the client side [17].

This section uses abbreviations for various I/O and file sys-
tem modes. BIO (buffered I/O) and DIO (direct I/O) refers
to the I/O mode across several benchmarks, i.e., whether
O_DIRECT was used with open(). File system modes refer to
configuration changes applied to the three file systems used.

First, our new Lustre features can be toggled and configured
independently, allowing us to investigate the impact of each.
The following abbreviations for Lustre are used: 1. vanilla
for the original Lustre version; 2. autoIO for the client-
side decision algorithm; 3. svrWB for server-side write-back
caching; 4. delalloc for the delayed (block) allocation; and
5. XBatch for cross-file batching of buffered writes.

For BeeGFS, we used two file cache modes on the
clients [5]: 1. buffered mode representing the default
file cache mode for write-back and read-ahead by using
several static buffers; and 2. native mode that relies on
the Linux page cache. BeeGFS’s native mode offers the
tuneFileCacheBufSize parameter (512 KiB by default) for
switching to direct I/O above the threshold. In that case, all
I/O operations bypass the page cache, communicating directly
with the storage servers. Native is therefore comparable to
our autoIO, which further considers additional parameters.

For OrangeFS, we used two server-side I/O
modes: 1. alt-aio mode which is the default for ac-
cessing data on the storage servers by using buffered I/O via
asynchronous I/O; and 2. directio mode that uses direct
I/O to access data on the storage backend. Similar to our
svrWB caching, which allows Lustre also to use buffered I/O
on the servers, OrangeFS servers can therefore operate in
buffered and direct I/O mode.

Our experiments were run on a Lustre cluster consisting
of 4 MDTs, 8 OSTs, and 32 client nodes. The servers used
a DDN AI400X2 Appliance backend (20 × SAMSUNG
3.84 TiB NVMe, 4 × IB-HDR100 100 Gbps), running Lustre
version 2.15.58. All clients used an Intel Gold 5218 processor,
96 GiB of DDR4 memory, and ran CentOS 8.7 Linux. All
nodes were interconnected using InfiniBand IB-HDR100.

BeeGFS used a storage architecture similar to Lustre,
with the same hardware and configurations. Both clients and
servers were running BeeGFS 7.4.0. For OrangeFS, we used
version 2.10.0 running CentOS 8.7 Linux on both servers
and clients. Each metadata storage target was configured with
two metadata server instances, and each data storage target
was configured with one data server instance. Thus, there are
eight metadata instances and eight data server instances in
total. The client kernel module for OrangeFS with CentOS 8.7
does not integrate with the Linux page cache, and all client
I/Os (both direct and buffered I/O modes) are performed syn-
chronously. Unless otherwise specified, a given file is striped
across eight storage targets by default, and the stripe size is
1 MiB for all file systems.

4.1 Microbenchmarks

This section presents the experiments and results for various
microbenchmark workloads using IOR and mdtest [1], which
have become popular benchmarking tools in HPC [23].
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Figure 5: Single I/O stream throughput for Lustre.
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Figure 6: Single I/O stream throughput for BeeGFS.

Single I/O stream throughput First, we present the single
I/O stream throughput for BIO, DIO, and unaligned DIO (UDIO)
in vanilla Lustre and with our autoIO compared with BeeGFS
and OrangeFS. In this case, IOR ran a single process, writing
and reading data 2× the memory size with I/O sizes varying
from 4 KiB to 256 MiB on the client.

Figure 5 visualizes the results that are overall similar to the
local ldiskfs’s I/O throughput earlier in this paper (see Fig-
ure 1). The I/O sizes for unaligned direct I/O were increased
by 8 bytes in this experiment as we aimed to observe whether
aligning unaligned direct I/O can yield benefits over buffered
I/O. As expected, the performance of unaligned direct I/O
was lower than aligned direct I/O due to the overhead of ex-
tra memory allocation and copying. However, since it did
not need to interact with page caching and management, it
could outperform buffered I/O when the I/O size was larger
than 4 MiB. Our autoIO mode took advantage of the two I/O
modes and avoided their shortcomings, achieving the best
overall performance over the entire range of I/O sizes.

Figure 6 shows the results for this workload running
BeeGFS. BeeGFS achieved its highest throughput in native
mode. Overall, BeeGFS achieved at most 6.5 GiB/s and
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Figure 7: Single I/O stream throughput for OrangeFS.
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Figure 8: Lustre’s I/O throughput for 16 processes.

6.2 GiB/s for writes and reads, respectively. In comparison,
Lustre’s autoIO achieved 11.1 GiB/s (1.7×) and 11.2 GiB/s
(1.8×) for writes and reads, respectively.

OrangeFS reached the lowest I/O throughput of the three
file systems (see Figure 7) with at most 2.3 GiB/s and
3.3 GiB/s for the respective writes and reads as all client I/Os
were executed synchronously. Thus, the performance of direct
I/O and buffered I/O are nearly the same. The results also indi-
cate that the write performance using the server-side direct I/O
mode (directio) has a slight edge over the alt-aio mode
(buffered I/O). Read performance, on the other hand, achieved
about a 50% higher throughput with alt-aio compared to
direct I/O mode as it re-used data in the page cache.

Multiple I/O stream throughput Next, we ran IOR with
16 processes on a single client, sequentially writing and read-
ing 80 GiB in file-per-process mode for I/O sizes ranging
from 256 KiB to 2 MiB. Each file used only a single stripe
object. The goal of this experiment was to investigate the
trade-off phase of autoIO within the [256 KiB, 1 MiB] range
and whether autoIO selects the best-performing I/O mode.

Figure 8 presents the results. Note that the I/O sizes in the
range [256 KiB, 1 MiB] are larger than the small I/O threshold
but smaller than the large I/O threshold. In this range, the
efficiency of direct I/O and the performance optimizations
due to write-back and read-ahead prefetching for buffered
I/O are in a trade-off phase (see Algorithm 1), with autoIO
almost reaching the best of both modes.

Table 2 lists the I/O statistics for the 512 KiB I/O size,
that is, when autoIO switched to direct I/O due to memory
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Table 2: I/O statistics for parallel I/O with 16 processes on 1
client node for a 512 KiB I/O size.

I/O Type DIO (mem-
ory pressure)

DIO (cache
overuse)

BIO (default)

Write 0 2,457,520 163,920
Read 45,593 5,993 4,738
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Figure 9: IO500’s mdtest-hard performance for ten nodes.

pressure or cache over-usage. Default represents autoIO
staying in buffered I/O mode. For instance, it shows that most
writes were switched to direct I/O because more data was
cached than allowed (see Section 3 in the page caches. For
reads in autoIO, 45,593 I/Os were performed in direct I/O
due to the memory pressure. In summary, these I/O statis-
tics demonstrate that autoIO considers memory pressure and
access locality to avoid excessive caching to obtain similar
performances among the two I/O modes.

IO500’s mdtest-hard workload To evaluate the I/O im-
provements for many small files, we ran mdtest in the mdtest-
hard configuration of the IO500 “10-node challenge” bench-
mark. mdtest-hard generates many small files (with a size of
3091 bytes) in a single directory. We used 10 clients with 16
processes each, creating, writing, and reading 128,000 files
per rank. Figure 9 shows the mdtest-hard-write and mdtest-
hard-read results.

For Lustre, we compared several configurations: First, we
used either one (1 mnt) or four separate Lustre mount points
(4 mnts). For the latter, each mount point was assigned four
MPI ranks. This technique mitigates locking congestion in
the virtual file system (VFS) during parallel file creation in a
shared directory. We also focused on measuring the impact
of the XBatch and svrWB optimizations. Due to the many
small files in this workload, autoIO and delayed allocation
did not improve performance and are omitted. Finally, we
used Lustre’s Data on MDT (DoM) feature, which improves
small file performance by placing small files only on the MDT
and eliminating additional RPCs to the OSTs.

We also ran these experiments with BeeGFS (native,
buffered) and OrangeFS (alt-aio, directio), albeit only
working on a single mount point. In this configuration and
compared to the vanilla Lustre case (4 mnts), they reached
at most 2% of the performance for writes with OrangeFS

Write phase Read phase0

20

40

60

80

100

IO
50

0 
io

r-e
as

y
I/O

 th
ro

ug
hp

ut
 (G

iB
/s

) OrangeFS − alt-aio
OrangeFS − directio
BeeGFS − native
BeeGFS − buffered

BeeGFS DIO − buffered
Lustre − vanilla
Lustre − autoIO

Figure 10: IO500’s IOR-easy performance for ten nodes.

(alt-aio, directio) and 8% with BeeGFS (buffered).
For reads, OrangeFS (alt-aio, directio) and BeeGFS
(buffered) reached at most 9% of Lustre’s performance.

For Lustre, we measured a performance benefit when our
optimizations were enabled. In the write case (4 mnts) and
with svrWB caching, the server sent a reply to the client as
soon as the data was copied to the page cache, resulting in a
10% performance improvement over vanilla Lustre (4 mnts).
With XBatch added, we achieved a 20% increase in perfor-
mance. In the read case, the client’s MPI ranks are offset so
that the readers cannot benefit from the client’s page cache.
However, with svrWB caching enabled, the data is still avail-
able in the server’s page cache, resulting in a 33% improve-
ment over vanilla Lustre. For the 1 mnt cases, the create-write
performance did not benefit from the optimizations due to
VFS locking congestion.

IO500’s IOR-easy workload In this section, we evaluate
the performance of all three file systems using IO500’s IOR-
easy use case with 10 nodes and 16 processes per node. Each
process wrote and read in 16 MiB I/O size requests to a
dedicated file for at least 300 seconds. Further, each file is
striped across eight storage targets in all cases.

Figure 10 illustrates that Lustre - autoIO outperformed
BeeGFS and OrangeFS in all configurations. This is because
Lustre used direct I/O on both clients and servers with such a
large I/O size (as opposed to Lustre - vanilla which used
buffered I/O). BeeGFS used the less efficient buffered I/O on
the servers for this I/O size, even when using direct I/O on
the clients, resulting in inferior performance.

IO500’s IOR-hard workload While IOR-easy represents
a common sequential workload that generally works well for
distributed file systems (and especially autoIO), IOR-hard cre-
ates a cyclic data distribution with an I/O size of 47,008 bytes
that is neither aligned to page or file system block boundaries.
Moreover, all processes access a single shared file with a seg-
ment count of 40,000. Figure 11 presents the results for the
IOR-hard workload.

Generally, this is a challenging workload, particularly when
aligning unaligned direct I/O and because of lock traffic over-
heads. In the case of Lustre and unaligned buffered writes, the
client must first lock the object and read the unaligned page(s)
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Figure 11: IO500’s IOR-hard performance for ten nodes.

within the I/O range. Only then can the modified parts of the
page(s) be updated. These unaligned RMW operations on
the pages can severely affect performance. Although buffered
writes can be aggregated in the page cache on a client, the
writes must be contiguous on a single client and must be pro-
tected by the DLM extent lock. As the requested DLM extent
lock must be page-aligned on the client, it may conflict with
lock requests from other similarly page-aligned clients. This
results in unnecessary lock contention when obtaining the
DLM extent lock from the server.

Our I/O statistics revealed that even though buffered I/O
accessed smaller file fragments, it still generated 3.5 million
lock callbacks (35 per I/O segment). This is in contrast to
unaligned direct I/O, which generated no lock callbacks due
to server-side locking. As a result, the I/O throughput in-
creased from 3 GiB/s to 4.2 GiB/s. By using autoIO as well
as enabling svrWB (see Section 3.1) and delalloc (see Sec-
tion 3.3), the write bandwidth reached 13 GiB/s.

Note that with server-side delayed allocation, data only
needs to be written to the page cache without block allocation,
thus reducing the I/O request latency. Moreover, we mea-
sured a reduction in file allocation fragments from 100K to
about 35K, leading to a significant increase in 1 MiB size
writes (100K+) that match our stripe size. Further, we enabled
Lustre’s overstriping feature [19, 38] which can improve I/O
performance by allowing multiple stripes per OST. In this
case, we set the lfs setstripe parameter to use 1,000 stripe
objects, i.e., 125 stripes per OST. Overall, our additions im-
proved performance by 4× compared with vanilla Lustre.

In the case of ior-hard-read and unaligned direct I/O reads,
the I/O throughput increased from 11 GiB/s to 18 GiB/s with
only svrWB caching enabled. This is due to many page cache
read hits on the server that avoid reading from disk. The
results also show that buffered I/O achieved much better read
performance due to client-side read-ahead, reaching 30 GiB/s.
With autoIO, reads achieved similar performances since the
DLM lock for read operations from multiple clients were
compatible. Therefore, the reads were performed in buffered
I/O mode from the start.

Both BeeGFS and OrangeFS do not support unaligned di-
rect I/O and used buffered I/O mode in this case. BeeGFS’s
native mode was slightly faster than Lustre with normal di-
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Figure 13: dcp I/O bandwidth over time for Lustre.

rect I/O. Lustre, on the other hand, with our autoIO and
delalloc, was 2.9× faster than BeeGFS (native) for writes
and 1.7× faster than BeeGFS (buffered) for reads.

4.2 mpiFileUtils/dcp workload
This section examines the I/O performance over time when
copying a large file using mpiFileUtils/dcp [50]. Further, we
copied an 8.8 TiB heterogeneous dataset, containing millions
of files in a directory hierarchy with more than 10K directories
(see the file size distribution in Figure 12), and compared the
bandwidth with the three file systems in different modes. Dcp
segments a large file into fixed-size chunks (4 MiB by default)
and places a new distributed work item for each chunk in a
global queue. The data copies are then distributed across
multiple MPI ranks.

We first ran dcp on 32 nodes (16 processes each), writing
and reading a 4 TiB to and from a single file (on the same file
system) in parallel with a chunk size of 4 MiB. The source
and target file were both striped across 8 OSTs. Figure 13
shows the bandwidth variation over time. Due to the large
chunks that triggered direct I/O in the autoIO algorithm, it
achieved a 3× performance improvement at 20 GiB/s and a
more stable throughput than the buffered I/O performance in
the vanilla case. As expected, the buffered I/O performance
dropped drastically once most memory was consumed by the
page cache. The observed lock callback count was over 77K.
The memory pressure, due to interacting with the kernel’s
page cache, and false lock callbacks all contributed to the
performance drop.

Next, we copied the entire dataset using dcp across 10
nodes (16 processes each) and a chunk size of 4 MiB. In this
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Figure 15: VPIC-IO bandwidth for various file systems.

case, we set autoIO’s large I/O threshold to 512 KiB, which
is similar to BeeGFS’s default native mode.

Figure 14 presents the performance for the three file
systems with various configurations. Overall, Lustre with
autoIO, XBatch, and svrWB reached 21.7 GiB/s and out-
performed vanilla Lustre by 1.5×, BeeGFS (buffered) by
∼2.6×, and OrangeFS (directio) by 4.3×. These results
match the above IOR-easy conclusions in file system capabili-
ties and demonstrate that our additions benefit both large files
and heterogeneous datasets.

4.3 VPIC-IO workload
VPIC-IO is a macrobenchmark that represents the I/O ker-
nel [12] of a large-scale plasma physics simulation that
can compute, e.g., the reconnection and turbulence in solar
weather. We ran the VPIC-IO kernel via h5bench [33] which
uses an emulated compute time of two seconds for each time
step and writes random particle data. Specifically, each MPI
rank writes many particles into a single shared HDF5 file for
a certain number of time steps, called particle dump.

We ran VPIC-IO on 32 nodes (16 processes each) for 8,192
and 262,144 particles and I/O sizes of 32 KiB and 1 MiB,
respectively. In contiguous storage mode, the HDF5 meta-
data header is separate from the dataset data, with the data
itself stored in one contiguous block in the HDF5 file. This
led to MPI-IO starting not from 0 but at a specific offset
(mpi_off=2104 in our case), which is equal to the size of

Table 3: I/O statistics for VPIC-IO and 32 KiB I/O size.

Count DIO
(large I/O)

DIO (lock
contention)

BIO (small
I/O)

BIO
(default)

AutoIO 0 807,876 1,043 11,324

the metadata header. Since the offset of MPI-IO is not page-
aligned, all I/O operations were unaligned. Figure 15 shows
the write and read bandwidth for OrangeFS, BeeGFS, and
Lustre. Lustre performed best among the three file systems.
With autoIO and a 1 MiB I/O size, for instance, the write
performance reached 3× of Lustre’s vanilla performance
as most I/O operations are switched to direct I/O due to lock
contention.

The I/O statistics for the 32 KiB I/O size workload for
Lustre and autoIO are listed in Table 3. Since the I/O size
was small, I/O was initially handled in buffered I/O mode. Be-
cause I/O locks must be page-aligned in Lustre, this resulted
in significant lock contention on the server, mainly due to
unaligned I/O. This caused the clients to switch 807,876 I/O
requests to direct I/O. 1,043 requests were handled in buffered
I/O due to the small I/O size, and 11,324 were processed with
buffered I/O by default. Finally, we monitored that more than
50% of the 32 KiB I/O requests were merged into a 1 MiB
full stripe using svrWB caching and delalloc.

4.4 Nek5000 turbulent pipe flow workload

The Nek5000 application [20] for computational fluid dynam-
ics (CFD) is a bulk-synchronous application. Its workflows
can define step boundaries when Nek5000 should flush vector
data, vector statistics, or write checkpoints. At each step, all
ranks participate in writing to a single shared file at predefined
offsets, depending on the number of participating processes.

In our experiments, we ran a turbulent pipe flow work-
load [47] on 32 nodes with 16 processes each. Contrary to
VPIC-IO, this workload represents a real application and in-
cludes the computational component as well. In this experi-
ment, Nek5000 executed 1,000 time steps (running for about
10 minutes), writing the corresponding vectors at each step,
accounting for 600 GiB of data in total. Further, we used the
Darshan profiling tool [40] to collect all I/O access sizes of
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Table 4: I/O statistics for Nek5000’s turbPipe workload.

Count DIO
(large I/O)

DIO (lock
contention)

BIO (small
I/O)

BIO
(default)

AutoIO 128,000 132,000 372,281 65

this workload (see Figure 16), revealing a broad profile of
small and large I/O requests.

Figure 17 presents the I/O bandwidth of Nek5000. Lustre
with autoIO and svrWB caching reached 3,428 MiB/s and
outperformed vanilla Lustre by 1.4×, BeeGFS (buffered)
by ∼2.8×, and OrangeFS (directio) by 18.5×. Table 4
shows the I/O statistics using autoIO. The I/O throughput
improved by more than 10% with svrWB caching enabled
due to many small I/O requests. Note that the I/O sizes are
proportional to the number of participating processes. Thus,
with half the number of nodes and processes, e.g., 16 nodes,
the I/O sizes become larger, increasing the effectiveness of
direct I/O. In this case, Lustre with autoIO achieved 60%
higher bandwidth than vanilla Lustre.

5 Related work

This section discusses the related work concerning avoiding
the page cache, locking file system resources for strided I/O,
dynamic I/O path, and I/O mode selection.

Direct access and page cache avoidance When direct I/O
is used to bypass the kernel’s page cache, it considerably im-
pacts performance if used incorrectly while greatly benefiting
large I/O operations [27]. Other approaches were made to di-
rectly access the storage device without involving the kernel
to avoid overhead in the kernel’s I/O stack [30,54]. Aerie [54],
for example, processes metadata within a trusted metadata
server in user space, potentially involving costly RPCs that
can affect scalability.

For non-volatile main memories (NVMM) devices, page
cache overhead due to data copies is unnecessary and can be
directly addressed by the NVMM device. The DAX (direct
access) feature in the Linux kernel uses the DAX interface
to bypass the page cache and exposes the persistent memory
driver [18, 52]. Nevertheless, Simurgh [41] showed that DAX

is often insufficient to expose the NVMM device’s native per-
formance. Other Linux features, e.g., POSIX_FADV_DONTNEED
fadvise(), can reduce the impact of page caching for reads
to discard a data range from the page cache after reads, avoid-
ing page reclaiming during page allocation. A similar idea was
developed for the Linux kernel with the RMF_UNCACHED flag,
where pages are only added to the page cache for the duration
of a read and removed after [16]. However, this approach still
suffers from page management overhead, especially when
using high-speed networks and storage backends.

Our work focuses on storage backends used by distributed
file systems where bypassing the page cache is not always the
best option. Therefore, we showed the importance of dynam-
ically deciding whether to bypass the page cache based on
both the I/O access patterns and the system state.

Cache strategies Numerous caching strategies targeting
distributed file systems were designed over the years, in-
cluding client-side write-back caching [45], I/O caching
middlewares [60], employing machine learning to automate
caching [24], or leveraging existing node-local storage de-
vices [46]. Our implementation does not replace or add to
these existing strategies. Instead, autoIO identifies requests
for which it is more beneficial to bypass the client’s page
cache. AutoIO thus relieves cache pressure and allows cache
strategies to be optimized for the remaining cached data. The
break-even point at which direct I/O becomes useful depends
not only on the given I/O size but also on lock contention,
memory pressure, and overall access locality. AutoIO is the
first transparent client-side algorithm to handle these parame-
ters as part of the parallel file system.

Distributed locking Lock managers are vital to modern
distributed software, e.g., to provide strong consistency in a
distributed file system. In general, concurrent applications
require locking that allows coordinated access to shared re-
sources. Chubby [11] provides a coarse-grained synchroniza-
tion mechanism between servers for reliability and availability
in a loosely coupled distributed system. Lustre, on the other
hand, must protect and coordinate access to shared resources
by many clients in parallel to guarantee that both data and
metadata remain consistent [9]. It further offers applications
a user space API to request locks in advance for specific data
ranges that are not allowed to expand [39]. This allows ap-
plications to avoid false lock conflicts beforehand and works
well in strided I/O access patterns. Nonetheless, modifying
applications to fully control their I/O behavior is not always
feasible, especially when using I/O libraries. Our server-side
adaptive locking can transparently react to lock-congested
files without changing the application.

Dynamic I/O path Applications have widely different
workload statistics that can even suddenly change with new
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application types entering the HPC space, e.g., in the cases
of data-driven application and AI workloads [10]. To accom-
modate past and future applications, parallel file systems of-
ten adopt the “one-size-fits-all” solution, such as Lustre [9],
GPFS [49], and BeeGFS [25]. However, depending on the
application and storage system, this can reduce I/O perfor-
mance. Dynamic I/O paths can therefore be valuable to fit
more closely to an application’s I/O behavior.

Xiuqiao et al. [34] use a file handle-rich scheme in
PVFS [14] providing a framework to enable a dynamic, fine-
granular, and client-side I/O path section at runtime on a per-
job basis. The balanced placement I/O (BPIO) library [56]
intelligently allocates I/O paths for a parallel file system, bind-
ing a client to a storage target while evenly distributing the
I/O traffic across components to proactively avoid contention
points. To reduce I/O contention in an HPC environment,
TAPP-IO [42] provides dynamic shared data placement mit-
igating resource contention and load-imbalance to improve
application I/O, while iez [55] offers a transparent and adap-
tive control plane for balanced data placement.

Rather than focusing on data placement, we dynamically
select the most suitable I/O path for each I/O request by using
already existing I/O protocols, i.e., direct I/O, which can be
challenging for developers to use directly.

Rigid vs. dynamic I/O mode Buffered I/O is still used as
the default I/O mode in most situations. However, direct I/O
is employed by other distributed file systems as well, e.g.,
BeeGFS and OrangeFS. BeeGFS’s native mode, for instance,
can switch from buffered I/O to direct I/O for I/O requests that
are larger than the tunable tuneFileCacheBufSize parame-
ter (512 KiB by default). Yet, direct I/O triggered on the client
does not affect server behavior, which still relies on buffered
I/O. Conversely, OrangeFS offers the alt-aio (default) and
direct I/O modes that only affect server I/O behavior. The for-
mer uses a thread-based implementation for asynchronous I/O
using pread() and pwrite(). Similarly, an NFS [22] server
can use synchronous or asynchronous I/O (decided before
launch). However, the cache protocols in BeeGFS, OrangeFS,
and NFS are all non-coherent.

In contrast to the above file systems and to the best of our
knowledge, we are the first to implement and evaluate a fully
adaptive and transparent dynamic I/O path on both the file
system client and server, using the most suitable I/O path in
a given situation. In addition, we take file lock contention,
memory pressure, and page cache reuse statistics into account
to decide whether to use buffered I/O or direct I/O (even if
unaligned) with strong consistency.

6 Conclusion and future work

This paper has presented a new approach to transparently
and dynamically switch between buffered I/O and direct I/O
in distributed file systems. We have shown the benefits of
both I/O modes over a range of I/O sizes and have presented
a client-side I/O mode switching algorithm that considers
not only I/O sizes but also file lock contention and memory
constraints. Other features include an adaptive server-side
write-back cache, alignment of unaligned I/O, delayed allo-
cation, and I/O request batching. We have achieved these
features without compromising Lustre’s strong consistency
guarantees. Overall, our experimental results over several
microbenchmarks, marcobenchmarks, and real-world work-
loads have shown that our approach reached up to 3× higher
throughput than original Lustre and outperformed other dis-
tributed file systems by up to 13×.

Our future work covers several directions. First, we plan
to conduct an extensive analysis of the performance impact
of diverse I/O sizes, thresholds, file system configurations,
and application workloads to further optimize and specialize
autoIO’s behavior. Second, we aim to modify autoIO’s deci-
sion thresholds further so that they can automatically adapt
depending on the system state by adopting previous work,
e.g., machine learning-based prediction to optimize I/O band-
width [6,53,58]. Third, we will design a server-side algorithm
to switch between write-back and write-through modes that
further considers the server state.
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A Artifact Appendix

Abstract

The Artifacts Description (AD) of this paper [3] provides
detailed documentation of the used configurations for all file
systems and experiments.

Scope

The AD has been made available. It includes detailed refer-
ence instructions to set up, deploy, and configure each used
file system and each presented experiment. Please note that
these artifacts are not functional due to the complexity of
fully configuring and testing a Lustre installation automati-
cally. However, the AD makes all instructions available for
reference, making it possible to run similar experiments in
similar configurations as provided in the paper.

Contents

The AD is sectioned into three main parts: Prerequisite infor-
mation, e.g., software dependencies, installing the three used
file systems, i.e., Lustre with autoIO, BeeGFS, and OrangeFS,
and the description of all experimental workloads.

Prerequisites We describe the experimental setup and the
required software dependencies for CentOS 8.4. Further, we
provide requirements for setting up the cluster environment
with the corresponding environment variables.

File system installation For Lustre, we provide detailed
documentation of installing and configuring a Lustre parallel
file system from scratch. We present information on Linux
InfiniBand drivers (OFED) and provide reference Linux Bash
scripts for installing and deploying the Lustre clients and
servers (including autoIO). Moreover, we link the correspond-
ing Git branches and pull requests to Whamcloud’s issue
and project tracking software (JIRA). These include all code
changes from this paper and further serve as a reference for
the status of each feature (eight in total).

Moreover, we provide the reference Bash scripts for in-
stalling the BeeGFS and OrangeFS clients and servers from
scratch.

Experimental workloads We present the reference Bash
scripts for each experiment and figure used in the paper. This
includes setting file system configurations, e.g., enabling our
server-side write-back, installing and running the evaluated
applications. We further include a dedicated document for
each experiment type in addition to the corresponding scripts.

Hosting
The AD is hosted on Zenodo and GitHub. GitHub supple-
ments the long-term Zenodo repository and offers easy access
to the artifacts’ documentation and scripts. The corresponding
versions are mirrored between Github and Zenodo, i.e., v1 on
Zenodo mirrors v1.0 on GitHub. Please note that a DOI [3]
via Zenodo is available for referencing these artifacts.
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OmniCache: Collaborative Caching for Near-storage Accelerators

Jian Zhang (Rutgers University), Yujie Ren (Rutgers University), Marie Nguyen (Samsung),
Changwoo Min (Igalia), Sudarsun Kannan (Rutgers University)

Abstract
We propose OmniCache, a novel caching design for near-

storage accelerators that combines near-storage and host mem-
ory capabilities to accelerate I/O and data processing. First,
OmniCache introduces a “near-cache” approach, maximiz-
ing data access to the nearest cache for I/O and processing op-
erations. Second, OmniCache presents collaborative caching
for concurrent I/O and data processing by using host and de-
vice caches. Third, OmniCache incorporates a dynamic model-
driven offloading support, which actively monitors hardware
and software metrics for efficient processing across host and
device processors. Finally, OmniCache explores the extensi-
bility for newly-introduced CXL, a memory expansion tech-
nology. OmniCache demonstrates significant performance
gains of up to 3.24X for I/O workloads and 3.06X for data
processing workloads.

1 Introduction
The growth in data volume and demand for high-

performance data processing is driving innovative storage
architectures. Traditional approaches with centralized pro-
cessing and frequent data movement face performance limita-
tions and high costs [9, 10, 44]. To address this, vendors have
introduced near-storage data processing devices, bringing pro-
cessing capabilities closer to storage [11, 15, 28]. These archi-
tectures leverage accelerators and host processors to enhance
processing power and potentially reduce data movement and
associated overheads. Realizing these benefits requires effec-
tive management and utilization of these resources. State-of-
the-art near-storage designs have explored various approaches
to accelerate I/O and data processing. These include using
storage as a raw block device [33], developing near-storage
key-value stores [13, 17, 24, 34], and creating near-storage
file systems [9, 21, 31]. Additionally, application-customized
techniques have been proposed [37, 39].

Utilizing memory buffers on near-storage accelerators is
crucial for mitigating the impact of higher storage latency and
limited bandwidth. Near-storage memory offers advantages
such as localization and high bandwidth, making it an advan-

tageous buffering medium near computational units. However,
near-storage memory capacity is typically smaller than tradi-
tional host-level RAM, as demonstrated by prior studies and
commercial products [11, 15]. Therefore, effective techniques
that collaboratively use device and host-level memory and
processors become crucial, minimizing data movement be-
tween storage and host layers, resulting in accelerated data
processing and regular I/O operations (e.g., read, write).

While state-of-the-art near-storage designs improve I/O
or data processing performance, they either lack any mem-
ory caching support [9, 31, 33] or fail to exploit device-
level memory in collaboration with host-level memory for
caching [17, 24, 44]. The absence of caching support or the
failure to exploit near-storage memory for I/O and data pro-
cessing increases storage access and data movement between
the host and the device (e.g., fetching a 4KB block for a 1KB
application request). Similarly, the absence of a collaborative
host and device memory caching causes applications to stall
due to cache eviction delays. Finally, prior designs use simplis-
tic metrics to offload data processing (e.g., computing power)
without considering storage-centric metrics (e.g., data distri-
bution, I/O-to-processing ratio, data movement bandwidth,
and queuing costs), leading to suboptimal performance.

To tackle the challenges above, we propose OmniCache, a
cross-layered system software design that exploits the com-
bined capabilities of near-storage accelerators, host CPUs, and
their memory (DRAM) resources to accelerate I/O and data
processing. At its heart, OmniCache introduces a novel princi-
ple, "near-cache", which focuses on maximizing data access
on the closest cache, effectively combining the strengths of
the host (such as higher memory capacity and more CPUs)
and the device (being nearer to the storage) while mitigating
their limitations. OmniCache employs a horizontal paradigm
where application threads can concurrently store and access
data from the host and the device caches, thereby improv-
ing the aggregate bandwidth and data access latency. Toward
designing OmniCache, we make the following contributions:
Near-cache I/O: Firstly, we optimize I/O performance using
a near-cache mechanism that simultaneously utilizes host-
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level cache (HostCache) and device cache (DevCache). This
near-cache approach maximizes cache utilization for various
I/O access patterns, transferring only the data sizes requested
by an application thread instead of the entire block from
storage to the host.
Collaborative Caching for Concurrent I/O: Unlike hierar-
chical caching approaches where threads must wait for cache
eviction to complete when a cache (e.g., HostCache) is full,
OmniCache’s horizontal paradigm allows threads to update
the other cache (e.g., DevCache) until the eviction is complete
and reduces application stalls. To locate data stored in these
caches or on the disk, we introduce a scalable, host-managed
indexing mechanism known as OmniIndex. OmniIndex uti-
lizes a per-file interval tree equipped with a fine-grained range
lock, enabling threads to access both the host and device
caches concurrently for non-conflicting blocks [7].
Collaborative Processing with Dynamic Offloading: Sec-
ond, we develop a dynamic offloading mechanism driven by
an offloading model to accelerate data processing by lever-
aging HostCache and DevCache collaboratively. The mecha-
nism enables concurrent data processing across the host and
the devices and uses the caches to buffer the intermediate pro-
cessing state. Beyond simple processing (e.g., data checksums
and compression), we develop support for complex processing
operations (e.g., K-nearest neighbor search).
Exploiting CXL.mem Capabilities: Finally, to demonstrate
the adaptability of OmniCache beyond conventional NVMe-
based near-storage, we exploit byte-addressable Compute Ex-
press Links (CXL) [1] with memory expansion capabilities
(CXL.mem) to coordinate between host and device caches,
reduce data movement costs and queuing delays.
End-to-end Evaluation: We evaluate OmniCache with mi-
crobenchmarks and real-world applications, including Lev-
elDB [3] and K-Nearest Neighbor search [32]. OmniCache’s
near-cache I/O principle, collaborative use of DevCache and
HostCache for concurrent I/O and to dynamically offload
processing functions provide significant performance gains.
Compared to the state-of-the-art near-storage file systems
without caching [9] and those with host-only caching [44],
OmniCache achieves 3.24X and 1.52X performance gains,
respectively. Application write stalls are reduced by up to
2×. The collaborative approach to concurrently process data
across the host and the device provides up to 3.06X gains over
state-of-the-art FusionFS [9]. Finally, LevelDB [3] and data-
intensive KNN [32] show up to 5.15X gains, highlighting the
practical benefits of OmniCache.

2 Background and Motivation
We first present the background and related work on near-

storage data processing and caching, followed by their limita-
tions and analysis that motivates OmniCache design.
2.1 Background and Related Work

We now review prior near-storage processing studies in
terms of (1) hardware trends, (2) software advancements, (3)

near-storage file systems and OS support for data processing,
and finally, (4) in-memory caching for storage.
Hardware Near-storage Processing Trends: Despite ad-
vancements in SSD and NVM technologies, data access and
movement overheads remain dominant in I/O stacks. To
address these overheads, hardware manufacturers are en-
hancing storage-level compute resources in near-storage pro-
cessing devices like Computational Storage Devices (CSD).
These devices are equipped with powerful ARM or RISC-V
cores [21, 31, 34, 36, 38], FPGAs [13, 33], and significant
DRAM capacity. Recent developments include CSDs with
16GB device RAM and 16-core Cortex processors [15]. They
offer predefined functions and customization options to elimi-
nate data movement between the host and the device while
improving performance and flexibility [16, 38]. Moreover,
CSDs such as ScaleFlux [35] and Newport [15] seamlessly in-
tegrate processor, memory, and SSD control. This integration
eliminates off-chip communication and enables fast data trans-
fer to device compute units, presenting a novel opportunity to
explore the utilization of device resources.

Additionally, the emerging CXL technology (Compute Ex-
press Link) holds promise for hardware-supported memory
expansion across accelerators and remote hosts [1, 19, 26].
CXL encompasses protocols such as CXL.io, CXL.cache,
and CXL.mem, offering device types with different data-
coherence guarantees. It enables host CPUs to expand and
access device memory, with the potential to cache data on
device memory for accelerating I/O and data processing.
Software Support for Near-storage Acceleration: To fully
exploit the potential of near-storage accelerators, considerable
software advancements have been explored to minimize data
movement costs, which accelerate and efficiently leverage
near-storage accelerators. Table 1 summarizes the capabil-
ities and limitations of existing systems. Designs such as
INSIDER [33] offload compute tasks to FPGA-based CSD
using a block-based interface. Key-value interface designs,
such as POLARDB [13], PINK [17], and KEVIN [24] of-
fload database-specific computation to near-storage. Further-
more, NearPM [37] and SmartRec [39] focus on customized
application-level optimizations or system-level guarantees.

In contrast to these systems, near-storage file system de-
signs offload the file system closer to the storage while main-
taining a POSIX-like interface. Systems such as DevFS [21]
and CrossFS [31] adopt this approach by offloading meta-
data structures to improve performance and efficiency. Fu-
sionFS [9] compared in this work, combines file system oper-
ations with computation steps and incorporates device-level
task scheduler and durability and recoverability mechanisms.
Data Processing Support: Various near-storage data pro-
cessing systems have been explored. POLARDB [13] de-
velops new application logic to accelerate applications by
offloading data to FPGA-based key-value stores. λ-IO [44]
utilizes an OS file system as a unified IO stack to manage
computation and storage resources across the host and device.
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Properties Block-
based KV-based Host FS Dev-FS Dev-FS

with caching

System Insider [33]
KV-SSD [34]

PINK [17]
KEVIN [24]

λ-I/O [44] CrossFS [31]
FusionFS [9] OmniCache

Direct-I/O ✗ ✗ ✗ ✓ ✓

Use host Cache ✓ ✓ ✓ ✗ ✓

Use device Cache ✗ ✗ ✗ ✗ ✓

Concurrent host and
device I/O processing ✗ ✗ ✗ ✗ ✓

Dynamic Offload ✗ ✗ Partial ✗ ✓

CXL support ✗ ✗ ✗ ✗ ✓

Table 1: Capabilities and Limitations of State-of-the-art Near-
storage approaches. The last column shows our proposed OmniCache.

It extends eBPF for executing functions on heterogeneous
hardware and provides additional programming interfaces for
customized computational logic. Finally, FusionFS introduces
CISCOps abstraction that combines I/O and data processing
operations to reduce application changes and overheads asso-
ciated with I/O operations, such as system calls, data move-
ment, communication, and other software overheads [9].
In-memory Caching for Storage: Caching I/O data in
DRAM is critical for modern I/O stacks [12]. Traditional
file systems rely on an OS-managed page cache, which can
introduce user-to-kernel boundary crossings and substantial
software overheads, often nullifying the benefits of fast stor-
age devices [10, 21, 27, 31, 33]. While several file systems
for devices like PM have disabled caching [41, 43], others are
exploring user-level caching support [2, 23, 27, 30, 45]. How-
ever, none of these storage designs have explored or designed
system software for collaboratively managing on-device and
host memory buffers for accelerating I/O or data processing.
Host-level Caching for Near-Storage Processing: Caching
designs like λ-IO [44] exploit host OS-level caches and only
offload processing for data not in the host OS. While useful,
these designs fail to consider or exploit device-level caches
and suffer from the following challenges: Firstly, they lack
direct I/O support, incur system call overhead, and must trap
into the OS, all adding significant overheads. Secondly, they
incur high data movement between the device and the host.
Thirdly, host-level caching designs like λ-IO fail to concur-
rently support I/O and data processing across the host and the
device. Fourthly, these designs lack CXL support. In contrast,
OmniCache provides direct I/O bypassing the OS, reduces
data movement between the device and the host, provides con-
current I/O and processing capability across the host and the
device, and support for CXL.mem and CXL.io. Finally, while
both OmniCache and λ-IO provide model-driven offloading
mechanisms, λ-IO overlooks critical factors like device cache
and command queue delays, significantly impacting perfor-
mance (demonstrated in §6).
2.2 Limitations of State-of-the-art Systems

We next present the limitations of the state-of-the-art sys-
tems. Table 1 categorizes and compares current approaches
with the proposed OmniCache.
Failure to Exploit Near-storage Memory for Caching: Ex-
isting near-storage designs [9, 31, 33, 44] either fail to ex-
ploit device memory or the combined capabilities of host
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Figure 1: Motivation Analysis: (a) shows aggregated throughput
for an I/O intensive random write and data processing application
(KNN) with 32 threads. For random write, each thread accesses
a private 4GB file (128GB total); For KNN, threads share a large
128GB file with each thread accessing a non-overlapping range; (b)
shows the latency breakdown for random write.

and device memory [42]. CrossFS [31], FusionFS [9], and
Insider [33] lack support for a host or device caching, while
λ-IO [44] only utilizes host caches through the OS file system.
This results in high I/O overheads, data movement, and fre-
quent kernel traps. Leveraging DevCache and HostCache to-
gether presents new opportunities to accelerate performance.
Lack of Concurrent I/O and Data Processing Support:
Existing near-storage designs lack support for concurrent I/O
and data processing across host and device layers [9, 31, 33].
In these designs, I/O and processing operations are mostly
offloaded to the device using fewer and less powerful device-
level processors and limited memory [9, 31, 33]. Host-only
(OS) caching solutions like λ-IO impose concurrency limita-
tions. The use of OS cache incurs scalability bottlenecks from
coarse-grained inode-level locking and suffers from eviction
stalls when the host cache is full [44]. These limitations affect
the performance of I/O and data processing [9, 31, 33, 44].
Lack of Dynamic Offloading Support: Several state-of-the-
art near-storage designs lack the capability to dynamically
decide whether to process on the host or the device and al-
ways offload (with only partial support for λ-IO). This leads
to higher data movement, queuing delays, and compute bottle-
necks. In addition, all existing designs lack a holistic approach
to concurrently process data across host and device layers.
We show that dynamic offloading and concurrent processing
can significantly enhance performance.
2.3 Analysis

First, to motivate the importance of leveraging host and
device memory for caching and to demonstrate the signifi-
cance of OmniCache toward concurrent I/O and data process-
ing operations. We compare OmniCache against state-of-the-
art NOVA (a kernel file system) [43], FusionFS (a near-storage
file system without caching support), and an extended host-
only caching design using OmniCache (Figure 1a). Like prior
systems [9], we use a machine with 512 GB DC Optane NVM
for storage, 64 CPUs, and 32 GB DRAM. We set the total
cache size to 20GB for all workloads. For OmniCache, we use
a 16GB host cache and a 4GB device cache. For brevity, we
focus on two workloads: (1) an I/O-intensive random-write
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benchmark that generates a 128 GB file with random 1KB
writes using 32 threads, and (2) an I/O + processing-intensive
K-nearest neighbor search (KNN) that does not fit in memory,
as used in prior research [44].

For the random-write workload, NOVA exhibits inferior
performance due to system call and kernel software over-
heads and the lack of caching support. FusionFS also per-
forms poorly due to the absence of caching. HostCache-user-
level suffers from data movement and frequent write stalls
during cache evictions. However, OmniCache significantly
improves performance by leveraging collaborative host and
device cache usage (§4.2). For data-processing intensive K-
nearest neighbor (KNN), HostCache-user-level incurs high
data movement costs as it exclusively processes data on the
host. In contrast, OmniCache achieves higher performance
gains by concurrently utilizing HostCache and DevCache for
collaborative processing (§4.3).

Second, to highlight the necessity of exploiting near-
storage RAM to optimize unaligned I/O requests, Table 2
shows the substantial unaligned I/O request ratios in popular
real-world applications, including RocksDB, MySQL, and
DiskANN[18]. All applications exhibit exceptionally high
unaligned ratios, which motivates OmniCache’s collaborative
I/O caching, which aims to minimize data movement overhead
associated with unaligned I/O requests (§4.2). In RocksDB,
we observe that for 10 million keys and a 4KB value size
(fillrandom and readrandom), over 99.99% of the 141 mil-
lion total I/O requests were unaligned. This emphasizes the
prevalence of high unaligned I/O requests in log-structured
systems. Similarly, MySQL and DiskANN (a state-of-the-art
approximate nearest neighbor search algorithm) also contend
with a significant number of unaligned I/O requests.

Next, to understand the software overheads, we show
the cost breakdown of these approaches in Figure 1b. We
present the average latency breakdown of OmniCache for
a random write (randwrite) workload. Firstly, the overhead
of OmniIndex is notably low, accounting for only 12% of
the total time in OmniCache. Secondly, OmniCache’s capa-
bility in minimizing write stalls leads to a marked decrease
in the queue delay overhead. Compared to HostCache-user-
level, the queue delay overhead is significantly reduced from
18.10% to 9.3% with OmniCache due to its ability to reduce
write stalls. Furthermore, OmniCache effectively reduces data
movement overhead in I/O and data processing for unaligned
I/O requests owing to its efficient near-cache I/O principle.

3 Goals and Overview
Motivated by the need to exploit host and device caches

collaboratively for accelerating I/O and data processing, we
next discuss design goals and overview of OmniCache.
3.1 Design Goals

OmniCache introduces a novel caching mechanism to har-
ness the potential of both host and device-level memory for
caching by leveraging the hardware and software capabilities

of near-storage accelerators, host CPUs, and file systems dis-
tributed across the host and device layers. By combining their
strengths and compensating for their weaknesses, OmniCache
aims to achieve the following design goals:
Faster I/O using Near-cache I/O Principle: OmniCache
introduces a new near-cache I/O principle that maximizes
I/O operations to and from the nearest cache in both the host
and device processors, thereby minimizing data movement.
Near-cache I/O reduces data movement between the host and
the device by only moving bytes actually requested by an
application without requiring block-aligned data movement.
Collaborative Caching for Concurrent I/O: To address
the lack of combined HostCache and DevCache use, one ap-
proach is to tier data between the caches. However, tiering
hinders application threads from concurrently accessing the
caches, leading to side effects like frequent CPU stalls during
cache eviction. Besides, the smaller DevCache compared to
HostCache complicates tiering. OmniCache addresses these
challenges by supporting a horizontal paradigm that allows
concurrent access to the caches. For concurrent access to
non-conflicting blocks, a host-managed scalable index (Om-
niIndex) maps a range of blocks in a file to different caches.
Collaborative Data Processing with Distributed Caching:
OmniCache exploits memory caching not just for I/O but
to also accelerate data processing operations by reducing
data movement between the host and the device. OmniCache
achieves these goals by (1) creating mechanisms for collabo-
rative data processing across host and device caches, (2) de-
veloping a model-driven approach to dynamically determine
the optimal processing location (host or device) by leverag-
ing hardware and software metrics (OmniDynamic), and (3)
supporting concurrent data processing and merging results
across host and device layers. OmniCache ’s collaborative pro-
cessing can benefit a variety of applications, especially those
that involve processing and analyzing large-scale data in a
parallel and distributed fashion. For example, graph process-
ing, search engine for indexing and searching large webpage
files, and NLP for extracting information and patterns from
unstructured text.
Effectiveness on Byte-addressable CXLs: To minimize
host-device data movement and associated queuing delays,
OmniCache utilizes modern CXL technology to extend mem-
ory capacity and enable direct access to the accelerator’s
memory [1, 20]. Leveraging the host-managed OmniIndex,
OmniCache uses CXL for direct DevCache access, thereby
reducing additional data copies and queuing delays.
3.2 OmniCache Overview

We provide an overview of OmniCache components and
briefly illustrate their functionalities. As shown in Figure 2,
OmniCache comprises three main components: (1) a user-
level library (OmniLib), (2) a user-level cache indexing struc-
ture (OmniIndex), and (3) a device manager (OmniDev). For
this overview, we consider simple I/O (e.g., read(), write())
and data processing operations, e.g., read-CRC-write (read a
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Figure 2: OmniCache High-level Design. Figure shows OmniCache
concurrently handling I/O and data processing flows. For I/O (black arrow),
1 application issues 1KB overwrite, which OmniLib intercepts, uses Om-

niIndex to locate the data in HostCache or DevCache. 2 On a cache miss,
the request is dispatched as an NVMe command using an I/O queue. 3
OmniDev fetches the request, reads a 4KB block from storage to DevCache
and updates the block. For data processing operation (blue arrow), A
application invokes OmniLib’ read-CRC-write, which searches OmniIndex
B , uses a dynamic model to process in the host ( C ) or the device ( D ) or

collaboratively on both.

4KB data block, calculate the checksum, and write it back).
OmniLib: The user-level component exploits host-level mul-
ticore CPUs, enables collaborative caching, and performs
data processing. OmniLib performs various tasks such as dis-
patching I/O requests, managing cache resources, facilitating
concurrent I/O and data processing operations, and handling
data evictions.

Figure 2 illustrates the flow of operations across Omni-
Cache ’s components. When an application opens a file and
initiates an I/O operation, OmniLib intercepts the system calls
and creates a per-file I/O queue. Next, OmniLib converts all
POSIX I/O calls to NVMe-like commands and adds them
to the I/O queues for device (OmniDev) processing (shown
from 1 to 3 ). OmniLib also handles data processing op-
erations and offers predefined application interfaces such as
read-checksum-write ( A ) or read-compress-write. These op-
erations are converted into a vector of NVMe commands and
added to the I/O queue for either offloading to the device or
processing at the host.

For caching, OmniCache divides the responsibilities
across the host and the device layers. OmniLib provides the
indexing for the HostCache and the DevCache, checks the
presence of data using the index, and manages HostCache.
OmniLib also decides when to evict from HostCache and
DevCache by implementing a two-step LRU eviction.

For data processing, OmniLib implements a model-driven
offloading engine to dynamically ( B ) decide whether to of-
fload processing (e.g., read-CRC-write) to the host ( C ) or
the device ( D ). Finally, OmniLib also provides extensibility

to use CXL.mem by directly copying data and commands to
DevCache and avoiding queuing delays and data copies.
Fine-grained Indexing (OmniIndex): We implemented it as
a part of OmniLib, providing scalable indexing for efficient
data retrieval. OmniIndex locates the data stored in Host-
Cache, DevCache, or storage. In addition to collaborative and
concurrent use of the caches, it performs ownership manage-
ment of block ranges in a file and data eviction. Figure 2
shows OmniIndex represented by a per-file range tree index-
ing structure. Each node corresponds to a specific range/seg-
ment of a file, with a pointer to the memory buffer in the Host-
Cache or the DevCache, or the storage. Blue and green nodes
in the figure indicate data residing in HostCache and Dev-
Cache, respectively. OmniIndex’s fine-grained range locks
handle concurrent I/O and processing requests across threads,
ensuring conflict-free access across the host and the device.
OmniIndex also tracks dirty data for cache eviction (§4.2.2).
OmniDev: The near-storage component consists of a file sys-
tem, a data processing engine, and support for near-storage
caching. OmniDev’s file system is similar to the prior near-
storage file system, comprising in-memory and on-disk meta-
data structures and journaling for crash consistency [9]. The
data processing engine handles processing requests, retrieving
them from the I/O queues, updating NVMe commands with
the processed output, and setting a completion flag.

With respect to caching, OmniDev handles the allocation
(space management) of the DevCache using a simple device-
level memory manager. On a cache miss for an I/O or process-
ing request, OmniDev allocates space within the DevCache
using its internal memory allocator, processes the request,
and returns the allocated cache block’s address (a block num-
ber, see §5) to update the OmniIndex using OmniLib. The
coordinated cache management between the OmniLib (host-
level) and OmniDev (devel-level) provides efficient cache
management and fast data lookup.

4 Design
We describe OmniCache’s architecture, followed by its scal-

able approach to use and manage HostCache and DevCache
for I/O and data processing operations.
4.1 Cache Architecture

OmniCache aims to minimize data movement and software
overhead by performing I/O and data processing closer to
the data, resulting in higher IOPS. It utilizes both host and
device caches. We discuss the rationale for distributed cache
management’s placement, management, and challenges.
Host Caching in the Userspace: We implement HostCache
allocation and management in the user-level OmniLib to avoid
kernel traps and system call bottlenecks of an OS-level cache
and customize cache admission and evictions for I/O and data
processing. Each application is reserved with a configurable
cache memory, which is managed by OmniLib. To support file
sharing and the host (and device cache) across applications,
OmniCache implements cache as a shared memory ( §4.2.2).
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Device-level Cache: Two important design considerations
for DevCache are: (1) maintaining data exclusively vs. inclu-
sively in the host and the device cache without increasing data
movement and communication overheads; (2) ensuring that
applications only with correct permissions access the cache
blocks despite the direct I/O bypassing the OS. Regarding
(1), we employ an exclusive caching approach, where data
blocks are either stored in the HostCache or the DevCache or
the storage (which results in a cache miss). We use exclusive
instead of inclusive cache (where data could be duplicated in
the host and device caches) for the following reasons: Firstly,
exclusive cache avoids duplicate blocks across caches, un-
like inclusive cache, increasing cache coverage. Secondly, an
inclusive cache to maintain consistency can incur high com-
munication costs between the host and the device. Finally,
because of the significantly different HostCache (larger) and
the DevCache (smaller) capacities, an exclusive cache pro-
vides the flexibility to vary the eviction frequencies.

Regarding (2), the OS and the OmniDev manages the per-
mission checks and access control, which we inherit from
prior systems [9, 31, 33]. Briefly, for a process to access a file,
a per-file I/O queue is only created by the OS if the process
has access permission to the file and the queue is also tagged
with the credential by the OS. OmniDev, before dequeuing
and dispatching a request, checks if the request in the I/O
queue has the necessary permission to access/update the file’s
content before checking the DevCache and the disk.
4.2 Collaborative Caching for I/O

We first discuss the techniques employed by OmniIndex for
fast indexing and locating cache blocks. We then elaborate on
how OmniCache reduces data movement during various I/O
operations by adhering to the near-cache I/O principle. Finally,
we describe how collaborative caching enhances concurrent
I/O by mitigating eviction stalls.
4.2.1 Scalable OmniIndex

We address the above challenges by designing OmniIndex,
a scalable and highly concurrent cache indexing mechanism
based on a range tree. OmniIndex indexes data in both Host-
Cache and DevCache, and is managed only by the host (Om-
niLib). Managing OmniIndex exclusively in the host avoids
communication and consistency overheads of maintaining
OmniIndex between the host and the device and leverages
multicore CPU parallelism for concurrent index lookup. It
also provides the flexibility to customize OmniIndex and use
it for cache admission and eviction based on the application
and user requirements.

OmniIndex, a per file range tree, offers a unified view of the
host and device caches and the storage. Each OmniIndex node
represents a specific data range within the file, with blocks po-
tentially residing in the HostCache, DevCache, or the storage.
In Figure 2, blue-colored nodes indicate data in the Host-
Cache, green nodes represent blocks in the DevCache, and
all others represent blocks on the storage device. OmniCache
utilizes OmniIndex to determine the data location.

The I/O or data processing requests are assigned to the de-
vice by the host, which uses the OmniIndex to locate existing
data blocks, if not present in any caches, allocate and updates
the OmniIndex with a new node. The device CPUs do not
access or update the OmniIndex.
Concurrent Non-Conflicting Access: For concurrent ac-
cess/updates to a file’s non-conflicting data blocks by the host
CPU threads, each node range in the OmniIndex is equipped
with a read-write lock. Threads acquire per-range lock before
accessing the corresponding data from the cache, perform-
ing I/O, or processing. When the data is not in the host and
the device caches, a range lock is acquired before issuing an
I/O command. We shortly discuss the details of using the
OmniIndex to perform I/O (e.g., write, read) and processing.
Avoiding Conflicts: To prevent conflicting and concurrent
updates of range by the host and the device CPUs, OmniCache
employs a range-level ownership model, by assigning an own-
ership of a range to the host or the device. This is feasible
because the host OmniLib is responsible for offloading I/O or
processing requests to the device and ensures that only one
entity (host or device) can modify the data within the node
range at any given time and preserve data integrity.

Tracking Dirty Data for Persistence: OmniIndex is es-
sential for managing data in the host and device. Each Omni-
Index node includes a dirty bit for each range and a bitmap
array to track block dirtiness within a range. To update the
HostCache or DevCache, pages are allocated, and the OmniIn-
dex is updated at the range level by setting a block’s dirty bit
in the range. Dirty bits are set for updates and cleared during
file commits or flushes (e.g., fsync).

Memory Overheads of OmniIndex: The memory over-
head of OmniIndex is minimal. For a 1TB file, regardless
of the data location (host or device cache), the index only
needs 128MB (< 0.001%) of memory, with each OmniIndex
node occupying 256 bytes. To reduce memory requirements
further, one could have larger OmniIndex ranges or employ
huge pages, which we will focus in the future.
4.2.2 I/O Operations with OmniCache

We next discuss a basic set of I/O operations, such as write
and read, when using OmniCache, which mainly aims to per-
form near-cache I/O to avoid data movement.

Write: When an application performs write operations
to expand a file, OmniCache employs the near-cache I/O
principle. Initially, the data is written to the HostCache of a
OmniIndex node, followed by updating the node’s informa-
tion, including updating OmniIndex node’s dirty bit informa-
tion. Furthermore, to reduce the depth of the OmniIndex and
enable batch eviction, writes are merged into a single node
with a maximum range of a pre-configured size (default is
2 MB). However, cache pages are allocated at the granularity
of the block size. We will shortly discuss the concurrent and
collaborative approach to update HostCache and DevCache.

Overwrite: To optimize overwrites, OmniCache follows
a near-cache I/O approach to minimize data movement over-
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head. If the blocks to be overwritten are already present in the
HostCache or DevCache, OmniCache updates the cache and
marks the corresponding range as dirty. In case of a cache
miss, unlike existing designs, OmniCache avoids fetching the
entire range of blocks from storage to the host. Instead, it
only reads the relevant block(s) to the DevCache to reduce
write amplification between the device and the host, applying
changes directly to the blocks in DevCache and updating the
OmniIndex. For instance, consider a scenario where an appli-
cation issues a 1KB write() on a 4KB block not present in
the cache. Other recent system designs must perform block-
aligned reads from storage to the host, reading the entire 4KB
block, resulting in I/O amplification and data movement cost.
However, OmniCache leverages the benefits of the DevCache
to overcome this limitation. The advantages of using Dev-
Cache are further demonstrated in §6.

Read: OmniCache first searches OmniIndex to locate the
blocks, then reads the blocks from HostCache, DevCache,
storage, or all. Read operations work like overwrites by load-
ing the missing data block to DevCache if space is available,
and only returning requested data to the application. Similarly
to Linux, OmniCache identifies access patterns to enhance
prefetch granularity (up to 2MB). Importantly, for blocks in
multiple OmniIndex nodes or storage, the OmniIndex with
fine-grained lock is used to concurrently read blocks, resulting
in lower latency and higher throughput.

File Commit (fsync): OmniCache uses OmniIndex’s
range and per-block dirty bit to commit one or more blocks to
storage. For blocks in DevCache, OmniCache creates and is-
sues an I/O command, and OmniDev handles the file commit.
The fsync is treated as a barrier operation on a file.

File Sharing: For sharing files across processes, Omni-
Cache allocates cache pages within a shared memory region
facilitated by our shared memory allocator. Access to the
shared cache and OmniIndex is limited to processes with
the necessary file permissions. In the case of processes with
write permissions, OmniCache maps the shared memory as
writable. However, like many prior user-level direct-access
file system designs, the direct-I/O approach is susceptible
to corruption [9, 21, 24, 25, 29, 33]. For instance, a process
with write permission could potentially corrupt the OmniIn-
dex. While prior near-storage designs [31] transition to the
OS to handle shared file updates, we have also adopted an
approach used by previous user-level file systems (such as
Aerie [40], Strata [25], uFS [27]), which involves a trusted
third-party server mediating access to the shared OmniIndex
using lease-based locks. Nevertheless, our future work will
optimize inter-process sharing, as this work primarily focuses
on accelerating single multi-threaded applications.
4.2.3 Concurrent Caching and Reducing Eviction Stalls

Concurrent use of HostCache and DevCache and low-
overhead cache eviction is crucial for minimizing applica-
tion stalls and optimizing performance. However, the limited
capacities of caches can result in frequent evictions for data-

intensive applications, affecting performance [22].
To tackle these challenges, we propose collaborative

caching and concurrent eviction. In collaborative caching, ap-
plication threads concurrently use HostCache and DevCache,
switching between them when one cache is full. This reduces
compute stalls and enhances performance (see Section 6).

Two-step LRU Eviction: The effectiveness of dual-cache
utilization depends on accelerated cache eviction. New data
updates initially enter HostCache. When HostCache reaches
capacity (no available space), OmniLib directs writes to Dev-
Cache and starts concurrent eviction in HostCache. A back-
ground eviction thread manages two levels of LRU informa-
tion: (1) a file-level LRU, where all closed or inactive files
are added to a global LRU list; (2) a per-file OmniIndex LRU
list that tracks least-recently-used ranges. A file or a range be-
comes LRU if not accessed within a configurable 30-second
epoch, akin to Linux. In the first step of the eviction process
(from HostCache or DevCache), we evict LRU files. If free
cache space drops to a lower threshold (10% free memory),
applications continue inserting into the cache. Otherwise, the
second step entails range-level LRU eviction, removing blocks
from the device and host. For DevCache eviction, OmniLib
sends an NVMe-like eviction command to OmniDev to evict
ranges. The collaborative caching and two-step eviction en-
sure a seamless transition between HostCache and DevCache,
concurrent utilization of different caches, reduced compute
stalls, and improved performance (see Section 6).
4.3 Collaborative Processing with Caching

OmniCache also leverages HostCache and DevCache to
accelerate data processing. The effectiveness of offloading op-
erations for near-storage processing depends on the frequency
of I/O operations and factors such as the impact of using
less powerful on-device computing and smaller memory re-
sources. We first discuss the application interface support, the
challenges, and solutions to support collaborative processing.
Application Interface for Processing: Like prior ap-
proaches, OmniCache requires applications to use pre-defined
processing functions [9, 33, 44] provided by OmniLib. Un-
like λ-IO, which utilizes eBPF, imposing restrictions on op-
erations/functions involving floating-point calculations and
unbounded loops. OmniCache follows a near-storage file sys-
tem paradigm; it borrows and extends the CISC-like interface
from prior work [9], enabling application developers to of-
fload richer operations/functions, such as checksum or com-
pression. As shown in Figure 2, the I/O and data processing
operations are converted and stacked as a vector of NVMe
commands and offloaded as batched operations (referred to as
CISC operation [9]). Unlike prior systems, OmniCache can
collaboratively process simple and complex operations (e.g.,
read-cal_distance-nearestK) in the host, the device, or both.
Challenges: Collaborative data processing requires concur-
rent host-device processing, dynamic data migration across
caches, and intelligent decisions on offloading based on hard-
ware and software costs (e.g., data movement overheads, pro-
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Figure 3: OmniCache Collaborative Processing for KNN. read-
cal_distance-nearestK is concurrently executed across host and device.

cessing times, and queuing latency).
Key Ideas: To address these challenges, we extend collabora-
tive caching approach, incorporating I/O caching and data pro-
cessing. Firstly, we use OmniIndex for concurrent range-level
data processing on both host and device with fine-grained
range concurrency, enhancing performance. Secondly, we
introduce a dynamic model that considers hardware and soft-
ware metrics (e.g., storage, memory, compute time, queuing
latency). This model continuously monitors the system and
dynamically selects the best offloading location to use re-
sources efficiently.
4.3.1 Extending OmniIndex for Compute Cache:

We improve OmniIndex by adding processing buffer, an
intermediate computation buffer separate from cache buffer.
Processing buffer is linked to each tree node and can be stored
in host or device memory. Processing buffer is accessed via
an address reference in each interval tree node. This helps
OmniCache quickly find processing states, split and merge
processing on the host and the device.
Case study: K-Nearest Neighbor Search (KNN): We
demonstrate KNN, a widely used ML algorithm that identi-
fies the K-nearest data points to a given query point. Since
the dataset exceeds the memory capacity, KNN reads a large
data chunk, calculates distances between data points, selects
the K-nearest points, predicts classification based on them,
and optionally writes results to a new file.

In OmniCache (see Figure 3), we handle this with a com-
bined I/O and data processing operation called read-cal_-
distance-nearestK. This operation reads a data range,
computes distances, and selects the K-nearest points. In-
termediate results, like calculated distances, are stored in
a processing buffer. OmniCache executes read-cal_-
distance-nearestK concurrently on both host and de-
vice, leveraging collaborative processing.

Afterward, OmniCache merges the K-nearest points for
final classification prediction. It involves transferring data
between host and device, requiring data copying. Importantly,
read-cal_distance-nearestK and prediction opera-
tions can be performed on either host or device, determined
by our resource-driven dynamic offloading strategy (§4.4).
4.4 Resource-driven Dynamic Offloading

OmniCache aims to increase near-cache and near-data pro-
cessing on both host and device while minimizing data move-
ment. However, disparate compute capabilities, cache capac-
ity, and data transfer times between storage, HostCache, and
DevCache necessitate a dynamic approach for determining

the optimal processing location. The challenges in making
these offloading decisions are threefold. First, processing op-
erations where the data is distributed across host and device
caches may incur data movement. Second, hardware and soft-
ware metrics to decide where to offload, such as computa-
tional costs, memory requirements, and I/O frequency, can
vary significantly based on the processing complexity. Third,
monitoring both host and device hardware and software met-
rics without interfering with data-plane operations is critical.
Model-driven Approach: To address these challenges, we
introduce OmniDynamic. It leverages a model-driven ap-
proach coupled with ongoing monitoring of both host and
device resources. We begin by outlining the model and then
detail our implementation approach. The model (Equation 1)
estimates the processing time for each request and determines
where the request will be processed (host or device).

Th and Td calculate the processing time for a request on the
host and the device, respectively, by considering various fac-
tors: Data Ratio (R) represents data associated with a request
distributed across HostCache, DevCache, and storage. The
ratios Rhm, Rdm, and Rs represent the portion of data in the
host memory (hm), device memory (dm), and storage (s) for
each request. Execution Time (E) captures the processing
cost alone, Ehavg represents the average time to execute a re-
quest on the host, while Edavg represents the average time on
the device. Data Transfer Cost (B) captures the data move-
ment between HostCache, DevCache, and storage. Bhm_dm
denotes the data transfer bandwidth between HostCache and
DevCache, Bds_hm represents the bandwidth between storage
and HostCache, and Bds_dm represents the bandwidth between
storage and DevCache. Finally, Queue Latency represents
the completion time of a request, which depends on the queu-
ing delay. This varies based on the number of I/O and data-
processing requests in the per-file I/O queue and the average
time required to process a request (Cmdavg ∗Qlen). The queue
delay increases during cache eviction.

Th = RdD/Bhm_dm +RsD/Bds_hm +Ehavg

Td = RhD/Bhm_dm +RsD/Bds_dm +Cmdavg ∗Qlen +Edavg
(1)

Continuous and Low-interference Monitoring: To realize
the dynamic offloading model, OmniCache continuously mon-
itors hardware and software parameters across the host and
device layers using the OmniDynamic component. This com-
ponent operates at the intersection of OmniLib and OmniDev,
collecting metrics such as cache data ratios, data movement
bandwidths, processing costs, and queue wait-time overheads.

For metric collection at the device, we extend each NVMe
command for data processing with additional counters, includ-
ing on-device processing time (Ed), data movement band-
width between DevCache and HostCache (Bhm_dm), and be-
tween storage and DevCache (Bds_dm).

As depicted in Algorithm 1, the initial phase is devoid
of resource parameters and relies on OmniIndex to manage
data distribution across HostCache, DevCache, and storage.
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Algorithm 1: Model-driven Data Processing
1 All measurements are done periodically (per epoch)
2 Query OmniIndex to get data distribution ratio (Rh and Rd )
3 Get current queue length from I/O queue (Qlen)
4 Compute Th and Td based on Equation 1
5 if Th <= Td then
6 load_data_to_host()
7 measure_devmem_to_host_bw(&Bhm_dm)
8 measure_devstorage_to_host_bw(&Bds_hm)
9 execute_request_at_host()

10 measure_avg_execution_latency(&Ehavg)
11 else
12 move_data_to_device()
13 measure_host_to_devmem_bw(&Bhm_dm)
14 measure_devstorage_to_devmem_bw(&Bds_dm)
15 execute_request_at_device()
16 measure_avg_execution_latency(&Edavg)
17 measure_queue_latency(&Cmdavg)

By leveraging the cache ratios (R), OmniDynamic makes of-
floading decisions with a preference for near-data processing.
When data exclusively resides on the host or the device, it
undergoes processing without requiring data movement. Con-
versely, data scattered across caches and storage prompts data
transfer, typically from the layer with a smaller data footprint.

OmniDynamic calculates the average processing times
(Ehavg and Edavg) for each request type by tracking the pro-
cessing cost in the host or device. To measure the time spent
by requests on the per-inode I/O queue (Cmdavg ∗Qlen), Om-
niLib updates the queue admission time, while OmniDev
updates the request completion time in the per-inode I/O
queue.
4.5 Exploring CXL Extensibility with OmniCXL

To explore OmniCache’s potential with emerging technolo-
gies like CXL.mem for caching, we introduce OmniCXL. As
explained in §2.1, CXL.mem enables direct host access to an
accelerator’s memory. We do not assume hardware-supported
cache coherence between HostCache and DevCache. In this
context, we investigate how OmniCache leverages CXL.mem
to reduce data copy and queuing bottlenecks while ensuring
safe operation without hardware-level cache coherence sup-
port. In OmniCache’s queue-based design, all requests incur
overheads like packing and copying data and NVMe com-
mands from the application (or device) buffer to the DMA-
enabled I/O queues, queuing delays, and host CPU overheads
like polling for request completion.
Reducing I/O and Processing Overheads: To reduce the
above overheads, we propose extending OmniCache to lever-
age CXL.mem (OmniCXL). In this approach, device memory
appears as an additional NUMA node in the host OS, a widely
used abstraction for memory expansion. To use the device
memory as DevCache, the OmniLib of a process memory
maps and registers a designated region within the address
space as DevCache. The DevCache size for each application
is determined based on a specified limit.

When an application issues I/O operations like write()
that cannot be cached in the HostCache due to space con-
straints, OmniLib directly writes data to DevCache after ac-

quiring the range lock in OmniIndex and flushes the data to
memory. This enables OmniCXL to avoid (1) copying data
between application and device queues, (2) packing (at host)
and unpacking (at device) NVMe commands, (3) reducing
queuing delays, and (4) continuous polling for request com-
pletion, thereby minimizing CPU overheads. Furthermore,
data copy overheads are avoided for processing requests of-
floaded to the device (e.g., append-checksum-write), but
the request queuing and polling are still necessary.

5 Implementation Details
We first describe the implementation details at the near-

device and host layers, followed by our approach to emulate
near-storage and CXL.mem.

First, we implement an emulated OmniDev as a device
driver (8K LOC) due to the lack of access to a programmable
storage hardware, similar to prior work [9, 31]. To understand
OmniCache’s impact on faster and slower storage, we imple-
ment two distinct near-storage backends: one on Intel Optane
Persistent Memory (PM) by extending PM file system and
the other on NVMe-based SSDs that uses block-level ext4
with I/O operations bypassing the OS cache. We also add a
storage processing engine to OmniDev.

Second, to manage DevCache, in OmniDev, we imple-
ment a lightweight and efficient memory allocator that uses
a bitmap array to track the availability of cache blocks. The
allocator returns a block ID to host-level instead of exposing
the device’s memory address to the host.

Third, OmniLib (discussed in in §3.2) uses a shim library to
intercept POSIX I/O operations and convert them to OmniDev
compliant NVMe commands. For HostCache management,
we extend the scalable jemalloc[4] allocator for cache block
allocation and release. When using a non-CXL near-storage
device, the NVMe commands are copied to the per-file NVMe
queues, which are later de-queued and dispatched by the Om-
niDev. In contrast, for CXL.mem, OmniLib directly accesses
the device memory. We implement a CXL memory alloca-
tion semantics for OmniLib to register and allocate a CXL
namespace that is shared across OmniLib and OmniDev.

Finally, to emulate device memory and compute speeds,
and CXL.mem latency and bandwidth, we employ a two-
step emulation. First, to emulate a slower device memory
access from the host CPUs, we map device memory on a
NUMA socket (node) remote to the host CPUs but local to
the device CPUs. Precisely, in a system with two sockets, we
allocate the host memory on NUMA node0, which is local
to the host CPU and remote to the device CPUs. On the con-
trary, we allocate device memory on NUMA node1, which is
local to the device CPU but remote to the host CPU. Next, to
emulate device memory bandwidth, we throttle device mem-
ory’s bandwidth using thermal throttling [6], lower device
CPU speeds using frequency scaling, and add software la-
tency to vary PCIe latency. In §6.4, we study the sensitivity
of OmniCache on these hardware parameters.
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Figure 4: Microbenchmark. Threads use private files; workload size fixed at 64GB with 1KB I/O size and total cache size is 20GB.

6 Evaluation
We evaluate OmniCache to answer the following questions:
• How effective is OmniCache’s collaborative use of Host-

Cache and DevCache to improve I/O performance?
• Can OmniCache accelerate data processing with its con-

current and model-driven dynamic offloading?
• How does using OmniCache in conjunction with CXL

impact the performance?
• What is the overall impact on real-world applications?

6.1 Experimental Setup
Environment: We use a dual-socket, 64-core, 2.7GHz

Intel(R) Xeon(R) Gold platform with 32GB memory. For
storage, we use a 512GB (4x128GB) Optane DC persistent
memory with App-Direct (persistent) mode to represent the
upcoming fast storage as well as 512GB NVMe SSD to study
the benefit of OmniCache on slower storage. (see appendix ap-
pendix A.2.1). We emulate DevCache with 4GB of DRAM
for caching and for OmniDev, we reserve 4 CPUs.

Methodology: For comparison, we consider the state-of-
the-art PM OS file system, NOVA, and the near-storage file
system, FusionFS, which lacks caching support (FusionFS).
To understand the benefits and implications of host-only
caching, we explore two configurations: (1) user-level
host cache with OmniIndex atop FusionFS, referred to as
HostCache-user-level; (2) emulated λ-I/O without FPGA but
with OS caching (lambda-IO-emulate), which does not ex-
ploit near-storage cache (see Table 1). We emulate λ-I/O
due to the unavailability of a customized hardware platform
(Daisy/DaisyPlus OpenSSD) and OS (PetaLinux), and sig-
nificant engineering challenges as highlighted by the au-
thors [5]. Moving on to the OmniCache configuration, we
begin by comparing our PCIe-based implementation without
OmniDynamic, where offloading is solely determined by the
data presence ratio (OmniCache). Subsequently, we compare
OmniCache-dynamic to emphasize the impact of OmniDy-
namic on data processing performance. Finally, we evaluate
OmniCXL to demonstrate the effect of CXL on performance.
For all evaluation results, the total cache size is kept the same.
6.2 I/O Performance

We first evaluate I/O performance using sequential and ran-
dom access I/O patterns. We vary workload threads from 1 to
32, each issuing 1KB I/O requests, resulting in a total work-
load size of 64GB. Figure 4 shows the cumulative through-
put for private file access without file sharing, and Table 3
shows the benefits of using OmniIndex fine-grained concur-
rency when sharing files with multiple threads. Regarding

FusionFS HostCache-user-level OmniCache
Readers 978 1893 2323
Writers 523 1223 1732

Table 3: File sharing. Results show aggregated throughput (MB/s) for
16 reader and 16 writer threads on a shared 64GB file.
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Figure 5: I/O Size Study.

caching, the HostCache-user-level and lambda-IO-emulate
approaches employ a total of 20GB of host DRAM cache,
while OmniCache configurations use 16GB HostCache and
4GB DevCache, a configuration used in prior systems [9, 33].

Observation: Figure 4a and 4c show results for sequential
and random write workloads, respectively. As anticipated,
NOVA and FusionFS lack caching and access storage for
all I/O operations, which results in poor performance. Both
HostCache-user-level with user-level caching and lambda-
IO-emulate with OS caching show improvements but face
high I/O stalls due to frequent cache eviction, particularly for
random workloads. Similarly, for read workloads shown in
Figure 4b and 4d, the host caching approaches, for each 1KB
request, fetch 4KB blocks, increasing data movement cost,
host-cache pollution, and suffer eviction stalls.

In contrast, OmniCache outperforms others by employing
a collaborative approach that exploits host and device caches.
Firstly, it adheres to the near-cache I/O principle, significantly
reducing data movements between storage and host memory
or between the host and device memory. For sequential access,
DevCache identifies sequential access patterns, akin to Linux
VFS, and preloads the entire 2MB data range (OmniIndex) to
optimize data locality. However, it only returns the requested
data (1KB) to the application, preventing I/O amplification
and unnecessary data transfers. Subsequently, requests to the
same 2MB range often result in cache hits. Secondly, Om-
niCache’s collaborative caching performs writes or reads on
both HostCache and DevCache, effectively minimizing write
stalls and read times. As a result, OmniCache consistently
outperforms FusionFS and HostCache-user-level, achieving
performance gains of up to 2.53X and 1.52X, respectively.

I/O Size Sensitivity: We evaluate the impact of differ-
ent I/O sizes by varying the request size from 1KB to 5KB
while maintaining constant cache and workload sizes. This
range encompasses both block-aligned and non-block-aligned
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Figure 6: Cache Sensitivity Study. 32 microbenchmark threads with
different cache ratio from 25% to 100% (maintaining equal total cache size
for HostCache-user-level and OmniCache).
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Figure 7: I/O + Data Processing (Read-CRC-Write)

requests, mirroring real-world application behavior (Table
2). For instance, in RocksDB, numerous application I/O re-
quests are not block-aligned. Figure 5 illustrates that Om-
niCache consistently outperforms other approaches for non-
block-aligned requests across various workloads, reaping the
benefits of near-cache I/O. For block-aligned (4KB) random
write, OmniCache provides performance gains, attributable to
its concurrent I/O and collaborative caching that reduces write
stalls. For block-aligned random reads (e.g., 4KB), Omni-
Cache performs similar to HostCache-user-level, as it moves
the entire block to the host.

Impact of Data to Cache Size Ratios: We investigate the
impact of the data-to-cache size ratio on the throughput of
random read and write workloads. Figure 6 displays this im-
pact, with the x-axis ranging from 25% to 100% cache ratio.
A 25% ratio implies that the data size is four times larger than
the combined HostCache and DevCache sizes. At lower ra-
tios, HostCache-user-level experiences frequent evictions and
thread stalls. In contrast, OmniCache smoothly transitions
application threads to utilize DevCache when HostCache
reaches its capacity. It then initiates background eviction of
HostCache before switching back to HostCache. Even at a
100% cache ratio, OmniCache outperforms others by mini-
mizing data movement using near-cache I/O principle.
6.3 Data Processing with OmniCache

We evaluate the effectiveness of collaborative processing
and dynamic offloading with OmniCache for I/O and compute-
intensive read-CRC-write workload. Thread randomly reads
4KB data blocks, calculates checksum, and writes it back.

Throughput Analysis: Figure 7a illustrates that Fu-
sionFS encounters NVMe command communication and data
copy overheads. It necessitates offloading each request to
the device, performing computations on the device, and sub-
sequently writing the data back to device storage. On the
other hand, HostCache-user-level operates more efficiently
when requests are served from the host cache, enabling direct
execution on the host. However, in cases of cache misses,
HostCache-user-level incurs data movement overhead be-
tween storage and host memory, which hinders computation.
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Figure 8: OmniDynamic Model Breakdown (Read-CRC-Write)

16 32
0

2

4

6

# of threads

T
h
ro

u
g
h
p
u
t 
(G

B
/s

)

FusionFS-slow-device-cpu

HostCache-user-level

OmniCache-dynamic

OmniCache-dynamic-slow-device-cpu

(a) Device CPU Frequency

16 32
0

2

4

6

# of threads

T
h
ro

u
g
h
p
u
t 
(G

B
/s

)

FusionFS-slow-device-mem

HostCache-user-level

OmniCache-dynamic

OmniCache-dynamic-slow-device-mem

(b) Device Memory Bandwidth
Figure 9: Model’s Sensitivity for Read-CRC-Write

In contrast, OmniCache-dynamic dynamically offloads data
processing operations by efficiently considering multiple fac-
tors. Figure 7a illustrates that OmniCache-dynamic signifi-
cantly enhances performance, especially under heavy work-
load scenarios. This improved performance results from its
model-driven approach, which continuously monitors exe-
cution time, queue latency, and other factors to dynamically
determine the optimal offloading location.

Latency Analysis: In Figure 7b, we examine latency vari-
ations in the read-CRC workload. HostCache handles write
requests well initially but experiences fluctuations and delays
due to evictions after epoch 1000, resulting in longer queue de-
lays. Additionally, execution costs vary due to higher proces-
sor cache misses and I/O frequency. In contrast, OmniCache-
dynamic’s model-driven approach, which considers factors
like data distribution ratio, queue length, and execution costs,
maintains lower and stable latency, outperforming HostCache-
user-level by up to 1.42X.
6.4 OmniDynamic Model Effectiveness

We empirically validate the effectiveness of OmniDynamic
model by deciphering the impact of model parameters and
the sensitivity to hardware speeds.

Model Performance Breakdown: Figure 8 shows perfor-
mance analysis by gradually incorporating different param-
eters of the model (data movement, execution time, queu-
ing delays) and understanding their impact on the read-
CRC-write workload. First, the decision to offload to device
or process in host, is significantly influenced by data frac-
tion (Rh or Rd) in HostCache or DevCache (model[+data_-
move]). Second, the execution time (Edavg or Ehavg) fluc-
tuates, impacted by factors like data presence in the host
and device processor caches that can accelerate execution
(model[+data_move+exe_cost]). Finally, overheads of queu-
ing delay (Cmdavg ∗Qlen) becomes particularly pronounced
for higher application thread count and frequent background
eviction (model[+data_move+exe_cost+queue_delay]).

Sensitivity to Hardware Parameters: To understand
the OmniCache-dynamic model’s sensitivity toward device
CPU speed and low-bandwidth memory, we show the per-
formance of OmniCache with slower CPU (Figure 9a). Due
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Figure 10: OmniCache with CXL
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Figure 11: Real-World Applications.

Vary Device Hardware Parameters
Device CPU Frequency 2.7 GHz 2.0 GHz 1.2 GHz
Device Memory B/W 120 GB/s 60 GB/s 16 GB/s

PCIe Latency 900ns 1200ns 1500ns
# of ops. executed in host 12.52M 14.67M 15.24M

# of ops. executed in device 4.19M 1.90M 834.32K

Table 4: OmniDynamic Model’s Sensitivity Analysis
to space constraints, we only consider FusionFS and Omni-
Cache. The device CPU is throttled to 1.2GHz for FusionFS
(FusionFS-slow-device-cpu) and OmniCache (OmniCache-
dynamic-slow-device-cpu) compared to 2.7GHz for host
CPUs. Similarly, in Figure 9b, the device memory is throttled
to 16GB/s for FusionFS (FusionFS-slow-device-mem) and
OmniCache (OmniCache-dynamic-slow-device-mem) com-
pared to 120GB/s for host DRAM (8× bandwidth reduction).
Despite slower device CPUs and reduced memory bandwidth,
OmniCache provides up to 1.22X gains over HostCache by
dynamically distributing work across the host and the device.

To comprehend the model’s sensitivity and work distri-
bution, in Table 4, we vary the device CPU, memory, and
PCIe latency values and monitor OmniCache-dynamic’s of-
floading decision. As we gradually reduce the device CPU
frequency, lower the memory bandwidth, and increase PCIe
latency, OmniCache-dynamic increases operations on the host
rather than indiscriminately offloading them to the device.
6.5 CXL.mem enabled OmniCache

Figure 10 shows the benefits of using CXL.mem for ran-
dom access workloads. While OmniCache without CXL in-
curs overheads from data copies between the host and the
device and queuing delays, OmniCXL directly accesses De-
vCache with CPU loads/stores after acquiring ownership of
a range. This improves performance by diminishing these
overheads. Furthermore, OmniCXL reduces CPU polling cost
for request completion, all leading to 2.76X and 1.21X gains
over HostCache-user-level and OmniCache, respectively.
6.6 Real-World Applications

We next evaluate the benefits of OmniCache on real ap-
plications. LevelDB: LevelDB is a widely-studied LSM-
based persistent key-value store [3]. We modify LevelDB’s
append→checksum→write sequence by introducing the
append-CRC-write operation and read→checksum sequence
with read-CRC, similar to FusionFS (11 LOC changes). The
checksum operations are used in LevelDB to avoid frequent
commits on SST files [9]. We run experiments using the
widely-used YCSB cloud workload [14] that comprises six
distinct access patterns (A-F), each with differing read/write
ratios and exhibits a Zipfian distribution with access locality.

We use 512B value sizes, 40 million keys, and 32 threads.
Performance: As shown in Figure 11a, OmniCache outper-

forms across all workloads. Particularly, write-intensive A and
F workloads show maximum gains over HostCache-user-level
attributed to (1) near-cache I/O that reduces data movement
for non-block aligned requests, (2) collaborative caching that
minimizes CPU stall time, and (3) dynamic offloading to ef-
fectively use of host and device resources. Over FusionFS,
OmniCache shows up to 1.92X gains. db_bench [8] for ran-
dom workloads show even higher gains (see appendix A.2.2).
Nearest Neighbor Search (KNN): Next, we evaluate Omni-
Cache using a complex KNN workload, utilizing an imple-
mentation from prior work [33]. However, we deviate from
their assumption of the entire workload fitting into device
memory. Instead, we employ a 128GB workload, with 20GB
HostCache-user-level or 16GB HostCache and 4GB Dev-
Cache for OmniCache. To handle datasets larger than the
cache size, the application divides the file into shards and,
for each shard, performs distance calculations (see §4.3),
merging the per-shard distances for KNN prediction.

As Figure 11b shows, FusionFS, without caching, performs
poorly as KNN execution requires reading each shard from
storage to the device. HostCache-user-level offers marginal
improvement but encounters significant data movement and
eviction overheads as the data size surpasses the cache. In con-
trast, OmniCache effectively and concurrently utilizes both
host and device for read-cal_distance-predict, resulting in
performance gains of up to 5.15X over FusionFS.

7 Conclusion
We develop OmniCache, a collaborative caching design

to leverage host and device memory as cache to accelerate
I/O and data processing. OmniCache achieves this through
scalable indexing, concurrent caching and processing support,
and a dynamic model-centric offloading technique leading to
substantial performance gains on both microbenchmarks and
applications.
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FusionFS w/ NVMe Storage HostCache-user-level OmniCache
Random Read 731 2153 2521
Random Write 990 1573 1982

Table 5: Microbenchmark on NVMe Storage. Results show aggre-
gated throughput (MB/s) for 32 benchmark threads.

A Appendices
A.1 Discussion

We have implemented various functions, including check-
sum, compression, nearest-neighbor search, and text search
operations (not all shown due to space limitations). How-
ever, it is important to note that, like most existing systems,
OmniCache assumes that OmniDev already incorporate these
functions. Even previous near-storage systems [9, 10, 33], and
those that use eBPF-based offloading [44] require device-level
modifications and frequent kernel traps, which are not ideal
for I/O-intensive applications. Developing a more generic
offloading mechanism without requiring application changes
requires compiler support, and is a complex task that falls
outside the scope of this paper. In addition, our future work
will explore using CXL.mem to enable memory-mapping
(mmap()) support. To the best of our knowledge, existing sys-
tems also lack this particular feature.
A.2 Additional Performance Evaluation
A.2.1 Sensitivity to Slower NVMe Storage

To understand the impact of OmniCache when using slower
storage media, NVMe-based SSD, we use the same exper-
imental configuration and microbenchmarks to study the
throughput. As shown in Table 5, OmniCache shows an even
higher performance gain of 3.24X over FusionFS and 1.21X
over HostCache-user-level. Notably, the gains are high com-
pared to PM-based storage. These gains highlight the im-
portance of collaborative cache use for slower storage. We
observe performance gains even for data processing work-
loads (not shown due to space constraints).
A.2.2 Impact of OmniCache for LevelDB’s db_bench

In order to assess the efficiency of the collaborative caching
design offered by OmniCache, we also evaluate the random
write and random read workload in Figure 12 using the widely-
used db_bench for 1 million key-value pairs and 32 applica-
tion threads with 4KB value size. OmniCache delivers higher
performance across all workloads. These enhancements can
be attributed to collaborative caching for I/O operations. In
addition, OmniCache’s dynamic offloading further amplifies
these gains by ensuring optimal resource utilization between
the host and device.
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B Artifact Appendix
Abstract

The OmniCache artifact is the practical implementation
of the collaborative caching design presented in this paper,
aimed at optimizing I/O and data processing by utilizing both
host and device memory as caches.
Scope

The artifact enables validation of the benefits of collab-
orative caching for concurrent I/O, the impact of dynamic
model-driven offloading on data processing, and showcases
the extensibility of OmniCache with CXL. OmniCache is li-
censed under Apache License 2.0.
Contents

The OmniCache artifact comprises user-level library (Om-
niLib) and the OS component for emulating near-storage
device (OmniDev), which are required for the execution. The
artifact comprises real-world applications (LevelDB, YCSB
workload and KNN) besides microbenchmarks, as shown in
the paper. The artifact includes steps to compile the user-level
library, the OS, microbenchmarks, and applications, and steps
to run these workloads.
Hosting

The artifact is available on GitHub: omnicache-fast24-
artifacts.
Requirements

Our artifact is based on Linux kernel 4.15.18 and it should
run on any Linux distribution. The current scripts are devel-
oped for Ubuntu 18.04.5 LTS. Porting to other Linux distribu-
tions would require some script modifications. Our artifact
requires a machine equipped with Intel Optane memory.
Evaluation

We provide a comprehensive step-by-step README on
GitHub to reproduce the experiment in the paper. As a brief
overview of the evaluation, we illustrate how to execute a
simple microbenchmark with OmniCache. More evaluations
can be found on our GitHub page.

Before running, we assume the modified kernel (OmniDev)
is installed, NearStorageFS is mounted on the machine
(please see the README file) and the current work direc-
tory is in the project’s root directory.
1. First, compile and install the user-level library (OmniLib):

$ source ./scripts/setvars.sh;
$ cd $LIBFS;
$ source scripts/setvars.sh
$ make && make install

2. Next, to run a simple micro benchmark:
$ cd $BASE/libfs/benchmark/;
$ mkdir build && make
$ ./scripts/run_omnicache_quick.sh
Expect output will be similar to "Benchmark takes 0.97

s, average throughput 4.45 GB/s". If the output matches the
above, your environmental settings are appropriately config-
ured.
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Symbiosis: The Art of Application and Kernel Cache Cooperation
Yifan Dai, Jing Liu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau

University of Wisconsin–Madison

Abstract. We introduce Symbiosis, a framework for key-
value storage systems that dynamically configures applica-
tion and kernel cache sizes to improve performance. We in-
tegrate Symbiosis into three production systems – LevelDB,
WiredTiger, and RocksDB – and, through a series of exper-
iments on various read-heavy workloads and environments,
show that Symbiosis improves performance by 1.5× on av-
erage and over 5× at best compared to static configurations,
across a wide range of synthetic and real-world workloads.

1 Introduction
Key-value storage engines, such as LevelDB [23],
RocksDB [50], and WiredTiger [51], are essential com-
ponents in modern data-intensive applications. These
systems are deployed in numerous settings, including un-
derneath relational databases [32,52, 56], distributed storage
systems [3, 18], graph processing engines [6, 13, 31, 55],
stream processing systems [4, 12], and machine learning
pipelines [30, 70].

A key factor in the performance of key-value storage sys-
tems is the effectiveness of in-memory caching. Unlike the
traditional database approach [63], in which raw devices or
other “direct I/O” mechanisms are employed to avoid file
system caching, today’s key-value storage systems are of-
ten built on top of the file system, and thus (by default)
will cache (compressed) data in the file system page cache.
Furthermore, modern storage engines implement additional
application-level caching structures (where data is cached in
uncompressed form). The effectiveness of these combined
caches can dramatically affect overall performance; proper
usage can improve performance by an order of magnitude.

Unfortunately, this two-level structure greatly complicates
performance tuning. How large should the application (un-
compressed) cache be? How much memory should be dedi-
cated to kernel-level (compressed) caching? The proper an-
swer to this question requires sophisticated knowledge of
workload, machine configuration, OS behavior, compression
costs, and other relevant details; as workloads change over
time, the answer too may change.

In this paper, we introduce Symbiosis, a system to co-
ordinate application and kernel caches to maximize perfor-
mance. The core component is an online approximate sim-
ulator used by a key-value store directly to adapt the size
of the user-level cache. The simulator uses a modified form
of ghost caching [19] to predict how different sized appli-
cation caches will perform; Symbiosis uses these simulation
results to periodically adjust the size of the application cache,
thus improving performance. The online simulation includes
novel optimizations to lower space overheads and handle nu-

anced kernel behaviors (such as prefetching), and guardrails
to protect against unmodeled corner-case behaviors.

We show the utility of Symbiosis by incorporating it
into three different key-value storage systems: LevelDB,
WiredTiger, and RocksDB. Most of our work focuses on
LevelDB, a popular LSM-based key-value storage system
from Google [23]; through careful re-use of existing code
(where appropriate), our modifications add roughly 1K lines
to the code base. Across a range of read-heavy workloads,
we show that Symbiosis improves LevelDB performance
significantly (greater than 5×) as compared to unmodified
LevelDB. We also show that our approach adapts effectively
to workload changes and that the overheads are low.

Our other two implementations (in WiredTiger [51] and
RocksDB [50]) demonstrate the generality of our approach.
WiredTiger has a substantially different caching architecture
than LevelDB, and yet we readily integrated Symbiosis into
it with minor code alterations. In doing so, we also discov-
ered a caching bug (acknowledged by the MongoDB team
as major); we both fix the bug and show that Symbiosis im-
proves performance. Finally, RocksDB can be configured
to avoid the kernel cache; its two-level application-managed
caching structure consists of a compressed cache of data read
from disk and an uncompressed cache to service queries. We
show Symbiosis works well when the application manages
both caches directly, again improving performance.

The rest of this paper is structured as follows. We intro-
duce the cache partitioning problem and its significance (§2).
Then, we conduct a simulation study of the general two-level
cache partitioning problem to guide the design, approxima-
tions, and optimizations of Symbiosis (§3). We present Sym-
biosis’s design and implementation, including its incorpora-
tion into LevelDB, WiredTiger, and RocksDB (§4). Finally,
we perform an evaluation of our system (§5) using both syn-
thetic and real workloads. We show that our approach im-
proves performance, in some cases by an order of magni-
tude. We also show the costs of online simulation are not
high and various optimizations work well. Overall, we show
that Symbiosis is an effective approach to cache-size config-
uration for modern key-value storage systems.

2 Motivation and Framework
Databases and key-value stores utilize similar caching archi-
tectures (Figure 1). Irrespective of underlying data struc-
ture organization (log-structure-merge trees [23, 50] or B-
trees [51, 61]), these systems use both a custom application-
level cache and the underlying file system page cache.

To access a key-value pair, a request first queries an index-
like structure, and, if successful, searches for the value in the
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Figure 1: The Cache Architecture across the Storage
Stack. Modern applications commonly utilize storage en-
gines (e.g., LevelDB) to manage on-disk data. A storage en-
gine keeps compressed data on disk, and usually has sep-
arate index structures and an in-memory buffer for uncom-
pressed data. The arrows depict the common read path.

user-level application cache. If the value is not present in
the application cache, a file system read request is issued to
fetch the data. This read request may be served by the kernel
page cache, which holds a compressed version of the data. If
the file is not present in the kernel cache, the file system is-
sues necessary I/Os to complete the request, and then caches
the (compressed) data. In data-intensive workloads, mem-
ory used by the application and kernel caches constitutes a
majority of the storage engine’s memory usage [14, 30].

Most mainstream storage engines prefer the kernel page
cache for buffering on-disk data, to utilize its robust per-
formance under various workloads and to avoid the labor
of implementing a sophisticated user-level device-friendly
caching and prefetching approach. Thus, we focus our
study on this application-kernel cache structure. However,
some storage engines can be configured to manage their
own second-level cache for compressed on-disk data (e.g.,
RocksDB). As we will see later, our techniques also work
well on this (simpler) user/user configuration.

2.1 The Application-Kernel Cache Structure
We now describe the main properties of two-layer caching.
In the first layer, storage engines keep decompressed and de-
serialized data. These application caches store ready-to-use
data to serve requests efficiently.

For example, LevelDB [23], the main storage engine we
study, is an LSM-based key-value storage engine with a
block-based application cache. Data blocks are variable-
sized and not aligned. When a thread inserts an item and
overflows the cache, it is responsible for performing evic-
tions using LRU replacement. In contrast, WiredTiger [51],
the underlying storage engine of the popular database
MongoDB, is a B-Tree-based engine and has a significantly
different caching mechanism. Instead of a unified cache
structure, WiredTiger constructs an in-memory B-Tree rep-
resentation and allows each B-Tree node to dynamically allo-
cate memory to cache data. When the total amount of cached
data reaches the limit, background threads are initiated to

traverse the tree and perform evictions. Each node records
last-access recency to approximate LRU replacement.

The second layer of this cache structure is a compressed
cache that commonly utilizes the underlying OS kernel’s
page cache. Storage engines compress on-disk data to re-
duce device bandwidth and save space on disk; furthermore,
by using the kernel page cache, one can leverage years of
performance tuning that is present therein.

In Linux, the eviction algorithm is 2Q with a clock al-
gorithm for each queue and involves sophisticated heuris-
tics for promotion, demotion, and size partitioning among
the queues. In addition, Linux performs read-ahead to en-
sure high bandwidth utilization. The current read-ahead ap-
proach uses heuristics to determine which pages/when to
prefetch (including basing its decisions on the cache pres-
ence of pages neighboring the target page), which can sig-
nificantly affect hit ratio in some scenarios.

To summarize, this two-level cache structure has several
important characteristics. First, the application and ker-
nel caches form a two-level caching scheme that shares the
same memory quota (i.e., if one cache grows, the other must
shrink). The kernel cache often stores compressed data,
making it more efficient in terms of memory usage, while
the application cache provides lower latency as its data is
ready to be used, saving the cost of decompression and ker-
nel crossing. Second, with data compression, the two caches
store data in different forms, units, and alignments. One
block in the application cache may correspond to several
pages in the kernel page cache due to misalignment, which
further complicates the management of the two caches and
the optimization of overall performance.

2.2 Challenge: Memory Partitioning
Given this two-level caching architecture, a natural ques-
tion arises: how should memory be allocated between the
two caches, in order to maximize performance? To illus-
trate some of the complexities of this issue, we present the
following motivating experiment. Here, we study the perfor-
mance of different cache configurations in two representative
storage engines, LSM-based LevelDB [23] and B-tree-based
WiredTiger [51]. We run uniform random workloads with
1 GB of available memory. We use small data sets here to
speed our analysis; as we will show later, results are nearly
identical when data sets are scaled up.

We compare two extremes: one which devotes all avail-
able memory to the application cache, and the other which
devotes all memory to the kernel cache. We show how
performance varies across two different data set sizes (Du),
1 GB and 2 GB (uncompressed); the compression ratio is
0.5. Figure 2 presents our results.

We see similar trends from both storage engines. When
the data set size is 1 GB (and hence fits, uncompressed, into
the application cache), devoting as much memory as possi-
ble to the application cache outperforms the kernel-cache by
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Figure 3: Overview of Symbiosis. This figure shows the
main components of Symbiosis and their interactions.

2.5× to 3×. In contrast, when the data set size is 2 GB (and
hence fits compressed into the kernel cache, but is too large
for the uncompressed application cache), the kernel cache
outperforms the application cache, by up to 7×.

The experiment demonstrates that cache configuration im-
pacts performance significantly; no single configuration per-
forms well across different workloads and settings. A deeper
understanding of the performance characteristics of this two-
level structure is required; a systematic approach that can co-
ordinate the two caches to maximize performance is needed.

2.3 Cache Coordination with Symbiosis
To address this problem, we propose Symbiosis, a system to
coordinate application and kernel caches to maximize per-
formance across differing workloads and system configura-
tions. Figure 3 presents an overview of the system architec-
ture. A key element of Symbiosis is an online cache simula-
tor that monitors performance levels given the current appli-
cation/kernel configuration and determines necessary adap-
tations to improve performance. The simulator selectively
applies ghost caching [19] to determine whether a different
application cache size would be beneficial; if so, it changes
the size of the application cache (and thus implicitly makes
more or less memory available for the kernel cache).

Detailed online simulation can be prohibitively slow.
Therefore, Symbiosis uses a simplified representation of the
actual caching approaches used by real systems. The core
challenge thus lies in determining how to abstract the essence
of the cache sizing problem and adopt the right level of sim-
plification, aiming for a balance between overhead and accu-
racy. We show how to strike this balance later (§4).

3 The Cache Partitioning Problem
Through offline simulations, we show the factors that influ-
ence how memory should be divided between the applica-
tion and kernel caches. Our simulations demonstrate that the
division of memory between application and kernel caches
has a large impact on performance (e.g., up to 9×), and that
the best division is highly dependent on a wide variety of
factors, some of which are specific to the environment (e.g.,
application and kernel miss costs) and some of which can
vary depending upon workload (e.g., the size of the data set,
compression ratio, and application/kernel cache hit rates).

3.1 Influential Factors
We define a number of system and workload parameters that
impact the best division of memory.

Memory Cache Sizes: M depicts the total amount of
memory that can be used for the application cache (Ma) and
kernel cache (Mk); Ma +Mk = M. M can represent the to-
tal physical memory on a single machine, a containers’ re-
source limit [26, 38, 72], or enforcement by other mecha-
nisms [71, 78]. We arbitrarily fix M to 1 GB in the simu-
lations, since only the relative size of memory to the data
size matters, and not its absolute size.

Data Size: The amount of compressed data that is stored
on disk by an application is Dc; the corresponding uncom-
pressed data size is Du. We simulate 1GB ≤ Du ≤ 10 GB.

Compression Ratio: (α , 0 < α 6 1): The ratio of com-
pressed data to decompressed data is α (i.e., α = Dc

Du
). α is

affected by the compressibility of the data and the specific
compression algorithm [73]; for instance, in WiredTiger, we
found that compressing a data set of Du = 1 GB using four
different compression algorithms (zstd, zlib, snappy, and lz4)
takes between 9µs and 204µs and results in compression ra-
tios between 0.36 to 0.51. We simulate values of α between
0.22 (observed in production [13]) and 0.5 (the default for
RocksDB’s db bench [18]).

Retaining Data Size: (Dmem): We find the notion of a re-
taining data size useful: the size of the resulting data when
it is all decompressed from memory. The minimum Dmem
occurs when all of M is devoted to the uncompressed appli-
cation cache; that is, Dmin

mem = M. The maximum Dmem occurs
when all of M is devoted to the compressed kernel cache (i.e.,
Dmax

mem = M
α

). A higher Dmem reduces device accesses.
Hit Rates: The hit rate of the application cache is Ha and

the kernel cache is Hk. Hit rates are functions not only of the
cache sizes, but also of access patterns and cache replace-
ment policies. We examine uniform random, skewed, and
mixed access patterns. Our simulations focus on LRU; note
that improvements in replacement policies [9] are comple-
mentary to our approach as we aim to better use available
memory regardless of the policy.

Miss Cost: Application miss cost is Ca and kernel cache
miss cost is Ck. Ca is highly application dependent; em-
pirically, we found Ca varied between 40µs and 250µs de-
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Figure 4: Simulation Results.

pending on the compression algorithm in WiredTiger and is
< 10µs in LevelDB; thus, the simulation varies Ca from 10 to
100. The main factor influencing Ck is device performance;
we set Ck to 100µs for common devices. Again, the ratio of
miss costs (Ca

Ck
) matters and not their absolute values.

3.2 Analysis
Our goal is to find the value of Mk that optimizes perfor-
mance given the other system and workload parameters; our
offline simulations do this by sweeping through the full range
of valid values of Mk. To quantify the performance of the
cache structure, we use average latency: Le = (1−Ha) ∗
(Ca + (1−Hk) ∗Ck). Generally, as Mk increases, Hk in-
creases, but Ha decreases; thus, the ideal hit rates for Hk and
Ha depend on the relative values of Ck and Ca.

3.2.1 Uniform Workload
We begin simulations with a uniform workload as it leads
to the most intuitive results. With a uniform workload and
LRU replacement, the hit rate of a given cache is simply its
size divided by the data size; specifically, Ha =

M−Mk
Du

where

0 6 Mk 6 M, and Hk =
Mk

α∗Du
where 0 6 Mk 6 α ∗Du. Le can

be calculated as a quadratic function of Mk with a negative
quadratic term coefficient; thus, the two boundary points of
the domain (Mk = 0 and min(M,α ∗Du)) are two local min-
ima, but which of the two is the global minimum depends on
all factors, as we illustrate.
Miss Cost (Ca vs. Ck): We begin by showing the best ker-
nel cache size as a function of miss costs. In our two-layer
caching architecture, the ratio Ca

Ck
determines how much each

miss rate contributes to overall performance. While this ra-
tio does not impact the cache configurations of the two local
minima, it does influence which is the global minimum.

Figure 4 I(a) shows latency as a function of Mk, varying
Ca from 10 to 100 (interval=10) and fixing Du = 1.43 GB
(i.e., M

Du
= 0.7) and α = 0.5. For all values of Ca, the local

minima are at Mk = 0 and Mk = α ∗Du, and the global min-
imum changes from 0 to α ∗Du as Ca decreases (i.e., when
Ca < 60). In general, when 0<Mk <α ∗Du, Le is larger than
at both extremes because both caches are non-zero and con-
tain duplicates; when Mk grows beyond α ∗Du, Le increases
because the kernel cache already holds all compressed data.
Additional Mk causes more application cache misses. With a
higher Ca, the global minimum of Mk is smaller, as applica-
tion cache misses are penalized more.

Figure 4 II(a) summarizes the best kernel cache size for
different parameters, illustrating that different systems and
workloads benefit from very different cache configurations,
with best values of Mk from 0 to M and all points between.
More specifically, the first two subplots show uniform work-
loads; comparing points across these first two subplots con-
firms that a higher value of Ca (i.e., Ca = 50 vs. Ca = 10)
makes the best kernel cache size smaller. Figure 4 II(b)
shows how much latency is improved when the cache sys-
tem is configured correctly; specifically, the graphs compare
latency with the best cache partition to two reasonable de-
fault cache configurations: Ma = 0 (dashed lines) and Mk = 0
(solid lines). For example, with a smaller Ca, latency can be
nine times larger with a poor choice cache configuration (i.e.,
Mk = 0) than with the best choice.
Compression Ratio (α): Figure 4 I(b) shows the impact of
α on the best kernel cache size, by varying α from 0.1 to 1
with an interval of 0.05 and setting Du = 2 GB and Ca = 50;
Du is set larger than M so that it is not possible to cache all
uncompressed data in memory.

Given a lower α (for a fixed Du), a larger kernel cache
tends to be better as it is more efficient with compressed data;
with a low α , the kernel cache provides larger Dmem, avoid-
ing more device accesses than the application cache. Specif-
ically, with a very low α (i.e., the bottom line with α = 0.1),
latency drops sharply from Mk = 0 to Mk = α ∗Du = 0.2.
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Generally, while the latency at Mk = 0 remains the same,
the latency at Mk = min(M,α ∗Du) decreases with smaller
values of α; as a result, the global minimum changes from
Mk = 0 to Mk = min(M,α ∗Du) when α < 0.65.

Figure 4 II(a) confirms that larger kernel caches are more
beneficial with smaller values of α and Figure 4 II(b) shows
that the performance improvement is more dramatic with
smaller α; the potential benefit of the kernel cache is high.
Data Size (Du) vs. Memory Capacity (M): Figure 4 I(c)
shows the impact of varying Du from 1 GB to 10 GB (i.e.,
varying M

Du
from 0.1 to 1.0) while α = 0.3 and Ca = 50.

While the two local minima for Mk (0 and min(M,α ∗Du))
follow the studied trends of Le, we make three specific ob-
servations. First, when Du is very small, the application
cache can fit all of the data uncompressed, so all memory
should be devoted to the application cache (Mk = 0). Second,
when Du is much higher than M (e.g., when Du = 10 GB),
the impact of different values of Mk is smaller since most
accesses miss both caches. Finally, as Du grows larger
than 2 GB, the global minimum changes from Mk = 0 to
Mk = min(M,α ∗Du); for these values of Du, the larger Mk
is better because it leads to a larger Dmem at the cost of a
lower Ha. In summary, the best Mk tends to be 0 for a very
large or very small Du, and min(M,α ∗Du) for a medium Du.

In Figure 4 II(a), the α = 0.7 line in the first graph shows
this trend best. As shown in Figure 4 II(b), with a medium
Du, the performance gain over Mk = 0 is large and with a
small Du the gain over Ma = 0 is generally larger; with a
very large Du, the gain is small as all cache configurations
perform similarly.

3.2.2 Non-Uniform Workload
While the hit rates (and thus the best values of Mk) can
be precisely calculated for uniformly-random workloads, in
practice, most real-world workloads are more complex [13,
17]. We simulate a skewed workload containing a hotspot
with locality as suggested by production RocksDB [13] in
which 20% of the key space serves 80% of requests. Figure 4
I(d) shows that this skewed workload exhibits a significantly
different performance curve from a uniform workload (Fig-
ure 4 I(c)). The trend observed for a uniform workload, in

which the best Mk grows with increasing Du, does not hold
for skewed workloads and the best Mk becomes highly un-
predictable. Generally, for a skewed workload, a larger ap-
plication cache is preferred since more accesses occur within
a smaller hotspot and the same size of application cache pro-
vides a higher hit rate; this effect can be roughly viewed as
effectively reducing Du. Figure 4 II(a) shows this preference
to the application cache, comparing the right half of graphs
to the left half; Figure 4 II(b) confirms that the performance
gain over Mk = 0 is smaller than for uniform workloads and
that over Ma = 0 is larger.

Our second non-uniform workload contains a mix of read
and scan operations, as commonly found in real deploy-
ments [13, 17]. We use the YCSB benchmark [17] to gen-
erate 90% reads and 10% scans with an 80/20 hotspot and
a scan length uniformly distributed between 0 and 100 KB.
The results in Figure 5 show that the trends are even more
irregular: although the best Mk increases with decreasing
M
Du

(i.e., increasing Du), the best Mk decreases significantly
when M

Du
decreases from 0.45 to 0.4, and never at the ex-

treme points (i.e., 0 and M) when M
Du

< 0.9. In summary, the
best cache configuration for a non-uniform workload is more
difficult to predict with an offline simulation or model.

3.3 Discussion
Our simulations have shown that the best cache configura-
tion is highly sensitive to factors such as memory capac-
ity, compression ratio, and miss cost, which depend on data
and hardware; non-uniform workloads further exacerbate the
complexity. The performance gain curves in Figure 4 II(b)
show that improvements compared to a default cache config-
uration can be significant, but that the best kernel cache size
varies significantly. Statically determining the best configu-
ration is impractical due to the dynamic nature of workloads,
directing us to a runtime adaptive approach. Fortunately, al-
though the amount of gain is difficult to predict, the curves
are relatively smooth without abrupt changes, indicating that
some inaccuracy in online simulation can be tolerated.

4 Design and Implementation of Symbiosis
We present our design and implementation of Symbiosis,
which performs online cache simulation to dynamically and
adaptively configure two levels of cache for high perfor-
mance. The key challenge is to achieve simulation accuracy
and configuration coverage while maintaining high perfor-
mance to minimize the impact on the foreground workload.

4.1 Design
Symbiosis is an add-on module built into a storage en-
gine that automatically adjusts the application cache size
(Ma), implicitly changing the kernel cache size (Mk). Fig-
ure 6 illustrates how Symbiosis integrates into existing stor-
age engines. Symbiosis contains two main components:
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Tracker and GhostSim. Tracker continuously audits applica-
tion and kernel cache accesses to collect performance statis-
tics; Tracker decides when to activate GhostSim to find a bet-
ter <Ma,Mk> and which specific candidate to adopt. Ghost-
Sim uses efficient online cache simulation to predict the per-
formance of candidates.

We design Symbiosis to achieve several goals. First, low
overhead: incur negligible overhead for the in-memory read
path, taking less than a few microseconds if a request hits
in the caches. Second, memory efficient: minimize memory
to reduce interference with the memory-constrained storage
engine. Finally, robust performance: deliver superior per-
formance in most cases, while guaranteeing baseline perfor-
mance for arbitrary workloads.

To minimize the overhead of configuration exploration
and changes, GhostSim is activated only when necessary. To
lower our overhead and memory consumption, we maximize
ghost cache reuse with a pipelined simulation of <Ma,Mk>
configurations in the order of increasing Ma. To reduce mem-
ory consumption and maintain high accuracy, we use sam-
pling specifically tailored to our cache structure, accounting
for misalignment and read-ahead in the kernel cache. Finally,
to guarantee performance improvements, we apply a policy
to guard against (uncommon) inaccurate simulation results.

4.1.1 Auditing by Tracker: Metric and States
Symbiosis alternates between two states: Stable and Adapt-
ing. In the initial stable state, Tracker detects workload
changes using the expected latency, calculated as Le = (1−
Ha) ∗ (Ca + (1−Hk) ∗Ck)). Le focuses on two major fac-
tors: Ha and Hc (and consequently the relative cache sizes)
and the relative impact of each type of miss. Specifically,
Tracker continuously audits the hit/miss result of each cache

and calculates Le with statically configured miss costs by of-
fline measurement. Tracker periodically compares the cur-
rent calculated Le to the initial Le for this round; if the differ-
ence is larger than a fixed threshold (currently 10%), Tracker
considers it a workload change and enters the adapting state
that starts a simulation round. Thus, GhostSim is activated
only when necessary.

4.1.2 Simulating with GhostSim: Lifetime of a Round
The basic idea of the adapting state is to systematically gen-
erate several <Ma,Mk> candidates, run simulations to pre-
dict their Le’s, and determine if the best of them has sufficient
performance gain to be applied to the real system. GhostSim
is responsible for efficiently predicting the performance of
different cache configurations for the current workload. To
simulate live workloads and predict their expected latency,
GhostSim maintains a ghost cache [19,22,53,75], filled with
the same indices as in the embedded storage engine, but
without the actual data. To minimize memory consumption
and performance overhead, GhostSim simulates only one in-
stance of ghost cache at a time, adopting a pipelined simula-
tion of candidates in the order of increasing Ma to maximize
ghost cache reuse. After collecting the Le of each candi-
date <Ma,Mk> through simulation, Tracker derives the po-
tential gain of the best candidate configuration and applies it
to the real system if the gain surpasses a certain threshold.
The ghost cache entries are then discarded to save memory.
Symbiosis waits for the real caches to warm up and generate
a stable initial Le as the reference point in the next period.

We strictly bound the ghost cache’s space and time over-
head with a collection of techniques (described below), as a
naive full simulation incurs unacceptable memory consump-
tion (> 5%) and performance overhead (> 30%).

4.2 GhostSim Optimization Techniques
We introduce four techniques to achieve sufficient simula-
tion accuracy, memory efficiency, performance, and robust-
ness; overall, we identify and solve new challenges for sam-
pled ghost cache simulation raised by the unique interac-
tion pattern of the two-level cache structure. First, we re-
set to a cache configuration during simulation that will per-
form reasonably for the current workload; second, we sim-
ulate a pipelined sequence of candidate configurations to
achieve high coverage and efficiency; third, we use sampling
to achieve accurate simulation with reduced memory; fourth,
we guard against (uncommon) flawed simulation results that
could occur due to not modeling all kernel caching features.

4.2.1 Initialization: Reset Policy
During Adapting State, GhostSim must use a cache configu-
ration that performs reasonably for the live foreground work-
load; GhostSim either continues using the current cache con-
figuration, or if Le has increased (likely from an increase in
Du), it resets to the minimal default Ma used by the original
storage engine (which increases Dmem). We show the bene-
fits of this reset policy in Section §5.2.4.
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Figure 7: KernelCache Simulation and Sampling. Kernel-
nora and Kernel are the kernel cache implementations with
and without read-ahead, respectively.

4.2.2 Incremental reuse of a single Ghost Cache
We extend the idea of storing cache access metadata with a
ghost cache [19, 22, 53, 75] to efficiently handle two-levels
of caches while minimizing the memory footprint. Multiple
first-level cache sizes can be simulated simultaneously with
only the amount of memory required for the largest cache
if the first-level cache follows the stack property [48] (e.g.,
LRU). However, the second-level cache sees different access
patterns depending on the size of the first level, and thus has
different contents when sized differently. Thus, simultane-
ous simulations of all second-level size candidates within
one ghost cache instance is infeasible.

To efficiently simulate memory configurations with ghost
caches, Figure 6 illustrates our choices of <Ma,Mk> candi-
dates. Our simulation results (Figure 4 II(a)) indicated that
the best memory configuration could be anywhere within the
search space; therefore, GhostSim forms the candidate set
by dividing the search space into a fixed number of equal
ranges (currently 8) without skipping candidates or stopping
early; this provides relatively high coverage of the search
space with reasonable convergence time. Since warming up
each candidate ghost cache is a significant source of over-
head, Symbiosis simulates each in the order of increasing
Ma to maximize the reuse of ghost cache contents. Specif-
ically, we keep the application ghost cache at its full size
and simulate different Ma’s using the stack property, so that
when Ma is increased for the next candidate, the contents of
the increased portion are already known. A short warm up
for the kernel ghost cache after Mk is decreased is required
to let its contents approach those of the next candidate’s con-
figuration.

4.2.3 Sampling with Misalignment and Read-ahead
Even with reuse, the memory consumed by a ghost cache is
significant (e.g., 50 MB for 1 GB data). To reduce mem-
ory consumption, we incorporate a key-space sampling tech-
nique by hashing the indices so that one slot represents sev-
eral keys [67, 68]. A sample ratio (R) of 0.01-0.001 mini-
mizes memory usage while preserving accuracy.

Approximating Hk with sampling poses new challenges.
An important difference between Symbiosis and other two-
layer cache structures is that the kernel caches at the page
level while the application caches in application-defined

blocks that misalign with pages; as a result, the independent
reference model [2] does not hold, as each request may ac-
cess different targets in each layer and multiple contiguous
targets in the kernel cache. Moreover, read-ahead strongly
affects Hk, but a full simulation would be too costly.

We introduce different hashing approaches that accurately
model these real-system effects. Figure 7 shows the hit rate
curves for various kernel cache implementations and sam-
pling approaches. Figure 7(a) shows a SimpleLRU simulator
that caches in the unit of blocks instead of pages and thus
does not take misalignment into account, deviates signifi-
cantly from a kernel implementation that has read-ahead dis-
abled (Kernel-nora). The LRU+Misalign simulation, which
caches in the unit of pages and accounts for misalignment
just as the kernel does, approximates the Kernel-nora line
well. However, Figure 7(b) shows that spatial sampling
(R = 1

2 ) is not effective in the presence of misalignment, de-
viating from the Kernel-nora line. With misalignment, ac-
cessing a block across pages will read both pages into the
cache, hitting neighboring blocks; spatial sampling’s hash-
ing scheme loses locality and cannot capture such behavior.
We introduce misalignment-aware sampling that groups con-
tiguous G application blocks before hashing to preserve lo-
cality; the M-aware Sampling line (R = 1

2 and G = 32) ap-
proximates the Kernel-nora line well. Finally, to compensate
for read-ahead, we adopt a heuristic that slightly increases
the size of our modeled kernel cache. Figure 7(c) shows that
this final version (GhostSim) approximates the Kernel better
than M-aware Sampling.

Our sampling method produces similar hit rate curves with
R > 1

256 ; we choose R = 1
64 due to the acceptable variance

and sufficiency to realize a low-overhead online simulation.
We confirm that our method broadly works well.

4.2.4 Guard against Unmodeled Cases and Fall Back
Although we have modeled misalignment between caches,
GhostSim may be inaccurate in some workloads due to un-
modeled kernel features such as read-ahead. Thus, Symbio-
sis only performs cache size adjustment if the predicted re-
sult improves latency by a threshold amount; we do not adapt
away from settings that already works well. To understand
why this approach is robust, consider a workload that per-
forms strided access of one key per page. The kernel cache
sees a linear access, triggers read-ahead, and thus achieves
a high Hk, while GhostSim without read-ahead produces a
low Hk. However, Symbiosis observes that the predicted Le
for all the candidate cache sizes is larger than the measured
current Le, and therefore rejects all simulation results.

4.2.5 Limitation and Discussion
We assume that workloads change infrequently. If the work-
load changes before a simulation round ends, Symbiosis de-
tects the change, discards the current results, and starts over.
If the workload changes repeatedly during simulation, Sym-
biosis stops the simulation as it is unable to finish and yield
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benefits. In our experimental environment, Symbiosis takes
at most 45 seconds to detect and simulate new workloads.

Symbiosis generally offers larger and more robust benefits
to existing storage engines in read-heavy workloads, which
are observed as dominant in various studies [13, 17]. The
idea of simulation-based cache size adaption can work with
write-heavy workloads, yet will require additional research
to realize in robust form. For example, LSM-based engines
often schedule asynchronous background compaction in the
write path; thus, speed differences in the foreground work-
load caused by different cache size configurations can lead to
varying tree structures and thus different cache access traces.
Further, write performance itself is less stable than read per-
formance [8], which is more challenging for prediction.

4.3 Multiple Implementations
We have integrated Symbiosis into three different storage en-
gines: LevelDB [23], WiredTiger [51], and RocksDB [50].
Modifying LevelDB to leverage Symbiosis required adding
fewer than 1000 LoC to the 30000-LoC codebase. First, the
required keys for the ghost cache are collected during the
original processing of each request. Second, hit/miss statis-
tics are recorded when accessing the application cache and
inferred from timing when accessing the kernel cache. Third,
LevelDB’s LRUCache is modified to build the ghost cache
utilizing the stack property, greatly reducing the amount of
new code. Finally, a generic interface is added to the applica-
tion cache to dynamically resize it to Ma and allow the kernel
cache to automatically use the rest of the memory (M−Ma).

We have also ported Symbiosis to WiredTiger and
RocksDB to demonstrate its generalizability. Despite the fact
that WiredTiger’s B-Tree-based engine has a completely dif-
ferent caching mechanism than LevelDB, the modifications
required are similar to the four outlined above; the basic port
added fewer than 100 LoC to WiredTiger and Symbiosis.
Interestingly, as part of this porting process, we uncovered
a bug in WiredTiger’s cache eviction mechanism. Despite
its claimed LRU-like behavior, the bug makes it evict data
regardless of recency and its cache performance becomes
extremely poor and unpredictable. This bug has been re-
ported to MongoDB which recognized it as a major bug; we
have added a workaround to restore the intended LRU pol-
icy, which significantly improves performance and enables
Symbiosis to correctly simulate its cache behavior.

RocksDB is based on LevelDB and has a similar caching
mechanism. To study Symbiosis’s capability to handle
an application-managed compressed data cache, we en-
able RocksDB’s option to use its built-in compressed data
cache and direct I/O. Whenever the application cache size is
changed, we explicitly set the size of the compressed data
cache to be all memory not used by the application cache
(i.e., M−Ma). Due to RocksDB’s similarity to LevelDB,
the port required minimal effort.

Table 1: Factors for Static Workload. Access patterns are
generated by YCSB [17]. Zipfian has scattered hotspots over
the key range to avoid space locality. Hotspot{30,20,10}
means that 70%, 80%, and 90% of requests access 30%,
20%, and 10% keys in a contiguous range.

Factors Presented Space

Workloads
Data Set Size

(GB)
5, 2.5, 1.67, 1.25, 1

(M : Du= 0.2, 0.4, 0.6, 0.8, 1)

Access Pattern uniform, zipfian, hotspot{30,20,10}

Software Compression Lib snappy (default), zstd

Storage Engine LevelDB (default), RocksDB, WiredTiger

Hardware
CPU
Freq.

HW1: Xeon 5128R (2.9 GHZ)
HW2 [57]: Xeon D-1548 (2.0 GHz)

Device
Latency

HW1: OptaneSSD 900P (∼ 10µs)
HW2: Toshiba NVMe flash (∼ 70µs)

5 Evaluation
We evaluate Symbiosis to answer the follow questions: (1)
How much better does Symbiosis perform than reason-
able static cache size configurations (<Ma,Mk>) for differ-
ent data set sizes (Du), compression ratios (α), miss costs
(Ca and Ck), and access patterns for different storage en-
gines such as LevelDB, WiredTiger, and RocksDB? (2) How
quickly does Symbiosis react to workload changes and how
much overhead does Symbiosis incur for simulation and
changing cache sizes? (3) How well does Symbiosis handle
real-world workloads?

Setup. We use HW1 in Table 1 unless otherwise noted; the
available memory M is fixed at 1 GB by cgroup. We evaluate
Symbiosis by comparing it with two static configurations:
Ma = 8 MB (LevelDB’s default) and Ma =1 GB (Mk ≈ 0),
referred to as StaticMa=8MB and StaticMa=1GB, respectively.

5.1 Static Workloads
We first evaluate Symbiosis under various static workloads,
demonstrating that Symbiosis finds a better <Ma,Mk> for
different data set sizes (Du), compression ratios (α), miss
costs (Ca and Ck), and access patterns. Table 1 shows the
full range of factors. To vary α , Ca, and Ck, we use a sec-
ondary compression library (zstd) and hardware (HW2). We
also evaluate its performance in WiredTiger and RocksDB to
demonstrate its generalizability to different storage engines.

5.1.1 LevelDB Performance
Figure 8 compares the performance for LevelDB with Sym-
biosis to the two static baselines as a function of M

Du
for five

access patterns on five different settings.
Large datasets and memory (a): To evaluate Symbiosis
in the context of modern data center machines with large
amounts of memory, we begin with M = 10GB and a range
of large data sets (Du=50, 25, 16.7, 12.5, 10 GB); we use
the basic setting of HW1 and LevelDB’s default compression
(α = 0.5). In all cases, Symbiosis matches the performance
of the better baseline. StaticMa=8MB tends to perform better
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(a) Larger dataset and memory. α = 0.5, Ca = 3, Ck = 16.
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(b) Basic setting. α = 0.5, Ca = 3, Ck = 16.
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(c) Different compression ratio. α = 0.22, Ca = 3, Ck = 16.
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(e) Different hardware (HW2). α = 0.5, Ca = 5, Ck = 80.
Figure 8: Performance under Static Workloads. X-axis is
M
Du

. Ma=8MB means StaticMa=8MB, similarly for Ma=1GB.

when the data set is very large, and StaticMa=1GB when the
data set size is small; the only exception is hotspot10, where
the highly skewed accesses to the small hotspot should al-
ways reside in the application cache (StaticMa=1GB). Again,
Symbiosis dynamically sizes the two caches to obtain the
best observed performance.
Basic Setting (b): The setting is the same as (a), except to
reduce the running time of our experiments, we use 1/10-th
the data set sizes and M = 1GB. As desired, the full range
of results are extremely similar to that of (a); thus, for effi-
ciency, we use the smaller data set sizes and M = 1GB in the
remainder of our experiments.
Different Compression Ratio (c): We change the compres-
sion ratio from α = 0.5 in (b) to 0.22 in (c). With a smaller α ,
the performance gap between the two baselines increases, as
noted in our offline simulations (§3). Thus, with better com-
pression, Symbiosis achieves a larger performance increase
over the worse baseline (commonly > 1.2×) and some im-
provement over the best baseline (11.1% on average), espe-
cially when M : Du is within [0.4,0.8].
Different Compression Algorithm (d): We change the
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Figure 9: Static Workload with 20% Overwrites. (a) X-
axis is M

Du
. Ma=8MB means StaticMa=8MB, similarly for

Ma=1GB. α = 0.22, Ca = 3, Ck = 16. (b) shows the pre-
dicted application cache hit ratio of the Ma = 1GB configu-
ration using cache traces from configuration Ma = 8MB and
Ma = 1GB, and the observed hit ratio when Ma = 1GB, un-
der different compaction rates. The workload is uniform with
20% overwrite and M = Du.

compression algorithm to alter α from 0.5 to 0.43 and Ca
from 3 to 9. Now, StaticMa=1GB usually performs better than
StaticMa=8MB because Ca

Ck
is large (0.56) and StaticMa=8MB

incurs the cost of the higher Ca. Symbiosis again always
matches the performance of the better baseline, properly de-
voting most space to Ma, while correctly identifying the ex-
ceptions (e.g., the leftmost points in uniform and hotspot30).
Different hardware platform (e): We switch to HW2 so
that device access is far slower than decompression (Ca

Ck
=

0.0625). Now, StaticMa=8MB usually performs better than
StaticMa=1GB because it avoids costly disk accesses, except
for the hotspot10 workload where the cost of frequent ap-
plication cache misses on the hotspot outweighs the benefit
of reduced disk accesses. In several cases (e.g., M

Du
= 0.8),

Symbiosis performs significantly better than both baselines
by properly balancing application cache misses and disk ac-
cesses, with an average gain of 6.9% over the better baseline.
Summary: In our LevelDB experiments, Symbiosis
achieves as high of performance as the better baseline and
outperforms the other baseline by up to 5.77×. In some
cases, Symbiosis performs significantly better than both
baselines (up to 1.32×), demonstrating the benefit of a fully
flexible configuration of <Ma,Mk>.

5.1.2 Workload with Writes in LevelDB
During simulations, Symbiosis uses cache access traces from
the real system with a certain cache configuration, which de-
viates from the true cache access traces for other cache con-
figurations when compaction exists. Figure 9(b) shows that
Symbiosis’s prediction is affected by such deviations under
a large compaction rate. By limiting the compaction rate, the
inaccuracy can be significantly reduced.

Figure 9(a) shows Symbiosis’s performance with 20%
overwrites. Compared to its read-only counterpart (Fig-
ure 8(c)), StaticMa=1GB performs worse than StaticMa=8MB
even when M

Du
= 1 due to the immutable nature of LSM-tree

that causes duplication with overwrites and makes the actual
database size larger. Similarly, Symbiosis offers lower ben-
efits, but still outperforms StaticMa=8MB when the workload
is very skewed and Du is small.
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(a) WiredTiger. α = 0.2, Ca = 20, Ck = 16.
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(b) RocksDB. α = 0.5, Ca = 3, Ck = 16.
Figure 10: WiredTiger and RocksDB (Static Workload).
X-axis is M

Du
. Ma=8MB means StaticMa=8MB, similarly

for Ma=1GB. In (a), WT-orig-Ma=256MB is the original
WiredTiger, while Ma=256MB, Ma=1GB, and Symbiosis
uses our modified WiredTiger with LRU-like eviction policy.

5.1.3 WiredTiger Performance
Figure 10(a) shows the performance benefits of incorporat-
ing Symbiosis into WiredTiger. As mentioned in §4.3, we
began by modifying WiredTiger to correctly implement its
claimed LRU-like behavior for its application cache; our
modified version performs the same or better than the orig-
inal version (WT-orig Ma=256MB) for all static workloads
and is used in our baselines (Ma=256MB and Ma=1GB).
WiredTiger has a significantly larger application cache miss
penalty (Ca

Ck
= 1.25) than LevelDB, so even with a very small

compression ratio (α = 0.2), the baseline with a larger ap-
plication cache (Ma=1GB) performs better than the other
baseline for almost all workloads. Since WiredTiger’s per-
formance drops significantly when its cache size is less than
its 256 MB default, Symbiosis searches for application cache
sizes between 256 MB and 1 GB and outperforms or matches
the better baseline, showing its capability on a completely
different storage engine.

5.1.4 RocksDB Performance
Figure 10(b) shows the performance improvement when
RocksDB uses Symbiosis to manage the sizes of its own de-
compressed and the compressed data cache. Making Sym-
biosis work with high accuracy is easier in this setting since
we do not need to approximate complex kernel cache behav-
ior. These results show a similar trend to that in Figure 8(a)
where Symbiosis outperforms or matches the performance
of the better baseline, demonstrating its capability to handle
application-managed compressed data caches.

5.2 Dynamic Workloads
We demonstrate that Symbiosis adapts to workload changes
with a reasonable convergence time and negligible overhead.

5.2.1 Example: LevelDB Behavior over Time
We begin by illustrating how Symbiosis within LevelDB be-
haves over time for a dynamic workload. Figure 11 presents
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Figure 11: Timeline of Latency under a Dynamic Work-
load (hotspot20:1.0-2.0). The workload changes are
aligned at ∼ 26sec, and we label state transfer of Symbio-
sis by the gray vertical lines. Sim-off means we turn off the
simulation and shows the effect of only resetting the appli-
cation cache size to default; its steady performance is the
same as StaticMa=1GB before the change, and the same as
StaticMa=8MB afterwards. (α = 0.22)

the performance of Symbiosis (the bottom) and the two base-
lines (the top) for a workload with two phases; the access
pattern in both phases is hotspot20 and α = 0.22, but Du
varies from 1 GB to 2 GB.

The StaticMa=8MB baseline quickly obtains stable (but rel-
atively poor) performance in the first phase, since the kernel
cache can hold all the compressed data. When Du increases,
the latency increases while the kernel cache is warmed with
the larger data set, but eventually returns to its previous per-
formance since the kernel cache can still hold all compressed
data (Mk ≈M > α ∗Du and Hk = 1).

The StaticMa=1GB baseline takes longer to warm the ap-
plication cache in the first phase, but then achieves better
performance since the application cache can hold all the de-
compressed data. When Du increases, the latency increases
because the application cache cannot contain all the data
(Ma < Du) and disk accesses are necessary.

Symbiosis is able to obtain as good of performance as
StaticMa=1GB in the first phase and better than both in the
second. Symbiosis starts with a default value for Ma =
8 MB while simulating cache configurations for ∼ 5sec; af-
ter determining that Ma = M delivers the best performance,
it increases the application cache and matches the perfor-
mance of StaticMa=1GB after the application cache is warmed
at ∼ 12sec. After Symbiosis detects the significant increase
in Le at ∼ 28sec, Symbiosis defaults back to Ma = 8 MB
and re-starts the simulations; the large initial overhead is
due primarily to warming up the kernel cache (as shown
by the Sim-off line which undergoes the same changes in
cache configurations without simulation). Once the kernel
cache is warmed, the simulation itself incurs negligible over-
head (compared to StaticMa=8MB) and finishes at ∼ 42sec, at
which point Symbiosis changes to Ma = 0.5M, warms up the
cache ∼ 2 seconds, and then achieves the lowest latency.

5.2.2 Performance Gain and Dynamic Adaptation
To quantify the benefits, convergence time, and resulting
cache configurations for a wide range of workloads with two
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Figure 12: Performance under Dynamic Workloads (α =
0.22). In the Latency subplot, each group has three bars:
StaticMa=8MB, StaticMa=1GB and Symbiosis. Each adjacent
bar group represents one workload1→workload2 change
and the next group reverses the workloads. The first two
rows contains 12 workloads where Du varies (shown in the
x-axis labels). The third row contains 2 workloads varying
hotspot positions and 4 varying hotness and hotspot posi-
tions, each with a fixed Du. For instance, 2g:Hot20 means
a hotspot20 workload with Du = 2 GB and 2g:Hot20-T mir-
rors the hotspot to the tail. 2g:Hot20→2g:Hot20-T is sum-
marized as 2g:Mirror (hotspot change). The Conv. Time and
Ma/M subplots only show the behaviors of Symbiosis.

phases, we construct a suite of 18 experiments varying Du,
access patterns, and α (0.22 and 0.5). We present the results
with α = 0.22 in Figure 12 (α = 0.5 omitted for brevity) but
consider both αs when discussing extremes and averages.

We use the example above to explain the metrics in Fig-
ure 12, which corresponds to hotspot20:1g→2g (the fifth bar
group in the second row). Adjacent bars in the figure rep-
resent the two phases in an experiment. Latency is reported
when performance is stable (e.g., in the example workload,
latency is about 2.5µs for Symbiosis and StaticMa=1GB for
the first phase, and 5µs for StaticMa=8MB; it is about 3.7µs
for Symbiosis and 5µs for StaticMa=8MB and StaticMa=1GB in
the second phase). Convergence time represents the time to
finish simulation (e.g., ∼ 12 and 13 seconds for phase 1 and
2, respectively, shown by the time between the bars labeled
as Simulation and Done in Figure 11). Finally, the Ma/M
subplot shows the best application cache size found by Sym-
biosis (e.g., 1 and 0.5 for the example workload).

Figure 12 shows that Symbiosis delivers good latency in
all cases, at least as good as the best baseline and sometimes
better, with an average gain of 24% over StaticMa=8MB, 42%
over StaticMa=1GB, and a best case of 42% over the better of
the two (i.e., hotspot20:1.0→2.0). The average convergence
time is 15.4 seconds with a worst case of 40 seconds; gen-

Table 2: Tail Latency. Overhead is the comparison to
StaticMa=8MB. (α = 0.22)

p-95 Latency
Median

p-95 Latency
Max

p-99 Latency
Median

p-99 Latency
Max

Overhead (%) 8.6 14.5 15.3 52.0
Case - zipfian:1g→2g - uniform:1g→2g

10M 20M 30M 40M 50M 60M
Number of Requests
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Figure 13: Timeline of Latency under a Dynamic Work-
load with Gradual Change. The workload is uniform with
Du = 2 GB in the first 10M operations, Du = 1 GB in the last
10M operations, and a uniform gradual change during the
50M operations in between. (α = 0.22)

erally, more convergence time is required for larger Du and
Dc, and for less skewed workloads. During simulation, the
worst overhead of Symbiosis is 15.1%, but this contains two
portions: the larger is the overhead of possibly resetting Ma
to the default and warming up the kernel cache; the smaller
is the actual simulation overhead, which averages only 0.9%
with a worst case of 3.4%. Finally, Symbiosis chooses dif-
ferent Ma values, typically scaling up Ma with a decrease in
Du and increase in skewness (and vice versa).

Adapting the size online and potential latency spike symp-
toms raises concerns of tail latency. As shown in Table 2,
Symbiosis incurs reasonable tail latency overhead, with a
8.6% higher median p-95 latency and a 15.3% higher median
p-99 latency compared to StaticMa=8MB. Out of the 18 cases,
13 have less than 25% overhead for p-99 latency. The high-
est p-99 latency overhead is 52% in uniform:1g→2g. Extra
device accesses due to cache size change cause the higher tail
latency. Tail latency would be minimally impacted in work-
loads with a longer steady state or more device accesses.

5.2.3 Gradual Change
We show that Symbiosis also performs well in workloads
with more gradual changes (Figure 13). During the work-
load, StaticMa=8MB holds all the data in the kernel cache;
StaticMa=1GB cannot hold all the data in the application cache
when Du = 2 GB and performs worse, but then benefits from
the shrink of Du and finally eliminates device access when
Du = 1 GB and performs better than StaticMa=8MB.

Symbiosis matches the performance of StaticMa=8MB at
the beginning. Three simulations are triggered when the dif-
ference of Le reaches the threshold for workload change de-
tection, Ma is gradually increased according to the workload
when simulations occur, and the latency drops along with the
shrink of Du. Finally, Ma =M is chosen when Du approaches
1 GB and the performance of StaticMa=1GB is matched.

A gradual change of Le is necessary for Symbiosis to
match the change speed of workload. For workloads with
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Figure 14: Overhead during Simulation (α = 0.22). The
workloads are in the same order as in Figure 12. The bars
are the overhead with the reset policy; dashed ones indicate
no actual Ma change. Numbers in gray background are the
overhead percentages without the reset policy.
faster changes beyond Symbiosis’s threshold during simula-
tion, simulations are halted until the workload stabilizes.

5.2.4 Effect of Optimization Techniques
We quantify the benefits of our techniques by comparing to
a simplified version without the corresponding technique.
Reset Policy: The reset policy (§4.2.1) aims for a cache size
that performs reasonably while simulating, despite an arbi-
trary new workload. The overhead of Symbiosis compared to
the StaticMa=8MB baseline during simulation is shown in Fig-
ure 14; large negative values occur when Symbiosis does not
reset Ma to default due to a decrease in Le and thus Symbiosis
performs better than the baseline (e.g., the uniform:2g→1g
experiment). As shown by the overhead numbers in gray
background in Figure 14, Symbiosis without the reset policy
performs poorly in many cases (e.g., up to 100×); therefore,
the reset policy is better on average and beneficial for more
stable performance.
Sampling: Sampling is essential for low overheads. The first
and third row in Table 3 shows the memory consumption and
operation overhead of Symbiosis with and without sampling.
Without sampling, simulation consumes 51 MB of memory
and adds 42% of overhead to every operation. Sampling
significantly reduces the costs, consuming only 460 KB of
memory and incurring only ∼90ns per operation. Further-
more, sampling only adds the overhead over the 16.7 second
simulation round – a negligible duration.
Incremental reuse of ghost cache: By comparing rows two
and three in Table 3, we see that incremental reuse reduces
both memory and time overhead by > 3×, but at the cost of
a longer convergence time, compared to a design that simply
uses one ghost cache instance for each candidate <Ma,Mk>.
Thus, the incremental reuse design has the lowest impact on
foreground workload and is most suitable.

5.3 Real World Workloads
We conclude by demonstrating that Symbiosis handles com-
plex and realistic workloads: performance is robust since
only a size change that is predicted to sufficiently improve
performance is adopted.

Two workloads generated from RocksDB’s mix graph
benchmark [13] are used, the first with the supplied param-
eters in the last example in paper [13], and the second mim-
icking an interesting two hot key-range symptom in the pa-
per, observed by Meta’s ZippyDB Get workload. The bench-

Table 3: Space and Time Overhead and Convergence
Time of Various Simulation Settings. Operation overhead
compares to baseline LevelDB. Sample rate is 1

64 .

Case Memory
Overhead (MB)

Operation
Overhead (us/op)

Conv.
Time (s)

Reuse & No Sampling 51 2.8 (42%) 22.9
No Reuse & Sampling 1.5 0.32 (4.8%) 7.35
Reuse & Sampling 0.46 0.09 (1.3%) 16.7

mark models key-space localities and closely approaches
real workloads in terms of storage I/O statistics.

Figure 15 shows the performance of LevelDB on four con-
secutive traces based on the two workloads. StaticMa=8MB
maintains relatively constant performance through the four
phases with Hk ≈ 1, as the kernel cache holds most of the
compressed data across all phases. StaticMa=1GB outper-
forms StaticMa=8MB in the first and the second phase be-
cause the workload is very skewed (over 70% of requests
access 1/30 of the data), and the gain of hitting in the ap-
plication cache for most accesses outweighs the additional
disk accesses for the data that does not fit; however, in the
third and fourth phases, StaticMa=1GB performs worse than
StaticMa=8MB as the workload becomes less skewed, with
80% of requests accessing 40% of the data, lowering Ha.

Symbiosis finds a <Ma,Mk> as good as (and often bet-
ter than) the better static configuration in every phase of the
complex production workload. To illustrate why Symbio-
sis is robust, the small bar charts show the predicted Le of
<Ma,Mk> candidates from Ma ≈ 0 to Ma = M and the real
Le (gray line) during each simulation. For each simulation,
Symbiosis resets Ma = 8 MB. In the first three phases, the
best candidate is Ma = 3

8 M and its Le is much lower than
the real Le, so Symbiosis applies it to the real system and
outperforms both two baselines. In the last phase, the best
candidate is Ma = 8 MB which is the default value that Sym-
biosis currently takes, so it keeps the default Ma and matches
the performance of the better baseline StaticMa=8MB.

6 Related Work
Dynamic Cache Adaptation: As caching performance
hinges on workload access pattern, prior work has explored
how to dynamically adapt various aspects of cache manage-
ment. Our work, sharing a similar motivation to effectively
adapt to online workload changes, benefits from relevant in-
novations and operates within a more complex application-
kernel cache structure.

In the scenario of a single-level cache where no coopera-
tion is explicitly introduced, such efforts centered around dy-
namic replacement policies [5, 58, 69], cache allocation and
partitioning [20, 28, 36, 39, 49, 54, 60, 64, 65, 82], and online
cache performance approximation [37,46,59,67,68,74]. For
instance, SOPA [69] simulates different cache replacement
policies to dynamically decide the best policy. ACME [5] si-
multaneously runs multiple cache replacement policies and
updates their weights by the instant effectiveness. Recently,
machine learning techniques were also explored [58].
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Caching strategies designed for the properties of a given
layer are necessary, such as for flash endurance [16, 27,
29, 53]. Our work, instead, considers compression, as it
is widely-used in modern key-value storage engines. Re-
cent research also incorporates compression in storage sys-
tems [43, 47, 77, 81], underscoring its importance.
Hierarchical Cache Management: Earlier works have dis-
tilled and tackled several major problems introduced by hier-
archical cache management [79]: weak temporal locality in
the second layer [83] due to the first layer’s filtering effect,
duplication of data that wastes capacity [7,15,75], and a lack
of information in the second layer for decision making [7].
“Exclusiveness” is one of the main challenges. Either API
changes for cooperation are required [24, 75] or some sort
of hints from the upper layer needs to be propagated or de-
rived [7, 45, 79, 80]. For instance, with DEMOTE [75], the
lower level deletes a block from its cache when it is read by
the upper level. Achieving exclusiveness in the application-
kernel cache structure with one compressed layer would be
an interesting future work.

Evolving storage devices (e.g., NVM) [16, 33, 41, 42, 44,
76] and use cases (e.g., S3) [25, 35, 62] have led to new
techniques to manage storage hierarchies and cache cooper-
ation. For example, EDT [25] decides and adapts data place-
ment between tiers of SSDs and HDDs according to work-
load, aiming to minimize power consumption. D3N [35] also
adapts sizes for multi-level caching with a ghost cache, but
aiming to alleviate network imbalance. A whole-stack pro-
grammable caching scheme is proposed [62] with APIs for
size allocation of caches in layers within multi-tenant data
center. The adaptation space of Symbiosis, which accounts
for computation (compression), capacity, and IO, is enlarged
by modern fast block devices.

Our approach only tunes the sizes of caches and is op-
timized for the application-kernel cache structure, without
altering their interaction. Notably, it does not require modi-

fications to the OS kernel. These advanced communication
techniques and policies are complementary.
Kernel Cache and Application Coordination: Deep un-
derstanding of kernel caching is crucial to performance op-
timization across the storage stack. The performance impact
of kernel cache replacement policies and directory cache
have been studied [10, 34, 66]. Butt et al. [11] build a sim-
ulator studying kernel prefetching. Tricache [21] replaces
the kernel page cache for performance and also empha-
sizes transparent cache management for applications. Lee
et al. [40] enable application-specific kernel caching. Our
work, instead, utilizes simulation integrated into applications
in a live system to adapt cache configuration.

7 Conclusion
We have introduced Symbiosis, a framework to enable ro-
bust cache adaptation for key-value storage systems. With
careful study of the performance space, we develop an on-
line simulator which enables a live key-value storage system
to adapt its application cache size and achieve high perfor-
mance. Across a wide range of workloads and settings, we
demonstrate the overall benefits of our approach, as shown
through implementations in three production key-value stor-
age systems: LevelDB, WiredTiger, and RocksDB. We open
source our framework, workloads traces, modified systems,
and utilities to facilitate further investigation [1].
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A Artifact Appendix
Abstract
Symbiosis is a framework for key-value storage systems that
dynamically configures application and kernel cache sizes
to improve performance. This artifact includes code for
Symbiosis-integrated LevelDB, RocksDB, and WiredTiger,
the offline simulator, scripts to run these applications, and
several workload traces used in the paper.

Scope
Our artifact is fully functional, including all the features and
optimizations mentioned in the design and three implemen-
tations (i.e., Section 4). We provide several traces used in
our evaluation. Running the three storage engines with and
without Symbiosis in similar hardware settings can support
our findings of the cache-sizing problem and the effective-
ness of Symbiosis’s design and techniques.

The offline simulator can run various size configurations
and workloads; its kernel cache can be configured to mimic
the kernel cache behaviors (e.g., 2Q and read-ahead). Run-
ning the simulator experiments with the same configuration
as Section 3 is expected to exactly reproduce the results, sup-
porting our findings about the impacting factors and perfor-
mance gain under various workloads.

Contents
We describe the contents of the subdirectories in the root of
the repository as below:

• leveldb contains Symbiosis-embedded LevelDB that
is used to reproduce experiments in Section 5.1.1, Sec-
tion 5.2.2, and Section 5.3.

• wiredtiger contains Symbiosis-embedded
WiredTiger that is used to reproduce experiments
in Section 5.1.3.

• rocksdb contains Symbiosis-embedded RocksDB that
is used to reproduce experiments in Section 5.1.4.

• simulator contains the cache simulator (in Python)
used in Section 3.

• traces includes all the traces for the experiments men-
tioned above.

• scripts includes the scripts to run the experiments
mentioned above. Detailed instructions can be found
in ae readme.txt.

Hosting
The artifact is hosted on https://github.com/
daiyifandanny/Symbiosis, on branch main with
commit id 36e3ea7.

Requirements
Offline Simulations (Section 3):

• Software: Python 3.8. Python package numpy and
simpy.

Performance Evaluation (Section 5):

• Library: sdt, zstd, and snappy. Installation guide can be
found in ae readme.txt.

• System: Linux kernel 5.11 and Ubuntu 20.04.

• Hardware: Hardware listed in Table 1, especially an
OptaneSSD, is necessary for reproducing the exact
results. With different hardware, offline calibration
of the application and kernel cache miss costs is re-
quired; the result (in microsecond) needs to be set in
leveldb/util/adapter.h.
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Abstract

This paper revisits the usage of DRAM cache in DRAM-PM

heterogeneous memory file systems. With a comprehensive

analysis of existing file systems with cache-based and DAX-

based designs, we show that both suffer from suboptimal

performance due to excessive data movement. To this end,

this paper presents a cache management layer atop hetero-

geneous memory, namely FLAC, which integrates DRAM

cache with virtual memory management. FLAC is further in-

corporated with two techniques called zero-copy caching and

parallel-optimized cache management, which facilitates fast

data transfer between file systems and applications as well

as efficient data synchronization/migration between DRAM

and PM. We further design and implement a library file sys-

tem upon FLAC, called FlacFS. Micro benchmarks show that

FlacFS provides up to two orders of magnitude performance

improvement over existing file systems in file read/write. With

real-world applications, FlacFS achieves up to 10.6 and 9.9

times performance speedup over state-of-the-art DAX-based

and cache-based file systems, respectively.

1 Introduction

Emerging persistent memory (e.g., 3DXPoint [14, 26] and

CXL-based SSD [18]) promise fast and byte-addressable ac-

cesses to large volume of data. This brings a trend of de-

ploying heterogeneous memory of a volatile memory layer

(DRAM) and a persistent memory layer (PM). However, it

raises a natural question: how to maximize performance atop

such a heterogeneous architecture?

State-of-the-art file systems for heterogeneous memory can

mainly fall into two categories: using DRAM as a cache for

PM (DRAM cache) or providing direct access (DAX) to PM.

Caching pages in DRAM, such as the VFS page cache, is a

common design in traditional file systems (e.g., EXT4 and

XFS [44]) to bridge the performance gap between fast DRAM

and slow persistent storage devices (e.g., HDD and SSD).

However, many previous studies [10] show that DRAM cache

incurs significant overhead under the fast, all-memory archi-

tecture. Therefore, most existing systems (e.g., NOVA [51],

SplitFS [20], and ctFS [31]) resort to DAX , which bypasses

the DRAM cache and performs I/Os on PM directly.

However, DAX is still suboptimal for heterogeneous mem-

ory file systems. First, the performance gap between PM and

DRAM cannot be ignored in the present and future (the PM

latency may range from hundreds to thousands of nanosec-

onds [18], which is much higher than DRAM). Such high

PM latency easily limits the file system performance. Second,

DAX potentially loses the performance benefit of data local-

ity provided by the DRAM cache. According to our analysis,

the performance of DAX-based systems is inferior to that of

DRAM cache systems in scenarios with high concurrency

and strong data locality, even though the VFS page cache

framework introduces high software overhead. Last but not

least, instant persistence is the best scene of DAX; but it is an

overkill in many real-world scenarios [49].

To this end, this paper revisits the usage of DRAM cache in

heterogeneous memory architecture. According to our quanti-

tative analysis, we summarize two challenges of building an

efficient cache framework on heterogeneous memory:

Challenge 1. Data transfer overhead between application

buffer and DRAM cache is high. Transferring data between

the application and DRAM cache is the most critical fast-

path operation; but existing cache frameworks use memory

copy that introduces substantial performance overhead. Our

experiments show that data copying occupies up to 84% of

the overhead in the file system with the VFS page cache.

Challenge 2. The impact of “cache tax” is significant. In

addition to data transfer, existing cache frameworks spend lots

of effort to synchronize (flushing dirty data) and migrate data

across DRAM cache and PM (moving data into/out of cache).

Currently, such operations are implemented in a synchronous

and sequential way and significantly increase performance

penalty (more than 30%).

We argue that the main reason is that existing cache frame-

works (e.g., VFS page cache) are built upon the virtual mem-

ory subsystem, which makes it difficult to avoid the cache-

application data copying and hide the overhead of cross-layer

data synchronization/migration. Hence, this paper advocates

an integration of DRAM page cache into virtual memory

management of operating systems and proposes FLAC (FLAt

Cache), a novel cache framework for heterogeneous memory.

FLAC provides a single-level address space of heterogeneous

memory. File system developers can leverage the exposed

interfaces to the data store on FLAC to enjoy the efficient

DRAM cache on data I/O paths (other modules of file system

are independent of FLAC). FLAC further builds two novel

techniques to deal with the two challenges outlined above:
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1) Zero-Copy Caching. FLAC proposes the heterogeneous

page table that unifies heterogeneous memory into a single

level. Virtual pages within FLAC can be dynamically mapped

to physical pages on DRAM or PM according to their states

(i.e., cached or evicted). We then design the page attaching

mechanism, a set of tightly coupled management operations

on the heterogeneous page table, which optimize the data

transfer between applications and cache in a zero-copy man-

ner. The core idea of page attaching is to map pages between

source and destination addresses with enforced copy on write

(COW). As a result, data read/write to/from FLAC is executed

by page attaching to realize efficient and safe data transfer.

While page remapping optimizations are also used in some

systems to reduce the overhead of data copy [9, 30, 38, 40],

simply adopting this idea in the file system cache faces some

unique challenges. First, FLAC addresses the side-effects of

page unaligned and expensive COW page fault by the sliding

window buffer and batch faulting/detaching, respectively. Sec-

ond, the zero-copy caching makes the page have multiple ver-

sions, and it requires FLAC to have a new cache management

mechanism to ensure data consistency and high concurrency.

2) Parallel-Optimized Cache Management. The cache man-

agement mechanism of FLAC must ensure a low “cache tax”

impact. Leveraging the multi-version feature brought by the

zero-copy caching, FLAC fully exploits the parallelism of data

synchronization and migration with critical I/O paths. FLAC

proposes the 2-Phase flushing that allows the expensive persis-

tence phase in dirty data synchronization to be lock-free, and

proposes the asynchronous cache miss handling to amortize

the overhead of loading data to cache in the background.

To demonstrate the effectiveness of FLAC, we design and

implement FlacFS, a file system for building its data store on

FLAC. Evaluation shows that FlacFS provides a performance

increase of more than two orders of magnitude over state-of-

the-art DAX-based and cache-based file systems in the micro

benchmarks. With real-world applications, FlacFS achieves

up to 10.6 and 9.9 times performance speedup over DAX-

based and cache-based systems, respectively.

The contributions of this paper include:

• It quantitatively analyses the cache and DAX frameworks

and summarizes the key challenges of cache framework

design on heterogeneous memory.

• It designs and implements FLAC, a novel cache framework

for heterogeneous memory file systems that including the

techniques of zero-copy caching and parallel-optimized

cache management.

• It implements a file system (FlacFS) based on FLAC, and

demonstrate the benefits via micro/macro benchmarks and

real-world applications.

The rest of this paper is organized as follows: Section 2

introduces the background and motivation; Section 3 presents

the key designs of FLAC; Section 4 introduces the imple-

mentation of FlacFS; Section 5 discusses the limitations
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ground flushing; “-cc”: cold cache.

and challenges; Section 6 shows the detailed evaluation of

FLAC/FlacFS; Section 7 concludes the paper.

2 Background and Motivation

2.1 Heterogeneous Memory

With the emergence of new persistent storage media (e.g.,

3DXPoint [14], CXL-based SSD [18, 23, 55, 56]), the stor-

age architecture evolves from memory-block to all-memory.

A typical heterogeneous memory architecture consists of a

fast, volatile, small capacity layer (DRAM), and a slow, non-

volatile, large capacity layer (PM). Different types of memo-

ries present heterogeneity in multiple aspects [33]. 1) Latency

Gap. The latency of DRAM is about tens of nanoseconds,

while the latency of low-level memory range from hundreds

to thousands of nanoseconds [18,34]. 2) Bandwidth Gap. The

bandwidth of DRAM can reach tens of GB, while it is only

about a few GB of existing PM [52]. 3) Concurrency Gap.

The PM has lower concurrency than the DRAM [11, 20]. For

example, existing PM hardware based on 3DXPoint is hard

to scale beyond 4 concurrent [16] in the single channel. In

summary, the performance gap between DRAM and PM and

between different types of PMs cannot be ignored, which

make it challenging to design efficient storage systems for

heterogeneous memory.

2.2 Direct Access (DAX) vs. Cache

Heterogeneous memory raises an important question for file

system designers: what kind of storage framework can take

advantage of different memory devices? There are two typ-

ical storage frameworks are used on heterogeneous mem-

ory: 1) traditional page cache based on the DRAM-block

device architecture (i.e., VFS page cache) and 2) direct access

(DAX). We quantitatively analyze three typical file systems

with the VFS page cache (EXT4) and DAX (EXT4-DAX [7],

NOVA [51]) by performing random writes/reads on a 10GB

file with 2MB I/O (the testbed is introduced in §6). Three

important observations are found from our experiments:

Observation 1: Existing DAX and cache frameworks are sub-

optimal, and DRAM cache still has great value for heteroge-

neous memory file systems.

The VFS page cache is a typical cache framework that is

designed to bridge the performance gap between DRAM and
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block devices. However, the VFS page cache has a heavy soft-

ware stack, which makes it unsuitable for the heterogeneous

memory structure. Therefore, many heterogeneous memory

file systems proposed in the past decade resort to the DAX

method, i.e., bypassing the DRAM cache in the data I/O path.

However, we think DRAM cache still has a lot of value in

heterogeneous memory file systems. First, the performance

gap between PM and DRAM cannot be ignored. Figure 1

shows that the VFS page cache still has better performance

than DAX in some cases (e.g., read). Second, taking advan-

tage of data locality is an effective method of performance

optimization, but DAX misses this opportunity. Third, POSIX

is still a mainstream semantics and it can tolerate cached I/Os,

which makes instant persistence in DAX an overkill in many

real-world scenarios [49].

Observation 2: Data transfer overhead between the file sys-

tem and the application buffer is significant but often over-

looked, and it is one of the keys to unlocking the potential of

the cache in heterogeneous memory.

Data I/Os (file read/write) need to transfer data between

the application buffer and the storage system (cache space

or persistent data space). Memory copy is the mainstream

method to transfer data, but in our experiment, it takes up

more than 23% and 96% of the total overhead in cache-based

and DAX-based file systems, respectively. In particular, the

performance bottleneck of data copy between cache and appli-

cation is obvious in heterogeneous memory systems since the

latency of PM is much lower than traditional block devices.

Observation 3: The “Cache Tax” in traditional cache frame-

works is heavy, and it mainly includes the overhead of data

synchronization and migration.

Caching increases storage levels and brings extra data man-

agement overhead. Figure 1 shows that the “cache tax” (de-

noted as other) takes up to 77% of the execution time in EXT4.

Figure 2 shows the core processes of the typical DRAM page

cache, which reveals the composition of the “cache tax”. From

our experiments, the data synchronization (background dirty

flushing) and data migration (cache miss handling) lead to

37% and 65% performance declines, respectively.

2.3 Motivation

According to the previous analysis, an efficient heterogeneous

memory cache framework needs to meet two requirements:

1) low application-cache transfer overhead and 2) low “cache

tax” impact. However, exiting cache frameworks (e.g., VFS

page cache) do not fully exploit the potential of DRAM cache

in heterogeneous memory systems. They are difficult to avoid

the data copy between the DRAM cache and the application

buffer. At the same time, they are difficult to transparently

overlap the critical I/O paths and the cross-layer data synchro-

nization/migration. The motivation of this work is to integrate

the DRAM page cache with the virtual memory management

subsystem, and it brings two key principles for our design.
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Figure 2: Typical Diagram of Page Cache.

Principle 1: Optimizing data transfer between the cache

and the application by zero-copy. Traditional DRAM cache

frameworks simply take advantage of the performance advan-

tages of DRAM, but ignore another important advantage of

DRAM cache: it is homogeneous with the application runtime.

By co-designing the DRAM cache and the virtual memory

subsystem, the data copy during application-cache transfer

can be avoided by page mapping. FLAC proposes the zero-

copy caching technique to avoid application-cache data copy

and redundant indexes (red squares in Figure 2).

Principle 2: Reducing the impact of “cache tax” by hiding

the data synchronization/migration overhead. The “cache tax”

is difficult to eliminate, but their impact on the critical I/O

paths can be reduced by improving the parallelism between

the data synchronization/migration and the front-end I/Os.

FLAC proposes the parallel-optimized cache management

mechanism to amortize the data synchronization/migration

overhead in the background (blue squares in Figure 2).

3 FLAC Design

3.1 Overview

This work proposes FLAC, a FLAt Cache framework inte-

grated with the virtual memory subsystem to deeply explore

the potential of cache for heterogeneous memory systems. As

shown in Figure 3, FLAC maintains a range of contiguous vir-

tual memory addresses, called FLAC space. The size of FLAC

space is equal to the usable PM space, and it provides the data

storage area with the built-in DRAM page cache for the het-

erogeneous memory file system. The FLAC space is indexed

by the heterogeneous page table, which makes page physi-

cal locations transparent and exposes a single-level memory

space to file system developers. Data is transferred between

the application and the FLAC space with the zero-copy ap-

proach (§3.2), and synchronized/migrated between DRAM

and PM with the parallel-optimized mechanism (§3.3). Ta-

ble 1 shows the main APIs of FLAC.

init_flac: This API is used to initialize and bind the

given PM to the FLAC space for file data storage. If the FLAC

space has already been created on the PM, it rebuilds the

FLAC space from the last consistent state.

zcopy_from/to_flac: The file system based on FLAC

internally uses these two APIs to transfer data and support
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Figure 3: Architecture of FLAC. File system runs the data manage-

ment on top of FLAC. Application accesses data by file read/write,

and they are converted to the zero-copy transfer APIs in FLAC. Data

is stored in a flat memory address, which is transparent to the physi-

cal locations of the pages through heterogeneous page table.

file read/write operations, which are similar to the action of

copy_to/from_user in traditional kernel file systems.

pflush_add/commit: This pair of APIs are used to ex-

plicitly flush dirty data from DRAM to PM, and they give

developers the flexibility to customize flushing policies. Dirty

pages are added to a flush handle (pflush_add) and flushed

to PM in a transaction (pflush_commit). File systems use

the fs_metalog parameter to ensure the consistency of FS-level

metadata during data flushing.

pfree: This API is used to atomically reclaim a range of

FLAC space. It invalidates the page on the DRAM/PM and

removes the page table mapping.

Architecture and Usage. FLAC runs under the file system

as a development framework. Developers of heterogeneous

memory file systems customize the file data management on

the FLAC space (e.g., file read/write logic and data flushing

policy) by encapsulating the APIs above, and applications ac-

cess the data on the FLAC space by normal file interfaces. The

other modules of the file system (e.g., metadata management)

are independent to FLAC, which can be flexibly designed and

implemented. FLAC’s APIs can be called by ioctls or kernel

functions, which allows developers to flexibly implement file

systems in the userspace or kernel.

3.2 Zero-Copy Caching

3.2.1 Heterogeneous Page Table

As Figure 3 shows, FLAC uses the heterogeneous page ta-

ble, a customized sub-level table (including one or multiple

PUDs) of the kernel page table, to maintain the FLAC space:

it is a range of consecutive kernel virtual memory addresses

and its size is equal to the usable PM size. The positions of

pages (DRAM/PM) in the FLAC space are transparent for

the file systems running upon it. This design has two mean-

ings: 1) The address indexed in the page table is dynamically

mapped to DRAM or PM as the page is cached or evicted, and

a bit in the PTE is used to indicate the location of the page.

2) Page table entries (PTEs) belonging to the FLAC space are

Table 1: Main APIs of FLAC (for file system developer)

API Main Para. Description

init_flac pm_path
Create/Recover

the FLAC space

zcopy_from_flac

zcopy_to_flac

from_addr

to_addr

size

Zero-copy transfer data

between the application

and the FLAC space

pflush_add

pflush_handle

addr

size

Attach (map) the pages

to the flushing buffer

and add to the handle

pflush_commit
pflush_handle

fs_metalog

Flush the pages in the

handle and update

the metadata atomically

pfree

addr

size

fs_metalog

Reclaim the PM pages

and update the

metadata atomically

replicated in PM for fault recovery. The heterogeneous page

table unifies the page indexes of cache and persistent storage

and simplifies cache access and management.

PM is divided into three areas. 1) The persistent PTE

area records the mapping information between the virtual

addresses and the PM pages. All PTEs of the heterogeneous

page table are mirrored on PM. When a page is flushed from

DRAM to PM, FLAC records the related offset in the PM

device to the persistent PTE for recovery. 2) The log area logs

the modifications of FLAC-level (e.g., persistent PTE) and

FS-level metadata (e.g., inode) by the FS-FLAC collaboration

logging mechanism when the persistent data modification

APIs (pflush_commit/pfree) are called. 3) The page area

contains multiple 4KB units for file data storage. Data pages

are persisted in this area during flushing.

Developers call init_flac to prepare the FLAC space and

it is responsible for rebuilding the heterogeneous page table.

First, FLAC checks the logs to determine whether the system

exits abnormally, and if so, recovers it to the last consistent

state. Then, the PGDs, PUDs, PMDs, and PTEs of the hetero-

geneous page table are created in DRAM. In particular, the

locations in PTEs are rebuilt by translating the related offsets

in the persistent PTEs (if have) to the physical location of

the PM pages. After initialization, all valid pages on PM are

mapped to the heterogeneous page table.

3.2.2 Transfer Data with Page Attaching

The core technique used to achieve the goal of zero-copy is a

new virtual memory management operation – page attaching

(Interface (1)). The attach includes four parameters: two ad-

dress and their size, and the permission mode. Page attaching

maps the pages of the source address (from_addr) to the desti-

nation address (to_addr) with the given size. The permission

mode (pmode) allows users to set permissions on source and

destination addresses after page attaching (e.g., read-only).

Page attaching first searches the PTEs of source and desti-

nation addresses then maps the physical pages of the source
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address to the destination address (the permission and page

reference counter are also set) and finally flushes the TLB.

It will be aborted if the source addresses are not faulted (i.e.,

mapped to the physical pages), but there is no restriction on

the destination addresses. If the destination addresses are

faulted (e.g., overwrite), the reference counter of the old phys-

ical pages will be reduced and they are reclaimed by the

memory subsystem when their counters reach 0.

attach(to_addr, f rom_addr, size, pmode) (1)

The APIs of zcopy_from/to_flac encapsulate attach

for transferring data between the application and the FLAC

space. For data security and isolation, the operated pages are

set to read-only after attaching, so that subsequent writes on

these pages will transparently trigger copy-on-write (COW)

page fault, which ensures that the memory operations inside

the application do not affect the data that have been mapped to

the global cache and other applications. In particular, benefit-

ing from the heterogeneous page table, pages can be attached

whether they are cached or not and this feature delivers the

design of asynchronous cache miss handling.

Handling Page Unaligned. The file I/O (<fd, offset, size>)

is translated to the address and size of the FLAC space by

the upper-layer file system, and the data is transmitted be-

tween the FLAC space and read/write buffer by page attaching

(zcopy_from/to_flac). Page attaching requires that the op-

erated addresses and sizes are page aligned, but file I/Os and

buffers are arbitrary, resulting in the page unaligned problem.

Our solution is to attach all the pages containing the required

data and use a cursor to locate valid data in the application

buffer. FLAC requires the upper-layer file system to ensure

that the start address of each file is page aligned. Given an un-

aligned file I/O and a buffer, we first need to extend the file I/O

to the FLAC space range that contains all the required pages,

which is achieved by the automatic alignment mechanism. In

addition, we need to ensure that the buffer is large enough,

page aligned, and can represent the valid data in it, which is

achieved through the sliding window buffer technology.

Automatic Alignment. The zcopy_from/to_flac check

whether the given FLAC address and size are page aligned,

and if it doesn’t, the access range (start and end addresses)

is automatically extended to page aligned. Then, the page

attaching is executed. In particular, if the destination space

is already mapped to the (old) pages, the hole(s) caused by

automatic alignment is filled with the data in the old page(s)

through copy after attaching.

Sliding Window Buffer. As Figure 4 shows, the appli-

cation allocates (swbuf_alloc) the sliding window (SW)

buffer by using the read/write size (dsize). It includes a

swbuf structure and a page unaligned space (*bhead) in

the size of ⌈dsize/4096⌉+1 pages (bszie). The application

uses the *bhead in SW buffer to serve file read/write with

arbitrary offset and size. However, the valid data may not

struct swbuf {

int bsize // buffer size

int dsize // data size

void *bhead // buffer head

void *data // valid data

} swb

swb* swbuf_alloc (dsize)

void swbuf_slide (*swb, offset)

void swbuf_free (*swb)

APIs
*swb = swbuf_alloc (dsize)

/* file write */

swbuf_slide (swb, write_offset)

fill data by swb->data & swb->dsize

write (fd, swb->bhead, write_offset, dsize)

/* file read */

read (fd, swb->bhead, read_offset, dsize)

swbuf_slide (swb, read_offset)

get data by swb->data & swb->dsize

swbuf_free (swb)

Usecase

Page
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W
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Copy the data 

from file 

(by zcopy_to_flac)
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dsize
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Figure 4: Sliding Window (SW) Buffer. Application uses SW buffer

to serve page unaligned read/write. The sliding window is used to

identify valid data in the buffer.

start with the *bhead due to the automatic alignment in

zcopy_from/to_flac. Before using the data in the read-

/write buffer, the application is asked to call the swbuf_slide

to calculate the window of valid data in the SW buffer by

using the file offset and *bhead. The head of valid data is

recorded in the *data. It is worth noting that the SW buffer is

not mandatory if the application can guarantee the offset and

size of file read/write are page aligned.

Reducing COW Page Fault Overhead. The zero-copy data

transfer ensures security and isolation by setting the source

and destination memory read-only, and this makes the first

write operation (store instruction) to the source (write

buffer) or destination (read buffer) memory after attach to

trigger COW page fault. According to our analysis, the main

overhead of COW page fault includes two aspects: TLB flush

and data copy. FLAC proposes two techniques to reduce the

impact of COW page fault for different use cases.

Batch Fault. In some scenarios, applications directly pro-

cess data in the read/write buffer, which causes a large number

of pages in the buffer to be faulted with COW. FLAC opti-

mizes this unfriendly case by executing the COW page faults

in batch, thus reducing the number of TLB flushes. Batch

faulting copies the data from the original pages to the new

pages in batch and only needs to flush the TLB once. The

application can call the bfault API for the read/write buffer

before the data in the buffer are processed.

Detach. In some scenarios, the application just wants to

reuse the read/write buffer’s space instead of its data, which

is a false sharing scenario (e.g., pre-allocating a log buffer

and reusing it after it is written to the storage system). To

avoid COW page fault in this scenario, FLAC provides the

detach API to remap the addresses of the read/write buffer

to some new anonymous pages to absorb subsequent memory

operations. The application can call the detach before the

read/write buffer is reused. After detaching, the subsequent

memory writes to the buffer will not trigger COW page faults.

3.3 Parallel-Optimized Cache Management

Due to the zero-copy caching design, FLAC requires a cache

management mechanism for its multi-version feature, while

ensuring a low “cache tax” impact. Fortunately, the multi-

version feature and the heterogeneous page table design of
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Figure 5: Page State/Version Transition. Solid blue arrow: current mapping; Blue dashed arrow: future mapping; Red dashed arrow: data copy.

FLAC allow us to fully exploit the parallelism of data synchro-

nization/migration with critical I/O paths.

3.3.1 Parallel-Optimized Synchronization/Migration

Existing cache frameworks execute cache flushing and cache

miss handling with large synchronization and migration over-

head: Cache flushing locks the dirty pages until they are

completely flushed, which blocks the front-end writes and

dramatically reduces the performance; Cache miss handling

blocks the I/Os until the pages are loaded to the DRAM cache.

They are optimized by the following two techniques.

2-Phase Flushing. FLAC splits the dirty pages flushing

into two phases: collection (pflush_add) and persistence

(pflush_commit). The collection phase adds the given dirty

pages to a flush handle, which allocates a fresh virtual mem-

ory address space as a temporary flush buffer and attaches the

dirty pages to it. This phase requires a lock to prevent concur-

rent writes from modifying the target pages. The persistence

phase is responsible for persisting the dirty pages in the flush

handle to PM. This phase is lock-free since there are no con-

current accesses to the temporary buffer. Because the page

mapping in the collection phase is much faster than cross-

layer copy, the 2-Phase flushing mechanism significantly re-

duces the blocking time on concurrent writes due to dirty

page synchronization (e.g., background flushing).

The persistence phase is atomic. It flushes data pages by

the log-structured method, i.e., dirty data is written to the

new PM pages and the out-of-date PM pages are reclaimed.

The persistent PTEs are updated after dirty data is success-

fully flushed. The modifications of the PM page allocator and

persistent PTEs are logged to ensure crash consistency. In

addition, file systems may require FS-level metadata updates

and data persistence to be the same transaction. FLAC pro-

vides the FS-FLAC collaboration logging mechanism to meet

this goal (§3.3.4).

Asynchronous Cache Miss Handling. Cache miss has less

impact on write operation because it does not require pages to

be loaded into the cache (except in the case of page misalign-

ment), but it is expensive on read operation. Benefiting from

the heterogeneous page table, FLAC can directly attach the

PM pages to the read buffer (returns immediately) and handle

the cache miss asynchronously. A background thread in FLAC

is responsible for loading the missed pages to DRAM and

remapping the PTEs of FLAC space and application buffer(s)

pointing to those PM pages to the cached DRAM pages. The

page may have been modified to trigger the COW page fault

before it is loaded to DRAM, which means it has the newest

version in DRAM. The asynchronous cache miss handling

checks if the page already has a new version in DRAM and

skips if it does. This design makes it possible for the overhead

of handling cache misses to be amortized in the background,

thereby reducing the data I/O latency.

3.3.2 Page State/Version Transition

The page may have different states and versions in FLAC.

There are four states of a page in FLAC: shared-persistent

(SP), shared-cached (SC), anonymous (AM), and out-of-date

(OD). SP and SC pages are stored in the global areas (PM

data page area/DRAM cache) and are read-only; AM pages

are readable and writable, which is the same as the normal

anonymous page in processes; OD pages are invisible to the

file system on FLAC and are managed by FLAC’s reclamation

mechanism. Figure 5 shows an example of page state/version

transition through a sequence of operations. As the initial

stage (S0), we assume that there is a page on the FLAC space

and it is in the PM data page area.

Stage 1: Read from FLAC. The target page is an SP page,

so cache miss happens when the application reads the page

from the FLAC space to the application buffer (by the file

system interface). FLAC first maps the buffer to the SP page

and the read operation is returned (①). Then, the target page

is asynchronously loaded to DRAM as an SC page (②) and

the virtual pages of application buffer and FLAC space are

remapped to the new SC page (③).

Stage 2: Update the buffer. When the application tries

to update (by store instruction) the data in the buffer, a

new version AM page is created by COW (①), and then it is

mapped to the buffer address to absorb the updates (②). COW

page fault is only triggered at the first time the SP/SC page

(depending on if it is cached) is updated by the application,

and subsequent memory accesses will directly perform on the

AM page. In addition, the old version page in FLAC is still in

its original state (SP/SC).

Stage 3: Write to FLAC. When the application writes (at-

taches) the page back to FLAC, the state of the page mapped
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by the buffer is changed from AM to SC (①). The state of the

old page that is mapped to the target address in FLAC will be

changed to OD and reclaimed by FLAC when it is clean (②).

Stage 4: Background flush. The page will be synchronized

to PM when the background flushing is triggered, which is

implemented by the upper-layer file system. During back-

ground flushing, a new SP page is created (①) and the old

version of the SP page is reclaimed by FLAC after the data is

successfully synchronized (②).

Page State Semantics. Page state is at the process granular-

ity as FLAC maintains the state by manipulating the process’

page table. The FLAC-based file system has the same seman-

tics in file read/write operations as traditional file systems.

After one thread attaches (by file read/write) a page with

SC/SP state, other threads in the same process can read it

consistently. Once the attached page is modified and causes

COW to generate an AM page, it can be shared within the

process. FLAC currently does not support read/write shared

pages between different processes (e.g., using the FLAC space

as inter-process shared memory). FLAC enforces mandatory

isolation and COW in different processes will generate sep-

arate AM pages. However, FLAC may support this case by

considering reverse page mapping during COW.

Durability. FLAC does not restrict the durability model,

which is defined and implemented by the upper-layer file

system. Our prototype FLAC-based system (FlacFS) uses

the same durability model as traditional file systems. The

cached data is persisted to PM under two cases, i.e., the back-

ground flushing is triggered and the fsync is called by the

file system user. FlacFS implements background flushing and

fsync by encapsulating the data synchronization operations

of FLAC (pflush_add/commit), and FLAC guarantees that

these operations are atomic and recoverable by the FS-FLAC

collaboration logging.

3.3.3 Cache Policy

The size of FLAC space is equal to the usable PM size, but

the maximum DRAM cache usage is controllable and page

eviction is triggered when the cache is full. Due to the zero-

copy design naturally brings the advantage of deduplication,

FLAC counts the pages that are only mapped by the FLAC

space into the used size, and the pages that are mapped by

both the FLAC space and application buffer are treated as an

in-process pages (without taking up the cache space).

As this work mainly focuses on the cache framework, we

just design a simple cache policy in our prototype, i.e., it

selects pages for eviction with the round-robin approach. Ex-

isting cache algorithms [17, 35, 41, 53, 54] can also be used

for FLAC. For the sake of simplicity, a page can be evicted

only when two conditions are met. First, the page is clean, i.e.,

it has been synchronized to PM by background flushing or

fsync. Second, the reference counter of the page is 1, which

means that the page is only mapped by the FLAC space and

not used by any application. After a page is evicted to PM,

the target PTE of the FLAC space is remapped to the PM page

and the DRAM page will be reclaimed.

In particular, the multi-version feature of FLAC does not

incur additional space overhead compared to traditional page

cache. The new version of the page being created in the ap-

plication process by COW page fault, the new version does

not take up space in the page cache before it is overwritten to

FLAC. After overwriting, the virtual address of FLAC space is

mapped to the new version and the old version is reclaimed.

3.3.4 FS-FLAC Collaboration Logging

For normal shutdown, the recovery process of FLAC only

needs to rebuild the heterogeneous page table according to

the persistent PTEs. For an unexpected shutdown, FLAC must

recover the system to the last consistent state. As described

in the 2-Phase flushing, persistent data modifications in FLAC

(pflush_commit/pfree) are atomic. However, along with

data modifications, the file system upon FLAC may need to

update the related FS-level metadata (e.g., page index) on PM

in the FS-level atomic operation (e.g., append).

To ensure complete consistency, FLAC provides the FS-

FLAC collaboration logging mechanism to allow the data

modifications in FLAC and FS-level metadata updates in a

transaction. It requires the file system to make two efforts:

1) File system should provide the self-formatted metadata log

(fs_metalog parameter) when the persistent data modification

APIs are called. FLAC concatenates the internal (FLAC-level)

and external (FS-level) metadata log into an entry and appends

it to the log area after a successful persistent data modification

operation. 2) File system should overload an external meta-

data recovery function provided by FLAC. During recovery,

FLAC first commits the internal metadata log and then calls

the external recovery function to commit the external meta-

data. After all logs are committed, FLAC can be recovered as

normal shutdown.

4 Case Study: FlacFS

We implement FlacFS, a file system based on FLAC to show

the usage and benefits of FLAC. FlacFS contains three addi-

tional designs, the metadata management, data management,

and mechanism of security and consistency. FlacFS is a li-

brary file system implemented through memory semantics.

Figure 6 shows the architecture of FlacFS. As FlacFS focuses

on the cache framework, we draw from existing works on

designs in some aspects.

4.1 Metadata Management

The metadata area is mapped as traditional shared memory on

userspace. It includes two separate virtual memory addresses

for DRAM and PM, while they are created by shmget and

mmap, respectively. The metadata (inode) of the directory/file
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Figure 6: Implementation of FlacFS. The data space is built on FLAC,

and file read/write are implemented by encapsulating FLAC’s APIs.

The metadata space is built on traditional shared memory. All inodes

are cached in the DRAM hash table using their paths as keys, and

their copies are persistently stored on PM.

is treated as a KV pair and stored in the inode hash table

on shared memory using its full path as the key. The inode

table is stored on both DRAM and PM to accelerate metadata

operations. The metadata operations are performed in the

DRAM inode table immediately and flushed to the PM inode

table when the dirty data of the related files are flushed by

background flushing or fsync. The metadata consistency is

guaranteed by the FS-FLAC collaboration logging (§4.3).

Inspired by SCMFS [50] and ctFS [31], FlacFS allocates

consecutive virtual memory addresses on the FLAC space for

each file to store data. File inode only needs to record the

start virtual address and the file size. FlacFS uses a buddy-

like allocator for it. When the file size increases, a new range

of consecutive virtual addresses is allocated, then the pages

(existing and new) are attached to the new virtual addresses,

and finally the old virtual addresses are reclaimed. This design

allows FlacFS to leverage MMU to accelerate page indexing

without the need for complex index structures (e.g., B-tree).

4.2 Data Management

The data area is run on top of FLAC, which is created by

init_flac. It appears to FlacFS as a range of consecutive

kernel virtual memory addresses, and the data I/Os on the

FLAC space are transparently cached.

File Read/Write. After the file is successfully opened,

FlacFS calculates the target address range on FLAC space

of the request by the start virtual address of the file (recorded

in the inode) and the offset. Read and write are executed

by zcopy_from_flac and zcopy_to_flac respectively,

which makes the data transferring between file system and

application is zero-copy.

Background Flushing. FlacFS launches a background

thread periodically (10ms by default) to traverse the opened

files and flush the dirty pages and related metadata to PM. It

uses the 2-Phase flushing mechanism of FLAC for efficient

data synchronization. For each dirty file, FlacFS creates a

flush handle and collects the dirty pages according to the per-

file dirty bitmap, and then uses pflush_add to add them to

the handle (i.e., attach to a temporary flush buffer). After col-

lecting, FlacFS calls pflush_commit to atomically persist

the dirty data to PM.

File Synchronization. Similar to traditional file systems,

FlacFS provides fsync for users to flush data from DRAM

to PM immediately. FlacFS uses the 2-Phase flushing mecha-

nism to synchronize dirty data in fsync, which is similar to

the background flushing. Following the semantics of fsync,

the operation is returned after the data is persisted.

4.3 Security and Consistency

Data is protected by the kernel mode. FLAC is implemented

in the kernel, and userspace applications can access it only

through syscall/ioctl. Pages are always mapped to the appli-

cation as read-only, which ensures that local operations of the

application do not affect the data in the cache and other appli-

cations as they are handled by COW page fault. The metadata

security can be solved by using the userspace security mech-

anisms or putting metadata management in the kernel. For

example, the mechanism of existing systems [31, 57] can be

used to ensure the metadata security, i.e., the metadata area

is protected by MPK [13, 42] and access permission only is

granted to the user process during the metadata operation.

The FS-FLAC collaboration logging mechanism requires

the upper-layer file system to provide formatted metadata

modification and corresponding metadata recovery functions.

FlacFS uses the newest inode as the fs_metalog parameter in

persistent data modification APIs (pflush_commit, pfree),

and overloads the external recovery function to overwrite the

original inode by its newest version. FlacFS calls init_flac

to recover the FLAC space when system restarts. After the

success of init_flac, FlacFS rebuilds the metadata area in

DRAM and the system is recovered from the crash.

4.4 Advantages of FlacFS/FLAC

FLAC allows file systems based on it to benefit from the

DRAM cache while reducing the effects of “cache tax” as

much as possible. Table 2 gives a comparison between

FlacFS/FLAC and existing systems.

vs. Cache-based File Systems/mmap. There are many file

systems designed based on the VFS. Although the VFS page

cache can improve the performance in some scenarios in

heterogeneous memory file systems, these systems suffer

from heavy “cache tax” and fail to optimize the application-

storage data transfer. These file systems also provide the

mmap method to avoid the data transfer overhead, but it makes

application design and storage backend to be coupled. There-

fore, they cannot fully exploit the potential of cache in hetero-

geneous memory architecture.

vs. DAX-based File Systems. DAX-based systems bypass

the DRAM cache in data I/O, making them suffer from high

application-storage transfer overhead. Also, the latency and
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Table 2: Comparison with Related Work

Type Typical System
Data

Cache

Low/Non Cache

Tax Impact

App-Storage

Zero-Copy

App-Storage

Decouple

Cache-based FS VFS page cache FSes (e.g., ETX4, XFS [44], SPFS [49]) " % % "

Cache-based mmap mmap in VFS page cache FSes (e.g., EXT4, XFS [44]) " % " %

DAX-based FS
NOVA [51], SplitFS [20], WineFS [19], ctFS [31], KucoFS [5], PMFS [10]

libnvmmio [6], EXT4-DAX [7], HTMFS [57], OdinFS [62], ZoFS [8]
% " % "

DAX-based Runtime
Twizzler [4], Mnemosyne [46], PMDK [15]

zIO [43], DaxVM [1], SubZero [22]
% " " %

Flat Cache FlacFS " " " "

concurrency of PM hardware greatly limit their performance.

In particular, some DAX-based file systems also use remap-

ping: SplitFS [20] proposes relink, an operation to atom-

ically move a contiguous extent from one file to another,

which is used to accelerate appends and atomic data opera-

tions; ctFS [31] proposes pswap to swap the page mapping of

two same-sized contiguous virtual addresses, which is used

to reduce the overhead of maintaining file data in contigu-

ous virtual addresses. However, neither SplitFS nor ctFS uses

remapping to optimize data copying between applications

and file systems, and FLAC optimizes this part with the zero-

copy caching technique. Some DAX-based systems focus

on special design objectives, such as NUMA optimization

(e.g., OdinFS [62]), userspace optimization (e.g., KucoFS [5],

ZoFS [8], Trio [61]), and aging problem (e.g., WineFS [19]).

They are complementary to FlacFS.

vs. DAX-based Runtime. This type of work usually pro-

vides a memory management library or programming frame-

work for applications. Although the overhead of data transfer

between the application and storage system can be avoided,

they require the application to be co-designed with the stor-

age backend (e.g., use customized interfaces or object ab-

straction). Some of these works provide zero-copy PM I/O

libraries [22, 43]. However, they require applications to allo-

cate read/write buffers on PM to avoid data copy, and thus

force to ship the data processing from DRAM to PM, which

is not friendly for some cases [48]. DAX-based runtime fo-

cuses on programming directly on PM and can be seen as

complementary to the file system.

vs. Other Related Work. Some PM-based file systems try

to use DRAM as a cache (e.g., HiNFS [37] and HasFS [32]).

However, these works do not exploit the potential of the vir-

tual memory subsystem in the cache and are designed for

the simulated PM. Some file systems (e.g., Strata [24], Zig-

gurat [60]) are optimized for other multi-layer storage ar-

chitectures (DRAM-PM-SSD). Some work focuses on data

management in tiered memory (e.g., HeMem [39] and Johnny

Cache [29]), which are complementary to FLAC.

5 Discussion

Although FLAC/FlacFS offers promising performance, it also

encounters some new challenges, which we discuss below.

Page Fault Overhead. COW page fault doesn’t happen at

every write, and is only triggered at the first time to overwrite

the buffer. The natural COW page fault overhead is high and

our evaluation shows that it can reduce performance by about

30 times in the worst case without specific optimization. Our

optimizations (bfault/detach) precisely address two key

bottlenecks in COW page fault and they are easy to adapt

to applications (shown below). According to our evaluation,

bfault/detach can reduce more than 78.3% COW page

fault overhead in the worst cases (§ 6.2.4) and can be used

effectively in real-world scenarios (§ 6.3).

Application Adaptation. We think adaptation is simple and

straightforward: First, it requires only a few code changes.

We intercepted the POSIX interface to transparently adopt

the file operations (open, read, write, etc) to FlacFS. The

code changes are related only to buffer allocation and page

fault optimization. Second, it needs no change to the orig-

inal application code logic. The code changes are alterna-

tive (replacing buffer allocation) and/or incremental (adding

bfault/detach before reusing the buffer). This allows ap-

plications to be "trivially" adapted to FLAC/FlacFS.

Target I/O Workloads. FLAC/FlacFS is more friendly to

large I/Os, especially I/Os larger than 64KB (§ 6.2.2). Large

I/Os are important in production scenarios. For example, LLM

(Large Language Model) training usually makes checkpoints

in the file system for recovery. Take GPT3-NEOX [12] as an

example, the average I/O size generated during checkpointing

is at MB-level; As another example, SQL databases (e.g.,

openGauss [36]) typically aggregate data into large blocks

(e.g., 64KB) and write to the file system by large I/Os.

Design Universality. Although this work mainly focuses

on the cache framework of file systems, FLAC is possible

to be adapted to other storage systems. For example, KV

stores (e.g., [2,3,21,27,28,47,58,59]) can build their DRAM

cache upon the FLAC space to enjoy the benefits of zero-copy

caching and efficient cache management.

6 Evaluation

We compare FlacFS to a wide range of heterogeneous memory

file systems to demonstrate the benefits of FLAC framework.

Cache-based Systems. Systems of this type include EXT4

and FlacFS. EXT4 is representative of file systems using the
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Figure 7: Micro Benchmark Performance.

VFS page cache (e.g., XFS [44] and SPFS [49]). The dirty

data flushing period is set to 10ms and 100ms for FlacFS and

EXT4, respectively. FlacFS ensures the consistency of meta-

data and data, while EXT4 only ensures metadata consistency

(ordered mode). If not specified, EXT4 and FlacFS trigger

page eviction unless memory allocation fails, which is the

default policy in Linux.

DAX-based Systems. Systems of this type includes EXT4-

DAX [7], NOVA [51], SpiltFS [20], and ctFS [31]. Data I/Os

of these systems bypass the VFS page cache and perform on

PM directly. NOVA is set to sync mode, while SplitFS and

ctFS are set to POSIX mode. All tested DAX file systems

only ensure the metadata consistency, while FLAC ensures

both metadata and data consistency.

Testbed. All experiments are run on a server with two Intel

Xeon CPUs, 256GB RAM, and 1TB (128GB×8) PM. FlacFS

and EXT4 use Ubuntu 20.04 with Linux 5.1, and others file

systems use the kernel versions they can support.

6.1 Benchmark Performance

6.1.1 Micro Benchmark

We evaluate the duration of performing append, overwrite,

read, and fsync-after-append (fsync is called after each write)

on 64 1GB files with random and sequence patterns. The I/O

size is 2MB and there is no contention for accesses between

files in these experiments. Figure 7 shows the results. For the

cache-based file systems, “*-HIT” and “*-MISS” represent

cache hits and misses, respectively (analyzed in §6.2.1).

In the write scenarios, FlacFS provides a maximum per-

formance increase of more than two orders of magnitude

over other tested systems. In the read scenarios, FlacFS out-

performs other tested systems by more than 200 times. The

zero-copy caching in FLAC significantly reduces the data copy

overhead between the application’s write buffer and the file

system, while all other systems suffer from this copying over-

head. Compared with another cache-based system, EXT4, the

data persisting phase during background flushing in FlacFS

does not block the front-end writes, which significantly im-

proves the performance in write-intensive scenarios. In the

fsync-after-append scenario, FlacFS is comparable to the best

of the DAX file systems and better than EXT4. Although

dense fsync is not friendly to FlacFS, it still performs well

due to the lightweight nature of FLAC.

At the framework level, we observe that the DAX-based

systems have lower scalability than cache-based systems

(EXT4 and FlacFS) under write-intensive workloads. The

DAX approaches are difficult to scale beyond even 2 concur-

rent threads in Figure 7 (a) - (d) because they reach the band-

width and concurrency limitation of PM. In summary, these

results demonstrate that FLAC can fully exploit the potential

of DRAM cache in heterogeneous memory file systems.

6.1.2 Macro Benchmark

We use two I/O intensive workloads in Filebench [45] to

evaluate the performance of FlacFS in the scenarios with

mixed operations (including many types of data and metadata

operations). All workloads use 128MB file and 2MB I/O. The

main process of Filserver is to create files, write data to the

files, and then read data from the files. The main process of

Webserver is to create and append files, and then read the

files repeatedly. In particular, read operations have stronger

locality than write operations in these workloads.

Figure 8 shows that the throughput of FlacFS is higher

than other tested file systems by more than 40 times and 20

times in Fileserver and Webserver, respectively. At the same
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Figure 10: Impact of I/O Size.

time, the concurrency of FlacFS is better than other tested

systems. The DAX-based systems are limited by the hardware

disadvantages of PM in these experiments. The other cache-

based file system, EXT4, is also better than the DAX-based

systems because of the locality of the workload, especially

in the Webserver case. However, EXT4’s performance is still

significantly lower than FlacFS because of the inefficiency of

the VFS page cache framework.

6.2 Design Analysis

6.2.1 Impact of DRAM Cache Size

Cache size affects the overall performance through two as-

pects: overhead of cache miss and page eviction.

Cache Miss Overhead. The hit ratio is determined by the

cache policy and the workload behavior. As this work mainly

focuses on the cache framework design, we just show the

performance of the upper (100% hit) and lower (100% miss)

bounds. We clear the DRAM cache before each run to evalu-

ate the system performance under cache miss. In particular,

write operations in FlacFS do not encounter cache misses in

these experiments because the new pages are always attached

from the application’s DRAM buffer to the FLAC space. By

comparing the “EXT4-MISS” and “FlacFS-MISS” in Figure 7

(e) and (f), we found that FlacFS outperforms EXT4 by more

than 320 times, which benefits from the asynchronous cache

miss handling mechanism. In FLAC, the heterogeneous mem-

ory addressing allows pages to be accessed directly whether

it is in DRAM or PM, so uncached pages can be attached

to the application’s read buffer and loaded to DRAM in the

background. Therefore, the latency penalty of cache miss is

hidden for front-end data I/Os. This design also allows FlacFS

to perform better than DAX-based file systems in the cache

miss scenario because they need to synchronously copy data

from PM to the application buffers.

Eviction Overhead. We append 16GB of data to the files

with different eviction thresholds. This experiment is used to

measure pure eviction overhead because appending does not

have data locality. A smaller threshold means a smaller effec-

tive cache capacity and causes more data to be evicted and

higher eviction frequency. For example, with 16G threshold,

no data is evicted, while half of the data (8G) is evicted at

once when the threshold is 8G. The major overhead in evic-

tion comes from copying pages to PM and its performance

is bounded by the PM bandwidth. The eviction involves the

extra overhead of updating page table entries and invalidating

TLB. Figure 9 shows the eviction performance. As expected,

a smaller threshold introduces more penalties. For instance,

eviction cost under 1G threshold is 2.3 times of 8G threshold,

as 1G threshold has nearly twice the amount of eviction data

as 8G threshold (15G vs. 8G). Additionally, 1G threshold

causes more TLB invalidation overhead due to more frequent

eviction than 8G threshold.

To sum up the above experiments, we believe that with

efficient cache algorithms (out of the scope of this work),

FLAC can run efficiently in cache-starved scenarios.

6.2.2 Impact of I/O Size

We evaluate the duration of performing random read/over-

write and append in the I/O sizes ranging from 4KB to 16MB

with 64 concurrent threads (no contention). Figure 10 shows

that FlacFS has significant advantages compared to other sys-

tems when the I/O size is greater than 64KB, because the data

copy and migration are the major overheads in these scenar-

ios and this meets the optimization point of FlacFS. For I/Os

smaller than 64KB, the advantage of FlacFS decreases as the
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I/O size decreases, as the additional overhead introduced by

FlacFS (e.g., TLB flush) becomes apparent in these scenarios.

As discussed in § 5, we believe the FlacFS-friendly scenarios

can cover a lot of practical workloads. In scenarios where the

I/O size is smaller than a page (4KB), they are generally not

file system friendly because file systems manage data at a

page granularity. Therefore, many real-world applications try

to avoid triggering file I/Os smaller than 4KB.

6.2.3 Impact of Page Alignment

FLAC can serve file I/O at any offset and size. The automatic

alignment and sliding window buffer are used to solve the

page unaligned problem. We evaluate the impact of page

unaligned on performance by randomly overwriting 1GB of

data in the file under different I/O sizes. Figure 11 shows that

unaligned I/Os have a performance degradation of about 20%

compared to aligned I/Os when the I/O size is 4KB. However,

unaligned accesses have little impact on performance as the

I/O size increases, because the amount of data copied by the

sliding window buffer does not exceed 4KB, so the proportion

of this overhead decreases with the increase in I/O size.

6.2.4 Impact of COW Page Fault

Pages in the application buffer are set to read-only when

they are attached to/from FLAC for security and isolation.

As a result, COW page faults are triggered when the appli-

cation updates the data in the buffer for the first time after

the FlacFS read/write. FLAC proposes two APIs for batch

faulting (bfault) and detaching (detach) for applications

to reduce or eliminate the negative effect of COW page faults.

We use 16 test threads to random write on 16 files and rewrite

the data in the buffer by using memset after each write to

evaluate these optimizations (read scenario exhibits a sim-

ilar performance pattern). Figure 12 shows the results. As

the baseline (“no opt”), the test threads simply rewrite the

read/write buffers so that normal COW page faults will be

triggered. Relatively, the test threads call bfault or detach

for the buffer after each FlacFS read/write to show the benefits

of batch faulting and detaching.

The results shows that the total execution time of the base-

line grows significantly as the percentage of buffer overwrites

increases, because the higher the overwrite percentage, the

more COW page faults are triggered, which results in the

increased overhead of TLB flushing and data copy. In com-

parison, batch faulting and detaching can reduce the total

execution time by 78.3% and 89.2%, respectively, when the

overwrite percentage reaches 100%. Batch faulting reduces

the overhead of TLB flushing by aggregating multiple COW

page faults. Further, detaching completely avoids COW page

faults by remapping new pages to the given addresses.

6.2.5 Performance Breakdown

FLAC includes the key techniques of zero-copy caching and

parallel-optimized cache management. As the baseline, we im-

plement a simple FLAC equipped with only a heterogeneous

page table and use memory copy to transfer data between

the FLAC space and the application buffer. Therefore, both

zero-copy caching and parallel optimizations are removed

from this simple FLAC.

We use 2 concurrent threads to perform 2MB random write

I/Os in this experiment. Figure 13 shows the performance

breakdown. In the “zc” case, we add the zero-copy caching de-

sign into the baseline but use the coarse-grained lock instead

of the 2-Phase flushing (i.e., the front-end I/Os are blocked

during the data synchronization). The results show that the

performance can be improved by around 10 times by adding

the zero-copy caching. In the “zc+po” case, both zero-copy

caching and parallel optimizations are applied, and the per-

formance is improved by about 15 times compared to the

baseline. For the parallel optimizations, this experiment focus

on the contribution of 2-Phase flushing, while the benefits

of asynchronous cache miss handling are reflected in §6.2.1.
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Figure 15: Performance on Real-World Applications.

This experiment shows that FLAC addresses the important

bottlenecks of the heterogeneous memory cache framework.

6.2.6 Impact of File Size

We perform 64KB I/Os on different sizes of files (8MB to

1GB) with a single thread to show the impact of file size on

the advantages of FLAC. We normalize the duration of other

file systems to FlacFS to reflect the fluctuation of FlacFS’

performance improvement, i.e., the smoother curve indicates

that the file size has less impact on performance improvement.

Figure 14 shows that FlacFS has a smooth performance ad-

vantage under different file sizes: it has a third of the duration

of the second-best system in write and read. The reason is

that the performance improvement of FlacFS mainly comes

from the zero-copy and parallel optimization, which are not

strongly related to the file size.

6.3 Real-World Applications

We evaluate FlacFS in some real-world applications to demon-

strate its end-to-end performance benefits. For each applica-

tion, we replace the file system calls and buffer allocation by

the FlacFS’ interfaces and sliding window buffer mechanism

to port it to our system. In addition, we use batch fault or de-

tach (select based on how the buffer is used) for the read/write

buffer to optimize the COW page fault overhead before the

application reuses the buffer (if have).

6.3.1 Command Line Application

We port two widely used command line utilities to use FlacFS.

The first one is grep v3.7. We measure the execution time of

matching a character within the input file. Figure 15 (a) shows

the performance of increasing file size The grep only issues

read operations and FlacFS runs 6.7 times faster than the best

DAX file system (ctFS) and 4.8 times faster than EXT4 at

1MB file size. The second application is tar v1.34. The tar

contains not only read operations but also contains write to

generate the output archive. Figure 15 (b) plots the execution

time of creating an archive from the input file. FlacFS still

achieves the best performance. With 16MB file, FlacFS gets

4.4 times improvement over the best DAX file system (NOVA)

and 9.4 times better than EXT4. Additionally, the computation

in tar is less expensive than grep, which process regulator

expression matching. Thus, tar spends more time on file

I/Os than grep and the performance gain in tar is more than

grep. For instance, with 256MB file, FlacFS improves over

SplitFS by 3.6 and 5.6 times for grep and tar, respectively.

6.3.2 Big Data Processing

We evaluate FlacFS and other file systems with BigSort [25], a

large-scale merge sort application implemented by Lawrence

Livermore National Laboratory. Merge sort is an important

phase in big data processing (e.g., page ranking). Given a

dataset, BigSort partitions it and performs the merge sorted

on each partition recursively. There are three phases in each

merge sort: Phase 1) reads the unsorted objects from the target

file; Phase 2) performs quick sorting on the objects read in

the previous phase; Phase 3) stores the intermediate-ordered

results in the file system. After the recursive exit, the global

ordered results are written to the output file.

We perform merge sorting on a dataset of 134 million

integers. Porting BigSort to SplitFS and ctFS causes multiple

processes to hang, so we cannot obtain their performance

results. Figure 15 (c) shows that FlacFS has up to 2.62 times

improvement compared to other file systems when the number

of concurrent processes reaches 64. Benefiting from the zero-

copy caching design, FlacFS has a significant performance

advantage in Phases 1 and 3 because they include intensive

large file I/Os (512KB per I/O). Phase 2 is compute-intensive,

and it will incur an unnegligible overhead of COW page fault

if nothing is done to optimize it. As a result, FlacFS has an

obvious performance advantage in this complex application.

7 Conclusion

Heterogeneous memory provides various advantages, but it

also poses challenges to the file system architecture. We an-

alyze the shortcomings of existing cache-based and DAX-

based storage frameworks in heterogeneous memory, and

conclude that DRAM cache still has great potential in fast

all-memory architectures. We propose FLAC, a flat cache

framework of heterogeneous memory that integrates the page

cache into the virtual memory subsystem. FLAC unlocks the

potential of cache through zero-copy caching and parallel-

optimized cache management. We implement a file system

based on FLAC and show that FLAC has significantly better

performance than existing cache and DAX solutions.
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Abstract
In-memory caches play an important role in reducing the
load on backend storage servers for many workloads. Miss
ratio curves (MRCs) are an important tool for configuring
these caches with respect to cache size and eviction policy.
MRCs provide insight into the trade-off between cache size
(and thus costs) and miss ratio for a specific eviction policy.
Over the years, many MRC-generation algorithms have been
developed. However, to date, only Miniature Simulations is
capable of efficiently generating MRCs for popular eviction
policies, such as Least Frequently Used (LFU), First-In-First-
Out (FIFO), 2Q, and Least Recently/Frequently Used (LRFU),
that do not adhere to the inclusion property. One critical
downside of Miniature Simulations is that it incurs significant
memory overhead, precluding its use for online cache analysis
at runtime in many cases.

In this paper, we introduce Kosmo, an MRC generation al-
gorithm that allows for the simultaneous generation of MRCs
for a variety of eviction policies that do not adhere to the
inclusion property. We evaluate Kosmo using 52 publicly-
accessible cache access traces with a total of roughly 126
billion accesses. Compared to Miniature Simulations config-
ured with 100 simulated caches, Kosmo has lower memory
overhead by a factor of 3.6 on average, and as high as 36,
and a higher throughput by a factor of 1.3 making it far more
suitable for online MRC generation.

1 Introduction
In-memory caches play an important role in reducing the load
on backend storage servers for many workloads [1–6]. These
caches improve scalability and can reduce the latency of data
access requests by serving data directly from main memory.
Redis [7] and Memcached [8] are two popular in-memory
caches, both of which are open source and often provided as
a service by cloud providers [9–12].

In-memory caches can consume a large portion of a data
center’s operating budget, sometimes exceeding 60% of the
total operating cost [13]. In cloud-hosted environments, such
caches are priced proportionately to their size. As such, it is
important to provision each cache to the “right” size using the
cost-performance trade-offs for its workloads: caches that are
too small incur higher miss ratios and thus higher backend
storage server loads, while caches that are too large consume
unnecessary resources and have higher operational costs.

One of the most effective tools to understand the trade-
off between cache size and miss ratio is the miss ratio curve
(MRC), and over the years, many MRC-generation algorithms
have been developed [14–22]. An MRC plots a cache’s miss
ratio as a function of the cache size. Figure 1 depicts an exam-
ple of such an MRC. The MRC shows the effect on the miss
ratio of varying the cache’s size from 0GiB to 400GiB under
the MSR src1 workload [23] using the Least Frequently Used
(LFU) eviction policy. There is a sudden drop in the miss ratio
between roughly 160GiB and 190GiB. Such a drop is referred
to as a cliff and knowledge of its presence is particularly use-
ful: if the cache were initially configured with 160GiB of
memory, the MRC indicates that increasing the cache size
by 30GiB would result in roughly 30% improvement in the
miss ratio. The plateaus between 70GiB and 160GiB, and
190GiB and 270GiB are also informative: they indicate that
if the cache is currently configured to a size within one of the
plateaus, then the size can be decreased to 70GiB or 190GiB,
respectively, without severely impacting the miss ratio.

The choice of eviction policy is also an important factor
in configuring an in-memory cache. While most in-memory
caches default to the Least Recently Used (LRU) eviction pol-
icy, it has been shown that under certain workloads, caches op-
erate more efficiently using non-LRU eviction policies [3, 24–
27]. For example, the LFU eviction policy can sometimes
achieve a roughly 14% reduction in miss ratio when allo-
cated the same cache size and under the same workload [27].
Eviction policies such as First-In-First-Out (FIFO) also have
lower computational and memory overheads than other poli-
cies, such as LRU [3].

To optimize a cache configuration in terms of both size
and eviction policy, it is necessary to generate an MRC for
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Figure 1: MRC generated for MSR src1 workload [23] using the
Least Frequently Used (LFU) eviction policy.
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each eviction policy under consideration. However, a key lim-
itation of almost all existing MRC-generation algorithms is
that they only model caches operating with an eviction pol-
icy that satisfies the inclusion property (e.g., LRU); as such,
they do not support eviction policies such as LFU, FIFO, 2Q,
Least Recently/Frequently Used (LRFU), or Most Recently
Used (MRU). The only known MRC generation algorithm
capable of modeling a wide array of non-LRU caches with
reasonable computational efficiency is Miniature Simulations
(MiniSim) [18]. It runs individual simulations of caches of
different sizes and makes use of the SHARDS [17] sampling
algorithm to improve its runtime performance. However, Mini-
Sim has several serious drawbacks, the most notable being
its high memory usage. MiniSim effectively simulates inde-
pendent caches of varying sizes, often causing duplicate data
to be stored in the internal structures of many of these simu-
lated caches. We found through experimentation with numer-
ous workloads that MiniSim configured with 100 simulated
caches consumes the following amounts of memory on aver-
age: 113MiB for the LFU eviction policy, 57MiB for FIFO,
40MiB for 2Q, and 31MiB for LRFU, with up to 3.1GiB for
the LFU eviction policy, 1.72GiB for FIFO, 396MiB for 2Q,
and 597MiB for LRFU in extreme cases. Further, to generate
MRCs for multiple eviction policies simultaneously, these
memory requirements are compounded. With these memory
requirements, MiniSim will likely consume substantial mem-
ory, and hence may even interfere with the cache itself.

This paper introduces Kosmo, an MRC generation algo-
rithm that supports the simultaneous generation of MRCs for
a variety of eviction policies while, on average, using signifi-
cantly less memory than MiniSim, making it better suited for
online MRC generation. Kosmo uses a novel method of cal-
culating reuse distances through the introduction of eviction
maps. We show how Kosmo can be used to simultaneously
generate MRCs for six eviction policies: LFU, FIFO, 2Q,
LRFU, LRU, and MRU. Notably, LFU, FIFO, 2Q, LRFU, and
MRU do not adhere to the inclusion property (§2.2).

We evaluate Kosmo using a total of 52 publicly-available
workloads and measure memory usage, throughput, and ac-
curacy for LFU and FIFO, and 33 workloads for the 2Q and
LRFU eviction policies. Kosmo requires an average of 3.6
times less memory, and up to 36 times less than MiniSim
across all eviction policies. Kosmo has an average throughput
1.3 times that of MiniSim across all eviction policies. Finally,
Kosmo, which is also an approximate generation algorithm,
produces MRCs with comparable accuracy to those generated
by MiniSim.
Contributions. The contributions we make in this paper are:
• We introduce Kosmo, a novel method of simultaneously

generating MRCs for a variety of eviction policies.
• We introduce a method of reconstructing the stacks of

caches of varying sizes using a single copy of the cached
data through our novel data structure, eviction maps.

• We describe how to apply eviction maps to the LFU, FIFO,

2Q, LRFU, LRU, and MRU eviction policies, allowing
Kosmo to generate MRCs for these policies.

• We evaluate the performance of both Kosmo and Mini-
Sim and show that Kosmo achieves an average memory
reduction of a factor of 3.6 and up to a factor of 36.

• We examine to what degree different eviction policies vio-
late the inclusion property.

Limitations. The work we present has several limitations,
however. First, we only describe Kosmo for six sample evic-
tion policies. Although we know Kosmo supports additional
eviction policies beyond those described in this paper, it re-
mains an open problem which classes of eviction policies
Kosmo is able to support. Second, the MRCs Kosmo gen-
erates are monotonically decreasing which could increase
the error for eviction policies which display significant non-
monotonic behaviour. Finally, we recognize that the perfor-
mance of MiniSim is affected by the performance of the un-
derlying cache it is simulating.

2 Background
In this section, we discuss relevant prior work. We first de-
scribe the eviction policies that are the focus of this paper,
namely: LFU, FIFO, 2Q, LRFU, LRU, and MRU. We then
discuss the inclusion property and its importance in MRC
generation. Next, we describe several key MRC generation
algorithms which provide the necessary background to under-
stand the Kosmo algorithm. Mattson’s algorithm gives insight
into how MRC generation can be done for policies that do not
violate the inclusion property (generally referred to as “stack-
based eviction policies”). SHARDS is the sampling algorithm
used by both Kosmo and MiniSim. MiniSim is currently the
only known, reasonably computationally efficient method for
generating MRCs for caches with non-stack-based eviction
policies. It is the current state-of-the-art algorithm to which
we compare Kosmo.

2.1 Eviction policies
LFU (Least Frequently Used) evicts the least frequently used
object in the cache to make room for new objects. A simple
method of implementing this policy is to use a stack of objects,
ordered firstly by frequency count and secondly by last access
time. If an object needs to be evicted, the one with the smallest
frequency count, or oldest time on a tie, is selected. LFU
caches often outperform LRU caches in workloads that exhibit
a Zipfian distribution [24, 25].

FIFO (First-In-First-Out) evicts objects in the same order
in which they first entered the cache. It can be implemented
using a stack1 of objects ordered by their entry times where
the object with the oldest time is selected for eviction. This
policy has been found to perform well on large workloads

1This is sometimes also referred to as a “queue” in this context. In this
paper, however, we refer to the internal data structure which holds the objects
of a cache as a “stack,” regardless of eviction policy.
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in which accesses have large inter-arrival gaps, such as those
exhibited by scanning behaviours [3, 26]. Of all the eviction
policies, it is the most efficient to implement [3].

LRU (Least Recently Used) and MRU (Most Recently
Used) evict the least recently and most recently accessed ob-
ject in the cache, respectively, to make room for a new object.
To implement these policies, a stack of objects sorted by their
last access times is used, where the object with the oldest
(LRU) or youngest (MRU) time is evicted. LRU is perhaps
the most widely-used eviction policy, though MRU has been
found to perform better when the workload is cyclical [28].

2Q [29] maintains objects in a cache in two separate stacks:
one for objects which have been accessed only once (the A1
stack), and one for objects which have been accessed multiple
times (the Am stack). Objects in the A1 stack are evicted
in FIFO order, and objects in the Am stack are evicted in
LRU order. The A1 stack is further partitioned into two stacks
referred to as A1in and A1out2 of size Kin and Kout, respec-
tively, where Kin and Kout are ratios of the total cache size
(the authors note that a Kin value of 25% and a Kout value of
50% work well in most cases). The A1in and A1out stacks
differentiate themselves in the handling of objects that get
accessed a second time; if the accessed object is in the A1out
stack, it gets promoted to the Am stack, while if it is in the
A1in stack, it does not. Upon the first access to an object, it
is placed at the head of the A1in stack. If the A1in stack is
full, the oldest object in the stack is removed and placed at the
head of the A1out stack. If the A1out stack is full, the oldest
object is evicted from the cache. If an object which already
exists in the A1out stack is accessed, it is removed from the
A1out stack and placed at the head of the Am stack. If the
Am stack is full, an object is evicted using LRU.

LRFU (Least Recently/Frequently Used) combines ob-
jects’ recency (i.e., the time since the object was last ac-
cessed) and frequency counts to determine which object to
evict. Each object has an associated Combined Recency and
Frequency (CRF) value computed as CRF = ∑

k
i=1 F(tnow−

taccessi), where k is the number of times the object has been ac-
cessed previously, tnow is the current time, taccessi is the time at
which the object was accessed the ith time, and F(x) is defined
as F(x) = ( 1

p )
λ∗x, where p is a value greater than or equal to

two, and λ is a value between 0 and 1. Tuning the value of λ

allows the cache to behave more similarly to an LFU cache
(with λ closer to 0) or an LRU cache (with λ closer to 1). The
object with the smallest CRF value is selected for eviction.
Although the described CRF formula requires the full history
of the object’s access times, the authors note that given an
object’s last access time and last CRF value, one can calculate
the updated CRF value without needing the object’s access his-
tory using CRFupdated =F(0)+F(tnow−tlast_access)∗CRFlast .
The LRFU policy has been shown to outperform many other
policies for a number of important workloads [27].

2The A1out “ghost” stack holds references to objects, not their values.

2.2 Inclusion property
An important characteristic of an eviction policy is whether or
not it adheres to the inclusion property. This property states
that all objects that exist in a cache of size S at a given time,
also exist in any cache of size S′ > S, when given the same
access trace [18, 30]. An extension of this property is the
strict inclusion property which adds the further constraint that
all common objects in any two caches (with the same access
trace) must be in the same order in the caches’ internal data
structures (i.e., stacks).

An MRC generation algorithm that models an eviction pol-
icy adhering to the strict inclusion property is often referred
to as a “stack algorithm,” and can be implemented similarly to
Mattson [14], described below. If the eviction policy does not
adhere to the strict inclusion property, a dedicated algorithm
for the eviction policy or MiniSim must be used.

In the literature, the LFU eviction policy is often referred
to as a stack algorithm, which implies it can be modeled using
an algorithm similar to Mattson [14, 17, 30]. However, this
is only the case for so called ideal LFU caches, in which the
cache maintains frequency counters for all objects that were
ever accessed; if an object is evicted and accessed again in
the future, its counter persists and is further incremented. In
practice, LFU caches do not maintain the counters of evicted
objects [31], as maintaining these counters would entail sig-
nificant memory overhead. These practical LFU cache imple-
mentations remove the counter of any object being evicted
from the stack, and if a previously evicted object is accessed
again, a new counter is instantiated and initialized to one.

Practical LFU caches do not adhere to the inclusion prop-
erty, in contrast to ideal LFU caches. Table 1 shows this for
a simple access trace. Here, the objects and their associated
counts in two practical LFU caches of size 3 and 4 are shown.
At each time step, the frequency counter (shown alongside
each object in brackets) of the accessed object is incremented
by one, or initialized to one in the case of an object being
accessed for the first time. The stack of each cache is ordered
from least to most likely to be evicted from the cache (i.e.,
the object with the largest frequency counter, or most recently
accessed if two objects have the same frequency counter, on
the left). At time 9, it is evident that although the two caches
were provided with the same access trace, object “e” exists
in the cache of size 3, but not in the cache of size 4. This is a
violation of the inclusion property.

An interesting question is whether it is feasible to use
MRCs generated under the assumption of ideal LFU caches
(which adhere to the strict inclusion property) to model the
miss ratios of practical LFU caches. Figure 2 demonstrates
that this is not the case. The figure depicts the MRCs for ideal
and practical LFU caches for two workloads. For the MSR
src1 workload [23], the miss ratios deviate substantially for
cache sizes between 190GiB and 240GiB. Similarly, for the
MSR web workload [23], the miss ratios deviate significantly
for cache sizes between 38GiB and 46GiB.
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Table 1: Sample trace for LFU caches of sizes 3 and 4 demonstrating
a violation of the inclusion property.

Time Access LFU cache size 3 LFU cache size 4
1 a a(1) a(1)
2 b b(1), a(1) b(1), a(1)
3 c c(1), b(1), a(1) c(1), b(1), a(1)
4 d d(1), c(1), b(1) d(1), c(1), b(1), a(1)
5 a a(1), d(1), c(1) a(2), d(1), c(1), b(1)
6 d d(2), a(1), c(1) d(2), a(2), c(1), b(1)
7 b d(2), b(1), a(1) b(2), d(2), a(2), c(1)
8 e d(2), e(1), b(1) b(2), d(2), a(2), e(1)
9 f d(2), e(1), f(1) b(2), d(2), a(2), f(1)
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Figure 2: MRCs for ideal and practical LFU caches for the MSR
src1 (left) and web (right) workloads [23].

2.3 MRC generation
Mattson’s algorithm. Mattson et al. were the first to describe
a method capable of constructing a miss ratio curve from an
LRU cache’s access trace in a single pass [14]. To generate the
MRC, Mattson’s algorithm maintains an LRU stack of all the
accessed objects. Because MRC generation algorithms simply
model caches but do not store the values of the accesses, an
“object” in this context refers to the referenced key or a hash
of the referenced key. Upon each access to an object, if the
object has been previously accessed, its reuse distance is
measured as the number of objects ahead of it in the stack and
is recorded in a histogram. The object is then moved to the
front of the LRU stack. If an object has not been seen before,
the reuse distance is said to be infinity and is recorded as such
in the histogram; then a new object is instantiated and inserted
at the front of the LRU stack. After the entire trace has been
processed, the resulting MRC is generated as the inverse CDF
of the histogram. The Kosmo algorithm also uses a histogram
of reuse distances to generate MRCs.

Other algorithms have been introduced to improve on Matt-
son’s computational overhead. Olken [15] maintains the ob-
jects in a balanced tree, sorted by their last access times to
bring the compute complexity from O(MN) to O(NlogM),
where M and N are the number of unique and total number of
accesses, respectively. Parda [16] extends the Olken algorithm
to support the parallel processing of an access trace.

SHARDS. Waldspurger et al. describe an algorithm called
SHARDS which works in conjunction with an exact MRC
generation algorithm, such as Olken. SHARDS uses Olken
to generate the MRC, but uses only a sampled subset of the
trace [17]. This significantly improves the efficiency with
which an MRC can be generated, and while the resulting MRC
is approximate, it typically has reasonably low error [17].
Kosmo also uses SHARDS to improve its performance.

SHARDS can be implemented as either fixed-rate or fixed-
size. The fixed-rate implementation samples the trace using
a specific rate, R. The authors of the paper found that an R
value of 0.001 results in reasonably accurate MRCs, thus
reducing the overhead by a factor of 1,000 [17]. The fixed-
size implementation extends the fixed-rate implementation
by adjusting the sampling rate downward so as to limit the
number of objects that exist in the MRC algorithm’s internal
data structures at any given time to a constant, Smax. In our
experimentation, we use Smax values of 1,024 and 2,048 when
running Kosmo (as was done in the SHARDS paper).

The authors of SHARDS noticed that the expected number
of sampled accesses, E[NS], was often not equal to the mea-
sured number, NS. To correct for this, after the access trace
has been fully processed, the difference between E[NS] and
NS is added to the first histogram counter (i.e., the histogram
counter for the smallest reuse distance). By applying this cor-
rection, the authors achieved significant improvements in the
error induced by the sampling algorithm [17].
Miniature Simulations. Waldspurger et al. describe a
method of generating MRCs called Miniature Simulations
(which we will refer to as “MiniSim”), capable of modelling
any eviction policy. MiniSim independently simulates caches
at varying sizes to obtain the resulting MRC [18].

To generate an MRC using MiniSim, a maximum simulated
cache size, Cmax, is selected. A number of simulated caches
(NC) are then instantiated, each simulating a cache size be-
tween Cmax/NC and Cmax. In practice, NC is often set to 100.
Upon each access in a trace, the access is processed by each
simulated cache. When the trace is complete, the miss ratios
of the simulated caches and each simulated cache’s respective
size are used to form an MRC.

MiniSim utilizes the sampling method proposed by
SHARDS to operate on a small subset of the total trace to im-
prove runtime performance, making it an approximate MRC
generation algorithm.

Although MiniSim can generate MRCs for any eviction
policy, it has two key shortcomings. First, it has high memory
usage as each data point on the curve simulates an instance
of a cache, and the different simulations of the caches do
not share any of their internal data structures. These caches,
especially those with similar sizes, often contain many of
the same objects, yet each cache allocates memory for these
objects independently. Experimentally, we found that Mini-
Sim used an average of 113MiB to generate a single MRC for
the LFU eviction policy, with up to a maximum of 3.1GiB.
To reduce this memory usage significantly, one would have to
reduce the sampling rate of SHARDS or reduce the number
of simulated caches, which in turn would reduce the accuracy
of the resulting MRC.

A second key shortcoming is that the range of cache sizes
to be simulated must be defined before the input trace is first
processed and cannot be modified while the simulation is on-
going. This is limiting when generating MRCs online for live
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workloads, where the workload’s working set size is unknown
ahead of time. Because the maximum simulated cache size
Cmax cannot be modified after the simulation begins, a large,
worst case, value is typically selected to ensure the access
trace’s working set size (i.e., the cache size required to store
all unique objects) is likely to be captured. This prevents
MiniSim from being able to focus the sizes of the simulated
caches to regions of the MRC which lie within the workload’s
actual working set size.3 For example, although Twitter tends
to overprovision its caches [3], of the publicly available ac-
cess traces in the Twitter dataset, 25% have a working set size
of less than 2GiB. If a large Cmax value, such as 200GiB, is
selected to model one of these access traces, the simulated
caches are sized in increments of 200GiB/100 = 2GiB, pre-
venting points of interest on the MRC from being observable.
This requires MiniSim to be configured with a large number
of simulated caches as reducing this to a smaller value will
further reduce the resulting MRC’s granularity.

3 Kosmo
We now present Kosmo, an MRC generation algorithm capa-
ble of generating approximate MRCs for a variety of eviction
policies simultaneously. We begin by presenting the algorithm
in general terms (§3.2) and then describe several optimiza-
tions that significantly improve its efficiency (§3.3). We then
describe the Kosmo algorithm for the LFU eviction policy
(§3.4) specifically, followed by the required extensions to sup-
port other evictions policies (§3.5). We then show how Kosmo
can be extended to support variable object sizes (§3.6) and
TTLs (§3.7). Finally, we describe how Kosmo can generate
MRCs for multiple eviction policies simultaneously (§3.8).

Both Kosmo and MiniSim simulate caches of different
sizes to generate an MRC. The key difference is that Mini-
Sim maintains a stack for each cache throughout the duration
of the simulation, while Kosmo reconstructs the stacks dy-
namically, only as needed. MiniSim keeps track of the miss
ratios of the different caches and constructs the MRC using
these miss ratios once it has processed the entire access trace,
while Kosmo uses an approach similar to Mattson: it records
stack distances encountered in a histogram and, in the end,
constructs the MRC from the histogram.

Further, MiniSim always simulates the same pre-configured
cache sizes, regardless of the working set size of the access
trace, while Kosmo simulates a different set of cache sizes
on each access, the largest simulated cache size being the
reuse distance of the currently accessed object minus one.
This allows Kosmo to generate MRCs with similar error rates
to that of MiniSim while simulating far fewer caches, which

3The sizes of MiniSim’s simulated caches can be configured non-
uniformly [18], though this would require knowledge of either the shape
of the MRC or a specific point of interest around which to cluster the sizes
of the simulated caches (e.g., the current size of the production cache) before
processing the access trace. Further, the shapes of some workloads’ MRCs
can change dramatically over time [20, 32, 33].

leads to lower memory and compute overheads for Kosmo.
The simulated caches in an instance of MiniSim do not

share any internal data structures, therefore an object may
exist simultaneously in the stacks of multiple caches, causing
MiniSim to consume large amounts of memory. In contrast,
Kosmo maintains the data representing an object only once
in a global data structure. Each object in this data structure
contains the minimal amount of data required to allow the
stack of a cache of any size to be reconstructed dynamically.

3.1 Kosmo data structures
Kosmo maintains all objects ever accessed in a data structure
called the global table, implemented as a dynamic hash table.
Each object in the global table has an associated eviction map
which, in turn, consists of a set of eviction records. Whenever
an object is evicted from any of the caches (of different sizes)
being simulated, an eviction record is added to the eviction
map of the object. This eviction record includes or registers
the size of the cache from which the object was evicted, as
well as other policy-specific information described further
below. Using an object’s eviction map, Kosmo is able to
determine at any time whether the object exists in a cache of
a specified size. If it exists in the cache, Kosmo can determine
its position within the cache’s internal data structure, referred
to as the cache’s stack, using the policy-specific information in
the eviction records. An eviction map also holds a reference
to the associated object, allowing it to access the object’s
properties, such as the last access time or ideal frequency
count in the case of LFU caches.

Eviction maps are eviction policy-specific and must be
implemented on a per-policy basis. However, all eviction
maps support three primary operations:
1. For a given object, identify the size of the smallest cache

that contains the object.
2. For its associated object, calculate the object’s sorting

key, given a cache size, S. The sorting key is calculated
using policy-specific information in the eviction records,
allowing Kosmo to properly order objects in the stack of
the cache of size S it is reconstructing.

3. Insert a new eviction record.
The specific implementation of eviction maps for the LFU

eviction policy is described in §3.4. The implementations for
the FIFO, 2Q, LRFU, LRU, and MRU policies are described
in §3.5. The implementations for the LRU and MRU policies
are provided to demonstrate Kosmo’s generality and are not
included in the experimental analysis.

3.2 The Kosmo algorithm
We first describe a variant of the Kosmo algorithm that is
highly inefficient. Optimizations that make it efficient are
described in §3.3. Upon each access, the Kosmo algorithm
performs the following sequence of steps:
1. Calculate the reuse distance D of the accessed object and
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update the histogram counter associated with D.
2. Reconstruct the stacks of the caches of sizes S < D, for

every possible cache size at a byte-level granularity. These
are the caches that do not contain the accessed object.

3. Select an object from each reconstructed stack for eviction
(to make space for the accessed object) and place a new
eviction record in the eviction map of the evicted object.

Using the accessed object’s key, its associated eviction map
is found using the global table. The object’s reuse distance D
can be determined using the object’s eviction map by finding
the smallest sized cache in which, according to the eviction
records, the object exists. If the object is not found in the
global table, its reuse distance is set to infinity, as it is being
accessed for the first time. The histogram counter associated
with D is then incremented.

For eviction policies that do not adhere to the inclusion
property, an interesting question is: what is the reuse distance
of an object? For eviction policies that do adhere to the in-
clusion property, the reuse distance is clear. It is simply the
minimal cache size that contains the accessed object; any
larger cache will contain the object, while any smaller cache
will not. For eviction policies that do not adhere to the inclu-
sion property, an object may exist in a cache of size S, but not
exist in some caches of size S′ > S. Nevertheless, we argue
that the size of the smallest cache containing the accessed
object should be the reuse distance. There are several motiva-
tions for this choice. First, this choice allows for an important
optimization to ensure eviction maps do not contain a large
number of eviction records, which we describe in §3.3. Sec-
ond, the choice simplifies the calculation of an object’s reuse
distance. Third, in our experiments, we found it is rare for
an access to cause a violation of the inclusion property and
maintain this violation for large ranges of cache sizes, which
we show in §4.5.

Immediately after an object O is accessed, it must exist
at all cache sizes. Hence, for each cache of size S in which
the object does not exist when it is accessed, some object
needs to be evicted to make space for O. To select an object
for eviction, Kosmo reconstructs the stack of the cache by
iterating through all objects in the global table. Using each
object’s eviction map, Kosmo determines if the object exists
in the cache (of size S) and, if so, where in the cache’s stack
the object resides relative to other objects using the objects’
sorting keys. Through this process, Kosmo reconstructs the
cache’s full stack. The object at the top of the reconstructed
stack is selected as the object to be evicted and a new eviction
record is accordingly inserted in the object’s eviction map.

It is clear that Kosmo, as described, is highly inefficient.
First, because the global table contains an entry for every
object ever accessed, it can grow quite large. Second, to de-
termine which objects need to be evicted from which recon-
structed stacks, Kosmo must reconstruct the stack for every
cache of size less than the accessed object’s reuse distance. Fi-
nally, as an eviction record is inserted into an object’s eviction

map each time it is selected for eviction, the eviction maps
may contain a large number of eviction records.

3.3 Optimizations
We describe four optimizations: cache size granularity, evic-
tion record pruning, the use of SHARDS, and parallel stack
reconstruction.

Granularity. To reduce the number of cache stacks that need
to be reconstructed on each access, a granularity parameter G
is introduced. This parameter limits the number of caches that
need to be reconstructed on each access to a fixed number. For
example, if an object O is accessed and all cache sizes less
than or equal to 3GiB are found to not contain O and must
therefore be reconstructed to perform the necessary evictions,
with a granularity parameter of 100, 100 simulated caches in
size increments of 3GiB/100 = 30MiB are examined.

We experimentally evaluated appropriate values of G. A
higher value of G typically means a lower MAE (mean abso-
lute error); however, this also leads to increased computational
overhead. Figure 3 shows the experimental results of varying
values of G and the corresponding MAEs for all workloads
in the MSR dataset [23]. An interesting observation is that
Kosmo can achieve a low mean MAE with even a small value
of G. As evident in this figure, selecting a G value greater
than 10 does not significantly reduce the mean MAE. We
therefore conservatively select 10 as our value of G and use it
throughout all our simulations.

Upon accessing an object with reuse distance D, Kosmo
only simulates G caches of sizes S < D. As a result, it is able
to achieve a comparable MAE while simulating significantly
fewer caches than MiniSim. The accessed object is assumed
to already exist in caches of sizes S≥ D, so they do not need
to be simulated. In contrast, MiniSim simulates all (typically
100) considered cache sizes on each access, regardless of the
accessed object’s reuse distance.

Eviction record pruning. To reduce the number of eviction
records in an object’s eviction map, each time a new eviction
record is added, indicating the object is being evicted from
the cache of size S, all eviction records with cache size S′ < S
are removed. In doing so, Kosmo is effectively assuming the
inclusion property where an object being evicted from a cache
of size S will thereafter also not exist at any cache of size
S′ < S. This may introduce inaccuracies for eviction policies
which do not adhere to the inclusion property, however, we
have found these inaccuracies to be negligible (§4.4).

Pruning drastically reduces the size of each object’s evic-
tion map. Figure 4 shows the effect of pruning on the average
number of eviction records in objects’ eviction maps through-
out a typical access trace of a workload. On average, pruning
reduces the average size of the eviction maps (i.e., the num-
bers of records it contains) by a factor of roughly 387. This
drastically reduces the memory required to store the eviction
records as well as the computational overhead of searching
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Figure 4: The average number of eviction records per object in the
global table throughout the MSR web workload [23] using fixed-rate
SHARDS (R = 0.001) shown with (dashed red line) and without
(solid blue line) pruning. The unsampled access count is shown here
(i.e., not the number of sampled accesses).

through the eviction records when determining if the object
exists in a cache of size S.
SHARDS. On each access, Kosmo must iterate through all
objects in its global table to reconstruct the stacks of various
cache sizes. The global table could include billions of objects.
For this reason, we use SHARDS to spatially sample the
accesses. This lessens the number of objects in the global
table and reduces the stack reconstruction time. The fixed-size
variant of SHARDS (§2.3) is particularly useful for Kosmo
as it limits the size of the global table to a known constant:
the Smax value of SHARDS.
Parallel stack reconstruction. As the reconstruction of a
cache’s stack does not modify the global table, the recon-
struction of the stacks of multiple caches can all be done in
parallel. This improves the response time of Kosmo, but in-
creases the memory overhead because the stacks of all caches
exist in memory simultaneously. This creates a trade-off be-
tween throughput and memory usage. However, as we show
in §4.4, Kosmo uses significantly less memory than MiniSim,
even when reconstructing stacks in parallel.

3.4 Kosmo for LFU
To support the LFU eviction policy specifically, Kosmo main-
tains the following information in its data structures. First,

Algorithm 1: Eviction map for LFU cache object.
Ref :ob ject
Record :map→Map<cache_size, count>

1 Eviction Map LFU:
2 Function Insert(cache_size):
3 map.insert(cache_size,ob ject.global_count)

4 Function FindSmallestExisting():
5 for record in map do
6 if record.count == object.global_count then
7 return record.size+1

8 return ob ject.size

9 Function GetSortingKey(cache_size):
10 rec← map. f ind(≥ cache_size)
11 if !rec then
12 return ob ject.global_count

13 return ob ject.global_count− rec.count

each object in the global table maintains a timestamp of when
the object was last accessed and a counter referred to as the
object’s global count. This counter is incremented by one
each time the object is accessed and is therefore the same
as the object’s frequency count in an ideal LFU cache. Sec-
ond, each eviction record in the object’s associated eviction
map contains the size of the cache from which the object was
evicted, and the object’s global count value when the eviction
occurred. The latter makes it possible to infer the object’s
frequency count for a specific cache size, referred to as the
local count, as it would be in a practical implementation of a
cache of that size. Algorithm 1 contains the pseudocode for
the eviction map’s three main operations.4

We found that while a practical LFU cache regularly vi-
olates the strict inclusion property, it does not violate the
(non-strict) inclusion property often. Although objects in the
stacks of caches of different sizes may be in different orders,
typically, the objects in each cache’s stack are a subset of
the objects in the stack of a larger cache. Experimentally, we
noticed that, on average, only 1.49% of accesses to an LFU
cache cause the (non-strict) inclusion property to be violated.
With Kosmo, we therefore assume that the (non-strict) inclu-
sion property holds for practical LFU caches (unlike Mattson
which assumes the strict inclusion property holds) and show
in our experimentation results that this produces negligible
errors in the resulting MRCs.

To obtain the reuse distance of an object O when it is
accessed, we search for O’s eviction records to identify the
record with the largest cache size S wherein the record’s count
value is equal to the object’s current global count. This record
indicates the object has not been accessed in a cache of size
S since O was last evicted (at which time this record was
inserted) and therefore the object does not exist in any caches

4Our descriptions here assume fixed-sized objects, though the algorithms
shown in the listings accommodate variable-sized objects as described in §3.6
(i.e., object.size [variable-sized] in the listings corresponds to 1 [fixed-
sized] in the text).
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of sizes S′ ≤ S. The object’s reuse distance is then S+1. If
no eviction record which satisfies this condition is found, we
can conclude the object exists at all cache sizes, so the reuse
distance is 1.

To reconstruct the stack of a cache of size S, we use the
eviction map for each object in the global table to (i) deter-
mine if the object exists in a cache of this size, and (ii) if the
object exists, calculate its sorting key. To determine if the ob-
ject exists in a cache of size S, we simply check if S is greater
than or equal to the object’s reuse distance. If the object is
found to exist, its sorting key is the object’s local count paired
with its last access time. Once calculated, the object then can
be placed in the correct position in the reconstructed stack.

To calculate the local count of an object O in a cache of size
S, we search O’s eviction map for an eviction record with the
smallest cache size S′ that satisfies S′ ≥ S. If no such record
exists, then O has never been evicted from any cache of size
S′ ≥ S since O was first accessed, therefore its local count is
equal to its global count. Otherwise, if an eviction record with
size S′ ≥ S is found, the local count is O’s global count minus
O’s global count when it was evicted from the cache of size
S′ (i.e., the count value in the eviction record), given that the
local count should equal the number of accesses to O since
its last eviction.

After reconstructing the LFU stack of a cache, Kosmo se-
lects the object at the top of the stack (i.e., the object with the
smallest sorting key) for eviction. A new eviction record is
inserted with the cache size and the object’s global count into
said object’s eviction map.

3.5 Other eviction policies
The Kosmo algorithm, as described in §3.2, is not designed for
any specific eviction policy. Kosmo can generate MRCs for
other eviction policies by using the same process, but using
policy-specific implementations for the eviction maps. Here,
we describe eviction maps for five other policies, namely
FIFO, 2Q, LRFU, LRU, and MRU as examples.

FIFO. The design of the FIFO eviction map is fundamentally
different than that of the LFU eviction map. A FIFO eviction
record indicates the cache sizes for which an object does exist
in the cache, whereas an LFU eviction record indicates the
cache sizes for which it does not. Each eviction record in a
FIFO eviction map records the cache size S and the entry
time of the object at size S. The record indicates an object’s
entry time for caches of sizes S′, where S ≤ S′ < Snext and
Snext is the cache size stored in the eviction record with the
next largest cache size. Algorithm 2 contains the pseudocode
for the eviction map’s three main operations.

On every access to an object, as the object must exist at
all cache sizes immediately after it has been accessed, a new
eviction record with a cache of size 1 is inserted into the
object’s associated eviction map if a record with a cache size
of 1 does not already exist. This eviction record stores the

Algorithm 2: Eviction map for FIFO cache object.
Ref :ob ject
Record :map→Map < cache_size, timestamp >

1 Eviction Map FIFO:
2 Function Insert(cache_size):
3 rec← map. f ind_largest(≤ cache_size)
4 rec.cache_size = cache_size+1
5 map.remove(≤ cache_size)

6 Function FindSmallestExisting():
7 rec← map. f ind_smallest()
8 return rec.cache_size

9 Function GetSortingKey(cache_size):
10 rec← map. f ind_largest(≤ cache_size)
11 if !rec then
12 return 0

13 return rec.timestamp

entry time (i.e., the current time) of the object for any cache
size smaller than the object’s reuse distance (i.e., any cache
size at which the object does not currently exist).

An eviction record also gets added for an object O when
it gets evicted. To insert a new eviction record for a cache of
size S into the eviction map of O, we first locate the record
with the largest cache size S′ such that S′ ≤ S. This record
holds the object’s entry time E into a cache of size S. We then
insert a new eviction record with cache size S+1 and entry
time E into the eviction map to indicate this object is being
evicted from all caches of sizes S′ ≤ S. Finally, we perform
pruning by removing all records with cache sizes S′ ≤ S.

The reuse distance of an accessed object can be determined
using the object’s eviction map as the smallest cache size S
contained in the eviction records. By definition, a cache of
size S is the smallest cache which contains the object.

When reconstructing the stack of a cache of size S, the
objects’ sorting keys are their entry times into the cache. To
determine the entry time of an object O in a cache of size S,
we find the eviction record with the largest cache size S′ in
O’s eviction map such that S′ ≤ S. The entry time contained
in this record is the object’s entry time for a cache of size S.

2Q. The 2Q eviction map maintains two sets of eviction
records: one corresponding to the A1 stack, and the other
corresponding to the Am stack. While 2Q further partitions
the A1 stack into two stacks, A1in and A1out, we model both
as a single combined FIFO stack with a single set of eviction
records since objects evicted from A1in are placed at the head
of A1out. The position in the combined FIFO stack deter-
mines whether an object being accessed a second time should
be promoted to Am. Each record in the A1 set of eviction
records holds the same information as FIFO eviction records
and can be used to determine the entry time of an object in
the A1 stack. For an object to exist in the Am stack, it must
have been accessed at least twice. We can track the number
of accesses of each object at varying cache sizes using the
same method we used for LFU eviction records. The handling
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Algorithm 3: Eviction map for 2Q cache object.
Ref :ob ject
Record :a1_map→Map < cache_size, timestamp >
Record :am_map→Map < cache_size,count >
Record :Kin,Kout

1 Eviction Map 2Q:
2 Function Insert(cache_size):
3 insert_a1(cache_size∗ (Kin+Kout))
4 insert_am(cache_size)

5 Function FindSmallestExisting():
6 a1_rec← a1_map. f ind_smallest()/(Kin+Kout)
7 am_rec← am_map. f ind_smallest(count ≥ 2)
8 if !am_rec then
9 return a1_rec.cache_size

10 return am_rec.cache_size

11 Function GetSortingKey(cache_size):
12 a1in_size← cache_size∗Kin
13 a1out_size← cache_size∗ (Kin∗Kout)
14 a1in_rec← a1_map. f ind_largest(≤ a1in_size)
15 a1out_rec← a1_map. f ind_largest(≤ a1out_size)
16 if !a1out_rec then
17 return A1(a1in_rec.timestamp)

18 am_exists← map. f ind_any(> a1in_size and
≤ a1out_size and ob ject.global_count− count ≥ 2)

19 if !am_exists then
20 return A1(a1out_rec.timestamp)

21 return Am(ob ject.last_access_time)

of an access to the eviction map’s associated object and the
insertion of a new eviction record are done using the same
methods previously described for the LFU and FIFO evic-
tion maps. Algorithm 3 contains the pseudocode for the 2Q
eviction map’s three main operations.

An object will have different a reuse distance depending on
whether it is in the A1 or the Am stack. Therefore we calculate
two different reuse distances assuming the object is in each
stack and select the smaller value (as the cache associated
with the larger reuse distance will inherently also contain the
object according to the inclusion property). Similar to the
FIFO eviction map, we find the smallest A1 stack of size SA1
which contains the object by finding the eviction record in
the A1 eviction record set with the smallest cache size. The
corresponding cache size which contains the object is then
SA1/(Kin+Kout). We then search the Am eviction record
set for the eviction record with the smallest cache size which
has a local count ≥ 2. This eviction record corresponds to the
smallest cache of size SAm which contains the object in the Am
stack. If no such record exists, the object must exist in the A1
stack and the previously calculated cache size corresponding
to the A1 stack is selected as the reuse distance. Otherwise,
the reuse distance is min(SA1/(Kin+Kout),SAm).

When reconstructing a 2Q stack, we reconstruct the A1
and Am stacks separately. Unlike the previously described
policies, an object in a 2Q cache can exist in one of three
different stacks: A1in, A1out, or Am. To determine in which
stack an object exists for a cache of size S, we use the object’s

2Q eviction map to determine its FIFO entry time if it were to
exist in the A1in or A1out stack and its local count if it were to
exist in the Am stack. As the size of the A1in and A1out stacks
are only a ratio of the total cache size, we find the object’s
entry time in the A1in and A1out stacks for caches of size
SA1in = S∗Kin and SA1out = S∗ (Kin+Kout), respectively.5

If no entry time is found for the object in the A1out stack, it
must exist in the A1 stack with the associated A1in entry time.
If an entry time is found for the object in the A1out stack, we
search the Am eviction records to determine if the object has a
local count≥ 2 for a cache of size SA1in < S′ ≤ SA1out . If such
a record exists, it indicates the object has been accessed at
least twice while existing in the A1out stack and is therefore
in the Am stack. Otherwise, it is in the A1 stack with the
associated A1out entry time.

The implementation of an eviction map for the S3-FIFO
eviction policy [34] is a simple adaptation of the eviction
map for the 2Q eviction policy.6 We believe a similar tech-
nique would work for other multi-stack eviction policies (e.g.,
ARC [35]) and leave this for future work.
LRFU. The LRFU eviction map is implemented similarly to
that of FIFO. Each object in a cache has an associated CRF
value (§2.1). Each eviction record in an LRFU eviction map
contains the cache size S and the CRF value of the object at
S. Such a record identifies the CRF value of the associated
object for caches of sizes S′, where S ≤ S′ < Snext and Snext
is the cache size stored in the eviction record with the next
largest cache size.

Similar to when using a FIFO eviction map, the reuse dis-
tance of an accessed object can be determined using the ob-
ject’s eviction map as the cache size contained in the eviction
record with the smallest cache size.

On each access to object O, a new eviction record is added
to O’s eviction map with S set to 1 and CRF set to F(0).
Moreover, the CRF value of each eviction record is updated
using the current CRF value and the object’s last access time.
Each time an object O is evicted, a new eviction record is
inserted into O’s eviction map. This process is identical to
that of a FIFO eviction map.

When reconstructing the stack of a cache of size S, the

5Here, we use the combined size of the A1in and A1out stacks when
searching for the object’s entry time in the A1out stack as the stacks behave
as one coherent FIFO stack.

6We have also designed eviction maps to support the S3-FIFO eviction
policy [34]. It uses three sets of eviction records: one for the “small” stack,
one for the “main” stack, and one to track the number of accesses to each
object (as with LFU and 2Q eviction records). When reconstructing the S3-
FIFO stack, Kosmo reconstructs a separate stack for the “small” and “main”
stacks (the “ghost” stack is inherently maintained by the object’s existence
in Kosmo’s global table). When updating the eviction maps of objects, if an
object in the “main” stack is selected for eviction though has a local count
≥ 1, it’s local count is reduced by 1 and its eviction record is not further
updated. We measured similar performance results (including throughput,
memory usage, and accuracy) as with that of 2Q in §4.4. Further details on
the implementation of Kosmo’s eviction map for the S3-FIFO eviction policy
and its evaluation are omitted due to space limitations.
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objects in the stack are ordered by their CRF values from
smallest to largest. To determine the CRF value of an object
O in a cache of size S, we find the eviction record with the
largest cache size S′ in O’s eviction map such that S′ ≤ S. The
CRF value contained in this record is the object’s CRF value
at a cache of size S.
LRU. Because the LRU eviction policy adheres to the strict
inclusion property, the order of the objects in the simulated
caches (of different sizes) will always be the same and can be
determined using the objects’ last accessed times.7 By simply
storing the reuse distance D of each object as the sole eviction
record in its eviction map, Kosmo can reconstruct the stack of
a cache of size S by first determining which objects exist in
the cache (any object where its reuse distance D′ ≤ S), then
ordering the objects that exist by their last access times.

As an object is moved to the front of the LRU stack each
time the object is accessed, immediately after, it will exist in
the stacks of all caches, regardless of size, until it is again
evicted from a cache. Therefore, each time an object is ac-
cessed, its associated eviction map updates the object’s stored
reuse distance to 1 to indicate it now exists at all cache sizes.

Upon each access to an object, to select which objects to
evict from the reconstructed cache stacks, an object may be
selected for eviction from multiple of these caches. As the
object’s eviction map has only one eviction record, the object
is evicted from the cache with the largest size. In doing so, as
LRU adheres to the inclusion property, Kosmo is effectively
evicting the object from all caches of smaller sizes as well.
MRU. The implementation of an eviction map for the MRU
eviction policy is virtually identical to that of the LRU policy
except that the sorting key in the MRU eviction map is the
negative value of the object’s last access time.

3.6 Variable object sizes
The Kosmo algorithm described thus far generates MRCs
assuming the cache is being used for fixed-size objects. How-
ever, modern applications use caches to store objects of vary-
ing size (e.g., key-value caches). As such, the MRCs gener-
ated by these algorithms may not adequately represent the
miss ratios experienced by the caches under these workloads.
Figure 5 demonstrates the difference in MRCs for the same
workload when taking variable-sized objects into account ver-
sus not taking them into account. It is evident that these two
MRCs differ significantly and variable-sized objects should
be accounted for accordingly in MRC generation algorithms.

With fixed-sized objects, Kosmo inserts an eviction record
into the eviction map of only one object when a new object
is accessed. However, with variable-sized objects, more than
one object may need to be evicted. A simple modification

7In practice, one would always generate an MRC for the LRU eviction
policy using SHARDS and Olken as it is far more efficient than any other
known methods. We present a method of generating this MRC using Kosmo
simply to demonstrate Kosmo’s generality.
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Figure 5: MRCs for the MSR web workload [23] for fixed versus
variable-sized objects using the LFU eviction policy.

allows the algorithm to handle variable-sized objects. While
a cache’s stack is being reconstructed, the cache’s used size is
calculated by summing the size of all objects which exist in
the cache. Objects are then evicted from the top of the stack
until the total used size of the cache is less than or equal to
the cache’s size.

3.7 TTLs
Taking time-to-live (TTL) parameters into account can signif-
icantly affect the resulting MRC [36]. Minor modifications
to the Kosmo algorithm can allow for the support of TTL
parameters for objects. When an object is first accessed, a cor-
responding expiry time is calculated based on its TTL. If the
TTL is 0, no expiry time is specified. Expiry time describes
the time at which the object should be evicted from all caches,
regardless of size. To handle this in Kosmo, when iterating
through the global table upon each access to reconstruct a
cache’s stack, each object’s expiry time is compared against
the current time (i.e., the time of the current access). If the
object has not expired and exists in the cache, it is added to
the stack; otherwise, it is excluded.

3.8 Simultaneous MRC generation
One key advantage of Kosmo is its ability to generate MRCs
for multiple eviction policies simultaneously in a single pass.
In the previous descriptions of eviction maps, each object in
the global table has one associated eviction map. The type of
eviction map used is based on the eviction policy for which
an MRC is being generated. A simple extension to the global
table to allow each object to have multiple associated eviction
maps – one for each eviction policy – allows Kosmo to recon-
struct the internal stack of any cache size with any eviction
policy for which an eviction map has been defined.

Minor modifications to the previously described Kosmo
algorithm (§3.2) must be made to support multi-policy MRC
generation. As an MRC must be generated for each eviction
policy, the algorithm must maintain a separate histogram per
policy. Upon access, an object’s reuse distance is calculated
for each eviction policy and its corresponding histogram is
updated. Moreover, each policy being considered will need
its own cache simulations, and each cache’s stack is recon-
structed in the policy-specific way independently.
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4 Evaluation
We evaluated Kosmo using 52 publicly-accessible cache ac-
cess traces from MSR [23], Twitter [3], and SEC [37, 38].
Table 2 shows a summary of the datasets we used in our eval-
uation. For the Twitter dataset, we used the recommended
traces as specified by Twitter [39] as well as 7 other randomly
selected traces in the dataset.8 Similar to prior studies, we only
considered the GET/READ accesses in each trace [20, 40].

For LFU and FIFO, we evaluated Kosmo’s performance
using all 52 access traces. For 2Q and LRFU, we used all
access traces in the MSR and SEC datasets, and 5 randomly
selected access traces the Twitter dataset.9

We ran both Kosmo and MiniSim with three configura-
tions of SHARDS: one fixed-rate and two fixed-size. The
authors of SHARDS noted that for fixed-rate SHARDS, an R
value of 0.001, and for fixed-size SHARDS, an Smax value of
2,048 produce reasonably accurate MRCs [17]. We selected
these same values for our simulations, but also used fixed-size
SHARDS with an Smax value of 1,024 to examine the memory
and throughput benefits as well as the reduction in accuracy.
For all fixed-size configurations of SHARDS, we used an
initial sampling rate of R = 0.1 as we found this produces
accurate results.

4.1 MiniSim implementation
We implemented the MiniSim algorithm as described by the
original authors of the paper, with the same configuration pa-
rameters [18]. The authors only describe MiniSim configured
using the fixed-rate SHARDS variant; therefore, we extended
MiniSim to also support the fixed-sized SHARDS variant.

Unlike fixed-rate SHARDS, which keeps the sampling rate
R constant throughout the access trace, fixed-size SHARDS
gradually decreases R to ensure that at any given time there
are at most Smax distinct objects in the MRC generation algo-
rithm’s internal data structures. SHARDS tracks these unique
objects in a set S. To extend MiniSim to support fixed-size
SHARDS, we initially scale each simulated cache size by
the initial sampling rate R. For each access, if the sampling
rate R is decreased to Rnew, we remove all objects no longer
in S from all simulated caches. We then rescale the size of
each simulated cache by Rnew using the eviction policy of
the cache. A key insight is that when rescaling the size of a
simulated cache, we also rescale the cache’s access counter
(i.e., the number of accesses the cache has observed) and hit
counter by the factor Rnew/Rold .

The implementation of MiniSim described in the original
paper statically allocates the required memory for each simu-
lated cache before processing an access trace. This is possible
as the sampling rate R, and thus the size of each simulated

8The randomly selected traces are: cluster1, cluster3, cluster8,
cluster10, cluster26, cluster50, and cluster53.

9The randomly selected traces are: cluster7, cluster22, cluster31,
cluster45, and cluster50.

Table 2: Access trace datasets used in our simulations.

Dataset Access traces Total accesses
MSR [23] 13 434,212,008
Twitter [3] 24 99,200,180,813
SEC [37, 38] 15 26,482,889,754

cache, is fixed. In our extension, to support a varying sam-
pling rate, we allocate memory dynamically so as to be able
to release memory when R decreases.

Our LFU implementation follows a well-known algorithm
optimized for throughput to allow for constant time com-
plexity for each access [41]. Our implementation of 2Q fol-
lows that described by the original authors [29]. We used Kin
and Kout values of 25% and 50%, respectively, for both our
Kosmo and MiniSim simulations. These were the same val-
ues used by the original authors. Our implementation of the
LRFU eviction policy follows the description in the original
paper [27]. We arbitrarily selected a λ value of 0.5 for our
experiments though experimented with other values of λ, such
as 0.001, and found the results to be similar.

4.2 Environment
All experiments were done on Ubuntu 22.04.2 with an
AMD Ryzen Threadripper 3990x (64 cores) with 256GB of
DDR4− 3200MHZ DRAM. The access traces were stored
in binary format on a Sabrent Rocket Q 8TB. Both Kosmo
and MiniSim use a thread pool with separate threads for each
of Kosmo’s reconstructed stacks and MiniSim’s simulated
caches. We tested various thread pool sizes and noticed the
best performance for MiniSim when the thread pool’s size
was equal to the number of cores. Kosmo’s performance re-
mained the same after the thread pool’s size exceeded the
configured granularity.

4.3 Metrics
Three metrics were used in the evaluation of the algorithm:
memory usage, throughput, and accuracy.
Memory usage. To measure the memory usage of each al-
gorithm, for each access trace, we ran the algorithm in an
isolated process and measured the high water mark [42] after
it had processed the entire access trace. This metric has been
used in prior work to evaluate the memory usage of MRC
generation algorithms [17].
Throughput. To measure the throughput of each algorithm,
for each access trace, we divided the total runtime by the
number of accesses in the trace. IO time is excluded from the
measurement of the total runtime.
Accuracy. To measure the error of both Kosmo and MiniSim,
we calculated the mean absolute error (MAE) of each of the
generated MRCs using the corresponding exact MRC. As no
algorithm exists capable of generating exact MRCs for the
LFU, FIFO, 2Q, and LRFU eviction policies, we performed
100 full simulations of caches of varying size (evenly dis-
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tributed over the access trace’s working set size) for each
policy and for each access trace. These 100 points are the
same points selected when running MiniSim. To measure the
error, we found the MAE by calculating the difference be-
tween the exact MRC and the approximate MRCs generated
by Kosmo and MiniSim at these points.

4.4 Results
Figures 6-8 show the performance results of Kosmo and Mini-
Sim. For each algorithm, the range of results for the various
traces in the datasets is shown.

Figure 6 shows the memory usage results of Kosmo and
MiniSim for the LFU, FIFO, 2Q, and LRFU eviction poli-
cies. We found that Kosmo uses an average of 3.6 times less
memory, and up to 36 times less in the extreme case. Figure 7
shows the throughput results of Kosmo and MiniSim for the
LFU, FIFO, 2Q, and LRFU eviction policies. We found that
Kosmo has an average throughput 1.3 times higher than that
of MiniSim. Notably, for the 2Q eviction policy, Kosmo has
a lower average throughput than MiniSim (0.54 times that
of MiniSim). This is attributed to Kosmo reconstructing two
stacks (A1 and Am) on each access.

Figure 8 shows the MAE results of Kosmo and MiniSim for
the LFU, FIFO, 2Q, and LRFU eviction policies. We found
Kosmo and MiniSim to typically generate MRCs with sim-
ilar accuracy. Across all simulations, Kosmo and MiniSim
had an average MAE within 0.25% of one another. Although
Kosmo generates MRCs with lower MAEs, on average, for
LFU and LRFU (0.16% and 0.86% lower for LFU and LRFU,
respectively), it generates MRCs with higher MAEs, on av-
erage, for FIFO and 2Q (0.44% and 1.56% higher for FIFO
and 2Q, respectively). This is attributed to the higher rates of
violations of the inclusion property for FIFO and 2Q, which
we show in §4.5. Further, although the average MAE for the
MRCs generated by Kosmo for 2Q is 1.56% higher than those
generated by MiniSim, the median is only 0.35% higher. This
is attributed to the high MAE of one access trace, src1 in the
MSR dataset [23], which has an unusually high MAE. This
access trace violates the inclusion property at a significantly
higher rate than other access traces.

To evaluate the CPU usage of Kosmo and MiniSim, we
measured the CPU time per access for each access trace. Fig-
ure 9 shows that Kosmo’s CPU time per access is roughly
1.85 times higher than that of MiniSim for LFU and 2 times
higher for FIFO, 2Q, and LRFU. The inconsistency between
the lower average CPU time per access of MiniSim than that
of Kosmo, and the higher average throughput of Kosmo than
that of MiniSim can be attributed to MiniSim’s threads idling
more frequently than Kosmo’s threads.

To evaluate the effects of varying the number of MiniSim’s
simulated caches on its performance, we also tested MiniSim
with 20 and 50 simulated caches for the LFU eviction policy.
With 20 simulated caches, MiniSim consumes roughly 1.2
times the memory of Kosmo on average and exhibits roughly
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Figure 6: Memory usage of Kosmo and MiniSim for all eviction
policies. Note the logarithmic scale of the y-axis.
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Figure 7: Throughput of Kosmo and MiniSim for all eviction policies.
Note the logarithmic scale of the y-axis.
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Figure 8: MAE of Kosmo and MiniSim for all eviction policies.
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Figure 9: CPU time per access for the LFU, FIFO, 2Q, and LRFU
eviction policies for MiniSim (left, black) and Kosmo (right, red)
using fixed-sized SHARDS (Smax = 2,048).

similar throughput, however it has roughly 2 times the MAE
of Kosmo. With 50 simulated caches, MiniSim consumes
roughly 2.3 times the memory of Kosmo and has 10% lower
throughput with roughly identical MAE. Notably, as discussed
in §2.3, the Cmax value of MiniSim must be selected before
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knowledge of the access trace, therefore using a low number
of simulated caches such as these may result in unobservable
points of interest on the MRC.

4.5 Inclusion property violations
Figure 10 shows the percentage of accesses for which a vio-
lation of the inclusion property occurs (i.e., accesses which
reference an object that does not exist in a cache of size S
though exists in a cache of size S′ < S) for the LFU, FIFO,
2Q, LRFU, and MRU eviction policies across all access traces
in the MSR dataset [23]. We found these violations by simu-
lating 100 caches of varying sizes evenly distributed over the
access trace’s working set size and, for each access, finding
the smallest simulated cache in which the object exists, then
searching for a larger cache in which it does not.

To examine the severity of these violations, indicated by
the difference between the size of the smaller cache wherein
an object exists and the larger cache wherein it does not, we
repeated these simulations with 50 and 10 simulated caches.
This increases the size intervals between the simulated caches
and thus, if the number of violations remains high, we can
infer the violations occur in large ranges of cache sizes.

For the LFU eviction policy, we found that 1.49% of ac-
cesses violated the inclusion property when measured with
100 simulated caches. This reduces by 40.91% and 99.3%
to 0.88% and 0.01% when measured with 50 and 10 points,
respectively. For the FIFO eviction policy, we found that
20.61% of accesses violated the inclusion property with
100 points, reducing by 18.46% and 77.23% to 16.81% and
4.69% for 50 and 10 points, respectively. For the 2Q eviction
policy, we found that 10.49% of accesses violated the inclu-
sion property with 100 points. This reduces by 39.39% and
84.25% to 6.36% and 1.65% for 50 and 10 points, respec-
tively. We found that violations of the inclusion property are
rare for the LRFU eviction policy (0.08% of accesses violated
the inclusion property with 100 points). The higher rates of
violations of FIFO and 2Q can explain the higher MAEs of
MRCs generated by Kosmo for these policies, however these
errors are typically negligible. Interestingly, we found that
MRU violates the inclusion property at a higher rate than the
other evaluated eviction policies with an average of 29.12%
when simulated with 100 points, while MRU is often consid-
ered to not violate the inclusion property [18, 43–45].10

5 Related work
Much prior work has focused on improving the performance
of in-memory caches [29, 32, 33, 46–55]. Many studies have
suggested new eviction policies to improve on observed limi-
tations of policies such as LRU [27, 29, 35, 50, 53, 56–60].

There have been many proposed MRC generation algo-
rithms [14–20, 30, 40, 44, 61–64], however, these are largely

10We note that violations of the inclusion property only occur for the MRU
eviction policy when considering variable-sized objects.
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Figure 10: Ratio of accesses for which a violation of the inclusion
property occurs for the LFU, FIFO, 2Q, LRFU, and MRU eviction
policies across all workloads in the MSR dataset [23] when simu-
lated with 100, 50, and 10 points.

focused on the LRU eviction policy. Beckmann and Sanchez
describe a probabilistic method of generating MRCs for other
age-based eviction policies [61], such as protecting distance
based policy (PDP) [53] or inter-reference gap distribution
replacement (IGDR) [59].

Yu et al. propose an extension to MiniSim, called DF-
Shards, to modify the number of simulated caches during
runtime [44]. We found that the cost of instantiating a new
simulated cache significantly reduces the throughput of DF-
Shards making it unsuitable for online MRC generation.

MRCs are widely used to improve the performance of
caching systems [46, 65–69]. Talus partitions caches to re-
move identified cliffs in MRCs [46]. Cliffhanger identifies
and flattens cliffs noticed in an MRC in real-time, while pro-
cessing an access trace [32]. mPart uses MRCs to manage
the allocation of caches in multi-tenant caching servers [66].
Dynacache also uses MRCs to manage cache allocation; how-
ever, the authors also note that modifying the eviction policy
in real-time can improve cache performance [68].

6 Concluding remarks
In this paper, we propose Kosmo, a novel method for the
simultaneous generation of miss ratio curves (MRCs) for
multiple eviction policies. We showed that the current method
of generating MRCs for eviction policies that do not adhere to
the strict inclusion property have significant memory overhead
and are therefore not suitable for online MRC generation. Our
experimental results show that Kosmo uses significantly less
memory than MiniSim configured with 100 simulated caches
while maintaining similar accuracy. Kosmo uses 3.6 times
less memory than MiniSim on average, up to 36 times less in
the most extreme case. Kosmo has an average throughput 1.3
times that of MiniSim.

In the future, we plan to expand Kosmo’s supported evic-
tion policies to more complex policies, such as LHD [50],
LIRS [70], or ARC [35]. We also plan to improve on Kosmo’s
throughput by reducing its computational overhead through
the use of more specialized data structures.

Acknowledgements. We thank the reviewers for their con-
structive comments. We particularly thank our shepherd Carl
Waldspurger, whose guidance was instrumental in signifi-
cantly improving the paper.
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A Artifact Appendix
Abstract
The Kosmo artifact provides our implementations of both
Kosmo and MiniSim which were used to generate the results
presented in this paper. The artifact repository includes three
tools: one to calculate an access trace’s working set size,
one to compute an access trace’s accurate MRC for a given
eviction policy, and one to generate an approximate MRC
(while measuring memory usage, throughput, and accuracy)
for both Kosmo and MiniSim. Specific details on each tool’s
usage can be found in the artifact’s README.

Scope
In our evaluation we make the following claims which can be
verified by this artifact:
• Kosmo has lower memory overhead than MiniSim by a

factor of 3.6 on average, up to a factor of 36.
• Kosmo has a higher throughput than MiniSim by a factor

of 1.3 on average.
• Kosmo has a roughly equivalent MAE to MiniSim.

Contents
The artifact compiles to three binaries (further details, includ-
ing the specific usage of each tool and format of input data is
provided in the artifact’s README):
1. wss: This tool calculates the working set size of a given

access trace.
2. accurate: This tool runs full simulations to compute the

accurate MRC for a given access trace.
3. mrc: This tool runs Kosmo or MiniSim (or both) to gen-

erate an MRC for a given access trace.

Hosting
The artifact can be found at: 10.5281/zenodo.10569925.

Requirements
The artifact was compiled and tested using Rust
v1.77.0-nightly and depends on Gnuplot v5.4 to
generate plots.
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Abstract

New storage interfaces continue to emerge fast on Non-
Volatile Memory Express (NVMe) storage. Fitting these in-
novations in the general-purpose I/O stack of operating sys-
tems has been challenging and time-consuming. The NVMe
standard is no longer limited to block-I/O, but the Linux I/O
advances historically centered around the block-I/O path. The
lack of scalable OS interfaces risks the adoption of the new
storage innovations.

We introduce I/O Passthru, a new I/O Path that has made
its way into the mainline Linux Kernel. The key ingredi-
ents of this new path are NVMe char interface and io_uring
command. In this paper, we present our experience building
and upstreaming I/O Passthru and report on how this helps
to consume new NVMe innovations without changes to the
Linux kernel. We provide experimental results to (i) com-
pare its efficiency against existing io_uring block path and (ii)
demonstrate its flexibility by integrating data placement into
Cachelib. FIO peak performance workloads show 16-40%
higher IOPS than block path.

1 Introduction

The Non-Volatile Memory Express (NVMe) protocol has
been the unquestionable catalyst for the broad adoption of
NAND-based storage devices and Solid-State Drives (SSDs).
NVMe continues to bring new capabilities in terms of per-
formance and functionality. Low latency, high bandwidth
SSDs (such as Intel optane [61], Kioxia’s FL6 [11], Sam-
sung’s ZNAND [25]) use NVMe as the protocol of choice.
Functionality expansion comes from new commands and
command sets that make NVMe viable for unconventional
block storage. In the past few years, several non-block stor-
age interfaces have gained popularity and, lately, standard-
ization in NVMe. Specifically, in data-placement solutions,
Open-Channel SSDs [37, 44, 47] gained popularity in the
academia and industry and eventually opened the door for the
standardization of Zoned Namespaces (ZNS) in NVMe. As

of today, NVMe standardizes several new interfaces, includ-
ing Multi-Stream (NVMe Directives) [19], Key-Value [19],
Zoned Namespaces [19], and Flexible Data Placement [17];
more interfaces such as Computational Storage [23] are still
under development.

It is relevant to note that all of these new interfaces re-
quire vertical integration across different storage stack layers
(driver, block-layer, file systems) and define new user inter-
faces to accommodate new device interfaces. Such changes
are not always welcomed, as they go against the principle of
maintaining a stable and general-purpose operating system.
Linux Kernel goes to great lengths to abstract the hardware
and never breaks the user-space. This presents a difficult trade-
off as robustness and maintenance of the operating system
lock horns with early enablement and adoption of NVMe
innovations.

In this paper, we present I/O Passthru, a novel I/O path
in mainline Linux kernel that (i) allows the deployment of
any new NVMe feature much faster as it is devoid of extra
abstractions and (ii) provides an efficient and feature-rich
user-interface. To summarize, our main contributions are the
following:

• We build a new NVMe passthrough I/O path which pro-
vides higher flexibility and efficiency than the block I/O
path (Section 4). We provide examples of how this path
enables NVMe interfaces, such as flexible data place-
ment, computational storage, and end-to-end data pro-
tection (Section 6).

• We introduce io_uring command, a generic facility to
implement asynchronous IOCTLs in the Linux kernel.
We detail its API and design (Section 4.2.1).

• We get this path upstream in the Linux Kernel (Section
5) and integrate it into user-space software, including
SPDK, xNVMe, liburing, fio and nvme-cli (Section 5.2).

• We elaborate on factors that influence the efficiency
of I/O and evaluate the proposed path. FIO peak-
performance workloads show 16-40% higher IOPS (Sec-
tion 7.1).
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2 Motivation and Background
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Figure 1: Abstraction layers across different I/O paths and its
failures undermining usability, availability and efficiency

2.1 NVMe innovations vs Kernel abstractions
The primary motivation is the fast-paced growth of NVMe
innovations and the Linux kernel’s agility, or lack thereof,
to consume those. NVMe, initially meant to support only
block storage, is no longer tied to it. This is possible after
the introduction of an entity named command-set in NVMe
standard [19]. NVMe 2.0 specification defines three command
sets:

• NVM command set corresponds to block storage. Nev-
ertheless, it continues to grow newer ways of interacting
with storage. For example, (i) data-placement methods
like multi-stream and FDP [17] involve passing hints
with write, (ii) copy command that does not involve host
buffers and performs in-device copy instead.

• Zoned namespace command set exposes zones to the
Host and presents new I/O commands such as zone-
append and zone-management send/receive.

• Key-value command set does away with fixed-size logi-
cal blocks and speaks keys/values instead.

Moreover, new command sets for computational-storage are
shaping up. Command sets convey the divorce of NVMe from
block-only storage, thereby ensuring faster future innovation.

As for the Linux kernel, generic abstractions are at the
foundation. Figure 1 briefly describes various I/O paths in
the Linux kernel. NVMe driver collaborates with the block
layer, abstracts NVMe protocol, and presents a block device

/dev/nvme0n1 to the upper layer. This block device interface
helps the file system to be NVMe agnostic. For example, the
file system sends a write operation to the block device by
forming a bio with REQ_OP_WRITE, which is translated to a
protocol-specific write command by the underlying driver.
The block interface is the bedrock that file systems use to
create file abstraction. File systems collaborate with VFS to
provide specific implementations of certain user-space APIs
that are invoked as system calls. For the syscall users, the file
system itself is abstracted. This is shown as path (A) in the
figure. Path (B) is a subset when the block device is operated
directly without any file system. Figure 1 outlines specific
problems with the existing I/O paths:

• Many new NVMe commands do not fit into the exist-
ing user interface. Adding a new system call requires
a more generic use case than the NVMe-specific one.
Furthermore, a new syscall is discouraged as it has to
be supported indefinitely [1]. Consequently, there is an
increase in NVMe interfaces that still need a user inter-
face in Linux. For example, zone-append [35], a variant
of nameless writes [27] tailored for zoned storage which
is supported by the block layer for in-kernel users, but
lacks a user-space API due to the unconventional seman-
tics. Also, while we count on several mentioned tech-
nologies to improve in-device data-placement decisions,
we still do not have a streamlined way to communicate
placement information with the existing write APIs. Fi-
nally, despite several efforts to open-source support for
copy-offload [43, 54] given the existing hardware sup-
port [38, 45], we are yet to see mainline support with a
matching user interface.

• One way to alleviate the user-interface scarcity is by us-
ing the NVMe passthrough path, shown as (C) in the fig-
ure. This path is devoid of file/block abstractions. Appli-
cations can send the NVMe command using the ioctl
syscall [5]. However, this path comes at the cost of effi-
ciency, as ioctl is a synchronous operation and not a
good fit, particularly for the highly parallel NVMe stor-
age. Apart from blocking nature, ioctl (and therefore
passthrough I/O path) is far from various advancements
(outlined in the Section 2.2) that have gone into regular
read/write I/O path.

• All three paths (A), (B), and (C) rely on the block in-
terface. However, availability of block-interface is not
guaranteed. There are various situations when the block
interface goes haywire. For example, (i) if a namespace
is configured to transfer data and metadata as extended
LBA(logical block address), the block device is marked
with zero-capacity, which prevents further block/file I/O,
(ii) ZNS device without zone-append is marked read-
only, (iii) ZNS device with non-power of two zone-size
is marked hidden, and (iv) any non-block command-set,
e.g., Key-value, can not be operated with the block inter-
face.
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2.2 I/O advances with io_uring
io_uring is the latest and most feature-rich asynchronous I/O
subsystem in Linux [29]. It operates at the boundary of user-
space/kernel and covers storage and network I/O. The commu-
nication backbone is a pair of ring buffers, Submission Queue
(SQ)/Completion Queue (CQ), shared between user-space
and kernel. The application creates these rings by calling
io_uring_setup call. It prepares the I/O by extracting an
entry from SQ called SQE. It fills up the SQE and submits the
I/O by calling io_uring_enter system call [6]. Finally, it
obtains the completion by extracting an CQE entry from CQ.
io_uring brings various advancements in the I/O path, some
of which are outlined below:

• Batching:Allow submission of multiple I/O requests in
one shot with a single system call.

• SQPoll:Syscall-free submissions. The application can
offload the submission of I/O to a kernel thread that
io_uring creates.

• IOPoll:Completion can be polled by setting IOR-
ING_SETUP_IOPOLL flag on the ring. This gives
interrupt-free I/O.

• Chaining:Allows to establish ordering/dependencies
among multiple commands at the time of submission.
For example, write followed by a read (i.e., copy se-
mantics) and commonly used sequence open-read-close.
This is possible by chaining adjacent SQEs with the flag
IOSQE_IO_LINK and submitting the entire chain in a
go with a single syscall.

Ever since its inception, io_uring has added async variants
of various sync system calls [52]. Two methods for turning a
sync operation into async are outlined below.

• Worker-based async: spawn a worker thread and del-
egate sync operation to it. The advantage is the low
implementation effort. However, this causes overheads
and does not scale.

• True-async: fast and scalable as it does not involve
worker threads. It relies on ensuring that the submitter
does not block during the submission. Implementation
effort grows as all components participating in the oper-
ation (e.g., file system, driver) should provide wait-free
compliance.

io_uring employs both methods depending on the operation.
For more common read/write operations, it uses true-async
and falls back to worker-based async if need be. For known
blocking operations (e.g., mkdirat, fsync), worker-based async
is used in the first place itself.

3 Design considerations

3.1 Limitations of existing NVMe passthrough
The upstream Linux NVMe driver presents a passthrough
interface to applications using these ioctl-driven opcodes:

• NVME_IOCTL_IO64_CMD is used to send NVMe I/O com-
mands.

• NVME_IOCTL_ADMIN64_CMD is used to send NVMe ad-
min commands.

Both these ioctls operate on struct
nvme_passthru_cmd64, shown in Listing 1.

1 struct nvme_passthru_cmd64 {
2 __u8 opcode;
3 __u8 flags;
4 __u16 rsvd1;
5 __u32 nsid;
6 __u32 cdw2;
7 __u32 cdw3;
8 __u64 metadata;
9 __u64 addr;

10 __u32 metadata_len;
11 union {
12 __u32 data_len;
13 __u32 vec_cnt;
14 };
15 __u32 cdw10;
16 __u32 cdw11;
17 __u32 cdw12;
18 __u32 cdw13;
19 __u32 cdw14;
20 __u32 cdw15;
21 __u32 timeout_ms;
22 __u32 rsvd2;
23 __u64 result;
24 };

Listing 1: control structure that user-space sends for sync
passthorugh

User-space forms the command using this structure, which is
80 bytes in size. Upon submission, the NVMe driver copies
this to kernel-space using copy_from_user operation. It
maps the data (line 9) and metadata buffer (line 8) and even-
tually submits the NVMe command to the device. The caller
is put to wait until completion arrives. On completion, the
primary result is sent to the user-space using the ioctl return
value, and another one is updated into the result field (line
23). For the latter, the driver does a put_user operation.

While this interface allows to bypass the abstractions, it
suffers several limitations:

• It is tied to the block device, which itself is fragile.
• Ioctl, due to its blocking interface, harms both scalability

and efficiency. Figure 3 shows that io_uring random
read scales perfectly, while ioctl driven read stays flat.

• As the above sequence outlines, there is a per-command
overhead of copying command and result between user
and kernel space.

• This interface can only be used by the root user.

3.2 Design goals
Based on the shortcomings mentioned in Section 2.1 and 3.1,
we set the main design goals as follows:

• Block I/O independence: The block interface cannot
represent the non-block command sets that NVMe has.
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The new interface should have higher flexibility and
cover all NVMe command sets regardless of their non-
block semantics.

• Catch-all user interface: Adding a new syscall in Linux
every time NVMe gets a new command is impractical.
For every existing and future NVMe command, the so-
lution should ensure a user interface without coining
it.

• Efficient and scalable: NVMe represents fast and par-
allel storage. The new interface should have the same
or higher efficiency and scalability than the direct block
I/O path.

• General accessibility: The solution should not only be
locked to the root/admin user.

• Upstream acceptance: The solution should become
part of the official Linux repositories. This ensures that
adopters do not have to reinvent or maintain off-tree
code.

4 I/O Passthru in Kernel: Architecture and
Implementation

The proposed I/O path is shown in Figure 2, with the label
(D). It consists of a new char-interface /dev/ng0n1 as the
backend, which interfaces with io_uring using newly intro-
duced io_uring_command.

We also considered Linux AIO but chose io_uring for two
reasons. First, it is more efficient and feature-rich, as outlined
in Section 2.2. Second, it is a more active subsystem in the up-
stream Linux kernel. The following sections detail the design
and implementation by grouping those into three attributes -
(i) availability, (ii) efficiency, and (iii) accessibility.

NVMe Driver

/dev/nvme0n1

Block abstrac�on

Speak NVMe

Speak
File

Speak
block

Device

Kernel
IO Stack

userland

FS abstrac�on

Syscall ioctl

A B C

/dev/ng0n1

io_uring

D

Speak
NVMe

Figure 2: New passthrough I/O path, marked with (D) and
enclosed with the dotted rectangle.

4.1 Availability: NVMe generic char interface
NVMe generic device solves the availability problem associ-
ated with the block device. We modify the NVMe driver to
create a character device node for each namespace found on
the NVMe device, and more importantly, this is done regard-
less of any unsupported feature that may break the block
device (Section 2.1). Char device is also created for un-
known command sets, e.g., anything other than NVM and
ZNS. Therefore, the char interface is bound to appear for fu-
ture command sets without requiring any further code changes
to the NVMe driver. While the block device follows the nam-
ing convention /dev/nvme<X>n<Y>, the char device follows
/dev/ng<X>n<Y>. The term ng refers to NVMe-generic as
it applies to any NVMe command set. Listing 2 shows the
file_operations for this character device. User-space can
send any NVMe command through the character device us-
ing ioctl. Line 6 shows the ioctl handler in the NVMe
driver. More importantly, the NVMe char device also talks
to io_uring to enable a bunch of advances. This is shown in
line 8 via the uring_cmd handler and elaborated in the next
section.

1 const struct file_operations nvme_ns_chr_fops =
2 {
3 .owner = THIS_MODULE ,
4 .open = nvme_ns_chr_open ,
5 .release = nvme_ns_chr_release ,
6 .unlocked_ioctl = nvme_ns_chr_ioctl ,
7 .compat_ioctl = compat_ptr_ioctl ,
8 .uring_cmd = nvme_ns_chr_uring_cmd ,
9 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll

,
10 };

Listing 2: file_operations for NVMe char device

4.2 Infusing the efficiency & scalability
Solving the efficiency limitation of NVMe passthrough re-
quires solving the more fundamental problem in Linux - coin-
ing an efficient alternative of ioctl. This alternative must be
generic enough to be applied beyond the NVMe use case. To
that end, we added three new facilities in io_uring:io_uring
command, Big SQE, and Big CQE. Then, we outline how we
employ these facilities to construct a new NVMe passthrough
path. To further reduce the per I/O overhead, we wire up two
more capabilities: fixed-buffer and completion-polling.

4.2.1 io_uring command
A relatively simple way to introduce ioctl-like capability in
io_uring is to use the worker-based-async approach (Sec-
tion 2.2). However, that will be anything but scalable. Figure
3 shows io_uring scaling for 512b random-read with and with-
out the worker thread. With the default true-async approach,
throughput soars as queue depth increases and reaches 3.5M
IOPS. However, with the worker approach, the throughput
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Figure 3: Performance comparison

does not increase beyond 500K. Therefore, we go by the
true-async design approach to add this new facility named
io_uring command. User interface involves preparing SQE
with a new operation code IORING_OP_URING_CMD. The com-
mand is to be placed inline within the SQE. This relieves the
application from the command allocation and provides zero-
copy communication as SQE is shared between user and kernel
space. Regular SQE has 16 bytes of free space that the applica-
tion can use for housing the command. The application gets
to reap the result from the CQE. Regular CQE provides a signed
4-byte value as the result.

Big SQE: Regular SQE with 16 bytes of free space is
not enough as the NVMe passthrough command is about 80
bytes in size (listing 1). Therefore, we introduce the facility
to create the ring with a larger SQE. Big SQE is double the
size of regular SQE and provides 80 bytes of free space. The
application can set up the ring with Big SQE by specifying
the flag IORING_SETUP_SQE_128.

Big CQE: Some NVMe commands return more than
one result to the user-space. For example, the zone-append
command returns the location where the write landed. And
io_uring regular CQE lacks the ability to return more than
one result. To tackle that, we introduce Big CQE, which is
double the size of regular CQE and provides 16 bytes of extra
space to return additional information to user-space. The flag
IORING_SETUP_CQE_32 allows the application to set up the
ring with Big CQE.

io_uring Provider

fops->uring_cmd(io_uring_cmd *, flags)

Update CQE

return (-EIOCBQUEUED) Submission
done

io_uring_cmd_done (io_uring_cmd *, ret, ret2) On
Comple�on

Figure 4: uring_cmd communication flow overview

We implemented io_uring command to be generic to sup-
port any underlying command. The command provider can
be any kernel component (e.g., file system, driver) that col-
laborates with io_uring. While the NVMe driver is the first
command-provider that got into the kernel, other examples
include ublk [48] and network sockets [49]. The commu-
nication between io_uring and command-provider follows
the true-async design approach (Section 2.2), and this is out-
lined in Figure 4. During the submission, io_uring processes
the SQE and prepares another struct io_uring_cmd (List-
ing 3) that is used for all further communication. io_uring
invokes the command-provider by ->uring_cmd handler of
file_operations. The provider does what is necessary for the
submission and returns to io_uring without blocking. Actual
completion is decoupled from submission and is rather done
when the provider calls io_uring_cmd_done with the pri-
mary and auxiliary result. The primary result is placed into
regular CQE, and the auxiliary result goes to Big CQE.

1 struct io_uring_cmd {
2 struct file *file;
3 const void *cmd;
4 union {
5 /* to defer completions to task context */
6 void (*task_work_cb) (struct io_uring_cmd *cmd

);
7 /* for polled completion */
8 void *cookie;
9 };

10 u32 cmd_op;
11 u32 flags;
12 u8 pdu[32]; /* available inline for free use */
13 };

Listing 3: struct io_uring_cmd for in-kernel
communication

4.2.2 Asynchronous processing

For the new io_uring driven passthrough we add the following
opcodes in NVMe driver:

• NVME_URING_CMD_IO : for NVMe I/O commands.
• NVME_URING_CMD_IO_VEC: vectored variant of the

above.
• NVME_URING_CMD_ADMIN: for NVMe admin commands.
• NVME_URING_CMD_ADMIN_VEC: vectored variant of the

above.
Vectored variants. Allow multiple data buffers to be passed
from user-space, similar to what is possible for classical I/O
using readv/writev syscalls. The above four operations expect
a new struct nvme_uring_cmd as input. This is shown in
Listing 4.

1 struct nvme_uring_cmd {
2 __u8 opcode;
3 __u8 flags;
4 __u16 rsvd1;
5 __u32 nsid;
6 __u32 cdw2;
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7 __u32 cdw3;
8 __u64 metadata;
9 __u64 addr;

10 __u32 metadata_len;
11 __u32 data_len;
12 __u32 cdw10;
13 __u32 cdw11;
14 __u32 cdw12;
15 __u32 cdw13;
16 __u32 cdw14;
17 __u32 cdw15;
18 __u32 timeout_ms;
19 __u32 rsvd2;
20 };

Listing 4: control structure that user-space sends for uring
passthorugh

Zero copy. User-space creates this structure within the Big
SQE itself, eliminating the need for copy_from_user. Also,
the auxiliary result is returned via Big CQE, so put_user is
avoided. Therefore, this structure does not have a result field
embedded into it. This ensures zero-copy in the control path.
Zero memory-allocations. Unlike sync passthrough, we en-
sure that command completion is decoupled from submission
and the submitter is not blocked. This asynchronous process-
ing requires some fields to be persistent (until completion),
so these fields cannot be created on the stack. Dynamically
allocating these fields will add to the latency of I/O. We avoid
dynamic allocation by reusing the free space pdu inside the
struct io_uring_cmd (Listing 3, line 12) for such book-
keeping.

4.2.3 Fixed-buffer

I/O buffers must be locked into the memory for any data
transfer. This adds to the per I/O cost as buffers are pinned
and unpinned during the operation. However, this can be
optimized if the same buffers are used for I/O repeatedly.
Therefore, io_uring can pin several buffers upfront using
io_uring_register. The application can use these buffers
for I/O using opcodes such as IORING_OP_READ_FIXED
or IORING_OP_WRITE_FIXED.

We introduce this capability for uring_cmd using a new
flag IORING_URING_CMD_FIXED instead. The application
specifies this flag and buffer index in the SQE. Within the
kernel, the NVMe driver checks the presence of this flag. If
found set, it does not attempt to lock the buffer. Instead, it talks
to io_uring to reuse the previously locked region. To that end,
we add a new in-kernel API io_uring_cmd_import_fixed
that any command provider can use.

4.2.4 Completion polling

io_uring allows the application to do interrupt-free comple-
tions for read/write I/O. This helps in reducing the context-
switching overhead as the application engages in active
polling rather than relying on the interrupts. NVMe driver,

when loaded with polled_queues = N parameter, sets up
N polled queue-pair (SQ and CQ) for which NVMe device
does not generate the interrupt on command-completion.
Since io_uring decouples submission from completion, async
polling for completion is possible. This is more useful than
sync polling, as the application can do other work rather than
spinning on the CPU just after a single submission.

We extend async polling for uring_cmd too. For this, two
things are done differently during submission in the NVMe
driver - (i) polled-queue is chosen for command submis-
sion, (ii) a submission identifier cookie is stored in struct
io_uring_cmd (line 8, Listing 3). Two identifiers are re-
quired to pinpoint the particular command during completion:
(i) queue-identifier, in which the command is submitted, and
(ii) command-identifier within that queue. These two identi-
fiers are combined into a single 4-byte entity referred to as
cookie.

For completion, a new callback uring_cmd_iopoll (line
9, listing 2) is added that implements the polling loop for
matching completion. It extracts the cookie from struct
io_uring_cmd and uses that to look for the matching com-
pletion entry in the NVMe completion queue.

4.3 Accessibility: from root-only to general
Linux uses discretionary access control (DAC) as the default
way to manage object access. File mode is a numeric repre-
sentation that specifies who (file owner, member of a group,
or anyone else) is allowed to do what (read, write, or execute).

The VFS uses file mode to do the first level of permission
checks when the application requests to open the file. The
second level of check is done by the NVMe driver when
the application issues the command using the opened file
handle. However, the NVMe driver guards all passthrough
operations by a coarse-granular CAP_SYS_ADMIN check
that disregards the file mode completely.

Listing 5 shows an example in which ng0n1 has a less
restrictive file mode, i.e., 0666, compared to ng0n2.

1 $ ls -l --time -style=+ /dev/ng*
2 crw-rw-rw- 1 root root 242, 0 /dev/ng0n1
3 crw------- 1 root root 242, 1 /dev/ng0n2

Listing 5: example file-mode for char device

Even though ng0n1 has been marked to allow unpriv-
ileged read/write operations, nothing goes through. In-
stead, it behaves the same as ng0n2. The all-or-nothing
CAP_SYS_ADMIN check renders the passthrough interface
limited to the root user.

We modify the NVMe driver to implement a fine-granular
policy that takes file-mode and command type into account
for access control. This policy is defined as follows:

• When CAP_SYS_ADMIN is present, everything is al-
lowed as before. Otherwise, the command type (admin
command or I/O command) is checked.
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• Any I/O command that can write/alter the device is only
allowed if file-mode contains write permission.

• Any I/O command that only reads/obtains the informa-
tion from the device is allowed.

• Admin commands such as identify-namespace and
identify-controller are allowed. This is because these
commands provide information that is necessary to form
the I/O command. Other admin commands are not al-
lowed.

Beyond DAC, the uring_cmd also supports mandatory ac-
cess control (MAC). A new Linux Security Module (LSM)
hook is defined for uring_cmd and SELinux [15] and Smack
[16] implement the respective policy for the hook.

4.4 Block layer: To bypass or not
Does NVMe passthrough mean bypassing the block layer? It
is a common misconception. Passthrough is rather about not
placing another layering over the device. The NVMe generic
char-device, introduced in this work, does away with the block
abstraction altogether and presents cleaner semantics than
passthrough over the block-device. Figure 5 shows how I/O
Passthru interacts with the block layer during the submission.
The block layer implements many common functionalities,

io_uring Block-layer NVMe driver

nvme_uring_cmd()

request

Prepare request

1

2

Map user buffer

bio

3
Execute request

queue_rq()

DMA mapping
Push nvme cmd

Mu�-queue
dispatch

4

5

6

fops->uring_cmd()Dispatch
uring command

SQ CQ

7Submission
complete

Figure 5: Integration with the block layer

either entirely or in collaboration with the underlying storage
driver. Bypassing the block layer is not practical as it requires
either reinventing or giving away the functionalities, turning
the passthrough toothless. Table 1 presents the comparison.

• Abstract device limits. For example, the block layer
makes it possible to send larger read I/O on a device that
does not support single read commands to be larger than
64KB. For this, the block layer splits the larger read into
many 64KB commands. Passthrough, by definition, does
not abstract the device limits.

Feature Block I/O Passthrough I/O
Abstract device limits Yes No

Scheduler bypass No Yes
Core to queue mapping Yes Yes
Command tags mgmt. Yes Yes

Timeout value Global Per I/O
Abort Yes Yes

Table 1: Block layer functionalities: Block & Passthrough
path

• I/O scheduler. Since I/O schedulers can merge the
incoming I/Os, they are skipped for passthrough I/O.
This is not a spoilsport, as not using the I/O sched-
uler performs best on NVMe SSDs. Generally, NVMe
SSDs have deep queues and employ good internal I/O
scheduling to meet SLAs. Prior studies have shown that
Linux I/O schedulers (BFQ, mq-deadline, kyber) add
significant overheads (up to 50%) and hamper scala-
bility [12, 57]. Enterprise Linux distributions such as
RHEL and SLES keep ’none’ as the default scheduler
for NVMe.

• Muti queue. Block-layer abstracts the device queues
within the Blk-MQ infrastructure [36] and enables those
to be shared among available cores. Passthrough also
leverages this infrastructure.

• Tag management. The block layer manages the out-
standing commands for each hardware queue. It man-
ages the allocation/freeing of command IDs (tags) so
that the driver does not need to implement flow control.

• Command-timeout & Abort.If a command takes longer
than expected, the block layer can detect the timeout and
abort the outstanding command. Passthrough supports
user-specified timeout value (Listing 4, line 18), while
block-path uses a hard-coded value for timeout.

5 Upstream

5.1 Kernel I/O Passthru Support

Table 2 shows the upstream progression of the proposed I/O
path. All the constituent parts have made it to the official
Linux kernel repository [14].

Feature Kernel
Char-interface: initial support 5.13
Char-interface: any command-set 6.0
io_uring command 5.19
uring-passthrough for NVMe 5.19
Efficiency knobs (polling, fixed-buffer) 6.1
Unprivileged access for passthrough 6.2

Table 2: Upstream progression in the Linux kernel
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5.2 Userspace I/O Passthru Support

5.2.1 xNVMe integration

xNVMe [51] is a cross-platform user-space library aimed at
providing I/O interface independence to applications. xNVMe
API abstracts multiple synchronous and asynchronous back-
ends, including io_uring, libaio, and spdk. Application coded
using xNVMe API can seamlessly switch among xNVMe’s
backends. We extend xNVMe to support a new asynchronous
backend named io_uring_cmd. This backend works with
NVMe character device /dev/ngXnY.

5.2.2 SPDK integration

SPDK contains a block-device layer, bdev, that implements a
consistent block-device API over various devices underneath.
For example, NVMe bdev is based on the NVMe driver of
SPDK. AIO bdev and uring bdev are other examples that
are implemented over Linux aio and io_uring respectively.
We add a new bdev xNVMe in SPDK (shown in Figure 6).
This single bdev allows to switch among AIO, io_uring, and
io_uring_cmd. This bdev became part of SPDK since release
version 22.09 [24].

NVMe aio uring xNVMe

BDEV Abstrac�on Layer

aio uring io_uring_cmdSPDK
Drivers

Kernel

Applica�ons

BlobFS/Blobstore

NVMe Device

libaio io_uring io_uring_cmd

xNVMe

Figure 6: Overview of SPDK stack, and bdev_xnvme module

5.2.3 Tooling

nvme-cli [18] is modified to list character interface
/dev/ngXnY. Any operation that nvme-cli can do on block-
interface /dev/nvmeXnY can also be done on char-interface
/dev/ngXnY.

Fio [30]: We add a new io-engine named io_uring_cmd.
The user must pass a cmd_type when using this engine. This
provides the flexibility to support other types of passthrough
commands in the future. For NVMe passthrough, cmd_type
is to be set as nvme, and the filename should be specified
as /dev/ngXnY. This new ioengine is part of the Fio re-
lease since version 3.31. Fio repository contains a utility
t/io_uring [32], which comes in handy to evaluate peak
performance obtained via io_uring. We extend this utility so
that io_uring NVMe passthrough can also be evaluated for
peak performance.

Liburing [31] is the library that provides a simpler inter-
face to io_uring applications. It is extended to support big-
SQE and big-CQE. Moreover, we add a bunch of tests that
issue uring-passthrough commands on the NVMe character
device /dev/ngXnY [40].

6 Enabling NVMe interfaces with I/O Passthru

In this section, we present examples showing how the flexibil-
ity and efficiency of I/O Passthru help consume some NVMe
features that are otherwise challenging to use in Linux.

6.1 Flexible Data Placement
Flexible data placement (FDP) is the latest host-guided data
placement method in the NVMe standard. The ratified pro-
posal [17] adds concepts such as reclaim unit (RU) and place-
ment identifier (PID). RU is analogous to the SSD garbage-
collection unit, and the host can place logical block addresses
into RU by specifying PID in the write command. LBAs writ-
ten with one-placement-identifier are not mixed with LBAs
written with another placement-identifier. This helps to sepa-
rate different data lifetimes and reduces write amplification
in the SSD.

When multi-stream support was standardized in NVMe as
directives, the Linux kernel developed the write-hint-based
infrastructure that allowed applications to send the placement
hints along with writes. However, this infrastructure is no
longer functional as its core pieces have been purged from
the mainline kernel [39]. I/O Passthru comes to the rescue
as applications can send placement hints without worrying
about vertical integration of FDP to various parts of the ker-
nel storage stack. We demonstrate this with Cachelib, which
can leverage FDP via I/O Passthru (Section 7.2). Also, FIO
io_uring_cmd ioengine has supported FDP since version 3.34.

6.2 Computational Storage
Computational storage is a new architecture that allows the
host to offload various compute operations to the storage, re-
ducing data movement and energy consumption. The NVMe
standardization is underway, and it involves presenting two
new namespaces.
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• Memory namespace refers to the subsystem-local-
memory (SLM), a byte-addressable memory to enable
the local processing of the SSD data. The host needs to
issue new NVMe commands to (i) Transfer data between
host-memory and SLM and (ii) Copy data between NVM
namespace and SLM.

• Compute namespace represents various compute pro-
grams executed on the data residing in SLM. The host
orchestrates the local data processing using a new set
of NVMe commands: execute-program, load-program,
activate-program, etc.

Supporting computational storage in Kernel is challenging be-
cause these new namespaces come with non-block semantics
and various new unconventional commands. However, the
generic char interface (/dev/ngXnY) comes up fine for both
SLM and Compute namespace. All new NVMe commands
can be issued efficiently with the I/O Passthru interface. Over-
all, this enables user-space to leverage computational storage
without any changes to the Kernel.

6.3 End-to-End Data Protection
E2E data protection detects data integrity issues early and
prevents corrupted data from being stored on the disk. Many
NVMe SSDs have the ability to store extra metadata (8, 16,
32, 64 bytes) along with the data. This metadata can be inter-
leaved with the data buffer (referred to as DIF) or in a separate
buffer (referred to as DIX) [20]. This ability comes in handy
to support erasure-coding, too. All or a portion (first or last
bytes) of this metadata can contain protection information
(PI) that contains checksum, reference tag, and application
tag. The NVMe SSD controller verifies the PI contents while
writing and reading.

Kernel support for E2E data protection [55] is limited, as
shown in Figure 7. DIF is not supported as passing unaligned
(e.g., 4096+8 bytes) data buffers is inconvenient. The block
layer supports DIX as metadata is kept in a separate buffer.
However, DIX is only supported if protection information
resides in the first bytes of metadata. Also, PI is block-layer
generated, and user-space applications cannot pass it due to a
lack of interface.

I/O Passthru does not face buffer alignment checks or user-
interface issues. The passthrough command structure allows
applications to pass metadata buffer and length (Listing 4,
lines 8 & 10). We have added DIF and DIX support in FIO
io_uring_cmd ioengine.

7 Experiments

Table 3 summarizes our experimental setup. We conducted
the experiments in three parts.

In the first part, we compare the efficiency of the new
passthrough I/O path against the block I/O path on a direct-
attached NVMe SSD. This is an apples-to-apples comparison

LB Data PIMD

(a) PI in last bytes of Metadata buffer

LB Data PI MD

(b) PI in first bytes of Metadata buffer

LB Data

PIMD

MD buffer

LB Data

PI MD

MD buffer

DIX

DIF

(a) PI in last bytes of Metadata buffer (b) PI in first bytes of Metadata buffer

Figure 7: Block device limitations for DIF and DIX cases

between block interface /dev/nvmeXnY and char-interface
/dev/ngXnY, as both are driven by io_uring. We exclude the
sync passthrough path as it is known not to scale due to be-
ing ioctl-driven. We use Fio and t/io_uring utility, which
is particularly suitable for peak-performance determination
due to its low overhead. Both these are configured to run an
unbuffered random read workload.

In the second part, we demonstrate the flexibility of the I/O
Passthru interface by applying it in the real-world applica-
tion Cachelib [3]. Cachelib is an open-source Caching engine
from Meta which leverages RAM and SSD in the solution.
Due to the nature of the workloads, Cachelib deployments
can incur SSD Write Amplification (WAF > 2) on high SSD
utilization scenarios. Therefore, the SSD utilization was lim-
ited to 50 percent in many production deployments. NVMe
FDP tackles this problem of high WAF by segregating I/Os
of different longevity types in the physical NAND media. We
use the Samsung SSD that supports data placement using the
NVMe FDP commands. Atop Cachelib, we run the produc-
tion workload and compare the write-amplification against
the case when FDP is not enabled.

In the third part, we compare the scalability of block and
passthrough I/O against the user-space SPDK NVMe driver.

Hardware Model
CPU AMD Ryzen 9 5900X 12-Core

Memory DDR4 16 GB
Board MSI MEG X570 GODLIKE

Storage

[1] Intel Optane P5800X, 400GB
Spec: 5M (512b RR), 1.6M (4K RW)

[2] Samsung FDP SSD, 7.5 TB
Software Version

OS Ubuntu 22.04 LTS
Kernel Linux 6.2

fio 3.35
Cachelib 0.10.2

Table 3: Experimental configuration

7.1 Efficiency Characterization
The SSD used for this evaluation is notably optimized
for 512b random reads and can show up to 5M IOPS
as per its specification [41]. This is why we focus only
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Figure 8: io_uring_char vs io_uring_block peak performance comparison
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Figure 9: io_uring_char vs io_uring_block scalability across queue-depths and fixed-buffers effect
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on read-only workload, as this helps to reveal the soft-
ware overheads and impact of optimizations readily. We
use two kernel configurations to refine the test setup for
overhead/efficiency measurements. The first one is the de-
fault configuration. The second one is a more performance-
friendly configuration with CONFIG_RETPOLINE and
CONFIG_PAGE_TABLE_ISOLATION options disabled.
The kernel added these options to mitigate the Spectre [46]
and Meltdown [50] hardware vulnerabilities. However, these
come at the cost of performance overhead [9, 56].
Peak performance using single CPU core: We saturate the

SSD to its maximum read performance, i.e., 5M IOPS. To
that end, we measure the individual and combined impact
of two knobs that elevate efficiency - (i) FB, which refers to
fixed-buffers (Section 4.2.3), and (ii) poll, which refers to
completion polling (Section 4.2.4). For this test, t/io_uring
is bounded to a single CPU core, and it issues 512b random
read at queue-depth 128 with batch size set to 32. Figure 8(a)
shows the result on default kernel config. Fixed-buffer shows
higher IOPS as the processing overhead of mapping buffers
is minimized. Poll also shows improved numbers as interrupt-
processing and context-switching overhead goes away. The
performance of the io_uring passthrough path is better than
the io_uring block path in all four cases. When both the knobs
(FB and Poll) are combined, performance reaches its peak.
Block I/O reaches up to 2.9M IOPS, while passthrough red
I/O goes 35% higher and reaches 3.9M IOPS. However, SSD
is capable of higher IOPS. Therefore, we repeat the test with
an optimized kernel config. Figure 8(b) shows the results.
There is notable improvement across all metrics. Block I/O
elevates to 3.83M IOPS, while passthrough I/O goes 31%
higher and saturates the SSD at 5M IOPS.

The reason is that I/O submission via the io_uring
passthrough path involves less processing than the io_uring
block path. It skips the attempts to split, merge, and i/o
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scheduling. Table 4 shows the execution time of the re-
spective io_uring handlers in the kernel (optimized config).
The time these functions take corresponds to the time taken
to submit the request to the device. The block-path handler,
io_read, takes 209 nanoseconds for a single submission. The
passthrough handler is 31% leaner and takes 144 nanoseconds
for the submission.

Handler (io_uring) Execution Time (nsec)
io_read (block) 209

io_uring_cmd (passthrough) 144

Table 4: Profiling of submission path

Scalability across queue-depths: We use t/io_uring to
issue 512b random reads and vary the queue-depths (rang-
ing from 1 to 128) and batch sizes (ranging from 1 to 32).
Figure 9(b) shows the IOPS comparison between block and
passthrough paths. At single queue-depth, utilization of the de-
vice bandwidth is lowest, and both paths yield the same perfor-
mance. This is expected and denotes the synchronous I/O per-
formance. As the queue-depth amplifies, parallel-processing
capabilities of software and hardware get leveraged better,
exhibiting a consistent increase in IOPS. A leaner submission
path matters more when I/O requests arrive at a higher rate. At
queue-depth 16, passthrough can process 19% more requests,
which goes up to 31% at 128 queue-depth. Cpu utilization
and submission-latency: comparison when fixed-buffer is
enabled for block and passthrough I/O path. For this test, we
use fio random read workload with single queue-depth and
varying block sizes - 4 KB, 16 KB, and 64 KB. Figure 9(a)
shows the result. In general, submission latency increases
with the larger record size. This is because during the sub-
mission, (i) physical pages (usually 4KB in size) backing the
I/O buffer need to be locked, and (ii) DMA (direct memory
address) mapping for these pages needs to be done. A larger
I/O buffer involves more physical pages, so it takes more time
to perform the aforementioned steps. With a smaller block
size, the submission and completion rate is high. But as we
shift to large record sizes, the workload becomes more I/O
bound. Therefore, CPU utilization is higher for 4KB record
size. Fixed-buffer variants (of block and passthrough path)
exhibit reduced submission latency and CPU cost of the I/O.
io_uring char with fixed-buffer produces the most optimal
combination of submission latency and CPU utilization.
SQPoll and batching: We use t/io_uring to issue 512b
random reads with queue-depth set to 128 and vary batch
sizes (ranging from 2 to 32). To reduce the contention and
variance across multiple runs, we affine the sqpoll thread
on a CPU core, which differs from the core to which
t/io_uring is bounded. This is achieved by specifying the
IORING_SETUP_SQ_AFF flag during io_uring’s ring setup
phase. Figure 10 compares the block and passthrough path
with the SQPoll option disabled/enabled. SQPoll helps elim-
inate system call costs. With lesser batching (which would

lead to more syscalls), enabling SQPoll results in better per-
formance for both block and passthrough paths. With a batch
size of 2, we get a 136% better performance by enabling the
SQPoll option for io_uring passthrough. Both batching and
SQPoll provide a means to reduce the syscall cost, but SQPoll
requires an extra CPU core so that its active polling loop does
not collide with the application thread that needs to submit
the I/O.

7.2 Data-placement in Cachelib
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Figure 11: Cachelib WAF comparison: with and without FDP

Cachelib internally uses two I/O engines for data handling
in SSD storage: BigHash and BlockCache. BigHash handles
data of small sizes and random writes in 4K sizes. The large
item engine, BlockCache, issues a sequential flash-friendly
workload for data management. The leading cause of high
WAF is the intermixing of these two I/O patterns in the physi-
cal NAND media and the resultant impact on SSD garbage
collection. NVMe FDP commands allow the Host to send
write hints to the SSD to avoid intermixing within the phys-
ical media. We modified Cachelib to use the I/O Passthru
interface to send different placement identifiers with BigHash
and BlockCache writes. The changes are being discussed for
inclusion in the Cachelib upstream repository.

The evaluation was done using the built-in Cachebench tool.
Cachebench can replay the Meta production workloads avail-
able from the Cachelib website [4]. We have used the write-
only KVCache production workload for the experiments. We
ran the workload for about 66 hours, and the resulting WAF
comparison is shown in Figure 11. Without the placement
hints, the intermixing occurs, and SSD WAF soars above 2.
However, with the placement hints, intermixing reduces, and
WAF remains close to 1.

7.3 Comparison against SPDK
We extend the peak performance test on two drives and com-
pare scalability among io_uring_block, io_uring_char, and
SPDK paths. We use the SPDK perf tool, which has minimal
overhead during benchmarking. We used a distinct CPU core
for each device in the first experiment. So, two cores are used
for two devices. Figure 12(a) shows the comparison. The
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Figure 12: io_uring_char vs io_uring_block vs spdk performance comparison

block path shows 7.55M IOPS with two devices, whereas the
passthrough and SPDK paths show 10M IOPS. The second ex-
periment examines the per-core scalability by forcing a single
CPU core for both devices. Figure 12(b) shows the compari-
son. SPDK continues to saturate both the devices. Block path
shows 4.4M, while passthrough reaches 6M IOPS.

Overall, I/O Passthru reduces the per-core efficiency gap
but is still far from kernel-bypass solutions like SPDK. There
are multiple reasons:

• The SPDK application (perf in this case) gets single-
user luxury due to exclusive ownership of the NVMe
device. It does not involve any extra code that must be
written to ensure sharing and synchronization among
multiple device users.

• I/O Passthru needs to use the block layer for its features
(Section 4.4), such as hardware-queue abstraction, tag
management, timeout/abort support, etc. The features
come at the expense of extra processing in the I/O path.

• A few features do not fit the passthrough path, e.g.,
writeback-throttling and Block-cgroups. Turning off
these features (by altering kernel config) cuts the pro-
cessing and improves the I/O performance. The forth-
coming 6.8 kernel skips these for passthrough I/O and
does not require config changes. Beyond these, there
are more general kernel configs that affect the I/O per-
formance nonetheless. We turn off the forced preemp-
tion [7] and set the timer frequency to 100 Hz [8]. Figure
12(b) shows that, with extra config changes, block I/O
performance improves to 7.9M, and passthrough I/O
improves to 8.3M. Given the numerous kernel config-
uration choices, we feel more performance tuning is
possible than we have explored here.

8 Discussion
8.1 I/O Passthru versus File systems
Relevance against file systems. Does passthrough make
sense when Linux offers many stable and mature file sys-
tems such as XFS, BTRFS, and Ext4? We see two reasons to

think that it does:

First, the maturity of these file systems comes in the way of
embracing the emerging hardware. Production file systems get
stability after going through battle-testing for a decade or so.
Therefore, this stability is prioritized over adopting novel stor-
age interfaces. In some cases, storage interfaces either change
over a short period or do not get widespread adoption. Such
cases pose the risk of bloated code and put a maintenance
burden on the file system maintainers. Passthrough helps to
consume new storage innovation readily in user space where
real-world usefulness can be established. The compelling in-
novations can then find their way into robust file systems and
other mature parts of the kernel.

Second, some large-scale storage systems have drifted away
from file systems due to a multitude of reasons involving low
performance, less control, and rigidity towards new hardware.
Ceph [59] moved away from file systems and developed a
new storage backend, BlueStore, which stores data directly
on the raw storage device. BlueStore is the default storage
backend, and it has been reported that 70% of Ceph users
use this in production [26]. Aerospike also uses SSD directly
using Linux direct I/O [2]. SPDK-based solutions do away
with file systems. I/O Passthru presents a new choice to design
storage backends with higher control, performance, and agility
to embrace new hardware.

Performance against file systems. Kernel file systems
create extra functionality above the block device, so their per-
formance is usually capped by what is possible for block
I/O. But FS-driven buffered I/O can perform better than
block/passthrough I/O when it completes from DRAM (page
cache) without causing thrashing. Table 5 compares filesys-
tem buffered I/O performance with passthrough I/O. We use
two types of fio random-read workloads, which vary in size -
8G and 32G. Both workloads spawn eight jobs, each doing
1GB I/O in the first case and 4GB I/O in the second case. FS
buffered I/O performs better when the I/O size is less than the
DRAM size (i.e., 16G) but worse when the workload cannot
fit in the DRAM.
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Read K-IOPS I/O Size
8GB 32GB

Ext4 (buffered) 5767 2046
XFS (buffered) 5817 1915

Passthrough 4536 4524

Table 5: Randread performance comparison

8.2 Multi-tenancy and SQ/CQ limits
I/O Passthru does not involve dedicating the resources to a sin-
gle application. Each io_uring ring (SQ/CQ pair) is a piece of
preallocated memory that the application gets. This allocation
is subject to the per-process limits. The application can use
the same ring to do I/O on multiple files, as each SQE takes a
distinct file handle as input. As for NVMe SQ/CQ, the upper
limit comes from the NVMe SSD. The block layer abstracts
available NVMe SQ/CQ under the per-core queues. The ap-
plication that gets scheduled on a particular core submits its
I/O to the underlying NVMe SQ mapped to that core. The ar-
chitecture ensures that multiple applications run concurrently
without reserving the hardware resources.

9 Related Work

SPDK allows applications to skip the abstraction layers and
work directly with NVMe devices. The application needs
to link with SPDK NVMe-driver to make use of it. How-
ever, SPDK NVMe-driver is a user-space library that maps
the entire PCI bar to a single application. SPDK users face
challenges when having to support multi-tenant deployment.
The SPDK NVMe driver can operate only in polled mode.
Also, storage is highly virtualized in a cloud environment, and
root/admin access to raw PCIe devices is not feasible.

The abbreviation "ng" for the NVMe generic interface is
inspired by "sg," which represents the SCSI generic interface.
The sg driver, part of the Linux kernel SCSI subsystem, cre-
ates the SCSI generic interface [10]. The sg driver allows
user applications to send SCSI commands to the underlying
SCSI device. This communication from the user-space is done
on character device node /dev/sgX, with syscalls such as
write, read, and ioctl. Synchronous communication is done via
SG_IO ioctl, which is analogous to NVME_IOCTL_IO64_CMD
ioctl provided by NVMe(Section 4.2.2). Asynchronous com-
munication using the sg interface is unhandy as it does not
interface with io_uring or Linux AIO [13]. Instead, this re-
quires pairing two system calls (read followed by a write) and
signal handling [21,22]. io_uring command opens up an ex-
cellent way to upgrade the async communication mechanism
of the SCSI generic interface.

Netlink sockets allow exchanging information in an async
fashion between kernel and user-space [53, 58]. However,
the netlink interface is designed for networking use cases
and not for generic file I/O [34]. Some prior works proposed
asynchronous ioctl via io_uring.

Pavel [33] and Hao [60] implemented by calling syn-
chronous VFS ioctl handler in the io_uring worker context.
This was anything but efficient (as Figure 3 shows). Kanchan
et al. [42] early approach was tied to block-device and had
allocation overhead. Jens [28] proposed a more generic and
efficient approach involving SQE overlay. However, the SQE
overlay did not forge ahead as (i) it provided 40 bytes of free
space, which was insufficient for NVMe passthrough com-
mands, and (ii) it brought certain plumbing unpleasantness in
io_uring code. These were overcome after the introduction of
Big SQE and cemented the proposal described in this paper.

10 Conclusion
Many new storage features/interfaces do not fit well within
the block layer and face adoption changes due to the absence
of appropriate syscall interfaces in Linux. Consequently, early
adopters are left with two options: (i) use synchronous NVMe
passthrough on block interface that may or may not exist, or
(ii) switch to kernel-bypass solutions. We create a new alter-
native by adding a new passthrough path in the kernel. This
path combines an always-available NVMe character interface
with io_uring. Overall, this opens up an efficient way to use
any current/future NVMe feature with the mainline kernel
itself, i.e., all NVMe features with zero code in the kernel.
We integrate this path to various user-space libraries/tools
and present examples of how this can ease the enablement
of FDP SSD, End-to-end data protection, and computational
storage. As for efficiency, results demonstrate that the new
passthrough path outperforms the existing block I/O path.

We also introduce an alternative of ioctl within io_uring.
The io_uring_command infrastructure ensures that io_uring
capabilities are not limited to existing mechanisms (i.e., clas-
sical read/write or other established syscalls) but will also be
available to apply on new primitives. As is the case between
host-system and storage, there will always be a requirement
to communicate between user-space and kernel in a way that
has not been imagined before. New pathways will remain in
need. We hope io_uring_command will significantly ease up
building efficient pathways between user-space and kernel.
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A Artifact Appendix

Abstract
The evaluated artifact is provided in a git repository and con-
tains the scripts used for running the experiments presented
in this paper.

Scope
The artifact contains the scripts to reproduce the results ob-
tained in Figure 8, Figure 9, Figure 10 and Figure 11.

Contents
The artifact contains the steps to build and install linux, links
to patches for kernel and userspace contributions. It also con-
tains the scripts used for performance benchmarks and cache-
lib experiments in the benchmark and cachelib-experiments
subdirectory respectively. Also, each subdirectory has a sepa-
rate README file, specifying the usage instructions.

Hosting
The artifact is available at https://github.com/
anuj7781/io-passthru. All necessary instructions
are provided in the README.md file. We encourage the
users to use the latest version of the repository, since it may
include bug fixes.

Requirements
The experiments can be run on any Linux machine (with
6.2 kernel). The benchmark experiments can be run on any
NVMe drive, while the cachelib experiments can be run only
on a FDP device. In order to reproduce the results, one needs
to use the setup mentioned in Table 3.

Notes
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Abstract
We present Metis, a model-checking framework designed for

versatile, thorough, yet configurable file system testing in the
form of input and state exploration. It uses a nondeterministic
loop and a weighting scheme to decide which system calls and
their arguments to execute. Metis features a new abstract state
representation for file-system states in support of efficient and
effective state exploration. While exploring states, it compares
the behavior of a file system under test against a reference file
system and reports any discrepancies; it also provides support to
investigate and reproduce any that are found. We also developed
RefFS, a small, fast file system that serves as a reference, with
special features designed to accelerate model checking and en-
hance bug reproducibility. Experimental results show that Metis
can flexibly generate test inputs; also the rate at which it explores
file-system states scales nearly linearly across multiple nodes.
RefFS explores states 3–28× faster than other, more mature file
systems. Metis aided the development of RefFS, reporting 11
bugs that we subsequently fixed. Metis further identified 12 bugs
from five other file systems, five of which were confirmed and
with one fixed and integrated into Linux.

1 Introduction
File system testing is an essential technique for finding bugs [43]
and enhancing overall system reliability [27], as file-system
bugs can have severe consequences [53, 92]. Effective testing
of file systems is challenging, however, due to their inherent
complexity [4], including many corner cases [87], myriad
functionalities [8], and consistency requirements (e.g., crash con-
sistency [64,72]). Developers have created various testing tech-
nologies [59,71,86] for file systems, but new bugs (both in-kernel
and non-kernel) continue to emerge on a regular basis [42,43,85].

To expose a file-system bug, a testing tool must execute a
particular system call using specific inputs on a given file-system
state [52,53,87]. For example, identifying a well-known Ext4
bug [48] requires a write operation on a file initialized with a
530-byte data segment. In this case, the write operation is an
input, and the file with a specific size constitutes (part of) the
file-system state. Recent work [9, 52] also underscored the
importance of adequately covering both file-system inputs and
states during testing. While existing testing technologies seek
to cover a broad range of file systems’ functionality, they often
do not, however, integrate coverage of both file-system inputs
and states [12,43,59,85]. For example, handwritten regression
tools like xfstests [71] can achieve good test coverage of specific

file-system features [4, 58], but do not comprehensively cover
syscall inputs; similarly, fuzzing techniques (e.g., Syzkaller [25])
are designed to maximize code—not input—coverage [40].

Both the input and state spaces of file systems are too vast
to be completely explored and tested [10,21], so it is better to
leverage finite resources by focusing on the most pertinent inputs
and states [52,86,88]. For example, metadata-altering operations,
such as link and rename, and states with a complex directory
structure are more frequently utilized in POSIX-compliance
testing [67]. Existing testing technologies also lack the versatility
to test specific inputs and states [25,59,71]. Thus, new testing
tools and techniques are needed [52,53] to avoid under-testing
(which could miss potential bugs) or over-testing (which wastes
resources that may be better deployed elsewhere).

This paper presents Metis, a novel model-checking framework
that enables thorough and versatile input and state space
exploration of file systems. Metis runs two file systems
concurrently: a file system under test and a reference file system
to compare against [26]. Metis issues file-system operations
(i.e., system calls with arguments) as inputs to both file systems
while simultaneously monitoring and exploring the state space
via graph search (e.g., depth-first search [31]).

To compare the relevant aspects of file-system states, we
first abstract them and then compare the abstractions. The
abstract states include file data, directory structure, and essential
metadata; abstract states constitute the state space to be explored.
Metis first nondeterministically selects an operation and then fills
in syscall arguments through a user-specified weighting scheme.
Next, it executes the same operation in both file systems and
then compares both systems’ abstract states. Any discrepancy
is flagged as a potential bug. Metis evaluates the post-operation
states to decide if a state has been previously explored; if
so, it backtracks to a parent state and selects a new state to
explore [31]. Metis continuously tests new file-system states until
no additional unexplored states remain, logging all operations
and visited states for subsequent analysis. Metis’s replayer can
reproduce potential bugs with minimum time and effort.

Metis effectively addresses the common challenges of
model checking [16, 31] file systems. It checks file-system
implementations directly, eliminating the need to build a formal
model [61]. To manage large file-system input and state spaces,
Metis enables parallel and distributed exploration [33] across
multiple cores and machines. Metis works with any kernel or
user file system, and does not require any specific utilities nor
any modification or instrumentation of the kernel or the file
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system. It detects bugs by identifying behavioral discrepancies
between two file systems without the need for oracles or external
checkers, thus simplifying the process of applying Metis to new
file systems. With few constraints, Metis is well suited for testing
file systems that are challenging for other testing approaches,
e.g., file system fuzzing [43], that require kernel instrumentation
and utilities. Nevertheless, the quality of the reference file system
is pivotal for assessing the behavior of other file systems [26].
We therefore developed RefFS as Metis’s reference file system.
RefFS is an in-memory user-space POSIX file system with new
APIs for efficient state checkpointing and restoration [73, 86].
Prior to using RefFS as our reference file system, we used
Ext4 as the reference to check RefFS itself; Metis identified
11 RefFS bugs that we fixed during that process. Subsequently,
we deployed 18 distributed Metis instances to compare RefFS
and Ext4 for one month, totaling 557 compute days across all
instances and executing over 3 billion file-system operations
without detecting any discrepancy. This ensured that RefFS is
robust enough to serve as Metis’s (fast) reference file system.

Our experiments show that Metis can configure inputs more
flexibly and cover more diverse inputs compared to other
file-system testing tools [25, 59, 71]. Metis’s exploration rate
scales nearly linearly with the number of Metis instances, also
known as verification tasks (VTs). Despite being a user-level file
system, RefFS’s states can be explored by Metis 3–28× faster
than other popular in-kernel file systems (e.g., Ext4, XFS, Btrfs).
Using Metis and RefFS, we discovered 12 potential bugs across
five file systems. Of these, 10 were confirmed as previously
unknown bugs, five of which were confirmed by developers as
real bugs. Moreover, one of those bugs—which the developers
confirmed existed for 16 years—and the fix we provided, was
recently integrated into mainline Linux.

In sum, this paper makes the following contributions:

1. We designed and implemented Metis, a model-checking
framework for versatile and thorough file-system input and
state-space exploration.

2. We designed and implemented an effective abstract
state representation for file systems and a corresponding
differential state checker.

3. We designed and implemented the RefFS reference file
system with novel APIs that accelerate and simplify the
model-checking process.

4. Using RefFS, we evaluated Metis’s input and state coverage,
scalability, and performance. Our results show that Metis,
together with RefFS, not only facilitates file-system
development but also effectively identifies bugs in existing
file systems.

2 Background and Motivation
In this section, we first introduce the procedures and challenges
for testing and model-checking file systems. We then discuss
two vital dimensions for file system testing: input and state.

We demonstrate the challenges of achieving versatile and
comprehensive coverage of both inputs and states.
File system testing and model checking. File systems can be
tested statically or dynamically. Static analysis [9,57] evaluates
the file system’s code without running it; while useful, it struggles
with complex execution paths that may depend on runtime state.
Our work therefore emphasizes dynamic testing—executing and
checking file systems in real-time scenarios [12,59,67]. Gener-
ally, dynamic testing involves (1) crafting test cases using system
calls, (2) initializing the file system, (3) running the test cases,
and (4) post-execution validation of file system properties. Hence,
the quality of test cases directly affects the testing efficacy.

Model checking is a formal verification technique that seeks
to determine whether a system satisfies certain properties [16,77].
The model is typically a state machine, and the properties, usually
expressed in temporal logic, are checked using state-space
exploration [15]; here, each state represents a snapshot of the
system under investigation. To automate this process, model
checkers (e.g., SPIN [31]) are used to generate the state space,
verify property adherence, and provide a counterexample when
a property is violated.

Extracting a model from a system implementation can
be challenging, especially for large systems like file sys-
tems [86,87]. Thus, recent work on implementation-level model
checking [86, 87] seeks to check the implementation directly
(without a model). Such approaches [86] require one to create
new, specialized checkers to test new file systems, and these
checkers are typically focused on a limited range of bugs, such
as crash-consistency bugs [86, 87]. The ongoing challenge is
to simplify implementation-level file-system model checking
so that using it does not require extensive effort or significant
expertise in model checking and file systems, while at the same
time being able to identify a wide range of bugs.
Covering system calls and their inputs. We refer to the
system calls (syscalls) and their arguments as inputs or test
inputs because syscalls are commonly used by user-space
applications—and thus testing tools—to interact with file
systems [22, 81]. Thoroughly testing file system inputs is
challenging. While file-system–related syscalls represent only
a subset of all Linux syscalls [7,74], each syscall has multiple
arguments, and the potential value range for these arguments
is vast [52,74]. For example, open returns a file descriptor, ac-
cepting user-defined arguments for flags and mode in addition
to pathname. Both flags and mode are bitmaps with 23 and
17 bits, respectively, representing many possible combinations.
The bits represented in flags alone have 223 possible values,
leading to an aggregate input space of 240. Similarly, write and
lseek take 64-bit-long byte-count arguments that have a large
input domain of 264 possible values. Nevertheless, it is vital to
test as many representative syscall inputs as possible.

Fully testing all syscalls with every potential argument is
impractical [25, 37]. Instead, a sensible approach [45, 52] is
to segment a large input space into multiple, disjoint input
partitions—called input space partitioning [39, 52, 78]. How
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Figure 1: Metis architecture and components. From left to right, Metis generates syscalls and their arguments that are executed by both file systems,
determines resulting states, and checks for discrepancies between states. The Logger records all the operations for convenient bug replay by the
Replayer. The SPIN model checker stores previous state information for state exploration.

much a testing tool examines input partitions is called input
coverage [30, 45, 75]. Utilizing input partitions and coverage,
testing tools can target the coverage of different partitions—each
representing a subset of analogous test inputs. Intuitively, file
system developers recognize the need to, say, separately test
critical I/O write sizes of 512 and 4096; conversely, once one
tests an I/O size of, say, 5000 bytes, the gains from testing
subsequent adjacent sizes (e.g., 5001, 5002, ...) quickly diminish.

To compute input coverage, we categorized each syscall’s
arguments into four classes [7, 52, 74]: (i) identifiers (e.g.,
file descriptors), (ii) bitmaps (e.g., open flags), (iii) numeric
arguments (e.g., write size), and (iv) categorical arguments
(e.g., lseek “whence”). We partitioned the input space using
type-specific methods. For example, bitmaps are partitioned by
each flag and certain combinations thereof. Numeric arguments
are partitioned by boundary values (e.g., powers of 2 [38]). Our
goal is to achieve thorough input coverage while configuring it
based on test strategies to customize the overall search space. To
the best of our knowledge, no existing file system testing method
is specifically designed for comprehensive input coverage, nor
are there any techniques to flexibly define the input’s coverage.

Challenges of testing file system states. In file system testing,
the state refers to the content, status, and full context of the file
system at a given point in time [21,73]. Comprehensive state ex-
ploration is important as certain bugs manifest exclusively under
specific states [48,53,76]. Numerous file system states can be
explored when some existing testing approaches [59,71] execute
operations. Yet the majority of these approaches lack state
tracking—the ability to record and identify previously or sim-
ilarly visited states—thus wasting resources [86]. The challenges
are thus twofold: state definition and efficient state tracking.

Defining file system states involves a tradeoff, because com-
ponents such as on-disk content, in-memory data, configuration,
kernel context, and device types are all candidates for inclusion
in the state [21]. An overly detailed state definition can render
state exploration infeasible due to resources spent on visiting
multiple states that should be treated as if they were identical [16].
Conversely, an overly narrow definition can skip key states and
potentially miss defects [11]. Therefore, one should be able
to define the state space flexibly, so it contains all desired file

system attributes while maintaining a manageable state space.
Due to massive state spaces, state tracking incurs considerable

overhead, thus slowing the entire exploration process. While
model checkers provide a mechanism for state exploration [31]
with state tracking and certain optimizations, they still have
to contend with the state explosion problem—a significant
challenge where the number of system states grows exponentially
with the number of system variables, making state exploration
computationally impractical [16]. In file systems, this issue is
exacerbated by the inherently slow nature of I/O. An alternative
approach is to partition the state-exploration process across
multiple instances, with each instance exploring a certain portion
of the state space; doing so requires a sophisticated design for
diversified, parallel exploration [33].

3 Design
In this section, we describe Metis’s design principles and oper-
ation. We explain how Metis meets the challenges of exploring
file system inputs and states, and how it provides versatility.
Metis architecture. As shown in Figure 1, Metis has five main
components: (1) Input Driver, (2) State Explorer, (3) Differential
State Checker, (4) Event Logger, and (5) Optimized Replayer.
Each component is designed to be independent, allowing for
modularity and extensibility.

The Input Driver (§3.1) generates syscalls and arguments to
serve as the test inputs to both file systems. Metis is built on top
of the SPIN model checker [31] to combine input selection with
state exploration. The State Explorer (§3.2) extracts concrete
and abstract states from both file systems and interfaces with
SPIN to explore new states. The Differential State Checker
(§3.3) verifies that both file systems have identical behavior after
each operation, by comparing their abstract states, syscall return
values, and error codes. Any discrepancies are reported by the
checker and treated as potential bugs. The Event Logger and the
Optimized Replayer (§3.4) help analyze reported discrepancies
and reproduce potential bugs more efficiently.

3.1 Input Driver
Metis’s Input Driver maintains a list of operations from which
the SPIN model checker can repeatedly and nondeterministically
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choose what to execute, including individual syscalls (e.g.,
unlink) as well as meta-operations comprising a (small)
sequence of syscalls (e.g., the write file operation opens a
file and writes to it at a specific offset). From a given file system
state, multiple potential successor states may arise. Through its
nondeterministic choices of operations, Metis can effectively ex-
plore many of these options, ensuring thorough state exploration.
To bound the input space, each operation randomly picks a file
or directory name from a predetermined set of pathnames. The
Input Driver is flexible and can generate files or directories with
arbitrarily deep directory structures, long pathnames, and other
unexpected scenarios such as many files inside a single directory.

We focus on state-changing operations [26] (i.e., not
read-only ones) as the Input Driver seeks to maximize the
exploration of file system states. Currently, the Input Driver
supports five meta-operations (create file, write file,
chown file, chgrp file, and fallocate file), and 10 in-
dividual syscalls (truncate, unlink, mkdir, rmdir, chmod,
setxattr, removexattr, rename, link, and symlink).
Adding a new operation has minimal effort of about 10 LoC.
Metis exercises read-only operations such as read, getxattr,
and stat after each state-changing operation, when computing
file system abstract states in the State Explorer (§3.2).

After selecting the operation, Metis chooses its arguments
based on a series of user-specified weights that control how
often various argument partitions (§2) are tested. In the Input
Driver, weights represent the probabilities assigned to different
input partitions, which control testing frequencies. The method
of assigning weights varies based on the argument type [7,52].
For bitmap arguments, each bit receives a probability of being
set. The number of input partitions in a bitmap argument is
equivalent to its individual bit count. Given the ubiquity of
powers of 2 in file systems [38], numeric arguments like write
size (requested byte count) have input partitions segmented
by these numbers as boundary values, rounding down to the
nearest boundary. For example, write sizes ranging from 1024
to 2047 bytes (210 to 211−1) are grouped in the same partition.
Assigning a weight (e.g., 15%) to this partition implies a 15%
chance of selecting a write size between 1024 and 2047 bytes.
The total weight of all write-size partitions equals 100%. We
placed 0 bytes as a distinct partition (unusual but allowed
under POSIX) because the smallest power of 2 is 1, which is
greater than 0. Additionally, Metis can also be configured to
test only boundary values (powers of 2) such as 4096 as well as
near-boundary values (±1 from the boundary, e.g., 4095/4097)
that are useful for testing underflow and overflow conditions.

The choice of weights depends on the user’s objectives.
For example, while O SYNC is common in crash-consistency
testing [59], it is used infrequently for POSIX compliance [67].
Due to disk I/O’s slow speed, many tests focus on small write
sizes [12]. However, testing larger sizes can uncover size-specific
bugs [67, 76]. Our objective is to ensure that Metis remains
versatile and to allow one to adjust the input weights in line with
the test focus.

3.2 State Exploration and Tracking
State explorer. The objective of Metis’s State Explorer is to use
graph traversal to conduct thorough and effective “state graph ex-
ploration,” where the nodes correspond to file-system states and
the edges represent transitions caused by operations [15]. Metis
supports depth-first search (DFS) as the main search algorithm.

The State Explorer relies on the SPIN model checker [31] to
conduct the state-space exploration. SPIN supports the Promela
model-description language, and allows embedding C code in
Promela code. This capability allows us to seamlessly issue
low-level file-system syscalls and invoke utilities. SPIN’s role is
to provide optimized state-exploration algorithms (e.g., DFS) and
data structures to track and store the status of the state graph; thus,
we do not have to implement these features in the State Explorer.

In model checking, there are two types of states: concrete
and abstract. Concrete states contain all the information that
describes the states of the file system being checked. Abstract
states serve as signatures to identify different system states of
interest during the exploration.

After each operation, the State Explorer calls the abstraction
function to extract abstract states as hash values from both file
systems. Every time an abstract state is created, SPIN checks
whether it has already been visited by looking up the abstract
state in SPIN’s hash table and decides on the next action, either
backtracking to a previous concrete state or continuing from
the current one. Meanwhile, the State Explorer mmaps the full
file-system image into memory to be tracked by SPIN as a
concrete state. Concrete states are stored in SPIN’s stack to allow
the State Explorer to restore the full file-system state as required.
To improve the performance of state exploration, we use RAM
disks as backend devices for on-disk file systems. In Metis, we
create both file systems with the minimum device sizes to reduce
the memory consumption of maintaining concrete states and to
make it easier to trigger corner cases such as ENOSPC.

File system abstract states. A concrete state is a reflection or
snapshot of the entire (and highly detailed) file-system image,
which renders it inappropriate for distinguishing a previously
visited state [11]. This is because any small change to the file-
system image leads to a new concrete state, even though there
may be no “logical” change in the file system. For example,
Ext4 updates timestamps in the superblock during each mutating
operation, even if no actual change to a user-visible file was made.
This substantially expands the state space, with many states
differing only by minor timestamp changes, and leads to wasted
resources on logically identical states. Additionally, because file
systems are designed with different physical on-disk layouts, we
cannot use concrete states to compare their behaviors. Therefore,
we need a different state representation that includes only the
essential and comparable attributes common to both file systems.

To address this problem, we defined an abstraction function to
calculate file-system abstract states to distinguish unique states,
and to compare file system behaviors. The abstract state contains
pathnames, data, directory structure, and important metadata for

126    22nd USENIX Conference on File and Storage Technologies USENIX Association



Problem Cause of discrepancies Solution
Different directory size for same contents Size calculation methods Ignore directory sizes
Different orders of directory entries Internal data structures Sort the output of getdents
FS-specific special files and directories Internal implementations Create an exception list of special entries
Different usable data capacities Space reservation and utilization Equalize free space among file systems

Table 1: Examples of false positives identified and addressed by Metis.

all files and directories (e.g., mode, size, nlink, UID, and GID);
we exclude any noisy attributes such as atime timestamps.
We then hash this information to compact the abstract state
for a more effective comparison. Metis supports several hash
functions to compute abstract states; we evaluated the speed
and collision resistance of each hash function (results elided for
brevity) and chose MD5 by default as it had the best tradeoff
of those characteristics.

The abstraction function deterministically aggregates key file
system data and metadata, enabling comparison across different
file systems. Specifically, the abstraction function begins by
enumerating all files and directories in the file system by travers-
ing it from the mount point. Their pathnames are sorted into a
consistent, comparable order. We then read each file’s contents
and call stat to extract its important metadata mentioned above,
following the pathname order. Finally, we compute the (MD5)
hash based on the files’ content, directory structure, important
metadata, and pathnames to acquire the abstract state. Using
abstract states not only prevents visiting duplicate states but
also significantly reduces the amount of memory needed to
track previously-visited states, owing to our lightweight hash
representation, which in turn boosts Metis’s exploration speed.

Tracking full file system states. In addition to abstract states,
another complexity in tracking file system states is saving and
restoring the concrete states when Metis needs to backtrack to
a previous state (i.e., when reaching an already visited state);
this involves State Save/Restore (SS/R) operations for concrete
states. Concrete states must contain all file system information
including persistent (on-disk) and dynamic (in-memory) states.
Metis can feasibly save and restore on-disk states by copying
the on-disk device and subsequently copying it back. Kernel file
systems (e.g., Ext4 [55]) maintain states in kernel space, which
is inaccessible to Metis, a user process. Similarly, user-space
file systems built on libFUSE (e.g., fuse-ext2 [2]) are separate
processes with separate address spaces, so again Metis cannot
directly track their internal state. Tracking only persistent on-disk
state leads to cache incoherency, because cached in-kernel
information is inconsistent with the on-disk content.

We tried and evaluated several approaches to tracking full file
system states (performance results elided for brevity) including
fsync syscall, syncmount option, process snapshotting [17,84],
VM snapshotting [44, 46], and LightVM [54]. None of these
approaches were effective due to their functional deficiencies
or inefficient performance. For those reasons, we adopted the
approach presented in [73] to unmount and remount the file
system between each operation in Metis. An unmount is the

only way to fully guarantee that no state remains in kernel
memory. Remounting guarantees loading the latest on-disk
state, ensuring cache coherency between each state exploration.
This unmount-remount method was a compromise that ensures
data coherency yet provides reasonable performance (§5.2),
especially coupled with our specialized RefFS (§4).

3.3 Differential State Checker
Metis checker goals and approaches. Using only the Input
Driver and State Explorer would constrain the detection of
bugs to those manifesting as visible symptoms [12], such as
kernel crashes. We thus needed a dedicated checker to identify
cases where file systems fail silently [43] (e.g., data corruption).
Moreover, existing checkers usually require considerable effort
to be applied to newly developed or constantly-evolving file sys-
tems. For example, since many checkers are hand-written (e.g.,
xfstests), the testing of new file systems involves redesigning and
refactoring test cases. Some checkers depend on an exact (e.g.,
POSIX) specification or an oracle for bug detection [59, 67]:
they are difficult to adapt to continuously-evolving file systems.

File systems vary considerably in terms of their developmental
stages [53, 90]: mature file systems are typically more stable
than new, emerging, or less popular ones [53]. Yet many still
share common (POSIX) features and data-integrity requirements.
Therefore, we rely on a differential testing approach [56], to
check emerging file systems for silent bugs, eliminating the need
for a detailed specification or an oracle.

We developed Metis’s Differential State Checker to identify
a broad range of file system bugs and facilitate file system de-
velopment. Our checker can easily adapt to test new file systems;
it requires no modification to the checker, only a replacement of
the file system under test. Metis uses a well-tested, reliable file
system as the reference file system and a less-tested, emerging
one as the file system under test. After each file system operation,
the Differential State Checker compares the resulting states of
both file systems to detect any discrepancies. To prevent false
positives, it only compares the common attributes of file systems,
including their abstract states, return values, and error codes.

Eliminating false positives. As any discrepancy is reported
as a potential bug, when developing Metis we found that it
sometimes identified discrepancies that were not bugs (i.e.,
false positives). We implemented measures to avoid these false
positives. Table 1 summarizes several such cases including their
problems, causes, and solutions.

All these discrepancies arose due to different file system
designs and implementations. For instance, Ext4 has a special
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lost+found directory and computes directory sizes by a
multiple of the block size. In contrast, other file systems
report sizes by the number of active entries and do not have
a lost+found directory. Despite the same device sizes for
different file systems, the available space varies due to different
utilized and reserved space (e.g., for metadata). To address this,
we equalize free space among file systems by creating dummy
files based on the differences in their available spaces.

While developing Metis, we analyzed every discrepancy we
encountered and addressed all false positives. Whenever a false
positive was identified, we updated the state abstraction function
or file system initialization code to eliminate such instances, an
infrequent process that was conducted manually. None of these
solutions introduce false negatives, because they all deal with
non-standardized behavior. For example, an application should
not expect sorted output from getdents. Nevertheless, if a
change introduces any misbehavior, Metis’s Differential State
Checker will report and handle it.

3.4 Logging and Bug Replay
When detecting a discrepancy, it is important to be able to analyze
the operations executed by the file systems to identify and repro-
duce the potential bug. Thus, Metis’s Event Logger records de-
tails of all file-system operations and outcomes, comprising every
syscall and their arguments, return values, error codes, SS/R oper-
ations, and resultant abstract state. Additionally, the Event Logger
logs file-system information such as the directory structure and
important metadata to pinpoint the deviant behavior as soon as a
discrepancy is detected. To reduce disk I/O, we store the runtime
logs in an in-memory queue and periodically commit them to
disk. Leveraging the Event Logger, we can reproduce the precise
sequence of operations leading to a discrepancy found by Metis.

Metis can replay identified bugs by re-executing the
operations from the start of Metis’s run. This process can be
time-consuming, however, if the discrepancy was detected
after executing many operations and passing through numerous
states [3]. So we needed a way to reproduce a discrepancy
quickly. Existing test-case minimization techniques [43, 91]
remove one operation from a sequence until the remaining
operations can reproduce the bug; but this trial-and-error process
is slow due to the abundance of I/O operations.

To replay bugs efficiently, the Optimized Replayer reproduces
them using only a few operations (recorded in logs) and one (con-
crete state) file system image. Using SPIN, we retain concrete
states in a stack, thereby capturing all file-system images along
the current exploration path and allowing for bug reproduction
from any desired location in the stack. Recent findings [43,59]
indicate that most bugs can be reproduced on a newly created file
system using a sequence of eight or fewer operations. Accord-
ingly, Metis uses an in-memory circular buffer to retain pointers
to a few of the most recent file-system images (defaults to 10, but
configurable) for quick post-bug processing. In practice, we first
attempt to reproduce the bug using the most recent image (imme-
diately preceding the bug state) along with the latest operation. If

unsuccessful, we turn to the previous image and the two last oper-
ations, and so on in a similar pattern. This eliminates the need for
Metis to replay the entire operation sequence from the beginning.

3.5 Distributed State Exploration
Along with performing state abstraction and setting limits on the
number of files and directories, we also restrict the search depth
to control the exponential growth of the state space. We set the
maximum search depth to 10,000 by default [31]. If the search
hits the 10,000th level, Metis reverts to the prior state rather
than exploring deeper. Thus, the state space becomes bounded,
allowing Metis to perform an exhaustive search. Still, even with
this depth restriction, the state space remains large because of the
variety in test inputs and file system properties [21]. Exploring
this space using a single Metis process (called a verification task,
or VT) requires significant time.

To parallelize the state-space exploration [32] we use Swarm
verification [33], which generates parallel VTs based on the
number of CPU cores. Each VT examines a specific portion
of the state space. To prevent different VTs from re-exploring
the same states, and to avoid having to coordinate states across
VTs, SPIN employs several diversification techniques [33],
where every VT receives a unique combination of bit-state hash
polynomials, number of hash functions, random-number seeds,
search orders (e.g., forward or in reverse) and search algorithms
(e.g., DFS), ensuring varied exploration paths.

We enabled these parallel and distributed exploration capabil-
ities for Metis. The setup uses a configuration file to determine
the machine and CPU core count; Metis then produces the exact
VT count based on the configuration file. When Metis runs on
distributed machines, each runs a handful of VTs, one per CPU
core. Each VT is automatically configured with a distinct com-
bination of diversification parameters, guiding them to explore
different state space areas. Utilizing multiple Metis VTs across
multiple cores and machines increases the overall speed of state
exploration while testing more inputs. Every Metis VT operates
independently, with its own device, mount point, and logs, with-
out interference with other VTs. Given that VTs explore states
autonomously without inter-VT communication, there is a risk
of resource wastage if several VTs examine the same state [33].
We deployed multiple VTs on several multi-core machines and
evaluated Metis extensively under Swarm verification (§5.2).

3.6 Implementation Details
Metis uses SPIN to achieve basic model-checking functions. The
Promela modeling language [31] serves as the main interface
with SPIN. We wrote 413 lines of Promela, consisting of
do...od loops that repeatedly select one of a number of cases
in a nondeterministic fashion. Each case issues file-system
operations, performs differential checks, and records logs. The
main part of Metis comprises 7,911 lines of C/C++ code that
implement Metis’s components and its communication with
SPIN. We also created 1,230 lines of Python/Bash scripts to
manage different Metis VTs and runtime setup, such as invoking
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mkfs, and creating mount points and devices. We created
RAM block devices as backend storage for on-disk file systems.
Linux’s RAM block device driver (brd) requires all RAM
disks to be the same size. We modified it (renamed brd2),
to allow different-sized disks for file systems with different
minimum-size requirements. We used brd2 to create devices
for on-disk file systems during the evaluation.

We changed 72 lines of SPIN’s code (Aug 2020 version) to
add dedicated hook functions for file system SS/R operations.
Lastly, we added 31 lines of code to the original Swarm
verification tool (Mar 2019 version) to enable more flexible
compilation options and smoother compatibility with Metis.

In our experience, adding a new file system operation to Metis
is straightforward. It requires only one additional case in the
Promela code, amounting to about 10 lines. Most functionality
in Metis is file-system-agnostic, e.g., deploying the file system
and computing abstract state. To test a new file system, we need
to specify only the device type (e.g., RAM disk for most file
systems, MTD block device for JFFS2) and the desired device
size in Metis.

3.7 Limitations of Metis
False negatives. Like many other tools, Metis might experience
false negatives: it could fail to detect an existing bug. First, since
Metis’s abstract state excludes time-related attributes, it cannot
detect, e.g., atime-related bugs. Though that is an unavoidable
consequence of abstraction, we strive to make the abstract state
as comprehensive as possible. Second, Metis identifies bugs
by detecting behavioral discrepancies between the reference file
system and the file system under test. Given the nature of dif-
ferential testing [26,56], Metis could fail to detect bugs shared
between both file systems as no discrepancy would be found.
To address this problem, one can either use a flawless reference
file system or leverage N-version programming [6], comparing
more than two file systems, to reduce the probability that the
same bug is present across all of them. Unfortunately, a com-
pletely bug-free file system does not exist. Despite recent efforts
to formally verify certain file system properties, these verified
file systems may still hide bugs [14]. Furthermore, while Metis
was programmed to test any number of file systems concurrently,
employing a majority voting scheme on more than two adds over-
head and slows exploration. (That is one reason why we support
distributed verification: to increase the overall exploration rate.)
Test overhead. As Metis tracks both abstract and concrete
states, it inevitably introduces extra overhead due to memory
demands and the time taken for comparisons. Metis retains file
system images in memory for state backtracking, although we
limited memory consumption to the extent possible by choosing
a minimum device size and restricting search depth. For file
systems with a relatively small device-size requirement, such
as Ext4 (256KiB minimum), Metis’s peak memory consumption
remains relatively low (2.4GiB). However, a file system with a
larger minimum device size inherently consumes more memory.
For example, XFS has a minimum size of 16MiB, leading to a
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Figure 2: RefFS architecture and its interaction with Metis and kernel
space. RefFS supports standard POSIX operations and provides
snapshot services with a snapshot pool and four new APIs.

potential memory use of 156GiB when we use a maximum depth
of 10,000. To mitigate this issue, we reduced SPIN’s maximum
search depth below the default 10,000, decreasing resource and
memory consumption while concomitantly reducing the size
of the state space. Although we experimented with memory
compression (i.e., zram [28]) and added swap space to increase
effective memory capacity, these choices actually reduced the
overall state-exploration rate. The necessity of mounting and
unmounting between each operation introduces additional time
overhead to Metis. Since doing so is necessary for tracking full
file system states, we mitigated this cost by deploying more VTs
on multiple machines and using RAM disks.

Bug detection and root-cause analysis. At present, Metis
lacks the capability to identify crash-consistency and concur-
rency bugs in file systems. Due to the absence of crash state
emulation [47, 59], Metis cannot find bugs that arise solely
during system crashes. We plan to provide the option of invoking
utilities such as fsck [63] between each Metis unmount/mount
pair to help detect crash-consistency bugs. Given that Metis
operates on file systems from a single thread, it tends to miss
concurrency bugs (e.g., race conditions [83]). While Metis’s
replayer assists in reproducing bugs, another limitation is Metis’s
inability to precisely identify the root cause of detected state
discrepancies within the code [69].

4 RefFS: The Reference File System
In Metis, the reference file system must reliably represent correct
behaviors and ensure efficiency in the file system and SS/R
operations. We initially chose Ext4 as the reference file system
due to its long-standing use and known robustness [55]. Still, no
file system, including Ext4, is absolutely bug-free. Additionally,
Ext4 lacks optimizations for model-checking state operations,
limiting its suitability. We believe that a reference file system
should be lightweight [14, 72], easily testable and extensible,
robust, and optimized for SS/R operations in model checking.
Originally, we tried to modify small in-kernel file systems (e.g.,
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ramfs), to track their own state changes. However, capturing and
restoring their entire state proved extremely challenging because
the state resides across many kernel-resident data structures [5].
Consequently, we developed a new file system, called RefFS,
specifically designed to function as the reference system.

RefFS architecture. RefFS is a RAM-based FUSE file system.
Figure 2 shows the architecture of RefFS and its interplay with
Metis and relevant kernel components. It incorporates all the
standard POSIX operations supported by the Input Driver along
with the essential data structures for files, directories, links, and
metadata. We developed RefFS in user space to avoid complex
kernel interactions and have full control over its internal states.
Comprising 3,993 lines of C++ code, RefFS uses the libFUSE
user-space library together with /dev/fuse to bridge user-space
implementations and the lower-level fuse kernel module. Metis
handles file system operations on RefFS in the same manner
as other in-kernel file systems. Most importantly, RefFS also
provides four novel snapshot APIs to manage the full RefFS
file system state via ioctls: ioctl SAVE, ioctl RESTORE,
ioctl PICKLE, and ioctl LOAD. These are described next.

4.1 RefFS Snapshot APIs
RefFS shows how file systems themselves can support SS/R
operations in model checking through snapshot APIs. The
essence of SS/R operations lies in their ability to save, retrieve,
and restore the concrete state of the file system. Although RefFS
is an in-memory file system lacking persistence, it possesses
a concrete state (i.e., snapshot) that includes all information
associated with the file system. Existing file systems like
BtrFS [68] and ZFS [8], which support snapshots, can only clone
(some of) the persistent state but not their in-memory states. In
contrast, RefFS can capture and restore the in-memory states
through its own APIs. Since RefFS stores all its data in memory,
it guarantees saving and restoring the entire file system state.

Snapshot pool. The snapshot pool is a hash table that orga-
nizes all of RefFS’s snapshots; the key is the current position in
the search tree. The value associated with each key is a snapshot
structure that saves the full file system state including all data
and metadata such as the superblock, inode table, file contents,
directory structures, etc. The memory overhead of the snapshot
pool is low because the size of the pool is smaller than Metis’s
maximum search depth. Because RefFS is a simple file system,
the average memory footprint for each state is just 12.5KB.

Save/Restore APIs. The ioctl SAVE API causes RefFS to
take a snapshot of the full RefFS state and add an entry to the snap-
shot pool. The ioctl RESTORE does the reverse, restoring an
existing snapshot from the pool. When Metis calls ioctl SAVE

with a 64-bit key, RefFS locks itself, copies all the data and
metadata into the snapshot pool under that key, and then releases
the lock. Similarly, ioctl RESTORE causes RefFS to query the
snapshot pool for the given key. If it is found, RefFS locks the
file system, restores its full state, notifies the kernel to invalidate
caches, unlocks the file system, and then discards the snapshot.

Pickle/Load APIs. Unlike other file systems, RefFS maintains
concrete states by itself in the snapshot pool, so Metis does not
need to keep RefFS’s concrete states in its stack. To ensure
good performance, RefFS’s snapshot pool resides in memory.
However, this means that all snapshots are lost when RefFS is
unmounted, which would make it challenging to analyze and
debug RefFS from a desired state. Thus, committing these
snapshots to disk before Metis terminates is important to ensure
they are available for post-testing analysis and debugging. Given
a hash key, the ioctl PICKLE API writes the corresponding
RefFS state to a disk file. It can also archive the entire snapshot
pool to disk. Likewise, the ioctl LOADAPI retrieves a snapshot
from disk, loading it back into RefFS to reinstate the file system
state. Using the ioctl PICKLE and ioctl LOAD APIs, RefFS
can flexibly serialize and revert to any file system state both
during and after model checking, aiding bug detection and
correction. Specifically, these APIs allow RefFS to gain the same
benefits as Metis’s post-bug replay and processing, enabling bug
reproduction from any point in a Metis run.

5 Evaluation
We evaluated the efficacy and performance of Metis and RefFS,
specifically: (1) Does Metis have the versatility to test different
input partitions compared to other testing tools? (See §5.1.)
(2) What is Metis’s performance? How does it scale with the
number of VTs when using Swarm verification? (See §5.2.)
(3) What is RefFS’s performance compared to other file systems?
How reliable and stable is RefFS, as Metis’s reference file sys-
tem? (See §5.3.) (4) With RefFS set as the reference file system,
does Metis find bugs in existing Linux file systems? (See §5.4.)
Experimental setup. We evaluated Metis on three identical
machines, trying various configurations, particularly with
multiple distributed VTs. Each machine runs Ubuntu 22.04
with dual Intel Xeon X5650 CPUs and 128GB RAM. We also
allocated a 128GB NVMe SSD for swap space. We evaluated
Metis’s performance using RAM disks, HDDs, and SSDs by
comparing Ext4 with Ext2. The results showed that RAM disks
were 20× faster than HDD and 18× than SSD. Also, Metis
performs best when the file system device is as small as possible.
Therefore, we used RAM disks as backend devices for on-disk
file systems and minimum mountable device sizes for all file
systems in all evaluations that follow.

5.1 Test Input Coverage
We assessed input coverage (§2) for Metis and other file
system tests on two dimensions: completeness and versatility.
Completeness considers whether a testing tool covers all input
partitions (§2) in test cases. Versatility is the ability to tailor test
cases for any desired input coverage. Metis outperforms existing
checkers and a fuzzer [25] on both dimensions.
Comparison with existing testing tools. We selected
three testing tools, each representing a unique technique:
CrashMonkey [59] for automatic test generation, xfstests [71] for
(hand-written) regression testing, and Syzkaller [25] for fuzzing.
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Figure 3: Input coverage counts (log10, y-axis) of open flags (x-axis) for CrashMonkey, xfstests, Syzkaller, and Metis with 3 different weight
distributions.

To ensure fairness, we ran all of them and Metis (with one VT)
to check Ext4 for 40 minutes each, because this time length was
sufficient to complete all xfstests test cases and CrashMonkey’s
default test cases [60].

Measuring input coverage requires tracking the file system
syscalls executed by the testing tool, including their associated
arguments. Traditional syscall tracers (e.g., ptrace-based ones)
cannot distinguish the syscalls used on the file systems under
test, because a testing tool makes many testing-unrelated syscalls,
such as opening and reading dynamically linked libraries or log-
ging statistics. CrashMonkey and xfstests do not inherently log
their test inputs. Hence, we used a tool [52] specifically designed
for measuring input coverage in file system testing to assess cov-
erage for CrashMonkey and xfstests. Syzkaller’s debug option
and Metis’s logger record all syscalls and arguments, enabling us
to compute their input coverage using their internal mechanisms.
Input coverage for open flags. Figure 3 shows the input cov-
erage of open, partitioned by individual flags, for CrashMonkey,
xfstests, Syzkaller, and Metis. In Metis, we set weights according
to three input partition distributions: Uniform, RSD (Rank-Size
Distribution [66]), and IRSD (Inverse Rank-Size Distribu-
tion [62]). Metis-Uniform denotes that Metis tests each input
partition (i.e., open flag) with a fixed weight (i.e., probability).
Both RSD and IRSD represent non-uniform distributions. We
adopted the core principle of RSD, such that flags with higher
ranks have higher test frequencies. Conversely, in IRSD, lower-
ranked flags have higher frequencies. We analyzed the frequency
of individual open flags’ appearance in the 6.3 Linux kernel
source. Metis employed those flags based on their proportional
(Metis-RSD) and inverse-proportional (Metis-IRSD) frequencies.
These distributions attempt to model two contrasting strategies:
(1) Flags that appear more frequently in the kernel sources
warrant proportionally more testing because they are used more
frequently; conversely, (2) Flags with fewer occurrences in the
kernel should be tested more thoroughly because they are more
rarely used and hence could hide bugs for years.

In Figure 3, the x-axis labels every single-bit open flag and
the y-axis (log10) counts how often each was exercised by the

testing tool. A higher y-value means more testing was conducted.
We see that only Syzkaller and Metis covered all open flags.
For instance, neither CrashMonkey nor xfstests tested the
O LARGEFILE flag, which could lead to missing related
bugs [79]. Metis-Uniform test all flags equally; its coefficient
of variation (CV) [1] (standard deviation as percentage of
the mean) is only 1.2% (40-minute run). For its non-uniform
test distributions, close examination of Figure 3 shows that
O CREAT (the most common open flag in the kernel source) is
indeed tested most often in Metis-RSD and least in Metis-IRSD.
O TMPFILE, the least-frequent flag, exhibits the opposite trend.

Other tools lack the versatility to adapt their test input partitions
to the desired amount of testing.

Moreover, we observed that xfstests tested certain input
values (e.g., O DIRECTORY) millions of times while others (e.g.,
FASYNC) are not tested at all. However, other tools sometimes
have a higher total operation count than Metis because Metis has
to unmount and remount the file system to achieve state tracking
and verify state equality after each operation, slowing its syscall
execution speed. Given the essential role of unmount/mount for
state tracking (§3.2) and the need for state comparison (§3.3),
we use Swarm verification to improve the overall operation
efficiency (§3.5).
Input coverage for write size. Figure 4 shows the input
coverage for the write size (requested byte count). The x-axis
represents the log2 of the size, corresponding to the write

size partitions (see §3.1). For example, x = 10 represents all
sizes from 210 to 211−1 (or 1024–2047). The y-axis (log10)
shows the number of times each x bucket was tested by a given
tool. Only Metis ensured complete input coverage across all
write size partitions. All other tools primarily tested sizes
under 16MiB (x≤ 24). Certain partitions (e.g., x= 26) were
omitted by all these tools, even though systems with many GBs
of RAM are now common. As with the open flags above, here
Metis-Uniform also assigns uniform test probabilities to each
write size partition. To illustrate Metis’s versatility, we chose
exponentially decaying distributions for write sizes. Metis-XD
prioritizes testing smaller sizes more often, because they tend
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Figure 4: Input coverage (counts, log10, y-axis) of write size (in bytes) for CrashMonkey, xfstests, Syzkaller, and Metis with three different weight
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Figure 5: Input coverage of write size (in bytes) for Metis-Uniform,
Metis-XD, and Metis-IXD, each running for 4 hours. The x-axis and
x2-axis here are the same as in Figure 4, but the y-axis shows counts
on a linear scale. As seen, with a longer run, the expected distributions
are more accurate.

to be more popular in applications. The probability of each
input partition is set to 0.9× smaller than the previous one (in
frequency order); all probabilities are then normalized to sum to
1.0. Metis-IXD emphasizes the inverse: testing input partitions
with larger write sizes, on the hypothesis that they are less used by
applications and thus latent bugs may exist. Here, the probability
of each test partition is 0.9× that of the next larger partition.

In Figure 4, the trend does not precisely align with the
probabilities due to the relatively short 40-minute runtime and
a correspondingly limited number of write operations, so the
CV was 17.0%. When we ran Metis six times longer (4 hours),
however, the CV dropped to 3.9% as seen in Figure 5; and when
we ran it six times longer still (24 hours), the CV fell to a mere
2.6%. Due to space limitations, we omit showing the input
coverage for other Metis-supported syscalls.

5.2 Metis Performance and Scalability
To evaluate performance with distributed Metis VTs, we
deployed it on three physical nodes, comparing Ext4 (reference)
to Ext2 (system under test) for 13 hours. Each node (machine)
operated six individual VTs, totaling 18 VTs. Figure 6 shows
the aggregate performance of the six VTs on each node, as well
as the overall performance across all 18 VTs. We measured both
file system operations (left) and unique abstract states (right).
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Figure 6: Metis performance with Swarm (distributed) verification,
measured in terms of the number of operations and unique abstract
states (in millions). Each node runs 6 VTs (one per CPU core), for a
total of 18 unique VTs that collectively explored the state space. As seen,
performance scales generally linearly with the number of VTs.

All VTs exhibited a linear increase in the number of operations
executed over time. Over 13 hours, these 18 VTs executed more
than 164 million operations, with each VT averaging 195 ops/s.

The count of explored states also increased steadily over time,
although not exactly linearly. This is because executing opera-
tions does not always produce new, unseen states. For example, if
a file exists, creating it again will not change the state. Thus, the
number of unique states is fewer than the number of operations
in a given time frame. Collectively, these VTs explored over
30 million unique states. On average, each explored 2.7 million
states. Using 18 VTs resulted in exploring 11.2× more unique
states than with a single VT. This experiment shows Metis’s
almost linear performance scalability with the number of VTs.

Different VTs might explore the same states, as each VT
operates independently and without communicating with others.
We evaluated the proportion of states explored by more than one
VT, which represents “wasted” effort, a figure we want mini-
mized. Our results showed that only about 1% of all states were
duplicated across all VTs. Therefore, the redundancy of states
explored by multiple VTs is relatively small and acceptable.
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Bug# File System Causes & Consequences Deterministic Confirmed New Bug
1 BetrFS [36] Repeated mount and unmount caused a kernel panic ✔ ✔ ✔
2 BetrFS statfs returned an incorrect f bfree ✔ ✔ ✘
3 BetrFS truncate failed to extend a file ✔ ✔ ✔

4 F2FS A file showed the wrong size after another file was deleted ✘ ✘ ✔

5* JFFS2 Data corruption occurred in a truncated file when writing a hole ✔ ✔ ✔
6 JFFS2 A deleted directory remained after unmounting ✘ ✘ ✔
7 JFFS2 GC task timeouts and deadlocks during operations ✔ ✔ ✘

8 JFS NULL pointer dereference on jfs lazycommit ✔ ✘ ✔
9 JFS After writing to one file, another file’s size changes ✘ ✘ ✔

10 NILFS2 NULL pointer dereference on mdt save to shadow map ✔ ✘ ✔
11 NILFS2 Failed to free space on a small device with cleaner ✔ ✘ ✔
12 NILFS2 Unmount operation hung after using creat on an existing file ✔ ✘ ✔

Table 2: Kernel file system bugs discovered by Metis. This list excludes the 11 RefFS bugs that Metis detected and fixed. JFFS2 bug fix #5 (marked
by *) was integrated into the Linux mainline recently.
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Figure 7: Performance comparison between RefFS and other mature
file systems while being checked by Metis. The y-axis applies to both
ops/sec and states/sec.

5.3 RefFS Performance and Reliability
To evaluate RefFS’s performance, we used Metis to check it
against a single file system. We also considered four other
mature file systems (Ext4, Ext2, XFS, and BtrFS) as potential
references. For a fair comparison, we use RAM disks as the
backend devices and adopted the smallest allowed device size
for each. Figure 7 shows that RefFS outperformed the others
in terms of both operations and unique states per second. Even
though RefFS is a FUSE file system—generally slower than
in-kernel ones—it was 3.0×, 2.9×, 28.4×, and 27.7× faster
than Ext4, Ext2, XFS, and BtrFS, respectively. This is primarily
because Metis was able to use the save/restore APIs (§4.1) and
thus did not have to unmount and remount RefFS.

Ext4 and Ext2 were faster than XFS and BtrFS due to the
difference in minimum device sizes: the former require just
256KiB, whereas the latter need 16MiB. Mapping and copying
larger devices in memory naturally increased time overheads.

Reliability. To serve as a reference, RefFS must be highly
reliable. While developing RefFS and Metis, we made necessary
changes (110 lines of code) to xfstests so that we also could use
it to debug RefFS. While we used xfstests to find certain bugs
in RefFS, xfstests often misreported the bug information. For
example, although we implemented RefFS’s link operation,
it still did not pass generic test #2, incorrectly indicating that the
operation was unsupported. For that reason, we also used Metis

to check RefFS with Ext4 as the reference. We discovered and
fixed 11 RefFS bugs, aided by Metis’s logs and replayer. Those
bugs included failure to invalidate caches, inaccurate file size
updates, erroneous ENOENT handling, and improper updates to
nlink, among others. After fixing them, we evaluated RefFS
against Ext4 using 18 distributed Metis VTs for 30 days, execut-
ing over 3.1 billion operations and exploring 219 million unique
states. No discrepancies were reported, demonstrating that
RefFS’s reliability and robustness are similar to Ext4’s—but with
better performance when used as Metis’s reference file system.

5.4 Bug Finding

With RefFS as our reference file system, we applied Metis to
check seven existing file systems: BetrFS [36], BtrFS [68],
F2FS [49], JFFS2 [80], JFS [35], NILFS2 [18], and XFS [82],
discovering potential bugs in five. Table 2 summarizes these
bugs, including causes and consequences, whether they were
confirmed by developers, and whether they were new or
previously known. Metis found bugs using both uniform and
non-uniform input distributions, but some distributions found
bugs faster. Some bugs were detected within minutes, while
others took up to 22 hours, which is reasonable for long-standing
bugs. The bugs we identified were not detected by xfstests [71]
or Syzkaller [25]. Metis identified an F2FS bug that was not
detected by Hydra [43]. We also checked file systems (e.g.,
BetrFS) that are not currently supported by Hydra [43].

We found bugs using Metis through different indicators. Dis-
crepancies reported by the differential checker accounted for
seven out of twelve detected bugs (# 2–6, 9, and 11). The remain-
ing five caused a kernel panic (Linux “oops”) or hung syscall (due
to a deadlock). After analyzing each discrepancy using Metis’s
logger and replayer, we verified that all behavior mismatches orig-
inated from incorrect behavior in the file system under test—the
reference file system, RefFS, was consistently correct.

We reported five bugs to BetrFS’s and JFFS2’s developers, all
of which were confirmed as real bugs; however, one bug each in
BetrFS and JFFS2 had already been fixed in the latest code base.

USENIX Association 22nd USENIX Conference on File and Storage Technologies    133



FS Testing Approach Input Effort to test Effort to add State Code Cover- Bug
(Examples) Versatility new FS new ops Tracking age Tracking Detection

Metis: this work    ✔ ✘
Behavioral
discrepancies

Traditional
Model Checking: CVFS [21], CREFS [88]

   ✔ ✘
User-specified
assertions

Implementation-level Model Checking:
FiSC [87], eXplode [86]

   ✔ ✘
User-written
checkers

Fuzzing: Syzkaller [25], Hydra [43]    ✘ ✔ External checkers

Regression Testing: xfstests [71], LTP [58]    ✘ ✘
Preset expected
outcome

Automatic Test Generation:
CrashMonkey [59], Dogfood [12]

   ✘ ✘
External checkers
or an oracle

Table 3: Comparison of representative file system testing tools. In column 2, the more  symbols, the more relatively versatile the system is; conversely,
in columns 3–4, more  symbols denote more effort.

Of the remaining unconfirmed bugs, four were deterministic and
three were nondeterministic. Deterministic bugs are those easily
reproducible after Metis reported a discrepancy or the kernel
returned errors (e.g., hang or BUG). We are currently pinpointing
the faulty code for the deterministic bugs and preparing patches
for submission to the Linux community. Metis also detected
nondeterministic bugs that its replayer could not reproduce. For
instance, after using unlink to delete file d-00/f-01, the size
of another file f-02 in F2FS incorrectly changed to 0 instead of
the correct value. Replaying the same syscall sequence did not
reproduce this bug. To trigger it, we had to rerun Metis, but the
time and number of operations needed varied across experiments.
Given the bug’s nondeterminism, we suspect a race condition be-
tween F2FS and other kernel contexts. We verified that these un-
confirmed bugs persist in the Linux kernel repository (v6.3, May
2023) without any fixes, thus classifying them as unknown bugs.

To detect them, all these potential bugs require specific
operations on a particular file system state, underscoring the
value of both input and state exploration. JFFS2 bug #5 is
an example of the interplay between input and state. After
4.3 hours of comparing JFFS2 with RefFS, Metis reported
a discrepancy due to differing file content. We observed the
bug occurred when truncating a file to a smaller size, writing
bytes to it at an offset larger than its size, and then unmounting
the file system to clear all caches. Uncovering this multi-step,
data-corruption bug required specific inputs (truncate, write)
and then unmounting and remounting, because there was a
cache incoherency between the JFFS2 in-memory and on-disk
states. Ironically, the fact that Metis was “forced” to un/mount, is
exactly why we found this bug, which was present in the 2.6.24
Linux kernel and remained hidden for 16 years. We fixed this
long-standing bug, and our patch has since been integrated into
the Linux mainline (all stable and development branches).

6 Related Work
File system testing and debugging. We divide existing file
system testing and bug-finding approaches into five classes: Tra-

ditional Model Checking, Implementation-level Model Checking,
Fuzzing, Regression Testing, and Automatic Test Generation.
Table 3 summarizes these approaches across various dimensions.

Traditional model checking [21,88] builds an abstract model
based on the file system implementation and verifies it for
property violations. Doing so demands significant effort to create
and adapt the model for each file system, given the internal
design variations among file systems [53].

Implementation-level model checking [86,87] directly exam-
ines the file system implementation, eliminating the need for
model creation. Due to file systems’ complexity, however, this ap-
proach requires either intrusive changes to the OS kernel [86,87]
or manually crafting system-specific checkers [86]. Additionally,
existing work [86,87] based on this approach generally only iden-
tifies crash-consistency bugs and is incapable of detecting silent
semantic bugs. Unlike these methods, Metis checks file systems
for behavioral discrepancies on an unmodified kernel. Thus,
there is no need to manually create checkers when testing a new
file system [86]. Moreover, other model-checking approaches
rely on fixed test inputs [21,86] and lack the versatility to accom-
modate different input patterns. All model-checking approaches,
including Metis, track file system states to guarantee thorough
state exploration [15], a feature often lacking in other approaches.

Model checking and fuzzing are orthogonal approaches,
each with its own advantages and disadvantages. File system
fuzzing [25,43,83,85] continually mutates syscall inputs from
a corpus, prioritizing those that trigger new code coverage
for further mutation and execution, but they cannot make
state-coverage guarantees, risk repeatedly exploring the same
system states, and require kernel instrumentation. Some fuzzing
techniques [43, 85] also corrupt metadata to trigger crashes
more easily and use library OS [65] to achieve faster and more
reproducible execution than VM-based fuzzers. However, such
designs have their own drawbacks: they require file-system–
specific utilities to locate metadata blocks and cannot test
out-of-tree file systems unsupported by library OS. Hybridra [89]
enhances existing file system fuzzing with concolic execution,
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but it remains fuzzing-based and has the same limitations of file
system fuzzers, including the lack of state-coverage guarantees.

Fuzzing mainly supplies inputs to stress file systems and com-
monly finds bugs using external checkers, such as KASan [24]
(memory errors) and SibylFS [67] (POSIX violations). Cur-
rent fuzzers configure the tested syscalls but not their argu-
ments [25,70], as testing is driven by code coverage. Compared to
fuzzing, Metis employs a test strategy that explores both the input
and state spaces, rather than solely maximizing code coverage.

Manually written regression-testing suites like xfstests [71]
and LTP [58] check expected outputs and ensure that code
updates do not [re]introduce bugs. Because they are hand-created,
they are not easily extensible and do not attempt to automate
or systematize their input or state exploration. Compared to their
XFS-specific tests, xfstests’ “generic” tests can be used with any
file system. Nevertheless, from our past experience (including
building RefFS), even when adopting the generic tests, some
setup functions must be manually modified.

Automatic test generation [12, 47, 59] creates rule-based
syscall workloads (e.g., opening a file before writing) and
employs external checkers (e.g., KASan [24]) or an oracle [59]
to identify file system defects. This technique is easily adapted
to new file systems and extensible with new operations, owing to
the universality of syscalls. Nevertheless these implementations
have lacked the versatility needed to explore diverse inputs
and do not explore the state space like Metis. Furthermore,
these testing methods typically identify only a limited range of
bugs; for instance, CrashMonkey [59] exclusively detects crash-
consistency bugs. We do not include a comparative analysis of
testing for other storage systems, such as NVM libraries [19] and
data structures [20], given their different testing targets and goals.

Ultimately, Metis is not designed to replace any existing tech-
nique; rather, we believe that it is an additional tool that offers a
complementary combination of capabilities not found elsewhere.
Verified file systems. For Metis, a reliable and ideally bug-free
reference file system is critical. Verified file systems are built ac-
cording to formally verified logic or specifications. For example,
FSCQ [14] uses an extended Hoare logic to define a crash-safe
specification and avoid crash-consistency bugs. Yggdrasil [72]
constructs file systems that incorporate automated verification
for crash correctness. DFSCQ [13] introduces a metadata-prefix
specification to specify the properties of fsync and fdatasync
for avoiding application-level bugs. SFSCQ [34] offers a
machine-checked security proof for confidentiality and uses data
non-interference to capture discretionary access control to pre-
clude confidentiality bugs. However, the specifications of verified
file systems have only been used to verify particular properties
(e.g., crash consistency [13,14,72] or concurrency [93]), so other
unverified components can still contain bugs. Worse, even after
rigorous verification, bugs can still hide due to erroneous spec-
ifications (e.g., a crash-consistency bug reported on FSCQ [43]).
None of these verified file systems include the extra APIs that
RefFS provides, which are crucial for optimizing model-checking
performance. While RefFS has not been formally verified, it re-

lies on long-term Metis testing to attain high robustness. Thus,
we chose it, rather than a verified file system, as the reference.

7 Conclusion
File system development is difficult due to code complexity,
vast underlying state spaces, and slow execution times due to
high I/O latencies. Many tools and techniques exist for testing
file systems, but they cannot be easily updated to test specific
conditions at a configurable level of thoroughness. Moreover,
they tend to require code or kernel changes or cannot easily
adapt to testing new file systems.

In this paper, we presented Metis, a versatile model-checking
framework that can thoroughly explore file-system inputs and
states. Metis abstracts file-system states into a representation
that can be used to compare the file system under test against
a reference one. We designed and built RefFS, a reference
POSIX file system with novel features that accelerate the
model-checking process. When used with Metis, RefFS is
3–28× faster than other, more established, file systems. We
extensively evaluated Metis’s input and state coverage, scalability,
and performance. Metis, helped by RefFS, can speed file-system
development: we already found a dozen bugs across several file
systems. Overall, we believe that Metis, with its unique features,
serves as a valuable addition to file system developers’ tool suite.
Finally, Metis’s framework is versatile enough to be adapted to
other systems (e.g., databases).
Future work. Our near-term plans include expanded state
exploration using Swarm verification, investigating any bugs we
discover, and then fixing and reporting them. We are also be-
ginning to test network and distributed/parallel file systems [29].

In the long run, we plan the following: (i) Metis can trigger
nondeterministic bugs, such as race conditions. Therefore, we
need to integrate techniques to more deterministically explore
and reproduce such bugs [23]. Also, we plan to explore kernel
thread interleaving states to find more concurrency bugs [83].
(ii) We intend to enhance Metis by emulating crash states to
identify crash-consistency bugs in kernel file systems [47, 59].
(iii) We aim to add support for testing controlled file-system
corruptions [29,85]. For example, if both RefFS and the test file
system can be corrupted in a logically identical fashion, Metis
can investigate more error paths (e.g., those leading to EIO).
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A Artifact Appendix
Abstract
The paper artifact contains the implementations of the Metis
model-checking framework, the RefFS reference file system,
and other necessary components as well as the code needed
to reproduce most of the experimental results presented in this
paper. Our artifact allows straightforward checking of those
Linux file systems supported by Metis, and can be easily adapted
to examine other file systems. We also provide documentation
that explains how to set up the environment, scale up the
exploration process, and detect and reproduce file system bugs
based on Metis’s logs and replayer.

Scope
This artifact is intended not only to validate the main claims
in this paper but also to enable others to use and extend our
tools, find more file-system defects, and enable future research.
Specifically, we include code that automatically reproduces the
results discussed in §5, including:

• Input coverage results shown in Figures 3, 4, and 5.

• Metis performance using Swarm verification in terms
of operations and unique abstract states per second, as
presented in Figure 6.

• RefFS performance compared to other file systems while
using Metis, as shown in Figure 7.

• Detection and reproduction of file system bugs that were
found by Metis.

Contents
The artifact includes two main Git repositories: the Metis file
system model-checking framework and the RefFS user-space
reference file system. Additionally, it contains several auxiliary
Git repositories that support a basic model-checking facility and
coverage analysis. Specifically, the artifact includes:

• Source to compile and execute the Metis framework for
checking file systems.

• Source to build and operate the RefFS reference file system.

• Scripts to reproduce most of the experimental results
appearing in this paper.

• Modified SPIN and Swarm verification scripts, optimized
for seamless integration with Metis.

• The IOCov [52] tool used to compute input and output
coverage for file-system testing tools.

Hosting
All the repositories are hosted on GitHub with README files
for documentation; some are archived using Chameleon Cloud’s
Trovi service [41] and Zenodo with a permanent DOI.

Metis Repository

• Repository: https://github.com/sbu-fsl/Metis

• Branch: “master”

• Commit: ae08f6802be7cacb614847ebce78c18af86d553a

• Zenodo Archive [50]: https://zenodo.org/records/10537199

• DOI: https://doi.org/10.5281/zenodo.10537199

RefFS Repository

• Repository: https://github.com/sbu-fsl/RefFS

• Branch: “master”

• Commit: 680f5539791fc9c410d7d3cfcf2970ec4edf43a6

• Zenodo Archive [51]: https://zenodo.org/records/10558327

• DOI: https://doi.org/10.5281/zenodo.10558327

Other Repositories

• Repository of the Modified SPIN: https://github.com/sbu-fsl/
fsl-spin

• Repository of the Modified Swarm Verification Tool:
https://github.com/sbu-fsl/swarm-mcfs

• IOCov Repository: https://github.com/sbu-fsl/IOCov

Requirements
Generic Requirements

The artifact requires x86 Ubuntu 20.04 or 22.04 with one of
the following Linux kernel versions: 5.4.0, 5.15.0, 5.19.7, 6.0.6,
6.2.12, 6.3.0, or 6.6.1. It may work with other Linux distributions
and kernels but we did not test that.

Metis is both CPU- and memory-intensive. Running
the artifact does not demand specific CPU resources, but a
higher-end CPU can improve the performance of Metis’s
state-space exploration. Metis’s memory usage depends on
the type of file system being checked. Generally, the required
memory size needs to be at least the sum of the minimum
mountable sizes of the two file systems being compared (the
file system under test and a reference file system), multiplied
by Metis’s maximum search width (default 10,000). Therefore,
larger amounts of RAM are helpful. If sufficient RAM is not
available, we recommend setting up a swap disk on a fast device
such as a high-end SATA-SSD or NVMe-SSD. Metis also
generates many logs during execution, so we recommend using
at least a 500GB disk to avoid running out of log space.

This artifact comes with several prerequisites. We therefore
provide a script script/setup-deps.sh in the Metis
repository to automatically install all the required tools and
libraries on an Ubuntu system.
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Requirements for running Metis with Swarm verification
When using multiple parallel Verification Tasks (VTs) in

Metis, the required computational resources amount to the
demand of a single VT, multiplied by the total number of
VTs. Specifically, the number of CPU cores should equal or
exceed the number of VTs operating on a machine. Similarly,
memory and disk resources should linearly scale with the
number of VTs. The number of VTs can be configured in the
fs-state/swarm.lib file within the Metis repository.

When VTs in Metis are distributed over multiple machines,
each machine must be equipped with resources proportional to
the number of VTs it runs. Moreover, in this distributed setting,
one machine should be designated as the primary, with the
remaining machines serving as workers. The primary machine
should be set up for password-less SSH key-based access to the
workers. We recommend that the hostnames of the workers are
accurately entered in the swarm.lib configuration file on the
primary machine.
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Abstract
With the advancement of storage devices and the increasing

scale of data, filesystem design has transformed in response to
this progress. However, implementing new features within an
in-kernel filesystem is a challenging task due to development
complexity and code security concerns. As an alternative,
userspace filesystems are gaining attention, owing to their
ease of development and reliability. FUSE is a renowned
framework that allows users to develop custom filesystems
in userspace. However, the complex internal stack of FUSE
leads to notable performance overhead, which becomes even
more prominent in modern hardware environments with high-
performance storage devices and a large number of cores.

In this paper, we present RFUSE, a novel userspace filesys-
tem framework that utilizes scalable message communication
between the kernel and userspace. RFUSE employs a per-core
ring buffer structure as a communication channel and effec-
tively minimizes transmission overhead caused by context
switches and request copying. Furthermore, RFUSE enables
users to utilize existing FUSE-based filesystems without mak-
ing any modifications. Our evaluation results indicate that
RFUSE demonstrates comparable throughput to in-kernel
filesystems on high-performance devices while exhibiting
high scalability in both data and metadata operations.

1 Introduction

Traditionally, filesystems have been implemented within the
OS kernel, primarily for direct-attached block devices, such as
Hard Disk Drives (HDDs) or Solid State Disks (SSDs). With
the advent of next-generation storage devices, there have been
significant shifts in filesystem design. Since these emerging
storage devices offer high performance and unique data ac-
cess interfaces, there have been proposals for new filesystems
specifically tailored to those innovative hardware advance-
ments. For Non-Volatile Memory (NVM) [6], which offers
low-latency performance comparable to main memory, many
filesystems are designed to support Direct-Access (DAX)
mode. This mode eliminates redundant memory copying and
facilitates direct access to NVM [24, 26, 38, 39]. Filesystems

optimized for Zoned-Namespace (ZNS) SSDs [11] actively
control data placement, ensuring alignment with the device’s
interface that mandates sequential data writes [16, 31].

Furthermore, the explosive growth in data scale has led
to the development of various distributed storage solutions.
These storage platforms offer finely tuned APIs that are opti-
mized for their internal architectures. Consequently, the cus-
tomization of filesystems to enhance performance for spe-
cific workloads and platforms has become a prevalent prac-
tice [5, 8, 10, 17, 37, 41].

Yet, developing and modifying an in-kernel filesystem is
challenging. Developers must possess a deep understanding
of intricate kernel subsystems, including page cache, memory
management, block layers, and device drivers, among others.
Additionally, there is a risk of inadvertently misusing complex
kernel interfaces. This inherent complexity often leads to
insecure implementations of in-kernel filesystems, rendering
them vulnerable to critical issues, including system crashes.
In addition, efforts to integrate specialized functionalities into
existing in-kernel filesystems can intensify these challenges.

Alternatively, userspace filesystems are gaining attention in
both industry and academia owing to their notable advantages.
They offer greater reliability and safety since programming
errors won’t compromise the whole system. They can also
leverage mature user-level libraries and debugging tools, sim-
plifying filesystem maintenance. Userspace filesystems are
easily portable across different operating systems, in contrast
to in-kernel filesystems which are intrinsically tied to a spe-
cific OS kernel interface.

FUSE [36] is a framework that allows users to develop
custom filesystems without requiring kernel-level modifica-
tions. It enables filesystem operations to be implemented in
userspace, making it easier to develop and maintain special-
ized filesystems for various purposes, including filesystems
for new types of storage devices, networked or distributed
filesystems, or user-specific data storage. FUSE has gained
popularity for its flexibility and compatibility, making it a
valuable tool for building user-level filesystem extensions.

However, FUSE is often criticized for the significant over-
head it incurs due to its complex software stack. Each FUSE
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request, originating from the Virtual File System (VFS)
layer, must undergo multiple steps before finally reaching the
userspace implementation. During this process, FUSE incurs
several context switches between the kernel and userspace and
memory copy overhead. Also, the single queue used by the
FUSE driver to dispatch filesystem requests to the userspace
FUSE daemon prevents FUSE from achieving scalable per-
formance. These overheads become even more prominent in
modern hardware environments with a large number of cores
and high-performance devices.

Numerous efforts have been made to mitigate the inher-
ent overhead in FUSE [3, 15, 23]. These approaches primar-
ily focus on enhancing communication between the kernel
and userspace, aiming for performance on par with in-kernel
filesystems. However, they are only partially effective, since
they share the FUSE’s fundamental design that relies on a sin-
gle queue. Moreover, they often require developers to either
reimplement the filesystem functions or introduce new im-
plementations, which makes them incompatible with existing
FUSE-based filesystems.

In this paper, we introduce RFUSE, a novel userspace
filesystem framework designed to support scalable communi-
cation between the kernel and userspace. RFUSE is specifi-
cally engineered to mitigate the overheads in FUSE’s internal
architecture and offers improved support for modern hardware
environments. To achieve this, RFUSE leverages a ring buffer
data structure, commonly used for efficient message passing,
to facilitate kernel-userspace communication. RFUSE has the
following three design goals:

• Scalable kenel-userspace communication. RFUSE em-
ploys per-core, NUMA-aware ring channels, ensuring
that requests transmitted across distinct channels are
delivered free from lock contention. This approach max-
imizes the parallelism of request processing, resulting in
high scalability.

• Efficient request transmission. RFUSE maps the ring
channels as shared memory between the kernel and
userspace and uses hybrid polling to efficiently transmit
requests and replies. This approach effectively reduces
context switches and request copy overheads.

• Full compatibility with existing FUSE-based filesys-
tems. RFUSE provides the same set of APIs as FUSE,
allowing existing FUSE-based filesystems to run seam-
lessly on RFUSE without any modifications.

To demonstrate RFUSE’s scalability in a contemporary
hardware environment, we carried out a series of experiments,
comparing the results with other userspace filesystem frame-
works. Our evaluation shows that RFUSE effectively reduces
communication latency by 53%. In addition, RFUSE exhibits
significantly better performance in the majority of I/O work-
loads. Especially, RFUSE achieves 2.27x higher through-
put than FUSE in the random read workload. Furthermore,

Figure 1: The internal architecture of the FUSE framework.
For brevity, the forget queue and the interrupt queue are omit-
ted in this figure.

RFUSE achieves better scalability than other frameworks in
both data and metadata operations. Under the several mac-
robenchmarks that simulate real-world use cases, RFUSE
demonstrates high performance comparable to the in-kernel
filesystem. The source code of RFUSE is publicly available
at https://github.com/snu-csl/rfuse.

The rest of the paper is organized as follows. We first
present our background and motivation in Section 2. Sec-
tion 3 describes the design of RFUSE and Section 4 shows
the experimental results. We briefly introduce related work
in Section 5 and conclude the paper in Section 6.

2 Background and Motivation

2.1 FUSE (Filesystem in Userspace)

FUSE enables unprivileged users to develop their own filesys-
tems without modifying the kernel. Figure 1 illustrates the
internal architecture of the FUSE framework. FUSE consists
of two main components: the FUSE driver within the kernel
and the userspace FUSE daemon created when the FUSE-
based filesystem is mounted.

When the FUSE driver is loaded, it creates a particular
device, /dev/fuse, which acts as an intermediary between the
Virtual File System (VFS) and the FUSE-based filesystem.
Internally, the FUSE driver has five types of queues: back-
ground, pending, processing, forget, and interrupt. The first
three queues are used to route requests for filesystem opera-
tions to the FUSE daemon. The forget queue is for interaction
with the directory cache (dcache), while the interrupt queue
handles interrupt requests, which are generated when the ker-
nel needs to interrupt an ongoing filesystem operation.
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Figure 2: Latency breakdown for processing an empty filesys-
tem operation (CREATE) in FUSE.

When applications initiate a file operation on a FUSE-
based filesystem, VFS sends the request to the FUSE driver.
The driver then enqueues the request in the appropriate queue
depending on whether it is a synchronous or an asynchronous
request. Synchronous requests are immediately added to the
pending queue. In contrast, asynchronous requests, such as
read-ahead or write-back requests, are initially put into the
background queue before making their way to the pending
queue. The FUSE driver limits the number of asynchronous re-
quests in the pending queue to prevent interference from bulk
asynchronous requests. This strategy is particularly beneficial
for preserving the responsiveness of synchronous requests
that are usually latency-sensitive.

When a FUSE-based filesystem is mounted, the FUSE dae-
mon is initiated and establishes a communication channel by
performing an open() system call on /dev/fuse. Subsequently,
the FUSE daemon creates a worker thread that performs a
read() system call on /dev/fuse to retrieve file operation re-
quests. If there are no pending requests, the thread sleeps in
a wait queue managed by the FUSE driver, until it receives
further requests. Otherwise, the FUSE driver responds to the
read() system call by returning the first request in the pend-
ing queue. Once the worker thread parses the request, it exe-
cutes the corresponding operation according to the opcode.

A FUSE request consists of the common header, the
operation-specific header, and argument(s). The common
header contains the essential information required by all oper-
ations, such as the opcode and flags that denote the request’s
status. The operation-specific header includes the additional
information specific to each operation. For metadata opera-
tions, the argument usually denotes the name of the target
file(s), whereas for data operations, it indicates the required
data for I/O. Both the FUSE driver and the FUSE daemon ex-
change these information by performing read() and write()
system calls on /dev/fuse. A FUSE reply also contains the
common header and the operation-specific header. In FUSE,
the headers for the request and reply are named in_header
and out_header, respectively.

A FUSE daemon can have multiple worker threads. When
the FUSE daemon finds no more remaining threads to receive
a request from the FUSE driver, it spawns a new worker thread
before handling the received request. There is no explicit

Figure 3: Scalability of random read throughput on StackFS
over EXT4 (FUSE) vs. native EXT4.

limitation on the number of worker threads in FUSE, but it is
implicitly controlled by the limitation imposed on the number
of asynchronous requests that can reside in the pending queue.

2.2 Overheads in FUSE

Although FUSE provides high flexibility in developing
userspace filesystems, its complex stack leads to notable per-
formance overhead.
Latency overhead. As a first step, we conducted a latency
analysis of the CREATE operation on NullFS. NullFS is a
userspace filesystem we developed, which simply returns zero
for any filesystem operation executed in userspace, except for
the LOOKUP operation on the root directory. Figure 2 presents
the latency breakdown of an empty CREATE operation, as ob-
served in our experimental setup (see Section 4.2). The graph
illustrates the various stages of the operation, highlighting the
time taken at each step.

First, we can see that accessing the VFS layer and path
lookup occupies 72% of the total time. Within the VFS layer,
the kernel performs iterative path traversal starting from the
root directory to check the existence of subdirectories and
files. This path-name resolution process results in several
LOOKUP operations directed towards the FUSE daemon in
userspace. Hence, the latency during the initial path lookup
phase (highlighted in green) encompasses the time taken for
multiple rounds of context switches between the kernel and
userspace. Second, the context switch and request copy over-
head between the kernel driver and the FUSE daemon is not
negligible. Even though NullFS does nothing but return the
result, the userspace execution took as long as 18.1 µsec, due
to the context switch overhead. Third, Figure 2 illustrates a
significant overhead, amounting to 39 µsec, when waking up
the application process that awaits a response from the FUSE
daemon.

Several optimizations have been proposed to address the
aforementioned latency issues in FUSE. Android 12 intro-
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duced FUSE-passthrough [3] to achieve the performance of
FUSE comparable to direct access to the in-kernel filesystem.
With FUSE-passthrough, the FUSE driver directly forwards
the READ/WRITE requests to the underlying filesystem. How-
ever, this approach bypasses the FUSE daemon, thereby sacri-
ficing FUSE’s ability to support custom userspace filesystem
functions. For this reason, FUSE-passthrough is only effective
for stackable filesystems that pass the unmodified requests
directly to the underlying filesystem.

Another interesting approach is EXTFUSE [15]. It extends
the FUSE framework, enabling the userspace filesystem to
register simple eBPF [12] code snippets into the kernel. This
allows various filesystem functionalities to be executed di-
rectly within a safe sandboxed environment in the kernel,
avoiding costly context switches between the kernel and
userspace. However, EXTFUSE requires filesystem devel-
opers to craft new functionalities within the constraints of
eBPF, including limited code size, bounded loops, restricted
access to kernel data, constrained pointer usage, and so on.
Bandwidth overhead and scalability issues. In FUSE, all
requests from the VFS layer are placed into a shared pending
queue, leading to severe lock contention, especially when
multiple threads execute filesystem operations simultaneously.
Not only does this design fail to harness the full bandwidth
potential, but it also acts as a roadblock in the development
of scalable userspace filesystems.

We ran the FIO benchmark to assess the scalability of ran-
dom read throughput in FUSE, varying the number of FIO
threads from 1 to 321. Figure 3 contrasts the throughput of
the native EXT4 filesystem with that of StackFS over EXT4.
StackFS [4] is a userspace filesystem built on top of FUSE
that merely passes filesystem operations to the underlying
kernel filesystem (EXT4 in this experiment). Figure 3 shows
that the throughput of StackFS fails to scale once the number
of threads exceeds 16, while the throughput on the native
EXT4 filesystem increases linearly. We note that even with
a small number of threads, StackFS’s bandwidth lags behind
that of EXT4. We believe that the single queue-based commu-
nication in FUSE prevents StackFS from attaining scalable
performance.

Recently, XFUSE [23] proposes the use of multiple commu-
nication channels to increase parallelism in FUSE. However,
just adding more queues does not completely resolve the lock
contention. Furthermore, the inherent context switch overhead
from the original FUSE design still remains.

2.3 Motivation
Our work is inspired by io_uring [19], an efficient I/O inter-
face introduced by the Linux kernel to address the limitations
of the native asynchronous I/O interface. The io_uring inter-
face is built around two primary elements: the Submission
Queue (SQ) that holds I/O requests placed by applications,

1The experimental setup is same as in Figure 10 (d)

and the Completion Queue (CQ) that contains the results of
those I/O requests. Typically, io_uring notifies the kernel of
the submission of a new I/O request and fetches completion
events from the kernel by calling the io_uring_enter() sys-
tem call. However, io_uring offers an additional feature called
polled I/O mode to eliminate systems calls for low latency
devices. In this mode, a dedicated kernel thread monitors the
submission queue while the user application polls the comple-
tion queue. The polled I/O mode enables io_uring to operate
without frequently making system calls.

At its core, io_uring provides a shared memory-mapped
ring buffer between the kernel and userspace to process mes-
sages to/from block devices. Using a ring buffer offers nu-
merous advantages. First, messages (request commands or
completion entries) can be enqueued into the ring buffer atom-
ically with constant-time complexity. This capability allows
the ring buffer to handle burst messages with low latency,
yielding high throughput. Second, the ring buffer can be eas-
ily scaled to handle increased throughput by either enlarging
its size or adding more ring buffers. Especially, a separate
ring buffer can be allocated for each CPU core to minimize
potential lock contention.

A comparable architecture is also employed as the com-
munication interface between CPUs and peripheral devices.
For instance, the NVMe protocol [13] utilizes a pair of ring
buffers, Submission Queue (SQ) and Completion Queue (CQ),
to interact with the NVMe SSDs. Similarly, Ethernet NICs
(Network Interface Cards) employ Transmit (TX) and Receive
(RX) ring buffers to manage outgoing and incoming network
packets.

In this paper, we propose RFUSE, a novel and scalable
FUSE framework that leverages a collection of ring buffers
for communication between the in-kernel FUSE driver and the
userspace FUSE daemon. RFUSE strives to enhance the scala-
bility of the FUSE framework and reduce both context switch
and request copy overheads by deploying ring buffer-based,
per-core communication channels between the kernel and
userspace. Another goal of RFUSE is to maintain the same
interface as FUSE so that existing FUSE-based userspace
filesystems can be executed easily over RFUSE.

3 Design

RFUSE utilizes the ring buffer structure for scalable com-
munication between the kernel and userspace, similar to the
io_uring interface. We could not directly utilize io_uring be-
cause io_uring performs request submission in the user-to-
kernel direction, which does not align with the FUSE structure
where kernel-to-user submission is necessary. Furthermore,
as io_uring has its own kernel context, we find it challenging
to facilitate flexible optimizations within the FUSE structure.

Instead, we have designed a novel ring channel based on
a ring buffer structure, specifically to meet the needs of the
FUSE framework. In this section, we delve into the mechan-
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Figure 4: The overall architecture of RFUSE

ics of our ring channels and describe the design challenges
associated with them.

3.1 Overall Architecture of RFUSE

RFUSE is designed to maximize performance and scalabil-
ity in modern hardware environments that are equipped with
many CPU cores and high-performance devices. Figure 4 de-
picts the overall architecture of RFUSE. Similar to FUSE,
RFUSE consists of two main components: the in-kernel
RFUSE driver and the userspace RFUSE daemon. However,
unlike FUSE which relies on a single queue for communi-
cation between the kernel and userspace, RFUSE employs
a ring channel-based message passing mechanism for each
core.

When the RFUSE driver is loaded, a ring channel is created
for each core in the machine along with a special device
/dev/rfuse. This architecture is intended to boost throughput by
enabling parallel processing of filesystem operation requests.
When a user mounts an RFUSE-based filesystem, the RFUSE
daemon maps the memory region of these ring channels into
the user’s virtual address space using mmap(). This allows the
userspace filesystem to exchange messages with the kernel
without any context switch (see Section 3.2 for details).

When the RFUSE driver forwards a request to the RFUSE
daemon, it determines the appropriate ring channel for request
delivery based on the CPU core ID where the current thread
is scheduled. For example, if an application thread issuing a
filesystem operation runs on core 3, the RFUSE driver trans-
mits the corresponding request to the RFUSE daemon via
ring channel #3.

RFUSE allocates the memory for ring channels and their
associated components in consideration of NUMA locality.
When a ring channel is allocated to a different NUMA node,
every access during request submission and completion in-
curs remote NUMA memory access penalties, resulting in
substantial latency. To mitigate this, RFUSE allocates each
ring channel to memory on the same NUMA node as its cor-
responding CPU core. This ensures that the RFUSE daemon

Figure 5: Components in a ring channel. For brevity, the
forget and interrupt ring buffers are omitted in this figure.

does not access memory from a different NUMA node while
processing requests.

Replacing the single queue in FUSE with per-core ring
channels looks seemingly straightforward to improve perfor-
mance, but it introduces several design challenges. In the
following subsection, we examine the components of the ring
channel and its internal operations in more detail. Section 3.3
explains how RFUSE manages worker threads on per-core
ring channels. We delve into how RFUSE mitigates context
switch and thread wake-up overhead through hybrid polling
in Section 3.4. Section 3.5 examines RFUSE’s strategies for
load balancing in the face of burst asynchronous requests.
Section 3.6 describes how the RFUSE daemon and the kernel
driver communicate with each other using logical identifiers.
The memory overhead caused by the ring channels is analyzed
in Section 3.7. Lastly, Section 3.8 outlines the extensions we
made in RFUSE to ensure compatibility with existing FUSE-
based filesystems.

3.2 Scalable Kernel-Userspace Communica-
tion

Figure 5 illustrates the internal components of a ring channel
that connects the RFUSE driver and the RFUSE daemon.
Each ring channel has three ring buffers: pending, forget, and
interrupt. In addition, there are two separate buffers and a
background queue exists for each ring channel. Similar to
FUSE, synchronous requests are enqueued directly into the
pending ring buffer, while asynchronous requests are initially
added to the background queue. These asynchronous requests
are subsequently moved to the pending ring buffer to prevent
them from exceeding the predefined maximum capacity of
that buffer.

In contrast to FUSE, which sends a request in response
to the system call, RFUSE utilizes a header buffer and an
argument buffer. Each entry in the header buffer consists of a
common header and an opaque header. The common header
contains the common information for all operations such as
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an opcode and a completion flag. During request submission,
the opaque header holds an operation-specific header. Upon
returning the result from userspace, RFUSE reuses the same
header buffer entry as an out header. This approach allows
RFUSE to deliver the request’s outcome to the RFUSE driver
efficiently.

These components of a ring channel are mapped to the
virtual memory area (VMA) of the RFUSE daemon when
an RFUSE-based filesystem is mounted. This establishes a
shared memory space between the kernel and the RFUSE
daemon. Through these shared ring buffers, the kernel can
interact with the RFUSE daemon without the need to allocate
and copy a request for every filesystem operation.

For example, let us consider a scenario where the VFS
layer forwards a CREATE request to the RFUSE driver. The
RFUSE driver first retrieves the index of an empty entry from
the header buffer. Then, the driver fills the common parameter
in the common header part and uses the opaque header part
as create_in_header which is the operation-specific header
of the CREATE request. Additionally, since the CREATE op-
eration requires a filename as an argument, the driver gets a
single entry from the argument buffer and records its index
in the common header. After the preparation of the request,
the driver enqueues the index of the header buffer entry into
the pending ring buffer and increments the tail pointer. When
the RFUSE daemon dequeues from the pending queue, it re-
trieves the index of the header buffer and parses the header to
perform the appropriate userspace filesystem operation. In the
case of CREATE, it returns two operation-specific out headers:
entry_out_header containing metadata for the created file,
and open_out_header containing file descriptor information.
These are returned by reusing the opaque header and argu-
ment entry, which are used for request submission and the
reply is transmitted by setting the completion flag in the com-
mon header. This approach significantly reduces the need to
allocate and copy for each of requests and replies and makes
efficient communication between the kernel and userspace.

RFUSE uses bitmaps for both the header buffer and argu-
ment buffer to track the allocation status of entries in these
fixed-sized buffers. When all the bits in the bitmap are set,
indicating that no further requests can be added to the buffer,
application threads will go into a sleep state, waiting for the
completion of previously submitted requests. Upon request
completion, RFUSE resets the corresponding bit in the bitmap
and awakens one of the threads that is in a sleep state, awaiting
its turn.

3.3 Worker Thread Management

For each ring channel, the RFUSE daemon creates dedicated
worker threads responsible for handling the requests received
from that channel. A worker thread is bound to the corre-
sponding CPU core by setting its CPU affinity to the same
core ID as the assigned ring channel.

To completely eliminate lock contention among worker
threads, it is natural to have only one worker thread per ring
channel. However, this single-thread approach can negatively
impact the performance. For instance, when a time-consuming
operation such as FSYNC is in progress, other requests must
wait until the FSYNC operation finishes. Creating as many
worker threads as required, as is done in FUSE, is also not a
viable option. This is because the worker threads associated
with a ring channel are affinitized to the same CPU core,
leading to substantial contention on that particular core.

Considering these constraints, RFUSE permits multiple
workers per ring channel but caps the maximum thread count.
Because the RFUSE daemon spawns only a small number
of worker threads (two, by default) within a ring channel,
contention on a single core remains limited. Note that there
is no lock contention among worker threads operating on
different ring channels.

3.4 Hybrid Polling

In FUSE, the communication between the FUSE driver and
the FUSE daemon relies on read()/write() system calls on
the /dev/fuse device. When the worker threads in the FUSE
daemon no longer have incoming requests to handle, or when
application threads are waiting for a response from the FUSE
daemon, they go into a sleep state until an event wakes them
up. Using system calls leads to frequent context switches, and
the event-wait mechanism between processes adds noticeable
delays on the order of microseconds. This can result in sig-
nificant overhead, particularly for metadata operations which
typically require short latency.

Similar to the polled I/O mode in io_uring, RFUSE also
supports a polling mechanism. In RFUSE, the worker threads
poll the head pointer of the pending ring buffer in userspace
for incoming requests, while the application threads monitor
the completion flag of their submitted requests in the header
buffer, waiting for a response. The use of polling eliminates
not only the context switches caused by system calls, but also
the delays associated with awakening threads from the sleep
state. However, if polling is used in a naive manner, it can
lead to the wastage of CPU resources. This inefficiency is fur-
ther exacerbated in RFUSE, where both kernel and userspace
threads running on the same CPU core.

As a solution, RFUSE adopts a hybrid polling approach.
There is a user-defined period (50µsec, by default) during
which a thread can perform busy-waiting idly. If the appli-
cation thread in the polling state exceeds this period, it will
enter the sleep state, waiting for the completion flag to be
set. For requests that can be quickly handled by the userspace
implementation, the application thread can receive a reply
during polling and return promptly. Otherwise, for requests
with longer latency, it will enter the sleep state, thus avoiding
unnecessary CPU wastage. The worker threads in the RFUSE
daemon also behave similarly; if there are no incoming re-
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Figure 6: Encoding ring channel information in a 64-bit
integer.

quests while polling the pending ring buffer, they will sleep
in the wait queue.

3.5 Load Balancing of Asynchronous Requests
In the RFUSE driver, asynchronous requests are handled in
a manner similar to FUSE, where they are first added to the
background queue for congestion control before being trans-
ferred to the pending ring buffer. This design aims to minimize
the impact of burst asynchronous requests on synchronous
operations.

However, such a policy poses a problem when it is com-
bined with RFUSE’s ring selection strategy. Because RFUSE
chooses the ring channel based on CPU core ID, a large num-
ber of asynchronous requests can overwhelm a single ring
channel, especially for read-ahead or write-back requests that
are generated in bursts by a single kernel thread. Further-
more, given the limited number of worker threads allocated to
each ring, the throughput of asynchronous operations can be
significantly affected. To address the skewed distribution of
asynchronous requests, RFUSE implements a load-balancing
policy when congestion occurs.

When enqueuing asynchronous requests into the back-
ground queue, RFUSE identifies congestion and attempts to
perform load balancing based on the following two criteria:
(1) when the number of requests waiting in the background
queue exceeds the maximum number of asynchronous re-
quests that can reside in the pending ring buffer, and (2) when
there is a thread in the sleep state due to the prolonged ex-
ecution time within the RFUSE daemon. If congestion is
detected in a ring channel, RFUSE schedules the incoming
asynchronous requests onto different ring channels in a round-
robin fashion. This helps alleviate the load on the congested
ring channel and maximize the utilization of multiple ring
channels, thus increasing the overall throughput.

3.6 Transmission of Ring Channel Information
The RFUSE daemon needs to identify the locations of in-
kernel data structures such as ring buffers, header buffers,
and argument buffers for the following internal operations:
(1) mapping the components of a ring channel in the VMA

by performing mmap() on /dev/rfuse during the initialization
phase, (2) identifying data pages prepared for READ/WRITE
requests from application threads, (3) transitioning to a sleep
state on the wait queue associated with the ring buffer by
ioctl() when the worker thread needs to stop its polling,
and (4) waking up an application thread by ioctl() that has
entered a sleeping state while waiting for completion.

However, the userspace RFUSE daemon cannot know the
exact addresses of those data structures since they are allo-
cated and managed by the kernel driver. Therefore, rather than
relying on physical addresses, the RFUSE daemon utilizes
logical identifiers, such as ring channel IDs, ring buffer types,
and header buffer indexes, to communicate with the kernel
driver. Through these logical identifiers, the userspace dae-
mon can communicate more securely as they do not need
to directly communicate via physical addresses. When the
mmap() system call is invoked, these logical identifiers are
encoded and then passed to the kernel driver using the 64-bit
offset parameter of the mmap() system call.

Figure 6 depicts an example of how to encode ring channel
information in a 64-bit integer. We exclude bits [15:0] due
to page alignment constraints in the offset parameter of
the mmap() system call. We use bits [23:16] to indicate the
ID of the ring channel and bits [31:24] for ring buffer types.
The remaining bits [32:63] are used to specify an entry index
within the header buffer. For the ioctl() system call, this
information is passed as the third parameter.

3.7 Memory Usage of Ring Channels

Throughout the lifespan of a userspace filesystem, ring chan-
nels remain mapped to the RFUSE daemon, retaining memory
until the filesystem is unmounted. The number of ring chan-
nels matches the number of CPU cores, with both the ring
buffer and the header buffer having the same number of en-
tries. Due to some operations such as RENAME that require
two arguments, the argument buffer has twice as many entries
as the ring buffer. With these considerations, we can calculate
the total memory usage due to ring channels as follows:

MemUsage = Nc ×Nr × (Sp +S f +Si +Sh +2×Sa) (1)

where Nc and Nr denote the number of cores and the number
of entries in the ring buffer, respectively. Sp, S f , and Si repre-
sent the entry size of the pending, forget, and interrupt ring
buffer, respectively. Finally, Sh and Sa indicate the entry size
of the header buffer and the argument buffer, respectively.

By default, RFUSE uses the following parameter values (in
bytes): Nr = 4096, Sp = 4 (integer index to the header buffer),
S f = 32, Si = 8, Sh = 256 (the common and opaque header
size), and Sa = 256 (the maximum length of the file name).
Considering an 80-core machine with 256GB of memory, the
estimated memory footprint of ring channels is approximately
250MB. Given that this accounts for about 0.1% of the to-
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Figure 7: Latency breakdown for processing an empty filesys-
tem operation (CREATE) in RFUSE.

tal memory size, we believe this level of memory usage is
acceptable.

3.8 Compatibility with FUSE
To make use of the ring channels, we have modified the FUSE
kernel driver and the low-level layer of libfuse that handles
message communication. In RFUSE, the READ/WRITE han-
dlers in the kernel driver, previously used for message com-
munication in FUSE, are now dedicated solely to data trans-
mission for I/O requests.

Nevertheless, RFUSE retains all FUSE APIs exposed to
developers of userspace filesystems. RFUSE also provides the
same splicing I/O interface as FUSE, enabling data transfer
between two in-kernel buffer without data copy into userspace.
Thus, RFUSE ensures full compatibility with existing FUSE-
based filesystems. Users do not need to rewrite their FUSE-
based filesystem code when using RFUSE. The only action
required is to re-link their filesystems with the librfuse library.

Since requests are submitted based on the CPU core ID,
RFUSE requests can be executed out-of-order. Nevertheless,
RFUSE ensures the same level of correctness as FUSE re-
garding request ordering. While FUSE utilizes a single com-
munication queue, the userspace FUSE daemon may have
multiple worker threads. This implies that simultaneous en-
queuing of dependent requests may yield varying outcomes
depending on the userspace filesystem implementation within
FUSE. Consequently, the ordering of requests transmitted in
parallel should be managed either by the VFS layer or through
FSYNC-like operations initiated by applications.

4 Evaluation

4.1 Experimental Setup
Hardware setup. We used two types of testbeds to con-
duct our experiments. The first testbed is a Dell PowerEdge
R750xs server equipped with two Intel(R) Xeon(R) Silver
4316 CPUs (80 logical cores in total) and 256GB of DDR4
memory. This testbed is also equipped with a 2TB Fadu Delta
PCIe 4.0 SSD and a Mellanox ConnectX-6. Note that unless

Figure 8: FIO throughput of StackFS and native EXT4.

Figure 9: FIO throughput of Fuse-nfs and in-kernel NFS.

otherwise explicitly specified about the machine configura-
tion, all experiments were carried out using this testbed. The
second testbed is a Supermicro 7049GP-TRT server with two
Intel(R) Xeon(R) Gold 5218R CPUs (80 logical cores in to-
tal) and 256GB of DDR4 memory. This testbed is equipped
with Mellanox ConnectX-5. For the experiment on Fuse-nfs
in Section 4.3.1, we used this testbed as the client and the first
testbed as the server. Both testbeds run Ubuntu 20.04 LTS
with the Linux kernel version 5.15.0.
FUSE frameworks tested. We conduct a comparative analy-
sis of RFUSE against other userspace filesystem frameworks,
specifically FUSE [36] v3.10.5 and the latest version of EXT-
FUSE [15] available on GitHub. Additionally, we have de-
veloped an emulated version of XFUSE [23], as its source
code is not in the public domain. This emulation encompasses
multiple FUSE communication channels corresponding to the
number of CPU cores and the adaptive waiting strategy that
dynamically adjusts the busy-wait period within the FUSE
driver. We have excluded the RAS feature for supporting
online upgrades of user-level filesystems, as it does not sig-
nificantly impact filesystem performance.
User-level filesystems tested. For our experiments, we con-
sider three userspace filesystem implementations: NullFS,
StackFS [4], and Fuse-nfs [2]. To analyze and contrast the la-
tency associated with request handling in FUSE and RFUSE,
we implemented a very simple userspace filesystem called
NullFS. NullFS only supports the LOOKUP operation on the
root directory, and it merely returns zero for all other op-
erations. StackFS is a stackable userspace filesystem that
forwards incoming filesystem operations to an underlying
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Figure 10: Scalability with FIO benchmark

in-kernel filesystem, such as EXT4. We evaluate the perfor-
mance of StackFS on top of the EXT4 filesystem across three
different frameworks, FUSE, EXTFUSE, and RFUSE, as well
as that of the native EXT4 filesystem within the kernel. Fuse-
nfs is a userspace implementation of the Network File System
(NFS) client using the libnfs user-level library. Since EXT-
FUSE lacks a ported implementation of Fuse-nfs, our com-
parison focuses on Fuse-nfs running on FUSE and RFUSE,
in addition to the in-kernel implementation of NFS.

4.2 Latency Breakdown
Figure 7 depicts the latency breakdown of a CREATE operation
to NullFS on the root directory, which promptly returns with-
out performing any action in RFUSE. In comparison to the
same operation’s latency in FUSE, as illustrated in Figure 2,
RFUSE demonstrates a 53% lower latency. The substantial
improvement in latency can be attributed to three primary
factors.

First, RFUSE eliminates the need for context switches
when processing requests and results. By accessing the pend-
ing ring buffer, RFUSE can retrieve the requests to be exe-
cuted and quickly return the results by setting the completion
flag of the corresponding entry in the header buffer. Thus,
RFUSE improves the time taken in userspace by 6.46x com-
pared to FUSE (highlighted in white in Figure 2 and Figure 7).

Second, RFUSE effectively minimizes the wake-up over-
head within the kernel driver using a hybrid polling technique.
After sending a request, the application thread polls the com-
pletion flag for a certain duration. Since NullFS returns the
result instantly upon receiving a request, the completion is
detected while the application thread is still polling, enabling
immediate result retrieval.

The last factor is the improved time required for path traver-
sal to verify the existence of subdirectories and files. As men-
tioned in Section 2.2, the path-name resolution initiated by
the VFS layer triggers internal LOOKUP operations to the
FUSE daemon along the path of the target file. Each of these
LOOKUP operations results in a round trip between the kernel
and userspace. Due to the reduced latency in processing a

single request in RFUSE, LOOKUP operations are executed
faster than in FUSE, considerably decreasing the time taken
for path-name resolution.

4.3 Micro-benchmark

4.3.1 FIO Performance

To demonstrate RFUSE’s ability to deliver high throughput,
we perform the FIO benchmark [1] on StackFS and Fuse-nfs.
The FIO benchmark is executed using 32 threads, varying both
the data access pattern and the request size. For sequential
I/O workloads, we use a request size of 128KB and invoke
FSYNC at the end of the sequential writes. For random I/O
workloads, we use a 4KB request size and trigger FDATASYNC
after every write operation during random writes. Each FIO
thread operates on a 4GB file with a total file size of 128GB.
We also conducted the FIO benchmark using the splicing I/O
interface of FUSE and RFUSE. However, we omit the results
as they did not show significant differences. Note that we were
unable to measure the random write throughput of EXTFUSE
as it returned errors in our testing environment.

Figure 8 displays the FIO results for the native EXT4
filesystem and StackFS deployed on various frameworks.
In Figure 8(a), both FUSE and RFUSE exhibit compara-
ble throughput to EXT4 for both sequential read and write
workloads. This is because, for sequential reads, the data is
prefetched into the page cache through read-ahead opera-
tions, and for sequential writes, the written data is collected
in the page cache before being written back in bulk. How-
ever, EXTFUSE exhibits lower throughput even for sequential
workloads compared to other frameworks. EXTFUSE pro-
vides a functionality similar to fuse-passthrough, allowing I/O
operations to be directly passed to the underlying filesystem
via eBPF. However, this functionality was not available in
the open-source version of EXTFUSE on GitHub, limiting its
performance capabilities.

In Figure 8(b), RFUSE shows performance comparable to
the native EXT4 filesystem for random workloads. In particu-
lar, RFUSE achieves 2.27x higher throughput than FUSE in
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Figure 11: Scalability with FXMARK metadata operations

random reads. This is due to the effectiveness of RFUSE’s
hybrid polling mechanism in reducing the context switch and
wake-up overhead. Considering that 4KB I/O operations typi-
cally have short execution times, FIO threads can receive the
results while they are polling for them.

We conduct the same workloads on in-kernel NFS and
Fuse-nfs deployed on both FUSE and RFUSE. Although it
may be difficult to make a direct comparison between in-
kernel NFS and Fuse-nfs due to the inherent differences in
their client implementations, we consider the results from
in-kernel NFS as a reference point for theoretical maximum
performance. In Figure 9, RFUSE achieves higher throughput
than FUSE across all workloads due to its scalable communi-
cation interface and a reduction in the average latency.

4.3.2 I/O Scalability

To investigate RFUSE’s scalability compared to FUSE, we
conducted experiments on StackFS with the same workloads
in Section 4.3.1. We gradually increased the number of FIO
threads from 1 to 32, and the results are presented in Figure 10.
We have omitted the results of using splicing I/O as they
followed a similar trend to those in Figure 10.

For sequential workloads, EXT4 demonstrates significantly
higher throughput at lower thread counts. This can be at-
tributed to the inherent characteristics of the FUSE and
RFUSE frameworks that require communication between
the kernel and userspace. Achieving sufficient throughput
with fewer threads is challenging due to the communication
overhead, even with the assistance of the page cache and
read-ahead operations. However, when the number of threads
exceeds 8, RFUSE exhibits throughput comparable to EXT4

Workload Description
MWCL Create empty files in a private directory
MWCM Create empty files in a shared directory
MRDL Enumerate a private directory
MRDM Enumerate a shared directory
MWUL Unlink empty files in a private directory
MWUM Unlink empty files in a shared directory
MRPL Open and close private files in a directory
MRPM Open and close arbitrary files in a directory
MRPH Open and close the same file in a directory

Table 1: Summary of metadata operation in FXMARK.

due to increased parallelism.
In Figure 10(b), we can observe that the sequential read

throughput of RFUSE is lower than that of FUSE when us-
ing only one FIO thread. During the execution for sequential
reads, read-ahead is performed to prefetch data. However, in
RFUSE, this operation can lead to congestion on the ring
channel, triggering RFUSE to initiate load balancing. Conse-
quently, when there is only one thread, RFUSE experiences
a minor performance decline due to the overhead associated
with request reallocation. Nevertheless, with a higher number
of threads, the increased parallelism allows RFUSE to achieve
throughput comparable to EXT4.

For random workloads, RFUSE demonstrates higher
throughput than FUSE while increasing the number of threads.
Notably, in the random read workload, the throughput of
FUSE ceased to scale beyond 16 threads, while RFUSE con-
tinues to show the scalable throughput. RFUSE exhibits better
scalability due to its utilization of per-core ring channels. In
addition, as mentioned in Section 4.3.1, the reduction in con-
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Figure 12: Thoughput of filebench workloads

text switch and wake-up overhead enabled by hybrid polling
significantly enhances RFUSE’s overall performance.

4.3.3 Metadata Operation Scalability

To evaluate the scalability of RFUSE when performing meta-
data operations, we ran the FXMARK benchmark [29] on
StackFS. Table 1 summarizes the details of the FXMARK bench-
mark used in the experiment. We used all the metadata work-
loads defined in FXMARK, with the exception of the RENAME
workloads named MWRL and MWRM, as StackFS does not sup-
port RENAME operation. Note that we failed to measure the
throughput of MWUL and MWUM on EXTFUSE, as it resulted in
errors in our environment.

Figure 11 depicts the scalability of metadata operations
for the evaluated userspace filesystem frameworks. The re-
sults show that RFUSE consistently demonstrates superior
scalability compared to FUSE and EXTFUSE across the var-
ious workloads. RFUSE leverages per-core, NUMA-aware
ring channels, enhancing the parallelism of metadata oper-
ations and eliminating inter-NUMA accesses, which could
lead to high latency. Furthermore, RFUSE’s hybrid polling
proves particularly effective in metadata operations, because
most of these operations can be completed quickly. This al-
lows RFUSE to achieve both high scalability and superior
throughput in workloads with contention for shared resources
compared to other frameworks.

We note that EXTFUSE shows lower scalability, especially
in MWCL and MWCM. It is possibly due to the key-value maps
used for storing custom data structures in EXTFUSE, which
may not be designed to scale effectively. For the workloads
MRPL, MRPM, and MRPH, all the evaluated frameworks show
similar throughput and scalability. This is because these work-
loads operate on a directory structure with a depth of five,
where path-name resolution becomes the primary operation.
As this operation heavily depends on the dcache in the VFS
layer, there is little variation among the frameworks.

4.4 Macro-benchmarks
Filebench. We performed the filebench benchmark [35]
on StackFS using predefined workloads, namely, fileserver

Figure 13: Thoughput of YCSB benchmark on RocksDB and
sysbench OLTP benchmark on PostgreSQL

and webserver, which contain a mixed set of data and meta-
data operations. The fileserver workload simulates the
behavior of a file server that serves files to multiple clients.
Files are initially created with a size of 128KB and then ex-
panded through 16KB APPEND operations. We executed the
fileserver workload using 200,000 files and 50 threads.
The webserver workload mimics the behavior of a web
server that serves web pages and files to clients over the In-
ternet. Files in the webserver workload are created with a
relatively small size of 16KB. We executed the webserver
workload with 1.25M files using 100 threads. For both work-
loads, the unit size of the READ operation was set to 1MB.

We present the results of these workloads in Figure 12.
In both workloads, RFUSE outperforms FUSE and XFUSE
in throughput and shows performance comparable to EXT4.
XFUSE exhibits superior performance compared to FUSE
due to increased parallelism and its adaptive waiting strat-
egy. However, XFUSE still suffers from context switching
and request copying overhead, resulting in lower throughput
compared to RFUSE. RFUSE, on the other hand, leverages
communication through a ring channel, effectively eliminat-
ing these overheads and achieving higher performance than
other frameworks when handling a mixed set of operations.
YCSB. To evaluate an application-level performance of
each framework on a real-world workload, we deployed
RocksDB [7] on StackFS and measured a throughput using
the YCSB benchmark [18]. For the YCSB workloads in Fig-
ure 13(a), we initially load 50M KV pairs and run each YCSB
workload with a uniform distribution. The results indicate
that RFUSE can attain significant performance improvements
compared to FUSE, demonstrating throughput akin to EXT4
across all YCSB workloads.
OLTP. We also deployed PostgreSQL [21] on StackFS
and measured a TPS (Transactions Per Second) using the
sysbench OLTP benchmark [25]. For the OLTP workload, we
load 50M rows across 10 tables before running the benchmark.
In Figure 13(b), RFUSE demonstrates a 42% higher TPS
compared to FUSE. The results indicate that RFUSE can
handle transaction processing more effectively compared to
FUSE, owing to the enhanced parallelism by per-core ring
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Figure 14: Impact of each technique in RFUSE

channels. We can also observe that the TPS results of the
frameworks are relatively lower than EXT4. This is primarily
due to frequent FSYNC operations induced by logging in the
OLTP workload. For the FSYNC operation, both FUSE and
RFUSE initially writeback dirty pages of the target file to the
userspace daemon and wait for the completion of all pending
WRITE requests before dispatching the FSYNC request. This
incurs significant processing overhead for OLTP workloads
on the frameworks, leading to lower throughput compared
to EXT4. To validate this, we measured the performance of
RFUSE after turning off the FSYNC option in the PostgreSQL
(labeled as RFUSE-FO). The result demonstrates that the TPS
of RFUSE-FO is nearly on par with that of EXT4.

4.5 Factor Analysis

To assess the influence of the proposed techniques incor-
porated into RFUSE, we measured the throughput of the
fxmark:MWCL workload on StackFS. Figure 14 illustrates
how throughput varies as we introduce each technique one
by one to FUSE. When we add per-core ring channels, we
observe 2.2x higher throughput compared to the native FUSE,
thanks to the enhanced parallelism. Furthermore, the man-
agement of worker threads with a CPU affinity yields a note-
worthy improvement by mitigating inter-NUMA accesses.
Finally, applying hybrid polling not only reduces latency but
also leads to an observed improvement in throughput, while
reducing contention within CPU cores.

4.6 CPU Utilization

Lastly, we measured the CPU utilization while executing the
fileserver workload used in Section 4.4 on StackFS. Fig-
ure 15 displays the variations in CPU utilization for both
FUSE and RFUSE. Considering that the fileserver work-
load operates with 50 threads on our 80-core machine, the
theoretical maximum CPU utilization is 62.5%.

Owing to its hybrid polling mechanism, RFUSE exhibits

Figure 15: CPU utilization for the fileserver workload

roughly 7% higher CPU usage during execution compared to
FUSE. However, due to RFUSE’s higher throughput on the
fileserver workload, we can see that RFUSE has a shorter
execution time than FUSE. From an energy consumption
perspective, despite its architecture based on hybrid polling,
RFUSE is thought to consume either less or a comparable
amount of energy as FUSE.

5 Related Work

Library Filesystem. A Library Filesystem (libFS, for short),
provides a set of APIs implementing filesystem functionalities
in the form of a user-level library. To access the filesystem
service, applications must be directly linked to libFS during
compile time. LibFS typically does not provide the standard
POSIX interface. Instead, it offers filesystem APIs optimized
either for specific application data access patterns or for the
underlying storage platforms. Due to these benefits, many
distributed filesystems are designed in the form of libFS. Ex-
amples include libhdfs for the Hadoop Distributed File Sys-
tem (HDFS) [17], libcephfs for CephFS [37], and many more
tailored for large-scale storage systems [22, 28, 33, 41]

However, using libFS may pose some challenges. Since
they do not adhere to any standardized API, applications
using the POSIX API cannot directly utilize those filesystems.
Also, application developers need to be familiar with the
intentions and specifics of the target libFS, complicating its
seamless integration with the application. Finally, a change in
the filesystem API or the implementation of new funtionality
require either rewriting or recompiling the application.

System Call Hooking. Several state-of-the-art NVM
(Non-Volatile Memory) filesystems [14, 20, 24, 30] are
implemented using a system call hooking mechanism, which
allows them to directly access the NVM without going
through the kernel by intercepting system calls. This is
typically achieved through LD_PRELOAD [32] which is
an environment variable provided by the dynamic linker,

152    22nd USENIX Conference on File and Storage Technologies USENIX Association



allowing users to specify shared libraries to be loaded prior to
initiating the program execution. By intercepting libc [9] with
LD_PRELOAD, one can create a userspace filesystem using
a custom library that redefines system call wrappers related
to filesystem functions. However, recent studies warn about
the pitfalls of implementing a userspace OS subsystem using
the LD_PRELOAD hook. For example, zpoline [40] argues
that LD_PRELOAD is designed to hook function calls, not
system calls. System calls that are internally invoked through
the syscall or systenter instruction in libc cannot be
successfully hooked by LD_PRELOAD. This can lead to
unexpected behaviors, such as FD inconsistency [27, 40],
as they disrupt the synchronization between the kernel and
userspace subsystems.

Restartable Userspace Filesystem. Although userspace
filesystems are easy to use, a crash in a userspace filesys-
tem remains a significant concern. Recovery from a sudden
crash requires manual intervention, potentially causing dis-
ruption in services to users throughout the recovery period.
Re-FUSE [34] introduces extensions into the FUSE frame-
work for transparent and correct filesystem restart following a
crash. Moreover, XFUSE [23] not only provides transparent
restart capabilities but also supports online upgrades, allowing
the integration of new features into the FUSE-based userspace
filesystem with minimal service downtime. Such restartability
feature enhances the deployment of userspace filesystems in
production environments.

6 Conclusion

RFUSE is a userspace filesystem framework supporting scal-
able kernel-userspace communication. By harnessing per-
core, NUMA-aware ring channels, RFUSE minimizes con-
tention between worker threads and achieves high scalabil-
ity. The ring channels shared between the kernel driver and
the RFUSE daemon also enable RFUSE to perform efficient
message transmission without the need for request copying.
Moreover, a hybrid polling mechanism of RFUSE effectively
reduces the costly context switches. Since RFUSE maintains
the same set of APIs as FUSE, existing FUSE-based filesys-
tems can be used without any modifications. Our evaluation
results shows that RFUSE can seamlessly support modern
hardware environment with its superior throughput and high
scalability.
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A Artifact Appendix

A.1 Abstract
RFUSE is a novel userspace filesystem framework that uti-
lizes scalable message communication between the kernel
and userspace using a per-core ring channel as a communica-
tion channel. This artifact comprises the RFUSE source code
and scripts utilized in the benchmarks presented in the pa-
per. RFUSE is implemented by modifying both the user-level
library and the kernel driver of FUSE. Furthermore, this ap-
pendix provides comprehensive instructions on accessing our
artifact and reproducing the results achieved in our research.

A.2 Scope
The following items represent major claims that our artifact
allows to validate. For detailed descriptions and insights into
the relationship between the artifact and experiments, please
refer to claims.md
(Claim 1): For sequential I/O operations, all frameworks

and EXT4 show similar throughput due to the aid of
page cache in the kernel. For random I/O operations,
RFUSE demonstrates higher throughput than FUSE due
to the hybrid polling mechanism in reducing context
switch and wake-up overhead.

(Claim 2): RFUSE scales well for common data operations
due to its utilization of per-core ring channels.

(Claim 3): RFUSE scales well for common metadata oper-
ations due to enhancing the parallelism of metadata
operations and eliminating inter-NUMA accesses. For
MRPL, MRPM and MRPH workloads, all frameworks and
EXT4 show similar scalability due to the aid of dcache
in the kernel.

(Claim 4): For filebench macro workloads, RFUSE out-
performs FUSE and shows performance comparable
to EXT4, which indicate that RFUSE is well-suited for
handling a mixed set of operations.

(Claim 5): RFUSE demonstrates shorter latency than FUSE
on NullFS due to the reduction of communication over-
heads.

A.3 Contents
The submitted artifact consists of 5 components:

1. The kernel drivers, which contain the kernel driver codes
for both FUSE and RFUSE.

2. The user-level libraries, which contain the user-level
library for both FUSE and RFUSE.

3. The linux kernel source code (v5.15.0).

4. The filesystems, which include the source code of NullFS
and StackFS.

5. The benchmarks, which are used in the experiments in
the paper.

A.4 Hosting
The source code of RFUSE is publicly available at https:
//github.com/snu-csl/rfuse and the latest version of
RFUSE is uploaded on the master branch.

A.5 Requirements
A.5.1 Hardware Requirements

We evaluated RFUSE on the machine equipped with Fadu
Delta PCIe 4.0 SSD and 80 logical cores. For machines with
older PCIe generation devices and the small number of cores,
the benchmarks may not show similar results we present in
the paper, but we believe the overall trends should be similar.

A.5.2 Software Requirements

We developed the RFUSE kernel driver compatible with Linux
kernel version 5.15.0. To ensure the correct compilation of
our artifact, please verify that your machine’s kernel version
matches v5.15.0.

All provided instructions are tailored for the Ubuntu OS
distribution. If you intend to utilize a different Linux distribu-
tion, adjust the environment setup instructions based on the
specific distribution you are using.

A.6 Set-up
This section provides concise instructions for setting up the
environment and installing RFUSE from scratch. For com-
prehensive details including steps for mounting user-level
filesystems, please refer to README.md.

1. Git clone our repository. The rest of the instructions
assume you are in the project directory.

2. Install the Linux kernel v5.15.0 and reboot using the
installed Linux kernel.

(a) cd linux && make menuconfig

(b) Configure CONFIG_FUSE_FS=m

(c) make-kpkg –initrd –revision=1.0 kernel_image ker-
nel_headers

(d) cd .. && dpkg -i *.deb

(e) Update grub to load the kernel v5.15.0 and reboot.

3. Configure the number of ring channel as the number of
CPU cores in the machine.

(a) vi lib/libfuse/include/rfuse.h driver/rfuse/rfuse.h
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(b) Change the value of RFUSE_NUM_IQUEUE in each
file to the number of cores in machine.

4. Compile and install the user library and kernel driver of
RFUSE.

(a) cd lib/librfuse && ./librfuse_install.sh

(b) cd driver/rfuse && make && ./rfuse_insmod.sh

5. Add the location of the library to tell the dynamic link
loader where to search for the library.

A.7 Experiments
For artifact evaluation, we have provided convenient scripts to
execute the benchmarks used in our experiments. Please refer
to bench/README.md for detailed instructions. Note that this
guideline assumes the use of a machine with an additional
storage device for conducting the experiments.
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Abstract
We present the design and implementation of a capacity-
variant storage system (CVSS) for flash-based solid-state
drives (SSDs). CVSS aims to maintain high performance
throughout the lifetime of an SSD by allowing storage ca-
pacity to gracefully reduce over time, thus preventing fail-
slow symptoms. The CVSS comprises three key components:
(1) CV-SSD, an SSD that minimizes write amplification and
gracefully reduces its exported capacity with age; (2) CV-FS,
a log-structured file system for elastic logical partition; and
(3) CV-manager, a user-level program that orchestrates sys-
tem components based on the state of the storage system. We
demonstrate the effectiveness of CVSS with synthetic and real
workloads, and show its significant improvements in latency,
throughput, and lifetime compared to a fixed-capacity storage
system. Specifically, under real workloads, CVSS reduces the
latency, improves the throughput, and extends the lifetime by
8–53%, 49–316%, and 268–327%, respectively.

1 Introduction

Fail-slow symptoms where components continue to function
but experience degraded performance [16, 52] have recently
gained significant attention for flash memory-based solid-state
drives (SSDs) [40, 41, 66]. In SSDs, such degradation is of-
ten caused by the SSD-internal logic’s attempts to correct
errors [3, 16, 44, 50]. Recent studies have demonstrated that
fail-slow drives can cause latency spikes of up to 3.65× [40],
and since flash memory’s reliability continues to deteriorate
over time [25,40,66], we expect the impact of fail-slow symp-
toms on overall system performance to increase.

Figure 1 demonstrates a steady performance degradation
for a real enterprise-grade SSD. We age the SSD through
random writes by writing about 100 terabytes of data each day,
and during morning hours when no other jobs are running, we
measure the throughput of the read-only I/O, both sequential
and random reads. As shown in Figure 1, the performance of
the SSD degrades as the SSD wears out, at a rate of 4.2% and

Figure 1: SSD performance degradation due to wear-out. The
dashed line represents the linear regression of the daily data points.
The throughput decreases by 37% for random reads and 38% for
sequential reads after 9 petabytes of data writes.

4.3% of the initial performance for each petabyte written, for
random reads and sequential reads, respectively. It is unlikely
that the throughput drop is due to garbage collection as (1)
this was measured daily over months, and (2) only reads are
issued during measurement. By the end, writing a total of 9
petabytes of data to the SSD decreased the throughput by 37%
for random reads and 38% for sequential reads.

To address this problem, we start with two key observations.
First, flash memory, when it eventually fails, does so in a fail-
partial manner. More specifically, an SSD’s failure unit is
an individual flash memory block [3, 44, 50], and the SSD-
internal wear leveling algorithms are artifacts to emulate a
hard disk drive-like fail-stop behavior [25, 31]. Second, an
SSD has no other choice but to trade performance as flash
memory’s reliability deteriorates, because a storage device’s
capacity remains fixed and unchanged from its newly installed
state until its retirement. SSD’s internal data re-reads [4,5,42,
53] or preventive re-writes [6, 18] are such choices that lead
to fail-slow symptoms [30, 31].

Based on the two key observations, we propose a capacity-
variant storage system (CVSS) that maintains high perfor-
mance even as SSD reliability deteriorates. In CVSS, the
logical capacity of an SSD is not fixed; instead, it gracefully
reduces the number of exported blocks below the original
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capacity by mapping out error-prone blocks that would ex-
hibit fail-slow behavior and hiding them from the host. This
approach is enabled by the SSD’s ability to update data out-of-
place. Surprisingly, we find that maintaining a fixed-capacity
interface comes at a heavy cost, and reducing capacity coun-
terintuitively extends the lifetime of the device. Our experi-
ments show that, compared to traditional storage systems, the
capacity-variant approach of CVSS outperforms by 49–316%
and outlasts by 268–327% under real-world workloads.

We enable capacity variance by designing kernel-level,
device-level, and user-level components. The first component
is a file system (CV-FS) that dynamically tunes the logical
partition size based on the aged state of the storage device. CV-
FS is designed to reduce capacity in an online, fine-grained
manner and carefully manage user data to avoid data loss. The
device-level component, CV-SSD, maintains its performance
and reliability by mapping out aged and poor-performing
blocks. Without needing to maintain fixed capacity, CV-SSD
simplifies flash management firmware, avoids fail-slow symp-
toms, and extends its lifetime. Lastly, the user-level compo-
nent, CV-manager, provides necessary interfaces to the host
for capacity variance. Users can set performance and relia-
bility requirements for the device through commands, and
the CV-manager then adaptively orchestrates CV-FS and the
underlying CV-SSD.

The contributions of this paper are as follows.

• We present the design of a capacity-variant storage system
that relaxes the fixed-capacity abstraction of the storage
device. Our design consists of user-level, kernel-level, and
device-level components that collectively allow the system
to maintain performance and extend its lifetime. (§ 3)

• We develop a framework that allows for a full-stack study
on fail-slow symptoms in SSDs over a long time, from start
to failure. This framework provides a comprehensive model
of SSD internals and aging behavior over the entire lifetime
of SSDs1. (§ 4)

• We evaluate and quantitatively demonstrate the benefits of
capacity variance using a set of synthetic and real-world I/O
workloads throughout the SSD’s entire lifetime. Capacity
variance avoids the fail-slow symptoms and can signifi-
cantly extend the SSD’s lifetime. (§ 5)

2 Background and Motivation

We first show the increasing trend of flash memory errors
in SSDs and describe how flash cells wear out. We then ex-
plain how the current storage system abstraction exacerbates
reliability-related performance degradation, and summarize
prior work for addressing these fail-slow symptoms.

Flash memory errors and wear-out. The rapid increase

1Our framework and extensions are available at https://github.com/
ZiyangJiao/FAST24_CVSS_FEMU

Figure 2: Flash memory error
rates have increased significantly
over the past years.

in NAND flash memory density has come at the cost of re-
duced reliability and exacerbated fail-slow symptoms. Fig-
ure 2 shows the reported flash raw bit error rates (RBERs) in
recent publications [3, 4, 14, 30, 42, 55, 57, 65], and this trend
indicates that flash memory errors are already a common case.

One of the significant flash memory error mechanisms is
wear-out, where flash cells are gradually damaged with re-
peated programs and erases [44, 50]. Because wear-outs are
irreversible, once a flash block reaches its endurance limit
or returns an operation failure, it is marked as bad by the
SSD-internal flash translation layer (FTL) and taken out of
circulation. To replace these unusable blocks, SSDs are of-
ten over-provisioned with more physical capacity than the
logically exported capacity.

SSD’s wear-outs are caused not only by write I/Os, but also
by SSD-internal management such as garbage collection, reli-
ability management, and wear leveling (WL). Although much
of the literature has emphasized the role of garbage collection
in the SSD’s internal writes, studies have revealed that SSD’s
reliability management and WL also significantly impact the
lifetime [25,27,30,43]. WL, in particular, is revealed to be far
from perfect, wearing out some of the blocks 6× faster [43]
and often leads to counterintuitive acceleration of wear-outs,
increasing the write amplification factor as high as 11.49 [25].

Fixed capacity abstraction. Unfortunately, the current stor-
age system abstraction of fixed capacity requires SSDs to
implement wear leveling (WL), even if it is imperfect and
harmful [25, 43]. Specifically, with the fixed capacity abstrac-
tion, the device is not allowed to have part of its capacity
fail (i.e., wear out) prematurely, and therefore the SSD has
to perform wear leveling to ensure that most, if not all, of its
capacity is wearing out at roughly the same rate. If the SSD
cannot maintain its original exported capacity when too many
blocks become bad, then the entire storage device becomes
unusable [50]. This is despite the fact that the SSD internally
has a level of indirection and abstracts the physical capacity.

However, the file system provides a file abstraction to the
user-level applications, and this abstraction hides the notion
of capacity. While utility programs such as df and du re-
port the storage capacity utilization, file operations such as
open(), close(), read(), and write() do not expose ca-
pacity directly. Instead, the file system manages the storage
capacity using persistent data structures such as superblock
and allocation maps to track the utilization of the SSD.

The fixed capacity abstraction used between the file system
and storage devices necessitates the implementation of WL
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(a) TrSS (b) CVSS

Figure 3: Comparison between the traditional fixed-capacity storage
system (TrSS) and capacity-variant storage system (CVSS). For
TrSS (Figure 3a), the performance and reliability degrade as the
device ages to maintain a fixed capacity; for CVSS (Figure 3b), the
performance and reliability are maintained by trading capacity.

on physical flash memory blocks. However, WL leads to an
overall increase in wear on the SSD, resulting in a significantly
higher error rate as all the blocks age. This, in turn, manifests
into fail-slow symptoms in SSDs.

Fail-slow symptoms. Fail-slow symptoms are caused by the
SSD’s effort to correct errors [4, 5, 42, 53] and prevent the
accumulation of errors [6, 18]. Because SSDs are commonly
used as the performance tier in storage systems where the
identification and removal of ill-performing drives are critical,
fail-slow symptoms in SSDs have gained significant attention
recently. Prior research in this area can be categorized into
three types. The first group focuses on developing machine
learning (ML) models to quickly identify SSDs experienc-
ing fail-slow symptoms [7, 22, 61, 66, 67]. Various models,
including neural networks [22], autoencoders [7], LSTM [67],
feature ranking [61], and random forest [66], have been ex-
plored with varying accuracy and efficacy. The second group
aims to isolate and remove ailing drives using mechanisms
deployed in large-scale systems, identified through ML [40]
or system monitoring [21,52]. The third group proposes mod-
ifications to the interface to reject slow I/O and send hedging
requests to a different node [20] or drive [38].

Unfortunately, ML-based learning of SSD failures requires
an immense number of data points, is often expensive to train,
and is only available in large-scale systems [40, 66]. Further-
more, as SSDs evolve and new error mechanisms emerge (e.g.,
lateral charge spreading [36] and vertical and horizontal vari-
ability [56]), older ML models become obsolete, making it
difficult to reap the benefits of fail-slow prediction. Most criti-
cally, these prior approaches only treat the symptoms and fail
to consider the underlying cause: the flash error mechanism.

3 Design for Capacity Variance

The high-level design principle behind the capacity-variant
system is illustrated in Figure 3. This system relaxes the
fixed-capacity abstraction of the storage device and enables a
better tradeoff between capacity, performance, and reliability.
The traditional fixed-capacity interface, which was designed

Figure 4: An overview of the capacity-variant system: (1) CV-FS
exports an elastic logical space based on CV-SSD’s aged state; (2)
CV-SSD retires error-prone blocks to maintain device performance
and reliability; and (3) CV-manager provides user-level interfaces
and orchestrates CV-SSD and CV-FS. The highlighted components
are discussed in detail.

for HDDs, assumes a fail-stop behavior where all storage
components either work or fail at the same time. However,
this assumption is not accurate for SSDs since flash memory
blocks are the basic unit of failure, and it is the responsibility
of the FTL to map out failed, bad, and aged blocks [31, 50].

By allowing a flexible capacity-variant interface, an SSD
can gracefully reduce its exported capacity, and the storage
system as a whole would reap the following three benefits.

• Performant SSD even when aged. An SSD can avoid
fail-slow symptoms by gracefully reducing its number of
exported blocks. Error management techniques such as data
re-reads [4, 5, 42, 53] and data re-writes [6, 18] would be
performed less frequently as blocks with high error rates
can be mapped out earlier. This, in turn, reduces the tail
latency and lowers the write amplification, making it easier
to achieve consistent storage performance.

• Extended lifetime for SSD-based storage. An SSD’s life-
time is typically defined with a conditional warranty restric-
tion under DWPD (drive writes per day), TBW (terabytes
written), or GB/day (gigabytes written per day) [58]. With
the fixed capacity abstraction, the SSD reaches the end of its
lifetime when the physical capacity becomes less than the
original logical capacity. Instead, with capacity variance,
the lifetime of an SSD would be extended significantly, as it
would be defined by the amount of data stored in the SSD,
not by the initial logical capacity.

• Streamlined SSD design. By adopting the approach of
allowing the logical capacity to drop below the initial value,
SSD vendors can design smaller and more efficient error
correction hardware and their SSD-internal firmware: There
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(a) Non-contiguous address space (b) Data relocation (c) Address remapping

Figure 5: Design options for capacity variance. In Figure 5a, the FS internally maps out a range of free LBA from the user, causing address
space fragmentation. In Figure 5b, the data block is physically relocated to lower LBA. This approach maintains the contiguity of the entire
address space but exerts additional write pressure on the SSD. Lastly, in Figure 5c, the data block can be logically remapped to lower LBA.
This approach incurs negligible system overhead by introducing a special SSD command to associate data with a new LBA.

is no need to overprovision the SSD’s error handling logic
or to ensure that all blocks wear out evenly.

Figure 4 illustrates the main components of a capacity-
variant system. Enabling the capacity variance feature is
achieved by designing the following three components: (1)
CV-FS, a log-structured file system for supporting elastic
logical partition; (2) CV-SSD, a capacity-variant SSD that
maintains device performance and reliability by effectively
mapping out aged blocks; and (3) CV-manager, a capacity
management scheme that provides the interface for adaptively
managing the capacity-variant system.

3.1 Capacity-Variant FS

The higher-level storage interfaces, such as the POSIX file
system interface, allow multiple applications to access storage
using common file semantics. However, to support capacity
variance, the file system needs to be modified. In this section,
we discuss the feasibility of an elastic logical capacity based
on existing storage abstractions and then investigate different
approaches for supporting capacity variance, Lastly, we de-
scribe our new interface for capacity-variant storage systems
based on the selected approach.

3.1.1 Feasibility of Elastic Capacity

Current file systems assume that the capacity of the storage
device does not change and tightly couple the size of the
logical partition to the size of the associated storage device.
To overcome this limitation, the CV-FS file system declares
the entire address space for use at first and then dynamically
adjusts the declared space as the storage device ages in an
online manner. This is achieved by defining a variable logical
partition that is independent of the physical storage capacity.

Thankfully, this transition is feasible for three reasons. First,
the TRIM [47] command, which is widely supported by in-
terface standards such as NVMe, enables the file system to
explicitly declare the data that is no longer in use. This allows

the SSD to discard the data safely, making it possible to re-
duce the exported capacity gracefully. Second, modern file
systems can safely compact their content so that the data in use
are contiguous in the logical address space. Log-structured
file systems [54] support this more readily, but file system
defragmentation [59] techniques can be used to achieve the
same effect in in-place update file systems. Lastly, the file ab-
straction to the applications hides the remaining space left on
storage. A file is simply a sequence of bytes, and file system
metadata such as utilization and remaining space is readily
available to the system administrator.

3.1.2 File System Designs for Capacity Variance

Shrinking the logical capacity of a file system can be a com-
plex procedure that may result in data loss if not done care-
fully [31]. Most importantly, any valid data within the to-
be-shrunk space must be relocated and the process must be
coordinated with underlying storage accordingly. Moreover,
to ensure users do not need to unmount and remount the
device, the logical capacity should be reduced in an online
manner, and the time it takes to reduce capacity should be
minimal with low overhead.

Figure 5 depicts three approaches to performing online
address space reduction: (1) through a non-contiguous address
space; (2) through data relocation; and (3) through address
remapping. We describe each approach and our rationale for
choosing the address remapping (Figure 5c).

• Non-contiguous address space (Figure 5a). The file sys-
tem internally decouples the space exported to users from
the LBA. When logical capacity should be reduced, the
file system identifies an available range of free space from
the end of the logical partition and then restricts the user
from using it, for example, by marking that as allocated.
With this approach, the adjustment of logical capacity can
be efficiently achieved with minimal upfront costs, as the
primary task involved is allocating the readily available
free space. However, this approach increases the file system
cleaning overhead and fragments the file system address
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(a) Time elapsed for shrinking
1 GiB logical capacity.

(b) Performance comparison
before and after shrinking 60
GiB logical capacity.

Figure 6: Performance results for three capacity variance ap-
proaches. The address remapping approach introduces lower over-
head (Figure 6a) and does not incur fragmentation after shrinking
the address space (Figure 6b).

space. Due to the negative effect of address fragmenta-
tion [12, 13, 19, 24], we avoid this approach despite the
lowest upfront cost.

• Data relocation (Figure 5b). Similar to segment cleaning or
defragmentation, the file system relocates valid data within
the to-be-shrunk space to a lower LBA region before reduc-
ing the capacity from the higher end of the logical partition.
This approach maintains the contiguity of the entire address
space. Nevertheless, it is essential to note that data reloca-
tion exerts additional write pressure on the SSD and the
overhead is proportional to the amount of valid data copied.
Moreover, user requests are potentially stalled during the
relocation process.

• Address remapping (Figure 5c). Data is relocated log-
ically at the file system level without data relocation at
the SSD level by taking advantage of the already existing
SSD-internal mapping table [49, 68]. While this approach
necessitates the introduction of a new SSD command to as-
sociate data with a new LBA, it effectively mitigates address
space fragmentation and incurs negligible system overhead,
as no physical data is actually written.

We implement the three approaches above on F2FS and
measure the elapsed time for reducing capacity by 1 GiB. The
reported results represent an average of 60 measurements.
On average, each measurement resulted in the relocation or
remapping of 0.5 GiB of data for the aged file system case
and 0.05 GiB of data for the young case. We further compare
the performance under the sequential read workload with two
I/O sizes (i.e., 16 KiB and 4096 KiB) before and after ca-
pacity is reduced. As depicted in Figure 6, the elapsed time
required to shrink 1 GiB of logical space on an aged file sys-
tem is 0.317 seconds when employing the address remapping
approach. In contrast, the data relocation approach takes ap-
proximately 4.5 seconds. Notably, while the non-contiguous
address space approach only takes 0.004 seconds, it exhibits
significant performance degradation after the capacity reduc-
tion, for example, 13% for 16 KiB read and 50% for 4096
KiB read, due to increased fragmentation. We next present

Figure 7: The REMAP command workflow for capacity variance:
data in the range between srcLPN and srcLPN + srcLength -1
are remapped to logical address starting from dstLPN. The third
argument, dstLength, is optionally used for the file system to ensure
I/O alignment.

the design details of the proposed remapping interface and
the capacity reduction process with that.

3.1.3 Interface Changes for Capacity Variance

To integrate the address remapping approach into CV-FS,
we revise the interface proposed by prior works [49, 68],
REMAP(dstLPN, srcLPN, dstLength, srcLength), and
tailor it for capacity-variant storage systems. Our modified
command enables file systems to safely shrink the logical ca-
pacity with minimal overhead by remapping valid data from
their old LPNs to new LPNs without the need for actual data
rewriting [49, 68]. We extend the current NVMe interface to
include remap as a vendor-unique command.

Figure 7 shows an example of the remap command used for
shrinking capacity. Assuming the file system address space
ranges from LBA0 – LBA47 at the beginning (i.e., LPN0 –
LPN5 with 512 bytes sector and 4 KiB page size) and LPN5 is
mapped to PPN6 within the device. At time t, CV-FS initiates
the capacity reduction and identifies that LBA40 – LBA47 (or
LPN5) contains valid data. It then issues the remap command
to move LPN5 data to LPN3 (i.e., remap(LPN3, LPN5, 1,
1). Upon receiving the remap command, the FTL first finds
the PPN associated with LPN5 (PPN6 in our case) and up-
dates the logical-to-physical (L2P) mapping of L3 to PPN6.
Finally, the old L2P mapping of L5 is invalidated, and the new
physical-to-logical (P2L) mapping of PPN6 is recorded in the
NVRAM of the SSD. Once the to-be-shrunk space is free, the
file system states are validated and a new logical capacity size
is updated.

In particular, the required size for NVRAM is small (for
example, 1 MiB for a 1 TiB drive as suggested by the prior
work [49]), as it is only used to maintain a log of the remap-
ping metadata. Assuming the SSD capacity and page size are
1TB and 4KB, respectively, a single remapping entry requires
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no more than 8B space. The 1 MiB NVRAM would be suf-
ficient to hold entries for 512 MiB remapped data during a
capacity reduction event. Between capacity reduction events,
the reclamation of a flash block/page will cause a passive re-
cycle on the associated remapping entries. However, in cases
where a larger buffer is needed, the log can perform an active
cleaning or write part of the mappings to flash because the
space allocated for internal metadata will be conserved with
a smaller device capacity [17]. Alternatively, the need for
NVRAM can be eliminated by switching to the data reloca-
tion method, but at the cost of a higher overhead for logical
capacity adjustment.

As a result, this new interface does not require taking the
file system and device offline to adjust address space since
data are managed logically. Moreover, it does not compli-
cate the existing file system consistency management scheme.
Similar to other events such as discard, the file system peri-
odically performs checkpoints to provide a consistent state.
The crash consistency is examined by manually crashing the
system after initiating the remapping command and Crash-
Monkey [46] with its pre-defined workloads [45].

3.2 Capacity-Variant SSD

In this section, we outline design decisions and their leading
benefits for building a capacity-variant SSD. We first discuss
the necessity to forgo wear leveling in CV-SSD, and then
describe its block management and life cycle management
for extending lifetime and maintaining performance. Lastly,
we introduce a degraded mode to handle the case where the
remaining physical capacity becomes low.

Note that blocks in this subsection refer to physical flash
memory blocks, different from the logical blocks managed
by the file system. Furthermore, the flash memory blocks are
grouped and managed as superblocks (again, different from
the file system’s superblock) to exploit the SSD’s parallelism.

3.2.1 Wear Focusing

The goal of a capacity-variant SSD is to keep as much flash
as possible at peak performance and mitigate the impact of
underperforming and aged blocks. A capacity-variant SSD
would maintain both performance and reliability by gracefully
reducing its exported capacity so aged blocks can be mapped
out earlier. Therefore, a capacity-variant SSD does not per-
form wear leveling (WL), as it degrades all of the blocks over
time. WL is an artifact designed to maintain an illusion of
a fixed-capacity device wherein its underlying storage com-
ponents (i.e., flash memory blocks) either all work or fail,
opposing our goal of allowing partial failure.

Moreover, static WL [8, 9, 15] incurs additional write am-
plification due to data relocation within an SSD. Dynamic
WL [10, 11], on the other hand, typically combines with SSD
internal tasks such as garbage collection, reducing the overall

Figure 8: The wear distribution
for a 256 GiB SSD under 100
iterations of MS-DTRS work-
load [29]. Traditional GC and
block allocation policies cause a
sudden capacity loss as too many
blocks are equally aged.

cleaning efficiency as its victim selection considers both the
valid ratio and wear state. A recent large-scale field study on
millions of SSDs reveals that the WL techniques in modern
SSDs present limited effectiveness [43] and an analysis study
demonstrates that WL algorithms can even exhibit unintended
behaviors by misjudging the lifetime of data in a block [25].
Such counter-productive results are avoided by forgoing WL
and adopting capacity variance.

3.2.2 Block Management

A capacity-variant SSD exploits the characteristics of flash
memory blocks to extend its lifetime and meet different per-
formance and reliability requirements. Flash memory blocks
in SSDs wear out at different rates and are marked as bad
blocks by the bad block manager when they are no longer
usable [26, 50]. This means that the physical capacity of the
SSD naturally reduces over time, and for a fixed-capacity
SSD, the entire storage device is considered to have reached
the end of its life when the number of bad blocks exceeds
its reserved space. On the other hand, the capacity-variant
SSD’s lifetime is defined by the amount of data stored in the
SSD, rather than the initial logical capacity, making it a more
reliable and efficient option.

The fail-slow symptoms and performance degradation in
SSDs are caused by aged blocks with high error rates [4,5,42,
53]. Traditional SSDs consider blocks as either good or bad
and such coarse-grained management fails to meet different
performance and reliability requirements. On the other hand,
the capacity-variant SSD defines three states of blocks: young,
middle-aged, and retired, based on their operational character-
istics. Young blocks have a relatively low erase count and a
low RBER, while middle-aged blocks have higher errors and
require advanced techniques to recover data. Retired blocks
that are worn out or have a higher RBER than the configured
threshold (5% by default) are excluded from storing data.

This block management scheme allows the capacity-variant
SSD to map out underperforming and unreliable blocks ear-
lier, effectively trading capacity for performance and reliabil-
ity. In general, blocks start from a young state and transition
to middle-aged and retired states. However, a block can also
transition from a middle-aged state back to a young state since
transient errors (i.e., retention and disturbance) are reset once
the block is erased [30].
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Figure 9: CV-manager design diagram. CV-manager monitors CV-SSD’s aged state (Steps 1 and 2) and provides a recommended logical
capacity to CV-FS (Step 3). After capacity reduction (Steps 4–6), CV-manager notifies CV-SSD (Step 7). The CVdegraded mode will be triggered
if the reduction fails (Step 8).

3.2.3 Life Cycle Management

A capacity-variant SSD requires wear focusing to mitigate
the impact of aged flash memory blocks. However, simply
avoiding wear leveling is insufficient as there are two pro-
cesses affecting the life cycle of a flash memory block: block
allocation and garbage collection (GC). Traditional policies
such as youngest-block-first for allocation and cost-benefit
for GC work well on a traditional SSD, but are not suitable
for CV-SSDs, since they aim to achieve a uniform wear state
among blocks. Implementing these policies can cause a large
number of blocks with the same erase count to map out simul-
taneously, leading to excessive capacity loss, and the device
may suddenly fail. Figure 8 demonstrates this issue, where
over 60% of the blocks aggregate to a particular wear state.
Excessive capacity loss can increase the write amplification
factor (WAF), particularly when the device utilization rate is
high.

Allocation policy. In order to make wear accumulate in a
small subset of blocks and allow capacity to shrink gradually,
CV-SSD will prioritize middle-aged blocks to accommodate
host writes and young blocks for GC writes. Since retired
blocks are not used, there are four scenarios when considering
data characteristics.

I. Write-intensive data are written to a middle-aged block

II. Write-intensive data are written to a young block

III. Read-intensive data are written to a middle-aged block

IV. Read-intensive data are written to a young block

Type I and type IV are ideal cases as they help to converge the
wear among blocks without affecting the performance. Type
II will also not affect the performance when data are fetched
by the host because of the low RBER of young blocks. More-
over, with CV-SSD’s allocation policy, such write-intensive
data are inevitably re-written by the file system to the middle-
aged blocks and the type II blocks will be GC-ed due to their
low valid ratio. This type of scenario also happens under the
early stages of CV-SSD, in which most blocks are young.
Lastly, type III is the case where we need to pay more atten-
tion: read-intensive data should be stored in young blocks;
otherwise expensive error correction techniques are triggered
more often.

Garbage collection. We modify the garbage collection policy
to consider (in)valid ratio, aging status, and data characteris-
tics to handle type III cases. The block with the highest score
will be selected as the victim based on the following formula:

Victim score =Winvalidity · invalid ratio

+Waging ·aging ratio

+Wread · read ratio

invalid ratio =
# o f invalid pages

# o f valid pages+# o f invalid pages
,

aging ratio =
erase count
endurance

,

read ratio =
# o f host read designated to the current block

maximum host read among unretired blocks
.

(1)

Winvalidity, Waging, and Wread are weights to balance WAF, the
aggressiveness of wear focusing, and the sensitivity of prevent-
ing type III scenarios, respectively. With that, read-intensive
data stored in aged blocks are relocated by GC. Considering
the read ratio could potentially affect the garbage collection
efficiency. To avoid low GC efficiency, we set Winvalidity = 0.4,
Waging = 0.3, and Wread = 0.3, and their sensitivity analysis
is shown in § 5.4.3. Increasing Wread is unfavorable not only
because of adverse effects on WAF but also due to introduc-
ing unnecessary data movement. For example, a middle-aged
block containing many valid pages but experiencing only a
minimal number of reads is selected as the victim.

3.2.4 Degraded Mode

During normal conditions, CV-SSD intentionally unevens the
wear state among blocks. As error-prone blocks retire, the
physical capacity decreases gradually and performance is
maintained. However, the physical capacity could decrease
to a level where it will be insufficient to maintain current
user data. Moreover, it can also cause high garbage collec-
tion overhead. In this case, CVdegraded mode will be triggered
and CV-SSD will slow down the further capacity loss. It is
noteworthy that the triggering of degraded mode indicates a
low remaining capacity to trade for performance, and storage
administrators can gradually upgrade storage systems.

In particular, the CVdegraded mode is triggered under two
conditions: (1) when the effective over-provisioning
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(EOP), calculated as EOP = (physical capacity −
utilization)/utilization, falls below the factory-set over-
provisioning (OP), or (2) when the remaining physical
capacity is less than a user-defined watermark.

Once CVdegraded mode is set, GC only considers WAF and
aging to slow down further capacity loss. This mode allows
young blocks to be cleaned with a relatively higher valid
ratio than aged blocks. Specifically, young blocks with a
high invalid ratio are optimal candidates. Moreover, middle-
aged blocks are used to accommodate GC-ed data, and young
blocks are allocated for host writes. As a result, blocks are
used more evenly than in the initial stage and a particular
amount of physical capacity is maintained for the user. When
EOP becomes greater than OP if the host decides to move or
delete some data, CVdegraded will be reset by CV-manager.

3.3 Capacity-Variant Manager
To improve usability, CV-manager is responsible for automat-
ically managing the capacity of the whole storage system. As
illustrated in Figure 9, CV-manager monitors the aged state of
the underlying storage device and provides a recommended
logical partition size to the kernel.

Specifically, when CV-SSD maps out blocks and its physi-
cal capacity is reduced, CV-manager will get notified (Steps 1
and 2). The CV-manager figures out a recommended logical
capacity by checking the current bad capacity within the de-
vice and issues capacity reduction requests to CV-FS through
a system call (Step 3). Upon request, CV-FS performs a sanity
test. If the file system checkpoint functionality is disabled or
the file system is not ready to shrink (i.e., frozen or read-only),
the reduction will not continue (Step 4). Otherwise, CV-FS
starts shrinking capacity as described in § 3.1.3 and returns
the execution result (Steps 5 and 6). Lastly, CV-manager noti-
fies CV-SSD whether logical capacity is reduced properly or
not. If the reduction fails, the CVdegraded is activated to slow
down further capacity loss (Steps 7 and 8).

For user-level capacity management, CV-manager provides
necessary interfaces for users to explicitly initiate capacity
reduction and set performance and reliability requirements for
the device. The CV-SSD would retire blocks based on the host
requirement. Similar to the read recovery level (RRL) com-
mand [47] in the NVMe specification that limits the number
of read retry operations for a read request, this configurable
attribute limits the maximum amount of recovery applied to a
request and thus balances the performance.

4 Implementation

The capacity-variant file system (CV-FS) is implemented
upon the Linux kernel v5.15. CV-FS uses F2FS [35] as the
baseline file system due to its virtue of being a log-structure
file system. We modify both CVSS and TrSS to employ a
more aggressive discard policy than the baseline F2FS (i.e.,

50ms interval if candidates exist and 10s max interval if no
candidates) for better SSD garbage collection efficiency [32]
(also shown in § 5.2.3).

To implement the remap command, we extend the block
I/O layer. A new I/O request operation REQ_OP_REMAP is
added to expose the remap command to the CV-FS. New
attributes including bio->bi_iter.bi_source_sector
and bio->bi_iter.bi_source_size are introduced in
bvec_iter, which corresponds to the second and last
parameter of the remap command. Functions related to
bio splitting/merging procedure (e.g., __blk_queue_split)
are modified to maintain added attributes (mainly in
/block/blk-merge.c). Additionally, new nvme_opcode
and related functions are added to support the remap com-
mand at the NVMe driver layer (mainly in /block/blk-mq.c
and /drivers/nvme/host/core.c).

The capacity-variant SSD is built on top of the FEMU [37].
SSD reliability enhancement techniques such as ECC and read
retry ensure data integrity. To implement the error model, we
use the additive power-law model proposed in prior works [30,
39, 44] that considers wear, retention loss, and disturbance to
quantify RBER, as shown in the following equation:

RBER(cycles, time,reads)

= ε+α · cyclesk (wear)

+β · cyclesm · timen (retention)

+ γ · cyclesp · readsq (disturbance)

(2)

The parameters used are particular to a real 2018 TLC flash
chip [30], and the device internally keeps track of cycles, time,
and reads for each block. During a read operation, read retry
is applied if the error exceeds the ECC strength. We consider
each read retry will lower the error rate by half [30, 53] and
the maximum amount of recovery is limited for a single read
retry so that blocks have more fine-grained error states.

We modify five major software components to support
capacity variance.

• We make changes to the Linux kernel v5.15 to provide an
ioctl-based user-space API supporting logical partition
reduction. Users can specify the shrinking size and issue
capacity reduction commands through this API.

• We modify the F2FS to handle address remapping triggered
by capacity variance and revise its discard scheme.

• We extend the f2fs-tool (f2fs format utility) to support
the CV-specific functionalities, such as initializing a vari-
able logical partition and updating the attributes that control
discard policies.

• We implement CV-SSD mode in FEMU, adding flash relia-
bility enhancement techniques, error models, wear leveling,
bad block management, and device lifetime features.

• We modify NVMe device driver and introduce new com-
mands to NVMe-Cli [48], to support capacity variance. The
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Table 1: System configurations. Wear leveling (PWL [9]) and
youngest block first allocation are used for traditional SSDs.

PC platform

Parameter Value Parameter Value
CPU name Intel Xeon 4208 Frequency 2.10GHz
Number of cores 32 Memory 1TiB
Kernel Ubuntu v5.15 ISA X86_64

FEMU

Parameter Value Parameter Value
Channels 8 Physical capacity 128 GiB
Luns per channel 8 Logical capacity 120 GiB
Planes per lun 1 Over-provisioning 7.37%
Blocks per plane 512 Garbage collection Greedy
Pages per block 1024 Program latency 500 µs
Page size 4 KiB Read latency 50 µs
Superblock size 256 MiB Erase latency 5 ms
Endurance 300 Wear leveling PWL [9]
ECC strength 50 bits Block allocation Youngest first

SMART [47] command is also extended to export more
device statistics for capacity management.

5 Evaluation of Capacity Variance

We first describe our experimental setup and methodology,
then present our evaluation results and demonstrate the effec-
tiveness of capacity variance.

5.1 Experimental Setup and Methodology
Table 1 outlines the system configurations for our evaluation.
For the traditional SSD, an adaptive WL, PWL [9], is used to
even the wear among blocks. The error correction code (ECC)
for both Tr-SSD and CV-SSD is configured to tolerate up to
50-bit errors per 4 KiB data, and errors beyond the correction
strength are subsequently handled by read retry. We use 17 dif-
ferent workloads in our evaluation: (1) 4 FIO [23] workloads
(Zipfian and random, each with two different utilization); (2) 3
Filebench [60] workloads; (3) 2 YCSB workloads [2] (YCSB-
A and YCSB-F); and (4) 8 key-value traces from Twitter [64].

We compare CVSS with three different techniques: (1)
TrSS, a traditional storage system with vanilla F2FS plus a
fixed-capacity SSD; (2) AutoStream [63]; (3) ttFlash [62].
The evaluation comparisons are selected based on their
broader applicability and implementation simplicity of the
multi-stream interface (represented by AutoStream [63]) and
the fast-fail mechanism (represented by ttFlash [62]). These
approaches align with more general and widely used methods
such as PCStream [33], LinnOS [22], and IODA [38]. Specif-
ically, AutoStream [63] uses the multi-stream interface [28]
and automatically assigns a stream ID to the data based on
the I/O access pattern. The SSD then places data accordingly
based on the assigned ID to reduce write amplification and
thus, improve performance. On the other hand, ttFlash [62]
reduces the tail latency of SSDs by utilizing a redundancy

scheme (similar to RAID) to reconstruct data when blocked by
GC. Since the original ttFlash is implemented on a simulator,
we implement its logic in FEMU for a fair comparison.

To perform a more realistic evaluation, it is necessary to
reach an aged FS and device state. Issuing workloads manu-
ally to the system is prohibitively expensive, as it takes years’
worth of time. Moreover, this method lacks standardization
and reproducibility, making the evaluation ineffective [1]. We
extensively use aging frameworks in our evaluation. Prior to
each experiment, we use impression [1] to generate a rep-
resentative aged file system layout. After file system aging,
the fast-forwardable SSD aging framework (FF-SSD) [26] is
used to reach different aged states for SSD. The aging acceler-
ation factor (AF) is strictly limited to 2 to maintain accuracy.
Workloads will run until the underlying SSD fails.

We design the experiments with the following questions:

• Can CVSS maintain performance while the underlying
storage device ages? (§ 5.2)

• Can CVSS extend the device lifetime under different
performance requirements? (§ 5.3)

• What are the tradeoffs in CVSS design? (§ 5.4)

5.2 Performance Improvement
In this section, we evaluate the effectiveness of CVSS in
maintaining performance and avoiding fail-slow symptoms
under synthetic and real workloads.

5.2.1 FIO

We first examine the performance benefit of capacity variance
under Zipfian workloads with two different workload sizes:
38GB (utilization of 30%) and 90GB (utilization of 70%).
For this experiment, FIO continuously issues 16KB read and
write requests to the device. We use the default setting of FIO
and the read/write ratio is 0.5/0.5.

Zipfian. Figure 10 shows the read throughput under different
aged states of TrSS and CVSS, in terms of terabytes written
(TBW). We measure the performance until it drops below
50% of the initial value where no aging-related operations are
performed. The green dotted line shows the amount of phys-
ical capacity that has been reduced within the CV-SSD and
the straight vertical line represents the trigger of CVdegraded .

We observe that TrSS and CVSS behave similarly at first
where both CV-SSD and Tr-SSD are relatively young. How-
ever, for TrSS, the read performance degrades gradually. As
Tr-SSD gets aged, the amount of error corrected during each
read operation increases and thus involves more expensive
read retry processes. On the other hand, CV-SSD effectively
trades the capacity for performance. The performance is main-
tained by excluding heavily aged blocks from use. Later,
CVdegraded is triggered to maintain a particular amount of
capacity for the workloads. During this stage, blocks are used
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(a) Zipfian (utilization 30%) (b) Zipfian (utilization 70%)

Figure 10: Read throughput under FIO Zipfian workloads. In CVSS,
the performance is maintained by trading capacity. The straight
vertical line represents the trigger of the CVdegraded mode. After
CVdegraded , the future capacity reduction is slowed down but the
performance is compromised.

(a) Random (utilization 30%) (b) Random (utilization 70%)

Figure 11: Read throughput under FIO random workloads. CVSS
delivers up to 0.6× (left) and 0.7× (right) higher performance com-
pared to TrSS, under the same amount of host writes.

more evenly and the wear accumulates within the device.
In this case, performance is traded for capacity in order to
avoid data loss. However, even in this mode, CVSS delivers
better performance compared to TrSS, thanks to the previ-
ous mapping out of most unreliable blocks. Overall, the read
throughput of CVSS outperforms TrSS by up to 0.72× with
the same amount of host writes.

Random. Figure 11 shows the measured read performance
under random I/O. The configuration is similar to the previous
case. As in-used blocks get aged, the read performance of
TrSS degrades gradually and the fail-slow symptoms manifest.
With the same amount of host writes, CVSS delivers a 0.6×
and a 0.7× higher throughput at most than TrSS under the
utilization of 30% and 70%, respectively.

Figure 13 compares the average write performance over
the measurement. For Tr-SSD, when WL is initiated, data
are relocated within the device, which decreases the through-
put by 0.6×. Without WL, CV-SSD provides a more stable
and better write performance than Tr-SSD. Overall, the write
throughput of CVSS outperforms TrSS by 0.12× on average.

5.2.2 Filebench

We now use Filebench [60] to evaluate the capacity-variant
system under file system metadata-heavy workloads. We use
three pre-defined workloads in the benchmark, which exhibit
differences in I/O patterns and fsync usage.

Figures 12a, 12b, and 12c show the CDF of operation la-

tency under fileserver, netsfs, and varmail workloads through-
out the devices’ life. In particular, CVSS–normal represents
the result before CVdegraded is activated and CVSS represents
the overall result. We use the default setting of Filebench,
which measures the performance by running workloads for
60 seconds. Random writes are used to age CV-SSD and Tr-
SSD. The measurement is performed after every 100GB of
random data written until the device fails. The utilization for
both TrSS and CVSS is 50%.

Compared to TrSS, CVSS reduces the average response
time by 32% before the degraded mode is triggered and by
24% over the entire lifetime under netsfs workload, as shown
in Figure 12b. The netsfs workload simulates the behavior of
a network file server. It performs a more comprehensive set of
operations such as application lunch, read-modify-write, file
appending, and metadata retrieving, and thus reflects the state
of the underlying devices more intuitively. Overall, CVSS
reduces the average latency by 8% in the fileserver case (Fig-
ure 12a), and 10% in the varmail case (Figure 12c).

CV-SSD maps out blocks once their RBER exceeds 5% by
default, while Tr-SSD only maps them out when their erase
counts exceed the endurance limit, leading to more expensive
error correction operations. The increased error correction
operations not only affect the latency of the ongoing host re-
quest but also create backlogs in IO traffic. Figure 12d shows
the percentage of host I/Os blocked by read retry operations
measured inside FEMU under the varmail workload. In TrSS,
more than 20% of I/O requests are delayed by SSD internal
read retry, while it is no more than 5% in CVSS.

5.2.3 Twitter Traces

The previous sections examine CVSS using block I/O work-
loads and file system metadata-heavy workloads. In this sec-
tion, we evaluate CVSS and compare it with AutoStream [63]
and ttFlash [62] at the overall application level. We use a set
of key-value traces from Twitter production [64]. The Twitter
workload contains 36.7 GB worth of key-value pairs in total.
We first load the key-values pairs and then start and keep
feeding the traces to RocksDB until the underlying SSD fails.

Figure 14 compares the average KIOPS over the entire de-
vice lifetime. Overall, capacity variance improves the through-
put by 0.49× – 3.16× compared to TrSS; on the other hand,
AutoStream and ttFlash present limited effectiveness in miti-
gating fail-slow symptoms. In particular, Trace38 highlights
the benefits of capacity variance, achieving a 3.16× better
throughput than the fixed-capacity storage. For RocksDB,
point lookups may end up consulting all files in level 0 and
at most one file from each of the other levels. Therefore, as
the Tr-SSD ages, a single Get() request can cause multiple
physical reads and each of them can trigger SSD read retry
several times, degrading the read performance drastically.

Moreover, we find that traditional systems with the origi-
nal discard policy show higher utilization inconsistency (i.e.,

168    22nd USENIX Conference on File and Storage Technologies USENIX Association



(a) Fileserver (b) Netsfs (c) Varmail (d) Host I/Os blocked by er-
ror handling under varmail

Figure 12: Performance results under Filebench workloads. CVSS reduces the average latency by 8% under fileserver workload (Figure 12a),
24% under netsfs workload (Figure 12b), and 10% under varmail workload (Figure 12c) compared to TrSS throughout the devices’ lifetime.
Before CVdegraded is triggered, CVSS–normal reduces the average latency by 32% under netsfs workload. Figure 12d shows the percentage of
host I/Os blocked by read retry operations under varmail workload. Other workloads show a similar pattern.

Figure 13: Average write
throughput under FIO workloads.
For TrSS, when wear leveling is
triggered, the write throughput
drops by 0.6×; on the other
hand, by forgoing WL, CV-SSD
provides a more stable and better
write performance.

1
n ∑

n
Observation=1 utilSSD − utilFS) between FS and SSD, as

shown in Figure 16. That is because of the high request rate
during the experiments and F2FS only dispatches discard com-
mand when the device I/O is idle, which not only decreases
SSD GC efficiency but also makes wear leveling more likely
to misjudge data aliveness, limiting its effectiveness in main-
taining capacity. During the experiments, the WAF of TrSS
can be as high as 6.79, while only 1.12 for CVSS.

5.3 Lifetime Extension

In this section, we investigate how CVSS extends device
lifetime given different performance requirements and thus
leads to a longer replacement interval for SSD-based storage
systems. We compare three different configurations: CVSS,
TrSS, and AutoStream [63] in this evaluation since ttFlash
introduces additional write (wear) overhead coming from
RAIN (Redundant Array of Independent NAND) even for a
small write [62]. The workloads used are similar to § 5.2.1.

Figure 15 shows the TBW before the device performance
drops below 0.8, 0.6, 0.4, and 0 of the initial state. In particu-
lar, 0 represents the case where no performance requirement
is applied so the workload runs until the underlying SSD is
unusable. In cases of lower device utilization (as shown in
Figures 15a and 15c), CVSS effectively extends the device
lifetime, even when high performance is required. In Fig-
ure 15a, the device fails after accommodating 10 TB host
writes for TrSS and 18 TB for AutoStream, considering the
performance requirement of 0.8. On the other hand, CVSS
accommodates 28 TB host writes with the same performance

Figure 14: Performance results under Twitter traces. Capacity vari-
ance outperforms AutoStream and ttFlash and improves the through-
put by 1.42× on average compared to TrSS.

requirement, outlasting TrSS by 180% and AutoStream by
55%. Similarly, in Figure 15c, CVSS outlasts TrSS by 270%
and AutoStream by 50%.

In the high device utilization cases (as shown in Figure 15b
and 15d), CVSS outlasts TrSS by 123% and AutoStream
by 55% on average with the highest performance require-
ment. In Figure 15b, before the device becomes unusable,
CVSS accommodates 10.4 TB more in host writes compared
to TrSS and 12 TB more compared to AutoStream. In our
experiments, we found AutoStream achieves a longer lifetime
than TrSS except for the no performance requirement case.
In AutoStream, data are placed based on their characteris-
tics, which in turn triggers more data relocation towards the
end for wear leveling. Overall, with the highest performance
requirement, CVSS ingests 168% host data more compared
to TrSS and 57% more compared to AutoSteam on average,
which in turn prolongs the replacement interval and reduces
the cost.

5.4 Sensitivity Analysis
We next investigate the tradeoffs in CVSS regarding the block
retirement threshold, the strength of ECC engine, and the
impact of different GC formula weights.

5.4.1 Block Retirement Threshold

The mapping-out behavior for aged blocks in CV-SSD is
controlled by a user-defined threshold. By default, blocks
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(a) Zipfian (30% utilization) (b) Zipfian (70% utilization) (c) Random (30% utilization) (d) Random (70% utilization)

Figure 15: Terabytes written (TBW) with different performance requirements. Compared to TrSS and AutoStream, CVSS significantly extends
the lifetime while meeting performance requirements.

Figure 16: The average
difference in FS and SSD
utilization under Twitter
traces. The original discard
policy shows higher utiliza-
tion inconsistency between
FS and SSD, making data
aliveness misjudged.

are mapped out and turn to a retired state once their RBER
exceeds 5%. In this section, we investigate how this threshold
affects the performance and device lifetime.

We utilize YCSB-A and YCSB-F with their data set con-
figured to have thirty million key-value pairs (10 fields, 100
bytes each, plus key). We compare three different configu-
rations: (1) TrSS, vanilla F2FS plus a fixed-capacity SSD;
(2) CVSS(4%), CVSS with a higher reliability requirement.
Superblocks will be mapped out if RBER is greater than 4%;
(3) CVSS(6%), CVSS with a lower reliability requirement.
Superblocks will be mapped out if RBER is greater than 6%.

Figure 17 shows the latencies at major percentile values
(p75 to p99) and the device lifetimes for each workload. As
shown in Figures 17a and 17b, CVSS(4%) reduces p99 la-
tency by 51% for the YCSB-A workload and by 53% for the
YCSB-F workload compared to TrSS, which are 44% and
40% for CVSS(6%). With a higher reliability requirement,
blocks are retired earlier in CVSS(4%), which in turn causes a
relatively shorter device lifetime than CVSS(6%). As depicted
in Figures 17c and 17d, CVSS(6%) and CVSS(4%) ingests
3.27× and 2.68× host I/O than TrSS on average, respectively.

5.4.2 ECC Strength

We now study the impact of ECC strength on SSD error
handling and demonstrate the usefulness of capacity variance
in simplifying SSD FTL design. As discussed earlier, CVSS
excludes aged blocks from use and thus incurs fewer error
correction operations. This further allows the CV-SSD to be
equipped with a less robust error-handling mechanism without
compromising reliability.

Figure 18 compares the average number of read retries trig-
gered per GiB read over the device’s lifetime for CVSS with

ECC strength set as up to 50 bits corrected per 4KiB and TrSS
with ECC strength set to 50 – 90 bits. The results are measured
under the FIO Zipfian read/write workload with device utiliza-
tion of 30%. We make two observations. First, with the same
ECC capability, TrSS(50) performs 1.93× more read retry
operations than CVSS(50). Second, TrSS requires a stronger
ECC engine to improve the efficiency of the error correction
process, which complicates the FTL design in SSDs. On the
other hand, with a weaker ECC engine, CVSS(50) achieves
similar performance to TrSS(90).

5.4.3 GC Formula

As described in § 3.2.3, the GC formula consists of three
parameters: Winvalidity, Waging, and Wread . We analyze how dif-
ferent weights used in GC formula affect the performance of
CVSS in this section. We compare the configured weights
with three different configurations: (1) GC prioritizes blocks
with more invalid pages, with Winvalidity = 0.6, Wread = 0.2,
and Waging = 0.2; (2) GC prioritizes blocks with more reads,
with Winvalidity = 0.2, Wread = 0.6, and Waging = 0.2; (3) GC pri-
oritizes blocks with more erases, with Winvalidity = 0.2, Wread
= 0.2, and Waging = 0.6. FIO is used to generate Zipfian read-
/write workloads to the device. Figure 19 illustrates the mea-
sured WAF and read retry. Overall, the configured weights
result in a lower WAF and fewer read retry operations.

In particular, compared to the configured case, the high
Winvalidity case achieves a lower WAF but involves 0.78× more
read retry operations. This is because read-intensive data are
stored in aged blocks. For the high Wread case, it triggers fewer
read retry operations but decreases the cleaning efficiency of
GC since the invalidity is not adequately considered during the
victim selection. In the high Waging case, GC always selects
the most aged blocks, leading to a significant increase in WAF
and faster device aging. In contrast, the configured weights
balance WAF and read retry within the device.

6 Discussion and Future Work

In this section, we discuss different use cases of capacity
variance and its intersection with ZNS and RAID systems.
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Figure 17: Sensitivity analysis on the mapping-out threshold in CVSS. CVSS with a higher reliability requirement, CVSS(4%), achieves
better performance but with a relatively shorter lifetime compared to CVSS(6%) because blocks are retired earlier.

Figure 18: The average number
of read retries triggered per GiB
read over the device’s lifetime.
The x-axis represents different
ECC strengths in bits.

Use cases of capacity variance. CVSS aims to significantly
outperform fixed-capacity systems in the best case, and per-
form at a similar level in the worst case. The degraded mode
serves the role of addressing the worst case by reserving a
particular amount of capacity for the host. CVSS would be
most useful for cases where IO performance is bottlenecked
but has spare capacity. For instance, Haystack is the storage
system specialized for new blobs (Binary Large Objects) and
bottlenecks on IOPS but has spare capacity [51].

Moreover, for SSD vendors, capacity variance can simplify
SSD design, as it allows for the tradeoff of performance and
reliability with capacity. For data centers, introducing capacity
variance can automatically exclude unreliable blocks and en-
able easy monitoring of device capacity, resulting in longer de-
vice replacement interval and mitigating SSD failure-related
issues in data center environments. Lastly, for desktop users,
capacity variance extends the lifetime of SSDs significantly
and thus reduces the overall cost of storage.

ZNS-SSD. Capacity variance can be harmonious with ZNS.
Specifically, due to a wear-out, a device may (1) choose to
take a zone offline, or (2) report a new, smaller size for a zone
after a reset. Both of these result in a shrinking capacity SSD.
However, there is no software that can handle capacity reduc-
tion for ZNS-SSDs currently. The offline command simply
makes a zone inaccessible and data relocation has to be done
by users. Moreover, file systems are typically unaware of this
change except for ZoneFS [34]. The capacity-variant SSD
interface is a more streamlined solution where the software
and the hardware cooperate to automate the process.

Capacity variance with RAID. The current CVSS does not
support RAID systems. Existing RAID architectures require
symmetrical capacity across devices and its overall capac-
ity depends on the underlying minimal-capacity device. For

Figure 19: The WAF
and read retries trig-
gered under different
weights used for GC
formula.

parity RAID, the invalid data can not always be trimmed be-
cause it may be required to ensure the parity correctness. We
will investigate the capacity-variant RAID system as our next
direction, in which we consider modifying the disk layout
and data placement scheme to support dynamically changing
asymmetrical capacity with multiple heterogeneous CV-SSDs.

7 Conclusion

The basic principle behind a capacity-variant storage system
is simple: relax the fixed-capacity abstraction of the underly-
ing storage device. We implement this idea and describe the
key designs and implementation details of a capacity-variant
storage system. Our evaluation result demonstrates how ca-
pacity variance leads to performance advantages and shows
its effectiveness and usefulness in avoiding SSD fail-slow
symptoms and extending device lifetime. We expect new op-
timizations and features will be continuously added to the
capacity-variant storage system.
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A Artifact Appendix

Abstract
As introduced in the paper, the current storage system abstrac-
tion of fixed capacity exacerbates aging-related performance
degradation for modern SSDs, and enabling capacity vari-
ance allows for more effective tradeoffs between capacity,
performance, and reliability. This artifact includes the code
and describes the steps for measuring and comparing the per-
formance of the proposed capacity-variant storage system
against the traditional storage system to support our major
claims. The experiments are performed on a machine with 32
CPUs and 1 TiB of memory running Ubuntu 20.04 LTS.

Scope
The provided code and scripts facilitate the testing of the
following experiments:

• The performance degradation caused by aging observed
on a real SSD (Figure 1).

• The functionality of CVSS, including CV-FS, CV-SSD,
and CV-manager.

• The FIO experiments (Figure 10, Figure 11, and Fig-
ure 13).

• The Filebench experiments (Figure 12).
• The Twitter traces experiments (Figure 14).
• The lifetime experiments (Figure 15).

Contents
A.0.1 Fail-slow Experiments (Section 1)

Scripts are provided to age the SSD and measure its read-only
I/O performance. To initiate the experiment:

$ ./fio_aging.sh

Note that the content of the tested SSD will be wiped out
by the above script. The estimated time for this experiment
depends on the endurance of the tested device and it may take
several months to fully age the device.

A.0.2 Installation of CVSS

This section describes the steps to set up CVSS and perform
basic tests. The REMAP interface is implemented on Linux
kernel v5.15. To compile the kernel:

$ make -j$(nproc) bindeb-pkg

The CV-FS is configured as a kernel module. To compile
and install the CV-FS:
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$ ./run.sh

The CV-SSD is based on FEMU. To compile the code and
start the virtual machine, please run the following commands
after cloning the repository:

$ cd FAST24_CVSS_FEMU
$ mkdir build-femu
$ cd build-femu
$ cp ../femu-scripts/femu-copy-

scripts.sh ./
$ ./femu-copy-scripts.sh ./
$ ./run-blackbox.sh

This will start the virtual machine with the emulated
CV-SSD. You can set the path to your VM image via
IMGDIR=/path/to/image in the run-blackbox.sh file.

A.0.3 Basic Test

To test the functionality of CVSS:
$ inscvfs
$ diskcvfs
$ df -h /dev/nvme0n1

The logical capacity of CVSS can be adjusted online by
issuing the following command:

$ sudo cvfs.f2fs /dev/nvme0n1 -t 118

The parameter for the -t flag (e.g., 118) is the newly config-
ured logical capacity in GiB that we have set for the system.

A.0.4 Evaluation Workflow

FIO experiments (Section 5.2.1). To evaluate the perfor-
mance of CVSS under FIO-related workloads, please run:

$ ./test_fio_zipfian_util30.sh
$ ./test_fio_zipfian_util70.sh
$ ./test_fio_random_util30.sh
$ ./test_fio_random_util70.sh

Each experiment may take 4 days to finish. The virtual
machine will be turned off when the experiment finishes, and
the performance results will be stored in .log files in the
working directory.

Filebench experiments (Section 5.2.2). To perform the
filebench-related experiments, please run:

$ ./fs_test.sh

This script will age the system and issue Fileserver, Netsfs,
and Varmail workloads under different aged states of the un-
derlying device. The latency results are logged in .log files
in the working directory.

Twitter traces experiments (Section 5.2.3). To set up
RocksDB and issue Twitter traces to the system, please run:

$ cd ./rocksdb/examples
$ gcc twitter_load.c -o twitter_load
$ gcc twitter_run.c -o twitter_run

$ ./twitter.sh

Each test may take one week to complete. The IOPS and
trace profiles are stored in the .log files.

Lifetime experiments (Section 5.3). To test the amount of
host writes under different performance requirements and
workloads, please run:

$ ./test_lifetime_zipfian_util30.sh
$ ./test_lifetime_zipfian_util70.sh
$ ./test_lifetime_random_util30.sh
$ ./test_lifetime_random_util70.sh

Each experiment is expected to take approximately 5 days
to complete. The experiments will continue running until the
underlying SSD fails. Performance results are documented
in the .log files within the working directory. Additionally,
device statistics, such as the write amplification factor, can be
found in the wa.log file located in the host directory of the
virtual machine.

Hosting
The artifact is available on github repositories:

• Kernel: https://github.com/ZiyangJiao/
FAST24_CVSS_Kernel.

• CV-FS: https://github.com/ZiyangJiao/
FAST24_CVSS_CVFS.

• CV-SSD: https://github.com/ZiyangJiao/
FAST24_CVSS_FEMU.

Requirements
Please make sure you have at least 160 GiB of memory and
150 GiB of free space on your disk if testing on your machine.
Our evaluation is based on the following system specifications:

Component Specification
Processor Intel(R) Xeon(R) Silver 4208 CPU, 32-Core
Architecture x86_64
Memory DDR4 2666 MHz, 1 TiB (64 GiB x16)
SSD Intel DC P4510 1.6TiB
OS Ubuntu 20.04 LTS (Focal Fossa)
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Abstract
Flash-based persistent storage media are capable of sub-
millisecond latency I/O. However, a storage architecture op-
timized for spinning drives may contain software delays that
make it impractical for use with such media. The NetApp®

ONTAP® storage system was designed originally for spin-
ning drives, and needed alterations before it was productized
as an all-SSD system. In this paper, we focus on the changes
made to the read I/O path over the last several years, which
have been crucial to this transformation, and present them
in chronological fashion together with the associated perfor-
mance analyses.

1 Introduction

The advent of flash-based storage about a decade ago trans-
formed the business of data center storage controllers. De-
spite improvements in several dimensions, the time to ac-
cess any randomly selected data from storage had histori-
cally remained limited by physical constraints of spinning
hard disk drive (HDD) technology. NAND-based solid state
drives (SSDs) provided orders of magnitude lower latency
and higher IOPS. In the last decade, several SSD-optimized
or SSD-only architectures for data center storage controllers
have been built and productized.

NetApp’s® flagship feature-rich ONTAP® storage operat-
ing system is deployed in various configurations both within
the data-center and in the cloud. ONTAP and its propri-
etary WAFL® file system [19] were optimized over their first
two decades to maximize available I/O bandwidth on HDDs
(with multi-millisecond latencies) for both reads and writes,
and with a modular architecture to allow ongoing feature de-
velopment. Most features of the WAFL architecture are re-
quired of any enterprise-quality storage system regardless of
the underlying persistent media: data integrity [38], avail-
ability, data protection [51], recovery [28], etc. WAFL meta-
data was designed to optimize random metadata lookups
from media, efficiently write out data and metadata to stor-
age [25, 29], and to enable key functionality such as snap-

*Currently employed at Google, †Currently employed at Meta

shots. Compression and deduplication techniques in WAFL
improved efficiency in storage capacity. The WAFL consis-
tency point converted random updates of user data and meta-
data into sequential I/O [13, 30], and wrote blocks to areas
with the most free space, which turned out to be well-suited
to minimizing FTL write amplification in SSDs.

ONTAP also integrated flash technology—PCIe-attached
Flash Cache® [54] and SSD tiering in Flash Pool® [55]— but
due to software delays in the ONTAP legacy data path, appli-
cations benefitted only partially from SSD’s sub-millisecond
latency, particularly for random reads. As such, ONTAP was
faced with the challenge of making I/O software overhead
commensurate with device latency in order to ship a com-
petitive all-SSD system. Other legacy storage systems have
similarly found software overhead out of proportion to low-
latency device access times [8, 24, 32, 33, 40, 57, 62, 71].
Building a new storage architecture “from scratch” for SSDs
would have required reinventing dozens of battle-tested fea-
tures that were critical to our enterprise customers. As noted
above, ONTAP and WAFL already had most of the building
blocks necessary for building an all-SSD controller. There-
fore, we instead reworked the legacy read path to speed it up
incrementally over several software releases spanning multi-
ple years, primarily by eliminating message hops between
components of the storage software stack and moving to-
wards a run-to-completion execution model that minimizes
expensive message passing steps.

Although this paper focuses only on the optimization of
the read I/O path, a collection of other improvements were
also crucial to productizing the all-SSD controller. As de-
scribed in prior work [25], we changed the block allocator to
write contiguously down the SSD LBA-space in multiples of
the SSD erase page size, thereby mitigating the log-on-log
problem [67] and increasing SSD lifetimes. We redesigned
the compression and deduplication infrastructure to run in-
line with writes, which reduces the overall data written to
storage thereby further prolonging SSD lifetimes. We intro-
duced other key performance optimizations, including in the
write I/O path and journal replay.

This paper makes the following contributions: We analyze
the latency breakdown of the legacy read path of a success-
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Figure 1: ONTAP modules involved in the data path.

ful enterprise storage system. We present a series of per-
formance improvements made by systematically removing
the primary sources of software delay. We analyze the im-
provements using data from detailed experiments across a
range of hardware platforms and a cloud-resident VM. Fi-
nally, we discuss two major lessons that we learned from
our experiences. Our improvements dropped software over-
head from multiple milliseconds to less than 160us (more
than 20X) generating large improvements in read latency and
throughput, which has been foundational to the all-SSD ON-
TAP controller becoming a multi-billion dollar product line.

2 Background

In this section, we provide a brief overview of ONTAP and
WAFL followed by a description and analysis of the legacy
read path. We refer readers looking for a deeper understand-
ing of WAFL to prior work [12, 13, 15, 19, 25, 26, 28, 29].

2.1 ONTAP Storage Stack
Fig. 1 shows the major ONTAP components in the data path.
The Protocol component receives requests from clients and
converts them into WAFL requests. The WAFL component
processes all requests to the file systems—I/Os, operations
related to data management, replication, etc. The layers be-
neath provide access to the storage media and implement
RAID protection across them. Each component has data
structures that are accessible typically only from thread pools
dedicated to the component, which simplifies the synchro-
nization between components. Component boundaries are
traversed by message-passing between their threads, which
means a request from a client undergoes multiple hops.

2.2 WAFL Processing Model
ONTAP houses and exports multiple file systems called vol-
umes from within a shared pool of storage called an aggre-
gate, and the WAFL component handles operations on them.
The WAFL file system stores all metadata and user data in
files which are organized in a hierarchical fashion. WAFL

blocks are 4KiB in size and alignment, and are indexed in
the aggregate by a PVBN (physical volume block number).
Detailed descriptions are available elsewhere [15, 19].

Requests are dispatched to the WAFL component as
WAFL messages. All data in the file systems are conceptu-
ally arranged into a hierarchy of data partitions called affini-
ties, in a model referred to as Waffinity [12]. Based on its
type and the data it intends to access, each request is dis-
patched to a specific affinity in the hierarchy. A dedicated
pool of Waffinity threads execute requests on a per-affinity
basis within the WAFL component in a thread-safe fashion.
Each message type has an associated handler, which is coded
in a load-modify transactional model: all resources neces-
sary for the operation are accumulated in the load phase dur-
ing which the message may suspend one or more times, af-
ter which the handler is completed in a single non-blocking
modify phase, during which any mutations to the file system
state are committed. This execution model together with the
guarantees of Waffinity ensures that WAFL operations exe-
cute in atomic fashion with parallelism-safety.

If a resource is unavailable, the message releases all re-
sources acquired thus far before it suspends (blocks) on an
appropriate wait-list, thereby avoiding resource dependen-
cies and deadlocks. When woken up, the message handler
restarts execution from the beginning to try and reacquire
the necessary resources. For example, a read message re-
quires that the data blocks are available in memory. If those
blocks are not in memory during the load phase, the read
handler initiates retrieval of those blocks from persistent
storage and suspends awaiting that retrieval. Upon restart,
it goes through the same steps, but likely finds the blocks in
memory this time and is able to complete its modify phase.
This model provides deadlock-free concurrent execution but
trades off CPU cycles for potential load phase re-execution.

2.3 Mutations to the File Systems

ONTAP was always designed to process mutations to the file
system state with low latency. Consider the example of a
write request. The load phase of the WAFL write message
handler ensures the necessary inode and ancestor indirect
blocks are in memory. The modify phase updates the file sys-
tem state in memory and journals the write to NVRAM1 be-
fore it responds to the Protocol component, which then sends
an acknowledgement to the client. The modify phase leaves
behind “dirty” file system state in memory—inodes, buffers,
and volumes. Dirty state is collectively and periodically per-
sisted on a per-aggregate basis as a single transaction called
a consistency point (or CP) [13, 25]. Dirty data is com-
pressed, deduplicated, and compacted [27] asynchronously
to the write but before the CP completes. Because the inode

1ONTAP systems are deployed as HA-pairs, and the journaled write
must get mirrored to the HA partner’s NVRAM as well.
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Figure 2: Message passing steps across ONTAP components for a
read request.

and ancestor blocks of “hot” byte ranges are typically mem-
ory resident and appends to NVRAM are fast, the write la-
tency is mostly independent of storage access times. There-
fore, the read path was the main focus of the performance
work required for productization of the all-SSD controller.

2.4 Legacy Read Path
Fig. 2 shows the message passing hops in the legacy read
path and is applicable to all supported protocols—SCSI,
NVMe, NFS, and SMB. In step 1, ONTAP receives the read
request over the network in the context of a Protocol thread,
which parses the request and translates it to a WAFL read
message. A Waffinity thread picks up and executes the mes-
sage in step 2. The read handler traverses file system data
structures to find the requested data blocks. If the required
data are found in memory during the load phase, the data is
assembled into a reply payload in the modify phase and sent
back to the Protocol thread, which replies to the client in step
3b. If not, the handler suspends until the data is available in
memory. One such example is when all required interme-
diate data—inode, indirect blocks, etc.—are found, but the
data blocks are not. In this case, the handler allocates, ini-
tializes, and inserts one buffer per missing block in the file
system tree, places them in one or more RAID read mes-
sages that it sends to the RAID component, and suspends
the WAFL read message on the completion of all required
I/Os. WAFL uses the PVBNs of the blocks to determine the
required number of RAID read messages.

A RAID thread processes each RAID read message, uses
its knowledge of the drive mappings to translate each PVBN
to drive ID and LBA, and sends a message to the Storage
component in step 3a. In step 4, a Storage thread processes
this message, dispatches a read to the physical drive, and
sends a read-done to the RAID component upon comple-
tion of the I/O. In step 5, RAID validates checksums and

Figure 3: Latency across ONTAP components with increasing load
for a 4KiB random read request.

sends a read-done to the WAFL component if no errors are
found. In step 6, a WAFL thread does further validation2,
marks the buffers valid, and restarts all waiters. The original
WAFL read message is awoken once all issued RAID mes-
sages (from step 2) have completed. In step 7, a Waffinity
thread runs the original message by re-executing the handler,
eventually finds all valid buffers in cache, and replies to the
Protocol component, which replies to the client in step 8.

Three different data reduction techniques—compression,
deduplication, and sub-block compaction [27]—are used in
combination by WAFL to efficiently store data; the data is
also encrypted just before it is stored. Decryption occurs in
step 4 while reading from storage, but the choice of where
(in one of the steps in the reply path) the reduced data gets
rehydrated is made dynamically based on various conditions.
We consider the topic of data reduction outside the scope of
this paper for two reasons: it is too large a topic to cover
comprehensively, and it would be a distraction because the
techniques and results presented in this paper are fundamen-
tally unchanged with or without data reduction.

This architecture is modular, which facilitates continuous
feature development, and error handling can be performed in
the corresponding component. A WAFL read that does not
hit in the buffer cache may incur several message hops in-
cluding multiple suspensions and restarts within WAFL be-
fore completion. Such hops become expensive under CPU
pressure, when a message must wait for the next thread to be
scheduled or when running threads cannot keep up with in-
coming load. In the case of HDDs, these scheduling delays
are typically dwarfed by drive I/O latencies. Such delays
become noticeably large for SSDs.

2.5 Components of Read Latency
Fig. 3 shows the breakdown of server-side latency for a read
request to ONTAP across the steps outlined in Fig. 2 under

2WAFL stores a context together with each written block [60] to iden-
tify its file and offset to protect against lost or misdirected writes [3], and
identify a block that has been moved for defragmentation purposes [26].
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increasing levels of load, using a matching color scheme for
each step. This data was collected on ONTAP 8.2.2 (circa
2014), which predates the optimizations discussed in this pa-
per. A random read workload—which ensures a low buffer
cache hit rate and frequent drive access—was run on a 2x10-
core Intel Xeon 2.8GHz controller with 128 GiB of DRAM,
the high-end ONTAP system from that time. The controller
had twelve 400GiB SAS SSD drives, which collectively pro-
vided sufficient I/O throughput for the highest load of this
experiment. A set of LUNs were configured on ONTAP and
a number of clients sent 4KiB reads to random offsets using
the FCP storage protocol over an underlying Fibre Channel
network to cumulatively create the desired load. Throughout
this paper, time within each component is measured using
start/stop timers in the software stack. Network component
time is included within the Protocol layer, which collectively
remain a small source of delay due to their relative efficiency
compared to other components in the stack.

Protocol corresponds to steps 1 and 8. Read Message and
Read-Done Message depict time in the WAFL component,
the former for the sum of steps 2 and 7 and the latter for step
6. Storage+RAID SW corresponds to steps 3, 4, and 5 minus
SSD Driver+Device, which depicts the latency in the device
driver and media. The raw CPU cycles in the WAFL and
Protocol components (steps 1, 2, 6, 7, and 8) are negligible
(each less than 30us); in other words, most of the latency is
the message waiting to be picked up by WAFL or Protocol
threads. Although SSD Driver+Device time does increase
with load, all of that increase is attributed to software de-
lays in the device drivers due to increased CPU wait times.
We confirm this later in Fig. 7, which shows consistent SSD
Driver+Device times when CPU wait times are not a major
factor. Increased load amplifies the cost of each hop because
threads are busier and CPUs are closer to saturation.

At 80% of maximum throughput of the system
(960MiB/s), the device latency is less than 30% of the to-
tal read latency. The primary non-device delays are in the
RAID/Storage components and wait times in WAFL for the
read and read-done messages. While such delays were ac-
ceptable for HDDs with media latency of several millisec-
onds, their impact became outsized for SSDs with media la-
tency of a few 100’s of microseconds. Clean-sheet design
approaches for the read path were discarded because of the
inherent complexities around handling myriad error condi-
tions and integrating with existing ONTAP features. Instead,
we used the latency data to iteratively improve the read path
for the most common cases while retaining the legacy path
for error handling and other complicated conditions.

3 Fastpaths: WAFL Reply and RAID

Optimization of the read path for SSDs started as a
skunkworks project in the WAFL team, and we began with
the WAFL reply path. Because the latency breakdown was

Figure 4: Steps with WAFL Reply and Storage Fastpaths.

Figure 5: WAFL buffer cache and page header hash.

dominated by wait-times due to message passing hops, we
chose to eliminate hops, steps 6 and 7, instead of optimizing
code. We call this work WAFL Reply Fastpath. Next, the
RAID and Storage teams eliminated steps 3a and 5, called
RAID Fastpath. These changes are shown in Fig. 4.

3.1 Bypassing WAFL Read-done

The WAFL read-done message validates the data, updates
the WAFL buffer state to reflect the I/O completion, and
restarts the original WAFL read message. We explored
whether the error-free path of this handler could be executed
directly by the RAID component as part of RAID read-done
(step 5). We refer to this technique as bypassing layers. Data
blocks and indirect blocks of a file are represented in mem-
ory as WAFL buffers, which are logical headers that point
to 4KiB data block pages. WAFL buffers are arranged into
per-file inode block trees. A multi-level LRU structure [14],
labeled Priority Queue in Fig. 5, tracks the aging and prior-
ity of buffers, and is designed to be accessible from within
and outside of the WAFL component as a result of earlier
performance improvement work.

A given data block can be shared by several inodes’ block
trees; this capability is used by many ONTAP features, such
as snapshots, deduplication, cloning, etc. Hence, multiple
WAFL buffers can point to a data block page. Each block
page also has a statically-associated page header, that stores
metadata about the page such as a reference count of the
WAFL buffers pointing to it. The page headers are tracked
in a header hash indexed by aggregate ID and PVBN, which
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is looked up before issuing I/O. Fig. 5 shows two example
block pages with PVBNs 71 and 72. Access to block pages
and page headers are protected by range locks on the page
header hash from any component. A block page can only
be scavenged when its page header refcount is zero, which
implies all buffers pointing to it have been evicted.

In the legacy read path, a WAFL buffer (per block) was
sent with the RAID read message. The RAID and Storage
components could safely update certain flags/fields in those
buffers to track I/O state, error states, the checksum, etc.
However, marking the buffer valid could happen only within
the WAFL component, hence the need for WAFL read-done.
In the new model, we add a valid state in the page header
and leverage a new iobuffer object that is used exclusively
for the purpose of I/O and is therefore exempt from many of
the rules that govern WAFL buffers. As in the legacy path,
the WAFL read message inserts a WAFL buffer but now also
initializes an iobuffer per block, which it instead sends with
the RAID read message. The iobuffer is private to the read
request and cannot be found otherwise. Both buffers point
to the same block page, as shown in Fig. 5. The WAFL read
message now suspends on a page header (instead of a WAFL
buffer) waiting for it to become valid. The RAID read-done
message first validates the data block then directly invokes a
WAFL function that performs the file system specific valida-
tion, marks the page header valid, wakes up the suspended
WAFL read message, and frees the iobuffer. If it encounters
any errors, it can safely fail through to WAFL at any point,
because WAFL messages always restart execution from the
beginning of the message handler.

3.2 Bypassing the Restart of WAFL Read

The removal of step 6 resulted in significant improvements,
and encouraged us to next explore eliminating step 7. In
the legacy read path, the restarted WAFL read message en-
sured that all data was present in memory, assembled them
into a vector, and replied to the Protocol component. As
with the WAFL read-done message, this work is now exe-
cuted inline by the RAID read-done (step 5) message by us-
ing iobuffers. The original WAFL read message is attached
to the RAID read message, in which we keep count of the
outstanding I/Os to storage. This count is atomically decre-
mented upon each I/O completion, and the last completion
replies to the Protocol component. If any errors are en-
countered, the legacy path is triggered by sending the read
message back into WAFL. When a Protocol thread receives
the reply, the embedded WAFL read message is freed. The
original WAFL buffer is marked valid only if accessed by
some subsequent WAFL message (or the restarted WAFL
read message in case of an error) on finding that the buffer
points to a valid block page. If never accessed, the buffer
eventually ages out like any other. The elimination of steps
6 and 7 is collectively called the WAFL Reply Fastpath.

Figure 6: Latency vs achieved throughput with increasing 4KiB
random read load with and without Fastpaths.

3.3 RAID Fastpath

We next worked to bypass the RAID component (steps 3a
and 5) entirely on the read path. The RAID component main-
tains an up-to-date topology data structure of the aggregate;
it knows which drives are in some failure state or are getting
reconstructed. RAID uses that information in RAID read
(step 3a) to map the PVBN of each buffer supplied by WAFL
to the physical drive and LBA. RAID exports a read-only
cache of the topology, which is now used by the WAFL read
message for the translations and to directly send I/O mes-
sages to the Storage component. Changes in the aggregate,
such as addition of drives, failure of drives, or RAID recon-
struction, will require updating the topology. Though rare,
when such events occur the RAID component flags the cache
as stale, and the WAFL read message fails through to using
the legacy RAID read. In the case of a race—say the topol-
ogy is tagged stale after a Fastpath is triggered—the Storage
component detects the staleness in step 4 and returns an er-
ror, and the restarted WAFL read message now fails through
to the legacy path. The Fastpath resumes once a new topol-
ogy cache has been built and exported by RAID.

Upon completion of a device I/O in step 4, the Storage
component now directly calls a thread-safe version of the
checksum validation used in RAID read-done (step 5), fol-
lowed by the WAFL Reply Fastpath described in Sec. 3.1 and
Sec. 3.2. As elsewhere, the legacy path is used as a fail-safe
whenever any error is encountered.

3.4 Performance Analysis of Fastpaths

Fig. 6 and 7 show results from the same 4KiB random read
experiment on the same 20-core platform from Sec. 2.5 with
the Fastpaths enabled. No Fastpath data was collected by
using ONTAP 8.2.2 (circa 2014), which precedes our opti-
mizations, WAFL Reply Fastpath using ONTAP 8.3.0 (early
2015), and then with RAID Fastpath using ONTAP 8.3.1
(late 2015). Although not strictly apple-to-apples because
we are comparing different releases, the performance impact
seen in these graphs is primarily due to the Fastpaths. Fig. 6
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Figure 7: Latency across ONTAP components with and without
improvements at two specific loads of 4KiB random reads.

plots the average server-side latency vs achieved load, and
shows how these improvements have significantly shifted the
system saturation points to the right. The read throughput at
the average latency of around 1ms (the industry expectation
for SSD-controller latency in the mid-2010’s) quadrupled
from 150MiB/s to 600MiB/s with WAFL Reply Fastpath,
and increased another 50% from 600MiB/s to 900MiB/s with
RAID Fastpath. Fig. 7 shows the latency breakdown at two
specific load points. The sharp increase in latency with the
legacy path is attributable primarily to the RAID and Stor-
age components. From mining finer grained statistics in ON-
TAP, the savings at 880 MiB/s compute to 300us of wait time
for the WAFL read-done message, 480us wait time for the
restarted WAFL read message, and a smaller 17us of CPU
time across both messages. More interestingly, the reduction
in CPU utilization due to the elimination of steps 6 and 7
results in lowered wait times for threads in all components,
lowering the overhead of remaining message hops and de-
ferring CPU saturation to higher levels of load. Adding the
RAID Fastpath at 880 MiB/s results in a further reduction in
wait times in RAID and Storage components and a reduction
in device driver wait time. In the end, software overhead is
on par with device times.

It should be noted that latency variance in ONTAP is al-
most always due to variance in wait times, which gets worse
only with increased CPU utilization. Therefore, latency vari-
ance is high only to the right of the “knee” of the latency-
throughput curve [50]. Because Fastpaths (and the improve-
ments presented subsequently in this paper) significantly re-
duce wait times, their benefits for p90 and p99 latencies have
an outsized impact to the right of the knee of the curve. For
example, p90 latency drops from 7ms (for legacy) to 2ms
(with both Fastpaths) in this experiment. Therefore, we use
average latency as a conservative showcase of the improve-
ments throughout this paper.

In this section, we presented and evaluated a collection
of optimizations to minimize message hops in the read I/O
path. We showed that component layers can be effectively
bypassed by running limited elements of one layer within

Figure 8: Read path steps with TopSpin read design.

another layer to constrain software overhead. This work was
crucial to NetApp shipping a feature-rich all-SSD ONTAP
controller in 2015 instead of creating an SSD-optimized file
system from scratch. Further, the success from Fastpaths en-
couraged the continued use of this approach in ONTAP. The
next section discusses how we used bypassing to tackle the
dominant remaining delay.

4 TopSpin Read: Bypassing WAFL Read

By the early 2010s, it was obvious that traditional intercon-
nects such as SAS and SATA were inadequate for SSD speed
and bandwidth. Based on the new NVM Express technol-
ogy [52], enterprise-quality SSDs boasting at least one or-
der of magnitude better performance were available by the
late 2010s. NVMe storage drivers were added to ONTAP to
access these new SSDs. Additionally, Linux and Windows
clients were now able to unlock these performance bene-
fits by connecting over the network using the NVMe over
Fabrics (NVMe-oF) protocol. In response, an NVMe server-
side module optimized for parallelism and low latency was
added to the ONTAP Protocol component. With these tech-
nological improvements, tackling the remaining large soft-
ware delay—the wait time for WAFL Read (step 2) as seen
in Fig. 7—became a competitive imperative.

To that end, we developed TopSpin, an optimization to
allow the common-case read request to bypass the WAFL
component, as shown in Fig. 8. TopSpin leverages direct
access to WAFL data structures from within the Protocol
component (step 1) to check if the required data is in mem-
ory and to issue I/Os to storage, while handling all poten-
tial races with requests that modify file system state running
in parallel within the WAFL component. This design has
three advantages: (1) It avoids the queueing delays within
WAFL. (2) The reimplemented read handler is light-weight
and avoids the suspend-restart CPU overhead. (3) It bypasses
the strict data partitioning within WAFL that can restrict par-
allelism. It was productized in ONTAP 9.3 (2017) and en-
abled for all block-based protocols—SCSI and NVMe.

4.1 Storage Location Cache
We introduce the Storage Location Cache (SLC) to allow the
Protocol component to directly and safely discover data lo-
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Figure 9: Overall SLC and HAC architecture, which integrates with the existing WAFL buffer cache and page header hash.

cations. The SLC is a hash table that maps file handle and
file block number (or FBN, the 4KiB file offset) to PVBN;
its hash buckets are protected by range locks. The lowest
level indirect blocks in a WAFL inode tree (Level-1 blocks,
or L1s) comprise this map, along with per-FBN auxiliary in-
formation used for data validation. The location of the ith

FBN is found in the (i%span)th index of the ( i
span )

th L1,
where the fixed span is the maximum number of children an
L1 can have. As Fig. 9 shows, each SLC entry points directly
to a block page of one L1 and the SLC entry takes a refcount
through the corresponding page header. SLC entries are in-
serted (when an L1 block page is loaded into memory) and
updated only from the WAFL component, including being
removed when the L1 page is scavenged.

4.2 Hierarchical Attributes Cache

For a read request to be safely processed in the Protocol com-
ponent, it must synchronize with changes to file system state
occurring in parallel within the WAFL component. For in-
stance, changes to the mount state of a volume or the size
of a file may interact with a read request. We introduce the
Hierarchical Attributes Cache (HAC) to track properties of
file system objects—inodes and volumes—to facilitate such
checks. Each user file or LUN is represented by an HAC in-
ode object that caches various attributes of the inode, such
as size and permissions. Each volume is represented by an
HAC volume object that caches mount state, encryption key,
etc. As Fig. 9 shows, the objects are organized into two
hash tables indexable by file handle (which includes a vol-
ume identifier). Access to these objects is protected by a lock
per hash bucket. Much like the SLC, HAC objects are con-
sulted from the Protocol component but created and updated
only from the WAFL component; a volume (inode) object is
added to the HAC when it is mounted (loaded into memory).

4.3 TopSpin Read from Protocol Component

We implement TopSpin read, a version of the WAFL read
handler that is called directly by the Protocol thread towards

the end of step 1. Fig. 9 shows the system state for an exam-
ple TopSpin read of FBN2 and FBN3 of a file. It first looks
up the SLC using file handle and offset to determine if the
requisite L1 block pages are in memory; the actual lookup
converts the offset to the FBN aligned to L1 span, which
is FBN0 in this case. If found, it confirms the freshness of
the SLC entries by consulting the HAC inode and volume
objects; Sec. 4.5 details the the freshness check. Next, it
indexes the L1 page to obtain the PVBNs (and auxiliary in-
formation), 17 and 18 in the figure, and looks them up along
with aggregate ID in the page header hash. If all block pages
are found in memory, it inserts them into the reply vector and
replies to the client, holding a page refcount until complete.
Otherwise, much like the WAFL read handler, TopSpin uses
the PVBN and auxiliary information to instantiate iobuffers,
block pages, and page headers, and sends the appropriate
I/Os to the Storage component for the missing Level-0 file
data blocks (or L0s). The Protocol component resumes pro-
cessing this request after receiving a reply from Storage,
much as in Sec. 3.3. If TopSpin read fails for any reason,
such as missing L1 block pages or freshness check failure, it
falls through to the legacy WAFL path. Both caches—HAC
and SLC—use LRUs to age their entries, thereby increasing
the chances of TopSpin reads to “hot” file byte ranges com-
pleting successfully.

As noted in the Fastpath sections, some data struc-
tures were already safe to access from outside the WAFL
component—the block pages, page headers and hash, the
RAID topology cache, etc. TopSpin limits itself to accessing
only those shared structures. When an I/O completes, step 4
now inserts the iobuffer directly into the buffer cache LRU,
unlike in the Fastpath case where the iobuffer is discarded
and the WAFL buffer is preserved. TopSpin reads access L0
block pages directly through the page header hash, and incre-
ment a newly added touches count field in the page header to
track hotness (shown in Fig. 9). Before an iobuffer can be
scavenged, any such references are transferred from the cor-
responding page header into the iobuffer thereby preventing
eviction. We next look at how the SLC and HAC guarantee
correctness.
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4.4 Keeping SLC Consistent

A write request executing in parallel within the WAFL com-
ponent may conflict with a TopSpin read, and we use the
SLC entry for synchronization. Each SLC entry uses a dirty-
bitmask to track whether its children data blocks have been
“dirtied” by any operation running in the WAFL component,
one bit per child. In its modify phase, the WAFL write han-
dler locks up to 3 SLC entries—the largest write supported
(1 MiB) may span up to 3 L1s—to set the dirty bit for each
FBN. A TopSpin read looks up the dirty bits after locking
the necessary SLC entries, and fails through to WAFL if any
is set. Otherwise, it obtains the PVBNs and either finds the
block pages through the page header hash or issues I/Os.

The subsequent CP walks through each dirty buffer and
allocates a new location for it in storage, a previously free
PVBN. Then, it rehashes the dirty block page using the new
PVBN in the page header hash, after which the page is sent
together with several other pages as a write I/O to a RAID
group in the aggregate; more details in other work [13, 25].
In theory, each dirty bit in an SLC entry can be cleared
when the CP rehashes the child L0 block page with the new
PVBN—a subsequent TopSpin read can now safely read that
block page. Instead, to amortize locking costs, all dirty bits
in an SLC entry are cleared together by locking the SLC
entry just once after the CP is done with the L1 and all its
children. It typically takes anywhere from 2-5 seconds for a
subsequent CP to process that parent L1 and clear the dirty
bits in the SLC entry. This is rarely a problem for our cus-
tomer environments, where immediate reads after writes are
rare, but would result in failing through to WAFL.

4.5 Keeping HAC Consistent

SLC entries may be invalidated by various infrequently oc-
curring operations, such as a volume remount or a file resize.
These are tracked by versioning HAC objects. Each HAC
object records two version numbers: a self version vs for its
child relationships and a parent version vp for its parent re-
lationship; Fig. 9 refers to them as SelfVer and ParentVer,
respectively. The former is initialized when an object is cre-
ated and incremented when any of its attributes change. For
example, if a file is resized its inode object’s vs gets incre-
mented. Each SLC entry also records a vp. A hierarchy ex-
ists: each SLC entry has a parent inode, and each inode HAC
object has a parent volume HAC object. When an HAC ob-
ject is created (updated), its vp is initialized to its parent’s vs
and its own vs is set (incremented). An object or entry is con-
firmed to be fresh only if its vp matches its parent object’s vs.
A check must recurse up the hierarchy to confirm freshness.

A failed SLC entry check at the inode (or volume level)
indicates that the corresponding file (or volume) has since
been modified in some way that makes the SLC entry stale.
When that happens, TopSpin sends the read to the WAFL

component. Stale SLC entries and HAC objects age out of
their respective caches. Version numbers are incremented
only by operations running within the WAFL component.
Incrementing the version of an object implicitly invalidates
all its descendent objects, which may be numerous—a vol-
ume may comprise hundreds of files, each with thousands of
“hot” L1s. It should be noted that version bumps occur infre-
quently, and therefore the fast 3-level recursive check done
by a TopSpin read succeeds most of the time.

4.6 TopSpin and File-based Protocols
The improvements in Sec. 3 moved portions of the read path
from WAFL and RAID down to the Storage component, and
are therefore independent of the client protocol. All proto-
cols can benefit from the Fastpaths. In contrast, TopSpin read
requires changes to the code in the Protocol component. We
implemented TopSpin first for block-based (SAN) protocols
because SAN applications—such as databases, server vir-
tualization, and business applications—require consistently
low latency. NAS protocols require that a read check other
metadata, such as file permissions, ACLs, and lock state.
These structures are currently accessible only from within
the WAFL component. An inode’s access time (atime) also
needs to be updated on reads, which results in mutations that
need to be persisted. A TopSpin read would need to safely
access the corresponding structures.

In this section, we extended Fastpath to bypass the WAFL
layer in the read I/O path, by developing an alternative
method for scalable, thread-safe file system accesses. Thus
far, it has been narrowly deployed within ONTAP, but it can
be applied to other protocols and file system operations. Ex-
tending TopSpin to NFS and SMB is a work in progress.

5 Client-Visible Consistency Semantics

In the previous sections, we discussed correctness in the face
of race conditions within and between components. We now
look at correctness from the client’s point of view. Clients
communicate with ONTAP using one of several protocols—
NFS, SMB, SCSI, and NVMe-oF—each with its correspond-
ing correctness semantics. To maximize code reuse and to
simplify design and testing, ONTAP implements a conser-
vative and consistent interpretation of the semantics across
all protocols. Changing these interpretations is disallowed
across ONTAP releases because it risks destabilizing client
libraries and customer applications. All improvements pre-
sented in this paper preserve ONTAP’s interpretations of
these semantics. We look at only two rules that are rele-
vant to this paper. In this section, we use the term “write”
generically for any operation that mutates file system state
and “read’ for any that does not.

For example, if a client issues a read R after it has re-
ceived the acknowledgement to a write W, then R must never
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see any file system state prior to W. Because a server can-
not know the exact moment when an acknowledgement is
received by a client, we implement rules based on when re-
quests (acknowledgements) enter (exit) the networking stack
of the Protocol component. (1) Read-After-Write (RAW):
ONTAP guarantees that once the Protocol component has is-
sued an acknowledgement of a write, a read request received
subsequently by the Protocol component sees only the state
after the write. (2) Concurrent-Read-Write (CRW): If a read
and write overlap in time when processed by ONTAP, the
read sees state only from before or after the write, but never
both; except for SCSI, where CRW applies only for sizes up
to 64 KiB3. Both rules hold even if the read and write are sent
by different clients using different protocols. In legacy ON-
TAP, every file system request was processed by the WAFL
component in both the request and reply paths. The load-
modify transactional model together with Waffinity guaran-
teed serialization of a read and a write if they conflicted in
file byte range; this trivially satisfied both rules. The im-
provements presented in this paper are relevant only to read
requests—one of the many possible “reads” as used generi-
cally in this section.

The Fastpaths avoid the RAID and WAFL components on
only the reply path, so trivially preserve RAW. Because the
results of a write are committed to the in-memory file system
state by the WAFL component before its acknowledgement
can be sent, it is impossible for a TopSpin read to see content
from prior to the write. Thus, TopSpin also preserves RAW.

With both Fastpaths and TopSpin, if the write runs first
then the read sees data from only after the write. In the case
of TopSpin, the write first locks all SLC entries and sets the
dirty bits in them, so the read fails the freshness check and
falls through to WAFL. If the read runs first and finds all data
in memory, it replies with data from only before the write in
both Fastpaths and TopSpin. The TopSpin read locks all the
SLC entries it needs. If the read runs first and finds that
all its L0 pages are missing, it uses PVBNs from the L1s
to issue I/Os to the Storage component. TopSpin finds the
PVBNs via the SLC entries and the WAFL read handler via
the L1 buffers. Even if a subsequent write dirties one or more
of those FBNs, the read replies with only the persisted data
prior to the write. Any read with a mix of hits and misses
in the page header hash fails through to the legacy path. Al-
though this case can be improved, it does not occur often in
our customers’ applications. Thus, CRW is preserved.

6 Performance Evaluation of TopSpin

A typical ONTAP controller hosts datasets for multiple in-
stances of different applications that are accessed at the same
time. No individual workload represents all outcomes in

3The SCSI specification does not require atomicity. ONTAP does not
support WRITE ATOMIC.

such multi-tenant environments. Therefore, we primarily
used micro-benchmarks to study the performance, knowing
that the results extend to any workload comprising those traf-
fic patterns. We also tested with an in-house benchmark
identical to the industry-standard SPC-1 [11], which models
the query and update operations of an OLTP/DB application
and simulates real world environments [17]. Lastly, we used
a standardized load to Oracle. All experiments used a re-
cent internal build based of ONTAP 9.13.1, unless otherwise
indicated. We picked a mid-range controller with 2.2GHz
Intel Xeon Silver 2x10 cores, 144GiB of DRAM, 16GiB of
NVRAM, and 23 3.84TiB NVMe SSD drives to study the
benefits when CPU resources are tight and a high-end con-
troller with 2.2GHz Intel Xeon Platinum 2x32 cores, 1TiB
of DRAM, 64GiB of NVRAM, and 46 3.84TIB NVMe SSD
drives. The NVMe SSD drives support 100K IOPS of ran-
dom reads with latency under 100us, and are configured into
RAID double parity [10]. These configurations are realis-
tic and are sufficient to make most workloads CPU-limited.
A given IOPS load is collectively initiated in an open loop
by a set of remote clients, such that queuing in the server
becomes significant under heavy load. Latency is measured
on the ONTAP server from when a read request enters to
when its corresponding reply exits the controller. The Top-
Spin SLC is backed by L1 block pages in the WAFL buffer
cache which can consume the majority of a system’s DRAM
and prioritizes indirect blocks. An L1 page in WAFL can
reference 255 child blocks, so TopSpin can be effective with
sizes significantly smaller than an application’s working set.

Controllers are deployed as a high-availability pair, but we
report only per-controller results. Only half of NVRAM is
used by a controller because the other half is used to mirror
the HA-partner’s journal. Although compression, dedupli-
cation, and compaction [27] are now enabled by default on
ONTAP all-SSD controllers, we disabled them in these ex-
periments for three reasons: (1) Enabling them on datasets
with realistic compressibility and dedupe savings does not
change the character of the results. (2) We have not pre-
sented the designs of these data reduction techniques and
how they interact with the read path. (3) We lack the space
to explore the range of datasets that yield different combina-
tions of compressibility and dedupe savings. Available CPU
cycles in all-SSD systems can be used for running data re-
duction, both inline and in the background. Thus, savings in
CPU cycles can directly benefit storage efficiency.

6.1 Reads: NVMe-oF Clients

In the first experiment, the load-generating clients used the
NVMe-oF protocol (over a Fibre Channel network) to com-
municate with LUNs configured on ONTAP. Together with
NVMe SSDs, when compared to earlier results, the latency
and throughput numbers are both an order of magnitude bet-
ter. At these low latencies, the experiment is more sensitive
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Figure 10: Latency vs achieved throughput on the 20-core system
with increasing random read (RR) and sequential read (SR) load.

Figure 11: Latency across ONTAP components with and without
TopSpin at three specific loads of random reads.

to software delays in ONTAP. Fig. 10 presents the latency
vs achieved throughput on the mid-range 20-core controller
with 8KiB random read (RR) 4 and 64KiB sequential read
(SR) workloads. Baseline now includes the Fastpaths.

6.1.1 Random Read Performance

TopSpin shifts the curve to the right, for example doubling
throughput at 400us latency. Customers can also oper-
ate their systems for higher throughput, with a tolerance for
higher latency (e.g., 5ms). The peak throughput of a sys-
tem is that achieved as the system approaches saturation and
beyond which latencies grow exponentially. As with the
Fastpaths, TopSpin delivers a 27% higher peak throughput
because the streamlined I/O path reduces the CPU costs per
operation (3.0GiB/s at 2.9ms latency vs. 2.4GiB/s at 3.2ms).
In this test, TopSpin finds the required data in memory in
1.9% of reads, issues storage I/O directly in 97.7% of reads,
and falls through to WAFL in only 0.4% of reads for reasons
such as an unavailable SLC entry. Fig. 11 shows the per-
component latency at three loads, and WAFL and Protocol
latencies are now further divided into CPU time vs wait time.
The data at low load (800MiB/s) approximates the break-

4By this time, the official SPC-1 as well as our internal benchmarks had
switched the I/O size from 4KiB to 8KiB for random I/O workloads.

Figure 12: Latency across ONTAP components with and without
TopSpin at two specific loads of sequential reads.

down for a single outstanding I/O. As load increases, the
WAFL read message wait time becomes a significant factor
(195us at 2GiB/s), and TopSpin eliminates it. Reduction in
CPU consumption also yields lower wait times in other com-
ponents. As we are now evaluating with NVMe SSDs, SSD
Driver+Device latency ranges from 115us to 160us with-
out TopSpin, compared to older generation SAS SSDs from
Fig. 7. With TopSpin, this drops to 108us to 123us, due to
decreases in driver scheduling delay. TopSpin replaces 24us
of WAFL read message CPU time with a 10us increase in the
Proto CPU time, which results in CPU cost per read drop-
ping from 66us down to 52us. At 2GiB/s, the non-device
related time drops from 690us to 160us, in better proportion
with the 123us SSD Driver+Device. With TopSpin, device
latency is now the largest single component and non-device
latencies remain below 60% of the total.

6.1.2 Sequential Read Performance

In general, ONTAP is capable of much higher sequential
read throughput because it uses speculative readahead to
prefetch required data into memory. This effectively elim-
inates SSD Driver+Device from the latency path, as shown
in Fig. 12. As expected, TopSpin eliminates WAFL Read
Wait and replaces substantial WAFL Read CPU time (56us
at 3840MiB/s) with a small increase in Proto CPU (20us),
resulting in significant increase in throughput—e.g., a 40%
increase at 800us latency. Peak throughput goes up by 19%
(6.0GiB/s at 3.0ms vs. 5.0GiB/s at 3.2ms), due to a reduction
in the per operation CPU cost from 251us to 209us. Thanks
to readahead, TopSpin finds data in memory in over 99.99%
of reads and avoids failing through to WAFL.

Unlike TopSpin random reads, readahead prefetching in-
stantiates and inserts WAFL buffers. We next optimized the
readahead engine to use iobuffers. This carries two ben-
efits: (1) iobuffers are lighter-weight because they main-
tain less state and so access fewer cache lines, which re-
duces the CPU cost of processing both their insertion and
eventual eviction. At 5.1GiB/s load, the average CPU cost
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Figure 13: Latency vs achieved throughput on the 20-core sys-
tem with TopSpin on sequential read load, using WAFL buffers and
iobuffers for readhead.

Figure 14: Latency vs achieved throughput on the 64-core system
with increasing random read (RR) and sequential read (SR) load.

of readahead drops from 24.5% of all cores to 16.5%, and
buffer scavenging drops from 15.0% of all cores to 6.0%. (2)
iobuffers can be scavenged from outside of the WAFL com-
ponent, which helps reduce overall WAFL wait times; none
of that 6.0% scavenging CPU cost is in the WAFL compo-
nent. Fig. 13 shows the results of this approach, including
a 19% increase in peak throughput (7.2GiB/s at 2.3ms vs.
6.0GiB/s at 3.0ms).

6.1.3 High-end Read Performance

Fig. 14 reports the results of the same random and sequential
read experiments on the high-end 64-core controller to study
TopSpin on controllers with more CPU cores. Compared to
the 20-core system, TopSpin benefits are similar for SR but
are somewhat lower for RR. This shows that TopSpin bene-
fits are greater for certain workloads when CPU resources are
more limited. The latency bump around 2GiB/s for both RR
graphs is due to the time-lag to activate the optimal number
of threads in the (NVMe) Protocol component on this high-
end controller; as mentioned earlier, ONTAP dynamically
scales this number. The per-component latency breakdown
(not shown) matches that of the 20-core controller.

Figure 15: Latency vs achieved throughput on a VM in AWS with
increasing random read (top) and sequential read (bottom) load.

6.2 Read Performance in Cloud Deployments

We next deployed a VM in the AWS public cloud contain-
ing 128 cores and 512GiB of DRAM, and used iSCSI clients
to send a load of 8KiB random reads and 64KiB sequen-
tial reads, using a 2:1 compressible dataset. We attached
io1 EBS [1] volumes to the VM over the network, exposed
as NVMe SSD drives, with an EC2 entitlement of 160K
ops/sec. We experimented with ONTAP 9.14.0, in which
TopSpin was enabled for cloud VMs. Fig. 15 presents the
measurements of server-side latencies and throughput. For
random read, an abundance of CPU cores reduces inter-
nal queuing times and the benefits of TopSpin, and latency
improvements range between 30us and 65us. In contrast,
sequential read leverages readahead to hide the drive ac-
cess times, and TopSpin nearly halves latencies at all loads.
TopSpin-enabled cloud deployments will be available using
Amazon FSx for NetApp ONTAP (FSxN [2]) later in 2024.

6.3 Mixed Read and Write Workloads

To measure the impacts of TopSpin on mixed read-write
workloads and mixed random-sequential workloads, we ran
the internal SPC-1 macrobenchmark on the 64-core con-
troller, with clients connected to ONTAP using FCP. SPC-1
issues 40% reads and 60% writes, of which each are 40%
sequential and 60% random [17]. These results are shown in
Fig. 16, where Write Baseline and Write TopSpin are the ob-
served write latency without and with TopSpin read enabled,
respectively. In this case, overall throughput is not changed
through the use of TopSpin, but the same peak throughput is
achieved with 4.9% lower CPU usage. Read latency at peak
throughput dropped 67%, from 442us to 147us. Further, with
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Figure 16: Read and write latencies vs achieved throughput on the
64-core system with increasing SPC-1 load.

Figure 17: Latency vs achieved throughput on the 64-core system
with increasing 8KiB random read load to a single volume.

the majority of reads now bypassing the WAFL component,
write latency dropped from 637us down to 517us because
wait time for WAFL write messages dropped from 350us to
189us. In this test, 82.4% of reads hit in the cache, 9.2%
successfully read from storage, and 8.5% failed through to
WAFL due to missing L1s or dirty L0s.

We next evaluated load to an Oracle database. Clients con-
nected over FCP to a 2x18-core controller with 512GiB of
DRAM. We compared ONTAP 9.2 to ONTAP 9.3, the first
release with TopSpin. Load was generated to an Oracle 12c
database using SLOB2 [9], comprising 75% SELECT and
25% UPDATE SQL commands. Peak throughput from the
storage server increased from 345K I/Os per second to 400K
I/Os per second. As explained earlier, WAFL is designed to
complete writes quickly, so UPDATEs do not impact user
sessions much. However, storage read latencies directly im-
pact SELECTs, which dropped from 1.13ms to 0.95ms as
reported by the database server.

6.4 Additional Benefits to Bypassing WAFL
Beyond the benefits already discussed, TopSpin also pro-
vides an effective way to work around a long-standing bottle-
neck in WAFL parallelism. The Waffinity model translates
the WAFL file system into a static hierarchy of data parti-
tions [12], with a single active thread per partition. How-

ever, the fixed number of partitions at each level of the hier-
archy cannot guarantee optimal performance across all work-
loads. Although rarely encountered, Waffinity-unfriendly
workloads are limited by the data partitioning to using a sub-
set of the available cores. Some examples: the entire system
load is to a single volume, all load is to a single LUN or
file, or sequential read streams to a single LUN or file where
consecutive I/Os move lockstep one partition at a time. Dy-
namically changing the number of data partitions based on
observing the current workload is feasible, but has signifi-
cant technical challenges. By avoiding the WAFL message,
TopSpin parallelism for such a workload is limited only by
the number of Protocol component threads. To evaluate one
such case, we issued an 8KiB random read load from NVMe-
oF clients directed to a single volume on the 2x32-core con-
troller. Fig. 17 shows the results. Waffinity has only 9
client-facing data partitions per volume for WAFL read mes-
sages, so the baseline system saturates early once WAFL has
utilized 9 cores. With TopSpin enabled, ONTAP activates
more Protocol threads to use up to 31.5 cores for process-
ing read operations. Combined with lower processing costs
and fewer queuing delays, the increased parallelism yields
226.7% higher peak throughput, and even higher gains un-
der 0.4ms. While this is an extreme case, TopSpin improves
many similar scenarios with limited WAFL parallelism.

This section provides further evidence of the value of by-
passing layers in ONTAP. It also encourages the continued
adoption of TopSpin in other code paths. TopSpin has al-
lowed us to incrementally achieve device-proportional over-
heads without requiring clean-sheet designs.

7 Lessons Learned

Lesson 1: Bypassing layers for the error-free data path is
an effective and safe way to eliminate software overhead in
a modular system. This approach retains useful component
divisions and fails through to the component itself for special
cases (only the error-free path needs to be optimized). Fail
through correctness requires that such cases disregard any
changes to message and system state caused by the partial
Fastpath execution. Each successful optimization fueled the
next project, and continues to do so. The optimization of
other file system operations and protocols using TopSpin are
in various stages of development and the design presented
for reads has provided a strong foundation for these.
Lesson 2: Incremental optimization for SSD was the right
approach for ONTAP. Before the Fastpath work, it was
widely assumed that ONTAP would not be able to achieve
device-proportional software overhead. NetApp thus de-
veloped and productized the alpha version of a clean-
sheet design SSD-optimized storage system called FlashRay.
FlashRay was discontinued for two primary reasons: (a) the
roadmap to achieve feature-parity with ONTAP was multiple
years and (b) the success of the Fastpaths demonstrated that

188    22nd USENIX Conference on File and Storage Technologies USENIX Association



ONTAP could be optimized to achieve SSD-proportional la-
tencies. Our incremental approach enabled NetApp to pro-
ductize all-SSD ONTAP systems that were competitive on
price and performance, while preserving legacy features.
Critically, the WAFL file system architecture was already
well-suited for SSD properties. In our experience, building a
fast I/O path was significantly easier than building an entirely
new file system with a rich feature set.

These lessons are applicable to other legacy systems and
can influence designs of storage systems for new media. As
new and faster media become available, future systems will
need to go further in lowering software overhead. The re-
maining non-error message hops will need to be eliminated,
such as special cases in TopSpin and even for device access.
Subsequently, all I/O code paths will need to be further ana-
lyzed (such as for cache line misses) and optimized.

8 Related Work

I/O path optimization for low-latency SSD drives is an area
of substantial study, notably bringing software overhead in
proportion with device latencies. Shin, et al. [57] eliminate
interrupt bottom halves and queue running contexts in the
I/O completion path. BarrierFS [65] reduces software over-
head by replacing expensive storage device I/O order guar-
antee approaches. ReFlex [35] builds a highly-optimized,
run-to-completion execution model for remote NVMe Flash
storage on top of the IX dataplane OS [4]. With only 21us
software overhead, ReFlex is fast.

Kernel bypass is another popular approach. NVMeDi-
rect [33] allows user-space applications direct access to the
I/O device. Demikernel [69] is a datapath OS that uses
kernel bypass devices and an optimized core scheduler for
microsecond-scale latencies, even while retaining critical OS
functionality. XRP [71] allows the user to embed application
logic within the device driver’s interrupt handler using eBPF.
These hooks include file system state that can traverse on-
disk structures and initiate new I/Os without returning con-
trol back to the application. These approaches are largely
orthogonal to our work because the components of ONTAP
discussed in this paper all run inside the kernel.

Techniques to reduce software overheads for low-latency
I/O devices include RAID optimizations [63], CPU-scalable
drive access [45], transparent zero-copy [59], and overlap-
ping processing with device access [40]. i10 [21] provides
a CPU-efficient RDMA remote storage stack, which mini-
mizes the number of cores required to saturate both network
and storage devices. SpanFS [24] partitions the file system
into independent micro-services by file and directory to in-
crease parallelism of the storage software, which is some-
what similar to Waffinity. Blk-switch [22] treats the storage
stack like a network switch, and adapts networking optimiza-
tions to minimize software overhead and maximize drive
throughput. Many systems optimize for predictable latency

from SSD drives [5, 20, 62, 70, 34, 31, 61, 43, 56, 58, 22, 35],
some using machine learning [18]. Fast core scheduling can
provide QoS at microsecond granularity to latency-sensitive
applications [49, 16].

Previous work analyzed low-latency drive perfor-
mance [36] and its impact on the Linux storage stack [53].
Oh, et al. [48] optimize Ceph to adapt from HDDs to SSDs.
I/O schedulers have been optimized [68] for low-latency
devices and even evaluated as software overhead [64]. Per-
formance requirements of Key-Value stores have inspired
optimizations for these drives, including optimized CPU
usage [41, 37, 42] and CPU bypass [46]. Lastly, persistent
memory technologies place even more emphasis on low
processing costs [6, 66, 39, 23], kernel bypass [8, 7], and
indexing overheads [39, 23, 47, 44].

Our work was done on a 30+ year old legacy system with-
out compromising the dozens of enterprise quality features
that are critical to our customers. The interactions of our im-
provements with these features created additional challenges
in our designs and implementations. We achieved signifi-
cant performance gains while retaining the existing behavior
of millions of lines of WAFL and ONTAP code outside the
read path, despite potentially operating on the same data.

9 Conclusion

Although several aspects of the decades-old ONTAP archi-
tecture were well-suited for building an all-SSD controller,
the software delays (proportional to HDD latencies) in its
legacy I/O path had made that impractical. In this paper,
we presented the multi-year journey of incremental improve-
ments to the read path that have reigned in software overhead
and made the all-SSD ONTAP controller a success. In fu-
ture work, we plan to present data reduction technologies
that were also crucial to this productization, as well as exten-
sions of TopSpin to other operations, such as writes.
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Abstract
A few studies reported that fragmentation still adversely

affects the performance of flash solid-state disks (SSDs) par-
ticularly through request splitting. This research investigates
the fragmentation-induced performance degradation across
three levels: kernel I/O path, host-storage interface, and flash
memory accesses in SSDs. Our analysis reveals that, contrary
to assertions in existing literature, the primary cause of the
degraded performance is not due to request splitting but stems
from a significant increase in die-level collisions. In SSDs,
when other writes come between writes of neighboring file
blocks, the file blocks are not placed on consecutive dies, re-
sulting in random die allocation. This randomness escalates
the chances of die-level collisions, causing deteriorated read
performance later. We also reveal that this may happen when
a file is overwritten. To counteract this, we propose an NVMe
command extension combined with a page-to-die allocation
algorithm designed to ensure that contiguous blocks always
land on successive dies, even in the face of file fragmentation
or overwrites. Evaluations with commercial SSDs and an SSD
emulator indicate that our approach effectively curtails the
read performance drop arising from both fragmentation and
overwrites, all without the need for defragmentation. Repre-
sentatively, when a 162 MB SQLite database was fragmented
into 10,011 pieces, our approach limited the performance drop
to 3.5%, while the conventional system experienced a 40%
decline.

1 Introduction

File system fragmentation, in which discontinuities exist be-
tween data blocks belonging to a single file, transforms se-
quential access to the file into a series of random accesses
to scattered chunks at the storage level [35, 37]. In the era
of hard disks (HDDs), which suffer from considerably long
seek delays for random accesses, this resulted in additional
seek operations and ended up with significantly impaired read
performance [7].

To prevent performance degradation caused by fragmen-
tation, file systems utilize various techniques [35], such as
delayed allocation [23] and preallocation of data blocks [2],
to maintain continuity among data blocks. Nonetheless, it
is inherently challenging to avoid situations where the file
system cannot locate free data blocks immediately adjacent to
a file’s data blocks, either due to the simultaneous writing of
multiple files or appending to a file after a significant amount
of time has passed since its last write.

In contrast to HDDs, flash-based solid-state disks (SSDs)
eliminate mechanical movements, significantly reducing the
performance gap between random and sequential accesses.
However, recent studies have revealed that SSDs also expe-
rience a two to five times slower read performance when
accessing fragmented files [4], prompting the development
of several defragmentation schemes to address this perfor-
mance decline [13, 31, 42]. However, these studies only su-
perficially observed the performance degradation based on
the fragmentation patterns and hypothesized that its primary
cause is request splitting in the kernel I/O path due to frag-
mentation [13, 31].

In this paper, through a series of experiments, we reveal that
the previous claim suggesting file fragmentation adversely
impacts sequential read performance also in flash SSDs due
to request splitting is based on inaccurate experiment settings
and analyses. Moreover, we demonstrate that during file frag-
mentation, the page-to-die mappings within the SSD deviate
from the ideal state, leading to a substantially increased num-
ber of die-level collisions [18] compared to the cases without
file fragmentation. This increase in die-level collisions, which
leads to the degradation of SSD’s internal parallelism, is the
primary contributing factor to the observed deterioration in
read performance in an SSD with file fragmentation.

An SSD’s firmware allocates its flash memory pages in a
round-robin manner across the flash memory dies based on the
order in which they are written. Consequently, in situations
where file fragmentation occurs, the pages storing contigu-
ous file blocks cannot be placed on contiguous dies but are
instead allocated to arbitrary dies. To prevent such improper
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page-to-die mapping patterns arising from file fragmentation,
we propose a simple extension to the NVMe protocol that
provides hints for page-to-die mapping in conjunction with a
write command. With these hints, the page for an appending
write is mapped to the die following the die where the previ-
ous file block’s page was assigned to. In addition, the page
for an overwrite operation to an existing file block, which
also disrupts the page-to-die mapping pattern, is mapped to
the same die where the original page was located. Through
these simple hints and mapping rules, it is possible to avoid
performance degradation in read operations even in situations
with file fragmentation or overwrites to existing files. We eval-
uate the proposed approach using two configurations: first,
through emulation with commercial SSDs, and second, by
implementing it in the Linux kernel and NVMeVirt [22], an
SSD emulator.

To the best of our knowledge, this research is the first to
experimentally demonstrate that the primary cause of file
fragmentation-induced performance degradation in an SSD
is the deterioration of its internal parallelism. Moreover, we
show that this performance degradation is not an inevitable
consequence of fragmentation and can be easily avoided while
keeping the fragmentation state unchanged.

The rest of this paper is organized as follows. After intro-
ducing the background and related work on the file system
fragmentation in Section 2, Section 3 analyzes its impact on
performance when using flash SSDs. Section 4 proposes our
approach to avoid performance degradation from file fragmen-
tation and overwrite operations, and Section 5 evaluates the
proposed approach. Finally, Section 6 concludes the research.

2 Background and Motivation

2.1 Old Wisdom on File Fragmentation
In the HDD era, the primary and direct cause of performance
degradation from file fragmentation was the seek time be-
tween dispersed sectors of the file [7]. File fragmentation
has a more pronounced negative impact on read operations,
which must wait for the completion, compared to writes that
can be buffered by the storage. The long seek time of HDDs
overshadowed other factors that negatively impacted perfor-
mance due to file fragmentation. However, file fragmentation
adversely affects performance at three levels: kernel I/O path,
storage device interface, and storage media access.

As shown in Fig. 1, to the file system, a file is an array
of file blocks, which are logically contiguous. However, the
file system data blocks where these file blocks are actually
stored may not be contiguous. Naturally, file systems strive to
store contiguous file’s logical blocks in contiguous file system
data blocks. However, it is difficult to achieve a completely
fragmentation-free data block allocation, especially when a
file grows incrementally over time, as other files may be writ-
ten behind the last written data block. Therefore, the data

blocks of a file can be allocated in separate locations.

Kernel Contiguous File Fragmented File

Extents

bio

request

Storage Blocks
(Pages in SSD)

File System
Data Blocks

Storage Device

① ② ③①

100 101 102 103

1100 1101 1102 1103

200 201 400 500… …

1200 1201 1400 1500… …

File Blocks 0 1 2 3 0 1 2 3

Begin: 200, Len: 2 Begin: 400, Len: 1 Begin: 500, Len: 1Begin: 100, Len: 4

Figure 1: A sequential access to a contiguous file is translated
to a single device command while that to a fragmented file
ends up with multiple requests.

Only a single command is required for the host to instruct
the storage device to perform read or write operations on
contiguous storage space. Thus, when a sequential read occurs
for a file, the Linux kernel reads the data block mapping in
the file’s inode, and for each contiguous data block region, it
creates a bio (block I/O) data structure. This data structure is
used to create the corresponding request data structure to be
passed to the device driver, which then issues the command
for the request to the device. Through this process, a single
sequential file access may be split into multiple bios and
corresponding requests to the storage device, depending on
the degree of file fragmentation.

This request splitting is known to increase I/O execution
time, as it increases the number of data structure creations
and calls to underlying functions, including the device driver
code [13, 16, 17, 31, 32]. Naturally, the increased number of
device commands leads to time delays at the SATA [34] or
NVMe [9] interface level. The increased number of storage
device commands leads to an increased time for the storage
device’s firmware to process them. Specifically, the frequency
of fetching, decoding, translating commands into storage me-
dia operations, and queuing media access operations increases.
Therefore, file fragmentation also delays the processing time
of the storage device controller.

Finally, file fragmentation extends the time to access stor-
age media in the storage device. As mentioned earlier, in the
case of HDDs, seek time is required for the disk head to move
to the track where the requested sector is located, and a disk
rotation delay occurs to locate it on the track [7]. However,
unlike performance degradation caused by the kernel I/O path
and storage device interface, SSDs are expected to not expe-
rience an increase in the storage medium access time due to
fragmentation, as SSDs do not have seek time and rotational
delay [10, 12, 39, 41].

To address the fragmentation-induced performance decline,
two types of studies have been conducted: one aims to prevent
fragmentation from occurring, and the other aims to recover
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file access performance by transforming fragmented files into
contiguous ones.

The delayed allocation technique used in the ext4 file sys-
tem performs data block allocation not at the write system
call handling but at the time of page flush [23]. In cases where
small write operations are interleaved with writes to other
files, delayed allocation increases the likelihood that write
operations for a file are allocated to contiguous data blocks.

In addition, ext4 reserves a predefined window of free data
blocks for each file’s inode. These reserved free blocks will be
actually allocated to the file for its successive append writes.
This significantly reduces the occurrences of fragmentation
especially when multiple files in the same directory are simul-
taneously written [2, 35].

While these techniques can reduce the frequency of file
fragmentation, research has shown that it is an inevitable
result of file system aging [5, 37]. Therefore, various defrag-
mentation tools have been proposed to rewrite scattered file
data blocks to contiguous ones to recover the I/O perfor-
mance [8, 25, 27, 30, 35].

Sato proposed an online defragmentation tool for the Linux
ext4 file system [35]. The proposed scheme allocates contigu-
ous free blocks to a temporary inode, copies the fragmented
file data to the temporary inode, deletes the original file, and
renames the temporary inode to the original’s.

Various techniques have been proposed to mitigate the
overhead caused by defragmentation, as copying all frag-
mented files can take a significant amount of time. For ex-
ample, F2FS’s defragmentation tool, defrag.f2fs, allows
users to selectively migrate only the user-selected area by
manually inputting the starting block address, length, and tar-
get location as parameters [30]. XFS’s xfs_fsr sorts files
by their number of extents and groups the top 10% of files
into a unit called a pass, performing defragmentation for each
pass [27]. Btrfs’s built-in defragmentation tool defragments
only extents smaller than the target extent size specified as
a parameter [33]. However, ultimately, defragmentation con-
sumes a significant amount of time and energy as it induces a
large number of read and write operations on relatively slow
storage devices [13, 31].

2.2 File Fragmentation in SSD-Era
Most researchers and SSD manufacturers initially claimed
that SSD performance is not affected by file fragmentation,
and that defragmentation is unnecessary and may even be
harmful due to the write operations involved in the defrag-
mentation process, which can reduce the lifespan of the flash
memory [10, 12, 39, 41]. However, contrary to initial claims
that SSDs do not have fragmentation issues, some researchers
observed performance degradation due to file system aging
and resulting fragmentation.

SSDs offer significantly higher performance than a sin-
gle flash memory die (chip) because they operate multiple

flash dies in parallel [21]. Specifically, NVMe SSDs offer
65,535 command queues, each capable of queueing 65,536
commands. Even when fragmentation leads to smaller request
sizes that cannot fully utilize die-level parallelism, smaller
flash operations in the command queues can still be processed
out-of-order, allowing most dies to be fully utilized. This en-
ables SSDs to achieve performance close to their maximum
potential even when accessing small fragments. Consequently,
some researchers speculated that the kernel I/O path and inter-
face overhead due to request splitting have a greater impact
on fragmentation-induced performance degradation than flash
memory access time [13, 16, 17, 31, 32].

Conway et al. empirically observed performance degra-
dation in various workloads due to file system aging on
SSDs [4,5]. They discovered that file fragmentation frequently
occurs on SSDs as the file system ages. In scenarios where the
git pull commands are executed repeatedly, they observed
that read performance can be degraded by up to five times.
Geriatrix is a tool capable of effectively emulating file system
and storage aging [20]. Using Geriatrix, the authors demon-
strated a performance degradation of up to 78% due to file
system aging on SSDs. While both studies observed changes
in file system layout and performance degradation due to
file system aging in various circumstances, they did not con-
duct an in-depth analysis of the underlying causes for this
performance decline.

Park and Eom argued that the main cause of performance
degradation due to fragmentation on SSDs is request splitting,
and thus the distance between data blocks does not signifi-
cantly affect read performance, while the degree of fragmen-
tation does [31]. In a subsequent paper, they made a contra-
dictory claim, stating that the distance between fragmented
blocks also significantly affects performance on SSDs [32].
In addition, they proposed FragPicker, an efficient defragmen-
tation approach that carries out online migration of fragments
only that have been accessed [31].

Zhu et al. proposed a scheme that can simultaneously is-
sue parallel I/O requests for defragmentation in ext4, mini-
mizing defragmentation time and maximizing SSD internal
parallelism. This approach improved defragmentation time
by three times compared to the traditional e4defrag [42].

Regarding these conflicting claims, we clarify in Section 3
that this arises because previous studies’ experimental setups
fail to distinguish between performance degradation directly
caused by fragmentation and that indirectly caused by the
influence of fragmentation on SSD’s internal data placement.

2.3 Internals of Modern Flash SSDs

As previously mentioned, a modern flash SSD is equipped
with multiple flash dies that can operate in parallel. To maxi-
mize the bandwidth and throughput of an SSD, it is crucial
to maintain a high degree of die-level parallelism [3, 21].
Conversely, since a die can only process one request at a
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Figure 2: Data placement of three files in a flash SSD where
one is contiguous and the other two are fragmented.

time [14,40], if the pages to be read are stored on a single die,
the read requests for these pages must be serialized within
that die. This die-level read collision significantly degrades
read performance [18].

To prevent die-level collisions for read operations, the flash
translation layer (FTL) of an SSD’s firmware must perform
physical page allocation in a manner that distributes the phys-
ical pages storing contiguous logical pages across as many
dies as possible. For this purpose, the FTL of most modern
SSDs selects a die in a round-robin manner when allocat-
ing a flash page for processing an incoming page write re-
quest [3, 19]. Additionally, modern FTLs perform the valid
page copy within the die where the page resides during the
garbage collection (GC) process if the die has a sufficient
number of free pages [11]. This allows for the maintenance of
die parallelism. However, since GC occurs in parallel across
all dies, this strategy does not significantly impact the perfor-
mance of GC.

For example, in Fig. 2, File A is evenly distributed across
four dies since its four pages were written without interfer-
ence. Thus, a sequential read of File A will be performed
simultaneously on these four dies, resulting in a bandwidth of
up to four times the flash die performance. In contrast, assume
that the writes to File B and File C were interleaved. As the
die for storing a logical page is assigned in a round-robin
manner according to the order of writes performed within the
SSD, both the third and last pages of File B ended up being
allocated to Die 3. As a result, the time to read File B is twice
as long as that for reading an ideally-placed file of the same
size, such as File A.

File fragmentation occurs in most cases when multiple
files are simultaneously written [4, 31]. Therefore, when file
fragmentation occurs, the die allocation of flash pages asso-
ciated with a file might not be evenly distributed, leading to
the pages of a single file being consolidated on certain dies.
This phenomenon arises because the FTL allocates dies for
pages solely based on their incoming order. However, the
presence of file fragmentation does not inevitably result in
uneven page distribution over dies, just as a contiguous file
does not guarantee that its pages will always be evenly and
sequentially allocated on consecutive dies.

Through ext4’s preallocation, data blocks can be allocated
contiguously in the file system, even if writes from other files

Table 1: System configurations for experiments.

Processor Intel Xeon Gold 6138 2.0 GHz, 160-Core
Chipset Intel C621
Memory DDR4 2666 MHz, 32 GB x16

OS Ubuntu 20.04 Server (kernel v5.15.0)
Interface PCIe Gen 3 x4 and SATA 3.0

NVMe-A: Samsung 980 PRO 1 TB
NVMe-B: WD Black SN850 1 TB
NVMe-C: SK Hynix Platinum P41 1 TB
NVMe-D: Crucial P5 Plus 1 TB
SATA-A: Samsung 870 EVO 500 GB

Storage

SATA-B: WD Blue SA510 500 GB

occur in between. However, since the die mapping of flash
pages takes place at the actual moment of their writing inside
the SSD, even files that are contiguous at the file system level
can exhibit uneven page distribution in the SSD. Conversely,
if the data blocks of a fragmented file are written at the appro-
priate timing, it is possible for the file’s pages to be distributed
evenly across all dies.

In addition to the fragmentation cases, irregular die allo-
cation may occur in cases of file overwrites. Assume a file
stored in contiguous file system blocks has its pages sequen-
tially allocated to dies on the SSD. In this ideal situation, if
an overwrite is performed on a middle block of the file, the
SSD must allocate a new page for that block and invalidate
the page currently mapped to the block due to the nature of
flash memory, which does not allow in-place updates. At this
point, the new page will be allocated from the die next to the
one that last allocated a page, according to the round-robin
policy. As a result, there is a high likelihood that the new page
will not be located on the same die as the original page, lead-
ing to a considerable decline in performance due to die-level
collisions when conducting a sequential read on the file.

3 Analysis of File Fragmentation

This section explores the cause behind fragmentation-induced
performance degradation through a series of experiments. The
configuration of the experimental system for our analysis is
described in Table 1. We used the ext4 file system [28]. To
minimize the influence of the kernel’s page cache and extent
cache on the experimental results, we performed a cache drop
before each experiment run. In addition, to adjust the block
I/O request queue depth for our experiments, we used the
kernel’s nr_requests parameter. All experimental results
are an average of 10 repetitions.

To begin, we examined the performance drop in ext4 on
NVMe SSDs based on the degree of fragmentation (DoF),
which is the ratio of the actual number of extents to the ideal
number of extents [17]. For this, we created a set of files that
have various DoF. Each fragmented file, with a size of 8 MB,
is created by interleaving the writes to the target file and that
to a dummy file as many times as the desired DoF. The size of
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Figure 3: Time taken for reading an 8 MB file stored on
NVMe SSDs while varying its DoF.

the write to the dummy file between the writes to the target file
was determined so that the offset between the two fragments
of the target file becomes 8 MB. For example, if the target
DoF is 4, four fragments or extents must compose the 8 MB
target file. We wrote the first quarter of the target file first and
then wrote 6 MB for the dummy file. By repeating this four
times, we can obtain an 8MB file with a DoF of 4.

We varied the DoF in our analysis from 1, representing
contiguous files, to 256, unlike previous studies that went
beyond this range. A fragment size when the DoF is 256 in
our analysis is 32 KB. Due to the aforementioned delayed
allocation and block reservation techniques, which are used
by ext4 to suppress fragmentation, it is highly unlikely for a
fragment to have a smaller size than that.

In order to create a file exactly with the desired DoF us-
ing this method, it is necessary to disable delayed allocation
and block reservation. To disable delayed allocation, we used
the direct mode when writing files and provided the node-
lalloc mount option. Block reservation was neutralized by
setting both the reserved_clusters runtime parameter and
the percentage of reserved block parameter, which is mkfs’s,
to 0. We also disabled the per-inode preallocation feature.
Every fragmented file was verified whether it has the desired
DoF by using the filefrag tool [26]. A single extent in ext4
can represent 215 contiguous blocks, or 128 MB, with a 4
KB file system block size [28]. Since the fragments were
all smaller than 128 MB, the desired DoF value precisely
matched the number of extents constituting the file.

As shown in Fig. 3, the read performance of both NVMe
SSDs decreased from the point where the DoF exceeded 64,
regardless of the request queue depth. Since the default max-
imum request size for the Linux kernel is 1 MB, no perfor-
mance difference was observed when the fragment size ex-
ceeded 1 MB, corresponding to situations where the DoF is 8
or lower.

Notably, both SSDs showed a more drastic performance
change when the queue depth was set to 1. When the I/O
queue depth was set to 1023, which is the Linux default value
for an NVMe SSD, the execution time was shorter, and the
performance degradation due to fragmentation was less pro-
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Figure 4: Time for sequentially reading an 8 MB file stored
on ramdisk depending on its DoF.

nounced compared to when the queue depth was set to 1.
However, even at a queue depth of 1023, the execution time
increased significantly with the increase in DoF. NVMe-A
exhibited 2.7 times and 4.4 times longer execution times at
DoF 128 and 256, respectively, compared to DoF 1. Simi-
larly, NVMe-B demonstrated 1.3 times and 1.9 times longer
execution times at DoF 128 and 256, respectively.

In this experiment, we have confirmed that file fragmen-
tation indeed causes performance degradation in SSDs. To
further elucidate the specific causes of this performance degra-
dation, subsequent experiments were conducted.

3.1 Impact Caused by Request Splitting
As previously mentioned, file fragmentation results in request
splitting, where a single I/O operation is translated into mul-
tiple device commands. The impact of increased processing
time at the host side due to request splitting on performance
degradation will be more evident when the storage device’s
processing time is shorter. Therefore, we measured the delay
occurring in the kernel I/O path due to request splitting by
using a ramdisk as the storage device, which has an extremely
short host-to-storage interface and storage media access times.

Fig. 4 shows the sequential read performance of files stored
on the ramdisk according to their DoF. Since the ramdisk has
extremely fast access speed and there is negligible difference
between random and sequential access times, the performance
changes observed in Fig. 4 can be attributed primarily to the
difference in time consumed by the kernel I/O path rather
than the storage media. Our experiments revealed that as the
DoF increased with the request queue depth set to 1, read
performance decreased, resulting in a 1.5-fold increase in
read time when the DoF was 256.

As stated, one request to the storage device is generated
for each contiguous storage address range. Consequently, the
numbers of iomap structures, which are required for direct
I/O, bio structures, and request structures increased with
the DoF. Additionally, the number of function invocations
for their creation also rose as the DoF grew. When the queue
depth was set to 1, these procedures were performed syn-
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Figure 6: Reduction of read time due to the overlap of storage
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chronously. As a result, the processing time for the kernel I/O
path increased with the rise of DoF, and this increase became
more pronounced when the DoF exceeded 8.

To identify the cause of these delays, we measured the time
taken for the __x64_sys_read function, which processes the
read system call, to create iomap, bio, and request struc-
tures separately, as the DoF changes. As seen in Fig. 5, the
iomap creation time slightly increased in proportion to the
DoF, as one iomap is created per extent. The change in time
spent on bio creation was smaller compared to that of iomap
creation. This is because most of the bio creation time was
spent allocating buffer pages, and the number of buffer pages
to be allocated remains constant at 2048, regardless of the
file’s DoF. During the request creation process, if there are
consecutive bio addresses, they will be merged into a sin-
gle request. However, the fragmented file prevented it from
being merged. Thus, the time spent on creating requests
increased proportionally with the increase in the DoF.

Note that even under the extreme case where the DoF was
256, the kernel I/O path only took approximately 9.7 ms. In
addition, when the I/O queue allows queueing of multiple
outstanding commands, this I/O path delay can be mostly
overlapped by the consecutive read operations to the following
fragments. As shown in Fig. 4, if the request I/O queue depth
was set to 128, which is the default value for a ramdisk, the
file’s DoF barely affected the time for the read operation.

We closely observed the kernel I/O path delay, which can
be masked by I/O queueing. Fig. 6 shows the time spent
on the request data structure creation and ramdisk access
measured with blktrace [24] when reading a file with a

DoF of 128 and a queue depth of 128. The kernel performs
a plug process to merge requests for contiguous blocks,
reducing the number of commands issued to the storage. The
plugged requests are unplugged and sent to the device driver
if the number of requests exceeds the predefined maximum
pluggable requests, or if the size of an individual request
surpasses the predefined plug flush size. The default values of
these parameters are 16 requests and 128 KB, respectively.

Thus, during the experiment, 16 requests were plugged
and then separately issued to the device driver since they
all accessed separate blocks. As a result, the time spent cre-
ating the following 16 requests in the kernel I/O path is
mostly masked by the time it takes the ramdisk to process
the previous 16 requests. Additionally, by issuing multiple
requests simultaneously, the processing time of the ramdisk
is significantly reduced due to the operation overlap.

As a result of these experiments, we found that the delay
occurring in the kernel I/O path due to request splitting is
at the level of a few milliseconds, even in the extreme cases.
Furthermore, we confirmed that its impact on actual execution
time is negligible due to I/O operation queueing.

Next, we analyzed the execution time delay caused by re-
quest splitting in both the host-to-storage interface and the
SSD inside. Since the implementation within the SSD is
a black box, and it is impossible to accurately distinguish
between the time consumed by the interface and the flash
memory access time, we analyzed their combined execution
time. For this analysis, we used two types of SATA SSDs and
two types of NVMe SSDs, as shown in Table 1.

For this analysis, we performed a task to read 8 MB of
contiguous data from the storage device by accessing the raw
device file of the SSD to exclude the influence of the file
system and kernel I/O path. In this process, we measured
performance while increasing the unit read size from 32 KB
to 8192 KB, doubling it each time. To minimize the impact of
the SSD’s state on the results, such as the ratio of invalid pages
and the number of free blocks, we used the trim command
for the entire area after each experiment to restore the SSD to
the fresh-out-of-the-box (FOB) state. Then, we performed a
sequential write on a 1 GB area to be read.

Fig. 7 shows the time taken to read 8 MB of data from
each of the four SSDs, depending on the unit size of the read
operation. Similar to Fig. 4, when the device’s queue depth is
set to 1, the elapsed time for reading 8 MB of data increases
as the size of the read unit decreases. According to the re-
gression analysis of the results, for NVMe SSDs, the elapsed
time increased by 85 µs for each additional request, while for
SATA SSDs, the time increased by 136 µs per request. These
results encompass the impact of request splitting on the host-
to-device interface, SSD firmware, and flash memory access
time. Among these factors, the flash memory access time is
expected to decrease as the unit read operation size increases
influenced by the aforementioned internal parallelism.

However, the read time delay caused by request splitting
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Figure 7: Time for reading 8 MB of data through raw device
I/O operations with varying unit sizes.

disappeared when multiple outstanding I/O operations were
queued, similar to the effect in the kernel I/O path. The na-
tive command queue (NCQ) of the SATA standard can queue
up to 32 outstanding commands, while the NVMe standard
also supports 65,536 queues with a queue depth of 65,535.
Therefore, when request splitting occurs, the SSD can simul-
taneously place the split requests into the command queue
and process them out of order. This reduces the number of
interactions at the host-to-device interface and can further in-
crease the die-level parallelism of the SSD. The dashed lines
in Fig. 7 show the results when the command queue depth
was set to 32. As expected, despite reducing the read unit size
and, consequently, increasing the number of read commands
in all SSDs, the difference in the total execution time was
observed to be within a few milliseconds.

Based on our analyses, we confirmed that the request split-
ting overhead in the kernel I/O path is negligible compared
to the increased operation time due to fragmentation. Fur-
thermore, its impact is largely mitigated when issuing I/O
operations asynchronously through command queueing. Ad-
ditionally, we verified that even when request splitting occurs,
the increase in processing time both at the host-to-device
interface and within the storage device itself is extremely min-
imal, again thanks to command queueing, which most modern
SSDs support.

3.2 Page Misalignment from Fragmentation
As explained with Fig. 2, when a file is written sequentially
and there are no interrupting writes between the sequential
write operations, the SSD evenly distributes the pages of the
file across all dies in a round-robin manner. However, in cases
of file fragmentation, such an ideal page allocation becomes
impossible because writes to other files have occurred in
between the writes to the fragmented file.

In cases of fragmentation, the page after the discontinuity
point will be placed on a random die, regardless of the die

where its semantically preceding page is located. In modern
SSDs, because they have several tens of dies, the likelihood
of a page containing a fragmented block being placed on a
die immediately adjacent to the die where the previous file
block’s page is located is significantly low. As a result, when
performing a sequential read access on a fragmented file, it
causes significantly more die-level collisions compared to
an ideal page placement scenario. The experiments in Fig. 3
created fragmented files and read them in such a way. Most
previous research also fragmented files in the similar way. As
a result, the significant performance degradation observed in
fragmented file accesses in the experiments was very likely
due to die-level collisions.

The read patterns observed at the die-level in these exper-
iments can be emulated in actual SSDs by reading consec-
utively written file blocks at specific intervals. For instance,
consider an SSD that assigns 4 KB pages to its dies in a round-
robin manner and suppose this SSD has 16 dies. If we were
to write 1 MB of data, that is, 256 pages consecutively, and
then read every second page, resulting in reading 128 pages,
this situation would produce a die-level read pattern similar to
our experimental setup for sequentially accessing a 512 KB
file with a DoF of 128. In this situation, compared to reading
128 consecutive pages without any interval, read operations
would only take place on a half of the die set. This would
inevitably lead to double the die-level collisions, making the
time to read the 128 pages nearly twice as long. For the same
reasons, reading every fourth page, amounting to 64 pages in
total, would result in a read duration nearly four times longer
than reading 64 consecutive pages.

To examine how read performance changes in such patterns,
we conducted the following experiments. After initializing an
SSD to its FOB state, we sequentially wrote 1 GB data to the
area designated for reading. Subsequently, we configured fio
to sequentially read 4 KB chunks at consistent intervals. For
instance, if the interval of the read starting point were set to 16
KB, it would be set up to read 4 KB, skip a gap of 12 KB, and
then read another 4 KB. To accomplish this, we modified the
blockalign parameter of fio, incrementing it in 4 KB steps,
ranging from a minimum of 4 KB to a maximum of 1024 KB
in multiples. In these experiments, for NVMe SSDs, we set
the iodepth parameter of fio to 512, and for SATA SSDs, we
set it to the maximum supported value of 32. Furthermore, to
exclude the effects of the file system and kernel I/O path, we
configured fio to perform direct access on the raw device file.

Fig. 8a displays the throughput measurements for two
NVMe SSDs when varying the read interval. When inter-
nal parallelism was adequately utilized, the SSDs achieved
throughputs of 2600 MB/s and 3020 MB/s, respectively. How-
ever, as the interval between read operations expanded, the
observed sustained throughput decreased to 166 MB/s and
480 MB/s for each SSD, respectively.

In both NVMe SSDs, the first significant performance drop
was observed when the interval reached 64 KB. This indicates
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Figure 8: Throughput while varying the interval between starting points of consecutive read operations.

that the two NVMe SSDs allocate pages of a 32 KB size to a
die before proceeding with allocation on the subsequent die,
even though the actual number of pages allocated to a die at
once might vary based on the device’s page size. We refer
to the size of the pages allocated to a single die at a given
instance as the die allocation granularity. Both NVMe SSDs
use a 16 KB page size [15,36], and a die allocation granularity
of 32 KB means that they allocate two pages per die. This
suggests that both SSDs store two pages per die using the
two-plane program method [40].

The alignment size exhibited a significant performance
drop starting at the 64 KB interval, and as it doubled each time,
the decrease in performance became even more noticeable.
This was likely due to the number of dies used for reads being
halved every time the interval size doubled, as previously
mentioned. In fact, for both SSDs, when the alignment size
doubled from 64 KB to 1024 KB, the throughput decreased
by 41 to 49% each time.

The lowest performance for both products was observed
when the alignment size was 1024 KB for NVMe-A, dropping
to approximately 6.5% of its typical value, and at 256 KB for
NVMe-B, decreasing to 18.5%. These observations suggest
that the stripe size, which represents the volume of data writ-
ten across all dies before the allocation process restarts with
the first die, differs among SSDs. Our experiments infer that
the stripe size for NVMe-A is 1 MB, while for NVMe-B, it
stands at 256 KB. For alignment sizes that exceed the stripe
size, performance will mirror that of an alignment size equal
to (alignment size % stripe size).

This phenomenon was also observed in the SATA SSDs,
as illustrated in Fig. 8b. While both products exhibited a
throughput of 400 MB/s when all pages were accessible, the
throughput decreased with the variation in the alignment size
of accessible pages: dropping to 62 MB/s for SATA-A and 82
MB/s for SATA-B.

The performance degradation points of SATA SSDs
showed a significant difference compared to those of NVMe
SSDs, with SATA-A exhibiting its first performance drop at
an alignment size of 8 KB. This indicates that its die alloca-
tion granularity is 4 KB. The most significant performance
drop occurred at 32 KB, pointing to a stripe size of 32 KB.
For SATA-B, the first performance drop was observed when

the interval reached 32 KB, and, at 256 KB, it showed only
20.7% of its normal throughput. Therefore, SATA-B has a
die allocation granularity of 16 KB, and the stripe size is
estimated to be 256 KB.

When accounting for file fragmentation, the spacing be-
tween two accessed blocks typically aligns with multiples of
the file block size, which is usually 4 or 8 KB. As evidenced in
SATA SSDs, there’s a marked performance dip when reading
with intervals that are multiples of 4 KB. Consequently, the
uptick in die-level collisions due to file fragmentation and the
subsequent performance reduction are unavoidable. While
NVMe SSDs generally have larger die allocation granularity
and stripe sizes compared to SATA SSDs, leading to less pro-
nounced performance drops with small read intervals, they are
not exempt from the heightened die-level collisions brought
about by the gap-reading patterns.

However, not all SSDs exhibited performance degradation
at consistent intervals, as observed with the previous four
products. Fig. 8c shows the performance drop in relation
to the read offset intervals for NVMe-C and NVMe-D, re-
spectively. Unlike the previous SSDs, the intervals at which
these two products showed a decline were not necessarily
powers of two. For NVMe-C, performance dips were noted
at 64 KB and 128 KB intervals while the subsequent drops
were found at multiples of 584 KB. In the case of NVMe-
D, the drop was observed at intervals that are multiples of
604 KB. The die allocation policy of an SSD varies across
manufacturers. However, the experimental results confirmed
that non-sequential page access eventually leads to significant
performance reduction due to high die-level collisions.

Unlike I/O path overhead or interface overhead that can
be hidden by increasing the I/O queue depth, the read perfor-
mance degradation due to die-level collisions was shown to
persist even when the I/O queue depth was large. Therefore,
for SATA SSDs with Linux kernel’s default queue depth of
64 and NVMe SSDs with a queue depth of 1023, we can
conclude that the main cause of performance loss due to file
fragmentation is not the delay in the kernel I/O path or in-
terface overhead but rather die-level collisions inside SSDs.
In other words, while file fragmentation in HDDs causes ad-
ditional seek time and rotational delay, in SSDs, it leads to
additional die-level collisions.
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4 Our Approach

As previously analyzed, performance degradation of read op-
erations to fragmented files mainly results from an increase in
die-level collisions. However, the irregular page-to-die map-
ping observed in fragmented files is merely a consequence
derived from the situations that cause fragmentation, rather
than being a necessary condition for fragmentation to occur.

For example, let’s assume that the three blocks of File B
are written as in Fig. 9a and File C and A write a single block,
respectively. From this initial state, if the application appends
B3 to File B, B3 will be stored on the same die as B1, as shown
in Fig. 9c. Consequently, a sequential read of File B will cause
a die-level collision at Die 1. However, if File A overwrites not
only A1 but also A2 and A3 in the situation shown in Fig. 9a,
the position of B3 will shift by two dies and be located in Die
3. In this case, File B is stored in non-contiguous blocks on the
file system, as shown in Fig. 9b, and sequential access to this
file will cause request splitting. However, due to command
queueing inside the SSD, all dies simultaneously process the
same number of operations, enabling maximum performance.
As previously mentioned, the time delay in the kernel I/O path
and host-to-storage interface resulting from request splitting
is minimal; consequently, despite File B being fragmented,
its read performance remains barely affected.

Conversely, irregular page-to-die mapping may occur even
without file fragmentation. Typically, overwriting an existing
file block likely breaks the sequentiality of the page-to-die
mapping. For instance, consider overwriting A1 in the sit-
uation shown in Fig. 9a. The file system supports in-place
updates of blocks, so the position of A1 on the file system re-
mains unchanged. Thus, File A maintains its contiguous state
even after overwriting A1. However, since in-place updates
of flash pages are impossible, the original page storing the A1
block becomes invalidated, and as shown in Fig. 9c, a new
page for the updated A1 is assigned to Die 0, which follows
Die 3. Consequently, although File A is contiguous at the file
system level, a sequential read of File A will be significantly
slowed down due to the die-level collision at Die 0.

Examining the two cases of fragmentation and overwriting
that cause the irregular page-to-die mapping mentioned above,
the fundamental reason is that SSD firmware cannot discern
the file-level relationship between flash pages, and conversely,
the file system cannot specify the position of the flash page
storing the file block. To address this mismatch between page
and file block placement, we propose an NVMe command
extension and corresponding page-to-die mapping policy.

In our approach, the file system regards a write operation
requiring a new data block allocation as an append write and
the one to be performed on a data block already allocated to
a file as an overwrite. If the Kernel I/O stack identifies the
write being issued to the NVMe SSD as an append write or
overwrite, it conveys additional information to the NVMe,
on top of the existing NVMe write command, to perform

- File A Append <A0, A1, A2, A3>
- File B Append <B0, B1, B2>
- File C Append <C0>

A0
B0

Die 0 Die 1 Die 2 Die 3

A1
B1

A2
B2

A3
C0

(a) Initial Page-to-Die Mappings After File Creation
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(c) Page-to-Die Mappings After Write Operations

Figure 9: File system-level block placement and storage-level
page allocation of three files before and after write operations.

- File A Overwrite <A1>
- File B Append <B3>

A0
B0

A1
B1
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A2
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A3
C0
B3

Die 0 Die 1 Die 2 Die 3

Figure 10: Page-to-die mappings after overwriting A1 and
appending B3 blocks under our approach.

appropriate page-to-die mapping.
For append writes, the host provides the NVMe with the

logical block address (LBA) of the file block immediately
preceding the one being written, in addition to the write com-
mand. For example, when appending B3 to File B in Fig. 9a,
the host sends the LBA of B2 along with the write command
for B3 to the NVMe. In this case, the NVMe firmware deviates
from the conventional round-robin algorithm for determining
B3’s die placement. Instead, as illustrated in Fig. 10, it assigns
B3 to Die 3, which is the subsequent die after the one where
B2 was stored. If the size of the write operation surpasses
the die allocation granularity, the placement of additional
pages adheres to the conventional round-robin approach; for
instance, in this example, the second page is assigned to Die
0 after the first page is placed in Die 3.

For overwrites, the host sets a flag in the write command to
indicate that the write operation is for overwriting an existing
file block. For a write command with its overwrite flag set, the
SSD firmware invalidates the existing flash page correspond-
ing to the given LBA and allocates a new page. By assigning
the new page to the same die where the original flash page
was located, the die-level contiguity of the file blocks can be
preserved. For example, when overwriting the A1 block of
File A in Fig. 9a, a new flash page is allocated to Die 1, where
the flash page storing A1 was originally located, as shown
in Fig. 10, ensuring that sequential reads of File A maintain
maximum internal parallelism. The die-level contiguity can
also be preserved for overwrites exceeding the die allocation
granularity by assigning new pages to the same dies where
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the existing logical pages are located.

To implement the proposed approach, the host needs to
provide additional information to the SSD when issuing a
write operation. We can implement this without additional
protocol overhead by utilizing unused bits in the NVMe pro-
tocol’s write command. For example, the 24th and 25th bits
of Command Dword (CDW) 12, which are currently unused
and reserved, can be utilized to distinguish append writes and
overwrites from conventional writes. Additionally, for append
writes, the reserved CDW 2 and CDW 3 can be used to convey
the LBA of the preceding file block.

Our approach specifically determines only the starting die
for append writes, with subsequent writes following the ex-
isting mapping policy and being distributed across dies in
a round-robin fashion. Consequently, it does not impact the
performance of append writes. While it might be assumed
that repetitive small-sized overwrites to the same file block
could lead to write die collisions, these are typically merged
in the host buffer and infrequently flushed to the SSD. Thus,
even in these extremely rare cases, our approach does not
adversely affect write performance.

Yet, continual overwrites on a small number of file blocks
can quickly deplete free pages in certain dies, triggering GC
earlier in these dies. Simultaneously, these overwrites inval-
idate the overwritten pages, reducing the number of valid
pages. This decrease in valid pages necessitates fewer valid
page copies during GC of those dies, which not only lowers
the write amplification factor but also shortens the duration
of the GC process.

However, despite these conditions being rare, they are not
ideal, as they can lead to more frequent GCs in specific dies
and cause uneven wear across the dies. This uneven wear
might result in some dies wearing out prematurely, ultimately
shortening the lifespan of the SSD. The LBAs that are targets
of the frequent overwrites are likely to be evenly distributed
and allocated across multiple dies, minimizing the occurrence
of uneven wear. Nonetheless, should wear disparity become
significant, a mechanism to reallocate the page for that spe-
cific LBA to a different die for wear leveling would mitigate
the situation, albeit potentially at the expense of performance.

5 Evaluation

To assess the validity and efficacy of the proposed approach,
we carried out two evaluations. First, to validate the proposed
scheme, we emulated the write patterns as if the proposed
approach were applied in commodity SSDs, and measured the
read performance. Second, to examine the performance bene-
fits that applications can gain through the proposed scheme,
we implemented it in the ext4 file system and the NVMeVirt
SSD emulator.

5.1 Validation of Our Approach

To implement the proposed scheme, the SSD’s NVMe proto-
col stack must be modified to process the NVMe command
extension, and its page-to-die mapping policy should also
be adjusted to utilize the hints provided by the host through
the command extension. However, modifying actual SSD
firmware is not feasible. Therefore, to verify the validity of
our approach, we created write patterns that would result in
the same page-to-die mapping as the proposed approach un-
der file fragmentation and partial file overwrite situations. We
then measured the read performance of the files written in
this manner. For these experiments, we deferred file system
metadata writes to prevent them from interfering with die
allocation control and configured journaling to be performed
on a separate storage device. In these experiments, we used
NVMe-A, NVMe-B, SATA-A, and SATA-B, all of which have
regular die allocation granularity and stripe size, as depicted
in Fig. 8.

To evaluate the effectiveness of our proposed method under
fragmentation, we generated a fragmented file on an FOB-
state SSD and measured its read time. This file was formed
by appending 256 fragments, each sized according to the
SSD’s die allocation granularity, cumulating to an 8 MB file.
After writing each fragment of the die granularity size, if we
write enough data to the dummy file to fill the remaining
space of the SSD’s stripe before writing the next fragment,
all the fragments of the target file will be assigned to one
die, resulting in significant performance degradation, which
is denoted as Fragmentation in Fig. 11. Due to the smaller die
allocation granularities of the SATA SSDs, 256 appends were
insufficient to reach the desired 8 MB file size. To compensate,
we adjusted the final append’s size to ensure the total file size
was 8 MB. Note that, as a result, only the initial segment of
the file became fragmented in the SATA SSDs.

In order to emulate the proposed approach, we first wrote
a single fragment and then wrote an amount of garbage data
equal to the SSD’s stripe size to a dummy file. Subsequently,
we wrote the next fragment to the target file. Repeating this
process, as shown in Fig. 10, each fragment of the target
file would be located in the die immediately following the
die where the previous fragment was located. Thus, while
fragmentation occurs at the file system level, within the SSD,
flash pages would be sequentially assigned to consecutive
dies. We repeatedly read the written fragmented file while
measuring the throughput.

As illustrated in Fig. 11a, the read performance of frag-
mented files on NVMe SSDs degraded by 79% for NVMe-A
and 76% for NVMe-B, in comparison to that of contiguous
files. Since the file was appended 256 times in 32 KB sizes
on the NVMe SSDs, it was stored entirely on a single die.
This led to die-level collisions during most read operations.
We believe that NVMe-A’s larger performance decrease was
attributed to it having more dies than NVMe-B. Our approach
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Figure 11: Read performance of four kinds of SSDs for con-
tiguous files, fragmented files, and fragmented files under our
proposed approach, respectively.

mitigated this, with performance experiencing only a 2% de-
cline from that of the contiguous files.

In the case of the SATA SSDs, the performance degrada-
tion due to fragmentation was less severe than that of NVMe
because only the frontal part of the file was fragmented due
to their smaller die allocation granularity size. Although the
portions of the target files that were fragmented amounted to
12.5% for SATA-A and 50% for SATA-B, the performance ex-
perienced a degradation of 27% and 16%, respectively, when
compared to the contiguous cases. In both products, our ap-
proach reduced the performance degradation, achieving nearly
the same performance as accessing contiguous files, with only
a 1.2% difference.

To understand the misalignment in page-to-die mapping
caused by overwrites on a file, and the resultant performance
degradation from die-level collisions, we conducted exper-
iments on the four types of SSDs. First, we created a file.
Then, we performed 256 overwrites, each of 32 KB, from
the beginning to the end of the file. Finally, we read the file.
The size of the target file was again set to 8 MB. Between
consecutive overwrite operations, we wrote random data as
large as (stripe size - die allocation granularity).

After finishing the series of overwrite operations, the file’s
pages would be placed in a single die, which is denoted as
Overwrites on the graph in Fig. 11. Note that the file’s data
blocks will remain contiguous at the file system level even
after the overwrites are performed.

Fig. 11b shows the results for the overwrite experiments.
The performance degradation of the NVMe SSD was similar
to that of a fragmented file, showing a significant performance
drop to a quarter. However, when our approach was applied,

Table 2: Parameters used for NVMe emulation.

Capacity 60 GB
Host Interface PCIe Gen3 ×4

FTL L2P Mapping Page Mapping [1, 6]
Channel Count 4

SSD

Dies per Channel 2
Read/Write Unit Size 32 KB

Read Time 36 µs
Write Time 185 µs

Flash
Memory

[22]
Channel Speed 800 Mbps

the performance degradation was reduced to an average of
1% compared to the contiguous case. In the case of SATA
SSDs, their performance degradation was smaller due to the
difference in die allocation granularity mentioned earlier, but
they still showed 27% and 16% decrease in performance,
respectively. However, our approach was able to successfully
achieve a similar level of performance as before the overwrites
were executed. The efficacy of our approach was observed
for all four SSDs. The largest performance degradation under
our approach was merely 1.2% for SATA-B.

From this analysis, we confirmed that the proposed ap-
proach can effectively prevent the loss of read performance
even for heavily fragmented files and also successfully avoid
read performance degradation caused by overwrites.

5.2 Effectiveness for Application Workloads
To evaluate the holistic effectiveness of the proposed ap-
proach, we implemented the host-side part of the proposed
scheme both in the ext4 file system and the Linux ker-
nel’s NVMe device driver.1 This allowed applications to di-
rectly utilize our approach via the file system. On the SSD
side, we implemented our proposed approach’s write com-
mand extension and page-to-die allocation mechanism within
NVMeVirt.2 The parameters for NVMeVirt were sourced
from Table 2. The die allocation granularity for the emulated
SSD was set at 32 KB, and the stripe was set to 256 KB, which
mirrors the settings of NVMe-B. To mitigate the onset of frag-
mentation, the ext4 file system was adjusted in accordance
with the experimental configurations delineated in Section 3.

First, we executed experiments based on the configuration
depicted in Fig. 11 using the aforementioned implementa-
tion. In contrast to prior experiments using actual SSDs that
required meticulous control over dummy write sizes, the im-
plementation can sustain optimal die mapping even when
random offsets interleave between successive file block writ-
ings. This enabled us to extend our analysis beyond just the
worst-case conditions, incorporating cases more reflective of

1The source code of the NVMe driver and ext4 extension implemented in
the Linux kernel can be accessed at https://github.com/yuhun-Jun/k
ernel_5_15_DA.

2The SSD emulator enabled with our approach can be found at https:
//github.com/yuhun-Jun/nvmevirt_DA.
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Figure 12: Normalized read throughput of applications exe-
cuted with the implementation of our approach relative to that
with ideal file block and flash page placement.

real-world operations where intervening dummy writes be-
tween target file writes are of random sizes. Consequently,
instead of confining file blocks’ pages to a single die as in
earlier experiments, they were distributed randomly across all
dies after finishing the append or overwrite operations.

In the worst-case experiments, where all file blocks were
allocated to a single die due to fragmentation or overwriting,
the results shown in Fig. 12 aligned with those seen in Fig. 11.
We observed a significant drop in read performance, which
stood at only 19% of the normal throughput for fragmented
files and 18.2% for overwritten ones. Our proposed approach
successfully preserved the read performance after the append
and overwrite operations and only resulted in a 3.5% perfor-
mance dip for Append Worst and 2.3% for Overwrite Worst.

In the random disturbance experiments, where the size of
dummy file writes between target file writes varied randomly
at the 32 KB granularity, ranging from 32 KB to 32 MB, the
performance decreased to 59.4% of the ideal for the fragment-
ing append experiment and 62% for the overwrite experiment.
Our approach again successfully suppressed the read perfor-
mance degradation to 5.8% for Append Random and 1.6% for
Overwrite Random.

In addition to the hypothetical workloads, we analyzed the
effectiveness of the proposed approach with SQLite [29] and
Filebench’s fileserver workload [38].

We established a table and inserted 10,000 records, each
16 KB in size, with SQLite. Simultaneously, we appended
100 KB chunks repeatedly to a dummy file. Following this,
we executed a select query to retrieve all 10,000 records
from the resulting database file, which had a DoF of 5,005. As
depicted in the SQLite column of Fig. 12, the select query’s
performance was only 60% of the case where no disturb-
ing writes were performed. In contrast, under our approach,
the database file blocks were stored on consecutive dies as
intended even with the existence of the dummy writes. As a re-
sult, we observed a performance increase of 1.6 times, which
represents only a 3.5% drop compared to the case without

fragmentation.
The fileserver workload mimics the I/O patterns of a file

server. For this, it employs multiple threads executing file cre-
ation, random-sized append writes of up to 16 KB, sequential
reads on random files, and random file deletion on a file set
consisting of 10,000 files averaging 128 KB each. To induce
more severe file fragmentation, we modified the workload so
that it preallocates a file set of 10,000 128 KB files, each of
10 threads performs 32 KB size append writes on random
files from the file set for a duration of 1 minute and measured
the read performance. We also removed the file creation and
deletion from the workload. At the end of the experiment,
the average file size was around 600 KB, the average DoF
was 15.7, and the total file set size was 11 GB. The results
showed a read performance at 80% of the level seen when
files were stored in contiguous file blocks. This lesser per-
formance degradation compared to the previous experiments
was due to multiple threads reading simultaneously, increas-
ing the number of outstanding commands. This ensured that
most dies continually received operations, enhancing die-level
parallelism. Our approach was able to recover the sequential
read performance on fragmented files to 93% of the ideal file
placement condition.

The fileserver small shown in Fig. 12 is from an experi-
ment with settings identical to fileserver, but where the append
write size was set to 16 KB, smaller than the die granular-
ity. In this experiment, fragmentation further reduced read
performance. When writing 32 KB chunks, a single flash
page, of which size is 32 KB, can accommodate one write
request. However, when writing 16 KB chunks, two chunks
are combined and written to a single flash page. As a re-
sult, writes from two different files could be recorded on the
same page, meaning files of the same size ended up being
stored across more pages. This leads to a higher number of
flash page reads when reading the file. We confirmed that
this phenomenon also occurs when a file uses fallocate
to pre-allocate consecutive file system blocks and then fills
in data in small increments to make a contiguous file, espe-
cially if small writes for dummy files intervene. This serves as
further evidence that the fragmentation-induced performance
degradation is not directly due to fragmentation but rather an
issue of data placement within the SSD.

This experiment underscores the limitations of the pro-
posed approach. While it is designed to achieve consecutive
die allocation of file blocks during file fragmentation, it’s not
equipped to counteract the effects of small intervening writes,
leading to a file write potentially spanning multiple pages.
Consequently, its performance enhancement stood at 8.2%.
Addressing the flash page-level fragmentation issue, which
may also occur to contiguous files at file system level when
the write size is smaller than the flash page size, requires a
novel page allocation strategy to counteract that. Such a study
would go beyond the scope of this paper and points to an
interesting topic for future research.
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6 Conclusion

Contrary to early beliefs that file fragmentation does not im-
pact SSD performance, it has now been recognized that SSDs
can indeed suffer significant declines in read performance due
to file fragmentation. In this paper, we have shown that the
root cause of this performance degradation is not delays in the
kernel I/O path caused by request splitting, as previously de-
scribed in the literature. Instead, it arises from misalignments
in the SSD’s page-to-die mapping, which increase die-level
collisions. Furthermore, we demonstrated that such misalign-
ments can occur not only during file fragmentation but also
when files are overwritten.

To address this issue, we proposed an NVMe command ex-
tension that enables the file system to provide hints about the
write operation to SSDs, as well as a novel page-to-die map-
ping scheme considering the hints for the SSD controller. This
ensures that pages are allocated to contiguous dies based on
their order in the file. The resulting well-ordered page-to-die
mappings effectively prevent additional die-level collisions
caused by both file fragmentation and overwrites. Our evalua-
tion showed that, without resorting to costly defragmentation
or file rewriting, the proposed approach effectively suppresses
the read performance degradation for fragmented or overwrit-
ten files to a mere few percent.
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Artifact Appendix

Abstract
The provided artifacts consist of shell scripts designed to
replicate the experimental results introduced in the paper.
These experiments were aimed at analyzing read performance
degradation caused by fragmentation and assessing the ef-
ficacy of the proposed approach. Additionally, the artifacts
include a customized NVMeVirt implementation featuring
the proposed page placement scheme for the FTL. This is
complemented by a modified Linux kernel equipped with the
necessary file system and NVMe device driver support for the
customized NVMeVirt.

Scope
These artifacts include shell scripts that enable the replication
of results presented in Section 3, as depicted in Figs. 3, 4, 7,
and 8. The shell scripts for demonstrating the effectiveness
of the proposed approach, as illustrated in Fig. 11, are also
included in the artifacts.

Furthermore, the artifacts comprise a customized
NVMeVirt utilizing an FTL that implements the proposed
page placement scheme. This is complemented by the
modified Linux kernel, which is also a part of the artifacts.
It provides NVMeVirt with the page placement hints. The
shell scripts for conducting experiments on the workloads
used in Section 5.2 are provided as well. These scripts were
instrumental in obtaining the experimental results showcased
in Fig. 12.

Contents
The shell scripts below run the experiments introduced in
Section 3 and Section 5.1. In the file names, the * is replaced
with the target device name, such as NVMe_A or SATA_B.

varyingdof_*.sh: These shell scripts are for the experi-
mentation analyzing the read time change according to the
varying DoF of files stored on NVMe and ramdisk, as shown
in Figs. 3 and Fig. 4, respectively.
interface_*.sh: These measure the time taken to read 8

MB of data from the target SSD, depending on the unit size
of the read operation. This was used to produce the results
illustrated in Fig. 7.
alignment_*.sh: These measure the throughput of read

operations while varying the interval between starting points
of consecutive operations, as shown in Fig. 8.
pseudo_(append|overwrite)_*.sh: These shell

scripts mimic the write patterns for three cases: when files are
written contiguously, when written in a fragmented manner,
and when written according to the write patterns that occur in
our approach. It then measures the read performance for each
of these cases. This was used to produce the results introduced
in Fig. 11.

The following shell scripts are intended for the experiments
explained in Section 5.2.
hypothetical_(append|overwrite).sh: These

shell scripts measure the read throughput for a file after
performing a series of append write or overwrite operations
to it. The append and overwrite operations can be configured
to follow the worst-case pattern or the random pattern. The
results of executing these on NVMeVirt are shown in Fig. 12.
sqlite.sh: This was used to obtain the experimental re-

sults shown in Fig. 12. It triggers write operations to create a
fragmented database file when running SQLite. Subsequently,
it performs select operations through SQLite on the frag-
mented database file and measures the performance.
fileserver.sh: This was also used to obtain the experi-

mental results shown in Fig. 12. This shell script measures
the performance in circumstances where the files generated
by Filebench’s fileserver workload become fragmented.
fileserver_small.sh: This script is similar to file-

server.sh, except that the append operations are performed
with a size smaller than the flash memory page size.

The detailed instructions can be found in the README.md
file located in the GitHub repository.

Hosting
The GitHub repository for the artifacts is https://github
.com/yuhun-Jun/fast24_ae. The results introduced in this
paper were produced from the commit version 89ba3a9 of
the main branch.

Requirements
The shell scripts for analyzing fragmentation-induced per-
formance degradation must be configured according to the
internal parameters of the target SSD. The provided artifacts
are set up for the devices introduced in Table 2. For other
SSDs, settings including the write offset must be appropri-
ately adjusted.

For the customized NVMeVirt to function properly, the sup-
port from OS Kernel’s file system and NVMe driver is manda-
tory. Therefore, it operates correctly only when executed on
the provided Linux Kernel. Furthermore, as NVMeVirt uti-
lizes main memory to emulate storage space, stable experi-
mental outcomes require that the workload operates exclu-
sively within a single NUMA domain. This approach avoids
cross-NUMA domain memory accesses, which can signifi-
cantly vary in execution time and potentially affect the con-
sistency of results.
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In-Memory Key-Value Store Live Migration with NetMigrate

Zeying Zhu⋆, Yibo Zhao†, Zaoxing Liu⋆
⋆University of Maryland, †Boston University

Abstract
Distributed key-value stores today require frequent key-value
shard migration between nodes to react to dynamic work-
load changes for load balancing, data locality, and service
elasticity. In this paper, we propose NetMigrate, a live mi-
gration approach for in-memory key-value stores based on
programmable network data planes. NetMigrate migrates
shards between nodes with zero service interruption and min-
imal performance impact. During migration, the switch data
plane monitors the migration process in a fine-grained man-
ner and directs client queries to the right server in real time,
eliminating the overhead of pulling data between nodes. We
implement a NetMigrate prototype on a testbed consisting
of a programmable switch and several commodity servers
running Redis, and evaluate it under YCSB workloads. Our
experiments demonstrate that NetMigrate improves the query
throughput from 6.5% to 416% and maintains low access
latency during migration, compared to the state-of-the-art
migration approaches.

1 Introduction
Modern internet services (e.g., e-commerce, mobile gaming,
and social networks) depend on large-scale key-value stores as
the backend to perform various jobs (e.g., web caching, real-
time analytics, and machine learning) [2, 15, 24, 27, 38, 49].
These services often require databases to process queries over
ever-growing data volumes and dynamic workload distribu-
tions. However, static sharding limits the ability of such sys-
tems to adapt to rapidly changing workloads. This may result
in degraded performance and Service Level Agreement (SLA)
violations due to load imbalance, poor data locality, and in-
sufficient provisioning of cloud resources [28, 33, 37, 51, 52].
Live migration techniques are widely adopted for key-value
store reconfiguration [28, 33, 37, 41, 53] that migrates data
between nodes without service downtime.

Existing live migration techniques must assume one or
more locations — migration source, destination, or both, as
the main query serving point because the actual location of
a key-value pair during migration is unknown. Source-based
solutions [23, 33, 53] use source storage to serve all client
queries during migration and incrementally migrate dirty data
logs to the destination when the keys are updated at the source
after their migration. Alternatively, destination-based solu-
tions [28, 37] transfer data ownership at the beginning of
migration and immediately routes newly arrived queries to

the destination. The not-yet-migrated data queried by the
client are pulled on demand from the source. However, while
two techniques can continuously serve user queries during
migration and aim to achieve minimal downtime, they suffer
from fundamental performance limitations. Lack of insight
about the migration process is a key roadblock in minimiz-
ing the overhead caused by accessing the data at the location
that does not have ownership. For example, it takes another
round-trip latency to fetch a key-value pair from the source if
destination-based migration is adopted and this pair has yet
migrated to destination.

Ideally, if client queries can always be served at the “right”
location during migration, the cost to serve the queries would
be minimized. Considering either source- or destination-based
migration, extra data movements between the source and des-
tination are necessary when the queried data are not present at
the original location. To address this problem, hybrid migra-
tion techniques take advantage of both source and destination
to serve user queries by tracking the migration process in
clients [30] or replicate queries to both source and destina-
tion [41]. While leveraging both source and destination for
query serving during migration is promising for achieving
better performance, the cost at the client side to track data
ownership and the potential overhead between clients and
servers for maintaining consistency are nontrivial.

In this paper, we propose NetMigrate to rethink the prob-
lem of designing a hybrid live migration approach for in-
memory key-value stores. NetMigrate aims at leveraging ei-
ther source or destination who owns the accessed data chunks
(migration state) to achieve pauseless migration and minimal
impact on query performance. Compared to bookkeeping of
detailed migration states on the client or with additional re-
sources, we argue that the network itself (e.g., top-of-rack
switches) would be a better place to track the migration pro-
cess on the fly because they have a central view of all the
data movements in the dedicated rack-scale clusters. With
emerging programmable hardware, ToR switches can be pro-
grammed to track migration states (e.g., which key-value pairs
are migrated) at line rates without latency overhead and can
directly route the client queries to the right location (source
or destination) who holds the up-to-date data. To our knowl-
edge, NetMigrate is the first proposal to leverage in-network
programmability to improve storage migration.

Realizing the promise of NetMigrate, however, is easier
said than done, and the use of programmable switches for
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migration has several key challenges:

• Tracking migration states with limited on-switch re-
sources. While existing programmable switches guarantee
high-line-rate packet processing capability (e.g., Tbps), the
on-switch resources for performing packet-level operations
are limited, e.g., O(10MB) SRAM and limited accesses to
the SRAM [7, 45]. Given the resource constraints, we lever-
age probabilistic data structures, i.e., Bloom filters [25] to
track if a key has finished migration and counting Bloom
filters [29] to track if a key is currently under migration, as
the “indexing service” to record the up-to-date migration
status. Moreover, to migrate a storage instance with a large
number of keys, we support dynamically adjusting the mon-
itoring granularity from a per-key level to a level of a group
with multiple keys. With these techniques, 64 MB SRAM
on switch will be able to support up to a 34-billion-key
storage cluster migration in the same rack1(§4.2).

• Maintaining data consistency during migration. To ensure
strong consistency, it is critical to understand the location
that holds the most updated value of a key and route the
new queries to it during migration. It is challenging to keep
this information because of the pending state of ongoing
migration between source and destination and additional er-
rors from probabilistic migration state tracking. We design
an error handling method to ensure correct query results,
following this principle: If we have absolute confidence
about data ownership, the switch routes the queries to the
corresponding location; otherwise, the switch issues small
numbers of replicated queries (e.g., double reads) when
there is any possibility of imprecise information (§4.3).

• Supporting diverse migration policies. Some features of
existing migration protocols can be useful for certain mi-
gration scenarios. For instance, operators may prefer to use
destination-based Rocksteady [37] to ensure a short migra-
tion time because the resource on the source server can be
used primarily for migrating data. NetMigrate can tune its
on-switch data structures and resource budgets from the
source side to optimize various performance goals, such as
minimizing migration time and maximizing query through-
put. With the help of switches, NetMigrate can be adjusted
to achieve comparable migration time as destination-based
solutions such as Rocksteady while offering better query
throughput and latency (§4.4).

We implement a NetMigrate prototype in the P4 lan-
guage [10] (switch side) and C++ (client and server side),
and evaluate it on a testbed with an Intel Tofino switch and 3
commodity servers. We migrate a Redis key-value store [11]
as an example consisting of 256 million key-value pairs with
4-Byte keys and 64-Byte values, and evaluate NetMigrate on

1As in § 4.2, assuming 16 bits per element in Bloom filter and counting
Bloom filter and each group has 210 keys, 64MB SRAM can support 34
billion key-value pairs (64MB*8/16*1024). With 4-Byte keys and 64-Byte
values, the total storage size is ∼2TB.

YCSB workloads [17] with different write ratios and load-
balancing scenarios against the state-of-the-art approaches.
Experimental results demonstrate that NetMigrate achieves
zero downtime during migration, improves the average query
throughput by 6.5% to 416%, while maintaining low access
latency during migration and incurring negligible extra band-
width overhead. NetMigrate is open-sourced at [9].

2 Background and Motivation
In this section, we first discuss the key-value store live migra-
tion problem and its requirements. We then analyze existing
approaches and their advantages and limitations.

2.1 Key-Value Store Live Migration
In distributed key-value store systems, data sharding can be
reconfigured over time for load balancing, access-locality im-
provement, and cluster horizontal scaling (e.g., when a new
node joins the cluster, it “steals” keys from other nodes).
Storage instance migration improves spatial locality to en-
hance item access throughput and reduce access latency to
backend servers [20, 28, 34, 37] and provide load balanc-
ing among dynamic and skewed workloads between servers
[28, 32, 42].Migration can also happen when there is an up-
grade of the server hardware or cluster horizontal scaling.

Data migration between shards can introduce service down-
time and performance degradation. However, during migra-
tion, storage cluster should still provide service reliability and
meet the Service Level Agreement (SLA). For example, even
a slight service outage has significant financial consequences
for a large-scale e-commerce platform and can harm the cus-
tomer’s trust [27]. Thus, live migration techniques, which
move data between nodes without causing client-observable
downtime, become a key enabler to achieve elastic key-value
stores in the cloud environment.

In this paper, we focus on live migration of in-memory
key-value stores, such as Redis [11], Apache Cassendra [1],
RAMCloud [46], and Memcached [8]. These key-value stores
keep all data in DRAM and can scale across thousands of
data center servers. Under these storage systems, they often
construct hash-table data structure for storing and indexing
key-value pairs. We focus on alleviating migration perfor-
mance degradation to the minimum. We assume that there is
an internal or external cluster scheduler that collects statistics
of the storage cluster and generates reconfiguration plan on
when and how the data should be re-sharded and migrated to
fit the current workloads.

Performance requirements. Common metrics used to evalu-
ate a live migration system include service downtime, query
throughput and latency, transferring extra data (extra network
bandwidth usage), and migration completion time. For mi-
gration approaches, there is a fundamental trade-off between
migration completion time and migration cost (e.g., drop in
query performance and transfer of extra data). The shorter
the migration finish time, the higher the migration cost. An
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Migration Protocols Example Systems Downtime Latency Throughput Extra Data Client Overhead Migration Time

Stop-and-Copy Redis MIGRATE [13], Slacker [23] Yes High Low No No Short

Source-based RAMCloud [46], Remus [33], DrTM+B [53] Minimal Low Medium Yes No Long

Destination-based Rocksteady [37] No High Low No Yes Short

Hybrid Fulva [30] No Medium Medium No Yes Medium

Hybrid NetMigrate No Low High Negligible Negligible Medium (Adjustable)

Table 1: Overview of live migration approaches.

ideal live migration approach is expected to provide minimal
migration cost while maintaining an acceptable migration
finish time.

2.2 Existing Approaches and Limitations

Stop-and-copy is a basic form of migration, which consists
of freezing the storage server (with a read lock), copying the
key-value data to the destination server, and then deleting
them in the source server. For example, Redis MIGRATE
command [13] implements this stop-and-copy at the per-key
level. If migrating the entire store to the destination server, a
faster way is to shutdown the source key-value store, create
a snapshot file, perform a file-level copy of the compressed
snapshot to destination, and then start a new key-value store
instance on the destination server pointing to the copied snap-
shot directory. The main downside of stop-and-copy is the
significant downtime caused by shutting down the storage
instance, which affects the client execution logic. The length
of copying period is proportional to the database size [23].

To perform live migration, there are three existing migra-
tion approaches: source-based, destination-based, and hybrid
(both source and destination).
Source-based approaches choose the source to own the data
during migration, and thus all client read and write queries
are served by the source [22, 23, 53]. The source node itera-
tively migrates “dirty data” (data in the source that are already
migrated but later updated) to the destination, which transfers
additional data. Although source-based approaches can serve
client queries without adding query latency, they have to ter-
minate the source server at some point to copy the last piece
of dirty data to the destination, incurring unavoidable service
pauses. Source-based approaches have low query latency, but
long migration time because migration operations compete
with client queries at the source node.
Destination-based approaches choose the destination server
to hold data ownership and serve client queries [28, 37]. All
read and write queries will be routed to the destination. To
serve data that have not yet migrated, the destination needs to
pull the data from the source, and the client will have to retry
after a wait. Therefore, destination-based solutions incur high
query latency on not-yet-migrated items, especially at the
beginning of migration, because most of the data are still on
the source node. Meanwhile, destination-based approaches
usually migrate data faster than source-based ones due to
more resources available at the source.
Hybrid approaches (e.g., [30, 41]) can choose the desti-

nation node to handle write queries, and send read queries
of not-yet-migrated and on-the-fly data to both source and
destination nodes to achieve data consistency. Hybrid ap-
proaches need to keep track of migration process somewhere.
For example, Fulva [30] tracks completed migration ranges in
their key-value store client libraries. This type of approaches
avoids on-demand data transfer between the source and the
destination but instead uses additional network bandwidth
(due to two read packets). Double-read incurs large resource
overheads (∼ 50%) among clients and two storage nodes to
guarantee the protocol consistency because there is no fine-
grained migration status tracking. Clients see the reply results
from the node with a newer version and thus it can increase
the latency by waiting for two replies.
Summary. Table 1 summarizes the performance character-
istics and strengths/weaknesses of existing data migration
protocols. We posit that data migration tasks usually have up-
per resource limits, and thus foreground client queries should
be put on a higher priority than migration in the storage clus-
ter. All existing live migration approaches have performance
degradation and trade-off between migration cost and migra-
tion time. Our NetMigrate design provides a new alternative
to improve these dimensions and reevaluate the trade-off be-
tween performance and migration time. By comparing the
migration protocols, hybrid approaches do provide better mi-
gration performance compared with simply destination-based
or source-based approaches, as they reduce the number of
queries going to the wrong nodes.
Opportunities of programmable switches. Our aim is to de-
sign a switch-accelerated hybrid migration approach. A ToR
switch positions centrally in all inter-server communications
and acts as the gateway to other racks. This allows it to see
all the migration and query traffic, enabling migration status
tracking without additional communications. Host-based alter-
natives typically require sending migration status to a specific
location (e.g., clients as in Fulva) or dealing with multiple
requests going to the wrong place and pulling from another
(e.g., Rocksteady or Slacker/Remus). Unlike CPUs, most pro-
grammable switches (e.g., Broadcom [16], Juniper [5], In-
tel [7]) are ASIC-based and offer flexible programmability
without performance loss when performing customized mod-
ules. They can also guarantee high line rates such as 12.6
Tbps, orders-of-magnitude higher throughput and lower la-
tency than servers. Therefore, deploying migration indexing
service on switches can alleviate clients’ or cluster coordina-
tors’ bookkeeping overheads when using hybrid approaches.
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3 NetMigrate Overview
System architecture. NetMigrate is a rack-scale key-value
store live migration accelerator leveraging in-network pro-
grammability. NetMigrate enables ToR switch as a migration
state tracking service and routes client queries to the “right”
server (either source or destination) during migration based
on the latest information on the switch about what data have
been completed migration or under migration. Fig. 1 shows
the overall architecture of NetMigrate, which consists of a
ToR switch, a controller, clients, and servers:
• ToR switch provides the following functionalities for the

live migration service: (1) a migration state table module
tracks migration states of each group of key-value pairs,
indicating the data ownership belongs to the source or
the destination. It uses probabilistic data structures and
serves as an indexing service to determine where the client
queries should go (§ 4.2); (2) a routing module routes client
queries to the “right” storage server under migration (best-
effort) based on the migration state table (§ 4.3); and (3) a
migration instance table module records multiple pairs of
key-value stores that are under migration for enabling (re-
)routing client queries to the right corresponding storage.

• Storage servers store key-value data and serve client
queries. In NetMigrate, we consider migration can occur
between multiple storage instances within the same rack.
Storage servers host key-value stores and run a migration
agent that (1) maps key-value store API to NetMigrate
migration packets, (2) serves client queries with consis-
tency guarantees, and (3) handles data transmission be-
tween migrating storage instances. The migration agent
makes NetMigrate easy and general to integrate with dif-
ferent backend key-value stores.

• Clients issue storage queries. NetMigrate provides a client
agent to support the switch-based migration system. The
client agent maps queries (e.g., GET, SET, DELETE com-
mands) to the switch-based query packets, and transform
NetMigrate reply packets into the backend storage com-
mands. Migration process is transparent to client applica-
tions.

Challenges and Key Insights. To realize NetMigrate, we
need to address several key design challenges:
• Fine-grained migration state tracking with limited on-

switch resources. There is a disconnect between the poten-
tially large key-value data to migrate and limited on-switch
resources (e.g., SRAM, TCAM, etc.) that can be used to
track migration status. It is infeasible to record the status
of every single key. Therefore, we combine a number of
key-value pairs together as a group and and record migra-
tion state at the group level. However, there is a tradeoff
here: a too large group size (i.e., a small number of groups)
limits the switch’s ability to accurately determine the right

Clients
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Routing
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Figure 1: NetMigrate system architecture.
destination for many queries, thereby compromising per-
formance benefits, and vice versa. We need a memory-
efficient design on the switch to support a large number of
migration groups and the group sizes are relatively small.
NetMigrate specifies three group-level migration states, not-
yet-migrated, ongoing-migration, and complete-migration,
to support fine-grained routing operations for client queries.
At a high level, we use probabilistic data structures – Bloom
filters (BF) [25], counting Bloom filters (CBF) [25, 29],
and the hybrid of the two. We choose BF and CBF be-
cause of their memory efficiency and the fact that they can
cover the required state tracking. BF tracks migrated keys
at group-level and once a membership of a key is inserted,
it cannot be removed. CBF tracks only ongoing-migration
keys because we can delete keys from it once the keys are
migrated. Hybrid of the two can indicate not-yer-migrated
state. This choice leads to memory efficiency and simplistic
design because Bloom filters can probabilistically perform
membership tracking and involve only hashes and simple
arithmetic operations.

• Maintaining data consistency during migration. We con-
sider the linearizability requirements [31] in consistency,
including Read-After-Write (RAW), Write-After-Write
(WAW), and Write-After-Read (WAR). To ensure consis-
tency, it is critical to understand the right location that holds
a key’s up-to-date value and route the new queries to it dur-
ing migration. The consistency issue becomes more chal-
lenging when our migration state tracking brings additional
errors (e.g., false positives in BF and CBF). We propose a
fine-grained error handling method to ensure correct query
results as in § 4.3. At a high level, the key principle is
that we always route write queries to the destination
unless we are sure that the migration has yet started,
and issue read queries to both locations when we are
definitely unsure about the migration state. When we
are almost confident that the data are on the destination
but can have false positives, e.g., BF shows positive (the
group has migrated) and CBF shows not positive (not under
migration), we will route read queries to destination (and
issue data pulls to the source if errors) instead of double
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reads because the false positive rates are relatively small
and we can reduce the workload for the source.

• Dynamic migration policies. One disadvantage of using
existing live migration approaches is they have to sacrifice
on or optimize towards a fixed set of dimensions (migration
time or query performance). However, the operator may
have different performance objectives when planning a mi-
gration (e.g., minimizing migration time or maximizing
query performance) [43]. NetMigrate can optimize toward
various performance goals (simulating any other protocols)
and dynamically change the migration policy by tuning the
probabilistic data structures in the switch and adjusting the
CPU utilization of the source server. For example, we can
simply set all BF entries to 1 to mimic destination-based
solutions like Rocksteady [37]. To optimize migration time
while offering better performance than source-based solu-
tions, we can limit CPU usage to serve client queries and
leave more CPU headroom for migration.

4 NetMigrate Design
In this section, we discuss the design of NetMigrate and de-
scribe how an in-network accelerator can help live migration.

4.1 Migration Workflow
Fig. 2 shows NetMigrate’s general migration process. It starts
from the current (source) server to a new server (destination)
capable of accommodating the key-value shard. The source
server initiates migration by notifying the destination server
and registering the migration instance in the switch via con-
trol packets (Step 1⃝). Throughout migration, clients remain
unaware and continue sending queries to the original storage
instances. The ToR switch decides whether a query should
go to the source or destination based on migration status, and
clients receive replies as if they are from the source server.
During migration, the source server concurrently migrates
data to the destination using data packets. The switch tracks
the migration at the key-value group level, with each group
containing multiple key-value pairs (Step 2⃝). The destina-
tion server receives and replays these packets into its storage
structures. Upon completion of the migration process, the
source server agent issues a termination notification to the
destination, switch, and clients (Step 3⃝). In response, the
source server cleans up its database, the switch removes the
migration pair registration, the destination server takes over
data ownership, and clients direct queries to the destination.

4.2 Migration State Tracking
NetMigrate accelerates key-value store live migration by
tracking the migration states entirely in a central position (in
the network) and using this in-network information to deter-
mine where to route the user queries as precisely as possible.
However, it’s impossible to store every migrated key given
the large key space. Therefore, we make two design choices
to shrink the tracking space requirement: (1) a combination
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Figure 2: NetMigrate migration workflow.

of probabilistic data structures such as Bloom filers (BF) and
counting Bloom filters (CBF) to track migration states with
low false positives and fine-grained migration state, and (2)
recording data ownership at a coarse granularity of groups.
Each migration group represents a set of adjacent entries in
the underlying key-value storage, e.g., several adjacent buck-
ets in the hash table. These enable NetMigrate to scale to
a large number of key-value pairs while maintaining high
accuracy and low resource overhead.
Hybrid Bloom filters. The combination of BF and CBF is
used to track three migration states: (S1) Entire group has
not started migration; (S2) The group is under migration and
only a subset of key-value pairs maybe migrated; (S3) Entire
group has completed migration. Once a group (of key-value
pairs) has completed migration, this group is recorded in BF.
CBF tracks the “ongoing-migration” groups. When a group
has started migration, this group is added to the CBF until
migration is done. Compared to using a single BF to track
which group(s) have completed migration, our hybrid design
with both BF and CBF provides more fine-grained migration
states and reduces false positives.

Specifically, when a group starts migration, the correspond-
ing CBF entries are incremented by 1; when the group fin-
ishes migration, the same CBF entries will be deducted
by 1. The states of each migration group are updated by
its migration control packets – GROUP-START-MIGRATION
and GROUP-COMPLETE-MIGRATION packets in the switch data
plane (detailed packet format description is in Appendix A).
Compared to using a single BF with the same memory space,
NetMigrate’s hybrid filters significantly reduce the false posi-
tives rate that can lead to throughput and latency degradation.
We configure BF and CBF based on the following. For 2x

groups and 2y migration parallelism (i.e., there are 2y threads
in total migrating key-value instances), the false positive rate
upper bound of combining BF and CBF together is approxi-

mately 1− (1− (1− e
−kn

m )k)(1− (1− e
−k′n′

m′ )k′), where k and
k′ are the number of hash functions, n and n′ are the total
number of groups (elements), and m and m′ are the number
of entries used in BF and CBF respectively [25]. Here we
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Figure 3: NetMigrate migration state tracking and query han-
dling state machine. Assuming two hash functions are used in BF and

CBF, the values in BF and CBF arrays are located at the hashed indices of a

particular group.

consider the CBF’s false positive is the same as BF’s and use
k = k′ = 4 for both BF and CBF. If the target combined false
positive rate is less than 1%, a good-enough configuration is
using 2x+4-bit Bloom filter and counting Bloom filter with
2y+4 entries (8 bits per entry) to achieve less than 0.5% com-
bined false positive rate, resulting 16 bit-per-element space
complexity. Also, 2x+3-bit BF and 2y+3-entry CBF (about 8
bits per element) can achieve a 5% false positive rate.
Group size tuning. The number of keys in a group is also a
critical parameter that affects performance during migration.
When the group size is smaller, the pending period where the
switch cannot determine the location of the key is shorter. Dur-
ing the pending state (state (S2)), NetMigrate has to handle
the wrong locations, adding up the performance degradation.
In practice, there is an upper bound of the group size under
which the performance impact is acceptable. As evaluated
in § 6.4, the upper bound is around 220 keys in a group. The
lower bound of group size (namely, the upper bound of the
number of groups given the total number of keys) is bounded
by the BF and CBF sizes that the data plane can offer. Con-
sidering BF, CBF sizes and group sizes together, theoretically,
64 MB SRAM on switch will be able to support up to a
34-billion-key storage cluster migration in the same rack.

4.3 Data Consistency During Query Handling
It is important to avoid introducing additional inconsistency to
the backend key-value stores during migration. As guaranteed
by existing migration protocols, we consider the strongest
data consistency (linearizability) [31] when designing our mi-
gration protocol – including Read-After-Write (RAW), Write-
After-Write (WAW) and Write-After-Read (WAR) when han-
dling client READ and WRITE queries. A migration state ma-
chine in Fig. 3 demonstrates the migration index tracking and
query routing decisions in the switch data plane and to show
how our protocol guarantees consistency during migration.
Migration packets updating indexes. Recall that there are
three group migration states (S1-S3 in Fig. 3). However, due
to probabilistic errors and hash collisions in BF and CBF,
there is a fourth migration state – false positive (S4). S4 in-

dicates a false positive because the BF and CBF entries of
one group cannot be both positive simultaneously. We de-
fine migration control packets GROUP-START-MIGRATION to
inform the switch that a specific group starts migration, and
GROUP-COMPLETE-MIGRATION to notify the completion of
the migration for a group. When a GROUP-START-MIGRATION
packet arrives at the switch, it increments the CBF entries by
1, indicating a new ongoing migration. This transits state S1
to S2. When a GROUP-COMPLETE-MIGRATION packet arrives,
it sets the BF entries as 1 and decrements the corresponding
CBF entries by 1, indicating that the group has finished migra-
tion. Thus, this action transits state S2 to S3. Other transitions
shown in Fig. 3 are false positives caused by hash collisions
with other groups.

Query routing based on migration status look-up. Each
state in Fig. 3 also shows index look-up results from BF
and CBF and outlines query routing decisions. The general
principle is: In the state machine, no state returns to a state
with READ queries from the source (i.e., state S1). If a state
WRITE to the destination, all possible following states are READ
from either the destination or both nodes, ensuring access to
the latest data. The states are explained as follows:

State S1 means the group does not start migration, so both
READ and WRITE queries are directed to the source. There are
no false positives because both BF and CBF entries are 0.

State S2 means the group is currently migrating. For READ
query, the switch cannot determine whether the queried key-
value pair is still on the source server, or on-the-fly, or on the
destination server because the migration tracking granular-
ity is larger than the per-key level. In this case, the switch
generates double-read query packets via packet mirroring,
where the original query is still forwarded to the source and
a mirrored query is sent to the destination server. Thus, the
client will receive two READ reply packets for this one READ
query and merge two READ replies. If the destination has a
successful reply, the client ignores the reply from the source
because the destination may have updated values; otherwise,
the key has not been migrated to the destination, so the client
takes the source reply. We route the WRITE query to the desti-
nation in this state because the READ queries are doubled to
both source and destination servers, and the client can always
read the latest value. There can be false positives from CBF
in this state, which are handled by double reads. The double-
read ratio is low because the period when a group is under
migration usually does not last long.

State S3 stands for the group that finishes migration. Both
READ and WRITE queries can be directed to the destination.
There can be false positives from BF, and READ queries will be
falsely directed to the destination while the data have not been
migrated. In this case, NetMigrate agent on the destination
issues PriorityPulls on-demand [37] to retrieve the missing
key-value pairs from the source and respond to the client.
This step also corrects the false positives of BF for subsequent
queries as the keys are already at the destination.
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State S4 represents a false positive case because a group
cannot be in both a complete-migration and an ongoing-
migration state simultaneously. To correct the false positive,
we also use double-read for READ queries and direct WRITE
queries to the destination.

Handling corner case. There is a corner case that some mi-
grated key-value pairs can still be updated by WRITE queries in
the source node. This happens when the WRITE query updates
a key-value pair that is about to migrate. Specifically, this
case occurs when a WRITE query arrives at the switch first and
looks up the migration index. The index indicates that the key-
value pair is still in the source node, and the switch forwards
this query to the source. Next, the GROUP-START-MIGRATION
packet is sent from the source, arrives at the switch, and up-
dates the migration index. At the source, the data migration
packet containing this key-value pair has been sent to the
destination before the WRITE is executed. To guarantee data
consistency in this case, we collect the late updates in memory
at the source and periodically transfer the late dirty logs to
the destination as a source-based protocol.

In summary, NetMigrate can ensure data consistency dur-
ing migration. Moreover, experiments in § 6.4 show a low
overhead to correct false positives, with the portion of dou-
ble reads and PriorityPulls being less than 0.05%, and less
than 4× 10−5% extra bandwidth overhead incurred by the
late dirty logs.

4.4 Dynamic Migration Policies
There is a fundamental tradeoff between migration time and
the query performance: The migration completion time is re-
lated to the source’s CPU headroom left for migration, while
the query performance also depends on the source’s and des-
tination’s CPU cycles for query serving. By configuring mi-
gration CPU cycles and taking advantages of Bloom filters,
NetMigrate has more flexibility to be configured to support
various migration goals, such as minimizing migration time
or optimizing query throughput and latency.
• Minimize migration time. As shown in the experiments,

Rocksteady has the shortest migration time because all the
source CPU cycles can be used for migration. To achieve
the similar migration time as Rocksteady, one way is to
simply pre-set all BF entries as 1, indicating that all queries
should be routed to the destination. NetMigrate will issue
PriorityPulls to fetch not-yet-migrated keys. Thus, Net-
Migrate’s protocol is now essentially the same as that of
Rocksteady. However, this strawman solution only gives
NetMigrate the same query performance as Rocksteady. Al-
ternatively, we can limit the CPU cycles for serving client
query in the source to a low level and leave more CPU
headroom for migration. By doing so, NetMigrate achieves
a similar migration time as Rocksteady, while gaining some
throught and latency benefits because BF correctly identi-
fies the keys belonging to the source.

• Maximize query throughput and minimize latency. Net-
Migrate is designed to gain more benefits in query per-
formance from the source and destination. To maximize
query throughput and minimize query latency, we set the
CPU cycles in the source for client queries to a medium
level, and leave some CPU headroom for migration. By
doing so, NetMigrate achieves the highest throughput and
lowest median latency compared to other baselines while
maintaining a similar migration time, as detailed in §6.2.

• Mimic other migration protocols and take advantages
of all. An interesting feature of NetMigrate is that it can
be configured to hybrid and source-based protocols in ad-
dition to Rocksteady because its design takes fine-grained
migration states into consideration. To make it equivalent
to Fulva (hybrid protocol), we can pre-increment all CBF
entries by 1 so that it will be in state S2 or S4 forever. To
make it the same as a source-based protocol, NetMigrate
needs to disable the BF and CBF updates, which keeps its
state in S1. NetMigrate also consists of transferring late
dirty logs from the source to the destination, similar to a
source-based protocol. In addition to these, we observe in
the evaluation (§ 6.3) that a medium-size BF and CBF can
give the best query performance, e.g., the 8-bit-per-element
setting in Table 2, compared to the ones with more BF and
CBF space. This is because some false positives in the
switch index actually shift the query workload from the
source to the destination, which gives more CPU headroom
for the source to migrate data and helps move the work-
loads to destination faster. Thus, by adjusting some false
positives of BF and the headroom of the source CPU for mi-
gration, NetMigrate can take the performance advantage of
both destination-based and source-based approaches while
maintaining data consistency.

5 Implementation
We have implemented a prototype of NetMigrate with Re-
dis [11] as an example, including the programmable data
plane serving as a migration index, the migration server
agents, and the client running YCSB workloads. The indexing
switch is implemented with 2K lines of P4-16 code and is
compiled to Intel Tofino ASIC [7]. We implement the migra-
tion instance table using a P4 table and the migration state
table using BF and CBF where each BF entry is 1 bit and
each CBF entry has 8 bits. Both BF and CBF use 4 different
hash functions. We implement L3 routing and redirect client
queries by changing their destination or mirroring queries to
both storage nodes. The switch control plane is implemented
with 600 lines of Python code, which registers and deregisters
the migration instances by modifying the migration instance
table in the control plane. The migration server agents and
clients are implemented with 15K lines of C++ code. In the
prototype, we use the Redis-plus-plus library [14] to com-
municate with Redis instances in migration servers. We add
three new User-Defined Functions to get the current hash ta-
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ble information for migration and to scan key-value pairs in
the order of hash values. Source server agents call the user-
defined commands, scan key-value pairs in parallel, and send
migration control and data packets via UDP sockets. Destina-
tion server agents receive migration packets and insert data
into the destination instance. We modified the C++ YCSB
client [17] for key-value store and UDP communication.

6 Evaluation
We conduct extensive experiments comparing NetMigrate to
the latest live migration solutions and demonstrate:
• NetMigrate improves the query throughput by 6.5% to

416% under different YCSB workloads and load-balancing
scenarios (§6.2 and §6.5) while keeping low tail latency.

• NetMigrate supports diverse migration policies with differ-
ent performance goals, including query throughput, latency,
and migration completion time. It improves the average
query throughput from 32% to 78% compared to baseline
protocols with similar migration time (§6.2).

• NetMigrate can achieve the above improved performance
with slim BF and CBF space allocation within the switch
memory limitation (§ 6.3).

• NetMigrate incurs negligible bandwidth overhead (§6.4).

6.1 Methodology
Testbed. The experiments are conducted on a testbed con-
sisting of one 6.5 Tbps Intel Tofino switch and 3 commodity
servers. Each server is equipped with an 8-core CPU (Intel
Xeon E5-2620 @ 2.10GHz), 64GB total memory (two 32GB
DRR4-2400 DRAMs), and one 40G NIC (Intel XL710).
KV workloads. By default, we create Redis key-value stores
consisting of 256 million key-value pairs (∼16GB), occupy-
ing 52.7% memory of a server (33GB including Redis index-
ing data structures), with 4-Byte keys and 64-Byte values. We
use YCSB benchmark [26] designed for key-value stores eval-
uation. The queried keys are generated randomly according to
the Zipfian distribution with θ = 0.99. We use 5% write ratio
and 100% source Redis CPU usage budget to show the overall
performance impact in § 6.2. We furthertune the workload
write ratio among 0% (YCSB-C), 5% (YCSB-B), 10%, 20%,
and 30%, and limit source Redis CPU to different budgets, i.e.,
100% (not overloaded), 70% (slightly overloaded), and 40%
(heavily overloaded), using cpulimit [3] to create different
load balancing scenarios in § 6.5.
Evaluation parameters and metrics. By default, we set
BF size to 512 KB and CBF size to 1024 KB, with which
uses 4 hash functions. The default CBF size of 1024KB was
a sufficiently large starting point as we were not sure how
many KV pairs are on-the-fly during migration. Additional
sensitivity tests in Table 2 show that 1024KB CBF is usually
an overkill but it’s significantly smaller than the total switch
memory. We configure 217 migration groups, each of which
has up to 2048 key-value pairs. In the experiments, we show

client-observed performance metrics, such as Queries per
Second (QPS), end-to-end latency, and migration completion
time. We use extra bandwidth percentages between a client
and servers (denoted as client-size), and between the source
and destination servers (denoted as server-size) to evaluate
the extra migration overhead.
Baselines. We implement three types of migration systems
and their protocols (as discussed in §2.2) in our testbed for a
fair comparison. All baselines follow the same data I/O and
network protocols, export the key-value pairs from the source,
and use the migration agents at both the source and the desti-
nation to transmit the key-value data, as shown in Fig. 2. The
difference is that they do not use switch indexing. We imple-
ment (1) source-based protocols including Slacker [23] and
Remus [33]; (2) destination-based protocols including Rock-
steady [37] with gRPC asynchronous API [6] to implement
the PriorityPull RPCs; and (3) hybrid protocols including
Fulva [30]. In particular, the client in Fulva keeps track of
the migration progress and the hot keys are migrated with a
higher priority based on sampling statistics.

6.2 Overall Performance
In this experiment, we consider a migration scenario where
both the source and the destination are not overloaded and
have 100% CPU budgets for Redis. We show the client-side
throughput and latency during migration using YCSB-B work-
loads with a 5% write ratio.
Query throughput. This experiment highlights the through-
put difference and performance trade-offs in different migra-
tion protocols. Fig. 4 (a), (b) and (c) show the throughput and
migration time of the three baselines. Compared to the three
baselines, NetMigrate improves the average query throughput
by 78.2%, 56.5%, and 31.9% when it is configured as high,
medium, and low migration speeds respectively. Among the
baselines, (1) Rocksteady has the lowest throughput and also
the shortest migration time because all queries are handled
by the destination Redis, leaving the most CPU headroom
for source Redis to perform migration. (2) Fulva’s client
throughput has been cut by a half compared to a fully-utilized
Redis instance’s throughput because of the overhead caused
by double-reads and being bounded by the packet rate. (3)
Source baseline’s throughput keeps stable during migration
and it is slightly lower than without migration because it uses
the smallest portion of source Redis CPU for migration and
thus its migration time is the longest.

When zooming into NetMigrate, we can see that NetMi-
grate’s throughput first increases to a peak level and then
drops as depicted in Fig. 4 (d), (e), and (f). This is because at
the beginning of migration, client queries are mainly served
by the source. During migration, increasing numbers of key-
value pairs are migrated to the destination. The destination
Redis can serve queries of the already-migrated data, and
thus total query throughput increases. When most data are
migrated to the destination, destination is pressured from both
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Figure 4: Comparing Rocksteady, Fulva, Source-based protocol, and NetMigrate on query throughput with YCSB-B workload and
100% source CPU budget. We report the average throughput as the horizontal lines, label the migration start and finish timestamps as dotted lines,

and show migration time of each protocol in the figures. NetMigrate-short, NetMigrate-medium, and NetMigrate-long denote the experimental results when

NetMigrate is configured to different migration time policies.

migrated data insertion and query serving, so the throughput
drops when migration is nearing the completion and there is a
peak throughput point during migration. The peak throughput
is even larger than a single Redis’ query throughput because
the ToR switch lets the client leverage both the source and the
destination Redis’s query power.

Query latency. We then evaluate the latency percentiles as
shown in Fig. 5 and 6. The average median latencies of Rock-
steady, Fulva, and Source baseline are all larger than NetMi-
grate’s under any migration time configurations. NetMigrate
reduces the average median latency from 49% to 65% in
all cases. For average 99%-tail latency, NetMigrate is bet-
ter than Rocksteady and Fulva when it’s configured to the
similar migration time, reducing the latency by 27.0% and
39.5% correspondingly. NetMigrate-long’s 99%-tail latency
is almost twice than Source baseline’s because in the worst
case, NetMigrate still needs to wait for two replies from both
source and destination Redis and it can have PriorityPulls for
wrongly directed queries.

NetMigrate’s adaptable migration policies. NetMigrate
can adjust between migration cost and migration time based
on the user needs. We limit source Redis client query process-
ing CPU cycles to adjust the CPU headroom for migration,
and NetMigrate can migrate data with high migration speed
(similar as Rocksteady), medium migration speed (similar
as Fulva), and low migration speed (similar but better than
Source baseline) based on the configurations. Fig. 4, 5, 6
(d), (e), and (f) show NetMigrate is adaptable to different mi-
gration time requirements and demonstrates different query
performance levels. Also, NetMigrate can achieve similar mi-
gration time while maintaining higher throughput and lower
access latency compared to all three baselines (except for
comparing to Source baseline in the case of 99%-tail latency).

6.3 Tuning Bloom Filter Sizes and Group Sizes
Bloom filter size tuning. We evaluate the impact of BF and
CBF sizes on migration and query performance. We also run
real migration experiments changing the BF and CBF sizes
with totally 217 migration groups and 4 threads to migrate in
parallel. Table 2 shows that combining BF and CBF reduces
false positives in practice significantly. The client-side extra
bandwidth usage can reveal actual false positives. In Table 2,
given a large enough BF size, we shrink the CBF sizes and
find that 64 Bytes CBF is the tuning point before performance
drops. Keeping the good-enough CBF size, we shrink the
BF sizes. Results show that 8-bit-per-element gives the best
performance while avoiding wasting too much space. When
the actual false positive rate is too high, e.g., when space
complexity is less than 2 bits per element, client-side extra
bandwidth usage and 99%-tail latency are worse due to the
increased number of PriorityPulls and double-reads to correct
false positives.
Group size tuning. Given large enough BF and CBF sizes,
e.g., 512KB BF and 64B CBF, we tune the group size (i.e.,
the total number of groups). Table 3 shows that when group
size (i.e., the number of keys in the group) is larger than 220,
the throughput and latency will be harmed because of the
increased double-reads when the queried key is in an ongoing-
migration group.

6.4 Extra Overhead for Migration
Extra bandwidth usage. Table 4 shows extra bandwidth
usage under all write ratios and source CPU budget settings.
Source protocol’s extra bandwidth usage only comes from
the server side, where the source server needs to transfer
dirty logs to the destination when WRITE queries are later
than the migration of their keys. Rocksteady’s only comes
from the client side, where client needs to retry queries with
PriorityPulls. For Fulva, double-reads contribute to almost a
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Figure 5: Comparing Rocksteady, Fulva, Source-based protocol, and NetMigrate on median latency with YCSB-B workload and 100%
source CPU budget. We report the average median latency as horizontal lines and label migration start and finish timestamps as dotted lines.
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Figure 6: Comparing Rocksteady, Fulva, Source-based protocol, and NetMigrate on 99%-tail latency with YCSB-B workload and
100% source CPU budget. We report the average 99%-tail latency as horizontal lines and label migration start and finish timestamps as dotted lines.

BF, CBF size FP Bits/Ele Throughput Median, 99% Latency Client BW

512 KB, 128 B 0.038% 32 564.1 KQPS 1.13 ms, 7.83 ms 0.06%

512 KB, 64 B 0.26% 32 572.7 KQPS 0.92ms , 7.23 ms 0.30%

512 KB, 32 B 2.42% 32 362.5 KQPS 0.89 ms, 26.5 ms 1.37%

512 KB, 16 B 16.0% 32 197.5 KQPS 1.15 ms, 190.2 ms 3.73%

256 KB, 64 B 0.48% 16 569.6 KQPS 0.94 ms, 5.61 ms 0.30%

128 KB, 64 B 2.63% 8 573.2 KQPS 0.93 ms, 4.47 ms 0.30%

64 KB, 64 B 16.2% 4 563.6 KQPS 0.95 ms, 5.42 ms 0.30%

32 KB, 64 B 56.0% 2 523.8 KQPS 0.93 ms, 4.38 ms 0.47%

16 KB, 64 B 92.9% 1 495.8 KQPS 1.01 ms, 5.73 ms 0.65%

Table 2: Impact on migration when tuning BF and CBF sizes.
“FP” represents the upper bound of combined false positive rates of BF and

CBF. “Bits/Ele” stands for total BF and CBF bits per element. “Client BW”

means the extra bandwidth usage between the client and servers, compared

with total query traffic. In the settings listed in the table, the server-side extra

bandwidth usages are all less than 6×10−5% and negligible.

half of extra READ query packets in the client-side and there is
no extra communication between servers. NetMigrate’s extra
bandwidth usage comes from both the client and server sides,
but they are both negligible as shown in the results. The client-
side extra usage comes from PriorityPull query retries as
well as double-reads for undecidable conditions in the switch

Group size Throughput Median, 99% Latency Client BW

211 567 KQPS 2.33 ms, 8.46 ms 0.0060%

214 599 KQPS 1.05 ms, 5.19 ms 0.0165%

218 573 KQPS 0.95 ms, 10.97 ms 0.2613%

219 561 KQPS 0.91 ms, 3.82 ms 0.3733%

220 521 KQPS 0.9 ms, 3.63 ms 0.4858%

221 494 KQPS 0.9 ms, 4.01 ms 0.66%

224 255 KQPS 0.94 ms, 86.27 ms 2.76%

225 180 KQPS 1.07 ms, 250.52 ms 4.05%

Table 3: Impact on migration when tuning group sizes. “Client

BW” means the extra bandwidth usage between the client and servers.

indexing; the server-side extra usage is from transferring late
dirty logs to the destination as Source protocol. As shown
in Table 4, Source protocol’s extra bandwidth usage from
the server side is proportional to the workload write ratio.
Fulva’s extra bandwidth usage all exceeds 35% and is several
times higher than Rocksteady’s. Rocksteady’s and Fulva’s
client-side extra usages decrease with the write ratio increases
because WRITE queries are directly served by the destination.
NetMigrate achieves negligible extra bandwidth usage from
both the client side and the server side. NetMigrate’s client-
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Write Ratio 0% 10% 20% 30%

Source CPU Budget 100% 70% 40% 100% 70% 40% 100% 70% 40% 100% 70% 40%

Extra Bandwidth Usage (%) C S C S C S C S C S C S C S C S C S C S C S C S

Source 0 0 0 0 0 0 0 10.5 0 10.2 0 9.8 0 20.7 0 20.6 0 20.5 0 31.3 0 30.9 0 30.6
Rocksteady 12.5 0 12.6 0 11.3 0 10.9 0 10.4 0 9.3 0 8.6 0 8.6 0 7.5 0 6.9 0 6.8 0 5.5 0
Fulva 58.1 0 60.9 0 50.3 0 49.4 0 55.0 0 46.6 0 43.6 0 58.2 0 53.4 0 36.9 0 39.2 0 44.1 0
NetMigrate (S ×10−5%) 0.025 3.11 0.031 3.39 0.05 2.65 0.005 3.27 0.005 2.69 0.005 1.05 0.004 1.36 0.004 3.74 0.004 2.37 0.003 1.71 0.003 2.88 0.003 2.1

Table 4: Extra bandwidth usage between a client and servers and between two migration servers. ‘C’ stands for Client-side extra bandwidth

usage and ‘S’ stands for that of server-side. NetMigrate’s server-side extra usage is at 10−5% level.
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Figure 7: Comparing Rocksteady, Fulva, Source-based protocol, and NetMigrate on throughput, median latency and 99%-tail latency
with YCSB-B workload (5% write ratio), 70% and 40% source CPU budget.

Write Ratio 0% 10% 20% 30%

Source CPU Budget 100% 70% 40% 100% 70% 40% 100% 70% 40% 100% 70% 40%

Source 445.66 289.16 152.30 417.98 289.17 145.96 424.72 266.27 140.38 412.77 266.51 142.25
Rocksteady 113.17 114.52 67.73 119.11 125.15 77.53 133.76 132.34 84.07 147.79 145.57 99.28
Fulva 239.68 251.77 201.73 262.27 278.99 243.49 244.15 296.81 253.36 241.86 247.76 261.79
NetMigrate 584.41 459.58 297.36 554.67 446.83 290.83 549.70 427.67 286.42 559.92 420.09 278.75

Table 5: Throughput under varied write ratios and source Redis CPU budgets.

side extra usage indicates that double-reads issued by the
switch and PriorityPulls from the destination happen less than
0.05%. Also, NetMigrate’s server-side extra usage is less than
4× 10−5 and negligible. Therefore, NetMigrate puts much
less overhead to both the clients and the servers than other
three baselines.

6.5 More Scenarios and Workloads
In this section, we evaluate more load-balancing scenarios and
write-sensitive workloads by tuning the source Redis CPU
limits and write ratios in the YCSB benchmark.

Load balancing scenarios. In a case that needs load balanc-
ing, the source node is usually overloaded and the destination
node serves queries faster than the source. We mimic differ-
ent overload levels by limiting the source Redis CPU to 70%
and 40%. In this experiment, we configure NetMigrate to
be throughput-optimized. Fig. 7 shows the throughput and
latency comparisons among four migration protocols. Fig. 7
(a) and (d) show the throughput results. A lower source CPU
budget for migration leads to a longer migration time for all
protocols. NetMigrate’s average throughput during migration
are the highest for both 70% and 40% source CPU limitations.

NetMigrate improves the throughput from 63% to 286% with
70% CPU limitation and from 29% to 305% with 40% CPU
limitation. For Rocksteady, the less the CPU budget is given,
the more slowly the throughput increases from the nearly zero
QPS. For NetMigrate and Fulva, at the beginning of migra-
tion, the throughput improvement curves are similar, because
both are limited by the migration speed. After that, NetMi-
grate is better than Fulva because our client is not bounded by
the client-side packet rate. Source baseline keeps a low but
stable throughput. Fig. 7 (b), (c), (e), and (f) show the latency
results. For both 70% and 40% CPU budgets, median latency
of NetMigrate and Source baseline remains low and stable,
while Rocksteady’s and Fulva’s latency suddenly increases
and gradually drops during migration. NetMigrate’s median
latency remains the lowest compared to other baselines. It
reduces the median latency from 8% to 65% with 70% CPU
limitation and from 32% to 97% with 40% CPU limitation.
In terms of 99%-tail latency, Rocksteady is two orders of
magnitude higher than other migration protocols during the
entire migration due to its on-demand data fetching. However,
it quickly falls to normal tail latency when migration finishes.
Both NetMigrate’s and Fulva’s tail latencies drop gradually
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Write Ratio 0% 10% 20% 30%

Source CPU Budget 100% 70% 40% 100% 70% 40% 100% 70% 40% 100% 70% 40%

Source 3.38 1.09 1.40 3.65 1.23 2.38 3.55 1.31 1.33 3.62 1.21 1.28
Rocksteady 3.43 3.15 2.97 3.30 3.14 2.45 2.83 2.70 2.19 2.81 2.51 1.92
Fulva 3.11 2.07 1.93 2.58 2.10 1.80 2.72 2.09 1.80 2.79 2.38 1.82
NetMigrate 2.12 1.20 1.10 2.26 1.11 1.05 2.27 1.05 1.08 2.20 0.97 1.05

Table 6: Median latency under varied write ratios and source Redis CPU budgets.

Write Ratio 0% 10% 20% 30%

Source CPU Budget 100% 70% 40% 100% 70% 40% 100% 70% 40% 100% 70% 40%

Source 6.40 29.32 62.11 6.83 30.05 66.01 7.19 31.03 68.22 8.11 30.31 63.29
Rocksteady 491.86 504.92 864.89 368.89 425.64 973.53 331.37 346.02 866.59 213.79 227.03 795.49
Fulva 21.75 23.34 48.75 21.04 24.59 42.36 18.51 23.42 46.06 21.50 22.65 38.79
NetMigrate 9.21 23.09 48.31 7.73 21.74 33.89 8.38 19.19 41.28 7.50 15.89 34.75

Table 7: 99%-tail latency under varied write ratios and source Redis CPU budgets.

from the high latency level before migration while the tail
latency of Source protocol remains the same as before mi-
gration until it is approaching migration completion. Overall,
NetMigrate reduces 99%-tail latency from 18% to 56% with
70% CPU limitation and up to 94% with 40% CPU limitation.

Diverse write ratios. Changing the YCSB workloads among
different write ratios (0%, 10%, 20%, and 30%), Table 5, 6,
and 7 show that NetMigrate can achieve the highest through-
put (improved from 6.5% to 416%) while maintaining the
lowest latency as Source baseline. Rocksteady’s 99%-tail la-
tency is also much higher than other migration protocols when
write ratios and source CPU budgets change.

7 Discussion and Related Work

Migration speed. In our experiments, migration time is lim-
ited by exporting key-values out from Redis and then sending
through UDP socket. Key-value stores utilizing RDMA or
other kernel-by-passing transmission (e.g., Intel DPDK [4],
MICA [40], KV-Direct [39]) can increase migration speed
by a lot. Despite kernel-bypassing, migration time remains
non-negligible (e.g., 60 sec for 200GB data, 40Gbps links
[37]). Migration degrades query performance significantly
and migration happens fairly frequently in the storage clus-
ters. NetMigrate can work with faster networking to improve
the KV serving performance during migration.

Fault tolerance is also critical during migration, including
server failures and switch failures. To handle server failures,
enabling logs on both source and destination key-value stor-
age servers is a viable solution. Recovery is achieved by
merging logs from both sides to attain the latest version. Red-
Plane [35] and ExoPlane [36] provide fault-tolerant solutions
for switch failures and resource augmentation.

Strong/weak data consistency. UDP-based protocol can
have packet loss and out-of-order transmission, which weak-
ens the data consistency. We can add a reliable transmission
mechanism to our UDP-based migration protocol, and thus
it can be robust to give a strong data consistency over net-
work transmission. The migration control packet replies are
generated by the switch and sent back to the source node.

This avoids duplicated updates in the switch index structures.
Also, when NetMigrate merges data insertion from migration
and write queries at the destination, it needs the key-value
store’s version numbers to guarantee strong consistency. In
practice, many key-value stores provide weak consistency and
sacrifice consistency for availability and performance [12, 19].
NetMigrate is compatible with weak data consistency.

Key and value sizes and multi-key operations. We use
4-Byte keys and 64-Byte values in the prototyping experi-
ments but NetMigrate can be extended to larger key and value
lengths as long as a group id and a single key can be fit into
switch metadata (128 bits at most). If the key size is relatively
small, we can also extend the packet format to support multi-
key operations in one packet and recirculate one query packet
in the switch and treat each pass as serving a single-key query.

Clearing bloom filters in practice. When a shard of data
migration information is updated to the storage cluster index-
ing proxy, the cluster scheduler can pause migrations for a
bit (for synchronization) and clean the probabilistic indexing
data structures shared in the switch periodically.

Migration plan. There are works generating reconfiguration
plan based on cluster load status, migration time, performance
impact and so on [18, 21, 41, 43, 44, 47, 48, 50], while Net-
Migrate focuses on live migration technique.

8 Conclusions
We present NetMigrate, a new live migration approach for in-
memory key-value stores based on programmable data planes.
NetMigrate migrates shards between nodes with zero service
interruption and minimal performance impact using switches
for migration status tracking. Extensive experimental results
demonstrate the ability of NetMigrate to provide enhanced
throughput and maintain low access latency under a variety
of changing workloads and scenarios during migration.
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A NetMigrate Network Protocol

ETH IP UDP OP SEQ DBPort BITMAP KEY1/VER1 VAL1 … KEY4/VER4 VAL4

NetMigrate Protocol

Client Query / Reply OPs

ETH IP UDP OP SEQ DBPort SRC IP SRC Port DST IP DST Port Group ID

Migration Control OPs

Attached depending on OP

Attached depending on OP

ETH IP UDP OP SEQ DBPort KEY1 VALUE1 … KEYn VALUEn

Migrate Data OP Key-value pairs as payload

Client Packets:

Migration Control Packets:

Migration Data Packets:

Figure 8: NetMigrate packet format for migration packets and
client query/reply packets.

Packet format. Fig. 8 shows the packet format in NetMigrate
protocol. NetMigrate is an application-layer protocol inside
L4 payload. A set of dedicated UDP ports are reserved
for key-value storage server/client agents. In the switch,
these ports indicate the packets are NetMigrate migration
packets, client query, or reply packets, to invoke the custom
packet processing logic. The NetMigrate header fields are
OP, SEQ, and DBPort. OP fields represents client query or
reply operators, or migration-related operators. SEQ can
be used as a sequence number for reliable transmissions
with UDP protocol. DBPort refers to which key-value
store instance the packet is responsible for, filled with the
application port. For packets deal with client queries and
data migration, they have KEY, VALUE, or VERSION fields.
KEY and VALUE carry the key and value of a key-value
pair and VERSION indicates the version number in reply
packets for data consistency guarantees during migration.
NetMigrate supports GET, SET, and DELETE client query
types and can be extended to other type of queries. GET and
DELETE query operators only have KEY fields; SET packets
have both KEY and VALUE fields; and all reply packets has
VERSION fields indicating whether the operation is successful
and the reply is from the source or the destination storage
instance. The header fields for migration control packets are
OP, and migration instance (SRC_IP, SRC_Port, DST_IP,
DST_Port) or group_id which is attached depending on
the OP. OP can be MIGRATE_INIT, MIGRATE_TERMINATE,
MIGRATE_GROUP_START, MIGRATE_GROUP_COMPLETE,
MIGRATE_DATA, and their corresponding reply operators.
MIGRATE_INIT and MIGRATE_TERMINATE packets have fields
indicating the source and destination key-value store migra-
tion instance, filled with the server IP address and transport
layer port pair (SRC_IP, SRC_Port, DST_IP, DST_Port).
MIGRATE_GROUP_START and MIGRATE_GROUP_COMPLETE
packets notify switch that a migration group from DBPort
instance has started migration or has completed migration,
to update migration status tracking indexing in the switch.
MIGRATE_DATA packets simply carry the key-value pairs in
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the packets and are transferred from the source server to the
destination server.

Network Routing. NetMigrate leverages existing routing
protocols to forward packets. For migration control and migra-
tion data packets, they are routed as normal packets from the
source server to the destination server, in addition to updating
indexing data structure in the switch. NetMigrate switches
are placed on the path from the clients to the storage clusters.
Client query and reply packets are forwarded based on index-
ing look-up results to determine the “right” storage server as
described in § 4.3.

Merging read replies with version control. NetMigrate has
an 8-bit version control field in reply packets, identifying: (1)
whether the query is successfully executed in the backend
storage server, (2) the reply packet is from the source server
or the destination server, (3) whether the reply is from double-
read, and (4) whether the query needs PriorityPull. Two more
bits are reserved for more controls. To handle double-reads,
the client agent merges two replies received from the source
and the destination to the one with a newer version.

B Artifact Appendix
Abstract
NetMigrate is a key-value store live migration protocol by
leveraging programmalbe switches. NetMigrate migrates
KVS shards between nodes with zero service interruption and
minimal performance impact. During migration, the switch
data plane monitors the migration process in a fine-grained
manner and directs client queries to the right server in real
time.

Our artifact provides code and scripts to reproduce experi-
mental results in the paper, especially in replicating Figures
4-7. We demonstrated experimental results on three commod-
ity machines and a Barefoot Tofino switch.

Scope
The artifact can be used as a prototype of NetMigrate migra-
tion protocol with the backend KVS as Redis, and to validate
the experimental results on performance improvement com-
pared with other migration baselines in the paper.

Contents
The artifact contains four migration protocols’ server
agents in cpp/server folder, YCSB client implementa-
tion for four migration protocols in cpp/YCSB-client, and
switch data-plane and control-plane code for NetMigrate in
tna_kv_migration, with experiment steps in README.md
and experiment_steps folder.

Hosting
The artifact is hosted on GitHub (https://github.com/
Froot-NetSys/NetMigrate, main branch, commit
c977bfa2c8eeec7d77fb4a834cebfb1e3f819e24).

Requirements
We developed and tested the artifact on the below platform:

• Hardware: A Barefoot Tofino switch, and three servers
each with a NIC (we used an Intel XL710 for 40GbE
QSFP+) and multi-core CPU, connected by the Tofino
switch.

• Software: Tofino SDK (version 9.4.0) on the switch,
Python2.7 on the switch, and gRPC 1.50.0 and protobuf
3.21.6.0 for PriorityPulls in KV servers.
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Abstract. We introduce IONIA, a novel replication protocol tai-
lored for modern SSD-based write-optimized key-value (WO-
KV) stores. Unlike existing replication approaches, IONIA

carefully exploits the unique characteristics of SSD-based
WO-KV stores. First, it exploits their interface characteris-
tics to defer parallel execution to the background, enabling
high-throughput yet one round trip (RTT) writes. IONIA also
exploits SSD-based KV-stores’ performance characteristics
to scalably read at any replica without enforcing writes to
all replicas, thus providing scalability without compromising
write availability; further, it does so while completing most
reads in 1RTT. IONIA is the first protocol to achieve these
properties, and it does so through its storage-aware design.
We evaluate IONIA extensively to show that it achieves the
above properties under a variety of workloads.

1 Introduction
Key-value stores play a central role in datacenter applications.
Today, many KV stores such as LevelDB [31], RocksDB [26],
Cassandra [2] and others [8, 15, 62, 64] are built using write-
optimized indexes (WOIs) such as LSMs [58]. We refer to
these stores as WO-KV stores. WO-KV stores have become
a popular choice because they offer significantly higher write
performance than B-tree stores [9, 62]. Further, recent WO-
KV stores are optimized for modern SSDs, and can extract
their high bandwidth and offer low latencies [73].

As KV stores are increasingly deployed in datacenters, mak-
ing them fault tolerant is critical. A common way to achieve
this goal today is to replicate the store on many machines and
use off-the-shelf replication protocols like MultiPaxos [43],
Raft [56], or Viewstamped Replication (VR) [46] to coordi-
nate writes and reads to the store. For example, ZippyDB at
Meta [65, 68] uses MultiPaxos to replicate RocksDB. Several
other systems use a similar layered design [11, 20, 21, 47].

Unfortunately, however, using off-the-shelf protocols to
replicate modern WO-KV stores squanders their high write
performance (§2). These protocols offer low write through-
put because they must apply writes sequentially on a single
thread to ensure that the replicas are identical [66]. They

‡Co-primary authors
§Did part of the work during an internship at VMware Research

also incur high latencies because replicas must coordinate
to agree on the order of writes. Although many prior proto-
cols [13, 37, 42] have been proposed to safely apply writes
on multiple threads for high throughput, they incur high laten-
cies. At the same time, many prior approaches [28, 44, 59, 61]
that achieve low-latency writes suffer from low throughput.
Existing replication approaches thus cannot preserve the high
write performance of WO-KV stores.

Off-the-shelf protocols also lead to poor read performance.
For strong consistency, these protocols restrict reads to a des-
ignated replica called the leader [38, 52, 55]. Thus, the read
bandwidth of the followers goes unused. This is particularly
bad for WO-KV stores because of their read-write asymme-
try [9]: reads are more expensive than writes and thus perfor-
mance drops with more reads. As a result, serving all reads
at the leader pushes it to a less performant regime, impairing
overall throughput. Many prior protocols have devised ways
to scalably read from followers. However, as we discuss (§2),
many of them suffer from high latencies [11, 74]; others that
offer low latencies do so by (regrettably) trading off write
availability and slowness tolerance [14, 27, 39, 70].

An ideal protocol must preserve the high write performance
of WO-KV stores, offering high throughput and low latency.
It must also safely (i.e., with consistency) scale reads while
offering low-latency reads without impacting availability. We
observe that a main reason why existing approaches do not
achieve these ideal properties is that they are largely oblivious
of the underlying SSD-based WO-KV store’s characteristics.

In this paper, we design IONIA, a novel replication protocol
that carefully exploits the interface and performance char-
acteristics of the underlying SSD-based WO-KV store. We
show that such careful storage-aware design enables IONIA

to achieve high-throughput, 1RTT writes, and scalable, 1RTT
reads without impacting availability (§3).

IONIA avoids the high latency of writes inherent in prior
parallel-execution protocols [13, 37, 42] by exploiting the
interface atrributes of WO-KV stores, improving the write
path. In particular, WO-KV stores convert all writes into blind
writes to avoid performing a slow read before a write. Con-
sequently, they do not return an execution result but only an
acknowledgment to clients when writes complete; i.e., the
update interfaces in WO-KV stores are nil-externalizing, a
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property we identify in our prior work on Skyros [28]. Thus,
similar to Skyros, IONIA needs to only guarantee durability
when writes complete, which can be achieved in 1RTT with-
out coordination. IONIA then defers ordering and parallel
execution to the background, achieving both high-throughput
and 1RTT writes.

IONIA’s main novelty is its scalable, 1RTT read path. We
first observe that existing low-latency, scalable read proto-
cols conflate scalability and locality due to their focus on
in-memory stores. Locality means that reads can be locally
served by any replica without additional messages to other
replicas. This conflation, however, compromises write avail-
ability and slowness tolerance: because clients must be able
to locally read at any replica, writes are replicated to all repli-
cas (not just a quorum). Locality is a necessary condition for
scalability for in-memory stores, where network messages
are the bottleneck. In contrast, we realize that for SSD-based
stores, scalability can be decoupled from locality: because
SSD is the bottleneck (instead of network), even non-local
reads that send additional messages won’t impact scalability
as long as these additional messages access only in-memory
state (not the SSD) on other replicas.

Based on this insight, IONIA replicates only to a quorum
for availability while allowing reads from any replica. Then,
to handle lagging followers, for every follower read, IONIA

performs a check (which we call a meta query) at the leader
to validate the result returned by the follower. However, this
approach can still scale because the leader serves meta queries
from memory at high throughput. Overall, compared to prior
protocols that focus on in-memory stores, IONIA exploits the
performance gap between SSDs and DRAM to decouple scal-
ability from locality, achieving scalable reads.

Second, while the meta-query approach offers scalability,
it in itself does not offer 1RTT reads, a requirement for mod-
ern SSD-based stores that offer low latencies. To achieve
1RTT reads, IONIA sends the read to a follower and the meta
query to the leader in parallel. However, a challenge is that,
since the requests are concurrent, the leader cannot directly
indicate to the client whether or not the follower’s result is
up-to-date. To solve this problem, IONIA proposes a client-
side consistency-check mechanism, where the leader returns
enough information about the key being read and the client
makes the decision about the freshness of the follower’s result.

We have designed and implemented IONIA (§4). A main
challenge in our design is to ensure that meta queries can
always be served from the leader’s memory. IONIA addresses
this by maintaining a compact history of recently modified
keys instead of all keys in the store. A related challenge is
how to ensure that the leader returns the correct information
for meta queries for keys not present in the history. IONIA

solves this problem by returning slightly inaccurate informa-
tion for such keys but without endangering consistency. We
have model checked IONIA to show its correctness.

Our evaluation (§5) shows that for writes, IONIA matches

the throughput of parallel-execution protocols while offering
the low-latency of Skyros; IONIA also approximates the perfor-
mance of an unreplicated server. For reads, IONIA offers linear
scaling, saturating the read bandwidth of all replicas without
meta queries becoming the bottleneck. With mixed workloads,
IONIA offers 1.8× higher throughput than IONIA-LR (a variant
where reads are restricted to leader). We show that most reads
finish in 1RTT and that this is achieved with small histories
(e.g., 50MB). With YCSB [19], IONIA improves throughput
by 16× to 38× over MultiPaxos.
This paper makes three contributions.
• We first show how designing a replication protocol by pay-

ing attention to the underlying SSD-based WO-KV store
layer yields desirable properties.

• Second, we present novel ideas such as decoupling scalabil-
ity from locality and client-side consistency checks, which
enable IONIA to achieve scalable and low-latency reads
without compromising availability or slowness tolerance.

• Finally, we present a thorough experimental evaluation,
showing IONIA’s benefits.

2 Background and Motivation
We provide background on WO-KV stores and building repli-
cated KV stores. We discuss why existing protocols are insuf-
ficient for WO-KV stores, leading to undesirable properties.

2.1 WO-KV Stores Background
KV stores are implemented using a disk-based index structure.
Stores built using B-tree or its variants [57] are a poor fit for
write-intensive workloads because writes in B-trees require
random IO, which is significantly slower than sequential IO.
As a result, modern KV stores have turned towards write-
optimized indexes (WOI) such as LSMs [58] or Bε-trees [12].
WOIs offer higher write throughput than B-trees because they
batch writes and sequentially transfer large batches to disk,
amortizing IO cost [9]. Today, many local KV stores including
LevelDB [31], RocksDB [26], and several others [60, 62, 64,
73] are built atop WOIs. WO-KV stores are also used as
storage engines in distributed systems like BigTable [15],
Cassandra [2], and CockroachDB [17].
Read-Write Asymmetry. In B-trees, both writes and reads
require random IO and thus both are limited by device’s ran-
dom IOPS [9]. WOIs provide the same read performance as
B-trees [9] and are limited by random IOPS. However, writes
in WOIs are limited by sequential bandwidth. Consequently,
WOIs have a read-write asymmetry in performance: writes in
WOIs are much faster than reads.

An important implication of this asymmetry is that KV
stores built using WOIs avoid query-before-update [9]; is-
suing a query before an update squanders the benefits of
WOIs, essentially making WOIs behave like B-trees. As a
result, WO-KV stores convert all writes into blind writes.
For example, a put simply absorbs a write to a key without
checking if the key is already present since the check would
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Figure 1: Off-the-Shelf Replication. The figure shows how writes and
reads are processed in replicated stores built using off-the-shelf protocols.

require a (slow) read [50]. Similarly, a delete blindly inserts
a tombstone without checking for key presence [67]. Even
read-modify-writes (RMW) are transformed into blind up-
serts [9]; as an example, RocksDB implements upserts using
merge [25]. An upsert encodes a RMW by specifying a key
k and a function f that changes the value of k. k and f are
then blindly recorded; the value is evaluated later only when
needed (e.g., on a read). This, in turn, means that when writes
complete, WO-KV stores do not reveal system state to the
clients [28]: they do not return an execution result or execu-
tion error (e.g., to indicate key presence or absence) but only
an acknowledgment. Our prior work calls such updates nil-
externalizing or nilext [28]. Note that while a nilext interface
does not return execution errors, it can still return validation
errors (e.g., malformed requests, unreachable server).

2.2 Consistent Replicated KV Stores Background
A common way to build a strongly consistent replicated KV
store is to layer an off-the-shelf replication protocol like Mul-
tiPaxos atop the local KV store. Many systems [11, 20, 21, 47]
including Meta’s ZippyDB [65, 68] use such a layered design.

Figure 1 shows how writes and reads are processed in a
replicated KV store built using off-the-shelf replication proto-
cols such as MultiPaxos (or Raft [56] or VR [46]). As shown,
clients submit writes to the leader, which orders the requests
by appending them to its consensus log; the leader then sends
the request to the followers. The followers append to their
logs and respond. Once a majority has agreed to the order, the
leader applies the writes to the KV store and returns the result.
Asynchronously, the leader sends a commit, upon which all
followers apply the ordered writes. All replicas apply writes
sequentially on a single thread to avoid non-determinism. Ap-
plying writes on multiple threads is non-deterministic [42]:
replicas may apply writes in different orders, causing the KV
store state across replicas to diverge.

Because followers could be lagging and thus could return
stale data, off-the-shelf protocols allow reads only at the leader
to ensure strong consistency [38, 48, 52, 55]. To prevent a
deposed old leader from serving stale data, these protocols
employ leader leases [38, 46], which ensures that a new leader
is elected only after the old leader’s lease has expired.

2.3 Why Are Existing Protocols Insufficient?
We first explain the drawbacks of off-the-shelf protocols to
replicate SSD-based WO-KV stores. Prior work has built
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√
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Table 1: Existing Approaches. The table compares different existing
approaches. ∆: waiting delay for bigger batches (in parallel execution) or
followers to catch up (in Gaios); *: CRAQ builds upon chain replication [71]
which incurs O(n) RTTs for writes; n: number of replicas.

optimized protocols to improve over off-the-shelf replication.
However, as we discuss, these protocols are still not the ideal
choice for SSD-based WO-KV stores, leaving a huge room
for improvement in performance and availability.

We will use an unreplicated server as a baseline to show
the drawbacks of existing protocols. As shown in Table 1
(first row), an unreplicated server offers low latency for writes
and reads because clients can submit a request to the server
and get a response in 1RTT. The unreplicated server can also
offer high throughput because it can safely apply writes on
multiple threads. However, the unreplicated server has an
obvious problem: it cannot tolerate server failure or slowness.
Further, read performance is limited by the single server.

An ideal system must tolerate failures and slowness while
matching the unreplicated server’s latency and write through-
put. It must also scale read performance with replicas.

2.3.1 Off-the-Shelf Protocols are Ill-Suited for WO-KV
Off-the-shelf protocols like MultiPaxos tolerate failures and
slowness (Table 1 second row). However, these protocols of-
fer significantly lower throughput than an unreplicated server
because they must apply writes sequentially on a single thread
to avoid non-determinism. Modern WO-KV stores, how-
ever, are optimized for multi-core CPUs and SSDs [18, 26],
where ingesting data using many threads is necessary for
high throughput. These protocols also incur high latencies
for writes because the replicas must coordinate to order the
writes in the critical path. Specifically, writes incur 2RTTs
(client→leader→followers→leader→client), doubling the la-
tency of an unreplicated server (client→server→client). Mod-
ern WO-KV stores offer low latencies [18] and thus latency
from additional RTTs is undesirable. As we soon show, such
eager coordination is, in fact, unnecessary for WO-KV stores.

Off-the-shelf protocols restrict reads to the leader. Because
the leader sees all writes, with leader leases [46], reads are
guaranteed to see the latest data, completing them in 1RTT.
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However, this means that reads cannot scale with replicas.
Restricting reads to the leader also reduces overall throughput
because reads contend with writes. This is particularly bad
for WO-KV stores because of read-write asymmetry, where
performance drops with more reads. If the leader processes
both reads and writes, the ratio of reads to writes will be
higher than a system that splits the read load across replicas.
Since WO-KV stores offer lower performance with more
reads, the leader will operate at a lower throughput regime
than a system that spreads reads. Since the leader’s throughput
is the bottleneck, the overall performance suffers.

2.3.2 Shortcomings of Existing Improvements
We now discuss the vast body of work that has attempted
to improve the write and read performance of off-the-shelf
protocols. We discuss their shortcomings and argue why they
are not a great fit for replicating WO-KV stores.
High-Throughput Or Low-Latency Writes. As we dis-
cussed, applying writes on multiple threads is essential to
realizing high throughput in modern WO-KV stores. Fortu-
nately, prior protocols such as CBASE [42], Eve [37], and
others [1, 13, 24] (third row) have shown how to leverage
multi-threaded execution in replicated systems while avoiding
inconsistencies. For correctness, these protocols concurrently
execute only non-conflicting writes; conflicting writes are
serialized and applied in the same order across all replicas.
Thus, these protocols can offer high write throughput and
could serve as a good base for replicating WO-KV stores.
Unfortunately, however, these protocols incur high latencies
similar to off-the-shelf protocols. In fact, the latency can be
higher than off-the-shelf protocols because these protocols
must create bigger batches to find opportunities to concur-
rently apply many writes. While prior protocols have pro-
posed techniques for low-latency writes by exploiting com-
mutativity [44, 53, 59], speculation [41, 61], network order-
ing [45], and interface semantics [28] (fourth row), these pro-
tocols apply writes sequentially and thus suffer from low
throughput. Existing protocols to improve write performance
thus either suffer from high latencies or low throughput.
Scalable Reads: Write Availability Or Low Latency. Prior
work has proposed ways to scale reads by allowing reads at
all replicas. The main challenge these protocols must solve is
to ensure that a read from a replica returns the most up-to-date
data; a stale read will violate strong consistency [33].

Systems like Gaios [11] and Gnothi [74] (fifth row) ensure
consistency by routing all reads to the leader; the leader then
dispatches the read to a follower. The follower next waits until
it has caught up with the leader before serving the read. While
this approach scales reads, it incurs several RTTs and waiting
delay. This was acceptable for spinning disks where disk
latency was much higher than RTTs. However, for modern
SSD-based WO-KV stores, incurring multiple RTTs increases
latency considerably compared to an unreplicated server.

A few protocols [14, 27, 30, 39, 70] achieve scalability
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Figure 2: Read-Write Asymmetry. The figure shows how performance
decreases with more reads in WO-KV stores.

while offering 1RTT reads (sixth row). These protocols target
in-memory stores and thus, network IO is often the scala-
bility bottleneck. Therefore, for scalable 1RTT reads, these
protocols ensure a read at a replica is always local: a client
locally reads at a target replica without additional messages
to other replicas. However, to enable local reads, these proto-
cols must replicate writes to all replicas (not just a quorum)
before writes can complete. This conflation of scalability and
locality, however, has a critical impact on availability because
writes cannot complete if any replica fails [30]†. Further, they
cannot exclude slow replicas when processing writes. We thus
observe a fundamental tradeoff in these protocols: they offer
scalable reads with low latency but do so at the expense of
availability and slowness tolerance.

Summary. Off-the-shelf protocols suffer from poor perfor-
mance and thus are not suitable for building replicated WO-
KV stores. While many solutions have been proposed to im-
prove writes, they do not achieve high throughput and low
latency simultaneously. A few solutions have been proposed
to achieve scalable reads. These protocols either compromise
on latency, or tradeoff write availability and slowness toler-
ance for low latency. Further, protocols that improve writes
suffer from poor read performance (e.g., parallel-execution
protocols do not scale reads); similarly, scalable read pro-
tocols do not offer optimal write performance (e.g., CRAQ
incurs O(n) and Hermes incurs 2RTTs for writes).

We next show how a protocol that carefully exploits the
characteristics of the underlying SSD-based WO-KV store
can advance beyond existing approaches and offer high-
throughput 1RTT writes, and scalable 1RTT reads without
compromising on availability or slowness tolerance (last row).

3 IONIA Ideas and Protocol Overview
We now describe the key insights behind IONIA and provide
an overview. The next section presents the detailed design.

3.1 Key Insights and Ideas
Deferred Parallel Execution with Immediate Durability.
IONIA achieves high-throughput writes with low latency. To
achieve high throughput, IONIA employs techniques from
prior parallel-execution protocols and concurrently executes

†CRAQ and Hermes must wait for an expensive reconfiguration to com-
plete before the system can become available after failures.
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only non-conflicting writes to avoid inconsistencies. How-
ever, existing high-throughput protocols incur high latencies.
We realize this latency cost can be avoided by exploiting
the interface semantics of WO-KV stores. Because WO-KV
stores convert all writes into blind writes, they do not return
an execution result; i.e., the writes are nilext. Thus, similar
to Skyros [28], IONIA need not immediately order and apply
writes to the underlying WO-KV store. Instead, it must only
guarantee that writes are durable before acknowledgment.
IONIA achieves durability in 1RTT by having the clients write
to many replicas in parallel without coordination across repli-
cas. Ordering and parallel execution of writes are deferred to
the background. Thus, IONIA combines the benefits of prior
parallel-execution and low-latency approaches to achieve both
high-throughput and 1RTT writes.

Decoupling Scalability from Locality. Existing low-latency,
scalable read protocols conflate scalability and locality as
they focus on in-memory stores. To achieve scalability, they
require that reads are local (no additional messages to other
replicas). Locality is necessary for scalability in in-memory
stores where network messages are the bottleneck. This con-
flation, however, impacts availability and slowness tolerance.
We realize that in SSD-based WO-KV stores, SSD random
IOPS is the bottleneck, not the network messages. Thus, reads
can scale even if they are non-local (i.e., they send additional
messages to other replicas), as long as the additional mes-
sages access only in-memory state (not the SSD) on other
replicas. That is, scalability can be decoupled from locality in
SSD-based stores.

Based on this insight, IONIA writes only to a quorum for
availability and slowness tolerance and allows reads at any
replica. The challenge, however, is that a read at a replica
cannot rely on just the local state because the replica might
be lagging. IONIA addresses this challenge as follows. For
every read at a follower, IONIA sends a meta query to the
leader (which is guaranteed to have seen all writes). The meta
query helps identify whether or not the result returned by the
follower is up-to-date.

A critical requirement for scalability is that meta queries
must be cheap; in particular, meta queries must avoid SSD
IO. Otherwise, the meta-query throughput could saturate be-
fore the replicas’ collective SSD IOPS are saturated, limiting

scalability. We soon discuss how IONIA can always serve
meta queries from memory without SSD IO (§4). Two factors
help ensure that in-memory meta queries will not become
the bottleneck in practice. First, reads in WO-KV stores are
limited by random IOPS, which is ∼600K IOPS [35] in to-
day’s fast SSDs. On such hardware, even with caching and
skewed workloads, modern WO-KV stores offer only about
850K reads/s [18]. Second, most systems typically use a small
replication factor (3 or 5) [34]. However, even an unoptimized
server in our setup could handle 12M meta-query-like RPCs/s,
which is well over the collective read bandwidth (5∗850K).
Thus, meta queries will not be the scalability bottleneck.

By spreading the read load, IONIA also improves overall
performance under mixed workloads. In WO-KV stores, as
reads increase, the performance drops due to read-write asym-
metry as illustrated in Figure 2. Thus, under mixed work-
loads, taking off reads from the leader and spreading it across
replicas, reduces its read-write ratio which improves leader’s
throughput. For example, consider a workload with 90% reads
and 10% writes; this is a low performance regime for WO-
KVs (L in Figure 2). If the 90% reads are split across five
replicas, the leader would process 18% reads and 10% writes
(i.e., read-write ratio is 65:35), which is a higher performance
regime (H). Overall, distributing reads improves the leader’s
throughput; since the leader’s storage layer is the bottleneck,
improving it boosts the overall performance.

Low-latency Reads via Client-side Consistency Checks.
While the meta-query approach enables scalability, it in itself
does not ensure 1RTT read, which is important for modern
SSD-based stores that offer low latencies. To achieve 1RTT
and scalable reads, our main idea is to have clients send the
meta query to the leader and the actual read to a follower in
parallel. However, this raises a challenge – the leader cannot
definitively determine whether or not the data returned by the
follower is up-to-date. This is because the leader does not
know the follower’s status at the time the read was performed
at the follower. To solve this, IONIA uses a novel client-side
consistency check, where the leader returns information about
the key being read, and the client makes the final decision
about the freshness of the follower’s data. If the client de-
termines that the data is stale, it retries the read. Client-side
checks offer 1RTT reads while ensuring strong consistency.
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3.2 IONIA Protocol Overview

We now provide an overview of IONIA. Figure 3(a) shows
the write path. Clients send writes to all replicas in parallel.
The replicas make the writes durable without any coordina-
tion and respond directly to clients. Once a client receives
enough replies including one from the leader, the write is
complete; clients can proceed without waiting for the writes
to be ordered or applied. Thus, all writes complete in 1RTT.
The 1-RTT write path is similar to Skyros [28].

While IONIA does not order and apply writes in the critical
path, writes must be eventually ordered and applied in the real-
time order to preserve linearizability [33]. That is, if operation
y starts after another operation x completes, then y must be or-
dered after x. However, when concurrently executing requests,
non-conflicting writes (or, writes that update different keys)
can be applied in any order across replicas. Only conflicting
writes that update the same key must be applied in the same
real-time order across replicas. IONIA ensures such correct
write ordering in the background. The leader periodically de-
termines the order for the writes and gets enough followers to
accept the order; all replicas then apply conflicting writes in
the order determined by the leader in the background.

We next discuss the read path (see Figure 3(b) and (c)).
Reads can be served by any replica. When a read to a key
arrives at the leader, there might be updates to the key that
have not been ordered and executed yet. This is because IONIA

orders and executes writes only lazily. Thus, in IONIA, before
the leader can serve a read, it must first check if there are
pending updates to the key being read. If no, the leader serves
the read immediately (3(b)(i)). If there are pending updates,
then the leader synchronously orders and executes the updates
before serving the read (3(b)(ii)). Fortunately, such slow-path
reads are rare in practice due to two reasons. First, the leader
keeps ordering and executing writes in the background; thus,
in most cases, updates are executed already by the time a read
arrives. Second, traces from deployed systems [23] show that
reads to recently written objects are rare [28].

In IONIA, reads are served by followers as well. To prevent
clients from seeing stale data from lagging followers, in addi-
tion to sending the actual read request to a follower, clients
also send a meta query to the leader as shown in 3(c). The
follower locally reads its KV store and returns the kv pair. The
leader responds to the meta query with information about the
key being read (in particular, the latest update applied to the
key). IONIA ensures that the leader can get this information
from memory without an SSD IO. The client uses this infor-
mation to decide whether or not the result from the follower
is valid. If valid, the read completes in 1RTT; in contrast, if
the data is stale, the client retries the read at the leader.

4 IONIA Design and Implementation
We use viewstamped replication (VR) as a baseline to de-
scribe IONIA’s design. VR is leader-based and makes progress

 MakeDurable(w) // add write w to durability log
 AddToExecQueuesWithDeps(B) 
 // add batch to execution queues with dependencies
 Apply(w) // apply write w to KV store
 LeaderRead(k) // returns data, must_sync 
 MetaQuery(k) 
 // returns must_sync, modified_index for k 
 FollowerRead(k) // returns data, applied_index

Figure 4: Storage-system Upcalls in IONIA.

through a sequence of views. In each view, one replica serves
as the leader. VR tolerates f failures with 2f+1 replicas and of-
fers linearizability. Upon writes, the leader appends requests
to a consensus log and sends a prepare to the followers. Once
f followers acknowledge via a prepare-ok (after adding to
their logs), the leader applies the writes and returns the result
to the client. Reads are served by the leader and the system
uses leader leases for consistency. The replication layer inter-
acts with the KV store via upcalls; writes are applied via the
Apply upcall and reads are served via the Read upcall.

IONIA is also leader-based and offers the same guarantees
as VR. IONIA augments the interface between the replication
layer and the storage system with additional upcalls as shown
in Figure 4. These upcalls help IONIA handle different op-
erations. We first explain how IONIA handles writes (§4.1)
and reads (§4.2) during normal operation. We then describe
how IONIA handles failures and view changes (§4.3). Finally,
we present correctness proof sketch (§4.4), model checking
results (§4.5), and implementation details (§4.6).

4.1 Writes

IONIA’s goal is to achieve high-throughput writes with low
latency (1RTT). Our idea to achieve this end is to apply writes
on multiple threads but avoid high latency by deferring or-
dering and execution of writes to the background. IONIA can
defer ordering and execution because WO-KV stores do not
return an execution result. IONIA must only ensure that writes
are durable before acknowledgment (i.e., they will not be lost
even if f replicas fail).

To achieve low-latency durability, IONIA borrows the idea
of durability logs from Skyros [28]. IONIA clients directly
send writes to all replicas. Each replica adds the write to a
separate durability log (via the MakeDurable upcall); the repli-
cas then respond directly to clients without any coordination,
completing writes in 1RTT. Intuitively, the durability logs
contain writes that are not yet ordered and applied. A client
waits for a supermajority ( f + d f/2e+1) acknowledgments
including one from the leader to complete a write. Because the
leader’s response is required to complete writes, the leader’s
durability log captures the correct (real-time) ordering. The
leader uses this property to order requests in the background
during normal operation. When the current leader fails and a
new one is elected, supermajority quorums enable IONIA to
reconstruct the linearizable order as we soon discuss (§4.3).

Although the leader’s durability log captures the correct
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order, the order is not finalized yet as writes might be present
in different orders in durability logs across replicas. This is
because writes are added to durability logs without any coor-
dination. Thus, the leader must finalize the order before the
writes can be applied to the KV store. To do so, the leader
periodically gets a majority of replicas (including self) to
agree on the order. The leader adds requests from its dura-
bility log to its consensus log in order and sends a prepare.
The followers append the requests to their consensus logs
and respond with prepare-ok. Once f followers respond, the
ordering is finalized. The leader can now apply the writes to
the store. The leader also sends a commit which informs the
followers of the latest consensus-log index up to which the
order has been established; the followers can apply writes
up to that index. To improve throughput, the leader batches
several requests in a single prepare; however, this batching
does not affect client-visible latency since the ordering (and
execution) happen entirely in the background.

Once ordering is established, each replica applies writes to
the store in multiple threads. The replicas execute only non-
conflicting writes in parallel. Conflicting writes are executed
serially and in the order they appear in the consensus log;
this ensures that conflicting writes are executed in the same
order across replicas. IONIA realizes the above idea as follows.
Each replica maintains a set of execution queues, one for each
execution thread; an execution thread applies writes from its
queue in order. However, before applying a write w, IONIA

must ensure that all writes that conflict with w and appear
before w in the consensus log have been executed. To capture
and set these dependencies, the replication layer invokes Ad-
dToExecQueuesWithDeps when a batch of writes has been
ordered. The storage layer captures conflicting writes to the
same key by adding writes to a particular key to the same
queue in the order they appear in the batch; the replicas use a
deterministic hash of the key to achieve this. Other conflicts
between requests can be captured by explicitly annotating a
request w with requests from other queues that must be exe-
cuted before w. For example, a multi-key write can be added
to any queue with explicit dependencies to the other requests
in the queues that conflicts with w.

To execute requests, each execution thread retrieves a re-
quest w from its queue and waits until the dependencies of w
are executed before it executes w. Once a replica has applied
a request to the KV store, it removes it from its durability log.
The replica also updates its applied-index, the latest index in
the consensus log up to which it has applied to the KV store.
The leader keeps learning each follower’s applied-index. Fig-
ure 5 shows how writes are ordered, assigned to execution
queues, and finally applied to the KV store.

4.2 Reads
IONIA’s goal is to provide scalable, 1RTT reads without
impacting availability. As we discussed earlier, to ensure
strongly-consistent reads, IONIA issues a meta query to the

durability log consensus log
commit index

ordered ordering
in progress

write

1RTT
unordered …

assign to exec queues 
based on hash(key)

KV

clients

background 
operations

foreground 
operations

Figure 5: IONIA Write Processing at a Replica. The figure shows
how writes are processed in one replica (other replicas are not shown).

leader to check the validity of a read at a follower. IONIA en-
sures scalability by serving the meta queries from the leader’s
memory while the reads at the replicas are bound by SSDs’
random IOPS. Further, to achieve 1RTT reads, IONIA clients
send the actual read request and meta query in parallel and
employ a client-side check to validate the returned data. We
now explain how the meta query and client-side consistency
check mechanisms work. We then describe how IONIA en-
sures that the leader can always serve the meta query from its
memory by maintaining a compact history.

4.2.1 Meta Queries and Client-side Consistency Check

Reads at the leader can be served directly without any cross-
replica checks because the leader is guaranteed to have seen
all writes. However, when a read arrives at the leader, there
might be unordered (and hence not-yet-applied writes) in its
durability log. Thus, upon a read, the leader first checks if
there are such pending updates to the key being read (via
the LeaderRead upcall). If there are no pending updates, the
leader reads and returns the kv pair, finishing the read in 1 RTT.
If there are pending updates, the upcall returns a must_sync
flag. The replication layer then synchronously appends the
pending writes from the durability log to its consensus log,
gets the followers to agree, applies the writes to the KV store,
and finally reads and returns the kv pair. In this case, the read
completes in 2 RTTs. However, such synchronous reads are
rare as we discussed (§3) and will show in our evaluation.

Reads at the followers require a check at the leader because
followers could be lagging. To read at a follower, a client
sends the read to the follower and a meta query to the leader.
To enable 1RTT reads, both requests are sent in parallel. The
meta query specifies the key being read. Upon receiving a
read, the follower reads the kv pair from the store (via the
FollowerRead upcall) and returns it. To answer meta queries,
the leader maintains a history; this history maps a key to the
consensus-log index corresponding to the latest write that
modified the key. Upon a meta query, the leader first checks
its durability log to see if there are pending updates to the key
k being read. If there are none, the leader queries the history
and obtains the latest index i that modified k.

One way to implement the meta queries is to have the leader
make the decision about freshness the of follower’s data.
Specifically, the leader can compare the follower’s applied-
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Figure 6: History and Meta Queries at Leader. Writes completed:
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k2 return the actual modified index; query for k1 returns LTI because k1 is
not in history; query for k4 returns value of k4 after synchronous execution.

index a f (which it learns periodically) and i. If a f > i, then the
leader could decide that the follower is to up-to-date. But this
approach is incorrect. This is because the follower could re-
turn an older value, then apply a later update, and then update
a f at the leader. Now, if the meta query reaches the leader, it
would incorrectly determine that the follower’s result is valid,
violating strong consistency.

To address this issue, IONIA pushes the check to the client.
In addition to the kv pair, the follower also returns its own
applied-index. Note that the follower reads its applied-index a
before reading from the KV store, so that the kv pair returned
is never older than a, even with concurrent writers. The leader,
instead of making a decision locally, returns the latest index i
that modified k. The client then performs the check by com-
paring a and i. If a >= i, then the follower has applied all the
updates to k and thus the returned data is up-to-date, finishing
the read in 1RTT. If a < i, then the follower has not applied
all updates to k and thus the data is stale. In such cases, the
check fails and the client retries the read at the leader.

When there are pending updates in the durability log for
key being read, the leader knows that the follower’s data will
be stale and could instruct the client to retry. However, this
would increase latency. IONIA optimizes this case by having
the leader synchronously order and execute updates and return
the actual read result. The client then ignores the result from
the follower and uses the one from the leader.

4.2.2 Cheap Meta Queries with Compact History

The history at the leader logically needs to maintain the latest
consensus-log index that modified every key. To ensure meta
queries are fast, the history must be maintained in memory,
not disk. However, maintaining the modified index for every
key in memory is impractical for large disk-based stores.

To solve this problem, IONIA maintains the history only for
recently modified keys. A key is added to the history when
a write to it is recorded on the consensus log. The leader
periodically learns each follower’s applied-index. When all
followers have applied upto i, the history upto i is trimmed.
This raises a problem, however: when a meta query arrives for
a key k, the history may not contain k. Note that a key k being
absent from the history means that all followers have applied
all writes to k. However, the leader still cannot indicate to the
client that the data from the follower is up-to-date. This is
because, the leader doesn’t know which version the follower
returned. Specifically, the follower could have returned an

older version and then applied the latest update, causing the
leader to trim the history before the meta query arrives.

What must the leader return when k is not in the history?
Intuitively, the leader must return an index greater than or
equal to the actual modified index. Returning anything smaller
is unsafe: the client may incorrectly believe the follower has
given the latest data. Thus, when the leader does not find a
key in its history, it returns the index that was last trimmed
from the history; we call this the last-trimmed index or lti.
Returning lti is correct, because if the modified index was part
of the trimmed history, lti would be greater than or at least
equal to the modified index. Figure 6 shows how the leader
maintains the history and returns results for meta queries.
Optimizations. IONIA uses two techniques to optimize the
procedure described so far. First, it uses lazy history trimming.
The history could be trimmed up to i immediately after the
leader learns that all followers have applied up to i. However,
such eager trimming can lead to inefficiencies. For example,
consider a case where a client reads at a follower and get
an applied-index a. After this, the follower applies m more
writes and informs the leader of its applied-index a+m; the
leader trims history upto a+m. If the meta query now arrives
at the leader, the history would not contain the key. The leader
would return a+m (its lti), causing the client check to fail.
To avoid such scenarios, IONIA only lazily trims the history.

Second, a follower that has been disconnected for long or
failed could prevent the leader from trimming the history. To
avoid this problem, the leader maintains a set called active-
followers. Failed followers are removed from the set. The
leader waits only for the followers in the active-followers set
to trim the history. Thus, reads at a disconnected follower that
has missed writes will always be rejected because its applied-
index will be less than the index returned by the leader.

Summary. Figure 7 summarizes IONIA’s read protocol. To
read key k at the leader, the clients invoke LEADER_READ. If
there are no pending updates in the durability log, the leader
reads and returns k. If there are pending updates to k, the
leader orders and applies them, after which it reads and returns
k. When reading at a follower, the client parallely invokes
FOLLOWER_READ and META_QUERY. The follower reads k and
returns it along with its applied-index. In META_QUERY, the
leader first checks if there are pending updates to k. If yes, the
leader orders and executes the pending updates, and returns
the actual data and indicates this in a flag. If there are no
pending updates, the leader returns the modified index (if the
key is in the history) or the last-trimmed index. The client
finally compares the results and either returns the data to the
end application, or retries the read at the leader.

4.3 Failures and View Changes
So far, we described IONIA’s normal operation. We now dis-
cuss failures and view changes. IONIA is similar to VR with re-
spect to both replica recovery [46, §4.3] and view changes [46,
§4.2]. The only difference stems from IONIA’s durability logs
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1: procedure LEADER_READ(k)
2: if pending request for k in durability_log then
3: trigger sync ordering and execution
4: wait till updates are executed

return store.read(k)
1: procedure FOLLOWER_READ(k)

return (store.read(k), applied_index)
1: procedure META_QUERY(k)
2: if pending request for k in durability_log then
3: trigger sync ordering and execution
4: wait till updates are executed
5: return (flag=data, value=store.read(k))
6: if history.contains(k) then
7: return (flag=index, value=history[k])
8: return (flag=index, value=lti) . last trimmed index
1: procedure CLIENT_READ_AT_FOLLOWER(k)
2: invoke_parallel(f_res = FOLLOWER_READ(k), l_res =

META_QUERY(k))
3: if l_res.flag == data then
4: return l_res.value . leader returned actual result
5: a = f_res.value . follower’s applied index
6: i = l_res.value . latest index that modified k
7: if a≥ i then . follower’s result is valid
8: return f_res.value
9: return LEADER_READ(k) . invalid; retry at leader

Figure 7: IONIA Reads. Summary of IONIA’s read protocol.

that VR doesn’t have. IONIA borrows durability logs from
Skyros [28] and thus it inherits Skyros’ recovery and view-
change. We give a brief overview of these procedures.

In IONIA, when a replica recovers, in addition to recovering
the consensus log from the leader of the latest view, a replica
must also recover its durability log. This is straightforward:
the leader sends its durability log (along with the consensus
log as in VR) and the replica sets its durability log as the
one sent by the leader. This is correct because the leader’s
durability log contains completed writes in the correct order.

A view change happens when the leader fails. The main
challenge is that the new leader must recover the requests in
the old leader’s durability log and in the correct linearizable
order. This is where supermajority quorums help. To see why,
consider an incorrect protocol where updates are acknowl-
edged after writing to a majority of durability logs. Suppose
that update a completes after which b starts and completes
(i.e., a→ b). Let Di be the durability log of replica Si. Then,
a possible state is D1:[ab], D2:[ab], D3:[ab], D4:[ba], D5:[ ].
Now, if S1 (the current leader) and S2 fail, then it is impossible
to determine the correct order from the remaining durability
logs. Writing to a supermajority ensures that, after f fail-
ures, at least d f/2e+1 (i.e., a majority within any available
majority) will have the requests in the correct order.

During view change, a new leader in IONIA contacts a ma-
jority, collecting the requests in their durability logs. It then
constructs the set of acknowledged writes, i.e., requests that

are present on at least d f/2e+1 logs. The leader next estab-
lishes the order: for every pair of requests a, b, it examines
if b appears after a on at least d f/2e+ 1 logs. If so, then it
concludes b follows a. Such pairwise dependencies are added
to a DAG G; IONIA produces the total order by topologically
sorting G. These steps are similar to Skyros [28, §4.6]. In
addition, the new leader in IONIA constructs the history over
its consensus log and sets lti to the index of the first log entry.
Fallback Path. To ensure availability in cases where a super-
majority is not available (but a bare majority is), IONIA falls
back to a slow mode where writes are acknowledged only
after being synchronously ordered on a majority in 2 RTTs.

4.4 Correctness Proof Sketch
Two conditions must hold for linearizability. P1. Writes must
respect linearizable ordering. P2. Reads must never expose
stale data. We provide a proof sketch of P1 and P2.
P1. During normal operation, the leader’s durability log is
guaranteed to have the completed writes in the correct order
because a leader response is required for a write to be consid-
ered complete. The leader adds requests to the consensus log
from its durability log in order; thus, the consensus log cap-
tures the linearizable order. IONIA replicas execute ordered
writes in parallel. However, for correctness, conflicting writes
must be executed serially and in the same order across replicas.
The consensus log establishes a total order of writes. Conflict-
ing writes are executed in the order in which they appear in
the consensus log. The consensus logs are identical across
replicas (this is ensured by base VR). Therefore, conflicting
writes are executed in the same order across replicas.

When the current leader fails, a view change occurs, and
the leader of the new view must recover the latest consensus
log and the durability log. The recovered logs must reflect
the correct linearizable order. This recovery procedure in
IONIA is the same as Skyros, which ensures that the new
leader reconstructs the correct ordering of writes in the both
durability and consensus logs [28, §4.7].
P2. First, reads can go to the leader. Because the leader is
guaranteed to have seen all completed writes, and because
IONIA checks the durability log for pending writes, reads at the
leader are guaranteed to see the latest data. We next discuss
the correctness of reads performed at followers.

For linearizability, a read r to a key k must see the effects
of all writes to k that completed before r started. Let w be the
latest write to k. There are two cases to consider.
C1. First, w could have just completed but not executed yet.
In this case, w will be present in the leader’s durability log.
The meta query will thus catch the pending write w in the
durability log and return the latest data after execution. The
client check ensures that r sees the latest data as it ignores the
follower result in this case.
C2. If w was executed, then w may not be in the durability
log and will be present in the leader’s consensus log and
history. Let wi be the index of w in the consensus log; since
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Figure 8: Write-only Workload. The figure plots the maximum
throughput and the average latency for a write-only workload; IONIA, PAXOS-
PE, and unreplicated use 8 threads. The workload loads 350M records.

w is the latest write to k, wi is k’s latest modified index. For
correctness, the index result returned by the leader for a meta
query, resi, has to be at least wi, i.e., resi ≥ wi. If the history
was not trimmed, then k will be part of the history and the
leader will return wi. Instead, if the history was trimmed then
k will not be part of the history. However, we argue why resi
will be greater than or equal to wi even in this case.

Suppose there were m additional writes independent (i.e.,
non-conflicting) of w were executed and also the history was
trimmed up to wi + m. In this case, leader’s last trimmed
index, lti, will be wi +m. When the leader doesn’t find k in
the history, it will return its lti = wi+m, which is greater than
wi. If there were no additional writes and the leader trimmed
up to wi, then the leader’s lti = wi, which is safe.

We have established that the leader returns the correct index
for a meta query. For final correctness, stale results from a
follower must be correctly identified. If wi was not applied at
a follower, the applied-index, a, returned by the follower will
be less than wi. Since the leader’s resi ≥ wi, the client check
will correctly discard the stale result from the follower.

4.5 Model Checking
We have model checked IONIA’s request-processing and view-
change protocols. We focus our discussion on IONIA’s read
protocol because write processing and view changes are simi-
lar to Skyros. We generated and explored over 8M different
states (e.g., followers having applied up to different points,
the leader’s history being trimmed up to different points).
Linearizability was met in all states.

Our checker finds violations when we intentionally intro-
duce bugs. For example, we modified the model to skip the
durability-log check before querying the history upon a meta
query. This is unsafe because there could be a completed
(but unexecuted) update V2 in the durability log and follower
could have only applied V1. The leader will return the modi-
fied index of V1, making the client incorrectly trust V1. Our
checker catches this violation. Similarly, the checker identi-
fies a violation when the leader returns indexes lower than the
modified index. Finally, we modified the model to have the
leader perform the check instead of the client. In this incorrect
version, the leader compares the follower’s applied-index (a)
and the modified index (i) and indicates to the client that data
can be trusted if a >= i. However, this is unsafe: a client could
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Figure 9: Read-only Throughput. Maximum throughput in Multi-
Paxos, Skyros, IONIA-LR, and IONIA under a uniform read-only workload.

read the stale version and by the time its meta query reaches
the leader, the history could be updated. The leader would
then incorrectly indicate to the client that the read is valid.
Our checker catches this violation as well.

4.6 Implementation
We provide key implementation details. IONIA replicas run
SplinterDB [73] as the state machine and communicate via
eRPC [36]. We implemented the upcalls in a wrapper, requir-
ing no changes to SplinterDB. IONIA implements a highly con-
current durability log. The IONIA replication layer manages
all threads, balancing foreground work (e.g., adding writes to
durability logs) and background work (i.e., applying writes
to SplinterDB). The leader maintains highly concurrent and
compact inverse maps to lookup the durability log and history.

5 Evaluation
To evaluate IONIA, we ask the following questions:
• How does IONIA perform compared to various existing

replication approaches for write-only workloads? (§5.1)
• How does IONIA perform for read workloads? (§5.2)
• Does IONIA improve read and also overall performance (by

taking off leader reads) under mixed workloads? (§5.3)
• Does IONIA scale throughput with replicas? (§5.4)
• Does IONIA offer low-latency reads? (§5.5)
• How does history size impact IONIA performance? (§5.6)
• How does IONIA perform on the YCSB benchmark? (§5.7)
• Does IONIA improve performance over unreplicated server

for read and mixed workloads? (§5.8)
• How does IONIA perform under failures? (§5.9)

Setup. We run our experiments on Cloudlab with three repli-
cas. We compare against: 1. off-the-shelf MultiPaxos (equiva-
lently VR [46]), 2. Skyros [28], a recent low-latency protocol,
3. MultiPaxos with parallel execution (we build this baseline
based on CBASE [42]) which we refer to as Paxos-PE, 4.
IONIA-LR, an IONIA variant where reads are restricted to the
leader, and 5. an unreplicated (fault-intolerant) server. All
baselines use batching wherever possible to improve through-
put. IONIA replicates SplinterDB. We integrated SplinterDB
as the state machine in all baselines. Each replica uses an Intel
DC S3520 SATA SSD. Unless specified, we use a 670M KV-
pair dataset with 24B keys and 100B values. SplinterDB uses
a 4GB cache (as prescribed [73]). For fairness, we modified all
baselines to also use eRPC. Unless specified, MultiPaxos-PE,
IONIA, IONIA-LR, and unreplicated use 15 threads.
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Figure 10: Mixed workloads. (a): throughput at various read fractions; (b)-(d): IO utilization of leader in IONIA-LR and IONIA at two read-write points.
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5.1 Write-Only Workload
We first analyze write-only performance of MultiPaxos, Sky-
ros, Paxos-PE, and IONIA by comparing them to the an un-
replicated server. For each system, we vary the number of
clients and measure the maximum throughput and the corre-
sponding average latency. Figure 8 shows the result. We make
the following observations. First, as expected, unreplicated
server offers high throughput and low latency. Second, Mul-
tiPaxos offers significantly lower throughput due to single-
threaded execution; further, coordination in the critical path
and batching increases MultiPaxos’s latencies notably (up
to 5.8×). Third, while Paxos-PE is able to achieve higher
throughput by via parallel execution, its latency is still signifi-
cantly higher compared to unreplicated (up to 6.3 ×). Skyros
is able to closely match the low latency of unreplicated, but it
still offers low throughput similar to MultiPaxos.

Overall, no existing protocol is able to match the high
write performance of unreplicated. IONIA, in contrast, closely
matches the unreplicated server’s high throughput (via par-
allel execution) and low latency (by deferring ordering and
execution to background). This shows that the fault tolerance
provided by IONIA comes at no to little performance cost.

5.2 Read-Only Workload
We next analyze the performance of MultiPaxos, Skyros,
IONIA-LR, and IONIA for a uniform read-only workload. Fig-
ure 9 shows the maximum throughput for each system. Stand-
alone SplinterDB’s read performance is limited by random
IOPS. However, MultiPaxos use a single thread for execut-
ing reads and thus cannot generate the high queue depths
needed to saturate SSD IOPS, resulting in lower through-
put. Skyros suffers from the same low performance as Mul-

tiPaxos due to its single-threaded execution. IONIA-LR exe-
cutes reads on multiple threads, thus achieving higher through-
put, but measuring one level deeper reveals that the IOPS of
leader’s SSD is saturated. Thus, adding more load after this
point doesn’t yield higher throughput in IONIA-LR. In con-
trast, IONIA distributes the reads and extracts bandwidth of
followers’ SSDs too, providing 2.95× higher throughput than
IONIA-LR, achieving essentially linear scaling with 3 replicas.
We note here that the leader in IONIA performs meta queries
upon every follower read, but this does not create a bottleneck
because the meta queries are served from leader’s memory.

5.3 Mixed Write-Read Workload
We now analyze mixed read-write workloads. Figure 10(a)
shows the maximum throughput of MultiPaxos, Skyros,
IONIA-LR, and IONIA for different read percentages with a
uniform workload. MultiPaxos offers significantly lower per-
formance than IONIA-LR. Although Skyros commits writes in
1RTT, it achieves only low throughput due to single-threaded
execution. As reads increase, IONIA-LR’s performance de-
creases. This is due to IONIA-LR’s performance asymmetry
(see Figure 2) as all reads go to the leader. IONIA improves
performance in two ways by distributing reads. First, reads
are served by all replicas, improving read throughput. Second,
offloading some reads moves the leader to a more performant
regime. IONIA has higher benefits with higher read fraction as
more reads can be offloaded. For example, at 75%R, 25%W,
IONIA offers 1.8× better throughput than IONIA-LR.

We show how the leader moves into a more perfor-
mant regime by considering the 75%R, 25%W point. Fig-
ure 10(b) and (c) show the leader’s IO utilization in IONIA-LR

and IONIA, respectively, for this point. As shown in 10(b),
IONIA-LR’s leader serves more reads than writes; this is a low-
performance operating point (denoted as L in 10(a)). IONIA

splits the 75% reads across 3 replicas, and thus the leader pro-
cesses equal amount of reads and writes (i.e., 50%-50%). This
operating point of IONIA shown in 10(c) roughly resembles
the 50%R, 50%W point of IONIA-LR’s leader shown in 10(d),
a more performant operating point (denoted as H in 10(a)).

5.4 Scaling Reads with Replicas
We next show that IONIA can scale reads for cluster sizes
widely used in practice [34]. We run a read-only workload
with 3 and 5 replicas. Figure 11(a) shows that the through-
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put scales linearly. We examine the 5-replica case in more
detail. Figure 11(b) shows the overall request throughput at
the leader and the average throughput of followers for the
5-replica case. Although the leader receives 4× more load,
IONIA is able to scale reads without the leader becoming the
bottleneck because the leader serves this 4× greater load
(meta queries) cheaply from its memory. Examining the IO
utilization reveals that the IOPS on all replicas were saturated,
indicating that the collective IOPS remains the bottleneck.

5.5 Low-Latency Reads
We now show that IONIA offers fast reads under different re-
quest distributions. A read may take more than 1RTT in two
ways. First, a read of key k performed at the leader could
trigger synchronous ordering and execution (because of a
pending update to k). Second, a client may detect that the
follower’s result is stale and retry the read at the leader. Both
these cases would happen more often with more skewed work-
loads. Figure 12 shows fraction of 1RTT reads for a read-write
(50%-50%) mixed workload with different distributions. As
expected, we observe no conflicts for uniform, and thus almost
all reads finish in 1RTT. With a zipfian workload (skew factor
θ = 0.75 and θ = 0.85), we see a slight decrease as some
reads take more RTTs. However, even with a very skewed
workload (θ = 0.99), 85% of reads finish in 1RTT.

5.6 Impact of History Size
We next analyze the impact of history size. Intuitively, with
a large history, the meta query will more often return the ac-
curate last-modified index. With smaller histories, the leader
may often return the last-trimmed index and thus more client
checks will fail, resulting in many reads taking the slow path.
To study this, we run a read-write (50%-50%) workload with
zipfian distribution for various history sizes. As shown in Fig-
ure 13, as expected, slow reads decrease with larger histories.
However, to achieve good performance in our experimen-
tal setup, a 50-MB history is sufficient, a meager 0.06% of
the dataset (which contains 670M KV-pairs of 124B each,
totalling about 77GB).
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5.7 YCSB Benchmark
We now show performance under YCSB [19] workloads:
A (50%W, 50%R), B (5%W, 95%R), C (readonly), D
(5%W,95%R), and F (50%RMW, 50%R); all workloads are
zipfian except D which is latest. Figure 14 plots the through-
put for MultiPaxos, Skyros, IONIA-LR, and IONIA. Under all
workloads, MultiPaxos offers only low throughput. While
Skyros offers marginally higher throughput than MultiPaxos
in some workloads, it offers significantly (an order of mag-
nitude) lower throughput compared to IONIA-LR as IONIA-LR

employs parallel execution. IONIA preserves the write perfor-
mance of IONIA-LR and improves over it by distributing reads.
The improvement over IONIA-LR in write-heavy workloads
(A and F) is roughly 23% to 42%. However, under read-heavy
workloads (B, C, and D), IONIA improves performance by
∼2× over IONIA-LR by distributing the large fraction of reads.

5.8 IONIA vs. Unreplicated: Read and Mixed
Finally, we compare IONIA’s performance to that of an un-
replicated SplinterDB server under read-only and mixed work-
loads. As shown in Figure 15, for read-only workloads, IONIA

offers 2.8× higher throughput by scaling reads, and for mixed
workloads IONIA is 1.22× to 1.45× faster.

5.9 Performance under Failures
In the experiments so far, we demonstrated IONIA’s perfor-
mance without failures. We now show that IONIA’s perfor-
mance and availability are not impacted as long as a super-
majority is available. Figure 16 shows the throughput over
time for a write-only workload with five replicas. Initially, all
replicas are up and IONIA achieves high throughput. After a
while, one of the replicas fails; however, since four replicas
(i.e., a supermajority) are available, IONIA continues to com-
mit requests in 1RTT, thereby maintaining high performance.
In contrast, existing approaches (such as CRAQ [70] and Her-
mes [39]) that offer 1RTT and scalable reads would suffer
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Figure 16: IONIA Performance Under Failures.

from write unavailability even when one replica fails.

6 Discussion
Beyond KV stores. In this paper, we focus on designing
efficient replication for SSD-based KV stores. However, our
ideas apply to other storage systems such as file systems and
databases that are built atop write-optimized structures as well.
A requirement of our read protocol is that it must be possible
to identify which piece of data is read by a request, which
holds in many existing systems. Further, while updates in
WO-KV stores do not return execution results, other storage
systems might support updates that return execution results;
however, such updates can be readily supported by IONIA.
In particular, when a client issues an update that returns an
execution result, IONIA can use the fallback path (described
in §4.3) to commit such updates in 2RTT.
Performance with bigger clusters. With larger cluster sizes,
a concern might be that meta-queries can become the bot-
tleneck before SSD IOPS. However, this is not a concern in
practice today. Most practical systems use only a handful of
replicas (3, 5, or 7) [34] and as shown in §5.4, IONIA scales
well for such practical cluster sizes.
Performance with slower networks. In most storage sys-
tems, SSD IOPS becomes bottlenecked prior to network/NIC.
We expect this trend to hold: as SSD IOPS increases, so
would the network/NIC packet rate and CPU core count. For
example, even when each replica can serve tens of millions
of reads/second (via many SSDs), latest NICs (Connect-x6)
can serve 215M messages/s [51]. Thus, meta-queries would
not be the bottleneck in common scenarios. However, in the
(uncommon) deployment scenario where the network/NIC is
the bottleneck, as an optimization, many meta-queries can be
batched on the client side to amortize CPU/NIC overheads.
We leave this optimization as an avenue for future work.

7 Related Work
Other High-Throughput Protocols. Apart from the ap-
proaches discussed in §2, a few prior approaches enable multi-
core replication through deterministic execution [22, 32].
Other prior systems first execute writes on multiple threads
and then replicate the resultant state [71], avoiding non-
determinism. Such early execution is a mismatch for WO-KV
stores that defer execution for performance. Also, unlike these
approaches, IONIA hides ordering and execution latency.
Other Benefits over Low-Latency Protocols. As discussed

in §2, IONIA offers 1RTT writes like prior low-latency pro-
tocols while offering much higher throughput. IONIA guar-
antees 1RTT writes. Speculative [41, 61] and commuta-
tive [44, 53, 59] protocols, in contrast, incur additional RTTs
when speculations fail or when writes do not commute. Sky-
ros [28] is a recent protocol that guarantees 1RTT for blind
writes by similarly deferring execution. However, Skyros (and
the above prior protocols) do not improve throughput or read
scaling while reducing latency.
Reading at Non-Leader Replicas. Apart from the protocols
discussed in §2, a few prior systems allow reads from a quo-
rum of followers [3, 16]. Shared registers [4] also allows reads
at a quorum. While these approaches avoid reads at the leader,
they cannot linearly scale read throughput as reads must con-
tact a quorum. Applications over shared logs [5–7] can scale
reads by checking the current tail of the log. However, in
these approaches, both reads and writes incur high latency,
unlike IONIA. Quorum leases [54] maintains per-object leases
to scale reads. However, it suffers from high write latency.
Also, it is impractical to maintain per-object leases for large
disk-based stores. Finally, recent approaches can scale reads
through in-network conflict checking [69, 76] or specialized
transport protocol [40]. However, these approaches require
specialized network hardware (e.g., programmable switches).
Leaderless Approaches. In in-memory replicated systems,
message processing overhead at the leader is often the bottle-
neck [53, 61]. To address this, prior work has built leaderless
protocols [49, 53] where any replica can process writes. In a
disk-based replicated storage system, however, the leader’s
storage throughput is the bottleneck. IONIA improves this
throughput by batching writes in the background and also
taking off read requests from the leader.
LSMs in Distributed Systems. Many prior efforts have opti-
mized LSMs in distributed systems. However, their goals are
different from ours, aiming to optimize compactions [29, 72],
storage management [75], and load balance [10].

8 Conclusion
We present IONIA, a new replication protocol suited for mod-
ern WO-KV stores. IONIA exploits the unique characteris-
tics of WO-KV stores to achieve high performance. We ex-
perimentally show that IONIA offers high-throughput, 1RTT
writes, and scalable, 1RTT reads. Given that WO-KV stores
are widely used, IONIA offers a way to make these stores
fault-tolerant with almost no overhead and scale reads.

Acknowledgments
We thank Patrick P. C. Lee (our shepherd) and the anony-
mous FAST ’24 reviewers for their insightful comments and
suggestions. We thank the members of DASSL for their dis-
cussions. We also thank CloudLab [63] for providing a great
environment to run our experiments.

USENIX Association 22nd USENIX Conference on File and Storage Technologies    237



References
[1] Eduardo Alchieri, Fernando Dotti, and Fernando Pedone.

Early Scheduling in Parallel State Machine Replication.
In Proceedings of the ACM Symposium on Cloud Com-
puting, 2018.

[2] Apache. Cassandra. http://cassandra.apache.org/.

[3] Vaibhav Arora, Tanuj Mittal, Divyakant Agrawal, Amr
El Abbadi, Xun Xue, Yanan Zhi, and Jianfeng Zhu.
Leader or Majority: Why have one when you can have
both? Improving Read Scalability in Raft-like consen-
sus protocols. In 9th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud ’17), Santa Clara, CA,
July 2017.

[4] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Shar-
ing Memory Robustly in Message-passing Systems.
Journal of the ACM (JACM), 42(1):124–142, 1995.

[5] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mi-
hir Dharamshi, Ahmed Jafri, Xiao Shi, Santosh Ghosh,
Hazem Hassan, Aaryaman Sagar, Rhed Shi, Jingming
Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang,
Ahmed Yossef, Francois Richard, and Yee Jiun Song.
Virtual Consensus in Delos. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and
Implementation (OSDI ’20), Banff, Canada, November
2020.

[6] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-
hakaran, Ted Wobber, Michael Wei, and John D. Davis.
CORFU: A Shared Log Design for Flash Clusters. In
Proceedings of the 9th Symposium on Networked Sys-
tems Design and Implementation (NSDI ’12), San Jose,
CA, April 2012.

[7] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber,
Ming Wu, Vijayan Prabhakaran, Michael Wei, John D
Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango:
Distributed Data Structures over a Shared Log. In Pro-
ceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP ’13), Farmington, Pennsylva-
nia, October 2013.

[8] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. SILK: Preventing Latency Spikes in Log-
Structured Merge Key-Value Stores. In Proceedings
of the USENIX Annual Technical Conference (USENIX
ATC 19), Renton, WA, July 2019.

[9] Michael A Bender, Martin Farach-Colton, William Jan-
nen, Rob Johnson, Bradley C Kuszmaul, Donald E
Porter, Jun Yuan, and Yang Zhan. An Introduction
to Be-trees and Write-optimization. USENIX ;login:,
40(5):22–28, 2015.

[10] Laurent Bindschaedler, Ashvin Goel, and Willy
Zwaenepoel. Hailstorm: Disaggregated Compute and
Storage for Distributed LSM-Based Databases. In
Proceedings of the 25th International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’20), Lausanne,
Switzerland, March 2020.

[11] William J. Bolosky, Dexter Bradshaw, Randolph B. Haa-
gens, Norbert P. Kusters, and Peng Li. Paxos Replicated
State Machines As the Basis of a High-performance
Data Store. In Proceedings of the 8th Symposium on
Networked Systems Design and Implementation (NSDI
’11), Boston, MA, April 2011.

[12] Gerth Stølting Brodal and Rolf Fagerberg. Lower
Bounds for External Memory Dictionaries. In SODA,
volume 3, 2003.

[13] Aldenio Burgos, Eduardo Alchieri, Fernando Dotti, and
Fernando Pedone. Exploiting Concurrency in Sharded
Parallel State Machine Replication. IEEE Transactions
on Parallel and Distributed Systems, 2021.

[14] Tushar D Chandra, Vassos Hadzilacos, and Sam Toueg.
An Algorithm for Replicated Objects with Efficient
Reads. In Proceedings of the 35th ACM Symposium
on Principles of Distributed Computing (PODC ’16),
Chicago, IL, July 2016.

[15] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. In
Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’06), Seattle,
WA, November 2006.

[16] Aleksey Charapko, Ailidani Ailijiang, and Murat Demir-
bas. Linearizable Quorum Reads in Paxos. In 11th
USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage ’19), Renton, WA, July 2019.

[17] CockroachDB. Pebble. https://github.com/

cockroachdb/pebble.

[18] Alexander Conway, Abhishek Gupta, Vijay Chi-
dambaram, Martin Farach-Colton, Richard Spillane,
Amy Tai, and Rob Johnson. SplinterDB: Closing the
Bandwidth Gap for NVMe Key-Value Stores. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), Online, July 2020.

[19] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
ACM Symposium on Cloud Computing (SOCC ’10), In-
dianapolis, IA, June 2010.

238    22nd USENIX Conference on File and Storage Technologies USENIX Association

http://cassandra.apache.org/
https://github.com/cockroachdb/pebble
https://github.com/cockroachdb/pebble


[20] James C Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s Globally Distributed Database. In
Proceedings of the 10th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’12), Holly-
wood, CA, October 2012.

[21] James Cowling and Barbara Liskov. Granola: Low-
overhead Distributed Transaction Coordination. In 2012
USENIX Annual Technical Conference (USENIX ATC
12), Boston, MA, June 2012.

[22] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and Jun-
feng Yang. Paxos Made transparent. In Proceedings of
the 25th ACM Symposium on Operating Systems Princi-
ples (SOSP ’15), pages 105–120, Monterey, California,
October 2015.

[23] Effi Ofer, Danny Harnik, and Ronen Kat. Object Storage
Traces: A Treasure Trove of Information for Optimizing
Cloud Workloads. https://www.ibm.com/cloud/blog/

object-storage-traces.

[24] Ian Aragon Escobar, Eduardo Alchieri, Fernando Luís
Dotti, and Fernando Pedone. Boosting Concurrency in
Parallel State Machine Replication. In Proceedings of
the 20th International Middleware Conference, 2019.

[25] Facebook. Merge Operator. https://github.com/

facebook/rocksdb/wiki/Merge-Operator.

[26] Facebook. RocksDB. http://rocksdb.org/.

[27] Pedro Fouto, Nuno Preguiça, and João Leitão. High
Throughput Replication with Integrated Membership
Management. In 2022 USENIX Annual Technical Con-
ference (USENIX ATC 22), Carlsbad, CA, July 2022.

[28] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Ex-
ploiting Nil-Externality for Fast Replicated Storage. In
Proceedings of the 28th ACM Symposium on Operating
Systems Principles (SOSP ’21), Virtual, October 2021.

[29] Panagiotis Garefalakis, Panagiotis Papadopoulos, and
Kostas Magoutis. ACaZoo: A Distributed Key-Value
Store Based on Replicated LSM-Trees. In 2014 IEEE
33rd International Symposium on Reliable Distributed
Systems, pages 211–220, 2014.

[30] Vasilis Gavrielatos, Antonios Katsarakis, and Vijay Na-
garajan. Odyssey: The Impact of Modern Hardware
on Strongly-Consistent Replication Protocols. In Pro-
ceedings of the 16th European Conference on Computer
Systems (EuroSys ’21), Online, April 2021.

[31] Sanjay Ghemawhat, Jeff Dean, Chris Mumford,
David Grogan, and Victor Costan. LevelDB.
https://github.com/google/leveldb, 2011.

[32] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou,
Lidong Zhou, and Li Zhuang. Rex: Replication at the
Speed of Multi-core. In Proceedings of the EuroSys Con-
ference (EuroSys ’14), Amsterdam, The Netherlands,
April 2014.

[33] Maurice P. Herlihy and Jeannette M. Wing. Lineariz-
ability: A Correctness Condition for Concurrent Objects.
ACM Trans. Program. Lang. Syst., 12(3), July 1990.

[34] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and
Benjamin Reed. ZooKeeper: Wait-free Coordination
for Internet-scale Systems. In Proceedings of the 2010
USENIX Conference on USENIX Annual Technical Con-
ference, USENIXATC’10, pages 11–11, Berkeley, CA,
USA, 2010. USENIX Association.

[35] Intel. Intel Optane 905P. https://www.intel.com/

content/www/us/en/products/sku/129833/intel-

optane-ssd-905p-series-1-5tb-12-height-pcie-x4-

20nm-3d-xpoint/specifications.html.

[36] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In Proceedings
of the 16th Symposium on Networked Systems Design
and Implementation (NSDI ’19), Boston, MA, February
2019.

[37] Manos Kapritsos, Yang Wang, Vivien Quema, Allen
Clement, Lorenzo Alvisi, and Mike Dahlin. All About
Eve: Execute-verify Replication for Multi-core Servers.
In Proceedings of the 10th Symposium on Operating
Systems Design and Implementation (OSDI ’12), Holly-
wood, CA, October 2012.

[38] Karthik Ranganathan. Low Latency Reads in
Geo-Distributed SQL with Raft Leader Leases.
https://blog.yugabyte.com/low-latency-reads-in-

geo-distributed-sql-with-raft-leader-leases/.

[39] Antonios Katsarakis, Vasilis Gavrielatos, MR Siavash
Katebzadeh, Arpit Joshi, Aleksandar Dragojevic, Boris
Grot, and Vijay Nagarajan. Hermes: A Fast, Fault-
tolerant and Linearizable Replication Protocol. In Pro-
ceedings of the 25th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS ’20), Lausanne, Switzer-
land, March 2020.

USENIX Association 22nd USENIX Conference on File and Storage Technologies    239

https://www.ibm.com/cloud/blog/object-storage-traces
https://www.ibm.com/cloud/blog/object-storage-traces
https://github.com/facebook/rocksdb/wiki/Merge-Operator
https://github.com/facebook/rocksdb/wiki/Merge-Operator
http://rocksdb.org/
https://www.intel.com/content/www/us/en/products/sku/129833/intel-optane-ssd-905p-series-1-5tb-12-height-pcie-x4-20nm-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/129833/intel-optane-ssd-905p-series-1-5tb-12-height-pcie-x4-20nm-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/129833/intel-optane-ssd-905p-series-1-5tb-12-height-pcie-x4-20nm-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/129833/intel-optane-ssd-905p-series-1-5tb-12-height-pcie-x4-20nm-3d-xpoint/specifications.html
https://blog.yugabyte.com/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/
https://blog.yugabyte.com/low-latency-reads-in-geo-distributed-sql-with-raft-leader-leases/


[40] Marios Kogias and Edouard Bugnion. Hover-
cRaft: Achieving Scalability and Fault-Tolerance for
Microsecond-Scale Datacenter Services. In Proceed-
ings of the 15th European Conference on Computer
Systems (EuroSys ’20), Heraklion, Greece, April 2020.

[41] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: Speculative
Byzantine Fault Tolerance. In ACM SIGOPS Operating
Systems Review, volume 41, pages 45–58. ACM, 2007.

[42] Ramakrishna Kotla and Michael Dahlin. High Through-
put Byzantine Fault Tolerance. In Proceedings of the
International Conference on Dependable Systems and
Networks (DSN ’04), Florence, Italy, June 2004.

[43] Leslie Lamport. Paxos Made Simple. ACM Sigact News,
32(4):18–25, 2001.

[44] Leslie Lamport. Generalized Consensus and Paxos.
2005.

[45] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana
Szekeres, and Dan RK Ports. Just Say No to Paxos
Overhead: Replacing Consensus with Network Order-
ing. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (OSDI
’16), Savannah, GA, November 2016.

[46] Barbara Liskov and James Cowling. Viewstamped
Replication Revisited. 2012.

[47] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul
Johnson, Liuba Shrira, and Michael Williams. Repli-
cation in the Harp file system. In Proceedings of the
13th ACM Symposium on Operating Systems Principles
(SOSP ’91), Pacific Grove, CA, October 1991.

[48] LogCabin. LogCabin. https://github.com/logcabin/
logcabin.

[49] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo.
Mencius: Building Efficient Replicated State Machines
for WANs. In Proceedings of the 8th Symposium on
Operating Systems Design and Implementation (OSDI
’08), San Diego, CA, December 2008.

[50] Mark Callaghan. Types of Writes. http://smalldatum.
blogspot.com/2014/04/types-of-writes.html.

[51] Mellanox. ConnectX-6 Card. https:

//support.mellanox.com/s/productdetails/

a2v50000000p8ReAAI/connectx6-card.

[52] MongoDB. Read Concern Linearizable.
https://docs.mongodb.com/manual/reference/read-

concern-linearizable/.

[53] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. There is More Consensus in Egalitarian Parlia-
ments. In Proceedings of the 24th ACM Symposium on
Operating Systems Principles (SOSP ’13), Farmington,
Pennsylvania, October 2013.

[54] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. Paxos Quorum Leases: Fast Reads Without Sacrific-
ing Writes. In Proceedings of the ACM Symposium on
Cloud Computing (SOCC ’14), Seattle, WA, November
2014.

[55] Diego Ongaro. Consensus: Bridging Theory and Prac-
tice. PhD thesis, Stanford University, 2014.

[56] Diego Ongaro and John Ousterhout. In Search of
an Understandable Consensus Algorithm. In 2014
USENIX Annual Technical Conference (USENIX ATC
14), Philadelphia, PA, June 2014.

[57] Oracle. Berkeley DB. http://www.oracle.com/

technetwork/database/database-technologies/

berkeleydb/overview/index.html.

[58] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The Log-Structured Merge-Tree (LSM-
Tree). Acta Informatica, 33(4), 1996.

[59] Seo Jin Park and John Ousterhout. Exploiting Commu-
tativity For Practical Fast Replication. In Proceedings
of the 16th Symposium on Networked Systems Design
and Implementation (NSDI ’19), Boston, MA, February
2019.

[60] Percona. Percona TokuDB. https://www.percona.com/
software/mysql-database/percona-tokudb.

[61] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma,
and Arvind Krishnamurthy. Designing Distributed Sys-
tems Using Approximate Synchrony in Data Center
Networks. In Proceedings of the 12th Symposium on
Networked Systems Design and Implementation (NSDI
’15), Oakland, CA, May 2015.

[62] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building Key-value
Stores using Fragmented Log-structured Merge Trees.
In Proceedings of the 26th ACM Symposium on Oper-
ating Systems Principles (SOSP ’17), Shanghai, China,
October 2017.

[63] Robert Ricci, Eric Eide, and CloudLab Team. Introduc-
ing CloudLab: Scientific infrastructure for advancing
cloud architectures and applications. USENIX ;login:,
39(6), 2014.

[64] Robert Escriva. HyperLevelDB. https://github.com/
rescrv/HyperLevelDB.

240    22nd USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/logcabin/logcabin
https://github.com/logcabin/logcabin
http://smalldatum.blogspot.com/2014/04/types-of-writes.html
http://smalldatum.blogspot.com/2014/04/types-of-writes.html
https://support.mellanox.com/s/productdetails/a2v50000000p8ReAAI/connectx6-card
https://support.mellanox.com/s/productdetails/a2v50000000p8ReAAI/connectx6-card
https://support.mellanox.com/s/productdetails/a2v50000000p8ReAAI/connectx6-card
https://docs.mongodb.com/manual/reference/read-concern-linearizable/
https://docs.mongodb.com/manual/reference/read-concern-linearizable/
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://www.percona.com/software/mysql-database/percona-tokudb
https://www.percona.com/software/mysql-database/percona-tokudb
https://github.com/rescrv/HyperLevelDB
https://github.com/rescrv/HyperLevelDB


[65] Sarang Masti. How we built a general purpose
key value store for Facebook with ZippyDB.
https://engineering.fb.com/2021/08/06/core-

data/zippydb/.

[66] Fred B. Schneider. Implementing Fault-tolerant Ser-
vices Using the State Machine Approach: A Tutorial.
ACM Comput. Surv., 22(4):299–319, December 1990.

[67] SpeeDB. RocksDB Basics. https://docs.speedb.io/
rocksdb-basics#key-tombstones-delete.

[68] Amy Tai, Andrew Kryczka, Shobhit O. Kanaujia, Kyle
Jamieson, Michael J. Freedman, and Asaf Cidon. Who’s
Afraid of Uncorrectable Bit Errors? Online Recovery
of Flash Errors with Distributed Redundancy. In Pro-
ceedings of the USENIX Annual Technical Conference
(USENIX ATC 19), Renton, WA, July 2019.

[69] Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan, and
Samer Al-Kiswany. FLAIR: Accelerating Reads with
Consistency-Aware Network Routing. In Proceedings of
the 17th Symposium on Networked Systems Design and
Implementation (NSDI ’20), Santa Clara, CA, February
2020.

[70] Jeff Terrace and Michael J Freedman. Object storage on
craq: High-throughput chain replication for read-mostly
workloads. In Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ’09), San Diego, CA, June
2009.

[71] Robbert Van Renesse and Fred B Schneider. Chain
Replication for Supporting High Throughput and Avail-
ability. In Proceedings of the 6th Symposium on Oper-
ating Systems Design and Implementation (OSDI ’04),
San Francisco, CA, December 2004.

[72] Michalis Vardoulakis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. Tebis: Index
Shipping for Efficient Replication in LSM Key-Value
Stores. In Proceedings of the 17th European Conference
on Computer Systems (EuroSys ’22), Rennes, France,
April 2022.

[73] VMware. SplinterDB. https://splinterdb.org/.

[74] Yang Wang, Lorenzo Alvisi, and Mike Dahlin. Gnothi:
Separating Data and Metadata for Efficient and Avail-
able Storage Replication. In 2012 USENIX Annual
Technical Conference (USENIX ATC 12), Boston, MA,
June 2012.

[75] Qiang Zhang, Yongkun Li, Patrick PC Lee, Yinlong
Xu, and Si Wu. DEPART: Replica Decoupling for Dis-
tributed Key-Value Storage. In Proceedings of the 20th
USENIX Conference on File and Storage Technologies
(FAST ’22), Santa Clara, CA, February 2022.

[76] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan
Ports, Ion Stoica, and Xin Jin. Harmonia: Near-Linear
Scalability for Replicated Storage with In-Network Con-
flict Detection. 13(3):376–389, nov 2019.

USENIX Association 22nd USENIX Conference on File and Storage Technologies    241

https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://docs.speedb.io/rocksdb-basics#key-tombstones-delete
https://docs.speedb.io/rocksdb-basics#key-tombstones-delete
https://splinterdb.org/




Physical vs. Logical Indexing with IDEA: Inverted Deduplication-Aware Index

Asaf Levi∗, Philip Shilane†, Sarai Sheinvald§, Gala Yadgar∗
∗Computer Science Department, Technion †Dell Technologies §Braude College of Engineering

Abstract
In the realm of information retrieval, the need to maintain re-

liable term-indexing has grown more acute in recent years, with
vast amounts of ever-growing online data searched by a large
number of search-engine users and used for data mining and
natural language processing. At the same time, an increasing
portion of primary storage systems employ data deduplica-
tion, where duplicate logical data chunks are replaced with
references to a unique physical copy.

We show that indexing deduplicated data with deduplication-
oblivious mechanisms might result in extreme inefficiencies:
the index size would increase in proportion to the logical data
size, regardless of its duplication ratio, consuming excessive
storage and memory and slowing down lookups. In addition,
the logically sequential accesses during index creation would
be transformed into random and redundant accesses to the
physical chunks. Indeed, to the best of our knowledge, term
indexing is not supported by any deduplicating storage system.

In this paper, we propose the design of a deduplication-
aware term-index that addresses these challenges. IDEA maps
terms to the unique chunks that contain them, and maps each
chunk to the files in which it is contained. This basic design
concept improves the index performance and can support ad-
vanced functionalities such as inline indexing, result ranking,
and proximity search. Our prototype implementation based on
Lucene (the search engine at the core of Elasticsearch) shows
that IDEA can reduce the index size and indexing time by
up to 73% and 94%, respectively, and reduce term-lookup la-
tency by up to 82% and 59% for single and multi-term queries,
respectively.

1 Introduction
One of the most effective ways to address growing storage
requirements in datacenters is data deduplication: duplicate
chunks of data are identified and replaced by references to a
single unique copy of each chunk. The mechanisms involved
in data deduplication have been optimized in numerous studies
and commercial systems. As a result, most backup and archival
systems [25,80], as well as many primary (non-backup) storage
systems and appliances [20, 24, 35, 43], currently support data
deduplication.

Data deduplication entails a distinction between the user’s
logical data and the physical chunks stored in the system. This

additional level of abstraction introduces new challenges in
data management. The implicit sharing of content between files
complicates, for example, garbage collection [39, 40, 62], load
balancing between volumes [30,37,38,49,51], caching [44,55,
56], and charge-back [69]. Fragmentation, which results from
newly written files referencing a combination of ‘old’ chunks
and newly written chunks, transforms logically-sequential data
accesses to random I/Os in the underlying physical media.
This has been addressed in the context of file-read and restore
performance [33, 45, 57, 63] and in full-system scans [42].

In this paper, we address keyword indexing, an impor-
tant functionality that is supported by many storage sys-
tems [17, 26, 27] and is severely complicated by deduplication.
Specifically, we refer to term-to-file indexing (also known as
inverted indexing), which supports queries that return the files
containing a keyword or term. Inverted indexes are widely used
for simple queries, e.g., by users on personal computers, as well
as for complex and batch queries involving multiple terms in a
large-scale repository, e.g., by search engines [36], data analyt-
ics jobs [61, 64, 70], and legal discovery [67, 77]. The searched
data might be deduplicated, e.g., in shared file systems, code
repositories, or systems storing similar VM images.

Two aspects of keyword indexing are affected by dedupli-
cation. The first is initial index creation time: the system is
scanned by processing the logical files, generating random ac-
cesses to physical chunks. In addition, chunks are processed
redundantly when there are multiple references to a chunk due
to deduplication. The second aspect is the index size, which is
proportional to the logical data size rather than to the physical
size stored in the system: each term must point to all the files
containing it, even if the files’ content is almost identical. The
inflated index size can result in poor lookup performance and
also overshadow any capacity savings achieved by deduplica-
tion.

Indeed, to the best of our knowledge, systems with high
deduplication ratios (i.e., a large number of references to each
unique chunk) typically do not support full keyword indexing.
For example, VMware vSphere [25] and Commvault [19] sup-
port file indexing, which only identifies individual files within a
backup according to their metadata. Dell-EMC Data Protection
Search [21] supports full content indexing, but warns that “pro-
cessing the full content of a large number of files can be time
consuming” and recommends performing targeted indexing on
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specific backups or file types.
We address these challenges by deduplication-aware key-

word indexing. We introduce IDEA, which replaces the term-to-
file mapping in traditional indexes with a term-to-chunk map-
ping, whose size is proportional to the unique content physi-
cally stored in the system. An additional chunk-to-file mapping
records references from chunks to the files they are contained
within. This ‘reverse mapping’ is significantly smaller than
the term-to-chunk map and can be stored in a smaller and
faster storage device such as SSD or NVRAM. IDEA focuses
on textual data. It uses a white-space aware content-defined
chunking algorithm that creates chunk boundaries that align
with white-space characters. This ensures that terms are not
split between adjacent chunks.

IDEA creates the index by sequentially processing the physi-
cal data instead of the logical data. The term-to-chunk mapping
is created by standard term-indexing software, which scans all
the physical chunks in the system, disregarding their logical
order in the containing files. The chunk-to-file mapping is cre-
ated by scanning the file metadata, which is typically stored
separately from the data chunks. Term lookup in IDEA begins
with querying the term-to-chunk mapping. The set of result-
ing chunks is then used for lookup in the chunk-to-file map,
producing a set of matching files.

This basic design of IDEA can support additional function-
alities provided by traditional indexes, including low-overhead,
incremental indexing of incoming data streams as part of their
ingestion, ranking of documents with metrics such as TF-IDF,
and returning, for each file in the query result, the offsets in
which the keywords were found.

We make the following contributions in this paper:

• We identify and demonstrate the challenges involved in in-
dexing deduplicated data.

• We propose IDEA, the first design of a deduplication-aware
term index.

• We describe a prototype implementation of IDEA. For this
prototype, we integrated Lucene [2], an open-source single-
node inverted index software (similar to that used by the
distributed Elasticsearch [4]), into the Destor deduplicating
storage system [46].

• We compare the performance of IDEA to a naïve, dedupli-
cation unaware, index. On datasets of Linux kernel versions
and of English Wikipedia archives, IDEA significantly re-
duced the indexing and lookup times. For the datasets with
a high deduplication ratio, it also reduced the index size.

The rest of this paper is organized as follows. Section 2 gives
background and surveys relevant related work, and Section 3
identifies the challenges involved in indexing deduplicated
data. Sections 4 and 5 describe the design and implementation
of IDEA. Our evaluation setup is described in Section 6, and
our evaluation results are analyzed in Section 7. We discuss
possible extensions of IDEA in Section 8 and conclude in
Section 9.

Figure 1: The basic deduplication process.

File Content

F1 Let me into the house
F2 The house of the opera

F3
Welcome to the

house of fun

Term File (Offset)

fun F3(24)
house F1(16),F2(4),F3(15)
into F1(7)
let F1(0)
... ...

Term File only

fun F3
house F1,F2,F3
into F1
let F1
me F1
of F2,F3

opera F2
the F1,F2,F3
to F3

welcome F3

Figure 2: A toy example of an index of three files.

2 Background and Related Work
Data deduplication. Deduplicating storage systems process
incoming data to identify duplicate content and replace it with
references to content already stored in the system. Figure 1
gives a schematic view of the main mechanisms of the dedupli-
cation process. The data is first split into chunks whose average
size is typically 4KB-8KB, in a process referred to as chunking.

A chunk is represented by a cryptographic hash of its content,
referred to as its fingerprint. The fingerprint map is queried
to determine whether an incoming chunk is already stored in
the system. If the chunk is new, it is written and its fingerprint
is added to the fingerprint map. Each file is represented by a
file recipe which contains the file metadata, a list of its chunks’
fingerprints, and their sizes. Thus, to read (or restore) a file, its
recipe is read and its chunks are located by searching in the
fingerprint map or a cache of its entries.

The unique physical chunks are written in a log-structured
manner, in the order in which they are added to the system.
Backup and archival systems usually aggregate chunks, com-
press them, and pack the compressed data into containers,
which are the unit of I/O. Containers are several MB in size,
and decompression is necessary when restoring chunks. In con-
trast, deduplication systems for primary storage [34,41,43,72],
and especially deduplicating file systems [20, 24], might sup-
port direct access to individual chunks.

Keyword indexing. An inverted index or a keyword index, is
a data structure which points from terms to their occurrences
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Figure 3: A naive implementation of an index in a deduplicated file
system. The resulting inverted index is similar to that in Figure 2.

in a collection of documents. Terms (or keywords) can be any
searchable strings and are typically natural language words.
Any data structure which implements a key-value mapping
can be used as an inverted index. From here on, we refer to a
keyword index as simply an index, and use map to describe
individual data structures in the system. Figure 2 shows an
example of a small inverted index of a dataset containing three
files, where each file is an indexed document. An index lookup
or query returns, for each included term, the list of files con-
taining this term, and optionally the byte offsets in which the
term appears. For example, looking up the term “house” in this
example will return {F1,F2,F3}. If offsets are stored, the query
will return {F1(16),F2(4),F3(15)}. Storing the term offsets
increases the index size, and is thus supported as an option.

The process of building an index is referred to as indexing,
and includes the following steps [58]: (1) collecting the docu-
ments, i.e., reading the indexed files, (2) identifying the terms
within each document, (3) linguistically normalizing the terms
(e.g., eliminating plural form and capitalization), and (4) cre-
ating the list of documents, and optionally offsets, containing
each term. An index can also be built incrementally by a series
of index updates, where a new set of documents is processed
and the existing index is updated to reflect the terms appearing
in them. Creating an inverted index is known to be time and
resource consuming. Distributing the index and its creation
was thus included as a use case in the seminal MapReduce pa-
per [36]. Most index designs support the removal of documents
by marking deleted documents and garbage collecting index
entries. Some designs avoid the resulting fragmentation in the
index structure by batching deletions and rebuilding the index
later [2, 58].

Indexing is a key mechanism in information retrieval and
presents several challenges that have attracted a wide range
of research efforts. One challenge is handling a high rate of
incoming new data from sources, such as social media plat-
forms and news services, which needs to be indexed [74, 75],
possibly while simultaneously remaining responsive to user
queries. Another challenge is supporting not only direct search,
but also similarity search, in order to provide users with ad-
ditional related search results [29, 52, 71]. Indexing is used in
a wide range of contexts. For example, in natural language
processing, an index is used for pre-training and fine-tuning
the language model [48, 54]. Indexed pattern matching also
plays a key role in bioinformatics [61, 64], data mining [70]
and multimedia retrieval [73]. Since the data held in the in-

dex itself may be very large [74], an extensive body of work
addresses compressed indexes with the goal of fitting them in
memory [60, 68, 78].

Of available commercial indexing products, the most well-
known is Elasticsearch—a distributed search engine supporting
full-document indexing and real-time analytics [4, 47]. Elastic-
search is built on top of the single-node Apache Lucene [2]—an
open-source full-text search-engine library. Lucene combines a
document store with an inverted index that supports searching
within any field of the indexed documents, simple lookups,
complex queries, analytics jobs, and offsets. Lucene’s underly-
ing data structure is based on a hierarchy of skip-lists, which
enable sequential access when a query contains multiple terms.

Lucene and its variations serve as the underlying engine of
many more commercial indexing products, such as Apache
Solr™ [13] and Amazon OpenSearch [1]. IBM Watson [5] is
based on distributed Lucene and Indri [6] for indexing large cor-
pora as well as semantic entries and relations between words.
Other products support similar document and search interfaces
with alternative data structures. For example, Meilisearch [10]
is based on LMDB [8] which is implemented with B+ trees,
and TypeSense [14] uses the LSM-tree-based RocksDB [12]
for its mapping.

Specialized solutions enable search inside compressed struc-
tured data such as logs or time-series data. Examples include
rapid exhaustive search [22, 23], lazy on-demand indexing of
log fields [18], and highly effective in-memory caching of
logs [65]. These special-purpose solutions are tightly coupled
with the structure of the data and are not directly applicable to
the general case of unstructured deduplicated data.

Result ranking. To maximize their relevance, lookup re-
sults are typically ranked by index systems, using a scor-
ing formula on each result. Among the most popular such
formulas, which we use in this paper, is TF-IDF [66], used
by Lucene (and therefore in Elasticsearch). TF-IDF is com-
monly defined as follows. Given a document d in which a
lookup term t is found, the score TF-IDF(t,d) is defined as

T F(t,d) · IDF(t) where T F(t,d) =
√

# occurrences of t in d
# words in d and

IDF(t) = 1+ log( # docs in the system
1+# docs in which t appears ).

Intuitively, T F measures how frequently a term appears in
the document, and IDF measures the term significance, based
on its occurrence in the entire corpus. Keeping the byte offsets
of the terms allows measuring additional attributes such as
proximity between multiple terms [32].

3 Challenges
When it was first commercialized, deduplication was primarily
applied to backup and archival storage of ‘cold’ data, which
is only rarely read and processed [80]. Since then, however,
two separate trends have changed the way deduplicated data
is accessed. The first is the growing need to process cold data,
including old backups. Common scenarios include full-system
scans for malware and anomaly detection [53, 76], as well as
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keyword searches for legal disclosure [67, 77]. Enterprise ap-
plications might perform complex analytics queries, involving
multiple-term lookups, on cold storage [31]. In disaster re-
covery situations, needed VMs may be identified with search
terms and then run directly from backup storage until a primary
system is restored [28]. These scenarios were addressed in a
recent study of deduplication-aware search [42]. However, in
the absence of an index, these exhaustive searches might be
prohibitively slow.

The second trend is the growing application of deduplication
on primary storage of ‘hot’ and ‘warm’ data that is accessed
regularly [69]. As a result, deduplicating storage appliances
are expected to support various functions, including keyword
search. For example, users might perform single-term searches
for files within their deduplicated personal workstation or their
home directory on a deduplicated shared storage partition.

Since indexing software operates at the file-system level,
it is unaware of the underlying deduplication at the storage
system. A deduplication-unaware (naïve) index would thus
schematically resemble the structure in Figure 3. The index
will map terms to files, independently of how the files’ content
is stored in the underlying media. However, this oblivious
design is inefficient due to the following three challenges.

Challenge 1: index size. The size of the index grows with
the number of distinct terms as well as the number of files in
the system. In traditional storage systems, this size is roughly
proportional to the size of the stored data. As the data size
grows, the storage capacity is scaled accordingly, accommodat-
ing the growing index. In deduplicated storage, however, the
index grows with the logical data, as every new file must be re-
flected in the terms’ document list, even if its content is almost
identical to that of files already in the system. An increased
index size might also increase the latency of lookups due to
logarithmic search complexity and because smaller portions of
it will fit into DRAM.

Challenge 2: indexing time. The indexing process scans all
the files in the system to create the list of terms in each docu-
ment and then the list of documents for each term. Performing
such a scan on deduplicated data will result in random I/Os
for reading the chunks in the order they appear in the files.
For example, creating the index in Figure 3 would perform
the following series of chunk reads: [B1,B2,B2,B3,B4,B2,B5].
Chunk B2 is accessed and processed three times, once for ev-
ery file it is contained in. Furthermore, recall that chunks are
read by fetching their entire container or a compression region
within a container. Reading chunks in random order might thus
cause high read amplification.

Challenge 3: split terms. Although the chunks in our exam-
ple contain entire words, the chunking process will likely split
the incoming data into chunks at arbitrary positions, splitting
words between adjacent chunks. Thus, the terms in the begin-
ning or end of a chunk can be correctly identified only when
considering the chunks adjacent to it in each file. Therefore,
even if the chunk is identified as duplicate, it must be processed

in the context of each file that contains it.
As a result of these challenges, to the best of our knowledge,

current deduplicating storage systems do not support indexing
of their entire content.

4 IDEA
In this section, we describe the design of our deduplication-
aware index, IDEA. We begin with an overview of the key
concepts, and then describe each component in detail.

4.1 Overview
The key idea of deduplication-aware indexing is to map terms
to the unique physical chunks they appear in, instead of the
logical documents whose number might be disproportionately
high. We replace the term-to-file mapping of the traditional
index with two complementing maps: a term-to-chunk map
and a chunk-to-file map. The lookup process first finds all the
chunks containing the queried terms, and then finds the files
containing these chunks. Figure 4(a) depicts the deduplication-
aware index that replaces the naïve index in Figure 3. The
logical term-to-file mapping from Figure 2 is realized by the
combination of the two maps in Figures 4(b) and 4(c), with
the file paths resolved by the file-to-path map in Figure 4(d).
We use file IDs (generated as an internal serial number) in the
term-to-file map because they are much smaller than the full
file paths. From hereon, we refer to the file IDs as files.

This design allows deduplicating storage systems to provide
index functionality to their users. The system can construct
The term-to-chunk map with standard indexing software (e.g.,
Lucene), by passing the chunks as documents for indexing. The
chunk-to-file map is based on information from the file recipes,
and can be implemented by any standard key-value store. The
only modification required in the deduplication system is the
chunking process, to ensure that chunk boundaries do not split
terms between chunks. We modify the chunking procedure
to be white-space aware and enforce chunk boundaries only
between words.

Properties. The term-to-chunk map is the largest part of
the deduplication-aware index. Its size and creation time are
proportional to the number of physical chunks. In systems with
a high deduplication ratio, this map will be smaller than the
term-to-file map in traditional indexing, and will incur lower
lookup latency. On the other hand, many optimizations within
the traditional index data structures are most effective when
files are large (e.g., compressed encoding of file IDs or offsets
within files). Processing individual chunks instead of entire
files eliminates some of their benefits in a deduplication-aware
index. We discuss these cases in detail in Section 7.

4.2 White-space aligned chunking
Deduplication systems employ two types of chunking mecha-
nisms. Fixed-sized chunking splits the incoming data into fixed-
sized chunks and is typically used in primary storage to align
the deduplicated chunks with those of the storage interface. In
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(a) Implementation

Term
Chunk

(Offsets)

fun B5(3)
house B2(4)
into B1(7)
let B1(0)
me B1(4)
of B3(0),B5(0)

opera B3(7)
the B2(0),B3(3)
to B4(8)

welcome B4(0)

(b) Term-to-chunk

Chunk File (Offsets)

B1 F1(0)

B2
F1(11),F2(0),

F3(10)
B3 F2(10)
B4 F3(0)
B5 F3(21)

(c) Chunk-to-file
File Path

F1 home\file1
F2 shared\file3
F3 fun\lyrics\file3

(d) File-to-path

Figure 4: An illustration of a deduplication-aware index (a) and its related maps (b-d) for the files and terms in Figure 2.

Chunk 1 Chunk 2 Chunk 3

Incoming data welcome to the house of fun

Traditional welcome t o the hous e of fun
Whitespace-CDC welcome to the house of fun
Whitespace-fixed welcome to the house of fun

Figure 5: The effect of white-space alignment on chunk content.

other words, the chunks are aligned to the operating-system
pages and to the storage-device blocks [20, 24, 34, 43, 56].
Content-defined chunking (CDC) splits the data into variable-
sized chunks where the hash produced over a rolling window
matches a predefined mask. This indicates the start of a new
chunk [50, 79, 80]. This method ensures that small differences
between similar files will be contained within a small number
of chunks and has been shown to achieve better deduplication
efficiency than fixed-size chunking [59, 80].

Both techniques are agnostic to word boundaries and will
likely end a chunk in the middle of a word. Thus, we modify
both to be white-space aware and create chunk boundaries
that align with white-space and other characters that preserve
the locality of words within chunks. These characters are the
delimiters used by the indexing software to parse terms dur-
ing document processing. Thus, white-space awareness is not
restricted to a specific encoding or language. In our implemen-
tation, the delimiters are defined by the C function isspace().

Content-defined chunking. Systems that use content-
defined chunking are designed to handle variable-sized chunks.
Thus, extending this mechanism to be white-space aware is
relatively straightforward: when it identifies a chunk boundary,
instead of immediately triggering a new chunk, we continue
scanning the following characters until a white-space charac-
ter is encountered. This character ends the current chunk and
starts the next chunk at the character immediately after it. If a
white-space character is not encountered within a sufficiently
long distance from the original boundary (512B in our imple-
mentation), we leave it unchanged—we assume the split string
is irrelevant for indexing anyway.

Fixed-size chunking. Systems that use fixed-size chunking
require chunks to fit into fixed-sized memory buffers and/or

storage blocks. Thus, if the chunk boundary splits a term in
two, we cannot extend this chunk until the end of this term.
Instead, when an end of a chunk is identified (by calculating
the offset from the beginning of the chunk), we scan this chunk
backwards until a white-space character is encountered. This
character ends the current chunk and starts the next chunk at
the character immediately after it. Figure 5 demonstrates the
effect of white-space aligned chunking on a small file example.

Although white-space alignment converts fixed-sized chunks
to variable-sized chunks, it does not interfere with the dedu-
plication system’s operation. The resulting chunks are always
smaller than the fixed size, and can thus be stored in a single
block (i.e., hard-disk sector or flash page). In addition, recall
that file recipes record the size of each chunk, and can thus
handle chunks smaller than the fixed size. In case of a dedupli-
cating file system, it can trim the block in memory to the chunk
boundary. Additional file system changes might be required to
support variable-sized chunks within larger fixed-sized blocks,
e.g., recording the chunk size in the inode. These changes are
beyond the scope of this project.

Non-textual content. Aligning chunks to white-spaces is
only effective in case of textual content, and will have little
effect on arbitrary binary content. We thus apply white-space
alignment only to chunking of textual content. We identify this
content by the file extension of the incoming data, e.g., .txt,
.c, .h, and .htm files. This distinction during the chunking
step allows us to also identify candidate chunks for indexing,
and to exclude non-textual content from the indexing process.
This is similar to how traditional indexing excludes files based
on their extension, e.g., executable files.

The modifications to the deduplication mechanism are min-
imal. In our implementation, we add a Boolean field to the
metadata of each chunk in the file recipe and in its container,
indicating whether it is a ‘text’ chunk or not. During index
creation, described in the following subsections, we only pro-
cess chunks marked as textual.1 We note, however, that our

1We experimented with workloads that contained a mix of textual and non-
textual data, and found that the non-textual data does not affect the performance
of IDEA. We thus omit those results from our evaluation.
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chunking and indexing approaches do not preclude processing
of binary content. Non-textual strings are identified by the in-
dexing software (e.g., by the ‘tokenizer’ in Lucene) and are
excluded from the mapping.

Overhead. White-space aligned chunking requires additional
processing during the chunking step, and alters the location
of chunk boundaries. We verified that enabling white-space
awareness increases the chunking time by no more than 0.6%
for content-defined chunking. The fixed-size chunking time
increased by up to 3×, although it was still only 0.5% of
the content-defined chunking time. The resulting number of
chunks was within 0.4% and 0.15% of the number of chunks
created by content-defined and fixed-size chunking, respec-
tively. The difference in average chunk size was similarly
negligible. White-space alignment reduced the deduplication
ratio (percentage of data removed by deduplication) of content-
defined chunking by no more than 0.4%, and marginally im-
proved that of fixed-size chunking. The experiments were done
on the LNX-198 and Wiki-4 datasets, described in Section 6.

4.3 Term-to-chunk mapping

The term-to-chunk map is an inverted index whose documents
are physical chunks instead of logical files. The white-space
aligned chunking described above ensures that chunks include
complete terms, preventing arbitrary prefixes or suffixes from
being incorrectly indexed. The number of documents in the
index is the number of physical chunks, which might be higher
than the number of logical files. The effect of this design choice
on the size of the index is evaluated in Section 7.

During indexing, the chunks are read sequentially by fetch-
ing entire containers or compression regions, and each chunk is
processed only once, regardless of the number of files contain-
ing it. Since each chunk is processed independently, processing
the chunks is easily parallelizable. We leave related optimiza-
tions for future work. A term-lookup in the term-to-chunk map
returns the fingerprints of the chunks this term appears in (and
optionally its offsets within them). The fingerprints are used for
lookup in the chunk-to-file map, described later in this section.

4.4 Chunk-to-file mapping

The mapping from chunks to files is independent of the term-
to-chunk mapping, both in structure and in its construction.
The mapping is constructed from two complementing maps: in
the chunk-to-file map, each chunk fingerprint points to the IDs
of all the files that contain this chunk (and optionally its offsets
within each file). The file-to-path map connects each file ID
to the file’s full pathname. This is equivalent to the mapping
between document IDs to user-defined document names in
traditional inverted indexes.

We implement the chunk-to-file and file-to-path maps as
separate key-value stores, whose keys are the chunk finger-
prints and file IDs, respectively. Both maps are created from
the metadata in the file recipe. For each file, a <fileID,path>
pair is added to the file-to-path map, and a <fingerprint,fileID>

pair is added to the chunk-to-file map for each fingerprint in
the recipe. If the index support offset lookup, then the <finger-
print,fileID> pair also carries the list of offsets in which the
chunk appears. This information can be derived from the file
recipe, which contains the size of each chunk.

4.5 Keyword/term lookup

IDEA performs keyword lookup in three phases: (1) a lookup
in the term-to-chunk map yields the fingerprints of all the
relevant chunks and optionally the term offsets within them,
(2) a series of lookups in the chunk-to-file map retrieves the
IDs of all the files containing these chunks, and optionally the
chunk offsets within them, and (3) a lookup of each file ID in
the file-to-path map returns the final list of file names. When
requested, the offsets of the terms within the files are derived
from the combination of the term and chunk offsets.

Phases (2) and (3) are oblivious to the number of keywords
in the original search query. The term-to-chunk map, imple-
mented as an inverted index, returns a set of unique chunks,
even in complex search queries that lookup multiple keywords.
However, when a term appears in multiple chunks belonging to
the same file, some of the files returned from the chunk-to-file
map will be redundant. When offsets are not supported or not
requested in the query, we collect the results from phase (2) in
a set data structure that eliminates duplicate entries, ensuring
that each file is searched in the file-to-path map only once.

4.6 Ranking results

As a proof of concept, we extended IDEA to support document
ranking with the TF-IDF metric. Recall (from Section 2) that
the score of a <document,term> pair is calculated using four
values. The number of files in the system is a global system
value. The number of words in the file is calculated during
index creation: IDEA sums the number of words in each of
its chunks, which are counted by indexing software when the
chunks are processed.

The remaining values are calculated during the lookup of the
term, as follows. The number of files containing the term is the
number of files in the query result. Calculating the number of
appearances of the term in the file is equivalent to counting the
offsets of this term within the file. If offsets are not supported,
IDEA supports ranking by recording number of appearances
instead of offsets. The term-to-chunk map records the number
of appearances of the term in each chunk, and the chunk-to-file
map records the number of appearances of each chunk in the
file. These values are combined for the files in the query result,
to return the number of appearances of the term in each file.

Supporting ranking for a query with multiple terms requires
calculating the number of appearances of each term in each
file, separately. This can be done by maintaining a temporary
data structure that collects, for each term, the chunks it appears
in. This information can be combined with the number of
appearances of each chunk in each file in the query result.
IDEA can directly support ranking with any metric that is
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based on term occurrences or positions. Other metrics may
also be supported, but are outside the scope of this paper.

5 Implementation
We implemented a prototype of IDEA to show how deduplicat-
ing storage systems can provide indexing functionality with our
approach. Storage systems have direct access to file recipes and
physical chunks, and can use an existing engine for indexing. In
our implementation, we integrated Apache Lucene [2] into the
Destor open-source deduplicating backup system [46]. Destor
was built for academic purposes and includes all fundamen-
tal deduplication mechanisms and data structures. It supports
backup and restore operations, creating deduplicated backups
of entire directories. We used the open-source C++ implemen-
tation of Apache Lucene, LucenePlusPlus [9], and the C++
version of Destor [3] that was used for deduplication-aware
exhaustive scans [42].

Lucene assigns an internal document ID to every document
that it processes. Its index consists of two major data struc-
tures. The term-to-doc map returns, for each term, a list of
document IDs it is contained in. The document store contains,
for each document ID, attributes such as its size and file path,
and possibly its content. In IDEA, we realize the term-to-chunk
map using Lucene’s term-to-doc. The document store realizes
the chunk-to-file map: the document representing each chunk
contains the list of files this chunk is contained in. We use
Berkeley-DB [11] for the file-to-path map. It is implemented
with the recno data structure, which is a flat text format opti-
mized for sequential integer keys. Figure 6 illustrates the data
structures used by Lucene and by IDEA. By default, IDEA uses
an SSD for the data structures which are external to Lucene,
as Lucene uses the main memory to cache the parts of the
index required for fast access. We evaluate the effect of the
SSD below.

The full indexing process in IDEA proceeds as follows. We
first scan all the file recipes from Destor and create the list
of files containing each chunk using a key-value store, which
may spill to disk. Each list is added as a document (which
is immutable in Lucene2) to the document store, where the
document ID is the chunk ID. Then, we read the containers
from Destor’s on-disk container store to memory. The chunks
in the containers are passed to Lucene for indexing in the
term-to-document map, with their respective IDs.

IDEA must ensure that its separate maps remain consistent.
In other words, all the chunks returned from the term-to-chunk
map must be present in the chunk-to-file map, and all the file
IDs must map to full file pathnames. Thus, IDEA ensures
that the <fileID,path> pair is persisted in the file-to-path map
before it uses this ID in the chunk-to-file map. IDEA currently
does not support lookups to be issued in parallel with index
creation. IDEA records, in the file recipe, whether the file has
been indexed or not, and a similar record marks containers

2The documents are stored sequentially in the index segments, and are
immutable to facilitate efficient direct access to them via the skip-lists.

Figure 6: Data structures for Naïve and IDEA, including variants of
IDEA that support offsets and ranking.

whose chunks have been indexed. In case of a system crash
during index creation, IDEA can be restored to a consistent
state by re-processing the unindexed containers and file recipes.
Duplicate entries in the term-to-chunk map will be handled by
Lucene. In the chunk-to-file map, we can look up each chunk
before adding its <chunk,fileID> pair, to find out whether it
was already inserted to the map.

We perform the three phases of keyword lookup described
in Section 4.5 sequentially. We use the set data structure of
C++ (std::set, implemented as a red-black tree) to store the
unique sets of files returned from chunk-to-file map. Lucene
uses a similar structure to return unique file-IDs in the term-
to-chunk lookup of multiple keywords. For multiple-keyword
lookups, we use Lucene’s OR query with all the keywords.

IDEA-indirect. To support additional index functions, we
implemented an alternative, more modular, version of IDEA,
by adding another level of indirection to its maps. The main
advantage of IDEA-indirect is its ability to support inline in-
dexing, as part of the system’s processing of incoming data:
the separation between the document store and the mapping of
chunks to files precludes the need to create an immutable list
of files containing each chunk.

In IDEA-indirect, the chunk-to-file map is split into two
maps: the document store holds, for each document ID (rep-
resenting a chunk), this chunk’s fingerprint. An additional
map returns, for each fingerprint, the files containing its chunk.
Figure 6 illustrates these data structures. The FP-to-file and
file-to-path maps are stored on SSD for faster lookup. We use
Berkeley-DB [11] for the additional FP-to-file map. We im-
plement it as a hash-table based multi-map, which supports
efficient additions of <chunk,fileID> pairs whenever a new ref-
erence to a chunk is identified. In inline indexing, new chunks
are passed to Lucene for indexing as soon as they are identified
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Dataset Logical Physical Recipe Files Chunks
(GB) (GB) (GB) (M)

LNX-198 51 11 0.7 4.3M 1.6
LNX-409 181 13 2.4 15.3M 1.7
LNX-662 334 14 4.7 28.2M 1.8

Wiki-4 242 114 0.884 2.3K 10.3
Wiki-8 487 180 1.8 4.7K 14.9
Wiki-12 736 255 2.8 7K 20.1

Wiki-12-1MB 736 259 2.9 686K 20.1
Wiki-24-1MB 1370 478 5.4 1.3M 36.9

Table 1: The datasets used in our experiments

as unique (in parallel to step 6 in Figure 1). The <chunk, path>
pairs are added as <chunk, fileID> and <fileID, path> to their
respective maps after fingerprint calculation, during the cre-
ation of the file recipe. Lucene organizes its index in segments,
and automatically creates a new segment when new documents
are added to an existing index. Segment merging and splitting
is controlled by a set of Lucene’s internal triggers.

IDEA-offsets. In LucenePlusPlus [9], which is equivalent to
Lucene version 3.0.3, term offsets within files are maintained
in dedicated data structures called term vectors: for each docu-
ment, the term vector lists the terms in this document, and the
offsets each term appears in 3. We rely on these existing struc-
tures to support offset lookups in IDEA-offsets, which extends
IDEA-indirect as follows. IDEA-offsets uses the term vectors
to record the offsets of terms within the chunks they appear
in. It also extends the chunk-to-file map to record, for each
file-ID, the list of offsets of the chunk within the file. Figure 6
illustrates these data structures.

IDEA-rank. LucenePlusPlus supports ranking by recording
term frequencies within the term-to-doc map. This version of
Lucene couples support for ranking with support for proximity
search: the term frequency is recorded alongside the list of its
positions in the files.4 This increases the size of the term-to-doc
map beyond what is necessary for ranking alone.

We implement IDEA-rank by extending IDEA-indirect to
use the frequency records of Lucene. It stores the frequency
of the term in each chunk in the term-to-chunk map, and the
frequency of the chunk in each file in the FP-to-file map. The
number of terms in each file is stored in the file-to-path map,
and the global counter of files is maintained as an independent
counter. IDEA-rank currently supports a single-term lookup,
with multi-term queries deferred to future work.

6 Experimental Setup
Baseline. In addition to IDEA, IDEA-indirect, IDEA-offsets
and IDEA-rank, we evaluated a deduplication-oblivious index,
Naïve, which uses Lucene to index the logical files as doc-
uments. To implement Naïve, we extended Destor’s restore
process: we use it to read all the files in the system in their

3Later versions of Lucene also support the embedding of offsets within the
term-to-doc map, eliminating the additional data structure.

4A position is the term’s offset counted in terms, rather than bytes.

Dictionary LNX-198 Wiki-12
Files Chunks Files Chunks

file-low 1.4 1.3 1.3 1.11
file-med 9.5 3.3 9.35 3.57
file-high 93.7 14.4 95.4 40.1

chunk-low 11.6 1.22 8.25 1.43
chunk-med 28 9.6 16.1 9.36
chunk-high 148 94.8 208.9 94.6

Table 2: Average number of files and chunks per keyword in dictio-
naries used in our experiments.

logical order. Instead of writing the restored files, they are
passed to Lucene as documents for indexing. Lookup in Naïve
is performed by a simple OR-query lookup. After retrieving the
document IDs from the inverted index, Lucene converts them
to file names and returns the names as the query result (see
Figure 6). We also implemented versions supporting additional
functionality, Naïve-offsets and Naïve-rank.

Datasets. We used two types of datasets for evaluating in-
dexing and lookup times, similar to those used in [42]. The
Linux datasets contain versions of the Linux kernel source
code [7], from version 2.0 to version 5.9. The datasets con-
tain 198, 409, and 662 versions, including all the minor ver-
sions, every 10th patch, and every 5th patch, respectively. The
Wikipedia datasets contain archived versions of the English
Wikipedia [15, 16], from January 2017 to March 2018. The
datasets contain 4, 8, 12, and 24 consecutive XML dumps,
which we split into files of 100MB (at page boundaries). We
created two additional datasets from the 12 and 24 versions,
with files of 1MB, to evaluate the effect of the number of files
on the index performance. The datasets were created with
variable-sized chunks (using Rabin fingerprints) with an aver-
age size of 8KB. The full details appear in Table 1.

Keyword dictionaries. We created six sets (dictionaries)
of keywords that vary in the number of chunks and files they
appear in. We sorted the terms in Wiki-12 in order of the
number of chunks they appear in, and retrieved all the terms
that appear in the ranges of 1-2, 9-10, and 90-100 chunks.
We then chose 128 random terms from each range, creating
the Wiki-chunk-low, Wiki-chunk-med, and Wiki-chunk-high
dictionaries. We repeated this process, counting appearances
of terms in entire files instead of chunks, to create Wiki-file-
low, Wiki-file-med, and Wiki-file-high. We created a similar
set of dictionaries from LNX-198 using the same process. The
resulting average number of chunks and files containing each
term in each dictionary are summarized in Table 2.

Hardware. For our experiments, we used a server running
Ubuntu 16.04.7, equipped with 128GB DDR4 RAM and an
Intel Xeon Silver 4210 CPU running at 2.40GHz. The backup
store for Destor was a Dell 8DN1Y 1TB 2.5" SATA HDD.
The maps of all the index alternatives (Naïve as well as the
term-chunk map of IDEA and all the maps of IDEA-Direct)
were stored on a separate identical HDD. The chunk-to-file
and file-to-path maps of IDEA were stored on a Dell T1WH8
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240GB 2.5" SSD. We cleared the page cache and restarted
Lucene before each indexing and lookup experiment.

7 Evaluation
The goal of our experimental evaluation was to understand how
deduplication-aware indexing (IDEA) compares to the tradi-
tional deduplication-oblivious indexing (Naïve) in its storage
requirements (index size), memory usage, indexing time, and
lookup performance. We designed our evaluation to demon-
strate how these aspects are affected by the characteristics of
the indexed data (deduplication ratio, number and size of files)
and of the searched keywords.

Indexing time. Figure 7 shows the offline indexing times
of Naïve and IDEA. It shows that deduplication-aware index-
ing can reduce indexing time compared to Naïve, and that the
reduction is proportional to the deduplication ratio—the por-
tion of data removed by deduplication. The recipe-processing
time is negligible compared to the chunk-processing time in
all except very extreme cases (LNX-662 with 28M files).

Recall that the Linux datasets have a very high deduplication
ratio (between 78% in LNX-198 and 95% in LNX-662), with
many small files. In these datasets, the indexing time of IDEA
is shorter than that of Naïve by 76% to 94%. This reduction
results from processing each chunk only once, and fetching the
chunks sequentially from the underlying HDD. The Wikipedia
datasets have lower deduplication ratios (between 53% in Wiki-
4 and 65% in Wiki-12 and Wiki-24) and a considerably smaller
number of large files. In these datasets, the reduction in index-
ing time is substantial but smaller: the indexing time of IDEA
is shorter than that of Naïve by 49% to 76%.

The results for the Wiki-12 versions further illustrate the
effect of the number and the size of the files on the indexing
times. When Lucene creates the term-to-file mapping, multiple
occurrences of a term in a document are heuristically replaced
(in memory) by a single pointer/counter. Thus, as the size of
the files decreases (from 100MB in Wiki-12 to 1MB in Wiki-
12-1MB), there are fewer replacements and their processing
time in Naïve increases. In contrast, the chunk-processing time
of IDEA depends on the appearances of terms in chunks, not
files, and thus remains similar for all these versions.

Index size. Figure 8 compares the size of the different in-
dexes. In the Linux datasets, IDEA is always smaller than
Naïve, and the difference between them increases with the
deduplication ratio—for LNX-662, the index size of IDEA is
73% smaller than that of Naïve. The reason is the large num-
ber of small files, combined with a very high deduplication
ratio: there are more files than chunks in all these datasets (see
Table 1). In Naïve, each term points to a large set of files it
occurs in, while in IDEA, the files are recorded for each chunk
rather than term. The file-to-path map occupies a significant
portion of IDEA’s index for these datasets. However, it is still
considerably smaller (27%-44%) when compared to Naïve.

The Wikipedia datasets have a much lower deduplication
ratio than Linux. In this case, the benefit from mapping term
to chunks instead of files depends on the size of the files. The
index of IDEA is larger than that of Naïve in the datasets with
100MB files (Wiki-4, Wiki-8, Wiki-12), and is smaller in the
datasets with 1MB files. The advantage of IDEA compared to
Naïve can be seen when comparing the different versions of the
Wiki-12 dataset: the size of Naïve grows considerably with the
number of files, while the size of IDEA is almost unchanged.
The reason is that when the data is split into more files, Naïve
must record more files for all the terms included in them. In
IDEA, however, this additional information is recorded per
chunk, not per term.

The memory requirements of each index are related but not
directly proportional to the index size. During startup, Lucene
loads an internal data structure called the term-info-index (Tii),
which contains statistics regarding each term, including a com-
pressed counter of its frequency in the entire dataset. The size
of the Tii is roughly half of the size of the data loaded into
memory during Lucene’s startup. The Tii in IDEA is smaller
than the Tii in Naïve (except in Wiki-4, which has an unusually
low deduplication ratio) by 52% to 76%. The peak memory
usage of IDEA is proportionately lower than that of Naïve for
the Wikipedia datasets. In the Linux datasets, more memory
is used for chunk-to-file lookups, and thus its consumption is
comparable to that of Naïve.

Lookup times. Figure 9 shows the lookup time for a single
keyword from two dictionaries in three representative datasets.
Each bar represents an average of four experiments (the stan-
dard deviation was at most 0.2%), each with a different key-
word, with the latency divided into startup time and lookup
times in each map. The results show that the additional lookups
due to the indirection in IDEA have a minor effect on the la-
tency. IDEA is faster than Naïve by up to 82%, 47%, and 45%
in LNX-198, Wiki-12, and Wiki-12-1MB, respectively.

The advantage of IDEA is the smaller size of its term-to-doc
map, which incurs shorter lookup latency. The latency of each
step in the lookup process depends on the size of the respec-
tive data structure. The startup time, which is dominant when
searching for a single keyword, is proportional to the size of the
Tii, which is much smaller in IDEA. The lookup times in the
different inverted term-indexes is also proportional to their size,
due to the logarithmic search complexity in Lucene’s skip-lists.
The remaining latency is incurred when converting document
IDs to names. In the Wikipedia datasets, this specific map of
IDEA is larger than that of Naïve by orders of magnitude, but
its overall lookup time is still smaller than that of Naïve.

Figure 10 shows the lookup times with increasing numbers
of terms from the file-med dictionary. Each bar shows the av-
erage time of three independent executions, and the standard
deviation was at most 0.09%. As the number of terms increases,
the weight of the startup time Sindex in the overall lookup la-
tency decreases, and the time to convert the document IDs to
their names increases. IDEA outperforms Naïve by up to 59%
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Figure 7: Offline indexing times. Figure 8: Index sizes. Figure 9: lookup times of a single keyword.

Figure 10: Lookup times with different numbers of
keywords, with the file-med dictionary.

Figure 11: lookup times with 128 keywords of different dictionaries, in the LNX-
198 (left) and WIKI-12-1MB (right) datasets.

and 27% on the Linux and Wikipedia datasets, respectively.
Figure 11 compares the effect of different dictionaries on

the lookup times. Each bar shows the average time of three
independent executions, and the standard deviation was at most
0.09%. The lookup times of Naïve as well as IDEA increased
with the number of chunks and files in the query result. The
Linux dataset contained more files than chunks, and thus IDEA
was faster than Naïve by up to 59% (in the file-low dictionary).
The Wikipedia dataset, on the other hand, contained many
more chunks than files. As a result, there are considerably
more chunks that contain each term, especially in the chunk-
high dictionary, for which the lookup time of both indexes was
comparable. For all other dictionaries, the lookup time of IDEA
was shorter than that of Naïve.

We repeated all the lookup experiments of IDEA without an
auxiliary SSD. This means that its file-to-path map was stored
on HDD. As expected, this increased the total lookup time, and
this increase was proportional to the number of different files in
the query result. For example, with a single keyword from the
chunk-med dictionary, the increase compared to IDEA with an
SSD was 1.1% and 16% in the Wiki-12 and LNX-198 datasets,
respectively. The biggest increase was 168% when looking up
128 keywords from the LNX-662 dataset. Nevertheless, the
lookup of IDEA was faster than that of Naïve, even without
the SSD, in all experiments.

IDEA overheads. We created two datasets to evaluate the
worst-case overheads of IDEA in a system without deduplica-
tion. LNX-1 and Wiki-1 contain a single version of Linux and
Wikipedia, respectively. With almost no deduplication, IDEA
has no advantage when compared to deduplication-oblivious
indexing, while incurring the overhead of processing a large

number of small documents, and looking up terms and chunks
in an additional mapping layer. Table 3 lists the characteristics
of each dataset, as well as the indexing and lookup times of the
different indexes.

Indeed, IDEA is larger than Naïve, due to the larger number
of documents in the index: IDEA must record, for each term,
all the chunks it appears in, even though many of them point
to the same file. The indexing time is similar for both indexes
in the Linux dataset that consists of many small files. In the
Wikipedia dataset, IDEA cannot optimize index construction
by eliminating recurring terms in a document because its doc-
uments are small chunks rather than Wikipedia’s large files.
The lookup times of IDEA are longer for both datasets, due to
the reasons discussed in detail above. However, this increase is
negligible for Wikipedia and is a modest 10% for Linux.

This experiment emphasizes the tradeoffs of deduplication-
aware indexing. Namely, that the additional layer of indirection
incurs non-negligible overheads that are masked in systems
where the deduplication ratio is sufficiently high. In our fu-
ture work, we will identify the minimal deduplication ratio for
which deduplication-aware indexing is more efficient that the
traditional approach, and how this minimum depends on the
average file size.

The effect of indirection. IDEA-indirect is the basis for
the additional functionality of deduplication-aware indexing
(offsets and ranking). To evaluate the effect of the additional
layer of indirection (chunk-to-file mapping), we repeated the
indexing and lookup experiments with IDEA-indirect. The
offline indexing times were within 1% and 6% of those of
IDEA for the Wikipedia and Linux datasets, respectively. The
size of IDEA-indirect is always larger than that of IDEA: by
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Dataset Dataset size Indexing time Index size Lookup time
Logical Physical # files / # chunks Naïve IDEA Naïve IDEA Naïve IDEA

WIKI-1 60.4GB 60.3GB 574 / 6M 2.02H 2.25H (11.3%) 2.5GB 6.1GB (152%) 11.67 11.78 (0.1%)
LNX-1 0.91GB 0.86GB 74K / 165K 86 secs 85 secs (N/A) 49MB 60.8MB (24%) 0.47 0.52 (10%)

Table 3: Worst-case overhead of IDEA (in parentheses, with respect to Naïve) for systems without deduplication. The lookup times (in
seconds) refer to the average of the file-med and chunk-med dictionaries.

up to 22% and 49% for the Wikipedia and Linux datasets,
respectively. Despite this increase, it is still smaller than Naïve
in the Linux datasets.

The additional level of indirection also increases the lookup
time compared to IDEA. This increase grows with the number
of chunks in which the queried keywords appear: in the LNX-
198 dataset, the lookup time of 128 keywords with IDEA-
indirect was 32% and 23% higher than that of IDEA, in the
file-low and chunk-high dictionaries, respectively. In the Wiki-
12-1MB dataset and the file-high and chunk-high dictionaries,
this increase caused IDEA-indirect to be slower than Naïve. In
all other experiments, however, IDEA-indirect was faster than
Naïve, despite the additional layer of indirection.

Inline indexing. We compared the inline and offline indexing
times of Naïve and IDEA-indirect on two of the datasets, LNX-
198 and Wiki-12. Recall that inline indexing is integrated into
the deduplication process, referred to as ‘backup’ in Destor.
In this experiment, the original data was read from one HDD
and backed-up by Destor on a second HDD. We include the
backup time in the results for offline indexing, for a mean-
ingful comparison. Inline indexing is more efficient in terms
of memory usage – the chunks are processed while they are
still in memory, and do not need to be fetched from the disk.
At the same time, the backup process is slowed down by the
additional processing.

The results in Figure 12 show that the slowdown of the
backup process is detrimental with Naïve indexing: 6.1x and
11.5x in the Linux and Wikipedia datasets, respectively. In-
deed, to the best of our knowledge, no deduplicating system
currently supports inline indexing. In contrast, IDEA-indirect
slows down the backup process by only 1.7x and 4.5x in the
Linux and Wikipedia datasets, respectively, thanks to its ability
to process only new unique chunks. Although this overhead is
not negligible, it presents, for the first time, a realistic opportu-
nity to index deduplicated data inline with writes.

The effect of term offsets. We repeated the indexing and
lookup experiments of IDEA with IDEA-offsets. For brevity,
we present here only the results of representative datasets and
workloads. Figure 13 shows the index size for Naïve-offsets
and IDEA-offsets. These sizes are larger than the sizes without
offsets, due to the additional information stored in the term
vectors. The increase is higher for Naïve than for IDEA: offsets
increase the index size by up to 20.9x and 7.1x for Naïve and
IDEA, respectively. As a result, the size of IDEA-offset is
always smaller than Naïve-offset, even for datasets in which
the situation was reversed without offsets (see Figure 8).

The reason for this difference is that the number of offsets

Dataset LNX-198 Wiki-12-1MB

Naïve-rank 10.2GB (332%) 173GB (490%)
IDEA-rank 3.8GB (178%) 80GB (172%)

Table 4: Index sizes with ranking. The number in parentheses is the
increase compared to the version without ranking.

stored by Naïve-offset depends on the logical occurrences of
each term. This eliminates the “advantage” that Naïve had over
IDEA in datasets with large files. In IDEA-offsets, the offsets
are recorded only within chunks: their number as well as their
values are smaller, occupying less space in the term-vectors.
The additional size of the chunk offsets in the FP-to-file is
much smaller than that of the term offsets.

IDEA’s smaller size also results in faster indexing, shown in
Figure 14. Offsets increase the indexing time by up to 51% and
47% for Naïve and IDEA, respectively. The increase is higher
for Naïve-offsets due to the larger index that must be persisted
on the HDD.

Figure 15 shows the lookup times for 128 words from the
different dictionaries for two representative datasets. Lookups
with offsets are naturally slower than without them, due to the
need to fetch the term vectors for each file in the query result.
Comparing the results to those in Figure 11 shows the increase
in the lookup time due to the added offsets: the time increased
by as much as 33x and 7.5x for Naïve and IDEA, respectively.
The increase is higher in Naïve due to different reasons: in
LNX-198, it fetches more term vectors from HDD: one for
each file the term appears in, rather than one for each chunk.
In Wiki-12-1MB, the term vectors are much longer, because
each 1MB file contains many more terms than each chunk.

The effect of result ranking. We evaluated the effect of re-
sult ranking on two representative datasets, LNX-198 and Wiki-
12-1MB. Recall that recording term frequencies in LucenePlus-
Plus is coupled with the recording of term positions. As a
result, the size of both Naïve-rank and IDEA-rank is larger
than their versions that do not support ranking. Table 4 shows
that this increase is higher for Naïve, similarly to its increased
size when offsets are recorded.

The increase in indexing time (shown in Table 5) is milder,
and is higher for IDEA than for Naïve. The reason is the
additional in-memory processing required for generating the
term counters in the file-to-path map of IDEA-rank. Neverthe-
less, the indexing time of IDEA-rank is still shorter than that
of Naïve-rank. Further optimization of the data structures of
IDEA-rank is possible and is left for future work.

Figure 16 shows the lookup times with one keyword (aver-
aged over four runs with different keywords) from the file-med
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Figure 12: Inline indexing times. Figure 13: Index sizes with offsets. Figure 14: Offline indexing times with offsets.

Figure 15: lookup times with 128 keywords of different dictionaries, in the LNX-198
(left) and WIKI-12-1MB (right) datasets, with offsets.

Figure 16: lookup times of 1 keyword of
different dictionaries with TF-IDF ranking.

Dataset LNX-198 Wiki-12-1MB

Naïve-rank 1.57H (15%) 36H (19%)
IDEA-rank 0.4H (18%) 13H (25%)

Table 5: Indexing times with ranking. The number in parentheses is
the increase compared to the version without ranking.

and chunk-med dictionaries. The standard deviation was at
most 0.4%. The lookup time of IDEA-rank is longer than that
of IDEA by up to 25% (except a 50% increase in the “-low”
dictionaries). This increase is due to the storage of the term off-
sets, which increases the term-to-chunk map. Interestingly, in
Naïve, this increase in size triggered a segment split in Lucene,
which results in slightly faster lookups. This inverse effect
causes one anomaly: IDEA-rank is slower than Naïve-rank
for words in the file-low dictionary and LNX-198. In all other
cases, IDEA is much faster than Naïve.

8 Discussion and Open Challenges
Deduplication-aware indexing opens up several additional
venues for improving search performance and applicability.
The major advantage of our approach is its generality: it is
orthogonal to the specific design details of both deduplication
and indexing mechanisms. Deduplication-aware indexing can
be integrated into any deduplication system that chunks in-
coming data streams. The design of the index itself relies on
the basic search functionality of Lucene, and could use any
other search engine. The chunk-to-file and file-to-path maps
can be realized with any data structure or external database.
Furthermore, the lookup in the two maps, term-to-chunk and
chunk-to-file can be pipelined to reduce some of its overhead:
looking up the unique chunks does not require that all of them
are identified in advance.

IDEA can support file deletion similarly to existing index
designs. The index must maintain the property that it returns all
non-deleted files in the storage system that contain the query
terms. This can be realized by marking each file as live or
deleted, and returning only live files in the query result. A long
series of file deletions, can, as in existing index designs, trigger
garbage collection and an update of the term-to-chunk and
chunk-to-file maps.

While our deduplication-aware indexing approach lends it-
self to many extensions and improvements, its dependency on
white-space aware chunking might prevent it from being ap-
plicable when the system receives chunked data and does not
perform chunking internally (such as in the case of existing
deduplicating storage devices). When terms might be split be-
tween chunks, IDEA will have to process each chunk in the
context of the chunks adjacent to it in each file.

A similar challenge is presented by files containing com-
pressed text, such as .pdf or .docx. Their textual content
can only be processed after the file is opened by a suitable
application or converted by a dedicated tool. Thus, the individ-
ual chunks cannot be processed during offline index creation.
Both challenges might be addressed by inline indexing, but
will require adjusting the indexing process and data structures
accordingly. We leave such extensions for future work.

Finally, the overhead of creating and storing an index
might be prohibitively high, for deduplicated as well as non-
deduplicated data. The choice between indexing and exhaus-
tive search depends on the context of each specific system: its
data type and the frequency and type of queries it is expected
to serve. IDEA and IDEA-Direct introduce additional design
choices between inline and offline indexing, and using HDD
or SSD for external map structures.
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9 Conclusions
Since most storage in large-scale systems is or will be dedupli-
cated, standard storage functionality can be made more efficient
by taking advantage of deduplicated state. In this paper, we
presented the first design of a deduplication-aware term index.
Our evaluation showed the advantages of this approach, as well
as its flexibility in supporting advanced search functions.
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Artifact Appendix
Abstract

IDEA is a deduplication-aware keyword index which addresses
the inherent challenges of indexing deduplicated data. We make
IDEA’s code, scripts, keywords, and configurations publicly
available to allow the reproducability of our results and to fa-
cilitate further research of deduplication-aware indexing. This
section describes the artifact that is made available with the
publication of this paper.

Scope

The artifact includes code, tools, and instructions sufficient for
reproducing the results presented in the paper. The instructions
in the repository can be followed for generating result data
equivalent to that used for Figures 7– 16. They can be used to
verify the main claims of the paper:
• Indexing is faster with IDEA than with Naïve. This claim

holds in setups with and without offsets and ranking, for
inline as well as offline indexing.

• The Naïve index is larger than that of IDEA when the dedu-
plication ratio and the number of files are high.

• When offsets are supported, the index size of Naïve is always
larger than that of IDEA.

• Index size and indexing time increase when offsets or rank-
ing are supported.

• Lookup times are faster in IDEA than in Naïve, except in
several extreme cases.

• Offsets and ranking increase lookup times.
In addition to the reproducible environment, the repository

contains instructions for modifying and recompiling the code.

Contents

The main content of the artifact is the source code of IDEA,
which is a fork of Destor [46]. The artifact contains source
and header files (src/), binary libraries of LucenePlusPlus [9]
(libs/), and compilation scripts for building the IDEA exe-
cutable. The same executable is also used to run the versions of

the Naïve index. The repository also contains resources for re-
producing the experiments described in this paper: instructions
for downloading and creating the Linux and Wikipedia datasets
(dataset_details/), the respective keywords (keywords/),
relevant system configurations (configs/), and scripts for run-
ning the experiments (scripts/).

Hosting

Our artifact is hosted in GitHub and is available here:
https://github.com/asaflevi0812/IDEA. The main branch is sta-
ble for installation and is up-to-date. To modify the code, either
open the repository in an IDE in the host machine (e.g., over
SSH), or fork the repository and use git to transfer changes
between the virtual and host machines.

Requirements

Our prototype is based on Destor, which requires Ubuntu ver-
sion 16.04. To be consistent with the evaluation setup described
in this paper, follow the instructions in GitHub for creating the
backup and index on HDD, with IDEA’s external data struc-
tures on SSD. The required storage capacity depends on the
dataset (see Table 1 for details). However, we reproduced our
main results also in a server with HDD only, and on a server
with Amazon AWS EBS SSD storage.

During the artifact evaluation process, our artifact was eval-
uated using an M5.large instance on AWS with 8 GB DRAM.
The image name was ubuntu-xenial-16.04-amd64-pro-server-
20230912 and the storage was configured as GP3 100GB with
3000 IOPS.

References
[1] Amazon OpenSearch™. https://aws.amazon.com/

what-is/opensearch/.

[2] Apache Lucene. https://lucene.apache.org/. Ac-
cessed: 2022-05-14.

[3] DedupSearch implementation. https://github.com/
NadavElias/DedupSearch.

[4] Elasticsearch: The heart of the free and open Elastic Stack.
//https://www.elastic.co/elasticsearch/.

[5] IBM Watson. https://www.ibm.com/watson.

[6] Indri. http://www.lemurproject.org/indri/.

[7] Linux Kernel Archives. https://
mirrors.edge.kernel.org/pub/linux/kernel/.

[8] LMDB. http://www.lmdb.tech/doc/.

[9] LucenePlusPlus. https://github.com/
luceneplusplus/LucenePlusPlus. Accessed:
2022-12-01.

[10] Meilisearch. https://www.meilisearch.com/.

USENIX Association 22nd USENIX Conference on File and Storage Technologies    255

https://github.com/asaflevi0812/IDEA
https://aws.amazon.com/what-is/opensearch/
https://aws.amazon.com/what-is/opensearch/
https://lucene.apache.org/
https://github.com/NadavElias/DedupSearch
https://github.com/NadavElias/DedupSearch
//https://www.elastic.co/elasticsearch/
https://www.ibm.com/watson
http://www.lemurproject.org/indri/
https://mirrors.edge.kernel.org/pub/linux/kernel/
https://mirrors.edge.kernel.org/pub/linux/kernel/
http://www.lmdb.tech/doc/
https://github.com/luceneplusplus/LucenePlusPlus
https://github.com/luceneplusplus/LucenePlusPlus
https://www.meilisearch.com/


[11] Oracle Berkeley DB. https://www.oracle.com/
database/technologies/related/
berkeleydb.html.

[12] RocksDB. http://rocksdb.org/.

[13] Solr. https://solr.apache.org/.

[14] TypeSense. https://typesense.org/.

[15] Wikimedia data dump torrents. https:
//meta.wikimedia.org/wiki/Data_dump_torrents.

[16] Wikimedia downloads. https://
dumps.wikimedia.org/enwiki/.

[17] Microsoft search server 2010 expres. https:
//www.microsoft.com/en-us/download/
details.aspx?id=18914, 2019.

[18] Fast and reliable schema-agnostic log analytics platform.
https://www.uber.com/en-CA/blog/logging/,
2021.

[19] Commvault documentation pdf: Protect. access. com-
ply. share. https://documentation.commvault.com/
commvault/index.html, 2022.

[20] Deduplication: btrfs wiki. https://
btrfs.wiki.kernel.org/index.php/Deduplication,
2022.

[21] Dell EMC Data Protection Search 19.6.1 de-
ployment and administration guide. https:
//www.dell.com/support/home/en-il/product-
support/product/data-protection-search/docs,
2022.

[22] Reducing logging cost by two orders of magnitude
using CLP. https://www.uber.com/en-US/blog/
reducing-logging-cost-by-two-orders-of-
magnitude-using-clp, 2022.

[23] Searching 1.5tb/sec: Systems engineering before al-
gorithms. https://www.dataset.com/blog/systems-
engineering-before-algorithms/, 2022.

[24] Solaris ZFS administration guide: The dedup prop-
erty. https://docs.oracle.com/cd/E19120-01/
open.solaris/817-2271/gjhav/index.html, 2022.

[25] Veeam backup & replication 11: User guide for VMware
vSphere. https://helpcenter.veeam.com/docs/
backup/vsphere/overview.html?ver=110, 2022.

[26] Efficient search in netapp data storage solutions.
https://intrafind.com/en/blog/efficient-
search-in-netapp-data-storage-solutions,
2023.

[27] Windows search overview. https://
learn.microsoft.com/en-us/windows/win32/

search/-search-3x-wds-overview, 2024.

[28] Yamini Allu, Fred Douglis, Mahesh Kamat, Ramya Prab-
hakar, Philip Shilane, and Rahul Ugale. Can’t we all get
along? Redesigning protection storage for modern work-
loads. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018.

[29] Alexandr Andoni. Nearest neighbor search: the old, the
new, and the impossible. Ph.d. thesis, Massachusetts
Institute of Technology, Dept. of Electrical Engineering
and Computer Science, 2009.

[30] Deepavali Bhagwat, Kave Eshghi, Darrell D. E. Long,
and Mark Lillibridge. Extreme binning: Scalable, parallel
deduplication for chunk-based file backup. In IEEE Inter-
national Symposium on Modeling, Analysis Simulation of
Computer and Telecommunication Systems (MASCOTS
09), 2009.
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Abstract
Log-structured systems are widely used in various applica-
tions because of its high write throughput. However, high
garbage collection (GC) cost is widely regarded as the pri-
mary obstacle for its wider adoption. There have been nu-
merous attempts to alleviate GC overhead, but with ad-hoc
designs. This paper introduces MiDAS that minimizes GC
overhead in a systematic and analytic manner. It employs
a chain-like structure of multiple groups, automatically seg-
regating data blocks by age. It employs analytical models,
Update Interval Distribution (UID) and Markov-Chain-based
Analytical Model (MCAM), to dynamically adjust the number
of groups as well as their sizes according to the workload I/O
patterns, thereby minimizing the movement of data blocks.
Furthermore, MiDAS isolates hot blocks into a dedicated
𝐻𝑂𝑇 group, where the size of 𝐻𝑂𝑇 is dynamically adjusted
according to the workload to minimize overall WAF. Our
experiments using simulations and a proof-of-concept pro-
totype for flash-based SSDs show that MiDAS outperforms
state-of-the-art GC techniques, offering 25% lower WAF and
54% higher throughput, while consuming less memory and
CPU cycles.

1 Introduction
Log-structured systems are widely used in various ap-

plications such as key-value stores (e.g., LSM-trees [36,
40]), file systems (e.g., F2FS [28]), and storage firmware
(e.g., FTLs [18, 22, 24, 31]). Log-structured systems not only
provide high write throughput with fairly good latency, but are
also well-suited for emerging storage media that only supports
append-only writes such as NAND flash-based devices [3, 9],
ZNS [6, 34, 45], and SMR [1, 2, 17] drives.

Despite such benefits, the high garbage collection (GC) cost
of log-structured systems is considered its major impediment.
Log-structured systems divide the storage space into fixed-
size segments, each several MiB in size, while the segments
themselves comprise 4KiB data blocks. A segment is the unit
of space allocation and GC, and a 4KiB block is the unit
of reading and writing data. Log-structured systems append

∗These authors equally contributed to this work.

new versions of data blocks to segments, leaving old ones as
garbage that must be cleaned up through GC later. During
GC, a victim segment with garbage blocks is identified, valid
(or live) blocks are copied to another segment, and finally
the new freed victim segment is returned for future writes.
Relocating live blocks causes numerous extra reads and writes.
A common metric to measure the impact of extra writes during
GC is the write amplification factor (WAF), which is the ratio
of the total number of blocks written to storage to the number
of blocks written by the user.

Many studies have been conducted to alleviate the overhead
caused by GC. These studies try to reduce WAF by employ-
ing two main techniques: victim selection [15, 23, 38] and
data placement [10, 11, 27, 33, 33, 37, 42, 44, 49–51]. Despite
these many efforts, existing techniques often fail to minimize
WAF because of the following two limitations. The first is
inaccurate prediction of block lifespan, that is, distinguishing
hot and cold blocks. Hot blocks (frequently updated blocks)
have short lifespan while cold blocks (infrequently updated
blocks) have long lifespan. While the notion of hot and cold
is well accepted, the boundary between hot and cold is rela-
tive according to workload and typically changes over time.
Existing techniques cannot efficiently define such a boundary,
thereby making inaccurate classification of data blocks. This
results in data blocks with varying lifespans being mixed up
in the same segment causing many live block copies during
GC. The second is inefficient partitioning of storage space.
To group blocks with similar lifespan together, existing tech-
niques maintain groups of segments and segregate data blocks
with similar lifespan to a designated group. Current state-of-
the-art techniques typically work with 2–8 groups. Unfortu-
nately, the number of groups and their sizes are decided in an
ad-hoc manner resulting in suboptimal WAF.

In this paper, we propose MiDAS, a Migration-based Data
placement technique with Adaptive group number and Size
configuration for log-structured systems. MiDAS employs a
chain-like structure comprising multiple groups, with each
group 𝐺𝑖 linked to the subsequent group 𝐺𝑖+1. Incoming data
blocks are initially written to the first group 𝐺1 and thereafter,
only valid blocks from one group 𝐺𝑖 are moved to the next
group 𝐺𝑖+1 automatically segregating data blocks by age.

USENIX Association 22nd USENIX Conference on File and Storage Technologies    259



MiDAS optimizes the number of groups and their sizes
according to the characteristics of the workload so that the
number of valid block copies between segments is minimized.
This is done by making use of analytical models, Update Inter-
val Distribution (UID) and Markov-Chain-based Analytical
Model (MCAM). By monitoring long-term trends of block
updates, UID tells us how many blocks in a group remain
valid and move to the next group. By leveraging the chained
organization of groups in MiDAS, MCAM accurately pre-
dicts the WAF value given a specific group configuration.
Using UID and MCAM, MiDAS explores a wide range of
group configurations and finds one that minimizes WAF.

To further reduce WAF, MiDAS also isolates hot blocks
in a group called 𝐻𝑂𝑇 . To identify hot blocks, MiDAS does
not rely on simple heuristics. Instead, MiDAS sends selected
blocks that are soon to be invalidated to the 𝐻𝑂𝑇 group,
which is dynamically adjusted according to changing work-
loads in balance with other groups to minimize overall WAF.

While MiDAS is designed for log-structured systems, this
paper specifically focuses on data placement for flash-based
SSDs for evaluation. Accordingly, we have implemented
MiDAS on the FTL, and all experiments are conducted at
the SSD level. To understand the effectiveness of MiDAS, we
conduct a simulation study using I/O traces collected from
various benchmarks and real-world systems. We compare
MiDAS to four state-of-the-art GC techniques: CAT [10],
AutoStream [51], MiDA [37], and SepBIT [44]. Our results
show that MiDAS can provide 25% lower WAF compared
to the other techniques, on average. We also implement a
proof-of-concept prototype of MiDAS in an SSD controller
and confirm that MiDAS not only provides lower WAF and
higher throughput, but exhibits better memory efficiency and
consumes fewer CPU cycles than SepBIT, which is the best-
performing state-of-the-art (SOTA) technique. We also in-
clude a discussion on the applicability of MiDAS to other
log-structured systems.

2 Background and Related Work
2.1 Victim Selection Policies
A victim selection policy decides a victim segment with the
goal of minimizing the number of live block copies during
GC. Three commonly used policies are (i) FIFO [15, 38], (ii)
Greedy [38, 47], and (iii) Cost-Benefit [10, 23, 38].

FIFO chooses the oldest segment as a victim. FIFO is
simple to implement, but often misses opportunities to select
better segments with fewer live blocks as victims.

Greedy selects the segment with the lowest utilization 𝑢

(the fraction of blocks still live) as 𝑢 determines the number
of valid block copies. It reclaims the largest fraction of the
segment space 1-𝑢 after GC. Greedy, however, often selects
segments containing hot blocks, which need not be copied
during GC as they will soon be invalidated [15, 38, 47].

Cost-Benefit (CB) aims to minimize GC cost by consider-
ing both the utilization and age of the segment [38] trying to

avoid unnecessary copies of hot blocks. CB calculates scores
for individual segments and selects one with the minimum
score. A commonly used score is 𝑢

𝑎𝑔𝑒×(1−𝑢) , where age repre-
sents how long the segment has been alive since its creation.

CB exhibits lower WAF than FIFO and Greedy. Despite
its higher complexity, CB is widely adopted for low GC cost.
The effectiveness of the victim selection policy, however, is
highly correlated with the data placement policy being used.

2.2 Data Placement Policies
Various data placement policies have been proposed to further
reduce WAF. The fundamental idea behind data placement is
to group together data blocks with similar invalidation time,
that is, the blocks that are likely to be invalidated at a similar
time. Before writing a user data block (a user-written block)
or relocating a live block from a victim segment to another,
the data placement policy estimates the expected invalidation
time of the block and then assigns it to an appropriate segment
that is holding blocks with similar invalidation time. Then, as
the blocks in the segment are all invalidated at similar times,
this assists in generating dead segments, which contain only
invalid blocks. Dead segments do not require any live block
copies, so WAF can be significantly reduced.

The key here is in accurately estimating the invalida-
tion time of a block. While many strategies have been sug-
gested [21, 25, 33, 44, 49, 50], one or a combination of the
following three attributes of a block is commonly used: (i)
update frequency [10, 11, 27, 33, 42, 51], (ii) latest update
interval [44, 50], and (iii) age of the block [33, 37, 44, 49].

2.3 Review of Prior Techniques
Here, we present four SOTA GC techniques, CAT [10], Au-
toStream [51], MiDA [37], and SepBIT [44], focusing on the
data placement method used. CAT [10] categorizes a data
block into two types, hot and cold, based on its update fre-
quency and assigns it to either a hot or cold segment group.
It dynamically changes the sizes of groups by moving live
blocks over groups during GC.

AutoStream [51] designed for Multi-Streamed SSDs [16]
attempts to finely categorize data blocks at the host level with
support from the storage device. AutoStream counts the num-
ber of updates of data blocks on the host side and classifies
them based on update frequency. Then, it sends data blocks
with group IDs determined by their update frequencies to the
SSD. Owing to the limit of being designed in the confines of
an SSD, the number of groups is usually set to five [21].

MiDA [37] utilizes the age of a block for data placement. It
creates a chain of segment groups, each of which is connected
to a neighboring group. Incoming blocks are first written to
Group 1, the head of the chain, with an age of 0. If it remains
valid until being selected as a victim for GC, it is moved to the
next group, Group 2, with an age of 1, and so on. In this way,
it clusters data blocks with similar ages in the same group.
There is no specific limit on the number of groups, but MiDA
maintains up to eight groups by default.
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Fig. 1. WAF of ORA and existing SOTA techniques

SepBIT [44] employs both the latest update interval and
age of a block. For a newly written block, it estimates the
invalidation time based on its latest update interval – the time-
span since the block was last written – and assigns the block
to hot or cold groups. When relocating a live block during
GC, SepBIT measures the age of the block and sends it to an
appropriate GC group. The total number of groups, including
hot, cold, and GC groups, is six. SepBIT uses a threshold-
based heuristic to decide a target group where data blocks are
assigned.

In summary, first, most GC techniques based on invalida-
tion times usually group segments into 2–8 groups, and this
number of groups is decided without any justification. We are
aware of some prior studies that address this by dynamically
changing the number of GC groups [42, 48]. For instance,
Multilog estimates the update frequency of a block by em-
ploying both the LRU and Oracle algorithms [42]. If a block’s
update frequency falls below the average, a colder group is
created, and the block is demoted to this group. Also, a com-
prehensive analysis of the best number of GC groups across
various workloads is provided by Yadgar et al. [48]. How-
ever, these studies did not consider how the number of groups
should change as the workload dynamically changes. Second,
the size of the group, though dynamic in a limited way, is
determined without considering what size is most appropriate
to accommodate the incoming blocks destined for the group.
We are not aware of any prior work that tackles this issue.

3 Motivation: Current GC Techniques
In this section, we analyze the limitations of current SOTA
GC techniques through quantitative observations, which serve
as motivation of our work MiDAS.

3.1 Experimental Setup
To evaluate the effect of current SOTA GC techniques, we
implement the techniques within the FTL of flash-based SSDs,
and make use of two benchmarks, YCSB-A [13] that runs on
MySQL and Varmail of the Filebench benchmark [43]. The
number of 4KiB blocks written by YCSB-A and Varmail are
4.4 billion (16.4 TiB) and 4 billion (14.9 TiB), respectively.
To repeat the experiments under the same environment, the
I/O traces of these benchmarks are collected and fed to a
trace-driven simulator that implements the victim selection
and data placement policies of the various GC techniques.
The simulator models a 128GiB storage space with 64MiB
segments. The experimental setup is detailed in §5.

To objectively evaluate the performance of the existing tech-

Table 1: Ranges of invalidation times for 𝐶1–𝐶6 in ORA
C1 C2 C3 C4 C5 C6

Range <250K 250K–5M 5M–14M 14M–28M 28M–62M >62M

niques, we compare them with an oracle algorithm (ORA)
that minimizes WAF through offline analysis of the collected
traces. Through this analysis, the invalidation time of every
block is obtained, which is then used to assign blocks with
similar invalidation times to the same segment group. Note,
however, that deciding the optimal number of segment groups
and group sizes is an NP-hard problem [29]. Thus, we per-
form k-means clustering [20] over the traces to find the best
number of groups that accommodates data blocks with simi-
lar invalidation time. We also empirically decide the size of
individual groups such that WAF is lowest. Note that ORA
does not adjust the group size during victim selection because
their sizes are decided a priori.

The four SOTA techniques reviewed in §2.3 are compared
against ORA. According to their original design, the number
of segment groups is set to 2, 5, 8, and 6 for CAT, AutoStream,
MiDA, and SepBIT, respectively. The victim selection policy
is CB as it provides the best performance.

Fig. 1 shows the WAF results. Note that when reporting
WAF values, throughout the paper, we consistently start from
base 1 for the 𝑦-axis. ORA is effective with WAF being closest
to 1.0 for both YCSB-A and Varmail. CAT shows the worst
WAF. AutoStream, MiDA, and SepBIT, which maintain mul-
tiple groups for data placement and use more sophisticated
invalidation time prediction, exhibit lower WAF. However,
we still see a large gap between the existing techniques and
ORA. In the following, we conduct a series of experiments to
analyze where this discrepancy is coming from.

3.2 Analysis based on ORA
Accuracy of invalidation time prediction: We first evaluate
how the accuracy of invalidation time prediction varies per
prediction approach. Invalidation time is defined to be the
number of user-written blocks, in 4KiB units, which are writ-
ten between the time the block of interest is written to and the
time it becomes invalid. Blocks with shorter invalidation time
generally mean they are hotter.

To objectively evaluate prediction accuracy, we utilize the
classifications of blocks by ORA that accurately groups data
blocks depending on their actual invalidation times through
offline analysis. The analysis results in ORA dividing the
data blocks into six categories, C1, C2, ..., C6, depending
on their hotness. C1 represents the hottest blocks (invalida-
tion time < 250K), C6 represents the coldest (invalidation
time > 62M), and the rest are in between. Table 1 lists the
ranges of invalidation times for C1, C2,..., C6.

Fig. 2 illustrates the accuracy of predicting invalidation
times for the YCSB-A1 workload using three different ap-
proaches: the latest update interval (employed in SepBIT),

1The results trend and discussions are similar for Varmail and thus, are
not presented in the interest of space.
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Fig. 2. Accuracy of block invalidation times for YCSB-A
according to prediction techniques

Table 2: Size of each group per technique for YCBS-A (unit:
segment): fixed values for ORA, while the rest are averages
through workload processing

Group number 1 2 3 4 5 6 7 8
ORA 9 17 35 45 133 1,809 - -
CAT 184 1,864 - - - - - -

AutoStream 2 3 2 1,336 705 - - -
SepBIT 2 1 17 2 85 1,941 - -
MiDA 7 79 95 126 128 117 98 1,398

update frequency (utilized in CAT and AutoStream), and the
age of a block (employed in SepBIT and MiDA). In Fig. 2,
we visualize the prediction accuracy of these techniques in a
heatmap, comparing them to ORA. The 𝑥-axis represents the
category of blocks that are decided by ORA through offline
analysis. The 𝑦-axis represents the category of blocks that are
predicted by each approach, also in an offline manner. More
specifically, we first categorize each block as 𝐶𝑖 based on
ORA. Then, we categorize the blocks again, this time using
the specific approach. For example, say there is a block A that
is categorized as 𝐶2 with ORA. Then, with the latest update
interval approach, say, we observe that block A is updated
at time 200K, which is in the 𝐶1 range. Then, this block A
will be a miscount that reduces the accuracy of the (𝐶2, 𝐶2)
zone of Fig. 2(a) and that contributes to the (𝐶2, 𝐶1) zone.
Thus, the intensity of the diagonal zones shows how accurate
each approach is relative to ORA, while the non-diagonal
zones show how much they are contributing to the inaccuracy.
Ideally, if the predictions of each approach were perfect, we
would only observe dark diagonal zones.

From Fig. 2, we find that the existing approaches show
higher accuracy on different categories of block hotness. For
latest update interval and update frequency, the prediction
accuracy of hot blocks (e.g., C1), that is, those with short
invalidation times, is relatively high. However, for cold blocks
(e.g., C6), the prediction is much less accurate. We observe,
for example, from Fig. 2(b), that blocks that actually belong to
C6 are incorrectly categorized as other 𝐶𝑖s, even including C2.
Conversely, the age-based technique, Fig. 2(c), shows lower
accuracy than the other two for hot blocks, but it excels in
identifying the coldest blocks (𝐶6). We do see, however, that
many coldest blocks are being mispredicted as other blocks
(𝐶1, ...,𝐶5). This is likely due to the fact that many of coldest
blocks are still in transit and moving towards the coldest block
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Fig. 3. Impact of group size on WAF for YCSB-A
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Fig. 4. Distribution of blocks over groups for YCSB-A

at the end of the experiments.
Effect of group number and size: Once we have assessed the
individual block’s hotness, they need to be grouped together
according to their hotness. ORA, which accurately assesses
hotness, through offline analysis, came up with six groups of
sizes as shown in the ‘ORA’ column of Table 2. Fig. 3(a),
where the 𝑥-axis is the size of Group 1 and the 𝑦-axis is WAF,
shows how WAF changes as the ORA Group 1 size is varied.
It shows that ORA chose the appropriate Group 1 size and that
even with an accurate hotness assessment, incorrectly setting
the group size can amplify WAF. As analysis determined that
six groups show the best WAF for ORA, altering the number
of groups will show similar WAF amplification.

3.3 Analysis of SOTA Techniques
As discussed, inaccurate data placement comes from two
sources, inaccurate hotness predictions and inaccurate group
configurations, that is, group number and size. We now at-
tempt to quantify these issues for the four SOTA techniques.

Fig. 4 illustrates the distribution of data blocks over seg-
ment groups for the SOTA techniques. We observe that re-
sults for AutoStream based on the update frequency and
SepBIT based on the update interval coincide well with the
findings shown in Fig. 2, with Group 1 comprising mostly
of 𝐶1, the hot blocks. However, as shown in Table 2, the
sizes for Groups 1 to 3 for these techniques are considerably
smaller than those of ORA, leading to many of the hot blocks
overflowing to other colder groups. We observe that for Au-
tostream, with only five groups, the hot blocks are scattered
among all the groups. Similarly, the results of the age-based
MiDA technique, which generates eight groups, also coincide
well with the findings shown in Fig. 2, with the coldest blocks
fully filling Group 8 and forming the majority of Groups 5–7,
while Group 1 shows some of its space being occupied by
colder blocks. We also observe that CAT cannot perform well
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Fig. 5. WAFs of each technique by victim selection (FIFO
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due to being fixed to two groups resulting in an intermix of
hot and cold blocks.

To show the effect of group size on WAF, we manually
control the size of Group 1 while running YCSB-A for MiDA
and SepBIT. The results are shown in Fig. 3(b). Note that in
our setup, as well as in typical systems, the total number of
segments is fixed. Thus, as Group 1 size increases, the other
groups will become smaller. The red dots in the figure show
the average size of Group 1 and their original WAF values.
We observe that by increasing the group size to only about 20
segments, both MiDA and SepBIT can reduce WAF by about
5.5% and 7.7%, respectively. However, further increasing the
group size results in higher WAF due to the size reduction in
subsequent groups. Based on these observations, the challenge
becomes how to determine the number of groups to maintain
and what the sizes of these groups should be such that WAF
may be minimized.
Impact of victim selection: Lastly, we consider the effect
of victim selection on WAF. To this end, we measure the
WAF values of the five techniques with three victim selection
policies: FIFO, Greedy, and CB.

Fig. 5 shows the results, from which we make two obser-
vations. First, each technique exhibits the lowest WAF when
employing CB, which is a predictable outcome. This is be-
cause CB provides sufficient time for hot blocks to become
invalid. Second, ORA exhibits almost the same WAF values,
regardless of which victim selection policy is used. Even
with FIFO, which is the simplest and where other techniques
suffer, ORA can achieve low WAF. This is an interesting,
yet expected result. If data blocks are perfectly distributed
over different segment groups according to exact invalidation
times and the group sizes are set sufficiently large, the old-
est segment in the group will have the least number of valid
blocks that will not be invalidated for a long time, eventually
trickling down to the last group. As a result, FIFO, Greedy,
and CB all behave similarly, showing almost the same WAF.

3.4 Lessons Learned: A Summary
From the results above, we make the following three key ob-
servations. Observation #1. Current SOTA techniques are in-
accurate in predicting hotness of data. However, latest update
interval and update frequency based prediction approaches
tend to predict hot data relatively well, while, in contrast,
age-based prediction approaches tend to predict cold data rel-
atively well. A mix of these methods should help improve
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overall predictions. Observation #2. The number of segment
groups and their sizes have a critical impact on GC efficiency.
Effort should be put into finding group number and size values
that minimize WAF. Observation #3. FIFO is equally efficient
as any elaborate policy when group sizes are properly set.
With a correct data placement framework, FIFO should suf-
fice as a victim selection policy.

4 Design of MiDAS
In this section, we present MiDAS, a technique that automat-
ically determines the number of segment groups and their
sizes to minimize WAF according to the given workload. As
§3.2 illustrates, MiDAS separates the cold blocks using an
age-based policy as does MiDA and separates hot blocks us-
ing update intervals as does SepBIT. In the following, we
first give a high level overview of MiDAS, focusing on the
relations among the key components such as the 𝐻𝑂𝑇 group,
UID, and MCAM. Then, in the subsequent subsections, each
of these components are described in detail along with how
these components interact.

4.1 Overview of MiDAS
Fig. 6 depicts the overall organization of MiDAS with 𝑁 +1
segment groups, one 𝐻𝑂𝑇 group and 𝑁 cold groups, 𝐺1, 𝐺2,
..., 𝐺𝑁 . From 𝐻𝑂𝑇 to 𝐺𝑁 , each segment group is linked to
its next group, which creates a chain of segment groups. Upon
arrival of a user-written block, the block is determined to be a
hot block or not (described in §4.2). Hot blocks are directed
to the 𝐻𝑂𝑇 group, while others are sent to 𝐺1, bypassing
𝐻𝑂𝑇 . Every segment group, including 𝐻𝑂𝑇 , has a designated
size. Once the group becomes full with data blocks, a victim
segment is selected from that group. Then, live blocks from
this victim are migrated to the next group, 𝐺1 for 𝐻𝑂𝑇 and
𝐺𝑖+1 for 𝐺𝑖 . The freed segment is returned to the original
group. The last group, 𝐺𝑁 , does not have a next group. Thus,
valid blocks from the victim are sent to 𝐺𝑁 again, and the
free segment is returned to 𝐺𝑁 as well.

Based on the observation in §3.2, the update interval can
be used as a useful means of detecting hot blocks with short
invalidation times. MiDAS segregates hot blocks into the sep-
arate 𝐻𝑂𝑇 group based on their update intervals. To prevent
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cold blocks from being incorrectly categorized and being
mixed with hot blocks in 𝐻𝑂𝑇 (as seen in CAT), MiDAS
sends only data blocks with short update intervals to 𝐻𝑂𝑇 .
At the same time, to prevent hot blocks from being sent to
cold segments owing to limited 𝐻𝑂𝑇 group space (as seen in
SepBIT), MiDAS dynamically adjusts 𝐻𝑂𝑇 to have sufficient
space to accommodate the identified hot blocks.

As we have also learned from §3.2, the age-based method
is effective in separating cold blocks. Therefore, MiDAS seg-
regates data blocks with the same age in the same group,
sending older blocks to the next group. Here, age is defined to
be the migration count from one group to another, as is done
in MiDA. All data blocks in 𝐺𝑖 thus have the same age of
𝑖−1. One exception is the last group 𝐺𝑁 , where data blocks
come from 𝐺𝑁−1 and from itself, that is, 𝐺𝑁 . The ages of
blocks in 𝐺𝑁 are greater than 𝑁 −2.

The most crucial issue in designing MiDAS is to decide the
number of groups and their sizes, so that the number of valid
block copies between groups is to be minimized. To make
accurate decisions, MiDAS monitors long-term behaviors
of block updates and creates an Update Interval Distribution
(UID) model. Given a segment group with a specific size, UID
tells us how many blocks in the group stay alive and move
to the next group. By leveraging the chained organization
of segment groups, MiDAS employs a Markov-Chain-based
Analytical Model (MCAM) that accurately predicts WAF for
a given group configuration. By integrating UID and MCAM,
we can explore a range of group configurations, which enables
us to determine the most effective combination of the number
of groups and group sizes that minimizes overall WAF.

If a proper group configuration is chosen by UID and
MCAM, segment groups would have sufficiently large space
so that blocks are invalidated prior to eviction. This allows
MiDAS to manage each segment group as a FIFO queue and
to use the simple FIFO victim selection policy.

If I/O patterns of the workload are irregular and change
significantly over time, our models, UID and MCAM, which
rely on past history to forecast future behavior, may not make
accurate decisions. Then, MiDAS simply falls back to the
basic MiDA technique.

4.2 Hot Block Separation
Prior data placement techniques take various approaches to
define a boundary between hot and cold. MiDA simply segre-
gates hot from cold blocks by sending old blocks to the next
group in the chain. CAT and AutoStream explicitly define a
hot-cold boundary based on update frequency (i.e., update
counts), but with disappointing results.

SepBIT uses a more advanced approach to define a hot-
cold boundary. It internally maintains a queue and pushes
block numbers of every user-written block into the queue.
Then, user-written blocks referenced again within the queue
are sent to a designated hot group. The length of the queue is
set to the average resident time, which is the time user-written

blocks remain in the hot group before being removed. The
queue length depends on the hot group size, which is adjusted
by CB. This is an interesting and novel approach where it
tries to segregate hot blocks from the rest of the blocks by
adjusting the queue length based on the lifetime of the hot
blocks, that is, blocks residing in the hot group.

Unfortunately, SepBIT tends to misbehave owing to how
its hot group size is decided. For example, let us assume that
SepBIT accurately segregates hot blocks in the hot group.
Then, many dead blocks are generated from the hot group and
are quickly removed due to using CB. This reduces the aver-
age resident time, which in turn shrinks the queue size. This
results in only a few hot blocks being sent to the hot group,
even though many more hot blocks may exist. Conversely, if
many cold blocks are mistakenly sent to the hot group, the
length of the queue is likely to grow because it takes longer
to evict blocks from the hot group. As a result, SepBIT may
assign even more cold blocks to the hot group.

MiDAS tackles the limitations that the prior techniques
have by taking two unique approaches: (i) tight admission
control to the 𝐻𝑂𝑇 group and (ii) dynamic size adjustment of
the 𝐻𝑂𝑇 group. The first, tight admission control, is similar
to the approach of SepBIT, but MiDAS is more conservative
when deciding a block to be hot. Similar to how SepBIT
promotes blocks from the queue to the hot group, MiDAS
promotes, from 𝐺1, data blocks that are soon to be invalidated
to the 𝐻𝑂𝑇 group. Similar to how SepBIT maintains the av-
erage resident time to set the queue length, MiDAS maintains
the same value and refers it as the threshold time. The differ-
ence, though, is that this threshold time is used to decide if
the 𝐺1 to 𝐻𝑂𝑇 promotion should occur or not, instead of, for
setting the queue length. Specifically, MiDAS compares the
update interval of the block to the threshold time, and only
blocks that are updated three times2 within the threshold time
are confirmed and promoted to 𝐻𝑂𝑇 . Note that the choice to
use the update interval to identify hot blocks is based on §3.2.

The second unique approach of MiDAS is that the size
of 𝐻𝑂𝑇 adapts to the workload. As we have seen in §3,
as hotness is a relative notion, segregating hot blocks from
the rest is not a simple matter, which is compounded by the
difficulty of setting the size of the group that will hold the
hot blocks. In MiDAS, the size of 𝐻𝑂𝑇 is determined in
conjunction with the rest of the group such that the overall
WAF is minimized. The key technical issue, then, is how to
estimate the impact of the group size adjustment, including
that of 𝐻𝑂𝑇 , on overall WAF, without reorganizing the actual
group sizes, which is costly. MiDAS can accurately predict
expected WAF using MCAM and UID as explained below.

4.3 Prediction of WAF using MCAM
We now explain MCAM, a Markov-Chain-based Analytical
Model, to predict the WAF value of a given group configura-
tion. Note that Bux and Iliadis calculate WAF using a Markov

2A 2-bit counter is used for this, whose overhead is analyzed in §5.1.
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Fig. 7. Diagram of MCAM and WAF prediction process using
MCAM as states transition

Chain for uniform workloads [8]. However, this prior work
does not address multiple GC group scenarios needed for
MiDAS, which, as depicted in Fig. 6, forms a chain of seg-
ment groups where live data blocks migrate between adjacent
groups. Thus, we design MCAM to predict WAF across vari-
ous group configurations, applicable to any workload pattern.
If the input workload is in a steady state, MCAM is able to
predict the value of WAF accurately by simulating the flow
of data blocks moving over segment groups.

MCAM consists of states that blocks can be in and the
transition probabilities between those states. Blocks can be in
one of two states: valid (V) and free (Free). The valid state
is categorized into finer states, VH and VGi , for 𝑖 = 1, ..., 𝑁 ,
according to which group (i.e., 𝐻𝑂𝑇 or 𝐺𝑖) the block is valid
in. Hereafter, we use the index 𝑖 to always represent the range
1, ..., 𝑁 unless otherwise stated. Free indicates the state of
the block that is invalidated, reclaimed, and ready to use.

We now discuss transitions between states and, for clarity,
refer the reader to the leftmost figure in Fig. 7 as an exam-
ple with four groups (𝐻𝑂𝑇 , 𝐺1, 𝐺2, and 𝐺3). For transitions
from VH to VG1 and from VGi to VGi+1 , where VGN+1 = VGN (which
means that VGN transitions into itself), live blocks in the victim
segment chosen for GC are moved from the source to the desti-
nation. The rest of the blocks are invalidated and then become
free, which forms the transitions from VGi to Free. Suppose
that a fraction of valid blocks in the victim segment of 𝐺1
is 0.4, on average. Then, the transition probability, which is
the probability that blocks in one state move to another state,
from VG1 to VG2 is 0.4 and the transition probability from VG1
to Free is, naturally, 0.6. In MiDAS, user-written blocks are
stored in free blocks and then assigned to either 𝐻𝑂𝑇 or 𝐺1.
Thus, two transitions, from Free to VH (0.7 in Fig. 7) and
from Free to VG1 (0.3 in Fig. 7), represent the movement of
user-written blocks to 𝐻𝑂𝑇 and 𝐺1, respectively. The sum of
the two transition probabilities is always 1.0. All the blocks
destined for 𝐻𝑂𝑇 are expected to be invalidated before evic-
tion, and thus, the transition probability from VH to Free is
assumed to be 1.0 at all times.

Let us now discuss how WAF is predicted with MCAM us-
ing Fig. 7. We denote the progress of states as step 𝑆𝑘 . For the
moment, assume that the transition probabilities are given as

in the figure. How these are obtained will be discussed in §4.4.
Let us also assume that, at the initial step, 𝑆0, we have 100
user-written blocks come in and the transition probabilities
to 𝐻𝑂𝑇 and 𝐺1 are 0.7 and 0.3, respectively. Thus, we have
70 and 30 blocks in 𝐻𝑂𝑇 and 𝐺1, respectively. At the next
step, 𝑆1, 12 blocks in 𝐺1 are moved to 𝐺2, while the other
18 blocks are moved to Free by the transition probabilities
from VG1 to VG2 (0.4) and from VG1 to Free (0.6). No blocks
in 𝐻𝑂𝑇 move to 𝐺1; instead, all blocks (70 blocks) move to
Free as we expect all blocks in 𝐻𝑂𝑇 to be invalidated.

This transition to the next step is repeated in similar manner
until the number of blocks in each group converges, whose
condition is met when the number of blocks in each state no
longer changes. (Note that this process has been shown to
converge [7].) 𝑆𝑛 of Fig. 7 shows an example of how the con-
verged results would look like. Then, WAF can be predicted
using the converged values by making use of the number of
user writes, obtained with VH and VG1 in 𝑆𝑛 as user writes
are sent to either 𝐻𝑂𝑇 and 𝐺1, and GC writes, obtained by
summing the number of blocks in VG2 and VG3 at 𝑆𝑛. Thus,
for our Fig. 7 example, WAF at 𝑆𝑛 is estimated to be 1.63 (=
(27.6+11.8+4.7+16.5)/(27.6+11.8)).

To validate WAFs predicted from MCAM, we compare
measured and predicted WAF values for 50 randomly cre-
ated group configurations. For evaluation, we make use of the
YCSB-A and Varmail benchmarks. We first run the bench-
mark in a prototype of MiDAS implemented in a real-world
system (see §5.2 for more details) and measure WAF values
for the 50 configurations. While executing the benchmark,
we also collect I/O traces and measure the average transi-
tion probabilities between segment groups. Then, we replay
the collected traces on an MCAM simulator configured with
the transition probabilities that we measured. We find that
MCAM only shows an average error rate of 0.84% and 0.7%,
with a maximum error rate of 2.82% and 2.33% for YCSB-A
and Varmail, respectively, which confirms that, given a group
organization, MCAM produces accurate WAF predictions.

To predict WAF from MCAM, however, we must provide
the transition probabilities between segment groups. In the
next subsection, we show how MiDAS estimates transition
probabilities and how they are supplied to MCAM at runtime.

4.4 Estimating Transition Probabilities
To estimate the transition probabilities supplied to MCAM,
we introduce UID (Update Interval Distribution). Fig. 8 illus-
trates the UID model, where the 𝑥-axis is the update interval
and the 𝑦-axis represents the probability that blocks have the
corresponding update interval. That is, UID is a probability
mass function (PMF) of the update intervals of user-written
blocks. How UID is obtained is described in §5.1, but in the
meantime, we assume we have the UID, such as Fig. 8.

UID is used to obtain the probability of whether a block
remains valid after a specific period of time, which can be
directly translated into a transition probability for MCAM.
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Fig. 8. Estimating transition probabilities using UID

We describe how this is done using the example in Fig. 8.
Recall the unit of time in our system is defined as the number
of user-written blocks. For simplicity sake, let us for now
ignore 𝐻𝑂𝑇 and assume only three segment groups, 𝐺1, 𝐺2,
and 𝐺3 each of size 1,000 exists, and that each segment is
of 100 blocks. (We shall come back to 𝐻𝑂𝑇 later.) User-
written blocks are first sent to 𝐺1 and then only valid blocks
are moved to 𝐺2. After 1,000 segments are written to 𝐺1,
𝐺1 becomes full and the victim segment at the tail of the
group is selected for GC. (Recall from Fig. 6 that MiDAS
uses the FIFO victim selection policy.) The number of live
blocks moved to 𝐺2 can be calculated based on UID. As the
UID represents the probability of a user-written block being
invalidated after a particular time interval, the sum of the
probabilities of the update interval ranging from 1 to 1,000 is
the probability of the blocks being invalid after 1000 writes.
Let us assume, from Fig. 8, that this is 0.6, which means the
transition probability from 𝐺1 to 𝐺2 is 0.4. Thus, out of the
100 blocks in the victim segment, 40 is transitioned to 𝐺2.

In a similar manner, we can obtain the transition probability
between 𝐺2 and 𝐺3. However, to fill up 𝐺2, an additional
2,500 user-writes, that is, time steps, need to happen as only
40% of the user-written blocks are eventually sent to 𝐺2.
Once 𝐺2 is filled with blocks, the segment at the tail of 𝐺2
is selected as the victim. Now, let us consider how many
valid blocks exist in this victim segment. To explain this,
we define a new term, waiting period (denoted 𝑊𝐺𝑖 ), which
refers to the number of user-written blocks required to fill up
a specific segment group 𝐺𝑖 . For our example, 𝑊𝐺1 = 1000,
while 𝑊𝐺2 = 2500. Essentially, 𝑊𝐺𝑖 is the elapsed time (i.e.,
the number of user-written blocks) from when a new block
comes into group 𝐺𝑖 to when the block is evicted from the
group. Now, given the UID for our workload, the sum of the
probability measures for the period of 𝑊𝐺𝑖 is the probability
of the block becoming invalid. For our example, let us assume
𝑊𝐺2 is 0.14 (Fig. 8). Then, the sum of probability measures
that the block remains valid is 0.26 (= 0.4−0.14). Thus, the
total expected number of valid blocks expected to be moved
to 𝐺3 from the victim segment is 65 (= 100× 0.65) as the
transition probability is 0.65 (= 0.26

0.14+0.26 ).
Generalizing in this manner, the transition probability from

VGi to VGi+1 ,𝑇𝑉𝐺𝑖→𝑉𝐺𝑖+1
, is given by Eq. (1) (but not for 𝑖 = 𝑁),

where 𝑝 𝑗 is the probability for update interval 𝑗 , 𝑚𝑎𝑥 is the
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Fig. 9. Estimating transition probabilities, including 𝐻𝑂𝑇

maximum update interval of UID, and 𝑊 is the sum of the
waiting periods of the groups, 𝐺1 through 𝐺𝑖−1.

𝑇𝑉𝐺𝑖→𝑉𝐺𝑖+1
=

∑𝑚𝑎𝑥
𝑗=𝑊+𝑊𝐺𝑖

𝑝 𝑗∑𝑚𝑎𝑥
𝑗=𝑊 𝑝 𝑗

, (1)

where 𝑊 =

{ ∑𝑖−1
𝑘=1𝑊𝐺𝐾 if 𝑖 > 1

0 otherwise.

Transition probabilities including 𝐻𝑂𝑇: Let us now bring
back VH into the picture. To do that, we need to consider the
transition probabilities from Free to VH and from Free to VG1 .
Recall from Fig. 7 that the sum of the two must be 1.0. As
mentioned earlier, user-written blocks are sent to either 𝐻𝑂𝑇

or 𝐺1, and this decision is made by referring to the threshold
time. Based on this, we obtain the transition probability from
Free to VH, 𝑇𝐹𝑟𝑒𝑒→𝑉𝐻 , by summing the probabilities of the
update intervals shorter than the threshold time in UID (0.4
in Fig. 9(a)). Thus, the transition probability from Free to
VG1 , 𝑇𝐹𝑟𝑒𝑒→𝑉𝐺1

, is 1−𝑇𝐹𝑟𝑒𝑒→𝑉𝐻 . Now, a keen reader will re-
member that blocks are sent to 𝐻𝑂𝑇 only when it is observed
that the latest update interval is less than the threshold time
three times. Thus, the above explanation is not entirely cor-
rect. However, we find that not taking this into account still
keeps the prediction accuracy within a maximum of 5% error.
Thus, we make use of the above approximation.

Now returning back to the process that calculates the
𝑇𝑉𝐺𝑖→𝑉𝐺𝑖+1

, we now exclude the probabilities for update in-
tervals that are shorter than the threshold time by dividing
the UID into two, UID for 𝐻𝑂𝑇 and UID for 𝐺1–𝐺𝑁 , as de-
picted in Figs. 9(b) and (c). As mentioned above, user-written
blocks with update intervals shorter than the threshold time
are sent to 𝐻𝑂𝑇 . All blocks are also assumed to be invali-
dated in 𝐻𝑂𝑇 . Thus, for UID of 𝐺1–𝐺𝑁 , the probabilities
for update intervals that are shorter than the threshold time
are 0. We also need to consider the transition probability
of Free to VG1 when calculating 𝑊𝐺1 , resulting in the equa-
tion 𝑊𝐺1 = size of 𝐺1 × 1

𝑇𝐹𝑟𝑒𝑒→𝑉𝐺1
. Taking the same example

where 𝐺1 size is 1,000 blocks and𝑇𝐹𝑟𝑒𝑒→𝑉𝐺1
is 0.6, only 60%

of the user-written blocks are sent to 𝐺1. Thus, 𝑊𝐺1 increases
to 1,667, not 1,000, as 𝑊𝐺1 = 1,000× 1

0.6 . For the rest of the
groups, we go through the same process as before to get their
𝑊𝐺𝑖 . Finally, the transition probabilities for 𝑇𝑉𝐺𝑖→𝑉𝐺𝑖+1

can
be obtained using Eq. (1).
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Transition probability for 𝐺𝑁 : As the last group 𝐺𝑁 com-
prises blocks of various ages as well as transitions to itself, the
above analysis does not hold for 𝐺𝑁 . Thus, to predict 𝑊𝐺𝑁 ,
we make use of the analytical model proposed by Desnoy-
ers [15]3. This model accurately predicts WAF for techniques
without data separation (e.g., PageFTL [18]), where user-
written blocks and GC copied blocks are placed in the same
group, which is what is happening to the last group in MiDAS.

4.5 Configuring Groups with MCAM and UID
We now explain the group configuration selection (GCS) al-
gorithm that finds the most appropriate group configuration.
Given a specific group configuration, UID is able to com-
pute transition probabilities between groups. By feeding the
probabilities to MCAM, the expected WAF of the given con-
figuration can be estimated as discussed in §4.3. Using UID
and MCAM, GCS explores various group configurations to
find the most appropriate one. Exploring every possible group
configuration, however, is infeasible because of the huge ex-
ploration space and high computation cost.

Deciding the number of groups and their sizes: GCS
takes a greedy heuristic approach to find a sufficiently good
solution in reasonable time. GCS has two phases: (i) it roughly
decides the number of groups and group sizes and then, (ii)
fine-tunes the size of each group.

In the first phase, GCS begins with two segment groups:
𝐻𝑂𝑇 and 𝐺1. The primary objective of group partitioning
is to ensure that for the blocks assigned to 𝐻𝑂𝑇 , as many
as possible are invalidated before eviction. The size of the
𝐻𝑂𝑇 group needs to be carefully decided to provide suffi-
cient time for written blocks to be invalidated before eviction.
To achieve this, GCS first assigns data blocks with update
intervals shorter than one segment time (the minimum unit
of UID) to 𝐻𝑂𝑇 and the rest are assigned to 𝐺1, as depicted
in Fig. 10. This figure shows an example where the sum of
the probabilities within the one segment interval is 0.2. Since
the unit of space allocation is a segment, GCS assigns one
segment to 𝐻𝑂𝑇 even if the suggested group size is only a
few blocks smaller than a single segment.

Now that GCS has the initial sizes of 𝐻𝑂𝑇 and 𝐺1, it com-
putes WAF using MCAM as explained in §4.3. GCS repeats
the above step while increasing the time by one segment until
a reduction in WAF is no longer observed. This is depicted in
the leftmost to middle figure transition in Fig. 10. At this point,

3The specific model is presented in our supplemental material [41].

the group sizes for 𝐻𝑂𝑇 and 𝐺1 are determined. With 𝐻𝑂𝑇

size fixed, the same steps are recursively repeated on 𝐺1, that
is, it splits 𝐺1 into two groups, 𝐺1 and 𝐺2, and the size of
𝐺1 increases until the observed WAF is minimized. This is
depicted in the middle to rightmost figures in Fig. 10. GCS
continues to split groups until no noticeable WAF reduction
> 0.5% is observed over five consecutive splits.

After the number of groups and group sizes are decided,
GCS goes through the second phase where the group sizes are
fine-tuned. By allocating segments from the earlier groups,
that is, from 𝐻𝑂𝑇 to 𝐺𝑖 in increasing 𝑖 order, the first phase,
prioritizes the earlier groups. This results in high WAF of
the last group 𝐺𝑁 as it is unlikely to get sufficient segments.
To mitigate this, MiDAS reassigns segments by transferring
one segment from 𝐻𝑂𝑇 to 𝐺𝑁 . Then, the WAF is computed.
If the newly computed WAF is smaller than the old one, the
movement is confirmed. Otherwise, the movement is reverted
back. This is done for the remaining groups, 𝐺𝑖 to 𝐺𝑁 start-
ing from 𝑖 = 1 up to 𝑁 −1, until no more WAF reduction is
observed.

While GCS requires moderate computation, it is invoked
only when a new UID is built to adapt to changes of the work-
loads. Moreover, it does not affect foreground jobs (e.g., write
or read requests) as it is performed in the background.

Updating group configuration: The accuracy of predict-
ing transition probabilities using UID will drop if the work-
load pattern changes over time. Deciding the size of a group
with an incorrect UID may exacerbate overall WAF. To ad-
dress this, MiDAS periodically generates a new UID and uses
the new one if it provides higher accuracy. More specifically,
MiDAS divides time into epochs of the same length and main-
tains two UIDs, one that is currently being used, which was
generated in the previous epoch, and one that we generate in
the current epoch. At the end of each epoch, MiDAS estimates
the lowest possible WAF for the new group organization using
the newly created UID and compares it to the WAF of the ex-
isting group organization with the old UID. If the WAF is not
reduced by more than a certain threshold MiDAS continues to
use the UID. However, if the difference exceeds the threshold,
MiDAS adopts the new group organization based on the new
UID. Currently, the threshold is set to 5%. Note that for the
first epoch where no information about the workload is avail-
able, MiDAS simply employs the age-based MiDA policy
with the CB victim selection policy.

The length of the epoch may have an impact on UID ac-
curacy. A short epoch enables quick adaptation to changes
in workload patterns but can lead to an accuracy drop due
to the small amount of information. A lengthy epoch, on the
other hand, may increase the accuracy of UID, but will make
MiDAS less sensitive to workload changes. We experimen-
tally determine the epoch to be four times the storage capacity.
We evaluate the impact of the epoch length in §6.3.

Handling irregular I/O patterns: While MiDAS provides
high accuracy in predicting transition probabilities using UID
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when workloads have regular I/O patterns, in reality, not all
I/O patterns are regular. In many of the traces that we ana-
lyzed, we observe workloads with high I/O fluctuation and
sudden unexpected I/O pattern changes over time. In such
cases, MiDAS may fail to predict the future behavior of the
workload using UID, resulting in high WAF. Thus, MiDAS
takes a different approach, which we elaborate below.

First, MiDAS needs to check for irregularities. This is done
by regularly checking how much the predicted and actual
transition probabilities differ. This is easy to do as we have
the predicted transition probabilities derived from UID and
the actual transition probabilities can be obtained by keeping
track of the number of valid blocks moved from one group to
another. Once a high error rate is detected between groups, say
between 𝐺𝑘 and 𝐺𝑘+1, MiDAS gives up on adjusting group
sizes for all groups beyond 𝐺𝑘 and simply merges the groups
from 𝐺𝑘 to 𝐺𝑁 into 𝐺𝑘 . This is because the low accuracy
between 𝐺𝑘 and 𝐺𝑘+1 will have a cascading impact on the
accuracy of the subsequent groups. Then, MiDAS falls back
to the simple age-based MiDA technique as we did when
no workload information was available. This is maintained
until an up-to-date UID is generated at the next epoch and
can be used to find a new group configuration. Currently, this
fallback mechanism is invoked when the error rate between
the predicted and actual transition probabilities exceeds 10%.

5 Implementation and Experimental Setup
In this section, we discuss some implementation details in-
cluding methods used to optimize memory. We then detail
our experimental setup.

5.1 Implementation and Resource Overhead
In MiDAS, a chain of the cold groups, each organized as
a simple FIFO queue, is managed using a linked list that
consumes little memory. When the group configuration is
changed, the segments containing data blocks do not physi-
cally move across the groups. Instead, only pointers that point
to the physical location of each segment in the queue are
moved. This allows for simple adjustment of group configu-
rations without any data copy overhead. For example, when
merging two groups, the pointers are relocated to one of the
queues. Conversely, when dividing a single group into two,
MiDAS initially creates a new queue and a free segment for
the newly created group. Subsequently, the pointers from the
segments in the original group are moved upon the activation
of GC in that group.

MCAM requires moderate CPU cycles (we will discuss this
in §6.4) but only needs to keep a few parameters (i.e., tran-
sition probabilities and block counts) that require minimal
memory. For 𝐻𝑂𝑇 and UID, however, MiDAS has to keep
various data structures. We discuss optimizations that we
conduct to reduce memory overhead.
Hot filter: Recall that MiDAS promotes a data block to 𝐻𝑂𝑇

when its update interval is found to be within the threshold

Table 3: Characteristics of each workload

Notation
F-H & 

F-M
V

Y-A 

& Y-F
T-C Ali Ex

Write size (TiB) 15.1 14.9 16.4 & 18.0 16.1 Up to 2.8 Up to 2.9

Device size (GiB) 128 40-200 40

Request 

distribution

Zipfian 

(1.0 & 0.8)
Zipfian - -

Workloads
FIO-H 

& -M
Varmail

YCSB-A 

& -F
TPC-C Alibaba Exchange

time three times. To manage this, MiDAS maintains a 2-bit
hot filter per block in memory. We find that this requires less
than 60MiB per 1TiB storage.
Constructing UID: To construct UID, MiDAS uses two key
data structures: a timestamp table and an interval count table.
The timestamp table records timestamps of block updates to
compute the update intervals of data blocks. To save memory
space, instead of keeping track of all data blocks, we sample
only a subset for timestamp monitoring, with a sampling rate
of 0.01 (one in every 100 blocks). This reduces the timestamp
table size to 10.3MiB per 1TiB storage. The interval count
table keeps track of the number of blocks for specific update
intervals. To reduce the size of the interval count table, we
use a coarse-grained update interval unit of 16K blocks rather
than a block unit. Blocks with update intervals falling within
the range of [1, 16K blocks] are considered to have the same
update interval. In this way, the interval count table reduces
to 256KiB in size per 1TiB storage. The accuracy degradation
by this optimization is less than 3%.

5.2 Experimental Setup
We carry out experiments using both trace-driven simulations
and a real SSD prototype. An existing SSD simulator [12],
with block I/O traces collected from various environments, is
used to quickly evaluate key performance metrics (e.g., WAF)
of the GC techniques. We also use a real SSD prototype,
where MiDAS is implemented within the FTL, to measure I/O
performance and the overheads associated with the CPU and
memory for system execution. Our SSD prototype is equipped
with a quad-core ARM Cortex-A53 and 256MiB DRAM
for indexing memory. The SSD platform employs a 256GiB
custom flash array card with 16KiB flash page size and 128
pages per block and 8×8 channel. Unless otherwise stated,
the over-provisioning ratio is set to 7.3% as this is typical in
commercial systems [26,39]. For both the simulator and SSD
prototype, we implement the CAT, AutoStream, MiDA, and
SepBIT SOTA GC techniques.

The following write-intensive workloads are used for our
evaluations: FIO workloads [4] whose data access pattern
follows Zipf distribution with theta values of 1.0 (denoted
FIO-H) and 0.8 (denoted FIO-M), where the former and lat-
ter, respectively, represent workloads with skewed and rela-
tively uniform data access patterns; Varmail, the most write-
intensive workload in the Filebench benchmark [43]; YCSB-
A and -F, the write-intensive workloads of the YCSB bench-
mark [13]; TPC-C [14] running on MySQL [46]; 9 Exchange
traces from Microsoft Enterprise Traces [35]; and 25 write-
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Fig. 11. Overall WAF of each technique (the numbers repre-
sent the improvement on WAF by MiDAS relative to SepBIT)

intensive traces from the Alibaba Cloud I/O traces [30], whose
LBA ranges are smaller than 256GB. Note that the traces of
Exchange and Alibaba, individually, are relatively small. For
these two, each trace is run individually and the average re-
sults are reported. The workload summary and details are
shown in Table 3, and we use the abbreviated notations there
to denote the workloads in reporting the results. Before run-
ning the workloads, we fill up 92.7% of the SSD space with
data to make the SSD quickly reach a steady-state condition
that invokes GC regularly. GC is triggered when free space
drops below 0.1% of the total SSD capacity.

6 Experimental Results

6.1 Comparison of GC Efficiency
We first evaluate GC efficiency by comparing the WAFs of
the various techniques. All experiments to measure WAFs are
conducted using the trace-driven simulator. All techniques, ex-
cept for MiDAS, adopt CB, the most efficient victim selection
policy. Fig. 11 shows WAF for each technique. The numbers
on or above each workload bar represent the improvement
on WAF (%) by MiDAS relative to SepBIT, which is the best
performing SOTA technique.

With FIO-H, where data access is highly skewed, a notice-
able WAF reduction is observed. This is because many hot
blocks are filtered out by 𝐻𝑂𝑇 , which reduces the number
of valid block copies during GC. By setting the hot boundary
precisely and adjusting the number of cold groups and their
sizes, MiDAS outperforms the SOTA techniques. (A break-
down of each contributing factor is given and discussed in
more detail in §6.2.) On the other hand, with FIO-M, where
almost all of the data blocks have similar update intervals
with little variations, WAF reduction by hot-cold separation
and group size adjustment is limited.

For Varmail, YCSB-A and -F, and TPC-C, MiDAS reduces
WAF by 8.8–43.3% compared to SepBIT. These workloads
not only have numerous hot blocks but also a significant num-
ber of warm blocks. MiDAS captures these characteristics
with UID and then, changes the group configuration accord-
ingly. As a result, MiDAS ensures that the warm blocks are
invalidated before eviction, significantly reducing unneces-
sary data block copies (see §6.2).

In case of the Alibaba workloads, MiDAS and SepBIT
show similar WAF, with MiDAS showing worse WAF on
average. Recall that the Alibaba workloads are relatively short,
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Fig. 12. Impact of individual components of MiDAS

showing write sizes of 2.23 epochs on average, so most of
the traces end before the obtained UID can reap its benefits.
Moreover, Alibaba workloads show irregular I/O patterns that
increase the inaccuracy of predictions. This leads MiDAS
to incorrect group configurations or to simply fall back to
the MiDA technique. Thus, we see that WAF of MiDAS and
MiDA are also very similar. Exchange also is composed of 9
small workloads and we observe similar irregular I/O patterns.
Still, MiDAS is able to reduce WAF by 6.8% compared to
SepBIT.

Overall, for the workloads we considered, MiDAS reduced
WAF by an average of 25%. If we exclude the workloads
with irregular patterns, Alibaba and Exchange, and the one
with relatively uniform data access, FIO-M, the reduction on
average is 34.7%.

6.2 Impact of Each Component of MiDAS
We analyze the impact of the individual design components
of MiDAS, that is, (i) hot block separation (§4.2), (ii) group
configuration (§4.3–§4.4), and (iii) irregular I/O pattern han-
dling (§4.5). To observe the effect of adding each component,
we start off with MiDA, the basic design that MiDAS takes
from. Then, we add each design component denoted, +Hot-
Sep, +GrpConf, +IrrHand, respectively, one after the other,
observing the performance as each component is added.

Fig. 12 shows how each component improves (or some-
times worsens) WAF. We distinguish the workloads into two
groups, Group 1, those more typical workloads with some
skewness and regularity in data access and the other, Group
2, those whose I/O patterns are largely irregular (Exchange,
Alibaba) and that with low skewness in access (FIO-M), as
they show distinctly different influence.

Those in Group 1 show +HotSep and +GrpConf, individu-
ally, bringing about considerable gains. As explained in §6.1,
+HotSep improves the performance of FIO-H by separating
hot blocks. +GrpConf is effective in Varmail, YCSB-A and
-F, and TPC-C by organizing groups to give sufficient space
to warm blocks. In contrast, +IrrHand shows minimal, if any,
benefits. We see slight gains with Varmail and TPC-C, where
small irregular patterns are detected, which is reflected in
Table 4 as will be explained below.

The results for Group 2 are quite different. We see that
the effect of +HotSep is smaller than for Group 1. In case of
FIO-M, the impact of each component is limited as the block
access is less skewed and has no irregular patterns. Thus, re-
call from Fig. 11 that, for FIO-M, all the techniques, except
Autostream, showed similar WAF. For Alibaba and Exchange
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Table 4: Accuracy of UID in predicting transition probabilities
Workloads F-H V Y-A Y-F T-C Ali Ex F-M

Avg. error (%) 1.82 6.90 2.33 1.78 4.81 11.44 8.16 1.33
Avg. error (%)
w/ +IrrHand 1.82 1.97 2.33 1.78 2.38 4.67 3.36 1.33
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Fig. 13. Impact of length of epoch on generating UID

+GrpConf has a profound negative effect due to their irregular
I/O patterns that make finding suitable group configurations
difficult. The first row in Table 4 lists the average errors be-
tween UID predicted and actual transition probabilities. The
second row is the same error but when +IrrHand is applied.
We see these values coming down for Varmail, TPC-C, Al-
ibaba, and Exchange. Before +IrrHand is applied, MiDAS
is making inaccurate decisions in configuring groups based
on these erroneous predictions. Hence, when +GrpConf is
applied, WAF increases for Alibaba and Exhange. For Var-
mail and TCP-C, the inaccuracy is not as serious, so we see
improvements after applying +GrpConf. We also see that +Ir-
rHand mitigates the negative effect of irregular I/O patterns.

6.3 Miscellaneous Results
Impact of epoch length: We consider epoch lengths of 0.5×,
2×, 4×, and 8× of the storage capacity (128GiB) and ob-
serve the WAFs. Recall that all the earlier experiments were
performed with an epoch length of 4× 128GiB. As shown
in Fig. 13, workloads are largely insensitive to epoch lengths
of 4× and above with the exception of Exchange whose irreg-
ular patterns have strong influence. In contrast, shortening the
length negatively affects most workloads.
Adapting capability: We evaluate how well MiDAS re-
sponds to changes in workload patterns. To see this, we run
YCSB-A from 0 to 1.1 billion (B) time and then switch
to TPC-C until the end of the experiment. While running,
we measure WAF, the number of groups, and 𝐻𝑂𝑇 and 𝐺𝑁

sizes. Fig. 14(a) depicts how WAF changes over time. Adapt-
ing group configuration (+GrpConf) occurs six times dur-
ing the entire process, while irregular pattern handling (+Irr-
Hand) is invoked five times in each epoch. The points where
MiDAS adopts GrpConf and IrrHand are highlighted by the
dotted lines. The group configuration set at 0.25B remains
unchanged until 1.1B due to stable transition probabilities in
the YCSB-A workload (see Table 4). Once TPC-C begins
at 1.1B, the I/O pattern changes dramatically, with IrrHand
merging groups with high error rates to optimize WAF.

Fig. 14(b) shows how the number of groups, the 𝐻𝑂𝑇 and
𝐺𝑁 sizes evolve. We observe that when IrrHand is invoked,
the size of 𝐺𝑁 changes, while 𝐻𝑂𝑇 remains unchanged due
to low error rates. We conclude that MiDAS is effectively
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Fig. 14. MiDAS adapting to workload change

accommodating the needed changes to the groups (number
and size) according to the changes in the workload.
Comparison with ORA: We pointed out the limitations of
the existing techniques in data placement and group size de-
cisions by comparing them with ORA in Fig. 4 and Table 2,
respectively. We now compare MiDAS with ORA to show
how efficiently MiDAS addresses these limitations. Fig. 15(a)
shows the distribution of data blocks assigned to groups for
YCSB-A and the group size of each group (numbers on each
bar). The figure also displays the ratios of block categories,
𝐶1, ... 𝐶6, decided by ORA. Note that the number of groups in
MiDAS is the same as that of ORA and that this was reached
through adjustments. We also observe that most of the hot
blocks categorized as 𝐶1 are assigned to 𝐻𝑂𝑇 . MiDAS also
provides sufficient space to 𝐻𝑂𝑇 so that hot blocks can be
invalidated before being evicted to 𝐺1. However, we observe
that, though much more accurate than the other techniques,
data blocks in cold categories (i.e., C4–C6) account for non-
trivial portions in 𝐺1–𝐺2. This is owing to the age-based
migration policy of MiDAS that writes data blocks to the
former groups and then moves live blocks to the subsequent
groups. Despite such errors, age-based migration enables us to
efficiently segregate cold blocks in the latter groups (𝐺3–𝐺6),
helping reduce overall WAF.

6.4 Experiments on SSD Prototype
To evaluate throughput and CPU utilization that cannot be
measured from the trace-driven simulator, we implement a
proof-of-concept prototype of MiDAS in a real-world SSD
and carry out a set of experiments. We implement PageFTL,
MiDA, and SepBIT in the SSD platform. Six workloads, Var-
mail, YCSB-A, YCSB-F, TPC-C, Alibaba and Exchange, are
used for the throughput experiments. For Alibaba and Ex-
change, we report the average throughput of the subtraces.

As shown in Fig. 15(b), MiDAS achieves 2.55×, 1.24×,
1.15× higher throughput, respectively, than PageFTL, MiDA,
and SepBIT, on average. Notably, for Varmail, MiDAS, re-
spectively, achieves 3.2×, 1.4× and 1.3× gains. This is be-
cause MiDAS can significantly reduce writes by GC com-
pared to other techniques, evidenced by the WAF values of
4.26, 2.12, 1.91, and 1.52 for PageFTL, MiDA, SepBIT, and
MiDAS, respectively. These are in line with the simulation
results. Moreover, for Alibaba workloads, MiDAS improves
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Fig. 16. Results from our SSD prototype for FIO-U

the throughput by 8.7% compared to SepBIT despite MiDAS
showing higher WAF than SepBIT.

We also conduct experiments to measure the CPU overhead.
To remove the GC impact, we use the FIO workload with
uniform distribution (FIO-U) configured so that the WAFs
of all the techniques become almost identical (1.2) and al-
low only 60% of the entire device to be composed of valid
blocks. We use this configuration to assess I/O throughput
when the techniques handle ordinary user requests without be-
ing impacted by GC. Fig. 16(a) shows that all the techniques,
except for SepBIT, exhibit similar throughput as they have
the same WAF. SepBIT shows the lowest throughput among
the techniques. This is because it incurs high CPU utilization
to maintain the queue as well as to lookup the queue for every
user-written block in order to detect hot blocks. Note that
the negative impact on CPU utilization is particularly signifi-
cant in FIO-U where user-written blocks are dominant. For
garbage-collected blocks, SepBIT does not need to look up
the queue, so CPU overhead is much lower when the GC is
frequently triggered.

Fig. 16(b) shows the CPU utilization of FIO-U over time.
MiDAS shows, on average, only 4.2% and 0.6% higher CPU
utilization compared to PageFTL and MiDA, respectively.
MiDAS is designed to require only a few CPU cycles in
common paths such as reads, writes, and GC. However, we
notice sharp increases in CPU utilization at around 3740s
and 4890s. This is where MiDAS starts to run MCAM to
find the best group configuration. However, its impact on
performance is minimal as this is run in the background. As
shown in Fig. 16(a), MiDAS provides similar throughput as
PageFTL and MiDA.

7 Discussion
In the current stage, our work is limited to a case study for
flash-based SSDs. However, it can be adapted to other log-
structured systems. For instance, for ZNS SSDs, MiDAS can
be integrated into a zoned storage backend (e.g., ZenFS [6])
to reduce the host’s GC overhead, similar to SepBIT [44]. The
segment size in MiDAS is not fixed and thus can be adjusted
to match the characteristics of ZNS SSDs.

However, there could be several hurdles when adapting to
other log-structured systems, such as the LSM-tree. LSM-
trees have chain-like structures that merge-sort data through
progressively larger layers [36,40]. MiDAS’s structure is sim-
ilar, where live blocks migrate to subsequent groups via GC,
and its group configuration could be integrated into LSM-tree
level design. However, a new challenge arises because LSM-
trees keep objects in a sorted order, conflicting with MiDAS’s
assumption that blocks in a segment share similar age. Addi-
tionally, the significantly larger key range of LSM-tree objects
compared to the LBA range leads to an expanded timestamp
table, thereby causing an increased memory footprint. We
plan to address these problems as part of our future work.

Many researchers have discussed write amplification re-
duction techniques in log-structured systems like ZNS and
LSM-tree [5, 19, 32, 52]. However, research that dynamically
applies group configuration based on the workload pattern in
log-structured systems other than flash-based SSDs has not
been explored in great depth. MiDAS can provide useful in-
sights on how to effectively apply group configurations within
general log-structured systems.

8 Conclusion
In this paper, we presented MiDAS, a systematic solution to
mitigate GC overhead for log-structured systems. MiDAS
employs a chain-like structure to organize data by age and
minimize data movement between groups using analytical
models, UID and MCAM. It also isolates hot blocks within a
designated hot group and dynamically adjusts its size against
cold groups in a manner that minimizes overall GC costs. Our
experiments demonstrated that MiDAS outperforms existing
techniques, achieving 25% reduction in WAF and 54% higher
throughput, on average for the workloads considered, all while
being memory-efficient and consuming fewer CPU cycles.
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A Artifact Appendix
Abstract
MiDAS is a migration-based data placement technique with
adaptive group number and size configuration for reducing
garbage collection overhead in various log-structured systems.
Notably, MiDAS is currently implemented within the FTL of
the real SSD prototype. For artifact evaluation, we provide our
source code and the trace file. Please refer to the README
file at https://github.com/dgist-datalab/MiDAS.

Scope
The artifact includes all the necessary source code required to
run MiDAS as well as the FIO-based workload trace file used
in this study. You can quickly test MiDAS using this trace.

Contents
We provide two Git repositories related to MiDAS: the SSD
prototype-based implementation and the trace-driven simula-
tion. If you evaluate MiDAS using the SSD prototype-based
implementation, you can measure not only the WAFs but
also I/O performance and the overhead associated with the
CPU and memory for system execution. Meanwhile, using
trace-driven simulations, you are limited to WAF evaluations
only. Here, we will explain the contents based on the SSD
prototype-based implementation. There are four main c files
to run MiDAS:

• midas.c: adaptably changes group configuration and reg-
ularly checks irregular patterns at runtime (see §4.5).

• model.c: constructs UID, predicts WAF using MCAM,
and runs GCS algorithm to find the best group configura-
tion based on the observed workload patterns (see §4.3,
§4.4 and §4.5).

• gc.c: selects a victim of GC based on the victim selection
policy and moves live blocks into subsequent groups (see
§4.1).

• hot.c: constructs a hot filter to separate hot blocks from
cold blocks by monitoring incoming data blocks (see
§4.2).

Hosting
We provide the public Git URLs, and the commit hashes for
each repository used during artifact evaluation. MiDAS is
implemented in both a real SSD prototype and trace-driven
simulation. For quick testing of MiDAS, particularly for eval-
uating WAF, using the trace-driven simulation is sufficient.
Additionally, we provide a public Zenodo URL for download-
ing the trace file of the FIO benchmark used in our evaluation.

• Emulated SSD prototype
https://github.com/dgist-datalab/MiDAS
14be7bf7b01fad8db023622e4598fb9e30d8024f

• Trace-driven simulation
https://github.com/sungkyun123/MiDAS-Simulation
a22626529ad625eb4ddbab298752b9116fe6d05a

• FIO-based workload trace file
https://zenodo.org/record/10409599

Requirements
Hardware requirements. We use the Xilinx Virtex® Ultra-
Scale™ FPGA VCU108 platform and customized NAND
flash modules. The customized NAND flash modules used in
this paper are not publicly or commercially available. There-
fore, you may need your own NAND modules compatible
with VCU108 and adequate modifications to the hardware
backend to replicate this work. Acknowledging the challenge
for most researchers to replicate our experimental setup, we
offer an alternative emulation of the prototype via a memory-
based approach (RAM drive). DRAM must be larger than the
device size of trace files + an extra 10% of the device size for
the data structures and OP region to test the trace files. For
example, you need 140GiB size of DRAM to run the trace
file with a 128GiB device size.
Software requirements. There are little special software
requirements to run MiDAS and you only need to install some
packages using apt. The README file in the repository
describes detailed instructions for the installation.
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Abstract
In this paper, we qualitatively and quantitatively discuss the

design choices, production experience, and lessons in building
the Elastic Block Storage (EBS) at ALIBABA CLOUD over the
past decade. To cope with hardware advancement and users’
demands, we shift our focus from design simplicity in EBS1
to high performance and space efficiency in EBS2, and finally
reducing network traffic amplification in EBS3.

In addition to the architectural evolutions, we also sum-
marize development lessons and experiences as four topics,
including: (i) achieving high elasticity in latency, throughput,
IOPS and capacity; (ii) improving availability by minimiz-
ing the blast radius of individual, regional, and global failure
events; (iii) identifying the motivations and key tradeoffs in
various hardware offloading solutions; and (iv) identifying
the pros/cons of alternative solutions and explaining why
seemingly promising ideas would not work in practice.

1 Introduction
Elastic Block Storage (EBS) service is a cornerstone in today’s
cloud [16, 18, 19]. In EBS, the storage service is in the form
of virtual block devices with high performance, availability,
and elasticity. The most outstanding characteristic of EBS
architecture is the compute-to-storage disaggregation where
the virtual machines (compute end) and disks (storage end)
are not physically co-located but interconnected via datacenter
networks.

In this paper, we start by revisiting the evolutions behind
the three generations of EBS at ALIBABA CLOUD [16]. EBS1
marks our initial step in adopting the compute-to-storage
philosophy. In EBS1, there are two notable design choices:
in-place update from virtual disks (VDs) to physical disks,
and the exclusive management of virtual disks. First, EBS1
directly maps a VD inside the virtual machine (VM) as a
series of 64 MiB Ext4 files in the backend storage server.
Moreover, EBS1 employs a fleet of stateless BlockServers
to manage VDs where each VD is exclusively handled by a
BlockServer. While EBS1 had been successfully deployed
on more than 300 HDD-backed clusters, its limitations also

*Corresponding author.

unfolded. The straightforward virtualization led to severe
space amplification and performance bottlenecks.

We then developed EBS2 with two significant changes: the
log-structured design, and VD segmentation. First, we em-
ployed the Pangu [35] distributed file system as our storage
backend, and redesigned the BlockServers to convert VDs’ all
writes to sequential appends. By switching to a log-structured
layout, EBS2 still used three-way replication for incoming
writes but could transparently perform data compression and
erasure coding (EC) in the background during garbage col-
lection (GC). Moreover, EBS2 split VDs into finer segments
(32 GiB each), thus shifting the mapping between VDs and
BlockServers from VD level to Segment level. With the above
two changes, EBS2 was able to reduce the space efficiency
from 3 (i.e., three-way replication) in EBS1 to 1.29 on average
in the field. Moreover, supercharged with SSDs, an EBS2-
backed VD can achieve up to 1 M IOPS and 4,000 MiB/s
throughput with 100 µs-level latency on average. Unfortu-
nately, EBS2 also faced a significant challenge. That is, the
traffic amplification factor increased to 4.69, namely 3 (fore-
ground replication write) plus 1 (background GC read) and
0.69 (background EC/compression write).

Hence, we built EBS3 to reduce traffic amplification using
online (i.e., foreground) EC/compression via two techniques:
Fusion Write Engine (FWE), and FPGA-based hardware com-
pression. FWE aggregates write requests from different seg-
ments (if necessary) to meet the size requirement of EC and
compression. Moreover, EBS3 offloads the compute-intensive
compression to a customized FPGA for acceleration. As a
result, EBS3 can reduce the storage amplification factor from
1.29 to 0.77 (after compression) and the traffic amplification
factor from 4.69 to 1.59 while still maintaining performance
similar to EBS2. Since release, EBS3 has been deployed on
more than 100 clusters, serving over 500K VDs.

Figure 1 outlines the chronological progression of Alibaba
EBS since 2012. We highlight the time of major releases (i.e.,
EBS1 to EBS3), the integration of key techniques (e.g., Luna,
our user-space TCP stack [46]) and the adoption of advanced
hardware (e.g., Persistent Memory in EBSX). The evolution of
EBS demonstrates a shift in focus from performance to space
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and traffic efficiency. Nevertheless, simply altering the high-
level architecture is not enough. Next, we further discuss our
lessons in building a high-performance and robust EBS from
four perspectives, including elasticity, availability, hardware
offloading, and alternative solutions.

One representative feature of a cloud block store is
elasticity—providing VDs with varying performance and ca-
pacity levels. There are two key aspects: identifying bound-
aries and achieving fine-grained tuning. First, we discover
that the average and tail latency are dominated by different
factors—hardware overhead and software processing, respec-
tively. Thus, we build corresponding solutions including
EBSX, a one-hop architecture backed by persistent memory for
minimizing average latency, and the use of dedicated threads
for I/O to alleviate tail latency. Furthermore, we realize that
throughput and IOPS are bounded by similar mechanisms. In
the frontend BlockClient, we optimize the stack by moving
the processing from kernel to user-space and then to hardware
offloading in FPGA. In the backend BlockServer, we utilize
high parallelism to achieve efficient throughput/IOPS control.
As for space elasticity, EBS not only provides wide ranges of
storage space (i.e., from 1 GiB to 64 TiB) but also supports
features including flexible resizing and fast cloning.

We then move on to discuss threats to the availability of
EBS, especially under large-scale deployment. We begin by
categorizing three levels of failure events, including individ-
ual, regional, and global, that can lead to one, several, or
all VDs in a cluster (temporarily) ceasing service. With VD
segmentation and segment migration since EBS2, field diag-
nosis indicates that regional events become more frequent
and an individual event can now easily cascade into regional
or even global ones. Therefore, on the control plane, we de-
veloped a Federated BlockManager to organize the VDs into
mini groups and use CentralManager for coordination. Addi-
tionally, on the data plane, we have built the logical failure
domain to limit the destinations of segment migration.

In the third topic, we highlight the importance of offload-
ing key control/data paths to hardware for acceleration. We
use the offloading evolutions of both BlockClient and Block-
Server as examples to discuss the tradeoffs between different
options. Specifically, BlockClient started with FPGA offload-
ing to accelerate storage/network virtualization. However,
impacted by FPGA instability under large deployment (e.g.,
22% of downtime caused by FPGA-related issues), our Block-
Client dropped the FPGA-based approach and adopted the
ASIC-based solution. Conversely, BlockServer, which also

initially chose FPGA for speeding up EC/compression, opted
for the many-core ARM CPU as the next stop due to the
flexibility and cost requirement.

The final topic is organized as a series of “What If?” ques-
tions (§6). Through three Q&A, we explain why seemingly
promising ideas, such as extending EBS1 with segmentation
but without a log-structured design, eventually failed, and
discuss the possibilities of alternative solutions (e.g., building
EBS with open-source software). We end this paper with a
short discussion of related work and a conclusion.

2 Architecture Evolution: A Shift of Focus
2.1 EBS1: An Initial Foray
EBS1 marked our first step into offering an elastic block store
based on a disaggregated architecture. By placing the com-
pute and storage in different clusters and connecting them
via the datacenter network, this design offers flexibility in
deployment, scaling, and evolution. Such philosophy has
been widely adopted by many vendors, such as Microsoft
Azure [25] and Google datacenters [30].

Compute end. Figure 2 provides a high-level overview of
EBS1. A compute cluster comprises multiple servers where
each server runs one BlockClient and can host several VMs.
In addition, a VM can mount one or more VDs. Users can
access the VD as a normal block device and the host server
forwards the I/O requests to the storage clusters via the Block-
Client.
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Figure 2: The system architecture of EBS1 (§2.1). VD:Virtual Disk.
VM: Virtual Machine. BlockManagers and ChunkManagers all run
three-instance Paxos groups. Each VM can host multiple VDs.

Storage end. EBS1 used a different fleet of dedicated servers
for storage. First, we build the BlockManager (a set of three
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nodes backed by Paxos) and a group of BlockServers. The
BlockManager maintains VDs’ metadata, such as the capacity
and snapshot versions. The BlockServers handle I/O requests
of multiple VDs assigned by the BlockManager. Note that the
BlockManager can reassign a VD to another BlockServer dur-
ing failover. Second, we further introduce a data abstraction,
called chunk. The Logical Block Address (LBA) space of a
user’s VD is divided into a series of 64 MiB chunks. Similarly,
the ChunkManager (a set of three nodes backed by Paxos)
manages the chunks’ metadata. The ChunkServer stores a
64 MiB chunk as a 64 MiB Ext4 file (called DataFile) and per-
forms in-place updates to the chunk for write requests. Each
chunk is three-way replicated on three different ChunkServers.
For efficiency, we use thin provisioning—allocating space
only when the user writes data to the VD.

Network. There are mainly two sets of network in EBS1. The
frontend network connects the compute and storage clusters.
The backend network inside the storage clusters connects the
BlockServers to the ChunkServers. Both use Clos topology
and rely on the 10 Gbps network with the kernel TCP/IP stack.

Data-flow. When a VM issues a new write request to its VD,
BlockClient first contacts the BlockManager to locate the
corresponding BlockServer for this request ( 1⃝ in Figure 2).
Then, the BlockClient forwards the write request to the Block-
Server ( 2⃝). The BlockServer further asks the ChunkManager
to determine the three ChunkServers ( 3⃝) and persists the
data accordingly ( 4⃝). In practice, the BlockClient caches
the VD-to-BlockServer mappings, and BlockServers cache
chunk-to-ChunkServer mappings (i.e. skipping 1⃝ and 3⃝).

Limitations. EBS1, released in 2012, has served over 1
million VDs and stored hundreds of PBs of data across
hundreds of deployed clusters. Its straightforward and ma-
ture designs (e.g., in-place update and N-to-1 mapping be-
tween VDs and BlockServers)—while expediting develop-
ment and deployment—limit the performance and efficiency.
For example, to reduce the space overhead, we wish to
use data compression and EC. However, compression non-
deterministically alters the size of data which breaks the direct
mapping of in-place updates. In addition, EC has a minimum
size requirement (e.g., when the stripe unit is 4 KiB, EC(4,2)
requires at least 16 KiB) and thus can result in significant
write amplification, especially for small I/O requests. Another
limitation is that, under the N-to-1 mapping, the performance
of a VD is ultimately bounded by the performance of the
corresponding BlockServer which can suffer from hotspot
issues under burst workloads. In addition, with HDD and
traditional kernel TCP/IP stack, we find it difficult to quantify
and guarantee SLOs to users.

2.2 EBS2: Speedup with Space Efficiency

Overview. Figure 3 presents the high-level architecture of
EBS2. The most significant change is that EBS2 no longer
directly handles the data persistence or manages the con-

sensus protocol. Instead, it builds on top of a distributed
storage system—named Pangu [35]—which provides append-
only file semantics and distributed lock services (based on a
customized Raft protocol). The BlockServers employ a log-
structured design [38] and translate the VDs’ write requests
into Pangu append-only writes, thus enabling efficient data
compression and EC during background garbage collection.
We also split the VD address space into fixed-size segments,
allowing one VD to be served by multiple BlockServers. Also,
with segmentation, failover is no longer at the granularity of
the whole VD but a segment—BlockManager migrates the
impacted segment to another BlockServer. In addition, the
BlockManager directly uses Pangu distributed lock service
instead of Paxos for leader election.

As a result, we modified the I/O procedures as follows.
After receiving a VD’s request, BlockClient first retrieves
the segment’s address from BlockManager ( 1⃝ in Figure 3,
which can be skipped by caching), and then forwards the I/O
requests to the target BlockServer ( 2⃝). BlockServer employs
the Log-Structured Block Device (LSBD) Core to convert I/O
requests into Pangu APIs and then calls an embedded Pangu
client for persisting or fetching data ( 3⃝). Note that, since
EBS2, a BlockServer and a Pangu’s ChunkServer, while co-
located on the same physical server, are logically independent
processes and rely on backend network for transferring data
(i.e., not enforcing locality).
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Figure 3: The overview of EBS2. LSBD: Log-Structured Block
Device. REP.DataFile: DataFile with three-way replication.
EC.DataFile: DataFile with EC(8,3) encoding.

Disk segmentation. Figure 4 illustrates how EBS2 parti-
tions the VD’s LBA into several 128 GiB segment groups
each of which further comprises multiple 32 GiB segments.
BlockServers in EBS2 operate at the granularity of segments.
Further, EBS2 organizes the segment group as a series of data
sectors and allocates them to the segments in a round-robin
fashion. Finally, EBS2 associates one segment with multiple
DataFiles (512 MiB by default) to support concurrent writes.
DataFile is essentially a Pangu file designed to persist a por-
tion of a segment’s data. These different levels of parallelism
help EBS2 alleviate the hotspot accessing in VDs.
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Figure 4: The Disk Segmentation Design of EBS2 (§2.2).

Log-structured Block Device. In EBS2, we developed a
LSBD Core to support the append-only semantics of the
underlying Pangu and thus split traffic into frontend (i.e.,
client I/Os) and backend (i.e., GC and compression). Figure
5 shows the frontend I/O flow including persisting users’
data as a series of 4 KiB blocks and 64B metadata pairs ( 1⃝),
responding to users ( 2⃝), recording updates in the transaction
file ( 3⃝), and updating the in-memory index map ( 4⃝). The
index map is essentially a log-structured merge tree (LSM-
tree) to speed up the locating process by storing a mapping
from VD’s LBA to the corresponding DataFile ID, offset and
length. The TxnFile accelerates the index map rebuild upon
segment migrations. EBS can recover the in-memory index
map by reading the latest I/Os’ LBA-to-DataFile mappings
from the TxnFile, without the need of tail scanning the data
blocks in the DataFiles. Note that DataFile, TxnFile and the
SSTables in the LSM-tree are all Pangu files.
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Figure 5: The data organization and persistence format of LSBD.
TxnFile: TransactionFile.

GC with EC/Compression. EBS2 runs GC at the granularity
of DataFile (see Figure 6). When stale data within DataFiles
reaches the threshold, EBS2 initiates performing GC by col-
lecting valid data from the dirtiest DataFiles under the same
segment and combining them as new DataFiles. EBS2 finishes
GC by updating the TxnFile and the in-memory index map.

During GC, we also convert the replicated “REP.DataFiles"
to space-efficient “EC.DataFiles” with (8,3) EC and LZ4
compression.

Given that compression can alter the size of data, we struc-
tured the EC.DataFile into three main components: a DataFile
Header, a series of CompressedBlocks, and an Offset Table.
The Compressed DataFile Header includes a magic num-
ber (marking the start of the DataFile), version and check-
sum. Each CompressedBlock contains CompressionHeader
(CmpHdr) and CompressionBody (CmpBdy). The CmpHdr
records the timestamp, the compression algorithm (LZ4 by
default), the size of CmpBdy, and the checksum. CmpBdy
contains the compressed data and metadata (i.e., 4 KiB + 64B
before compression). At the end of the Compressed DataFile,
we enclose the mapping between the original LBA in VD
and the location in the Compressed DataFile as OffsetTable.
When reading the compressed data, EBS2 first locates data by
querying OffsetTable, then reads and decompresses the data.

We leveraged the opportunity of GC to perform the transfor-
mation of erasure coding and compression. If needed, EBS2
can schedule special types of GC tasks that preferably select
“Rep.DataFiles” (replicated, non-compressed data) over ex-
isting “EC.DataFiles” (erasure-coded, compressed data), in
order to make up more storage space for incoming writes.

The garbage percentage thresholds used to trigger GC in
production vary, depending on the cluster storage usage and
the workload. We deployed a set of optimizations for im-
proving GC efficiency (e.g., placement based on inferring
the block invalidation time [39]). In production, for the most
stressed clusters, the write amplification due to GC (i.e., the
number of bytes written by BlockServer and GCWorker over
the number of bytes written by BlockServer) is less than 1.5.
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Figure 6: The Garbage Collection in EBS2.

BlockManager with higher availability. The integration
of Pangu enhances the availability of EBS2’s control plane.
First, through the Pangu lock service, the BlockManager can
continue serving clients even in the face of two out of three
node failures. Second, EBS2 now stores the VDs’ metadata
in a persistent and replicated key-value store as Pangu files,
while EBS1 stores the VDs’ metadata in local disks where
data loss could lead to an extended repair time.

Network. EBS2 uses a similar network setup as EBS1 except
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for two fundamental differences. First, for the frontend net-
work, we replace the kernel TCP with our user-space TCP im-
plementation (called Luna [46]) over a 2×25 Gbps network.
Luna achieves high performance (up to 3.5× throughput im-
provement and 53% latency reduction) by leveraging a run-to-
completion thread model and a zero-copy memory model.
Second, for the backend network, we use a 2 × 25 Gbps
RDMA network to meet the demanding SLAs [29]. Note
that the two changes above only affect the data path. For the
control path, we still use the kernel TCP (e.g., RPCs between
BlockManagers and BlockServers).

Snapshot. The architectural changes in EBS2 also facilitate
creating snapshots for VDs. With the out-of-place update, cre-
ating a snapshot in EBS2 no longer blocks foreground traffic.
Instead, when receiving a snapshot request, BlockManager
simply records a timestamp and asks the snapshot workers in
BlockServers to upload the updates between the last snapshot
timestamp and the latest one. As a result, generating a snap-
shot for 20GB of new data only takes around 30 seconds in
EBS2, much less than the average 33 minutes in EBS1.

Other background I/O. Apart from GC, one important back-
ground task is data scrubbing, which performs periodical
scanning to detect anomalies such as disk corruption and
CPU silent data errors. To minimize the performance impacts,
we have separated the scrubbing traffic from the GC tasks,
capped the scrubbing traffic at 10 MiB/s (i.e., scanning all
DataFiles every 15 days), and leveraged the heartbeat mecha-
nism for monitoring the scrubbing progress.

Deployment. We released EBS2 in 2015 and subsequently
scaled to more than 500 clusters for 2 million VDs. EBS2
could provide a virtual disk with an average write latency of
100 µs (12× reduction than EBS1), a maximum IOPS of 1 M
(50× increase), and a maximum throughput of 4,000 MiB/s
(13× increase) for the guest OS. In the field, the compression
ratio of the LZ4 algorithm is between 43.3% ∼ 54.7%, and
the average compression ratio is 50.1%. With Compress-EC
in GC, EBS2 can reduce space usage from 3 to 0.69 replicas.
Since un-GCed DataFiles are still stored with three-way repli-
cation, the average number of replicas in EBS2 is 1.29 in the
field on average. For better management, we also reduced the
cluster size from 700 servers in EBS1 to around 100 in EBS2.

Limitations. EBS2 successfully improves the space efficiency
but incurred heavy traffic amplification. Compared with EBS1,
EBS2 increases the overall traffic from 3 (i.e., from three-way
replication) to 4.69 (i.e., 3 from the frontend plus 1.69 from
the backend GC), yielding only 15.5% of the network band-
width for serving the VDs’ requests. To alleviate this issue,
one promising solution is to adopt online EC/Compression,
which means to directly store users’ data in erasure-coded
and compressed format.

The challenges are twofold. First, erasure coding requires
the raw data blocks to be at least 16 KiB to achieve high com-
pression and encoding efficiency. However, in the field, nearly

70% of write requests are smaller than 16 KiB. Moreover,
EBS aims to deliver 100 µs write latency, and accumulating
enough data in such a short interval can be difficult. For exam-
ple, in order to perform compression and erasure coding for all
user writes (i.e., accumulating 16 KiB data blocks within each
100 µs interval), a segment needs to have a write throughput
over 160 MiB/s—surpassing 90% of segments in production.
Simply padding zeroes can result in an even higher traffic/s-
pace amplification. Second, even with the latency-optimized
LZ4 algorithm, compressing a 16 KiB-sized data block still
requires 25 µs for CPUs, and such overhead escalates signifi-
cantly for larger ones, rendering an unacceptable performance
penalty for our service.

2.3 EBS3: Foreground EC/Compression

Overview. EBS3 achieves online EC/Compression by uti-
lizing a Fusion Write Engine (FWE) to merge small writes
and adopt an FPGA to offload the compression computations.
Specifically, EBS3 first leverages FWE to accumulate writes
from different segments of different VDs (i.e., step 1⃝ in
Figure 7). FWE then combines these incoming writes as
DataBlocks and sends them to the FPGA-based accelerator
for data compression ( 2⃝). EBS3 then calls Pangu to persist
the compressed DataBlocks as JournalFiles with EC(4,2),
namely 3⃝. After persisting JournalFiles, EBS3 sends acks to
the VD indicating the I/O completion (step 4⃝). Then EBS3
copies the uncompressed data and preserves them within the
BlockServer’s memory by segment (i.e., SegmentCaches, step
5⃝). When the data in a SegmentCache reaches the threshold

(512 KiB by default), EBS3 compresses the data via the host
CPU, appends them to the DataFile with EC(8,3), and updates
the TxnFile and in-memory index map (step 6⃝).

For read requests, EBS3 first queries the SegmentCaches
in the BlockServers as they have the latest data. If not found,
EBS3 would further read the in-memory index map (i.e., the
LSM-tree). Note that JournalFiles are EC-ed with compressed
data from various segments of different VDs. Directly fetch-
ing data from JournalFiles can result in severe read amplifi-
cation (i.e., decompressing with heavy scanning). Therefore,
JournalFile is write-only during runtime and only readable
during failover to recover yet-to-be-dumped data upon crash.

Fusion Write Engine. Usually, when receiving a batch of
small write requests, FWE waits until the total amount of
data reaches a threshold (16 KiB by default) and then forms
a DataBlock before sending it to the FPGA for compression.
We set the waiting timeout as 8µs (i.e., the interval between
NIC pollings). Moreover, we discover that insisting on merg-
ing smaller writes (e.g., 4 KiB) can result in higher 99th tail
latency (i.e., 220%). Therefore, for clusters that have infre-
quent small writes (e.g., certain clusters, on average, with
only 3.72% of the workload are 4 KiB writes), we do not
aggregate 4 KiB writes but directly append them with the
traditional three-way replication.
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Figure 7: The architecture and I/O flow of EBS3.

FPGA-based compression offloading. We employ a cus-
tomized FPGA to accelerate (de)compression, which includes
a submission queue to buffer newly-formed DataBlocks and
a completion queue to poll the results of hardware compres-
sion. We implement a scheduler inside the FPGA to split
the DataBlocks as fixed-sized (e.g., 4 KiB) slices and employ
multiple execution units to perform (de)compression tasks on
these slices in parallel. To ensure data integrity, we place an
end-to-end CRC check within the driver. After FPGA returns
compressed data, EBS3 would immediately decompress the
data and verify data integrity via CRC checking. Note this is
a necessary overhead as, during failover, JournalFiles are the
only data source.

Figure 8 shows the latency and maximum throughput of
FPGA-offloading and CPU-only compression across different
data block sizes, based on Silesia Compression Corpus [27].
The latency distribution of FPGA-offloading ranges from
29∼65 µs. Notably, when the data block size is 16 KiB, the
latency of FPGA-offloading reduces by 78% compared to
CPU-only. Further, FPGA-offloading achieves a maximum
throughput of 7.3 GiB/s, whereas CPU-only compression is
only 3.5 GiB/s. As data block size increases, the FPGA-
offloading solution leads to larger performance gains.
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Figure 8: The compression performance comparison of FPGA-
offloading and CPU-only with 8 cores compression based on Silesia
Compression Corpus.

Network. EBS3 adopts higher linkspeed (i.e., 2×100 Gbps)
network for both frontend and backend. In addition, we fur-
ther developed Solar [36], a UDP-based transmission protocol.
By leveraging the hardware offloading on our Data Process-
ing Units (DPUs), Solar can pack each storage data block as a
network packet, thereby achieving CPU/PCIe bypassing, easy
receive-side buffer management and fast multi-path recovery.

Deployment. EBS3 has been deployed in over 100 storage
clusters, serving more than 500K virtual disks since released
in 2019. EBS3 offers comparable performance to EBS2. The
incorporation of foreground EC/Compression in EBS3 enables
all data to be stored immediately with high storage efficiency
except in a few corner cases. As a result, the space efficiency
(i.e., replica per data) in the field further drops from 1.29 in
EBS2 to 0.77 in EBS3. In addition, the FPGA-based compres-
sion offloading can achieve 7.3 GiB/s throughput per card
and the overhead ranges from from 29∼65 µs. The overall
traffic amplification drops from 4.69 in EBS2 to 1.59 in EBS3
(based on field statistics and numbers may slightly vary due
to compression ratio differences across workloads).
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Figure 9: Random Write/Read Latency of Each Generation EBS
under Multiple Threads and 4 KiB-sized I/O. Thread-to-core pinning
means that each thread occupies one CPU core exclusively.

2.4 Evaluation
To quantitatively demonstrate the improvement led by the
architectural evolutions, we extensively evaluate the perfor-
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mance of EBS1, EBS2 and EBS3 with microbenchmark (by
stressing the VDs using FIO [21]) and application-based mac-
robenchmark (via RocksDB 6.2 with YCSB [26] and MySQL
8.0 with Sysbench [33]).

We evaluate the throughput and IOPS of the candidates
by stressing random 4 KiB write and read. We also increase
the number of threads (i.e., FIO jobs) from 1 to 16. Figure 9
shows the overall results. We can see that the throughput
(i.e., bars) of EBS2 and EBS3 increases almost linearly before
hitting the peak with 8 threads. With 8 threads, EBS2 and
EBS3 can deliver 4,000 MiB/s throughput per VD (i.e., 1 M
IOPS), which is 13× and 50× higher than the throughput and
IOPS of EBS1. Figure 9 further depicts the latency variation
with scaling of FIO jobs. We observe that the latency of
EBS2 and EBS3 is similar and remains the same from 1 to 8
threads. Their latencies only experience a slight increase with
16 jobs due to delays caused by contention between threads
after hitting throughput bottlenecks.

We use RocksDB with the default configuration. For
MySQL, we use InnoDB and configure the user buffer size as
1 GiB, the page size as 16 KiB, the flushing method as direct
I/O, the ramp-up time as 180 seconds and the execution time
as 20 minutes. Figure 10 shows the results. Compared to
EBS1, we observe 550% and 573% gains in throughput for in-
sert and update—two write-dominated workloads—in YCSB,
respectively. For read-dominated workloads, the through-
put experiences an approximately 470% increase. Under
oltp_insert workload in Sysbench, the throughput of EBS2
and EBS3 increase by 389% compared to EBS1. For the rest,
the throughput increases by an average of 350%.

3 Elasticity: A Tale of Four Metrics
The capabilities (e.g., capacity and throughput) of a common
block device (e.g., HDD and SSD) are usually bounded by
the physical properties, such as encapsulation or interface.
Backed by the cloud, EBS can provide VDs with much higher
flexibility. In this section, we will share our experience of
obtaining high elasticity, including pushing the upper bounds
and achieving fine granularity.

3.1 Latency
The latency of a VD is determined by the architecture, namely
the path a request has traveled. For example, the latency of
an EBS2-backed VD is bounded by the latency of the two-
hop network (from BlockClient to BlockServer and then to
ChunkServer), the software stack processing (i.e., Block-
Client, BlockServer and Pangu) and the SSD I/O. Hence,
the elasticity of latency is inherently coarse-grained, namely
the different levels of time overhead under various architec-
tures (e.g., EBS2 and EBS3). Next, from the perspectives of
average and tail latency, we further analyze the status quo.

Average latency. In Figure 11a, we measure the 8 KiB ran-
dom read/write average latency breakdowns across different
generations of EBS in their corresponding top 10% busiest
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Figure 10: Throughput Comparison (Normalized with EBS1).

production clusters. We choose to not include EBS1 in the
comparison as it is no longer deployed and many of its hard-
ware (e.g., HDD and 10 Gbps network) are obsolete. From the
comparison, we first observe that the hardware processing—
including 1st/2nd hop network (marked as orange and pink)
and disk I/O (yellow)—accounts for the majority of the to-
tal latency in both EBS2 and EBS3. In addition, while EBS3
requires more time to process the data due to the frontend
EC/compression, the reduced data volume in return spends
less time traveling the network (i.e., lower 2nd hop latency
in EBS3), yielding similar overall latency between EBS2 and
EBS3. Third, the major difference between read and write
lies in the disk I/O latency. Note that EBS2 is backed by
TLC-based SSDs while EBS3 is backed by QLC-based SSDs.
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Figure 11: 8 KiB-Sized Avg. and Tail Latency Breakdown of EBS.
1st hop: network latency from compute to storage end. 2nd hop:
network latency from BlockServer to Pangu.

Clearly, the key to improving average latency is reduc-
ing the hardware processing overhead. Therefore, we built
EBSX, targeting latency-sensitive scenarios. EBSX installs the
persistent memory (PMem) inside the BlockServers and di-
rectly stores the data in PMem with three-way replication.
Compared to EBS2 and EBS3, EBSX skips the 2nd hop and
drastically speeds up the disk I/O with PMem. Figure 11a
shows that EBSX achieves 30 µs-level latency on both read and
write. Note that, for space efficiency, data in PMem would be
eventually flushed to Pangu and read statistics in Figure 11a
is performance under cache hit (i.e., data in PMem).
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Tail Latency. A user request may not be always served in time
due to hardware failures [43, 44], misconfigurations [29, 36],
software bugs [23, 32] or simply resource contentions [20].
Figure 11b presents the breakdowns of 99.999th percentile
latency, a common threshold for defining the tail latency [28],
among EBS3 clusters. We have collected millions of slow
requests and calculated the average latency of each procedure.
We observe that the BlockServer processing, such as non-
IO RPC destruction in the IO thread, background periodic
scrubbing and index compaction, accounts for the majority
(75.4% for write and 64.6% for read) of the tail latency.

This observation may sound rather counter-intuitive as
the hardware-related issues are usually blamed as the cul-
prits [42, 45]. However, in EBS2 and EBS3, we have already
incorporated a series of simple techniques to improve the qual-
ity of service of hardware processing. For example, network
multi-path transport allows user requests to automatically
shift traffic to other paths to avoid slow IO when suffering
network abnormalities [36]. As another example, we em-
ploy a backup read/write strategy to trigger a retry to another
location if the I/O takes longer than 99.9th percentile latency.

Our analysis indicates that the principal driver of the tail
latency is the contention between the IO and the background
tasks (e.g., segment status statistics and index compaction)
in the BlockServers. In EBS2 and EBS3, the IO and the back-
ground tasks are executed on the same thread, leading to the
IO hang-ups when the background tasks are triggered. To
address this, we segregate the IO flow from other tasks and
execute it on independent threads. With these enhancements,
the 99.999th percentile write latency of EBS3 has been re-
duced to 1 ms, and the read latency reduced to 2.5 ms (i.e.,
OptWrite/Read in Figure 11b).
Summary. First, the elasticity of latency is coarse-grained—
defined by the architectures, along with the hardware used
(e.g., from EBS2 to EBSX). Second, optimizing hardware-
induced latency is often straightforward. One can shorten
the path (e.g., skip a network hop), use faster devices (e.g.,
PMem) or simply offset the risks with multi-path or retries.
Third, tail latency by software stack has not received enough
attention and may be regarded as noise. Our analysis suggests
that under the high-speed network and fast SSDs, software-
induced tail latency can be the dominant factor.

3.2 Throughput and IOPS
In the context of EBS, we often discuss the elasticity of
throughput and IOPS together because the two metrics are of-
ten constrained by the same set of mechanisms. EBS achieves
high elasticity in throughput/IOPS by optimizing two compo-
nents on the key data path, BlockClient and BlockServer.
BlockClient. Every IO issued from the VD is first touched
by the BlockClient. Therefore, the throughput and IOPS are
bounded by the BlockClient’s processing and forwarding ca-
pability. In EBS1, the BlockClient is implemented as a kernel
module, and all IO requests are processed by the CPU. In
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EBS2, we move the IO processing to the user space by intro-
ducing a user-space TCP stack to handle the IO requests [46].
In EBS3, we further offload the IO processing to the hard-
ware where a general-purpose FPGA, completely bypassing
CPU, performs direct data move from VMs, data block CRC
calculation, and packet transmission [36].

In Figure 12, we measure the maximum throughput and
IOPS of BlockClient under different optimizations. We ob-
serve that EBS2 with the 2× 25 Gbps network, throughput
is constrained by network capabilities. For EBS3 with the
2x100G network, the bottleneck shifts to the PCIe bandwidth.
Furthermore, as long as network bandwidth is available, IOPS
increases with the number of hyper-threads (HTs).

BlockServer. Unlike BlockClient, once the requests reach
the BlockServer, the throughput and IOPS are constrained by
the levels of parallelism. Obviously, the more a request can
be divided and served in parallel, the higher the throughput
and the IOPS. Since EBS2, we have introduced three levels
(i.e., SegmentGroup, Segment and Data Sector) of parallelism
to enhance virtual disk performance.

Recall that the Data Sector size (initially 2 MiB) is con-
figurable in the segmentation design. Reducing the Data
Sector size allows virtual disks to scale one SegmentGroup
across more BlockServers, thereby obtaining higher through-
put/IOPS. In the field, we further decrease Data Sector size to
128 KiB and EBS2 (and EBS3) are able to deliver 1,000 IOPS
for every GiB subscribed. Note that configuring an even
smaller Data Sector size may backfire as the write requests
can be too fragmented, thereby leading excessive number of
sub-I/Os even for small writes and placing prohibitively high
pressure on the first-hop network.

Base+Burst allocation. With high throughput/IOPS enabled
by BlockClient and BlockServer optimizations, efficiently
allocating throughput/IOPS to VDs is the next step. Unlike
the coarse-grained elasticity in latency, users can subscribe
throughput and IOPS of VD on demand without altering the
capacity, which is called auto performance level (AutoPL).
However, we discover that the throughput/IOPS in practice
is often over-provisioned by users to handle the sporadic
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workload bursts. For better resource efficiency, we have
proposed the Base+Burst strategy based on the following
techniques.

• Priority-based congestion control. We categorize IOs into
baseIO and burstIO. BaseIO is pre-defined during virtual
disk creation, while burstIO is allocated based on the avail-
able capability (i.e., not guaranteed). When a BlockServer
is unable to meet all IO demands, it prioritizes processing
the baseIO to ensure consistent latency. Currently, the max-
imum baseIO capacity of a VD is 50,000 IOPS, and the
maximum burstIO capacity is 1 million IOPS.

• Server-wise dynamic resource allocation. Burst workloads
can also place a heavy burden on BlockServer processing
ability. Therefore, since EBS2, we devise the dynamic re-
source allocation to allow BlockServer to preempt resources
(bandwidth, CPU cores and memory) from background
tasks (e.g., GCWorker) to handle workload spikes.

• Cluster-wise hot-spot mitigation. To ensure enough head-
room for burstIO, especially under concurrent bursts onto
the same BlockServer, we use cluster-wise load-balancing
to remove hot spots. Under such scenarios, BlockMan-
ager would aggressively check the traffic status and migrate
segments more frequently between BlockServers.

Summary. The first lesson here is that the upper bound of
a VD’s throughput/IOPS is determined by the client (i.e.,
processing/forwarding ability) as the backend can easily scale
with parallelism. In addition, the high throughput/IOPS is
often desired but not always needed. Therefore, using a
Base+Burst strategy to cope with workload spikes can be
more economically beneficial for both users and vendors.

3.3 Capacity

Achieving elasticity in capacity is a fundamental requirement
of a cloud block store service. In EBS, we have further in-
cluded the following features.

• Flexible space resizing. The segmentation design enables
EBS with seamless support for VD resizing (i.e., adding or
removing SegmentGroups). EBS currently supports virtual
disk sizes ranging from 1 GiB to 64 TiB.

• Fast VD cloning. One outstanding characteristic of server-
less applications is a large volume of resources (e.g., VDs)
needs to be allocated in a short time. To support this, EBS
uses the Hard Link of Pangu files, which allows the cloning
of multiple disks within a storage cluster via downloading
a single snapshot. As a result, EBS2 enables the creation of
up to 10,000 virtual disks (each 40 GiB) in 1 minute.

4 Availability: The Dark Side of Scaling
Availability has always been a priority of cloud services. In
EBS, we especially focus on the blast radius—defined as
the number of VDs experiencing unavailable services upon
failures. Here, we categorize the blast radius as follows.

• Global. In the face of such an event, the service availabil-
ity of an entire cluster is impacted. A simple example is
an abnormally operating BlockManager causing the entire
cluster to perform in an undesired fashion (e.g., a miscon-
figuration causing network congestion and subsequent retry
storms). Note that EBS service runs on a per-cluster basis
and we do not discuss datacenter-level failures here.

• Regional. For a regional event, we define it as a failure
that incurs the component(s) to deny service for several
VDs. For example, when a BlockServer crashes, the hosted
VDs would experience an outage until the corresponding
segments are migrated or all incoming I/Os are forwarded.

• Individual. When an individual event occurs, only one
VD is influenced. Representative examples include an un-
correctable error inside the disk (and subsequently a read
retry) and a software bug that leads to an unsuccessful and
redirected write.

A straightforward solution to minimize the blast radius is
setting smaller clusters. In EBS2 and EBS3, we have reduced
the cluster size from 700 nodes (in EBS1) to around 100.
The benefit is obvious since there are much fewer VDs influ-
enced by a global event now. However, this approach, while
straightforward and effective, would not alleviate regional
and individual failure events.

Meanwhile, the regional events are likely to be more severe
due to two trends. First, EBS2 introduces the segmentation
to split one VD into 32 GiB segments and hence a VD in
EBS2 (or EBS3) is supported by multiple BlockServers instead
of one in EBS1. Moreover, the average capacity of VDs
only slightly increases from EBS1 to EBS2 and EBS3 (e.g.,
197 GiB to 220 GiB). Therefore, we can conclude that in
EBS2 and EBS3, a BlockServer hosts much more VDs than
EBS1. Consequently, when a BlockServer crashes, more VDs
are going to be influenced.

Moreover, individual events can cascade into regional fail-
ures as the segments can be migrated since EBS2. For ex-
ample, an internal incident occurred as tens of BlockServers
in an EBS2 cluster kept crashing and rebooting, degrading
the total cluster capacity and the I/O quality of thousands of
VDs. In the beginning, a faulty segment crashes its Block-
Server because of a buggy code logic—an individual event.
Then, the control plane tries to migrate the segment to other
BlockServers. However, as the client keeps retrying the failed
requests, every BlockServer that loads the segment crashes
as well, turning the individual event into a regional failure.
This failure can easily grow to a cluster-wise outage in a short
period if not manually intervened. Note that the cascading
failures are not unique to EBS (e.g., cases in HBase [4–6]).

To adapt to the trends in regional and individual events, we
further come up with techniques in both the control and data
plane to improve the availability in EBS.
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4.1 Control Plane: Federated BlockManager
In each cluster, the control plane of EBS2 (referred to as
BlockManager in §2) initially consists of a group of three
nodes that leverages the distributed lock service provided by
Pangu for leader elections. The leader node in the group
serves all the control plane requests to the corresponding
cluster and persists any state changes related to VDs to a
single metadata table stored in Pangu.

This setup presents two challenges. First, the single leader
serves all the VDs in the cluster with one single server. As
the VD’s density grows, the chances and scale of its service
disruption get higher. Second, the single metadata table hosts
the metadata of VDs in the cluster. Once a part of the meta-
data table becomes corrupted, the BlockManager may not be
able to load the metadata in memory, and cannot serve the
VDs until the metadata table is repaired. In production, we
have seen an increasing VD-per-cluster density over the past
several years, urging us to solve both issues to provide high
availability. Specifically, since the initial attempt to deploy
a 100-node cluster in EBS2, the average number of VDs has
increased from 20,000 to 100,000 per cluster. Correspond-
ingly, the CPU and the memory consumption have increased
by 4.1× and 4.5×, respectively.

Figure 13 illustrates the architecture of Federated
BlockManager—our solution to the availability issue in the
control plane. Each cluster now has multiple BlockManagers,
with a CentralManager dedicated to managing the Block-
Managers. Each BlockManager further manages hundreds of
VD-level partitions, each of which corresponds to a metadata
table that only stores the metadata of a small subset of VDs.
The mappings from VDs to partitions are static; given a VD,
we use hashing algorithms to compute its corresponding par-
tition. The Client is not aware of the partition concept. For a
given VD, it can query all the BlockManagers in the cluster to
find out the BlockManager in charge, then send all its control
plane requests to the BlockManager.

Note that instead of having three nodes (one leader and two
standby), we now have only one node in each BlockManager.
Upon the failure of a BlockManager, CentralManager redis-
tributes its partitions to other BlockManagers, which then
load the metadata tables of the partitions from Pangu into
memory, and start to serve the VDs. Since the number of VDs
in a partition is relatively small, the loading time is only sev-
eral hundred milliseconds, without the need to have standby
nodes continuously fetching the latest metadata updates for
a fast leader switch. To ensure the availability of partition
scheduling, the CentralManager consists of three nodes based
on the lock service of Pangu.

Having multiple BlockManagers effectively reduces the
blast radius of single leader service disruptions, since now
each BlockManager only processes the requests of the subset
of VDs in the partitions it manages. For the single table
issue, instead of creating more BlockManagers, we adopt the
partition design for two reasons. First, with partitions, we

can make the number of VDs in a single metadata table small.
For 100,000 VDs in a cluster, we need to have 1,000 tables
to make the blast radius of metadata table failures smaller
than 100, while it is not resource-efficient to create 1,000
BlockManagers in 100-node clusters. Second, the concept
of multiple BlockManagers is mainly for distributing the
workloads to multiple servers, so as to reduce the chances of
service disruptions due to CPU and memory resource limits.
Note that the CentralManager only manages BlockManager
registrations and partition scheduling, and thus is less relevant
to system availability.

BlockManager_1 BlockManager_2 BlockManager_3

partition list 1 partition list 2 partition list 3

CentralManager

... ... ...

Pangu Distributed File System

...

partition_1 partition_2 partition_4

partition_6partition_5partition_3

MetaTable_2MetaTable_1 MetaTable_6

CentralManagerCentralManager

Figure 13: The architecture of Federated BlockManager.

Similar designs for blast radius reduction in the control
plane of distributed storage systems can be found in the in-
dustry. HDFS Federation [1] is similar to Federated Block-
Manager, while it does not consider the metadata table failure
mode. Each set of NameNode in HDFS Federation persists
the metadata to its local disk, and all the requests to a set of
NameNodes become unavailable when the data in the local
disk is corrupted. AWS Physalia [24] deploys small units
called cells, each of which consists of seven nodes deploying
Paxos algorithms and serves a group of VDs. Differently,
Federated BlockManager adopts a two-level VD management
scheme, with each level emphasizing the blast radius of a
single node and single table failures, respectively.

4.2 Data Plane: Logical Failure Domain

The data plane of EBS2 constitutes multiple BlockServers,
each of which hosts thousands of segments and handles I/O
requests of the segments. When a BlockServer crashes, the
control plane migrates the segments to other BlockServers
in the cluster, such that the I/O services can resume in other
BlockServers. However, this mechanism indicates that fail-
ures can be cascading among BlockServers. Specifically, if
the crash is caused by an error segment (e.g., recall the buggy
code case in our production earlier), after the migration, the
BlockServer shall resume the requests and crash again. Ironi-
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cally, optimizing segment scheduling for faster recovery in
this case can make more BlockServer crashes, even possibly
leading to cluster-wise outages.

We have got several observations based on our deployment
experiences. First, the failure typically originates from re-
quests of a single VD or segment, and thus we need to monitor
the status of segments instead of BlockServers. Second, the
root causes of the failures are mostly due to software errors
(e.g., bugs or misconfigurations) as hardware or mechanical
failures are unlikely to travel along with the migrated seg-
ments. Software-induced failures can be time-consuming to
pinpoint the culprit, let alone build automatic tools for recov-
ering. Instead, a more practical way is to proactively reduce
the impacts. Third, the cascading failures, if not intervened,
can propagate quickly to the whole cluster. As a distributed
service, it is acceptable to experience a few BlockServers
shutdowns but a not cluster-wise outage.

Based on these observations, we design the logical failure
domain. The core idea is to isolate any suspicious segments
by grouping them into a small set of BlockServers, to avoid
other BlockServers or even the entire cluster being impacted.
We first associate each segment with a unique token bucket
with a maximum capacity of three. Each migration to a new
BlockServer consumes one token, and the token is refilled
every 30 minutes. When the token bucket is empty, any
subsequent migrations of the segment can only be selected
among the three pre-designated BlockServers, referred to as
its logical failure domain. The token bucket design does not
limit the number of migrations but the range of migrations.
When the segment is successfully loaded in a BlockServer
and can readily serve I/O requests for several minutes, we lift
the failure domain constraints.

The segment-level failure domain can effectively isolate an
error segment. However, if there are multiple error segments
(e.g., from one VD) or even VDs, the segment-level failure
domain is not sufficient to prevent multiple cascading failures
from happening at the same time. Our solution is to merge
the failure domains into one. Specifically, when there exists
more than one segment forming a failure domain, we pick
the first failure domain as the global failure domain, so as
to ensure there are at most three BlockServers isolated for
the cascading failures, without degrading the cluster capacity.
Any subsequent segment with an empty token bucket will
share the same global failure domain. Recall that we associate
each segment with three tokens. As a result, the chances of
a normal segment accidentally sharing the same migration
path with an error segment is small (note that a cluster is
of 100-node size), which effectively reduces false negatives.
As such, we can efficiently identify any error segments with
small impacts on other VDs.

After deploying the logical failure domain, we have suc-
cessfully defended our system against several potential out-
ages due to migration-induced cascading failures. Evidence
shows that some open-source storage systems also suffer from

the same issue from time to time. For example, the HBase
community reports several bugs [4–6] that show similar symp-
toms and lead to system outages. However, their treatments
focus on solving the bugs and reducing the blast radius with
physical isolation (similar to our first attempts), while the
logical failure domain prevents the cascading failure from
causing a cluster-wise outage once and for all.

4.3 Lessons Learned
First, with denser SSDs (e.g., QLC NANDs) becoming read-
ily available and the boosting processing ability of CPU or
other customized hardware (e.g., DPU), one can expect that a
crashed node in a distributed storage system—not just EBS—
can impact increasingly more users. As a result, regional
failure events would be more frequent and/or severe. The
key benefit of Federated Managers in this case is that it en-
joys a smaller blast radius without losing the flexibility of a
large-scale cluster.

Second, owning a forwarding layer between the users and
the underlying service is popular among distributed services,
for example, distributed key-value store [2] and cloud storage
services [22, 25]. However, this also means the request or
certain data structures can be redirected to other destinations
upon failures, leading an individual event (e.g., bug or miscon-
figuration) to become regional or even global. We do not aim
at proactively recovering or avoiding these failures because
such events, like bugs or human errors, can be unpredictable.
Instead, the logical failure domain works in a reactive fashion
by confining the suspects among a few controlled servers and
does not rely on manual intervention.

5 To Whom the EBS Offloads
Offloading the software stack to specialized hardware for
better performance or achieving certain features (e.g., bare-
metal servers) has been gaining momentum from both the
cloud [10,11] and hardware vendors [8,12,13]. Along the evo-
lution of EBS, we have also leveraged FPGA for both frontend
BlockClient (i.e., running the customized UDP-based proto-
col, Solar [36]) and backend BlockServer for accelerating
compression/EC in EBS3. In the following subsections, we
first demonstrate the motivations behind the two offloading.
More importantly, we discuss why the two eventually both
dropped FPGA-based solutions but went on different paths—
ASIC for BlockClient and ARM CPU for BlockServer.

5.1 Offloading BlockClient
Since EBS2, the frontend BlockClient has become a bottle-
neck as the backend BlockServers can utilize segmentation
for high throughput/IOPS. The BlockClient has been bounded
by CPU-heavy tasks, including calculating CRC, encryption
and performing per-I/O table lookups. Our stress test re-
veals it takes 4 CPU cores to saturate a 2×25 Gbps NIC in
BlockClient. The newly emerged high-speed network would
require a doubled or quadrupled number of cores. More im-
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portantly, Elastic Computing Service (ECS, our VM service)—
co-located with BlockClient—requires the servers to be bare-
metal-ready (i.e., all CPU cores would be allocated to users).
Therefore, offloading BlockClient processing to customized
hardware is not only recommended but a must.

We initially built an FPGA-based solution for BlockClient
and later decided to directly deploy this version in our produc-
tion systems. This is because, at the time, directly applying
the ASIC-based solution requires much longer development
cycles. On the other hand, utilizing the ASIC-based approach
is also not desirable due to higher power consumption and
increased system complexity.

However, after several years of running in production, we
discovered that FPGA is actually not the ideal candidate for
BlockClient offloading. The major drawback is the instability.
Specifically, 37% of data corruption incidents, as identified
by CRC mismatches, are directly caused by FPGA-induced
errors such as overheating, signal interference, and timing
issues. This is because FPGAs are sensitive to environmental
conditions and require precise timing, which can be disrupted
by various factors like temperature fluctuations and electrical
noise. Moreover, FPGA-related issues account for 22% of
BlockClient’s operational downtime. Typical reasons include
hardware malfunctions, software bugs in the FPGA logic,
and incompatibility with updated system components. Apart
from reliability concerns, the frequency of FPGA is rather
limited (e.g., around 200 MHz to 500 MHz), thereby limiting
its potential for adapting to high-speed networks.

Therefore, we later move on to adopt the ASIC-based so-
lution. The preliminary deployment of FPGA-based Block-
Client considerably saves our time and effort for transitioning
to ASIC (i.e., around 12 months between the release of FPGA
and ASIC solutions). Compared to FPGA, ASIC-based of-
floading incurs approximately 5% of the CapEx and around
1/3 of the power consumption. Also, ASICs are optimized
at the hardware level for specific tasks, allowing for more
efficient use of resources and higher clock cycles. Another
key enabler is that the main functionalities of BlockClient,
including data movement, data calculation (e.g., CRC and
encryption) and network packet processing, are usually stable.
Hence, we do not need to periodically redesign the chips.
After deployment, field statistics indicate that the failure rate
of ASICs is an order of magnitude lower than that of FPGAs.

5.2 Offloading BlockServer
The goal of offloading BlockServer is to reduce costs while
maintaining performance. EBS3 introduces data compression
in the foreground to reduce traffic and space amplification.
However, even with the latency-optimized LZ4 compression
algorithm, the compression latency for 16 KiB-sized data
blocks remains elevated at 25 µs (25.6% of total write la-
tency) for software-based, and it escalates significantly with
larger data blocks. Moreover, to achieve 4,000 MiB/s through-
put, at least 8 CPU cores are required, leading to heightened

resource contention and diminished performance. There-
fore, offloading is necessary to avoid the penalty incurred
by software-based compression.

While FPGA-based offloading demonstrates superior per-
formance metrics (see Figure 8), the field deployment has
exposed its limitations in terms of sustainability and cost-
effectiveness. First, BlockServer faces similar instability
FPGA issues. Over the past year, out of every 10,000 de-
ployed production BlockServers, we have documented on
average around 150 instances of compression offload failures
by FPGA exceptions. Second, we are exploring optimizing
compression algorithms tailored to data blocks with varying
temperature profiles to minimize storage overhead. For exam-
ple, using the ZSTD algorithm for separated cold data blocks
can further achieve an average 17% space reduction. How-
ever, the resource constraints inherent to FPGAs preclude
the dynamic adaptation to various compression algorithms.
Finally, compared to the scale of BlockClients, the scale of
BlockServers is still not large enough to amortize the escalat-
ing costs associated with FPGA development.

In light of these considerations, we are reorienting the tar-
get of offloading towards server CPUs. This shift is motivated
by the advent of multi-core CPUs and specialized compu-
tational units integrated within them, which offer superior
cost-efficiency while maintaining comparable performance
metrics. Noteworthy examples include Kunpeng 920 ARM
CPU [41], and Yitian 710 ARM CPU [9], all of which are
equipped with dedicated units for compression acceleration.
The test results show that the average LZ4 compression la-
tency of Yitian 710 is marginally higher by 1.3 µs in com-
parison to FPGA-based offload, while 16 ARM cores attain
equivalent compression throughput.

Unlike BlockClient, we chose not to use ASIC for Block-
Servers because of two reasons. First, with no bare-metal
requirements, there are no limitations on using CPU cores
in BlockServers. Moreover, the BlockServer functionalities
(a.k.a., operators) are in an ever-changing fashion. For ex-
ample, the introduction of new compression and garbage
collection algorithms. In this case, applying ASICs may re-
quire a complete overhaul from time to time, which can be
prohibitively expensive even for the cloud-level scale.

5.3 Field Experience & Lessons
First, FPGA is undoubtedly the first choice for many hardware
offloading scenarios due to its high flexibility and competitive
performance. We, too, adopted FPGA in both BlockClient
and BlockServer as proof-of-concept. However, the frequent
errors and high CapEx made us realize that FPGA might not
be an ideal acceleration option for large scale storage systems.

Second, ASIC and ARM are both suitable for the compute-
to-storage architecture but in a different way. Compute end
is cost-sensitive due to its massive scale and has stable oper-
ators, such as processing (e.g., encryption) and forwarding,
matching the characteristics of ASIC. Storage backend can
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have frequent upgrades (e.g., improving GC algorithms and
optimizing host FTL for ZNS SSDs) and prioritize low inter-
ference between tasks. Therefore, the many-core ARM CPU
becomes a proper choice.

6 What If?
Evolving EBS has been a long journey. Along the way, it is
not surprising we have conceived or even tried out promising
ideas that are only later to be proved as impractical. Here, we
summarize such discussions as a series of “What If?”.

Q1: What if the log-structured design was never adopted?
When developing EBS2, we initially tried to extend the

EBS1 with segmentation but later dropped the idea due to high
engineering effort. Note that this idea (i.e., in-place update
with segmentation), if developed, can meet our requirements,
including high performance and space efficiency, for EBS2.

However, this idea still falls short for EBS3. Foreground
EC/compression necessitates that a storage system aggregates
a sufficient amount of data before the persistence to achieve
efficient data reductions. For example, EC(8,3) needs 32 KiB
data for one stripe with 4 KiB stripe unit size, and 16 KiB
compression units yield higher compression ratios. In §2.2
we have shown the domination of small writes (less than
16 KiB) combined with the need for low write latency prevent
us from aggregating 16 KiB data for a single segment. The
log-structured design can easily tackle this problem by allow-
ing segments from different VDs to be merged together and
flushed to a journal log.

We believe that Ceph [3] faces a similar issue due to the
lack of a log-structured layer like BlockServer. To utilize
EC in Ceph Block Device and CephFS, with FileStore, users
need to set up a cache tier with write-back mode before an
erasure-coded pool. With BlueStore, Ceph performs partial
writes (i.e., read-modify-write) to an existing stripe without
aggregating data, yielding additional network overhead, while
EBS3 always writes full EC stripes to Pangu.

Q2: What if we built EBS with open-source software?
At first glance, one might assume that a cloud-level block

store could be constructed by using a series of open-source
softwares. For example, we can use HBase [2] (i.e., a log-
structured distributed key-value store) and HDFS [7] (i.e., a
distributed file system) to replace the block layer (i.e., Block-
Server and BlockManager) and the file layer (i.e., Pangu).

However, the two designs are markedly different. EBS is a
co-design of the block interface, the software, and the hard-
ware. In the block layer, indexing is specifically tailored for
the block service. For each segment, the key space is deter-
ministic. Specifically, each segment represents an address
space of a 32 GiB segment consisting of 4 KiB blocks, and
thus the key space only includes 8 million numbers. This
deterministic feature allows for efficient memory allocation
for the indexing structure. To achieve low I/O average and tail
latency, EBS deploys hardware offloading (i.e., offload com-

pression algorithms to FPGA and ARM CPU) and customized
network protocols [36], and decouples non-I/O activities from
the critical I/O path, e.g., using individual GCWorker to per-
form garbage collection and moving index compaction pro-
cedures to background threads. In the file layer, Pangu is a
high-performance storage system that builds dedicated user-
space file systems for high-speed storage devices (i.e., NVMe
SSDs), deploys high-speed networks (i.e., RDMA), and in-
corporates various hardware-offloading technologies [35].
Q3: What if Pangu and EBS were never separated?

The short answer is that such integration would have signif-
icantly hindered the development of EBS. Recall that in EBS1,
the BlockManagers and BlockServers are integrated with the
persistence layer (i.e., ChunkServers and ChunkManagers).
This organization becomes increasingly unacceptable with the
scaling of our engineering team. First, the interfaces (between
the block and chunk layers) grew exceedingly complex—at
one point there were nearly 10 sets of persistence APIs in
EBS1—in order to support various functionalities and perfor-
mance optimizations. Maintaining such a complex codebase
undoubtedly slows down the development schedule. As an
example, around that time, it could take up to 10 months for
EBS to release a major upgrade due to delays by software
bugs or incompatibility between components.

Decoupling the underlying persistence layer (i.e., Pangu)
from EBS and adopting a unified log-structured interface have
clearly facilitated the development and ease of communica-
tion. In addition, the independent block layer enables rapid
segment creation and migration across multiple storage nodes,
irrespective of data block locations. The separated architec-
ture also localizes the impact radius of single-point failure to
each respective layer. Moreover, this disaggregation also al-
lows us to integrate emerging technologies (e.g., FPGA-based
accelerator) and extend Pangu as a general-purpose DFS for
other services (e.g., object store [17] and file store [15]).

7 Related Work & Conclusion
Cloud block store is a popular service provided by most cloud
vendors [14, 18, 19, 25, 30]. In addition, academia has made
great efforts in building and optimizing such a system, such
as Salus [40], Ursa [34], Blizzard [37], and LSVD [31]. This
paper differs from the above as it not only chronologically
revisits the evolutions behind our EBS designs, but also pro-
vides a comprehensive summary of lessons we have obtained
along the road, including on elasticity, availability, hardware
offloads and the failed/alternative attempts.
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Abstract

Given the skewed nature of practical key-value (KV) storage
workloads, distributed KV stores can adopt a tiered approach
to support fast data access in a hot tier and persistent storage in
a cold tier. To provide data availability guarantees for the hot
tier, existing distributed KV stores often rely on replication
and incur prohibitively high redundancy overhead. Erasure
coding provides a low-cost redundancy alternative, but in-
curs high access performance overhead. We present ELECT,
a distributed KV store that enables erasure coding tiering
based on the log-structured merge tree (LSM-tree), by adopt-
ing a hybrid redundancy approach that carefully combines
replication and erasure coding with respect to the LSM-tree
layout. ELECT incorporates hotness awareness and selec-
tively converts data from replication to erasure coding in the
hot tier and offloads data from the hot tier to the cold tier.
It also provides a tunable approach to balance the trade-off
between storage savings and access performance through a
single user-configurable parameter. We implemented ELECT
atop Cassandra, which is replication-based. Experiments on
Alibaba Cloud show that ELECT achieves significant storage
savings in the hot tier, while maintaining high performance
and data availability guarantees, compared with Cassandra.

1 Introduction
Storage tiering provides a storage paradigm for balancing the
trade-off between access performance and storage persistence
in large-scale storage. In particular, for distributed key-value
(KV) storage, practical KV workloads are known to have
skewed access patterns [6,9,16,62], in which a small fraction
of KV pairs are frequently accessed (i.e., hot) and the remain-
ing large fraction of KV pairs are rarely accessed (i.e., cold).
Thus, it is natural for distributed KV stores to adopt storage
tiering, in which a hot tier provides fast data access for hot
KV pairs, while a cold tier provides persistent storage with
less-demanding performance requirements for cold KV pairs.

A primary use case for storage tiering is edge-cloud stor-
age. Our motivation is that Internet-of-things (IoT) appli-
cations are forecast to generate over 79.4 ZB of data in the
wild by 2025 [51]. Since the cloud access performance is
bottlenecked by the constrained Internet bandwidth, IoT appli-
cations are often coupled with the edge computing paradigm,

*Jingwei Li is the corresponding author.

in which edge nodes, the lightweight instances (e.g., micro-
datacenters) provisioned with limited computation and stor-
age resources, are deployed in close proximity to IoT de-
vices [52, 53]. From a storage perspective, we can deploy a
distributed KV store as the high-performance hot tier in the
edge, while the cloud forms the persistent cold tier. Such an
edge-cloud storage architecture has been used in virtualized
network functions [40], multi-tier computing [42], multime-
dia management [21], etc. In addition to edge-cloud storage,
storage tiering is also applicable to other storage architec-
tures, such as content-delivery networks and cloud block stor-
age (e.g., the combination of Amazon’s Elastic Block Store
(EBS) [1] and Simple Storage Service (S3) [2]).

Providing data availability guarantees for hot-tier storage
is necessary, especially when the hot tier is deployed in
distributed storage environments where failures are preva-
lent [24]. For example, in edge-cloud storage, edge nodes
have limited storage resources and are also prone to fail-
ures [53]. While the cloud provides abundant persistent stor-
age resources, reconstructing any lost data for failed edge
nodes from the cloud is inefficient due to the high edge-
cloud latencies [12, 67]. Thus, to ensure data availability
against edge node failures, the edge can introduce storage
redundancy, so that any lost data in the edge can be directly
reconstructed through the redundant data from other avail-
able edge nodes, without the need for retrieving data from
the cloud for reconstruction. However, modern distributed
KV stores [18, 22, 34, 46] are commonly designed for cloud
data centers with sufficient resources, and adopt replication
to distribute exact redundant copies for individual KV pairs
across multiple nodes to provide fault tolerance against node
failures. Replication multiplies storage overhead, which is
prohibitive for resource-constrained edge nodes, or generally,
the high-performance hot tier with limited storage resources.

Erasure coding provides a low-cost redundancy alternative
to achieve data availability with much lower storage overhead
compared with replication (see §2.3 for details). It has been
extensively studied in the literature, especially for distributed
KV storage in data centers (§7). However, there exists a
fundamental storage-performance trade-off for replication and
erasure coding: replication incurs high storage overhead, yet
it supports not only load balancing of reads across redundant
copies, but also simple reconstruction of any lost data from
another available redundant copy; in contrast, erasure coding
significantly reduces storage overhead, but it does not keep
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redundant copies for load balancing and is known to incur
higher bandwidth and I/Os in reconstructing lost data when
failures happen [19, 26]. It is thus critical to mitigate the
storage overhead, while maintaining high access performance
as if replication were used, in the hot tier.

We present ELECT, a distributed KV store that enables
erasure coding tiering. ELECT builds on the log-structured
merge tree (LSM-tree) [45]. Given the skewed nature of
practical KV storage workloads [6,9,16,62], ELECT extends
the LSM-tree with a hybrid redundancy approach by storing
limited amounts of hot KV pairs with replication in the hot tier
for high access performance, while still achieving significant
storage savings by storing large amounts of cold KV pairs
with erasure coding in the hot tier. In addition, it can offload
cold KV pairs from the hot tier to the cold tier to further
alleviate the storage overhead in the hot tier.

Enabling hybrid redundancy in ELECT, however, is non-
trivial. ELECT should decide how (e.g., at what granularities),
when (e.g., on or off the write path), and what (e.g., differ-
entiating hot and cold KV pairs) to convert replicated KV
pairs into erasure-coded KV pairs. Most importantly, ELECT
should provide a mechanism to balance the trade-off between
storage savings and access performance; such a mechanism
should be adaptive to various user requirements. Note that
erasure coding has also been proposed for caching [49] and
content delivery networks [61] in the context of storage tier-
ing. The novelty of ELECT lies in the careful combination
of replication and erasure coding for LSM-tree-based storage
with several new design techniques (see §7 for details).

Our contributions are summarized as follows.

• We design ELECT to make a case for enabling erasure cod-
ing tiering for distributed KV storage. ELECT has several
design features: (i) a redundancy transitioning approach
for the conversion from replication to erasure coding based
on the LSM-tree; (ii) a hotness-aware approach for both
redundancy transitioning and the data offloading from the
hot tier to the cold tier; and (iii) a tunable approach, with
only a single user-specified parameter based on a storage
saving target for simple deployment, for configuring how
much data to be erasure-coded and offloaded.

• We implemented ELECT atop Cassandra v4.1.0 [3]. Cas-
sandra [34] is a distributed KV store that uses consistent
hashing [31] for data partitioning (§2.1) and the LSM-tree
for internal storage management (§2.2). We choose Cassan-
dra due to its decentralized, high-performance, and fault-
tolerant nature. Cassandra supports only replication, and
ELECT extends Cassandra with erasure coding tiering.

• We conduct experiments in an edge-cloud setting on Al-
ibaba Cloud [38]. Compared with (replication-based) Cas-
sandra, ELECT achieves 56.1% edge storage savings, with
similar performance in normal read/write operations.

We now open-source our ELECT prototype at
https://github.com/adslabcuhk/elect.
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Figure 1: Triple replication in a distributed KV store, in which each
node uses an LSM-tree for internal storage management.

2 Background
2.1 Distributed KV Stores
Modern distributed KV stores partition KV pairs across mul-
tiple nodes by either consistent-hashing-based [31] distribu-
tion [17, 18, 22, 34] or range-based distribution [5, 11, 46, 57].
Consistent hashing arranges nodes in a hash ring, in which
each node is associated with a range of the hash ring and
stores the KV pairs whose keys are hashed to the range. For
load balancing, each node can be further associated with mul-
tiple virtual nodes that are associated with different ranges of
the hash ring. In contrast, range-based distribution divides
the entire key space into non-overlapping ranges, in which
each node stores the KV pairs in one of the ranges. ELECT
builds on Cassandra [34], which uses consistent hashing, yet
its design is compatible with both distribution approaches.

Replication is commonly used in distributed KV stores for
fault tolerance [5,11,18,22,34,46,57]. Given a replication fac-
tor R, replication distributes R copies of each KV pair across
a set of nodes, which collectively form a replication group.
Suppose that there are M nodes (denoted by N0,N1, · · · ,NR−1)
arranged in a clockwise direction of a hash ring. Each node
Ni is associated with a non-overlapping key range Ki, where
0 ≤ i ≤ R−1, that corresponds to the keys that precede Ni in
the hash ring. Suppose that a KV pair is mapped to Ni. The
first copy of the KV pair (called the primary replica) is stored
in Ni, and the R−1 additional copies (called the secondary
replicas) are stored in the following nodes along the clock-
wise direction of the hash ring (i.e., Ni+1 mod M , Ni+2 mod M ,
· · · , Ni+R−1 mod M). Thus, each node Ni now manages the
primary replicas of its associated key range as well as the
secondary replicas of the associated key ranges of the R−1
preceding nodes in the anti-clockwise direction of the hash
ring. Figure 1 shows an example of triple replication (i.e.,
R = 3) and M = 6 nodes. For example, N0 stores the KV pairs
for K0, K5, and K4.

2.2 Log-Structured Merge Trees (LSM-Trees)
Each node in Cassandra [34] manages its internal storage
based on an LSM-tree [45], as also used in state-of-the-art
local [9] and other distributed [5, 11, 34, 46] KV stores. An
LSM-tree is a data structure designed for efficient writes (i.e.,
Put requests), reads (i.e., Get requests), and scans (i.e., Scan
requests). Figure 1 shows how an LSM-tree is deployed in
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a distributed KV store. An LSM-tree organizes KV pairs
in immutable fixed-size files, called SSTables, across ℓ+1
levels, denoted by L0, L1, · · · ,Lℓ; L0 is the lowest level and Lℓ

is the highest level. Each SSTable stores multiple KV pairs
in a sorted manner in units of data blocks of size several KiB
each. To support fast reads, each SSTable maintains an index
block to track the key ranges and offsets of all data blocks
as well as a Bloom filter [7] to track its currently stored keys
with a small false positive rate. We refer to the data blocks
as the data component, and collectively refer to the index
block, Bloom filter, and SSTable metadata as the metadata
component, for an SSTable. Inside the LSM-tree, the number
of SSTables in each level increases from the lower to higher
levels, while the KV pairs of an SSTable do not overlap with
those of other SSTables in the same level except L0 (note that
some advanced LSM-trees may have overlapping KV pairs
across SSTables in the same level [48]).

Writes and reads of KV pairs are issued to an LSM-tree
as follows. Each write appends a newly written KV pair to
an on-disk write-ahead log (WAL) for crash consistency and
then inserts it into a mutable in-memory structure called a
MemTable. When the MemTable is full, it is turned into an
Immutable MemTable, which is then flushed to the lowest
level L0 as an SSTable. Each level has a capacity limit, in-
creasing from lower to higher levels. When a lower level
reaches its capacity limit, it triggers compaction to merge the
KV pairs in the lower level into its next higher level. Specifi-
cally, a compaction operation selects an SSTable in the lower
level, reads all SSTables in the higher level that have over-
lapping key ranges with the selected SSTable, sorts all the
latest KV pairs (while all stale KV pairs are discarded), and
re-generates and stores the non-overlapping SSTables in the
higher level. On the other hand, each read for a key searches
the MemTable and then the SSTables from L0 to Lℓ. It returns
the KV pair if the key is found, or null otherwise.

2.3 Erasure Coding
Erasure coding provides low-redundancy fault tolerance for
distributed storage. In this work, we focus on Reed-Solomon
(RS) codes [50], configured by two parameters n and k (where
k < n), as our erasure code construction. We choose RS codes
for three reasons: (i) they support general coding parameters n
and k (provided k < n); (ii) they have the minimum storage re-
dundancy for tolerating against any n− k node failures (a.k.a.
the Maximum Distance Separable (MDS) property); and (iii)
they have been popularly deployed in production [24, 43].

An (n,k) RS code encodes k original (uncoded) fixed-size
data chunks into n−k (coded) parity chunks of the same size,
and the collection of n data and parity chunks forms a cod-
ing group; the (n,k) RS code considered here is systematic,
meaning that the coding group keeps the k data chunks. It
ensures that any k out of the n chunks of a coding group can
reconstruct all k original data chunks. Large-scale storage sys-
tems comprise multiple coding groups that are independently

encoded/decoded, and the n chunks of each coding group are
distributed across n nodes to tolerate any n− k node failures
with n/k× storage overhead. Compared with replication, RS
codes incur much lower storage overhead with higher fault
tolerance; for example, Facebook [43] uses the (14,10) RS
code for four-node fault tolerance with 1.4× storage overhead
only, while traditional triple replication [25] only provides
two-node fault tolerance and incurs 3× storage overhead.

Erasure coding is known to have reconstruction penalty.
For example, for any lost chunk, an (n,k) RS code needs to
retrieve k available chunks from other alive nodes in the same
coding group so as to decode the lost chunk. Reconstruction
is common in practice due to the prevalence of failures [24,
26, 43], and there are two major reconstruction operations:
degraded reads (i.e., reads issued to lost chunks) and full-node
recovery (i.e., all data stored in a node is lost).

There are code constructions that reduce the reconstruction
bandwidth of RS codes (e.g., regenerating codes [19] and
locally repairable codes [26]). However, they still retrieve
more data for reconstruction than the amount of lost data,
and the trade-off between storage savings and reconstruction
bandwidth in erasure coding is fundamental [19].

3 Design Considerations
Before we present the design of ELECT, we pose five design
questions that need to be addressed.
Q1: At what granularity should KV pairs be encoded? In
the context of KV stores, there are two approaches to encode
KV pairs at different granularities: (i) self-encoding [8, 32,
33, 44], which splits a KV pair into k fixed-size data chunks
for encoding, and (ii) cross-encoding [14, 37, 65, 66], which
aggregates multiple KV pairs into individual data chunks and
performs encoding on each group of k different data chunks.
Self-encoding improves the parallelism of data access, but
incurs significant metadata overhead for indexing all chunks
of individual KV pairs [65], especially when KV services are
dominated by small KV pairs [9]. In contrast, cross-encoding
mitigates such metadata overhead, but the degraded read to a
KV pair during a node failure needs to retrieve k surviving
chunks of the same coding group for reconstruction, thereby
leading to amplified I/Os and bandwidth.

ELECT opts for cross-encoding to reduce the metadata
overhead; if we only encode cold KV pairs that are rarely
accessed (see Q3 below), the degraded read overhead should
be limited. Also, since LSM-trees organize KV pairs in units
of SSTables, ELECT opts for cross-encoding across multiple
SSTables (i.e., each SSTable is treated as a chunk) to align
with the LSM-tree-based storage management.
Q2: Should erasure coding be performed on or off the
write path? Erasure coding for KV pairs can be performed
inline [8, 20, 44], in which KV pairs are encoded on the write
path, or offline [23,36,58], in which KV pairs are first written
and later encoded in the background. Offline encoding has
the flexibility of first storing hot KV pairs with replication
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Figure 2: Storage and access patterns in Cassandra.

for high access performance (see Q3 below). Thus, ELECT
opts for offline encoding, in which KV pairs are first written
with replication, and later performs erasure coding (across
SSTables) in the background.
Q3: How should skewed access patterns be addressed?
Practical KV workloads have skewed access patterns [6,9,16,
62], in which few KV pairs are frequently accessed (hot) and
the majority of KV pairs are rarely accessed (cold). ELECT
opts to apply erasure coding to cold SSTables to mitigate the
degraded read overhead in cross-encoding (see Q1), while
storing hot SSTables with replication for high-performance
accesses with limited additional storage overhead. The idea
of applying replication for hot data and erasure coding for
cold data has been studied in prior studies [23,36,58], yet they
target different deployment environments and how to adapt
this idea into LSM-tree-based KV stores remains unexplored.

We motivate our design by examining the storage and
access patterns of SSTables in different LSM-tree levels by
generating realistic KV workloads using the benchmarking
tool YCSB [16], which has been extensively used for KV
storage evaluation in the literature. Specifically, we load
100 M 1-KiB KV pairs with a key size of 24 bytes and a
value size of 1000 bytes into Cassandra (v4.1.0) via YCSB
in our testbed (see §6.1 for testbed details). Also, using the
nodetool command in Cassandra, we flush the MemTable
of each LSM-tree to disk and force the compaction on all
SSTables to keep all nodes in a stable state. We find that the
last level (i.e., the highest level) is L4, while L0 is empty as the
SSTables originally in L0 are merged to L1 after the forced
compaction. We then issue 10 M reads to the stored KV
pairs, where the keys are accessed under the Zipf distribution
with a Zipfian constant of 0.99 (default in YCSB). Note that
we set the replication factor as one to mitigate the impact
of replication, and disable the key cache and row cache in
Cassandra to have all KV pairs read from on-disk SSTables.

Figure 2(a) shows the distributions of numbers of SSTables
and accesses to SSTables in each level. The intermediate
levels L2 and L3 have high read frequencies. However, L4
stores the most SSTables (56.2% of all SSTables), but only
accounts for 10.2% of accesses. This motivates us to perform
erasure coding only for the SSTables in the last level (e.g., L4
in this example) and replication for the SSTables in the lower
levels, so that we still achieve significant storage savings and
limit the degraded read overhead caused by erasure coding.

Figure 2(b) further shows the cumulative distribution of
access frequencies versus the SSTables in L4. Only 18.2% of

SSTables in L4 are accessed. This suggests that we can apply
erasure coding in a more fine-grained manner by selecting
only the SSTables that are rarely accessed for erasure coding
(i.e., with negligible degraded read overhead).
Q4: How should the access overhead in the cold tier be
mitigated? It is expected that the cold tier has worse access
performance than the hot tier. For example, in edge-cloud
storage, while the cloud provides much more abundant stor-
age resources than the edge, it is also limited by the high edge-
cloud latency over the Internet (e.g., 30 ms for client-to-cloud
communication versus 5 ms for client-to-edge communica-
tion [12, 67]). ELECT should selectively offload data that is
rarely accessed from the hot tier to the cold tier, so as to avoid
frequently retrieving the data back from the cold tier.
Q5: How should ELECT address the trade-off between
storage savings and access performance? Both redundancy
transitioning from replication to erasure coding and the data
offloading from the hot tier to the cold tier in essence trade
access performance for storage savings. ELECT should pro-
vide a tunable mechanism that allows users to balance the
trade-off depending on their requirements.

4 ELECT Design
ELECT extends Cassandra [34], which uses replication for
fault tolerance, with erasure coding tiering. It is deployed
across multiple nodes in the hot tier and is backed by the
cold tier with persistent storage. It proposes several design
elements to address the questions in §3.

• LSM-tree-based redundancy transitioning (§4.1). ELECT
applies cross-encoding (see Q1) across SSTables in an of-
fline manner (see Q2), by converting SSTables from replica-
tion into erasure coding (called redundancy transitioning).
It decouples the replicas originating from different nodes
into multiple LSM-trees, such that it applies cross-encoding
to the primary replicas and removes the secondary replicas
after encoding. One subtlety is that it should maintain the
correctness of redundancy transitioning even under LSM-
tree compaction, which changes the content of SSTables.

• Hotness awareness (§4.2). ELECT applies cross-encoding
to only SSTables in the last LSM-tree level (see Q3). It
also offloads SSTables that tend to be rarely accessed from
the hot tier to the cold tier to mitigate the access overhead
in the cold tier (see Q4).

• Balancing storage-performance trade-off (§4.3). ELECT
provides a user-configurable parameter, namely the stor-
age saving target, to balance the trade-off between storage
savings and access performance (see Q5).

4.1 LSM-tree-based Redundancy Transitioning
ELECT decomposes redundancy transitioning into four
steps: LSM-tree management (§4.1.1), parity node selection
(§4.1.2), cross-SSTable encoding (§4.1.3), and secondary
replica removal (§4.1.4). Figure 3 shows the overall redun-
dancy transitioning workflow in ELECT.
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4.1.1 LSM-tree Management

Decoupled replication management. In Cassandra, all repli-
cas stored in a node are managed in a single LSM-tree. To
facilitate cross-SSTable encoding across nodes and subse-
quent removals of replicas, ELECT borrows the idea of de-
coupled replication management [57,68] (originally designed
for reducing I/O amplification) by separating the replicas
into multiple LSM-trees in each node. Recall that for a repli-
cation factor R, each node maintains the primary replicas
originating from the node itself and the secondary replicas
originating from the R−1 preceding nodes in the hash ring
(§2.1). ELECT now lets each node maintain R LSM-trees,
comprising one primary LSM-tree for the primary replicas
and R−1 secondary LSM-trees for the R−1 respective sets
of secondary replicas. For example, in Figure 1 with R = 3,
N0 writes the primary replicas in key range K0 to the primary
LSM-tree and the secondary replicas in key ranges K5 and K4
to two other secondary LSM-trees.
LSM-tree level generation. The original LSM-tree creates a
new level Lℓ when the current last level Lℓ−1 is full. However,
depending on the current storage usage, the last level Lℓ may
only contain a small number of SSTables. This compromises
the effectiveness of ELECT, which applies erasure coding
only to the SSTables in the last level. To address this issue,
ELECT modifies the current LSM-tree design and creates the
new level Lℓ in the LSM-tree only when the size of the current
last level Lℓ−1 reaches the capacity limit of the next level Lℓ.
For example, the LSM-tree in Cassandra currently sets the
size limits of Lℓ−1 and Lℓ as T and 10T , respectively, where
T is some capacity limit and the default capacity difference
across adjacent levels is 10×. ELECT now keeps adding
SSTables to Lℓ−1 even though the size exceeds T . It only
creates Lℓ when the size of Lℓ−1 exceeds 10T . It then still
keeps a size T of SSTables in Lℓ−1 and moves at least 9T of
SSTables to Lℓ. In this case, ELECT ensures that the last level
Lℓ always contains a sufficiently large number of SSTables
(almost 90% of all SSTables across all levels in our case)
and maintains the effectiveness of redundancy transitioning.
Note that if the LSM-tree grows and adds a new level, the
current erasure-coded SSTables in the previous last level will
be moved to the new last level.

4.1.2 Parity Node Selection

ELECT applies cross-SSTable encoding on k uncoded SSTa-
bles (called data SSTables) from k nodes (called data nodes)
and generates n− k coded SSTables (called parity SSTables)
that are stored in n− k nodes (called parity nodes). Before
encoding, ELECT first selects the set of parity nodes to which
the parity SSTables are distributed. The selection process
should satisfy the following requirements: (i) for fault toler-
ance, the parity nodes should be distinct from the data nodes;
(ii) for load balancing, the parity SSTables are evenly dis-
tributed across all nodes after parity node selection; and (iii)
for scalability, the parity nodes can be deterministically se-
lected by individual nodes without centralized coordination.

To satisfy the above requirements, ELECT forms each
coding group over n consecutive nodes in the hash ring,
say Ni mod M , N(i+1) mod M , · · · , N(i+n−1) mod M for 0 ≤ i < M,
where M is the total number of nodes, the first k nodes are the
data nodes, and the following n−k nodes are the parity nodes.
Also, each node locally maintains a monotonic sequence num-
ber Q (initialized as zero). Specifically, for each SSTable in
the primary LSM-tree that is selected by Ni (0 ≤ i < M) for
erasure coding, Ni selects a leader parity node Np, which will
be responsible for computing and sending the parity SSTables
(§4.1.3) to n− k−1 other parity nodes. It computes p as:

p = (i+(Q mod k)+1) mod M, (1)
and increments the sequence number Q by one for each
SSTable being selected for erasure coding. Note that the
selection of SSTables is based on their priorities (§4.2).

We explain via an example the idea behind Equation (1).
From Figure 1 (where M = 6), we use (6,4) RS coding. Thus,
N0 (deterministically) selects a leader parity node from N1,
N2, N3, and N4 in a round-robin fashion for encoding its
SSTables as Q increases; similarly, N1 selects a leader parity
node from N2, N3, N4, and N5, and so forth. Inversely, each
node Ni (0 ≤ i < M) in the whole system will be selected
as a leader parity node by k nodes N(i−1) mod M , N(i−2) mod M ,
· · · , N(i−k) mod M , which now become the k data nodes of a
coding group; for example, in Figure 3, N4 serves as a leader
parity node for N0, N1, N2, and N3 in a coding group under
(6,4) RS coding. Since a large-scale storage system typically
contains multiple coding groups, ELECT ensures that all
coding groups are distributed across different sequences of
n consecutive nodes. Finally, each leader parity node (say
Np) will be the first parity node of a coding group, and the
remaining n− k − 1 parity nodes of the coding group are
the n− k − 1 succeeding nodes of Np along the clockwise
direction of the hash ring.

4.1.3 Cross-SSTable Encoding

Encoding workflow. Each of the k data nodes of a coding
group sends an SSTable to the leader parity node, which is
determined by the sequence number Q according to Equa-
tion (1) (§4.1.2). Upon receiving the k data SSTables, the
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leader parity node encodes them into n− k parity SSTables,
stores one of the parity SSTables locally, and sends the re-
maining parity SSTables to the other n− k−1 parity nodes.
The parity nodes store the parity SSTables as separate files
outside of their LSM-trees. For example, from Figure 3, con-
sider a coding group for (6,4) RS coding with k = 4 data
nodes N0, N1, N2, and N3, all of which share the same leader
parity node N4. N0 sends an SSTable (say S) to N4. Then, N4
encodes S together with other SSTables (from N1, N2, and N3,
respectively) to generate the parity SSTables (say P and P′).
N4 stores P locally and sends P′ to another parity node N5.

The leader parity node also generates a metadata structure,
called ECMeta, for the coding group to support failure re-
construction (§5). The ECMeta contains n 4-tuples, each of
which describes a data/parity SSTable in the coding group,
including: (i) the cryptographic hash (e.g., SHA-256) of the
content of the data component of the SSTable (32 bytes), (ii)
the SSTable size (4 bytes), (iii) the identifier of the node that
stores the SSTable (4 bytes), and (iv) the position in the cod-
ing group (indexed from 0 to n−1) (4 bytes). In particular, we
borrow the idea from deduplication [47] and use the SSTable
hash as the unique identifier to search for the SSTable during
reconstruction, assuming that the hash collisions for distinct
SSTables are practically unlikely. The leader parity node then
sends the ECMeta of each data SSTable to the corresponding
R nodes in the replication group. Upon receiving the ECMeta,
each of the R nodes includes the ECMeta in the metadata
component of the corresponding SSTable.
Compaction-triggered parity updates. When a primary
LSM-tree undergoes compaction, its data SSTables (in the
last level) may be updated. ELECT needs to update the parity
SSTables of the same coding group to maintain consistency.

Consider a primary LSM-tree that undergoes compaction.
Let S0, S1, · · · , Su be the old data SSTables before compaction,
and S′0, S′1, · · · , S′v be the new data SSTables after compaction,
where u and v are the numbers of old data SSTables and
new data SSTables, respectively. Without loss of general-
ity, the two sequences of data SSTables (S0,S1, · · · ,Su) and
(S′0,S

′
1, · · · ,S′v) are ordered by (non-overlapping) key ranges.

ELECT pairs each of the old and new data SSTables as
(S0,S′0), (S1,S′1), and so forth. If u < v (i.e., there exist more
new data SSTables), the extra new data SSTables are simply
added as regular SSTables to the primary LSM-tree without
erasure coding; if u > v (i.e., there exist fewer new data SSTa-
bles due to deleted KV pairs), ELECT pairs each extra old
data SSTables with zero-filled dummy SSTables. The dummy
SSTables can later be replaced by the new data SSTables that
correspond to the same leader parity node.

For each pair of old and new SSTables, ELECT reads the
ECMeta of the old data SSTable to identify the corresponding
leader parity node. It sends the pair to the leader parity node,
which updates the parity SSTables of the same coding group
based on delta-based parity updates (similar to read-modify-
writes in RAID) [10] and sends out the updated ECMeta.

4.1.4 Secondary Replica Removal
ELECT removes the secondary replicas from the secondary
LSM-trees after cross-SSTable encoding to reclaim storage
space. Since the LSM-trees of different nodes perform com-
paction asynchronously, they may have distinct SSTables. It
is important to avoid incorrectly removing KV pairs from
the secondary replicas, especially for the KV pairs that are
updated after cross-SSTable encoding.

After cross-SSTable encoding, for each primary LSM-tree,
ELECT generates a key list for each data SSTable, where the
key list includes the keys in the SSTables and the correspond-
ing written timestamps; note that the timestamps are already
provided by Cassandra to identify the latest versions of KV
pairs among replicas. It sends the key list to the other sec-
ondary LSM-trees that contain the secondary replicas of the
data SSTable. For each secondary LSM-tree, ELECT finds
all SSTables in the last level whose KV pairs are covered
by the key list. It removes only the KV pairs that are either
the current or older versions with respect to the timestamps
specified in the key list. Note that ELECT creates new SSTa-
bles and tracks the key ranges of the removed KV pairs in
the metadata components of the new SSTables, so as to be
compatible with the LSM-tree management under replication.
Finally, it reconstructs the SSTables for the remaining KV
pairs. If the current versions of all KV pairs indicated by the
key list are removed, the key list is also removed.

Figure 4(a) shows the replica removal workflow in the last
level of a secondary LSM-tree. Suppose that the secondary
LSM-tree has four KV pairs in the last level Lℓ, denoted
by KV0, KV1, KV2, and KV3, whose keys are k0, k1, k2, and
k3, respectively, while the four KV pairs are stored in two
SSTables (KV0, KV1) and (KV2, KV3). Now, suppose that
the secondary LSM-tree receives a key list (k1,k2,k3), whose
timestamps indicate that KV1 is the current version (i.e., same
timestamp), KV2 is older, and KV3 is newer. Thus, ELECT
removes KV1 and KV2. It also creates an SSTable that tracks
the key ranges for the deleted KV1 and KV2.

Note that the secondary LSM-tree may not remove the
current version of a KV pair (e.g., KV2) as indicated in the
key list, as the KV pair to be removed is not yet moved to the
last level due to asynchronous compaction of different nodes.
Figure 4(b) shows a case where the second last level Lℓ−1 has
a newer version KV1 and the current version KV2 with respect
to the timestamps in the key list. During compaction, ELECT
removes KV2 and adds KV1 to the last level Lℓ.

4.2 Hotness Awareness
ELECT incorporates hotness awareness into redundancy tran-
sitioning and data offloading.
Hotness-aware redundancy transitioning. ELECT moni-
tors the hotness of each SSTable based on two metrics: (i)
the access frequency, which refers to the number of reads
issued to the SSTable as measured by Cassandra, and (ii) the
lifetime, which refers to the elapsed time since the SSTable
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Figure 4: Secondary replica removal in ELECT.

creation. Among the SSTables in the last level of the primary
LSM-tree in each node, an SSTable is said to have a higher
priority to be selected for encoding (§4.1.3) if it has a lower
access frequency and (if a tie exists) a longer lifetime. ELECT
selects the SSTables with higher priorities for encoding based
on a storage saving target (§4.3).
Cold-data offloading. ELECT dynamically offloads SSTa-
bles from the hot tier to the cold tier based on the hotness of
SSTables, so as to further mitigate the storage overhead in the
hot tier. First, it offloads parity SSTables with long lifetimes
as they only affect parity updates (§4.1.3) and failure recon-
struction. Second, after all parity SSTables are offloaded,
it selectively offloads the data SSTables with higher priori-
ties. The exact numbers of data and parity SSTables being
offloaded depend on a storage saving target (§4.3). Note that
if an SSTable is selected to be offloaded, only the SSTable’s
data component is moved, while its metadata component re-
mains in the hot tier to serve read and compaction operations.
Furthermore, when a read or compaction operation touches
an SSTable in the cold tier, ELECT retrieves the SSTable’s
data component from the cold tier to the hot tier.

4.3 Balancing Storage-Performance Trade-Off
Redundancy transitioning and data offloading alleviate the
storage overhead in the hot tier, yet they also incur perfor-
mance overhead compared with replicating all data in the hot
tier. To balance the trade-off between the storage savings
and access performance, ELECT introduces a configurable
storage saving target α with respect to when all SSTables are
replicated, so as to control the number of SSTables involved
in redundancy transitioning and data offloading. Specifically,
α is a fractional value between zero and one, such that a
larger α implies that more SSTables are erasure-coded and
offloaded from the hot tier to the cold tier, and vice versa.
Quantifying storage overhead. We approximate the storage
overhead in the hot tier based on the number of SSTables
in a single primary LSM-tree in a node. Let Call be the
total number of SSTables in the primary LSM-tree, Clast be
the number of SSTables in the last level of the LSM-tree,
Crt be the number of data SSTables in the last level being
converted from replication to erasure coding, and Cpm and

Cdm be the numbers of parity SSTables and data SSTables
being offloaded to the cold tier, respectively.

We now quantify the actual storage size of a replication
group (in terms of the number of SSTables), assuming that the
storage load is balanced (i.e., all nodes have the same number
of SSTables in their respective primary LSM-trees). ELECT
replicates Call −Crt SSTables and encodes Crt SSTables, so
their storage usage is (Call −Crt) ·R+Crt · n

k . It also offloads
Cpm +Cdm SSTables to the cold tier. Thus, the actual storage
size of a replication group is:

(Call −Crt) ·R+Crt · n
k −Cpm −Cdm. (2)

When all SSTables are replicated, the actual storage size of
a replication group is Call ·R. To achieve the storage saving
target α , our goal is to configure Crt , Cpm, and Cdm, so that

1− 1
Call ·R [(Call −Crt) ·R+Crt · n

k −Cpm −Cdm]≥ α. (3)

In ELECT, each node computes Crt , Cpm, and Cdm indepen-
dently (without centralized coordination) given Call , Clast , and
α . Assuming balanced storage loads, the respective values of
Call and Clast across nodes have very small differences.
Balancing trade-off. ELECT starts with redundancy transi-
tioning to keep all SSTables (replicated or erasure-coded)
in the hot tier. If α is not met, it offloads parity SSTables
to the cold tier, so that all SSTables remain accessible from
the hot tier when no failure occurs; in case of a node failure,
parity SSTables are needed for recovery. If α is still not met,
ELECT offloads data SSTables to the cold tier. Note that
ELECT only offloads erasure-coded SSTables to the cold tier,
so α may not be achievable if it is too large.

• Case 1 (Redundancy transitioning): ELECT sets Cpm =
Cdm = 0 and chooses the largest possible Crt to maximize
storage savings. Note that Crt ≤Clast . From Equation (3),
Crt is given by:

Crt = min{R·Call ·α
R−n/k , Clast}. (4)

• Case 2 (Offloading of parity SSTables): ELECT proceeds
to Case 2 if α is not met, i.e., Crt =Clast . It sets Cdm = 0
and chooses the largest possible Cpm. Note that the number
of parity SSTables is at most n−k

k ·Clast . From Equation (3),
Cpm is given by:

Cpm = min{R ·Call ·α − (R− n
k ) ·Clast ,

n−k
k ·Clast}. (5)

• Case 3 (Offloading of data SSTables): ELECT proceeds
to Case 3 if α is still not met, i.e., Cpm = n−k

k ·Clast . It
chooses the largest possible Cdm. Note that Cdm ≤ Clast .
From Equation (3), Cdm is given by:

Cdm = min{Call ·R ·α − (R−1) ·Clast , Clast}. (6)

5 Implementation
We implement ELECT in Java based on Cassandra v4.1.0 [3],
with around 27 K lines of code of modifications to Cassan-
dra’s codebase (which consists of 1.25 M lines of code), by
adding redundancy transitioning, hotness monitoring, data
offloading, full-node recovery, and degraded reads/writes.
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We implement the erasure coding operations based on Intel’s
Intelligent Storage Acceleration Library [27] and link the
operations with Cassandra through the Java Native Interface.
Consistent reads/writes. Under replication, Cassandra sup-
ports consistent reads/writes based on the configurable
read/write consistency levels, which specify the number of
nodes in a replication group that need to acknowledge a
read/write request. ELECT maintains the same read/write
workflows for replicated KV pairs as in Cassandra. For writes,
ELECT performs the same consistent writes as in Cassandra
since it always writes KV pairs via replication. For reads, af-
ter receiving enough acknowledgments according to the read
consistency level, if a KV pair is replicated, ELECT follows
the same consistent read path as in Cassandra; if a KV pair
is erasure-coded, ELECT always returns the KV pair from
the primary LSM-tree or issues degraded reads (see below) if
the KV pair is unavailable. ELECT currently does not verify
reads for erasure-coded KV pairs.
Full-node recovery. Suppose that a node crashes and all its
LSM-trees are lost. ELECT performs recovery in a new node
on a per-LSM-tree basis. To recover a primary LSM-tree,
ELECT retrieves the secondary LSM-tree from another alive
node to the new node. The SSTables from the lowest to the
second last level in the LSM-tree are replicated and can be
directly recovered from their replicas. For the SSTables in
the last level being erasure-coded, ELECT retrieves k data
or parity SSTables of the same coding group based on the
ECMeta from the other alive nodes or the cloud to decode the
lost SSTables. To recover a secondary LSM-tree, ELECT
retrieves a primary LSM-tree or a secondary LSM-tree from
the other nodes in the same replication group; if a primary
LSM-tree is retrieved, ELECT removes the data components
of SSTables that are erasure-coded, as the secondary LSM-
tree only keeps their metadata components (§4.1.4).
Degraded reads. Suppose that ELECT receives a degraded
read to an unavailable KV pair. ELECT relays the read re-
quest to another alive node in the same replication group, with
a flag indicating the KV pair is unavailable. If the KV pair is
stored with replication, the alive node directly returns the KV
pair; otherwise, if the KV pair is stored with erasure coding,
the alive node decodes the SSTable containing the KV pair
by retrieving k data or parity SSTables of the same coding
group from the other alive nodes according to the ECMeta.
Degraded writes. Suppose that ELECT receives a degraded
write to a failed node. It follows Cassandra to apply the hinted
handoff mechanism [4], which allows the replay of a write to
a failed node that returns online.
Limitations. ELECT does not support incremental recovery
for individual SSTables as in Cassandra. Under replication,
Cassandra builds a Merkle tree [41] in each node to detect in-
consistencies among replicas for any failed SSTable recovery.
Since ELECT includes erasure-coded SSTables in LSM-trees,
it needs a revised Merkle tree that addresses both replication
and erasure coding.

ELECT also does not currently support dynamic topology
changes. We consider a possible approach for supporting
topology changes in ELECT as follows. For replicated KV
pairs, ELECT can relocate replicas when the nodes join or
leave as in Cassandra. For erasure-coded KV pairs, ELECT
can relocate some of the erasure-coded SSTables to keep
them in consecutive nodes in the hash ring (§4.1.2). As in
consistent hashing, ELECT should only relocate the KV pairs
stored in the adjacent nodes of each joining/leaving node in
the hash ring instead of all SSTables of the whole storage
system, so as to mitigate the relocation overhead.

6 Evaluation
We show via evaluation that ELECT reduces the storage
overhead of Cassandra and maintains high performance.

6.1 Methodology
Testbed. We consider an edge-cloud setting, where the edge
serves as the hot tier and the cloud serves as the cold tier.
Specifically, we conduct evaluation on Alibaba Cloud [38].
We set up M = 10 edge nodes and multiple (up to 32) client
nodes in the same geographical region. Each node is deployed
on an ecs.i3g.2xlarge instance with eight 2.5 GHz vC-
PUs, 32 GiB RAM, 447 GiB SSD, and Ubuntu 22.04 LTS.
All nodes are connected with a 3 Gbps network, with a net-
work latency of no more than 1 ms. We also deploy the cloud
on the Alibaba Object Storage Service in a different geograph-
ical region. Our measurement shows that the network latency
between the two regions is at least 45 ms.
Default settings. We compare ELECT with the vanilla Cas-
sandra. We configure Cassandra with triple replication
(R = 3) and store all replicas in the edge nodes. We also con-
figure ELECT with triple replication and the (n,k) = (6,4)
RS code, and enable all features under a storage saving tar-
get α = 0.6. For both systems, we fix the SSTable size as
4 MiB [28,64]. We disable SSTable compression for accurate
storage size calculation. We set the read and write consistency
levels as one and three, respectively (i.e., each of the reads and
writes needs to be acknowledged by one node and all three
replica nodes, respectively) for strong consistency. All other
parameters remain the same as the defaults in Cassandra.

We use the benchmarking tool YCSB [16] to generate dif-
ferent types of workloads. By default, in Exp#1, we load
100 M 1-KiB KV pairs with 24-byte keys and 1000-byte val-
ues into storage before each experiment and generate 10 M
requests; in the subsequent experiments that focus on ex-
amining the performance of individual KV operations, we
load 10 M 1-KiB KV pairs and generate 1 M requests, while
the performance trends remain stable as in Exp#1 even we
use smaller workloads. In all experiments, the requests by
default follow a Zipf distribution with a Zipfian constant of
0.99 (default in YCSB). Also, we run YCSB clients in two
client nodes, each of which has eight YCSB client threads to
simulate concurrent requests from multiple clients.
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Figure 5: Exp#1: YCSB core workloads. Throughput results are
normalized by Cassandra’s throughput (above each bar) in KOPS.

Our experiments consider normal (without failures) and
degraded (with failures) modes. For degraded mode, we crash
two edge nodes via the kill -9 command.

We plot the average results over five runs, with error bars
showing the 95% confidence intervals under the Student’s
t-distribution (note that some error bars may be invisible due
to small deviations).

6.2 Overall Analysis
Exp#1 (YCSB core workloads). We first compare the over-
all storage overhead and performance of Cassandra and
ELECT using the six YCSB core workloads [16], namely
A (50% reads, 50% writes), B (95% reads, 5% writes), C
(100% reads), D (95% reads, 5% writes), E (95% scans, 5%
writes), and F (50% reads, 50% read-modify-writes). Each
workload (except D) follows a Zipf distribution, while Work-
load D reads the latest written KV pairs. For ELECT, we
measure both edge-only and overall edge-cloud storage sizes.

Figure 5 shows the storage size and throughput results.
ELECT achieves 56.1% storage savings (in the edge only)
and 39.1% overall storage savings (in both the edge and cloud)
compared with Cassandra. The actual edge storage savings
of ELECT are slightly less than α = 0.6, as it also maintains
metadata components for deleted KV pairs in the secondary
LSM-trees after redundancy transitioning. The metadata com-
ponents of LSM-trees in ELECT account for 6.9% of its edge
storage size (not shown in the figure); note that no metadata
components are offloaded to the cloud (§4.2).

In terms of performance, both Cassandra and ELECT have
similar throughput (with up to 3% differences) in all work-
loads except E. For Workload E, which is scan-intensive,
ELECT achieves a 2.84× throughput gain over Cassandra.
The reason is that ELECT reduces individual LSM-tree sizes
and hence I/O amplification through decoupled replication
management, so the number of SSTables being accessed is
also reduced [57,68]. Such reduced access overhead has more
prominent performance improvements to scans, which read a
range of KV pairs.
Exp#2 (Benchmarking of KV operations). We evaluate the
average latencies of specific KV operations, including reads,
writes, scans, and updates. We load 10 M 1-KiB KV pairs
and issue 1 M requests for each type of KV operations (§6.1).
We consider both normal and degraded modes. For degraded
mode, we measure the performance of all requests (includ-
ing normal and degraded requests) when the system is in
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Figure 6: Exp#2: Benchmarking of KV operations. Results are nor-
malized by Cassandra’s latencies (above each bar) in milliseconds.

degraded mode with edge node failures. For example, if a
read encounters a non-failed node, it is a normal read; if it
encounters a failed node, it becomes a degraded read and
ELECT recovers the SSTable that contains the requested key.

Figure 6 shows the results. Note that Cassandra keeps
almost identical performance in both normal and degraded
modes as it keeps all replicated storage in the edge. In normal
mode (Figure 6(a)), ELECT maintains similar performance as
in Cassandra in reads, writes, and updates with up to 2.7% of
higher average latencies; it reduces the average scan latency
of Cassandra by 21.5% (see Exp#1). In degraded mode (Fig-
ure 6(b)), ELECT still has similar performance of Cassandra
in writes and updates with up to 3.3% higher average latencies
and reduces the average scan latency of Cassandra by 21.1%.
However, ELECT incurs a latency increase of 5.32× in reads
over Cassandra, mainly due to the retrieval of SSTables from
the cloud to the edge for recovery if the degraded reads are
issued to the KV pairs in the last LSM-tree level.

We further examine the read and scan results in degraded
mode. For reads, we observe that both Cassandra and ELECT
have very similar 99th-percentile latencies at about 1.7 ms
(not shown in the figure), meaning that most reads can be
served in the edge and have small latency differences. Some
degraded reads need to retrieve SSTables from the cloud, and
such requests increase the average read latency in degraded
mode. Unlike reads, ELECT still shows performance gains
in scans (which include normal and degraded reads to a range
of KV pairs) as in normal mode. The reason is that most
unavailable SSTables are recovered in the early stage of scans,
so the overall adverse impact on scans is much mitigated as
opposed to reads.

6.3 System-level Analysis
Exp#3 (Performance breakdown). We break down the per-
formance of writes, reads in normal mode, and reads in de-
graded mode. Each write comprises (i) writing to the WAL,
(ii) writing to the MemTable, (iii) flushing the MemTable,
(iv) compaction, (v) redundancy transitioning, and (vi) data
offloading. Each read in normal or degraded mode comprises
(i) reading from the MemTable, (ii) reading from the block
cache, (iii) reading from SSTables, and (iv) recovery (for
degraded reads). We measure the time of each step across
all nodes and obtain the average results on processing 1 MiB
of writes/reads based on the workloads as described in §6.1.
Since the steps are performed in parallel, the actual time spent
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Steps Cassandra ELECT
Write

WAL 21.32 ± 0.76 ms 21.84 ± 0.28 ms
MemTable 37.98 ± 1.73 ms 40.84 ± 0.13 ms
Flushing 16.95 ± 0.29 ms 17.70 ± 0.18 ms

Compaction 205.87± 2.21 ms 169.03 ± 3.23 ms
Transitioning - 239.05 ± 2.69ṁs

Offloading - 162.84 ± 12.05 ms

Read in normal mode
Cache 17.05 ± 0.27 ms 18.35 ± 0.34 ms

MemTable 20.78 ± 0.95 ms 23.20 ± 0.61 ms
SSTables 182.69 ± 2.53 ms 177.55 ± 0.60 ms

Read in degraded mode
Cache 17.41 ± 0.33 ms 18.75 ± 0.18 ms

MemTable 21.54 ± 0.66 ms 23.38 ± 0.46 ms
SSTables 184.39 ± 1.67 ms 184.14 ± 2.35 ms
Recovery - 1957.64 ± 34.16 ms

Table 1: Exp#3: Performance breakdown. We show the average
latency of each step for processing 1 MiB of writes/reads and the
corresponding 95% confidence interval.

on an operation is less than the sum of times of all steps.
Table 1 shows the performance breakdown. Most common

steps in Cassandra and ELECT have similar latencies, ex-
cept for compaction in writes, ELECT has a smaller latency
by 17.9%. The reason is that ELECT decouples replication
management into multiple LSM-trees and reduces the I/O
amplifications in compaction [57, 68]. The redundancy tran-
sitioning has the highest average latency among all steps,
while the offloading has a low average latency since only
a fraction of data is transmitted from the edge to the cloud.
However, both redundancy transitioning and data offloading
are performed in the background and incur limited overhead
to writes, so ELECT has similar write performance as Cas-
sandra (see Exp#1 and Exp#2).

For reads in normal mode, both Cassandra and ELECT
have similar performance in each step. For reads in degraded
mode, ELECT is bottlenecked by the recovery step (with
1957.64 ms per MiB).
Exp#4 (Full-node recovery). We evaluate full-node recov-
ery in Cassandra and ELECT. We crash one edge node, delete
all its data, start a new edge node, and use the nodetool com-
mand to recover all lost data into the new edge node. We
evaluate the recovery performance of different loaded data
sizes, including 10 GiB, 20 GiB, and 30 GiB (i.e., 10 M, 20 M,
and 30 M 1-KiB KV pairs). For fair comparisons, we dis-
able the Merkle tree operation in Cassandra (which is not
supported in ELECT (§5)). Figure 7 shows the full-node
recovery times. The recovery times of Cassandra and ELECT
increase almost linearly. ELECT incurs about 50% higher
recovery time than Cassandra since it needs to retrieve data
and parity SSTables from other edge nodes or the cloud to
decode the lost SSTables in the primary LSM-tree.
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Figure 7: Exp#4: Full-node re-
covery time.

Steps Time
Copy 13.54± 0.22 s

Retrieve 373.98± 11.61 s
Decode 13.34 ± 0.48 s

Table 2: Exp#4: Recovery time
breakdown for 30 GiB data.

We further provide a breakdown of the full-node recov-
ery time of ELECT into three steps: (i) copying replicated
SSTables from other edge nodes; (ii) retrieving data and par-
ity SSTables for decoding; and (iii) decoding the lost SSTa-
bles. Table 2 shows the full-node recovery time breakdown
of ELECT for 30 GiB data. The recovery performance is
network-bound, in which retrieving the data and parity SSTa-
bles occupies 93.3% of the total recovery time.
Exp#5 (Resource usage). We compare the CPU usage, mem-
ory usage, disk I/O size, and network traffic of Cassandra and
ELECT. We consider three settings: (i) loading KV pairs
until the SSTables reach a stable state, (ii) running in normal
mode without failures, and (iii) running in degraded mode
with two node failures. After loading KV pairs, we issue 1 M
requests, including reads, writes, updates, and scans, with
one-fourth of all requests each. We measure the CPU usage,
memory usage, disk I/O, and network usage in all alive edge
nodes through the Linux system tools, namely top, free,
iostat, and iftop, respectively. We collect the resource
usage data every 1 s. We show the 95th-percentile CPU usage
and memory usage as well as the overall disk I/O size and
network traffic size.

Figure 8 shows the results. Figure 8(a) shows that ELECT
has 23.4% and 23.3% less 95th-percentile CPU usage than
Cassandra in load and degraded operations, respectively.
ELECT mainly performs network transmissions in redun-
dancy transitioning and data offloading, both of which in-
volve less CPU usage (in each 1-second interval). However,
ELECT has long durations in both redundancy transition-
ing and data offloading (Table 1), so its total CPU time is
still higher than Cassandra’s. Figure 8(b) shows that ELECT
slightly increases the 95th-percentile memory usage by 7.0%
during the load operation, since it needs extra memory space
for erasure coding. It also slightly reduces the memory usage
in normal and degraded modes by 4.9% and 5.1%, respec-
tively, as it reduces the LSM-tree size through decoupled
replication management. Figure 8(c) shows that ELECT re-
duces the disk I/O size of Cassandra by 23.6% in the load
operation, as it reduces the LSM-tree size and hence I/O am-
plifications through decoupled replication management, and
also reduces the compaction overhead of the secondary LSM-
trees by writing fewer KV pairs to the last LSM-tree level.
Note that ELECT still has higher disk I/O size in degraded
mode than in normal mode due to the reconstruction over-
head in erasure coding. Figure 8(d) shows that ELECT has
similar network traffic to Cassandra in normal mode, while
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Figure 8: Exp#5: Resource usage. All results are normalized by
Cassandra’s actual resource usage results (numbered atop the bars),
including CPU usage (%), memory usage (GiB), disk I/O size (GiB),
and network traffic (GiB).

it incurs 22.1% and 6.3% higher network traffic than Cas-
sandra in load and degraded operations, respectively. In the
load operation, ELECT distributes SSTables for redundancy
transitioning and offloads SSTables to the cloud; in degraded
mode, it retrieves SSTables to recover unavailable SSTables.

6.4 Parameter Sensitivity Analysis
Exp#6 (Impact of key and value sizes). We evaluate the
impact of different key and value sizes on Cassandra and
ELECT to show that ELECT still maintains storage savings
for different key/value sizes. Note that we fix the total size of
KV pairs loaded to storage as 10 GiB, so the total number of
KV pairs decreases as the key size or value size increases.

Figures 9(a) and 9(b) show the actual storage sizes of Cas-
sandra and ELECT for various key sizes with a fixed value
size 512 bytes and various value sizes with a fixed key size
32 bytes, respectively. The actual storage sizes of both sys-
tems decrease as the key and value sizes increase. The edge
and overall storage savings of ELECT over Cassandra in-
crease from 55.5% to 56.0% and from 34.9% to 39.3%, re-
spectively, as the key size increases from 8 bytes to 128 bytes,
and from 48.2% to 58.5% and from 33.9% to 41.1%, respec-
tively, as the value size increases from 32 bytes to 8 KiB. The
reason is that larger key and value sizes reduce the amount of
metadata for SSTable maintenance. This reduces the storage
overhead after redundancy transitioning in ELECT.

Figures 9(c) and 9(d) show the average read latencies in nor-
mal and degraded modes for various key and value sizes. The
read latencies of Cassandra and ELECT in normal mode and
the read latency of Cassandra in degraded mode are similar
as the KV pairs can be directly accessed. However, ELECT
has much higher average read latencies in degraded mode
than Cassandra, especially for small key and value sizes (e.g.,
6.4× when the key and value sizes are both 32 bytes), since
smaller key and value sizes increase the number of KV pairs
stored in an SSTable and hence the query overhead.
Exp#7 (Impact of storage saving target). We evaluate the
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Figure 9: Exp#6: Impact of key and value sizes.

impact of target storage saving α on ELECT, by varying α

from 0.1 to 0.9. Our results demonstrate the trade-off between
storage savings and access performance.

Figure 10(a) shows the edge-only and overall storage sizes
of ELECT. As α increases, the edge storage savings over
Cassandra increase from 9.2% to 86.0%, and differ from α

by no more than 4%. ELECT offloads SSTables from the
edge to the cloud when α ≥ 0.5, yet the overall storage size
(in both the edge and cloud) of ELECT remains unchanged
when α ≥ 0.5 and its savings over Cassandra stay at 40.8%.
The reason is that redundancy transitioning only applies to
the SSTables in the last LSM-tree level and cannot further
reduce the storage sizes of replicated SSTables in the lower
LSM-tree levels.

Figure 10(b) shows the average read latencies in normal
mode. The read latency of ELECT remains stable as α

increases from 0.1 to 0.6, but increases significantly from
0.53 ms to 1.89 ms when α increases from 0.6 to 0.9. The rea-
son is that after offloading data SSTables to the cloud (Case 3
in §4.3), reads to the primary LSM-tree retrieve data SSTa-
bles back from the cloud and are slowed down by edge-cloud
communication. We pose the parameter sensitivity analysis
for 99th-percentile latencies as future work.

Figure 10(c) shows the average read latencies in degraded
mode. As α increases from 0.1 to 0.5, the average latency of
ELECT increases from 0.59 ms to 1.09 ms, as more SSTables
are involved in redundancy transitioning and degraded reads
trigger more decoding operations. As α further increases,
ELECT starts to offload data SSTables to the cloud, and the
degraded reads are further slowed down due to the retrieval
of data SSTables from the cloud for decoding. When α = 0.9,
the average latency increases to 4.62 ms.
Exp#8 (Impact of coding parameters). We study the im-
pact of coding parameters on ELECT by varying k and fixing
n = k+2. We also consider different values of α . We focus
on the edge and overall storage sizes as well as the average
read latencies in normal and degraded modes.

Figure 11 shows the results. For a fixed α , even with
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different values of k, ELECT still maintains similar edge stor-
age sizes with no more than 1.7% differences (Figure 11(a)).
Although a larger k (with the fixed n− k) implies smaller
redundancy, the storage saving target α also determines the
actual edge storage size. Thus, the edge storage size remains
almost unaffected by different values of k for a fixed α .

The overall storage size (Figure 11(b)) of ELECT drops
from 18.0 GiB to 15.7 GiB when k increases from 4 to 8,
for both α = 0.6 and α = 0.8, as a larger k generates fewer
parity SSTables and reduces the overall storage size for a
large α ; note that the overall storage size remains unaffected
for different values of k for α = 0.4.

For a fixed α , the reads latencies in normal and degraded
modes are also similar for different values of k, albeit slight
latency decreases in degraded mode as k increases (Fig-
ures 11(c) and 11(d)). Intuitively, a larger k implies higher
reconstruction overhead, as k SSTables are retrieved for re-
construction in RS codes (§2.3). On the other hand, a larger
k also implies that fewer parity SSTables are generated and
offloaded to the cloud, and hence a degraded read retrieves
fewer parity SSTables from the cloud. This leads to slightly
improved read performance in degraded mode for a large k.

This experiment aims to show the applicability of ELECT
for different values of k. A more detailed analysis on the
trade-off between α and k is our future work.
Exp#9 (Impact of read consistency level). We show how
ELECT preserves consistent reads in Cassandra (§5). We
vary the read consistency level from one to three, while the
write consistency level remains three (under triple replication).
We focus on the throughput and 99th-percentile latency of
normal reads; for the latter, we show the impact of waiting
for responses from multiple replicas.

Figure 12 shows the results versus the read consistency
level for both Cassandra and ELECT. As the read consis-
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tency level increases from one to three (i.e., each read needs
to wait for the responses from more replicas), the average
read throughput of both systems (Figure 12(a)) decreases
by 23.2% for Cassandra and 25.8% for ELECT, while the
99th-percentile read latencies for both systems (Figure 12(b))
increase by around 50%. The results suggest that ELECT
maintains similar read performance as in Cassandra under
consistent reads.
Exp#10 (Impact of number of clients). We examine the
read/write performance of ELECT in normal mode as the
number of clients increases. We vary the number of client
nodes (deployed in different instances) from 1 to 32, while
each client node runs eight client threads, so the maximum
number of simulated clients reaches 256. Each simulated
client issues 100 K KV requests.

Figure 13 shows the throughput versus the number of sim-
ulated clients for both Cassandra and ELECT. Both systems
show similar increasing throughput trends as the number of
simulated clients increases. ELECT has slightly less through-
put than Cassandra, by 4% in normal reads and 5.7% in writes
when the number of simulated clients is 256, due to the re-
dundancy transitioning overhead.

6.5 Discussion
We discuss the performance of ELECT in other aspects that
are currently not explicitly evaluated.
Varying skewness in workloads. We currently focus on
skewed workloads as observed in practice [6, 9, 16, 62]. With
less skewed workloads, reads access larger portions of the key
space. Thus, more reads are issued to the last LSM-tree level,
and ELECT may see performance drops in degraded mode
as it applies erasure coding to the last LSM-tree level. Note
that ELECT does not directly determine the hotness of KV
pairs by monitoring their access patterns, while the read and
write patterns may have different distributions [6, 62]. Thus,
the actual performance of ELECT may be greatly affected by
the real-world access patterns.
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Varying LSM-tree sizes. ELECT supports different LSM-
tree sizes as it still encodes SSTables in the last LSM-tree
level. It is expected to achieve higher storage savings for
larger LSM-trees since the number of SSTables increases
exponentially across LSM-tree levels and the last LSM-tree
level contains more SSTables.
Impact on reliability. The increase in the recovery time
of ELECT (Exp#4) degrades reliability (e.g., in terms of
mean-time-to-data-loss (MTTDL)). On the other hand, since
ELECT offloads some erasure-coded KV pairs to the cold
tier, which is in general more reliable than the hot tier (e.g.,
when edge nodes serve as the hot tier versus the cloud serves
as the cold tier in edge-cloud storage), the reliability can be
improved. The actual impact on reliability due to redundancy
transitioning remains an open issue.
Impact of LSM-tree compression. Our evaluation disables
compression to fairly measure ELECT’s storage savings.
ELECT still works with compression enabled and is expected
to achieve storage savings. Since Cassandra performs com-
pression on SSTables, ELECT can collect k compressed data
SSTables and pad them with zeroes to match the maximum
size of the k compressed data SSTables, so as to generate par-
ity SSTables via erasure coding. Note that such padded zeros
are only for erasure coding compatibility. They need not be
stored in data SSTables and will not add storage overheads.
Comparisons with CassandrEAS [8]. CassandrEAS also
extends Cassandra with erasure coding, but does not con-
sider redundancy transitioning. CassandrEAS reportedly has
much higher read and write latencies than Cassandra [8]. Our
evaluation also finds that CassandrEAS (based on its open-
source version) incurs high storage overhead for small values
due to extra metadata for erasure coding (e.g., 1.6× storage
overhead for 24-byte keys and 64-byte values compared with
3-way replication in Cassandra).

7 Related Work
Replication in distributed KV stores. Replication is com-
monly used in modern distributed KV stores [5, 18, 34, 46].
Several studies propose new replica management mecha-
nisms to support high-throughput and strongly consistent
writes [56], reduce data loss rates [15], improve query per-
formance [22, 54], and reduce I/O amplification in LSM-tree
compaction [57, 68]. In particular, ELECT has the similar
ideas of DEPART [68] and Tebis [57] to separate the LSM-
tree management for replicas, but focuses on synchronizing
the views of replicas for efficient redundancy transitioning.
Both DEPART and Tebis do not consider erasure coding.
Erasure coding in distributed KV stores. Erasure coding
has been extensively used in distributed KV stores. Some
studies apply replication for keys and metadata as well as
erasure coding for values for persistent [8, 32, 33, 44] and
in-memory [13, 37] KV stores. Some approaches [14, 65]
apply erasure coding across whole objects (including keys,
values, and metadata) for further storage savings, but they

are applied for in-memory KV stores and their performance
is guaranteed with memory access. Erasure coding is also
recently explored for disaggregated memory [35, 69].

In the context of storage tiering, EC-Cache [49] and C2DN
[61] also apply erasure coding to caching and content delivery
networks, respectively. EC-Cache performs self-encoding on
large objects and keeps erasure-coded chunks across cache
servers, while C2DN replicates small objects and applies
erasure coding to large objects. We emphasize that ELECT
differs from EC-Cache and C2DN in both problem formula-
tion and design techniques. Regarding problem formulation,
EC-Cache and C2DN aim for load balancing using erasure
coding for high performance, while ELECT considers redun-
dancy transitioning (from replication to erasure coding) for
storage savings. Regarding design techniques, EC-Cache and
C2DN are centralized (EC-Cache manages cache servers with
a centralized coordinator, while C2DN uses a cluster-local
load balancer), while ELECT performs decentralized parity
node selection (§4.1.2). ELECT also addresses selective data
offloading (§4.2) and configurable storage savings (§4.3),
both of which are not addressed by EC-Cache and C2DN.
Redundancy transitioning. Earlier studies consider the tran-
sitioning between replication and erasure coding on fixed-size
blocks in RAID [58] and distributed file systems [23, 36],
while ELECT considers variable-size KV pairs. Furthermore,
ELECT builds on Cassandra, a decentralized KV store, while
the above studies [23, 36, 58] are centralized. Some studies
consider the transitioning between erasure codes with dif-
ferent coding parameters to trade between performance and
redundancy overhead [55, 59, 60, 63] or between reliability
and redundancy overhead [29, 30]. Convertible codes [39]
are new erasure codes that minimize the transitioning I/O.
ELECT applies redundancy transitioning from replication to
erasure coding to balance the storage-performance trade-off.

8 Conclusions
We design ELECT, a distributed KV store that enables era-
sure coding tiering, to make a case for storage-efficient, high-
performance, and fault-tolerant KV storage. ELECT adopts
a hybrid redundancy approach by replicating hot KV pairs
and erasure-coding cold KV pairs. It also selectively offloads
them from the hot tier to the cold tier. It is tunable with a
single storage saving target parameter to balance the trade-off
between storage savings and access performance. Experi-
ments on Alibaba Cloud demonstrate the storage savings and
performance efficiency of ELECT compared with Cassandra.
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A Artifact Appendix
Abstract
ELECT is a distributed KV store that enables erasure coding
tiering based on the LSM-tree. It adopts a hybrid redundancy
approach that carefully combines replication and erasure cod-
ing with respect to the LSM-tree layout. Its prototype builds
on Cassandra.

Scope
Our artifact can be used to validate the concepts and designs
of ELECT presented in the paper. It is a research-driven
prototype and has several limitations, such as the inability to
support dynamic topology changes and incremental recovery,
that restrict its direct applicability in production.

Contents
The artifact consists of two sub-directories:

• src/, which includes both the implementation of the
ELECT prototype and a simple object storage backend,
such that ELECT can be connected with the object stor-
age backend in a local cluster; and

• scripts/, which includes both the evaluation scripts
and the YCSB benchmarking tool, such that the key and
value sizes are configurable.

The artifact also contains a README file that specifies
the prerequisites for the testbed and dependencies, steps for
building and configuring the ELECT prototype and YCSB
benchmark tool, and detailed instructions for artifact evalua-
tion.

Hosting
The artifact is accessible from GitHub at https://github.
com/adslabcuhk/elect. The version we provided for the
artifact evaluation is marked with the v1.0 tag.

Requirements
Hardware dependencies

To successfully run the end-to-end experiments with our pro-
totype and evaluation scripts, a minimum of eight machines
are recommended. These machines need to be connected via
a network, such that they are reachable from each other. For
each machine, we recommend quad-cores, 16 GiB of mem-
ory and above, and an SSD. We need at least six machines
that form the distributed KV store ELECT and use the de-
fault erasure coding parameters (n,k)=(6,4). In addition, we
have one machine that acts as a server node for storing cold
data in the cold tier, and one machine for running the YCSB
benchmark tool.

Software dependencies

Our artifact is developed and tested on Ubuntu 22.04 LTS
with the following software dependencies:

• The ELECT prototype and YCSB benchmark
tool: openjdk-11-jdk, openjdk-11-jre, ant,
ant-optional, maven.

• Erasure coding: clang, llvm, libisal-dev.
• Evaluation scripts: ansible, bc, python3,
python3-pip, cassandra-driver, numpy, scipy.

Testbed Setup
Please follow the steps below:

• Download the artifact from the URL: https://

github.com/adslabcuhk/elect/releases.
• Extract the files using tar -zxvf

elect-1.0.tar.gz and navigate into the pack-
age directory with cd.

• Modify the scripts/settings.sh file according to
the AE INSTRUCTION.md.

• Set up the machines with the provided scripts via bash
scripts/setup.sh full (the setup takes about 40
minutes, depending on the hardware configurations).

For the detailed setup, configuration instructions, and trou-
bleshooting, please refer to the README.md in the artifact
repository. The README.md file provides comprehensive in-
structions on the manual setup process and the solutions to
some common issues.

Evaluation

Artifact Claims
The performance results may vary from those in our paper
due to different factors, such as cluster sizes, machine specifi-
cations, operating systems, and software packages. However,
we expect that ELECT still demonstrates comparable perfor-
mance to Cassandra in regular operations, while significantly
reducing hot-tier storage overhead.

Experiments
To reproduce the results presented in the paper, please refer
to the AE INSTRUCTION.md file and follow the instructions
provided in the Evaluation section.
Exp#1 (YCSB core workloads). Expected outcome: Exp#1
produces the results as shown in Figure 5, which illustrates
that ELECT achieves similar performance as Cassandra in
YCSB core workloads while significantly reducing the hot-
tier storage overhead. In addition, ELECT outperforms Cas-
sandra in workload E, which consists of 95% scan operations,
due to replication decoupling. Approximate runtime: 20 com-
pute hours.

Exp#2 (Benchmarking of KV operations). Expected out-
come: Exp#2 produces the results as shown in Figure 6, which
illustrates that ELECT achieves similar performance as Cas-
sandra in common KV operations. Similar to Exp#1, ELECT
still outperforms Cassandra in the scan operations due to repli-
cation decoupling. Approximate runtime: 5 compute hours.
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Exp#3 (Performance breakdown). Expected outcome:
Exp#3 produces the results as shown in Table 1, which illus-
trates that ELECT has similar latencies in most common steps
as in Cassandra. Approximate runtime: 5 compute hours.
Exp#4 (Full-node recovery). Expected outcome: Exp#4 pro-
duces the results as shown in Figure 7 and Table 2, which
illustrates that ELECT incurs medium recovery overhead due
to the need for retrieving data and parity SSTables from other
nodes or the cold tier. Approximate runtime: 14 compute
hours.
Exp#5 (Resource usage). Expected outcome: Exp#5 pro-
duces the results as shown in Figure 8, which illustrates that
ELECT only increases the memory and network usage when
loading data due to redundancy transitioning and cold-data
offloading. In addition, for CPU usage, the 95%-percentile
CPU utilization will be less than Cassandra since the redun-
dancy transitioning and cold-data offloading consist of a large
amount of network transmission with long duration. Approxi-
mate runtime: 5 compute hours.
Exp#6 (Impact of key and value sizes). Expected outcome:
Exp#6 produces the results as shown in Figure 9, which illus-
trates that ELECT still maintains storage savings for different
key/value sizes. Approximate runtime: 40 compute hours.
Exp#7 (Impact of storage saving target). Expected out-
come: Exp#7 produces the results as shown in Figure 10,
which illustrates that ELECT can balance the storage over-
head and performance according to the storage saving target.
Approximate runtime: 45 compute hours.
Exp#8 (Impact of coding parameters). Expected outcome:
Exp#8 produces the results as shown in Figure 11, which
illustrates that ELECT can adapt to different erasure coding
parameters. Approximate runtime: 12 compute hours.
Exp#9 (Impact of read consistency level). Expected out-
come: Exp#9 produces the results as shown in Figure 12,
which illustrates that ELECT supports consistent reads. Ap-
proximate runtime: 5 compute hours.
Exp#10 (Impact of number of clients). Expected outcome:
Exp#10 produces the results as shown in Figure 13, which
illustrates that ELECT supports multi-client KV operations.
Approximate runtime: 5 compute hours.
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3Anhui Province Key Laboratory of High Performance Computing, USTC

Abstract

Serverless computing has revolutionized application deploy-
ment, obviating traditional infrastructure management and dy-
namically allocating resources on demand. A significant use
case is I/O-intensive applications like data analytics, which
widely employ the pivotal "shuffle" operation. Unfortunately,
the shuffle operation poses severe challenges due to the mas-
sive PUT/GET requests to remote storage, especially in high-
parallelism scenarios, leading to high performance degrada-
tion and storage cost. Existing designs optimize the data pass-
ing performance from multiple aspects, while they operate in
an isolated way, thus still introducing unforeseen performance
bottlenecks and bypassing untapped optimization opportuni-
ties. In this paper, we develop MinFlow, a holistic data passing
framework for I/O-intensive serverless analytics jobs. Min-
Flow first rapidly generates numerous feasible multi-level data
passing topologies with much fewer PUT/GET operations,
then it leverages an interleaved partitioning strategy to divide
the topology DAG into small-size bipartite sub-graphs to op-
timize function scheduling, further reducing over half of the
transmitted data to remote storage. Moreover, MinFlow also
develops a precise model to determine the optimal config-
uration, thus minimizing data passing time under practical
function deployments. We implement a prototype of MinFlow,
and extensive experiments show that MinFlow significantly
outperforms state-of-the-art systems, FaaSFlow and Lambada,
in both the job completion time and storage cost.

1 Introduction

Serverless computing, or simply "serverless", represents a
transformative cloud-computing model that dramatically
streamlines application deployment. Within this paradigm, the
burdensome tasks of traditional infrastructure management
recede into the background as cloud providers dynamically
allocate resources, billing solely for the consumed computing

*Yongkun Li is the corresponding author.
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power. Platforms such as AWS Lambda [5] and Azure Func-
tions [31] exemplify this shift, facilitating the seamless execu-
tion of code in response to specific triggers. As we navigate
the evolving expanse of cloud technologies, the prominence of
serverless is undeniable, marking a significant change in the
development, deployment, and scaling of modern applications.
This shift becomes particularly noteworthy when consider-
ing I/O-intensive applications like data analytics [21, 22, 35].
Embedded in this analytical landscape are frameworks like
Google’s MapReduce [15] and Apache Spark [44].

In data analytics, the "shuffle" operation is pivotal for data
passing between stages. Notably, over half of Facebook’s daily
analytics entails at least one shuffle operation [45]. Given the
stateless nature of serverless, data are largely passed through
remote Object Stores like S3 [8], during which each pair of
sender and receiver functions involve a PUT and a GET opera-
tion. However, shuffle’s all-to-all connectivity, i.e., each func-
tion should pass its output to all functions in the next stage,
usually leads to a huge number of PUT/GET requests, espe-
cially under high parallelism of functions. For instance, with
500 functions, one can anticipate 500×500=250,000 PUTs
and an equal number of GETs, a total of 500,000 requests.
Due to the request rate caps of S3, excessive PUT/GET oper-
ations risk exceeding these limits, causing prolonged delays.
For example, in the Pocket framework, shuffle can dominate,
taking up 62% of the time for certain jobs [22]. Worse yet,
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while S3’s storage capacity is affordable, the cost tied to mas-
sive PUT/GET operations can escalate very high.

In data analytics, optimizing the shuffle operation has led
to a myriad of solutions, each has its unique trade-off. Though
these solutions propose diverse optimization strategies, they
lack a comprehensive and integrative consideration, resulting
in suboptimal performance. First, the approach of using pri-
vate storage has been utilized [22, 35], wherein shuffle is con-
ducted through self-maintained storage such as ElastiCache
clusters [4]. While it offers enhanced shuffle speed by granting
users exclusive ownership of the storage medium, the ensu-
ing costs are considerably elevated. Additionally, the onus
of intricate cluster management falls back on the developers,
somewhat undermining the convenience of serverless com-
puting. The method of leveraging intra-worker memory offers
another alternative [13,25], harnessing over-provisioned local
memory in workers for faster shuffle operations. However, its
applicability remains tethered to functions situated within the
same worker, and due to the all-to-all data passing require-
ment between functions, only a small portion of data passing
can be performed via the local memory of workers. Lastly,
the technique of utilizing multi-level shuffle [32, 34], inspired
by the mesh networks from HPC (High Performance Com-
puting) [23], endeavors to streamline shuffle operations. Yet,
it incurs multiplied data to be transmitted, making the band-
width limit on the function side a new bottleneck, especially
when the size of the data input is large. In conclusion, rather
than offering a holistic solution, existing techniques operate
in isolated realms, sometimes incurring unintended costs or
introducing unforeseen bottlenecks. Moreover, the absence of
a systematic exploration implies that potential optimizations
still remain untapped.

In this paper, we propose MinFlow, a unified data passing
framework for I/O-intensive analytics jobs atop serverless,
which pinpoints globally optimal configuration to simulta-
neously achieve high performance and low cost. MinFlow
contains the following key innovations:

• It optimizes the data passing topology by first segmenting
functions into adaptive groups and then progressively con-
verging the groups to get integrated multi-level topologies.
This methodology not only greatly reduces the number of
PUT/GET operations, but also provides the flexibility of
selecting from a broader range of feasible topologies under
real-world settings.

• It develops an interleaved partitioning strategy to optimize
the function scheduling. Specifically, it partitions a multi-
level topology into bipartite structures, and schedules func-
tions in units of the bipartite sub-graphs so as to allow the
localization of data passing within workers.

• It leverages a precise model to pinpoint the optimal con-
figuration according to real function deployments, i.e., the
best combination of topology and function scheduling, so
as to simultaneously minimize the number of PUTs/GETs
and the storage cost.

We implement a prototype of MinFlow open-sourced at
https://github.com/lt2000/MinFlow and conduct ex-

tensive experiments based on Amazon cloud service. Our
experiments using the benchmarks of TeraSort, TPC-DS, and
WordCount show that MinFlow significantly outperforms state-
of-the-art works in both the shuffling performance and storage
cost. For example, in high-parallelism case of 600 mapper
and 600 reducer functions for 200GB TeraSort, MinFlow re-
duces the shuffle time by 66.62% and 89.22%, compared to
Lambada [32] and FaaSFlow [25], respectively, and it also
reduces the storage cost by 86% and 98.71%, respectively.

2 Background and Motivation

2.1 Background
Serverless Computing Framework. As the building blocks
of serverless, FaaS and BaaS (e.g., Amazon Lambda [5] and
S3 object store [8]) respectively empower users to directly
invoke predefined functions in containers and access remote
back-end services via RESTful APIs. When employing server-
less services, a common practice is first to decouple applica-
tions’ states and compute logic, then delegate them to BaaS-
side storage and FaaS-side functions separately (see Figure
1). Merits of the architecture are twofold. First, the separa-
tion of storage and computation and the containerized func-
tions greatly facilitate scaling up/down compute resources as
needed (e.g., to tackle bursty workloads). Second, it provides
a fine-grained "pay-as-you-go" billing model that charges for
actually used resources rather than the reserved amount; e.g.,
Amazon Lambda provides billing increments of one millisec-
ond during function execution [6]. Due to all its virtues, an
increasing number of applications have embraced the archi-
tecture, including Web, IoT, data analytics, etc. [7, 18, 31].
Data Analytics atop Serverless. Data analytics aims at ef-
ficiently processing huge amounts of data as specified to
obtain desired results, and it has been employed in a wide
range of domains, including scientific computing, machine
learning, large-scale graph computations, etc. [39]. To of-
fer essential scalability and fault-tolerance, mainstream data
analytics frameworks [15, 30, 43] commonly adopt the bulk-
synchronous-parallel model (BSP) [40], which divides a job
into consecutive stages, each stage composed of parallel sub-
tasks. When each stage is completed, the intermediate results
are transferred to the next stage, via communication primitives
such as shuffle and broadcast [14,19] for further computation.
Thereby, the workflow of jobs employing BSP can be rep-
resented as DAGs, as illustrated in Figure 1. To deploy data
analytics jobs atop serverless platforms, users typically first
declare the job’s workflow to a coordinator using configura-
tion files. Then, the coordinator assumes control, activating
functions to perform consecutive stages sequentially, with
sub-tasks within each stage executed by parallel functions.
Users receive notifications when the whole job is completed.
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Figure 2: Existing Approaches.

Notably, since serverless functions are unable to directly com-
municate with each other, data transmission between stages
is realized via remote back-end storage, typically S3, rather
than direct peer-to-peer (P2P) data passing. Since analytics
workloads typically have a wide variance of resource needs
over time [34, 35, 46], traditional physical/VMs deployments
can frequently suffer from resource wastage or performance
degradation. On the contrary, benefiting from the elasticity
and fine-grained billing model of FaaS, the job’s computa-
tion can be easily accelerated by splitting each stage into
more sub-tasks assigned to parallel functions, at a signifi-
cantly lower cost and higher performance. Thereby, a lot of
research works have focused on running data analytics based
on serverless [13, 20, 22, 25, 27, 32, 34, 35, 45].

2.2 Dilemma Caused by Shuffle

In data analytics, Shuffle is the most common primitive for
passing data between adjacent stages. Prior research shows
that more than 50% of daily data analytics jobs at Facebook
involve at least one shuffle operation [45]. As shown in Figure
1, during the shuffle process, each sub-task in the previous
stage distributes its output to all sub-tasks in the next stage.
Such an all-to-all data passing method would greatly "break
down" the intermediate results, causing proliferating requests:
for instance, if the parallelism of stages is N, then at least
2N2 object PUTs/GETs are required to pass the intermediate
results since there would be N2 links between stages and each
link represents a PUT plus a GET. This causes problems in
two aspects. First, it significantly degrades the performance.
Due to S3’s request rate limit (3.5k and 5.5k req/s for writes
and reads [10]), the quadratic 2N2 PUTs/GETs could eas-
ily be throttled, especially when N is large. Consequently,
while the computation time could be slashed by improving
the parallelism N, the entire data analytics process is signifi-
cantly slowed down by shuffle. For example, in Pocket, over
62% of time is spent shuffling data, while computation only
takes 17% of time for 100GB TeraSort [22]. Second, it drasti-
cally inflates the cost. Albeit S3 offers cheap storage (0.023
USD$ per GB/month), it incurs large access cost as it charges

in increments of single request (0.005/0.0004 USD$ per 1k
PUTs/GETs) [9]. As a result, the 2N2 PUTs/GETs would
rapidly increase the cost as N goes up. In conclusion, both the
elasticity and economy of serverless get severely impeded by
the shuffle.

2.3 Existing Approaches

Existing approaches bypass or mitigate S3’s throttling by (1)
performing Shuffle via a private storage cluster, (2) perform-
ing Shuffle via intra-worker memory, or (3) using multi-level
Shuffle to decrease the number of PUTs/GETs.
Shuffle via Private Storage. As a public cloud storage ser-
vice shared by numerous users and applications, S3 inher-
ently allocates a limited request rate to each single user, to
guarantee fairness and avoid interference among tenants. A
straightforward way to eliminate this restriction is to replace
S3 with self-maintained private storage, for example, Elasti-
Cache clusters [4]. This provides the user an exclusive owner-
ship of the storage service, thereby greatly improving shuf-
fle speed. However, losing S3’s sharing economy and fine-
grained billing model often leads to a significant increase in
cost. As Pocket [22] suggests, the cost is 100 times higher
than S3 for sorting jobs. Therefore, some remedies have been
proposed to mitigate the surging cost, e.g., as shown in Fig-
ure 2(a), Pocket [22] and Locus [35] dynamically rightsizing
resources, and combine high-end and cheap storage media to
achieve better trade-offs between performance and cost.
Shuffle via Intra-worker Memory. Another way to bypass
S3’s throttling is to reclaim and leverage over-provisioned
memory in workers to accelerate shuffle [13,25]. More specif-
ically, data passing between functions located in the same
worker is performed via its local memory. Take functions
F2 and F3 co-located in worker W1 in Figure 2(b) as an ex-
ample. Suppose data to be passed from Fi to Fj is denoted
as <Fi, Fj>. To deliver data to F3, F2 first puts <F2, F3> into
W1’s local memory, then F3 fetches <F2, F3> immediately
afterwards and finishes the transmission. This approach per-
forms well in both performance and cost, since the reclaimed
over-provisioned local memory not only offers much higher
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bandwidth and lower latency, but also does not incur extra
overhead. The downside is the limitation in its applicability,
as only co-located functions can adopt this approach [25].
Multi-level Shuffle. Borrowing ideas from HPC, which
achieves all-to-all connections among processors through
the k-dimensional Mesh Network [16], Starling [34] and
Lambada [32] project shuffle-involved functions onto a k-
dimensional mesh with a side length of k

√
N where N refers to

the number of functions, and applies the all-to-all collective
primitive to subsets of functions, once for each dimension, to
realize all-to-all shuffle among functions. Compared to direct
data passing, such a multi-level indirect manner (ML-Shuffle)
greatly decreases the number of requests, since each request
loads a larger volume of data, and only one PUT plus one
GET is required for each link. To be more precise, k-level
shuffle (kL-Shuffle) reduces the number of requests from 2N2

to 2kN k
√

N. For example, in Figure 2(c) we show a 2L-Shuffle
by setting k as 2. As can be seen, only 60 requests are needed,
compared to 72 when directly connecting functions (see Fig-
ure 2(a)). Due to fewer requests that need to be transmitted
through remote S3 during the shuffle, performance degrada-
tion caused by S3’s throttling gets mitigated, and lower fees
are charged as well.

2.4 Limitations
The aforementioned approaches face respective limitations
in cost, performance, or applicability. First, to maintain the
private storage for faster shuffle, users have to bear additional
management works like resource scaling, fault tolerance, etc.,
which should have been undertaken by serverless, thus vio-
lating the easy-of-use principle. Besides, private storage still
entails high costs. Although using dedicated NVMe storage
seems cost-efficient, the need to mount NVMe devices to
VMs [22] and the limited network bandwidth of VMs signifi-
cantly hinder the speed advantage, requiring the allocation of
numerous NVMe instances for performance. To illustrate this,
we run the state-of-the-art KV database Apache kvrocks [11]
on varying numbers of NVMe instances (EC2 i3.2xlarge, the
same as Pocket uses) for shuffle. As depicted in Figure 3, in-
creasing NVMe instances reduces shuffle time but at a signifi-
cant cost. Pocket also reports that the cost of Pocket-NVMe
is 40 times that of S3 for TeraSort [22].

Second, for performing shuffle via intra-worker memory
(e.g., FaaSFlow [25]), it’s only applicable to functions co-
located at the same worker. For analytics jobs, each group
of co-located functions represents a sub-graph in the whole
workflow DAG, and all groups together make up the whole
DAG. As a result, though functions in the same sub-graph
can communicate through local memory, due to the all-to-all
feature of shuffle, links between sub-graphs still dominate,
which necessitates the use of remote storage for data passing.
Worse yet, the benefits of memory-assisted data passing could
be easily offset by the stragglers caused by slower remote
storage. As shown in Figure 3, under different configurations,
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Figure 3: TeraSort Shuffle Time under Different Configurations.
Baseline transfers all intermediate data via S3 and the storage costs
are normalized to the baseline.

the shuffle time of FaaSFlow is only reduced by 9.94% to
11.39% than that of the Baseline.

Regarding ML-Shuffle (e.g., Lambada [32]), existing meth-
ods based on k-dimensional mesh suffer from an applicability
problem, i.e., it mandates a symmetrical Mapper-Reducer
setting, which means the number of Mappers and Reducers
must be the same (e.g., both are N). Besides, while allow-
ing to adjust the topology with different parameters (e.g., k),
they merely set parameters arbitrarily and delegate the tricky
task of choosing the optimal parameters to users, which easily
leads to sub-optimal performance. For example, while larger k
decreases the number of requests more significantly, it brings
about multiplied extra data volume to be transferred. Because
cloud vendors often assign limited network bandwidth to each
function [12, 22, 32], such heavy traffic could exacerbate the
problem. On the contrary, smaller k often comes with an un-
satisfactory effect on reducing the number of requests. For
example, under 100 functions and 200GB input data, the shuf-
fle time of Lambada is 1.91× than that of the Baseline (see
Figure 3). Moreover, the 2-level shuffle algorithm can not
be easily applied to more levels, and the extension from the
2-level shuffle algorithm to a general k-level one is non-trivial
(see §A.3).

Last, as shown in Figure 3, compared to the above three
approaches, MinFlow achieves a high-performance and cost-
efficient shuffle. We will further carry out extensive experi-
ments to show the benefits of MinFlow in §4.
Inefficiency Analysis. Though a series of optimizing "ac-
tions" can be employed, for lack of a systematic understand-
ing, there isn’t a judicious "decision maker" that can use them
collaboratively. Consequently, multiple factors together de-
cide the efficiency of shuffle, e.g., DAG topology, function
scheduling, transmission manner assignment, existing opti-
mizations work in their respective single dimension, paying
disproportionate expenses or leaving the rest as a bottleneck.
Besides, even for each single dimension, the possible action
space is still not fully explored. For instance, current ML-
Shuffle directly migrates the k-dimensional mesh from the
HPC field, whose applicability is strictly limited in the server-
less scenario. Last, rather than carefully considering the char-
acteristics of specific analytics jobs and environment variables
to select the most appropriate choice, they often merely offer
empirical value, e.g., k is set as 2. All these make existing
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approaches reach the sub-optimal configuration, leading to
degraded performance/cost/ease-of-use.

2.5 Main Idea and Challenges
Main Idea. The key factors deciding analytics jobs’ effi-
ciency include function topology represented by the DAG,
function scheduling, and the data transmission media. Com-
pared to considering them separately, optimizing them in a
unified way greatly helps find the optimal configuration, so
as to eradicate bottlenecks from the whole workflow. For in-
stance, ML-Shuffle facilitates traffic localization through local
memory since the links at each level are more sparse and
functions can be co-located more easily to avoid cross-worker
data transmission. Also, traffic localization largely absorbs the
additional traffic volume induced by ML-Shuffle. Therefore,
for any given analytics job, our main idea is to first construct
the whole configuration space by considering all three dimen-
sions, then derive the optimal configuration from the space,
based on user requirements, the task’s characteristics, and the
serverless platform’s rate limit and billing rules.
Challenges. To realize the above idea, we mainly face the
following challenges.

• Constructing ML-Shuffle topology space. To ensure ap-
plicability, we must be able to construct the complete topo-
logical space for any analytics job, including those with
an asymmetric setting of Mappers and Reducers, despite
the conventional mesh-based method supposes #mapper =
#reducer = N and only provides a concrete algorithm for
2-level shuffle† . Plus, for a specified analytics job, the com-
plete ML-Shuffle topology space contains a number of pos-
sible combinations. Thus we need to efficiently construct
the ML-Shuffle topology space with low overhead.

• Function co-location and data transmission. For each
possible topology in the space, we need to carefully as-
sign functions to workers to maximize the proportion of
leveraging local memory for data passing, while simultane-
ously ensuring load-balance among workers and avoiding
stragglers. This process is equivalent to that of searching
for a partitioning scheme that divides the whole DAG into
sub-graphs consisting of co-located functions in accordance
with requirements, which is an NP-hard problem and es-
pecially time-consuming when the number of functions is
large.

• Finding the optimal configuration. To select the optimal
configuration from the space, we need to precisely model
the mapping from each configuration to its performance
and cost. To achieve this, we must take multiple key fac-
tors into consideration, e.g., the analytics job’s intermediate
data volume and the number of I/O requests, functions’ net-
work bandwidth, and remote storage’s request rates, some
of which can only be obtained at runtime, or be dependent

†#mapper and #reducer are the number of mappers and reducers, and N
is a positive integer.
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Figure 4: Overview of MinFlow Architecture.

on specific platforms.

3 MinFlow Design

To optimize the data passing between functions, we propose
MinFlow, a unified data passing framework for analytics jobs
atop serverless platforms, which seeks the global optimal con-
figuration to achieve high performance and low cost simulta-
neously. We first introduce the overall architecture (§3.1) and
elaborate on each technique in detail (§3.2-§3.4).

3.1 Overview
As Figure 4 illustrates, MinFlow resides in the cloud-side con-
trol plane, generating appropriate configuration for specific
analytics jobs upon receiving user-submitted workflow specifi-
cations which delineate data passing paths between functions
and the communication operators executed by these functions.
Then, the coordinators deploy and run the task accordingly,
upon FaaS and BaaS platforms. Specifically, MinFlow consists
of three key components that work collaboratively to meet
this goal while tackling the aforementioned challenges at the
same time. A brief introduction of the components and their
interaction is as follows.

• Topology Optimizer. For a given analytics job, it gener-
ates equivalent multi-level topologies based on the original
single-level topology, via a novel progressively converging
method to sidestep the inherent applicability downside of
the mesh-based approach. More specifically, all candidates
for the ultimate optimal topology, i.e., those with the fewest
edges for each possible level, are rapidly constructed by a
dynamic programming algorithm, while others are ignored.

• Function Scheduler. For each generated candidate topol-
ogy, the Function Scheduler decides which functions should
be co-located at the same worker and passes data through
local memory, by dividing the complete topology into sub-
graphs. The partitioning must simultaneously achieve load
balance, cross-worker traffic minimization, and straggler
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avoidance. To solve the NP-hard problem, MinFlow em-
ploys a heuristic algorithm to find the near optimal solution
quickly.

• Configuration Modeler. Configuration Modeler selects the
optimal configuration, i.e., that with the shortest estimated
completion time and lowest cost for data passing, among
candidates. At its core is a mathematical model that fac-
tors in key variables, including serverless platform features
and analytics job characteristics, to achieve high estimation
accuracy. In particular, for those variables needed to be ob-
tained at runtime, it determines them by an efficient and
lightweight sampling method.

Note that though our current design follows FaaSFlow’s
distributed function coordination, which employs multiple
coordinators to prevent function scheduling from becoming
the bottleneck (see Figure 4), MinFlow also applies to the more
conventional architecture with a centralized coordinator.

3.2 Topology Optimizer

Progressively Converging ML-Shuffle. Following the mesh-
based ML-Shuffle, the progressively converging ML-Shuffle
attempts to generate optimized topology, which is equivalent
to the original single-level shuffle directly linking all pairs of
mappers and reducers, by adding intermediate functions to
reduce the number of required links. In contrast, it aims to
offer essential flexibility to search in the complete feasible
space for the optimal topology, instead of only providing a
single sub-optimal topology as the mesh-based method does
[32,34]. Moreover, it’s a general k-level shuffle algorithm that
allows an asymmetric number of mappers and reducers.

The key idea behind the progressively converging ML-
Shuffle is a "divide and conquer" strategy. To avoid ambiguity,
we clarify that a kL-Shuffle network consists of k+1 function
levels (denoted as flevel) and k communication levels (de-
noted as clevel), and Figure 5(a) shows a 3L-Shuffle network
involving four flevels and three clevels. Rather than projecting
functions to a rigid k-dimensional grid, progressively converg-
ing first divides functions in the first flevel into groups of the
same size (initially one) and gradually lets them converge
into larger groups in the next flevel, while preserving the full
connection between each group and its upstream mappers,
until all functions in the last flevel exist in the same group,
thus ultimately achieving global all-to-all connection. For ex-
ample, as Figure 5(a) illustrates, to build a three-level shuffle
when #mapper = #reducer = 8, functions are respectively di-
vided into 8, 4, 2, and 1 group for flevel 0, 1, 2, 3. Suppose we
let Ci, j/Fi, j denote the j-th group/function at flevel i, the data
in C0,0 in turn passes into C1,0, C2,0, and C3,0. Analogously,
the data in C0,7 passes into C1,3, C2,1, and C3,0. The rest are
similar.

More generally, to derive an L-level topology comprising
L+1 function levels, with each flevel having N functions, we
divide the functions of the i-th flevel into gi groups, where
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Figure 5: Progressively Converging ML-Shuffle Topology. Squ-
ares represent functions, and the upper and lower tuples inside func-
tions respectively represent the function’s id and the data’s range.

gi( 0 ≤ i ≤ L) meets the following conditions:
g0 = N, gL = 1, gi = di ×gi+1 where di ∈ N+\{1}. (1)

When converging groups, to preserve the full connection be-
tween the new group in the flevel i+1 and its upstream map-
pers, for each function in the new group, a unique path be-
tween it and any upstream group in the flevel i must be guar-
anteed. To achieve this, we set the receiver functions of Fi, j
as R:

R = {Fi+1,k|⌊k/si+1⌋= ⌊ j/si+1⌋∧ ⌊k%si+1/di⌋= j%si},
where si = ⌊N/gi⌋, si+1 = ⌊N/gi+1⌋, di = ⌊gi/gi+1⌋.

(2)

For example, as shown in Figure 5(a), when converging C1,0
and C1,1 into C2,0, we link F1,0 to {F2,0, F2,1}, F1,1 to {F2,2,
F2,3}, F1,2 to {F2,0, F2,1}, and F1,3 to {F2,2, F2,3}, thus preserv-
ing the full connection between {F2,0, F2,1, F2,2, F2,3} with
their upstream mappers {F0,0, F0,1, F0,2, F0,3}. As we see, the
link distribution is also kept even to balance the transmission
load among functions. Moreover, to ensure the correctness of
data passing, each function must carefully partition and dis-
tribute received data to the next flevel functions. For function
Fi, j, it first shards its data into |R| continuous and equal-sized
parts, then orderly assigns them to the receiver functions, i.e.,
functions in its R. For instance, as illustrated in Figure 5(a),
F0,0 shards its data ⟨0,7⟩ into two parts ⟨0,3⟩ and ⟨4,7⟩, and
passes ⟨0,3⟩ and ⟨4,7⟩ to F1,0 and F1,1, respectively.

Notably, the flexibility of the progressively converging
method lies in the setting of D = {di|0 ≤ i ≤ L−1}, since it
determines G = {gi|0 ≤ i ≤ L} and any G that satisfies con-
dition Equation (1) corresponds to a unique valid multi-level
topology. In other words, by adjusting D we can easily de-
rive a space containing multiple optional topologies, which
may vary in edge distribution and the number of clevels and
thus have different preferences for the number of requests,
data transmission volume, etc. For example, the data passing
volume is obviously proportional to L since each additional
clevel incurs one more intermediate data transmission, and
combining Equation (2) we have that the number of edges
is N ×∑

L−1
i=0 di, by doubling which we can get the number of

PUTs/GETs. Actually, the space covers those topologies gen-
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erated by conventional mesh-based methods. And it can be
proven that supposing N can be decomposed as the product of
p prime factors, the space size SS = ∑

p
j=1 ∑

j
i=1

(−1) j−iip

i!( j−i)! (e.g.,
SS = 115975 when p = 10 and the detailed proof in §A.1).
Such selectivity greatly facilitates seeking the most appropri-
ate topology for an analytics job. Later, we will detail how to
select the appropriate topology from the space, by carefully
setting D.

Note that our approach may not work well in some cor-
ner cases, especially under prime function parallelism N.
However, this problem can be easily addressed by allowing
slight adjustments to the number N within a given bound, i.e.,
[N −α,N +α]. In our paper, we select α = 3, and we will
provide a detailed discussion on the impact of α in §4.5.

Last, compared to the mesh-based approach, the applica-
bility gets significantly improved as well. As depicted in
Figure 5(b), our approach even works for an asymmetric num-
ber of senders and receivers (#mapper = 8 ̸= #reducer = 6),
provided we keep the intermediate flevel the same size as the
Reduce flevel, and link functions as Equation (2) suggests.
Candidates for Optimal Topology. For the Topology Opti-
mizer, not provided with essential information (like function
scheduling plan, data transmission manner, and other runtime
states) to predict resulting completion time precisely, simply
deciding the best topology by completion time is a rub. On the
other hand, indiscriminately outputting all possible topologies
forces all of them to go through all modules, incurring high
overhead. Thus we adopt a middle-ground solution, i.e., to
first select a small set of candidates, based solely on a com-
parison between their topological structure, then relegate the
ultimate decision-making for the best to subsequent modules.
In particular, though it’s hard to directly find a total order
for topologies’ structure, comparison between them can be
summarized as the following cases:

• Case 1. Under the same L, the topology with the fewest
edges has the shortest completion time and data passing
cost, as it transfers the data with the fewest PUTs/GETs that
are more promptly processed by remote storage service.

• Case 2. Under different L, the comparison could be ambigu-
ous, since on the one hand, larger L reduces edges, thus
the number of PUTs/GETs. On the other hand, it transmits
the intermediate data L times, potentially throttled by the
function’s network bandwidth.

Therefore, based on the partially ordered comparison, we
add the locally optimal topology under each possible L, i.e.,
the one with the fewest edges, to our candidate set. Recall
that the number of edges is N ×∑

L−1
i=0 di. Then suppose N can

be decomposed into p prime factors, which means feasible
L lies in [1, p], candidate selection can be transformed into a
series of optimization problems as follows:

For L ∈ [1, p],

 minimize N ×∑
L−1
i=0 di

subject to ∏
L−1
i=0 di = N, di ∈ N+\{1}

(3)

We propose a dynamic programming algorithm to solve these
problems at once. Let MinSum(i, j) denote the minimized
sum of factors when factorizing i into j factors. Then we
need to find MinSum(N,L) for L ∈ [1, p]. The state transition
equation is as follows:

MinSum(i, j) =

 minn|i(n+MinSum(i/n, j−1)) j > 1

i j = 1
(4)

As we see, the equation formulates the value of MinSum(N,L)
recursively in terms of its sub-problems. Thus we employ a
bottom-up dynamic programming approach, i.e., iteratively
solving MinSum(i, j) with smaller i and j first and use their
solutions to arrive at solutions to bigger i and j. More specif-
ically, we can calculate all MinSum(N,L) for L ∈ [1, p] in a
nested loop. In the inner loop, i starts from 1 to N, while in
the outer loop, j progresses from 1 to p. Along the way, all
desired MinSum(N,L), 1 ≤ L ≤ p gets solved. Moreover, we
use Sol(i, j) to track the decomposition path of MinSum(i, j),
i.e., Sol(i, j > 1) = the selected n of MinSum(i, j) in Equa-
tion (4) and Sol(i,1) = i. Then by iteratively putting Sol(i, j)
along the decomposition path of MinSum(N,L) into a se-
quence, we can get the desired D = {di|0 ≤ i ≤ L− 1}, by
which we can easily derive the corresponding L-level topology
with the fewest edges.

3.3 Function Scheduler
The Function Scheduler assigns a scheduling plan to each
of the candidate topologies, indicating when and on which
worker each function should be invoked. While the "when"
question is straightforward to deal with by monitoring the
completion time of functions and following the data depen-
dency between functions, the latter "where" question must be
treated carefully to satisfy several important and interacting
requirements. Next, we first formulate the problem and then
demonstrate how to solve it.
Problem Formulation. The function placement problem is
equivalent to partitioning the whole DAG into sub-graphs,
where functions within each sub-graph must be co-located to
pass data via local memory, while different sub-graphs are
placed independently and communicate via remote storage.
Then our goal is to search for a partitioning scheme that
satisfies the following requirements:

1) Traffic localization. Since functions within sub-graphs are
co-located and communicate via faster local memory, the
resulting sub-graphs should include edges in the DAG as
much as possible, to localize more traffic and thus accelerate
the data passing.

2) Transmission straggler avoidance. Due to the synchroniza-
tion barrier of the BSP model, the duration of each clevel’s
transmission is decided by the slowest edge. Thus edges in
the same clevel should be either all included in sub-graphs
or not included at all, to avoid the benefit of faster local
memory being offset by stragglers caused by remote stor-
age.
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3) Load balancing. The DAG must be partitioned until all sub-
graphs width, i.e., the number of functions in the flevel with
the most functions, must be capped to ensure functions’
computing and communication load can be easily spread
among workers at all flevels and clevels.

Interleaved Graph Partitioning. As §2.4 suggests, the above
requirements are contradictory in the original single-level and
all-to-all topology. Surprisingly, the progressively converging
ML-Shuffle brings an opportunity to achieve them simultane-
ously. Since it transforms the rigid all-to-all connection into
multiple levels of more sparse connections, each clevel has
the favorable feature as follows.

Theorem 1. For a multi-level topology generated by the pro-
gressively converging method (the parallelism is N), the i-th
level of links corresponding to factor di, along with two ad-
jacent flevels of functions, can be divided into N

di
disjoint

complete bipartite graphs with width di.

Proof. According to Equation (2), Fi,m and Fi,n, where
⌊ m

si+1
⌋ = ⌊ n

si+1
⌋ and m ≡ n(mod si), have the same receiver

functions R. Hence, the functions at flevel i can be categorized
into N

di
conjugacy classes, with the elements within each class

sharing the same R. Each conjugacy class at flevel i and its R
at flevel i+1 together constitute a complete bipartite graph
with width di (detailed proof in § A.2).

From Theorem 1, any clevel can be decomposed into iso-
lated Complete Bipartite Graphs (CBGs), which are ideal
units for function co-location, since all edges in the clevel are
evenly included by same-sized CBGs as shown in Figure 6.
In other words, by putting functions within each CBG to the
same worker, data transmission of the clevel can be done via
workers’ memory instead of remote storage, greatly acceler-
ating data passing. Meanwhile, different CBGs can be placed
arbitrarily, without the need to be co-located.

So far we’ve found an excellent way to place functions for
each individual clevel, yet the method can’t be directly gener-
alized to function placement for the whole multi-level graph.
Since the communication of adjacent clevels involves a shared
flevel, e.g., clevels 0 and 1 both involve flevel 1 (see Figure 6),
co-location constraints of two clevels must be met at once,
which leads to multiplied width of co-location units. Worse
yet, when jointly considering all clevels, due to the cascade
effect, functions in the whole graph must be co-located to
the same worker, violating the load balance requirement. To
address the problem, we employ an interleaved partitioning
strategy, to decouple the tightly bound clevels so as to solve
them independently. Specifically, it removes edges in all odd-
numbered clevels, delegating that portion of data passing to
remote storage. The rationality lies in the following corollary,
which could be easily derived from Theorem 1.

Corollary 1. For a k-level topology generated by progres-
sively converging method (the parallelism is N), where each
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Figure 6: Function Scheduling.

level has the corresponding factors d0, d1, ..., dk−1, if we re-
move edges of all odd-numbered levels (1,3, ..., ⌊ k

2⌋×2−1),
the whole graph can be divided into disjoint CBGs with width
lying within Deven = {d0,d2, ..., d⌊ k−1

2 ⌋×2}

The interleaved approach (see Figure 6) acts as a heuris-
tic algorithm to solve the NP-hard graph partitioning prob-
lem [17,24,25], by giving quick solutions that fit the aforemen-
tioned requirements. Specifically, due to at least half of the
clevels being left for local memory to perform data passing,
performing function placement in units of resulting CBGs lo-
calizes over 50% of overall traffic. Meanwhile, since transmis-
sion media (i.e., local memory or remote storage) is assigned
in an interleaved manner, no communication straggler exists
during the job’s execution. Last, it allows us to selectively de-
cide which factors in D would be put in Deven, to minimize the
resulting CBGs’ width, thus achieving a fine-grained function
placement that facilitates load balancing.

3.4 Configuration Modeler
Topology Optimizer (§3.2) has offered a group of candidate
multi-level topologies, and Function Scheduler (§3.3) pro-
vided each with its appropriate function scheduling and place-
ment scheme. Configuration Modeler’s responsibility is to se-
lect the optimal one out of them. Since the additional function
level of a multi-level topology only works to assist commu-
nication and doesn’t change the job’s computing time, Con-
figuration Modeler opts to choose the one with the shortest
overall data passing time.

To achieve this, the Configuration Modeler must precisely
model each configuration’s resulting passing time. As dis-
cussed in §2.4, during each clevel’s communication, either
the function side or the storage side acts as the real bot-
tleneck, depending on the actual number of requests and
data volume. More specifically, the duration would be Ti =
2×max(Ti, f ,Ti,s),0 ≤ i ≤ L− 1, where Ti, f and Ti,s respec-
tively represents the time spent on function putting/fetching
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data in fixed rate and storage side processing received re-
quests, and since the two parts are overlapping, we take the
maximum of them. The reason behind the multiplier 2 is that
each clevel’s communication includes sender functions writ-
ing to the storage side plus receivers reading back. Due to
S3-based and memory-based communication alternating in
different clevels, caused by the interleaved transmission media
assignment (see §3.3), Ti, f and Ti,s are modeled differently in
the two types of clevels. Suppose the function number is N in
each flevel, in the S3-based clevel we have Ti, f =

Di
N∗b f

where
Di/N and b f are each function’s transmitted data volume
at flevel i and bandwidth ceiling respectively, and Ti,s =

Ri
qs

where Ri is the involved number of requests at clevel i and qs
is S3’s request rate. In contrast, for the memory-based clevel
Ti, f =

Di
M∗bt

and Ti,s =
Ri

M∗qt
, where M is the number of cluster

nodes, bt and qt respectively are the bandwidth ceiling and
I/O rate limit of Tmpfs [1] which we leverage to establish
the elastic reclaimed-memory file system. To summarize, the
overall data transmission time of a multi-level network is:

T = 2∗
L−1

∑
i=0

 max( Di
N∗b f

, Ri
qs
), i is odd.

max( Di
M∗bt

, Ri
M∗qt

), i is even.
(5)

Except for the data volume Di, other parameters in Equa-
tion (5) can be obtained before running the job. Yet Di is only
available by the runtime, preventing choosing the optimal
configuration before the job runs. We use a sampling and pro-
filing method to address the problem. As there is commonly a
linear, or a non-linear but deterministic relationship between
the size of input data and intermediate data [33], and Di keeps
consistent for all clevels, Configuration Modeler repeatedly
samples the original input with different sizes and executes
the job, recording the amount of intermediate data. Then each
time it gets a new <input data size, intermediate data size>
pair. By fitting these pairs using a curve, Configuration Mod-
eler can estimate the intermediate data size under the whole
input. Thus, by bringing all parameters into Equation (5), the
Configuration Modeler predicts the transmission time of all
candidate configurations, and selects the fastest one.

4 Evaluation

4.1 Experiment Setup
TestBed. We deploy our FaaS framework on 10 Amazon EC2
m6i.24xlarge instances, each with 96 vCPUs, 384GB mem-
ory, and 37.5 gigabits/s bandwidth, and we adopt Amazon
S3 as the remote storage. All compute instances run Ubuntu
22.04 LTS with Linux kernel 5.15.0. For our FaaS framework,
similar to FaasFlow, we run self-maintained functions within
docker containers (24.0.6 version), rather than directly adopt-
ing function services that are not transparent to us, so as to
better manage functions’ execution and lifetime.

Workload. We adopt three widely employed benchmarks in-
volving shuffle operations, ranging from typical MapReduce-
style tasks to SQL-style queries.

• TeraSort. Sorting a dataset based on the specified key.
• TPC-DS-Q16. TPC-DS consists of multiple SQL queries.

Among them, we select the most data-intensive one, i.e.,
the 16th query that performs a large joining via shuffle.

• WordCount. Counting word frequency in documents.

The datasets of the above workloads are respectively gener-
ated by Sort Benchmarks Generator [2], TPC-DS Tools [3],
and Purdue MapReduce Benchmarks Suite [36].
Comparison. We compare MinFlow (denoted as MF) with the
basic practice and two state-of-the-art works, in terms of both
performance (execution time) and cost (fees charged).

• Baseline. The most common and straightforward approach,
i.e., all intermediate results during shuffle are transferred
through remote S3 object store, denoted as BL.

• FaaSFlow. FaaS framework with state-of-the-art function
scheduling mechanism, which transmits intermediate data
via local storage within workers, referred to as FF.

• Lambada. State-of-the-art topology optimizing method, per-
forming multi-level shuffle to reduce PUTs/GETs to S3. We
select its optimal configuration and denote it as LBD.

Configuration. During all our experiments, we set the re-
source limit of each function as 2 CPU, 3GB memory,
and 75MB/s bandwidth, similar to prior research works
[21, 26, 41, 47], to simulate a common setting of Amazon’s
commercial function service Lambda. By default, we respec-
tively set the input size as 100GB and 200GB, and set the
parallelism as 400 functions and 600 functions, since MinFlow
mainly focuses on processing massive datasets with a large
number of functions, which is in accordance with the server-
less paradigm’s goal to support hyper-scale computation with
its superior scalability. Besides, we extensively adjust the in-
put size and parallelism to show MinFlow’s performance under
broader settings (see §4.5).

4.2 Microbenchmark Results
Shuffle Time & Storage Cost. Now we evaluate MinFlow’s
effectiveness in improving the shuffle speed and saving the
storage cost. Figure 7, 8 and 9 shows the shuffle time and
normalized storage cost (divided by the BL’s storage cost) of
all approaches under three different workloads.

Taking TeraSort as the example (Figure 7, we first focus on
the 600-function parallelism with 200GB input data size, the
BL takes nearly 180s to finish the shuffle operation. During
shuffling, not only do all functions await, but the bill for using
functions continues increasing as function services usually
charge based on time (e.g., in increments of 1ms). Besides,
compared to BL, FF only slightly reduces the shuffle time and
storage cost by 14.45% and 9.98%, respectively, since most of
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Figure 7: Shuffle Time of TeraSort.
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Figure 8: Shuffle Time of TPC-DS.
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Figure 9: Shuffle Time of WordCount.

PUTs/GETs (324000 out of 360000 = 90%) carrying interme-
diate data still go through remote S3 and only a tiny portion
(the rest 10%) can be performed via local storage, which we
presented the reason in §2.4. In contrast, LBD could greatly
accelerate the shuffle process with much less storage cost.
Specifically, it shortens the shuffle time by over 72.36% and
67.69% compared to BL and FF, meanwhile saving the storage
cost by 91.68% and 90.76%, respectively. Nevertheless, LBD
still experiences ~50s idle time to wait for the shuffle’s com-
pletion. As for MinFlow, it outperforms all the competitors
in terms of performance by slashing the shuffle time to 16s.
Compared to BL and FF, MinFlow achieves 10.8× and 9.3×
shuffle acceleration respectively, and even compared to LBD,
MinFlow still achieves 3× faster shuffle speed. In addition,
MinFlow greatly saves the storage cost (98.84%, 98.71%, and
86% compared to BL, FF, and LBD), for it not only greatly
reduces the number of PUTs/GETs but also largely eliminates
additional intermediate data volume via local storage. Under
400-function TeraSort with 200GB input data size, similar to
the 600-function parallelism, MinFlow preserves considerable
performance and cost improvement – as Figure 7(a) shows it
achieves 2.1× shuffle acceleration and 85.37% cost saving
compared to LBD. Yet one noticeable change is that the perfor-
mance benefit of MinFlow over BL and FF shrinks, although
still reaches as high as 76.99% and 74.03%, respectively. It’s
because the performance degradation caused by excessive
PUTs/GETs alleviates under lower parallelism. We will con-
duct more in-depth experiments about this phenomenon later
(see §4.5).

Aside from the above TeraSort, Figure 8 and 9 show the
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Figure 10: Load Balance. TeraSort,600#F,200GB.

results of TPC-DS-Q16 and WordCount. It can be found
that while the results of TPC-DS-Q16 are quite similar to
those of TeraSort, MinFlow shows much higher performance
benefit over other approaches when running WordCount, as
shown in Figure 9 where the vertical axis is logarithmic to
more clearly present the shuffle time. For example, under 600
functions with 200GB input data, compared to BL and FF,
MinFlow reduces the shuffle time by as high as 99.31% and
99.23%. Such phenomenon can be explained from the aspect
of intermediate data size – while TPC-DS-Q16 and TeraSort
share a common characteristic that the intermediate data size
of shuffle is consistent with the input data size, WordCount
has much less intermediate data since duplicate words in the
input would be eliminated with a counter.
Load Balance among Workers. Load balance has always
been a necessity for large-scale distributed systems since it
directly determines systems’ resource efficiency and quality
of service. To demonstrate MinFlow’s capability in load bal-
ancing, we count the load of each worker every 50ms to show
a fine-grained resource usage of workers. Figure 10(a), 10(b),
10(c) and 10(d) respectively show the CPU usage, memory
occupation, and traffic load of all 10 workers when running
TeraSort under 600 functions and 200GB input data with Min-
Flow, where the brighter red represents higher load. First, as
we can see, all types of loads are kept even among workers
throughout the process. Second, the load intensity of each
worker varies noticeably along the timeline, which is in line
with the BSP model’s characteristic that compute/memory
and traffic peaks appear alternatively. For example, the com-
pute and memory peaks indicated by the bright-red "stripes"
in Figure 10(a) and 10(b) represent the positive correlation
between compute and memory peaks. On the other hand, the
peaks of incoming traffic occur at around 0-5s (input) and
22.5-27.5s (GETs of remote storage shuffle), and peaks of
outgoing traffic occur at around 12.5-17.5s (PUTs of remote
storage shuffle) and 37.5-42.5s (output). They are both inter-
leaved with the above compute/memory peak. In addition, by
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Figure 11: Overall Time of TeraSort.
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Figure 12: Overall Time of TPC-DS.
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Figure 13: Overall Time of WordCount.

combining this set of results, we could find that for MinFlow
the remote storage shuffle only accounts for ~10s out of the
overall ~45s job running time, partly verifying MinFlow’s high
shuffle speed.

4.3 Overall Performance Analysis
Figure 11, 12 and 13 show the overall job completion time
under the same setting as in §4.2. We still first take the 600-
function with 200GB input data group as the example. In
terms of the overall job completion time, as we can see, com-
pared to other approaches MinFlow could contribute 41.35%-
77.98% improvement for TeraSort workload, 39.12%-72.86%
for TPC-DS, and 12.26%-82.46% for WordCount. The im-
provement mainly comes from shuffle time reduction, since
among the compute, shuffle, and input/output time only the
shuffle time changes significantly, while the other two parts
basically remain constant across all approaches.

Among three workloads, for TeraSort and TPC-DS that
have same-sized intermediate data with their input, shuffle
time plays a non-neglectable part throughout all compared ap-
proaches. For example, in the TeraSort group BL, FF, and LBD
respectively spend 88.65%, 87.23%, and 65.24% time on shuf-
fling. By employing MinFlow the proportion could be reduced
to 37.13%, contributing to not only more efficient compu-
tation but also better function use, since functions fees are
charged in increments of time units, say 1ms. However, when
it comes to WordCount, though the overall time improvement
is still significant compared to BL and FF, the benefit over
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LBD shrinks, as Figure 13 shows. The reason is WordCount’s
reduction in intermediate size for word deduplication – While
this does not noticeably impact BL and FF’s overall time for
their bottleneck lies in the excessive number of PUTs/GETs
instead of the transmitted data volume, it greatly alleviates
LBD’s bottleneck that is mainly caused by function bandwidth
limit. As a result, LBD’s shuffle time only accounts for 14.83%
of the overall job execution time, largely neutralizing the great
shuffle time improvement of MinFlow over LBD.

Last, since theoretically the compute and input/output
speed are proportional to the function number, increasing
the parallelism can easily slash both compute and input/out-
put time, which does not hold for shuffle time. Therefore
shuffle time accounts for a higher portion under high paral-
lelism, providing more optimization space. For example, as
Figure 11 shows, under 200GB input data size, compared with
400-function parallelism in which MinFlow achieves 26.49%-
53.38% overall time reduction, in 600-function parallelism
the values increase to 41.35%-77.98% respectively. To con-
clude, these results demonstrate that MinFlow could improve
the overall time considerably compared to existing works
throughout all three workloads.

4.4 Breakdown and Overhead

Performance Breakdown. We progressively integrate the
three components to show their respective contribution to
MinFlow’s shuffle time reduction. Figure 14 shows the re-
sults of TeraSort under 600 function and 200GB input data,
where the MinFlow with only Topology Optimizer is referred
to as MF

1
3 , the version with both Topology Optimizer and

Function Scheduler as MF
2
3 , and the full version MinFlow

denoted as MF . As it suggests, MF
1
3 decreases the shuffle

time by 43.93% and 34.46% compared with BL and FF but
is slower than LBD. This is because compared to LBD which
offers a two-level shuffle, by default Topology Optimizer of
MinFlow chooses the highest clevel number it can generate, to
decrease entailed PUTs/GETs maximally. Yet this often in-
curs too much additional intermediate data. Fortunately, after
the Function Scheduler is combined such issue gets greatly
alleviated, thus MF

2
3 performs better than LBD, by 19% in

the figure. Last, the full version of MinFlow further integrates
Configuration Modeler to judiciously select the optimal clevel
number and corresponding suitable function scheduling plan,
instead of just gluing the Topology Optimizer and Function
Scheduler. As a result, the full version of MinFlow could out-
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Figure 16: Various Input Data Size.

perform other approaches by 66.62%-90.77%.
Besides, we further compare with MF-OPT, whose configu-

ration is obtained by iteratively running all configurations and
picking the one with the shortest shuffle time. As the purple
line in Figure 14 shows, MinFlow achieves basically the same
shuffle speed with MF-OPT once we ignore the tiny difference
(below 1%) caused by our testbed’s performance fluctuation.
System Overhead. Now we evaluate MinFlow’s system over-
head. First, the Topology Optimizer consumes additional CPU
cycles to generate the candidate topologies before running
jobs (see §3.2). Figure 15 presents the time cost, when Min-
Flow uses a single thread to perform topology calculation.
As we can see, it basically increases linearly as the paral-
lelism, i.e., the function number goes up. Under 600-function
parallelism, the time is not above 1s, which can be ignored
compared to MinFlow’s improvement on shuffle time. Second,
the Function Scheduler spends time searching in each of the
candidate topologies for biparties, which are the basic func-
tion scheduling units (see §3.3). This part of the time cost is
close to the topology calculation time as Figure 15 shows. As
to some spikes in the figure, they appear when the parallelism
value corresponds to more candidate topologies, i.e., the value
that can be decomposed into more prime factors. For example,
under 2×2×3×5×7 = 420-function setting, it has 5 can-
didate topologies. In short, both of the above time costs are
dwarfed by MinFlow’s benefits. Moreover, if needed the time
cost can be easily slashed by using multi-threads. Besides,
though multi-level shuffle entails more functions, MinFlow
eliminates the cost by keeping warm and reusing functions
across levels. The memory consumed by local storage is also
the reclaimed memory as in [25].

4.5 Impact of Different Configurations
As mentioned earlier, two factors impact MinFlow’s perfor-
mance, including the input size and function parallelism. Now
we investigate the impact more extensively, by comparing Min-
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Figure 17: Tunable Function Parallelism.

Flow to other approaches under a broader range of input size
and parallelism settings. For space limit, we only put results of
TeraSort, while TPC-DS and WordCount show similar trends.
Input Size. First, we fix the parallelism as 100-function and
tune the input size from 50GB to 100GB, 200GB, and 400GB.
As we can see in Figure 16(a), across all approaches the shuf-
fle time increases proportionally with the input size. The trend
can be easily explained – Due to the number of PUTs/GETs
to S3 not greater than 100×100×2 = 20000, S3’s speed of
thousands of requests per second is enough to rapidly pro-
cess them. Therefore for all approaches, the shuffle time is
mainly determined by the volume of data to be transmitted,
which is proportional to the input size. Note that even under
such a low-parallelism setting, which is not MinFlow’s target
scenario, MinFlow could achieve near-optimal performance
compared to others. By contrast, in the 600-function group
(see Figure 16(b)), though LBD and MinFlow still exhibit a
similar trend, the shuffle time of BL and FF remains consistent
across all input sizes. Such difference stems from their dis-
tinct bottleneck. Specifically, for BL and FF the 600-function
parallelism setting would incur 600×600×2=720000 PUT-
s/GETs, making S3’s speed the main bottleneck. As a result,
their shuffle time is insensitive to the changing input size.
However, due to LBD and MinFlow’s great effectiveness in re-
ducing the number of PUTs/GETs, their bottleneck still lies in
functions’ aggregated bandwidth sending/receiving interme-
diate data, leading to the shuffle time proportional to the input
size. Note though it seems that under high-parallelism, say
600-function, the performance advantage of MinFlow over BL
and FF shrinks as the input size increases, such trend would
stop at a certain point where the input size is large enough to
replace the massive PUTs/GETs as the new bottleneck.
Tunable Parallelism. Figure 17(a) shows the shuffle time
results under parallelism of 100, 200, 400, and 600 functions,
with 50GB input size. As we can see, for the low efficiency
of performing shuffle, i.e., the huge number of PUTs/GETs
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to S3, both BL and FF’s shuffle time keeps getting worse
with the parallelism increasing, greatly impeding the critical
scalability advantage of the serverless paradigm. By contrast,
LBD exhibits a distinct trend that the shuffle time rapidly
decreases as the parallelism gets higher, though its multiplied
intermediate data, which must be transferred via remote S3,
severely degrades its shuffle speed. For example, under low
parallelism, say 100-function, it performs even worse than BL.
In comparison, MinFlow not only preserves the continuously
decreasing shuffle time but also avoids such degradation.

When the parallelism N is a prime number, we select the
substitute in [N −α,N +α] which can generate a network
with as many clevels as possible. Figure 18 shows that after
adjusting the prime numbers within 1000, the cumulative
distribution of the number of network clevels can be generated.
We can see that when α = 1, all prime numbers except 2 can
generate networks with more than two clevels and when α= 3,
more than 97% of prime numbers can generate networks with
more than four clevels. Therefore, in cases involving prime
parallelism, as illustrated in Figure 19, MinFlow after fine-
tuning continues to outperform other approaches significantly.
Summary. MinFlow significantly outperforms other ap-
proaches in terms of both shuffle time and storage cost un-
der high-parallelism, its target scenario. And even in a low-
parallelism setting, it preserves good performance close to its
best competitor, while considerably saving the storage cost.

5 Related Work

Optimization of Serverless DAGs. Several recent proposals
have aimed to decrease job completion time by optimizing the
performance of serverless DAGs. Orion [28] first proposes
the idea of bundling multiple parallel invocations to mitigate
execution skew and finds the best bundle size through trial and
error. WiseFuse [29] goes a step further on Orion, it builds the
performance model to determine bundle size and proposes
the fusion of successive functions to reduce communication
latency between consecutive stages in the DAG. However,
given the huge data volume and dense topology inherent in
serverless data analytics, fusion and bundling both struggle to
mitigate the data exchange overhead. A complementary line
of work provides efficient scheduling for serverless DAGs.
Wukong [13] and FaaSFlow [25] provide decentralized and
parallel scheduling distributed across function workers. Addi-

tionally, they harness over-provisioned local memory in the
workers to expedite data exchange among functions within
the same worker. This results in serverless DAGs that utilize
both network I/O and local memory highly efficiently. Nev-
ertheless, this approach proves inadequate when applied to
serverless data analytics, as elaborated in §2.4. Overall, no
prior work in this category can effectively reduce the data
movement overhead of serverless data analytics.
Optimization of Serverless Intermediate Data Store. Be-
sides DAGs optimization, recent work also reduces job com-
pletion time by optimizing the intermediate data store. Pocket
[22] and Locus [35] show that current options for remote
storage are either slow disk-based (e.g., S3) or expensive
memory-based (e.g., ElastiCache). Thus, to balance perfor-
mance and cost, Pocket combines different storage media (e.g.,
DRAM, NVMe, HDD) that users can choose to conform to
their application needs. But this approach only makes eco-
nomic sense when running different applications, e.g., when
exclusively executing tasks like TeraSort, Pocket consistently
selects the costly NVMe storage as the intermediate data
repository. Faasm [37] and Cloudburst [38] accelerate data
movement between functions, through a distributed shared
memory across worker nodes. They rely on specific assump-
tions regarding the sandbox runtime and the programming
interface exposed to tenants for developing their applications
and in terms of consistency semantics and protocols between
the FaaS workers and the backend storage. In contrast to
existing efforts, MinFlow uses only cheap S3 and reclaimed
memory, achieving performance and economic gains.

6 Conclusion

In this paper, we develop MinFlow, a holistic data passing
framework for I/O-intensive serverless analytics jobs. Min-
Flow efficiently creates multi-level data passing topologies
with fewer PUT/GET operations and uses an interleaved strat-
egy to partition the topology DAG into complete bipartite
sub-graphs. This optimizes function scheduling and cuts data
transmission to remote storage by over one half. Addition-
ally, MinFlow employs a precise model to pinpoint the best
configuration. Experiments on our prototype demonstrate that
MinFlow significantly outperforms state-of-the-art systems in
both the job completion time and storage cost.
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A APPENDIX

A.1 Topology Space Size
Theorem A.1. For a symmetric single-level shuffle network
with function parallelism N, the topology space size of its
multi-level shuffle network is SS = ∑

p
j=1 ∑

j
i=1

(−1) j−iip

i!( j−i)! , where
p refers to the number of prime factors of N.

According to §3.2, the topology space size of the multi-
level shuffle for the aforementioned network is equivalent to
the search space size encompassing all factorizations of N. An
intuitive way to explore all factorizations of N is to combine
its prime factors, e.g., the 2-factorization of N is equivalent to
dividing the prime factors of N into two nonempty sets. Next,
we prove that this method results in the search space equal to
SS in Theorem A.1.

Proof. Assume that N = n1 × n2 × ... × np, where ni is
a prime, 1 ≤ i ≤ p and let S(n,k) denote the number of
k− f actorizations of an integer with n prime factors. Then,
SS = ∑

p
j=1 S(p, j). Note that we can derive all factorizations

in S(n,k) from factorizations in S(n−1,k) and S(n−1,k−1)
through the following two methods:

• case1: Assume the extra factor of S(n,k) compared
to S(n − 1,k) as m. Combine m with any factor of a
factorization in S(n−1,k).

• case2: Assume the extra factor of S(n,k) compared to
S(n− 1,k − 1) as m. Let m become a new factor of a
factorization in S(n−1,k−1).

Therefore, we can conclude that S(n,k) = k× S(n− 1,k)+
S(n − 1,k − 1) and S(n,k) is the Stirling Number of the

Second Kind, whose general formula is ∑
k
i=1

(−1)k−iin

i!(k−i)! [42].
Furthermore, we can deduce that SS = ∑

p
j=1 S(p, j) =

∑
p
j=1 ∑

j
i=1

(−1) j−iip

i!( j−i)! .

A.2 CBGs in Multi-level Networks
Theorem A.2. For a multi-level topology generated by the
progressively converging method (the parallelism is N), the
i-th clevel of links corresponding to factor di, along with
two adjacent flevels, can be divided into N

di
disjoint complete

bipartite graphs with width di.

Proof. Define the mapping function F := ⟨ f1, f2⟩ := ⟨x,x⟩ 7→
⟨⌊x/si+1⌋,x%si⟩,x ∈ {0,1, ...,N − 1}. According to Equa-
tion (2), Fi,m and Fi,n, where F (m) = F (n), have the same
receiver functions R.

We categorize the functions at flevel i into conjugacy
classes, with the elements within each class sharing the same
R. Assume that the ranges of F , f1 and f2 are R ,r1 and r2
respectively, then |R | = |r1|× |r2| = N

si+1
× si =

N
di

, in other

words, the functions at flevel i can be partitioned into N
di

con-
jugacy classes. For any element ⟨m,n⟩ in R , we can find
it’s si+1

si
= di preimages, namely, m× si+1 + k × si + n,k ∈

{0,1, ...,di −1}. In summary, the functions at flevel i can be
divided into N

di
conjugate classes of size di.

Because each conjugacy class at flevel i and its R at flevel
i+1 together constitute a complete bipartite graph, the i-th
clevel of links corresponding to factor di, along with two
adjacent levels of functions, can be divided into N

di
disjoint

complete bipartite graphs with width di.

A.3 Applicability of Mesh-based Networks
Constructing k-level shuffle networks for function parallelism
in N is equivalent to grouping N functions k times and per-
forming intra-group shuffle after each grouping, which is re-
vealed by Theorem A.2. Note that this process necessitates
distinct groupings at each flevel.

Mesh-based method [32,34] groups functions by projecting
N functions into a k-dimensional mesh to construct a k-level
shuffle network. Specifically, they adopt the unary mapping
h1(x,c) := x 7→ ⌊x/c⌋ and h2(x,c) := x 7→ x%c for grouping,
where c|N,x ∈ {0,1, ...N −1}. However, this approach does
not give guidance on selecting the side length (i.e., group
size) of the k-dimensional mesh, while we conduct a detailed
theoretical analysis in §3.2. Even worse, as shown in Theo-
rem A.3, despite having insights into selecting an appropriate
group size, the grouping methods outlined in [32, 34] still are
proved to be ineffective in many cases.

Theorem A.3. For multi-level networks where the number of
flevels with the same group size is greater than three, unable
to generate distinct groupings for flevels with the same group
size using the unary mapping in h1(x,c) := x 7→ ⌊x/c⌋ and
h2(x,c) := x 7→ x%c, where c|N,x ∈ {0,1, ...N −1}.

Proof. Assume that N = sn,n ≥ 3. According to §3.2, per-
forming progressively converging for the N functions, we can
construct a multi-level network where the number of flevels
with group size s is greater than three. However, we can not
use h1(x,c) and h2(x,c) to achieve this.

For h1(x,s), we can only perform h1(x,s) := x 7→ ⌊x/s⌋
to divide N functions into groups with group size s. This is
because that h1(x,sm),2 ≤ m ≤ n divides N functions into
groups with group size greater s.

Likewise, as to h2(x,c), we can only perform a grouping
h2(x,sn−1) := x 7→ x%sn−1 distinct with h1(x,s) to divide N
functions into groups with group size s.

Corollary A.3. For multi-level networks where the number
of flevels with the same group size is greater than three, un-
able to generate distinct groupings for flevels with the same
group size using arbitrary nesting of the unary mapping in
{h1(x,c)| c|N}

⋃
{h2(x,c)| c|N}, where x ∈ {0,1, ...N −1}.

Proof. It is omitted as it is similar to the proof of Theorem
A.3.

Note that our method uses binary mapping F in Theo-
rem A.2 instead of unary mapping to solve the limitations of
mesh-based methods.
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B Artifact Appendix

Abstract
Our artifact includes the prototype implementation of MinFlow
and three other state-of-the-art comparison methods, along
with the three data analytics benchmarks evaluated in our
experiments. Additionally, we provide experiment scripts for
reproducing our results on Amazon EC2 instances.

It’s important to note that reproducing all of our results will
take tens of hours and thousands of dollars with the Amazon
cloud service.

Scope
The artifact has two main goals: The first is to enable the
validation of the main claims presented in the paper. The
second is to facilitate others in building upon MinFlow for
their own projects. We include code to reproduce Figures
7-19.

Contents
The artifact is hosted in a git repository. This repository in-
cludes MinFlow ’s source code as well as documentation and
example applications. It is structured as follows:

benchmark/: This folder contains the code for the three
evaluation applications (Terasort, TPC-DS, and WordCount)
and input data generators for each application. By running
create_image.bash in each application directory, serverless
job-specific images can be deployed on the worker node.

config/: This folder contains the configuration file config
.py, allowing users to configure the database and node infor-
mation. It also provides options to select the application and
comparison method for evaluation.

scripts/: This folder contains scripts (conda_install.bash,
python_install.bash, and docker_install.bash) to au-
tomatically install the software dependencies of MinFlow, in-
cluding Anaconda, Python, and Docker.

src/: This folder contains the source code of MinFlow and
three other comparison methods (Baseline, FaaSFlow, and
Lambada). We have integrated them and users can switch
between different systems using the configuration file. The
source code is structured as follows:

• base/ & container/: These two folders contain the code
that builds the base images which expose hybrid-store
APIs used in Function Scheduler (§3.3) and Configura-
tion Modeler (§3.4) for applications.

• parser/: This folder contains the code that parses the
application’s YAML configuration file, written in the
Workflow Definition Language, into a DAG object used
in Topology Optimizer (§3.2).

• grouping/: This folder contains the code for Topology
Optimizer (§3.2), Function Scheduler (§3.3), and Con-
figuration Modeler (§3.4) to find the optimal execution
plan.

• workflow_manager/: This folder contains the code for
workflow management, including monitoring function
status and triggering functions.

• function_manager/: This folder contains the code for
managing containers (including creating, keeping warm,
and removing) and executing functions.

test/: This folder contains the code for reproducing most of
our evaluation results in Figures 7-9,11-13,16-17 (see folders
fast/ and cost/), 10 (see folder load_balance/), 14 (see folder
breakdown/), 15 (see folder scalability/), 18 (see folder al-
pha/) and 19 (see folder prime/).

README.md: This documentation details how to install the
software, set up the system, and reproduce the results in our
paper.

Hosting
MinFlow artifact repository is hosted on GitHub and archived
using Zenodo with a permanent DOI.

• Repository: https://github.com/lt2000/MinFlow.

• Zenodo Archive: https://zenodo.org/records/10494631.

• DOI: https://zenodo.org/doi/10.5281/zenodo.10494631.

Requirements
The artifacts have been developed and tested on an Amazon
EC2 cluster comprising 10 m6i.24xlarge instances. And, the
artifact uses Docker containers to host serverless functions,
orchestrate the functions, and organize them in a DAG. §4.1
details the exact environment we used in our experiments.

Environment Setup
1. First, install the software dependencies by running the

scripts directory in scripts/ and mount the Tmpfs as our
local storage.

2. Then, generate input data and build base and job-specific
images for evaluation applications.

3. Configure the system configuration files and use src/
grouping/metadata.py to generate the optimal execu-
tion plan.

4. Run the system and reproduce the results following the
detailed instructions in README.md.
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Abstract
Blockchain systems suffer from high storage costs as ev-
ery node needs to store and maintain the entire blockchain
data. After investigating Ethereum’s storage, we find that
the storage cost mostly comes from the index, i.e., Merkle
Patricia Trie (MPT). To support provenance queries, MPT
persists the index nodes during the data update, which adds
too much storage overhead. To reduce the storage size, an
initial idea is to leverage the emerging learned index tech-
nique, which has been shown to have a smaller index size
and more efficient query performance. However, directly ap-
plying it to the blockchain storage results in even higher
overhead owing to the requirement of persisting index nodes
and the learned index’s large node size. To tackle this, we
propose COLE, a novel column-based learned storage for
blockchain systems. We follow the column-based database
design to contiguously store each state’s historical values,
which are indexed by learned models to facilitate efficient
data retrieval and provenance queries. We develop a series
of write-optimized strategies to realize COLE in disk envi-
ronments. Extensive experiments are conducted to validate
the performance of the proposed COLE system. Compared
with MPT, COLE reduces the storage size by up to 94% while
improving the system throughput by 1.4×-5.4×.

1 Introduction

Blockchain, as the backbone of cryptocurrencies and decen-
tralized applications [38,52], is an immutable ledger built on a
set of transactions agreed upon by untrusted nodes. It employs
cryptographic hash chains and consensus protocols for data
integrity. Users can retrieve historical data from blockchain
nodes with integrity assurance, also known as provenance
queries. However, all nodes are required to store the complete
transactions and ledger states, leading to amplified storage ex-
penses, particularly as the blockchain continues to grow. For
example, the Ethereum blockchain requires about 16TB stor-
age as of December 2023, with an annual growth of around
4TB [1]. This storage requirement may compel the resource-
limited nodes to retain only the data of a few recent blocks,
which restricts the ability to support data provenance. The
nodes that maintain the complete data may also leave the
network due to the rapidly increasing storage size, which
potentially affects system security.

Extension Node
Branch Node
Leaf Node

addr value

Figure 1: An Example of Merkle Patricia Trie

To tackle the storage issue, we investigate Ethereum’s
index, Merkle Patricia Trie (MPT), to identify the storage
bottleneck. MPT combines Patricia Trie with Merkle Hash
Tree (MHT) [37] to ensure data integrity. During data up-
dates, its index nodes are persisted to support provenance
queries. Figure 1 shows an example of an MPT storing
three state addresses across two blocks. Each node is aug-
mented with a digest from its content and child nodes (e.g.,
h(n1) = h(a1|h(n2))). The root hash secures data integrity
through the collision-resistance of the cryptographic hash
function and the hierarchical structure. With each new block,
MPT retains obsolete nodes from the preceding block. For
example, in block i + 1, updating address a11e67 with v′3
introduces new nodes n′1,n

′
2,n
′
4, while old nodes n1,n2,n4

endure. This setup allows historical data retrieval from any
block (e.g., for address a11e67 in block i, value v3 is retrieved
by traversing nodes n1, n2, and n4).

However, this approach adds too much storage overhead
due to duplicating nodes along the update path (e.g., n1,n2,n4
and n′1,n

′
2,n
′
4 in Figure 1). Consequently, most storage over-

head comes from the index rather than the underlying data. In
a preliminary experiment with 10 million transactions under
the SmallBank workload [17], we observed that the underly-
ing data contributes only 2.8% of the total storage. Thus, a
more compact index supporting data integrity and provenance
queries is imperative.

Recently, a novel indexing technique, learned index [15,20,
26, 54], has emerged and shows notably smaller index size
and faster query speed. The improved performance comes
from the substitution of the directing keys in index nodes with
a learned model. For instance, consider a key-value database
with linear key distribution: (1,v1),(2,v2), · · · ,(n,vn). In a
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traditional B+-tree with fanout f , this leads to O( n
f ) nodes

and O(log f n) levels, resulting in O(n) storage costs and
O(log f n · log2 f ) query times. Conversely, using a simple
linear model y = x enables accurate data positioning with just
O(1) storage and O(1) query times. Although this example
may not perfectly reflect real-world applications, it highlights
that the learned index outperforms traditional indexes signifi-
cantly when the model effectively learns the data.

In view of the advantages of the learned index, one may
want to apply it to blockchain storage to improve performance.
However, the current learned indexes do not support both
data integrity and provenance queries required by blockchain
systems. A naive approach is to combine the learned index
with MHT [37] and make the index nodes persistent, as in
MPT. Nonetheless, this is not feasible due to the larger node
size of the learned index. The fanout of such a node is mainly
dictated by data distribution. In favorable cases, only a few
models are needed to index data, leading to a node fanout
comparable to data magnitude. Thus, persisting learned index
nodes might incur even higher storage overhead than MPT.
Our evaluation in Section 8 shows that a learned index with
persistent nodes is 5× to 31× larger than MPT. Furthermore,
as blockchain systems require durable disk-based storage and
often involve frequent data updates, the learned index should
be optimized for both disk and write operations. Therefore, a
blockchain-friendly learned index needs to be proposed.

In this paper, we propose COLE, a novel column-based
learned storage for blockchain systems that overcomes the
limitations of current learned indexes and supports prove-
nance queries. The key challenge in adapting learned indexes
to blockchains is the need for node persistence, which may
lead to substantial storage overhead. COLE tackles this issue
with an innovative column-based design, inspired by column-
based databases [4, 36]. In this design, each ledger state is
treated as a “column”, with different versions of a state stored
contiguously and indexed using learned models within the
latest block’s index. This enables efficient data updates as ap-
pend operations with associated version numbers (i.e., state’s
block heights). Moreover, historical data queries no longer
traverse previous block indexes, but utilize the learned in-
dex in the most recent block. The column-based design also
simplifies model learning and reduces disk IOs.

To handle frequent data updates and enhance write effi-
ciency in COLE, we propose adopting the log-structured
merge-tree (LSM-tree) [33,41] maintenance approach to man-
age the learned models. This involves inserting updates into
an in-memory index before merging them into on-disk levels
that grow exponentially. For each on-disk level, we design
a disk-optimized learned model that can be constructed in
a streaming way, which enables efficient data retrieval with
minimal IO cost. To guarantee data integrity, we construct
an m-ary complete MHT for the blockchain data in each on-
disk level. The root hashes of the in-memory index and all
MHTs combine to create a root digest that attests to the en-

tire blockchain data. However, recursive merges during write
operations can lead to long-tail latency in the LSM-tree ap-
proach. To alleviate this issue, we further develop a novel
checkpoint-based asynchronous merge strategy to ensure the
synchronization of the storage among blockchain nodes.

To summarize, this paper makes the following contribu-
tions:

• To the best of our knowledge, COLE is the first column-
based learned storage that combines learned models with
the column-based design to reduce storage costs for
blockchain systems.

• We propose novel write-optimized and disk-optimized de-
signs to store blockchain data, learned models, and Merkle
files for realizing COLE.

• We develop a new checkpoint-based asynchronous merge
strategy to address the long-tail latency problem for data
writes in COLE.

• We conduct extensive experiments to evaluate COLE’s
performance. The results show that compared with MPT,
COLE reduces storage size by up to 94% and improves
system throughput by 1.4×-5.4×. Additionally, the pro-
posed asynchronous merge decreases long-tail latency by
1-2 orders of magnitude while maintaining a comparable
storage size.

The rest of the paper is organized as follows. We present
some preliminaries about blockchain storage in Section 2.
Section 3 gives a system overview of COLE. Section 4 designs
the write operation of COLE, followed by an asynchronous
merge strategy in Section 5. Section 6 describes the read
operations of COLE. Section 7 presents a complexity analysis.
The experimental evaluation results are shown in Section 8.
Section 9 discusses the related work. Finally, we conclude
our paper in Section 10.

2 Blockchain Storage Basics

In this section, we give some necessary preliminaries to intro-
duce the proposed COLE. Blockchain is a chain of blocks that
maintains a set of states and records the transactions that mod-
ify these states. To establish a consistent view of the states
among mutually untrusted blockchain nodes, a consensus pro-
tocol is utilized to globally order the transactions [7, 38, 45].
The transaction’s execution program is known as smart con-
tract. A smart contract can store states, each of which is iden-
tified by a state address addr. In Ethereum [52], both the
state address addr and the state value value are fixed-sized
strings. Figure 2 shows an example of the block data struc-
ture. The header of a block consists of (i) Hprev_blk, the hash
of the previous block; (ii) T S, the timestamp; (iii) πcons, the
consensus protocol related data; (iv) Htx, the root digest of
the transactions in the current block; (v) Hstate, the root digest
of the states. The block body includes the transactions, states,
and their corresponding Merkle Hash Tree (MHTs).

MHT is a prevalent hierarchical structure to ensure data
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integrity [37]. In the context of blockchain, MHT is built
for the transactions of each block and the ledger states. Fig-
ure 2 shows an example of an MHT of a block’s transac-
tions. The leaf nodes are the hash values of the transactions
(e.g., h1 = h(tx1)). The internal nodes are the hash values
of their child nodes (e.g., h5 = h(h1||h2)). MHT enables the
proof of existence for a given transaction. For example, to
prove tx3, the sibling hashes along the search path (i.e., h4
and h5, shaded in Figure 2) are returned as the proof. One
can verify tx3 by reconstructing the root hash using the proof
(i.e., h(h5||h(h(tx3)||h4))) and comparing it with the one in
the block header (i.e., Htx). Apart from being used in the
blockchain, MHT has also been extended to database indexes
to support result integrity verification for different queries.
For example, MHT has been extended to Merkle B+-tree
(MB-tree) by combining the Merkle structure with B+-tree,
to support trustworthy queries in relational databases [29].

The blockchain storage uses an index to efficiently main-
tain and access the states [50, 52]. Besides the write and
read operations that a normal index supports, the index of the
blockchain storage should also fulfill the two requirements
we mentioned before: (i) ensuring the integrity of the indexed
blockchain states, (ii) supporting provenance queries that en-
able blockchain users to retrieve historical state values with
integrity assurance. With these requirements, the index of the
blockchain storage should support the following functions:

• Put(addr,value): insert the state with the address addr
and the value value to the current block;

• Get(addr): return the latest value of the state at address
addr if it exists, or returns nil otherwise;

• ProvQuery(addr, [blkl ,blku]): return the provenance
query results {value} and a proof π, given the address
addr and the block height range [blkl ,blku];

• VerifyProv(addr, [blkl ,blku],{value},π,Hstate): verify
the provenance query results {value} w.r.t. the address,
the block height range, the proof, and Hstate, where Hstate
is the root digest of the states.

Ethereum employs Merkle Patricia Trie (MPT) to index
blockchain states. In Section 1, we have shown how MPT
implements Put(·) and ProvQuery(·) using Figure 1 and the
address a11e67. We now explain the other two functions
using the same example. Get(a11e67) finds a11e67’s latest
value v′3 by traversing n′1,n

′
2,n
′
4 under the latest block i +

addr value
Merkle FileValue File Index File

MB-treeIn-Mem:

On-Disk:
blk

Figure 3: Overview of COLE

1. After ProvQuery(a11e67, [i, i]) gets v3 and the proof π =
{n1,n2,n4,h(n3)} in block i, VerifyProv(·) is used to verify
the integrity of v3 by reconstructing the root digest using the
nodes from n4 to n1 in π and checks whether the reconstructed
one matches the public digest Hi in block i and whether the
search path in π corresponds to the address a11e67.

3 COLE Overview

This section presents COLE, our proposed column-based
learned storage for blockchain systems. We first give the
design goals and then show how COLE achieves these goals.

3.1 Design Goals
We aim to achieve the following design goals for COLE:

• Minimizing storage size. To scale up the blockchain sys-
tem, it is important to reduce the storage size by leveraging
the learned index and column-based design.

• Supporting the requirements of blockchain storage.
As blockchain storage, it should ensure data integrity and
support provenance queries as mentioned in Section 2.

• Achieving efficient writes in a disk environment. Since
blockchain is write-intensive and all data needs to be
preserved on disk, the system should be write-optimized
and disk-optimized to achieve better performance.

3.2 Design Overview
Figure 3 shows the overview of COLE. Following the column-
based design [4,36], we adopt an analogy between blockchain
states and database columns. Each state’s historical versions
are contiguously stored in the index of the latest block. When
a state is updated in a new block, the state and its version
number (i.e., block height) are appended to the index where
all of the state’s historical versions are stored. For indexing
historical state values, we use a compound key K in the form
of ⟨addr,blk⟩, where blk is the block height when the value of
addr was updated. In Figure 3, when block i+1 updates the
state at address k3 (highlighted in red), a new compound key
of k3, K ′3 ← ⟨k3, i+1⟩, is created. Then, the updated value v′3
indexed by K ′3 is inserted into COLE. With the column-based
design, v′3 is stored next to k3’s old version v3. Compared with
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the MPT in Figure 1, the cumbersome node duplication along
the update path (e.g., n1,n2,n4 and n′1,n

′
2,n
′
4) is avoided to

save the storage overhead.
To mitigate the high write cost associated with learned

models for indexing blockchain data in a column-based de-
sign, we propose using the LSM-tree maintenance strategy in
COLE. It structures index storage into levels of exponentially
increasing sizes. New data is initially added to the first level.
When the level reaches its pre-defined maximum capacity,
all the data in that level is merged into a sorted run in the
next level. This merge operation can occur recursively until
the capacity requirement is no longer violated. The first level,
often highly dynamic, is typically stored in memory, while
other levels reside on disk. COLE employs Merkle B+-tree
(MB-tree) [29] for the first level and disk-optimized learned
indexes for subsequent levels. We choose MB-tree over MPT
for the in-memory level due to its better efficiency in com-
pacting data into sorted runs and flushing them to the first
on-disk level.

Each on-disk level contains a fixed number of sorted runs,
each of which is associated with a value file, an index file, and
a Merkle file:

• Value file stores blockchain states as compound key-value
pairs, which are ordered by their compound keys to facili-
tate the learned index.

• Index file helps locate blockchain states in the value file
during read operations. It uses a disk-optimized learned
index, inspired by PGM-index [20], for efficient data re-
trieval with minimal IO cost.

• Merkle file authenticates the data stored in the value file.
It is an m-ary complete MHT built on the compound key-
value pairs.

Note that since the model construction and utilization require
numerical data types, we convert a compound key into a big
integer using the binary representation of the address and
the block height. For example, given a compound key K ←
⟨addr,blk⟩, its big integer is computed as binary(addr)×
264 + blk, where blk is a 64-bit value. Moreover, to ensure
data integrity, root hashes of both the in-memory MB-tree
and the Merkle files of each on-disk run are combined to
create a root_hash_list. The root digest of states, stored in the
block header, is computed from this list. This list is cached in
memory to expedite root digest computation.

With this design, to retrieve the state value of address addrq
at a block height blkq, a compound key Kq←⟨addrq,blkq⟩ is
employed. The process entails a level-wise search within
COLE, initiated from the first level. The MB-tree or the
learned indexes in other levels are traversed. The search ceases
upon encountering a compound key Kr ← ⟨addrr,blkr⟩
where addrr = addrq and blkr ≤ blkq, at which point the cor-
responding value is returned. For retrieving the latest value
of a state, the procedure remains similar but with the search
key set to ⟨addrq,max_int⟩, where max_int is the maximum
integer. That is, the search is stopped as long as a state value

Algorithm 1: Write Algorithm

1 Function Put(addr,value)
Input: State address addr, value value

2 blk← current block height; K ← ⟨addr,blk⟩;
3 Insert ⟨K ,value⟩ into the MB-tree in L0;
4 if L0 contains B compound key-value pairs then
5 Flush the leaf nodes in L0 to L1 as a sorted run;
6 Generate files FV ,FI ,FH for this run;
7 i← 1;
8 while Li contains T runs do
9 Sort-merge all the runs in Li to Li+1 as a new run;

10 Generate files FV ,FI ,FH for the new run;
11 Remove all the runs in Li;
12 i← i+1;
13 Update Hstate when finalizing the current block;

with the queried address addrq is found.

4 Write Operation of COLE

We now detail the write operation of COLE. As mentioned in
Section 3.2, COLE organizes the storage using an LSM-tree,
which consists of an in-memory level and multiple on-disk
levels. The in-memory level has a capacity of B states in
the form of compound key-value pairs. Once this capacity is
reached, the in-memory level is flushed to the disk as a sorted
run. Similarly, when the first on-disk level reaches its capacity
of T sorted runs, they are merged into a new run in the next
level. This merging process continues for subsequent disk
levels, with the size of each run growing exponentially with a
ratio of T . That is, level i has a maximum of B ·T i states.

Algorithm 1 shows COLE’s write operation. It starts by
calculating a compound key for the state using the address
and the current block height (Line 2). The compound key-
value pair is inserted into the in-memory level L0 indexed by
the MB-tree (Line 3). As L0 fills up, it is flushed to the first
on-disk level L1 as a sorted run (Line 5). The value file FV
is generated by scanning compound key-value pairs in the
MB-tree’s leaf nodes (Line 6). At the same time, the index
file FI and the Merkle file FH are constructed in a streaming
manner (see Section 4.1, Section 4.2 for details). When on-
disk level Li fills up (i.e., with T runs), all the runs in Li
are merge-sorted as a new run in the next level Li+1, with
corresponding three files generated (Lines 8 to 11). This level-
merge process continues recursively until a level does not fill
up. The blockchain’s state root digest Hstate is computed by
hashing the concatenation of the root hash of L0’s MB-tree
and root hashes of runs in other levels, stored in root_hash_list,
when finalizing the current block (Line 13).

Example. Figure 4 shows an example of the insertion of
s10. For clarity, we show only the states and the value files but
omit the index files and Merkle files. Assume B = 2 and T = 3.
The sizes of the runs in L1 and L2 are 2 and 6, respectively.
After s10 is inserted into in-memory level L0, the level is full
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Figure 4: An Example of Write Operation

and its states are flushed to L1 as a sorted run (step 1⃝). This
incurs L1 reaching the maximum number of runs. Thus, all
the runs in L1 are next sort-merged as a new run, placed in L2
(step 2⃝). Finally, L0 and L1 are empty and L2 has two runs,
each of which contains six states.

A common optimization technique to speed up read opera-
tions is to integrate a Bloom filter into the in-memory MB-tree
and each run in the on-disk levels. We incorporate the Bloom
filter into COLE with careful consideration. First, they should
be built upon the addresses of the underlying states rather
than their compound keys to facilitate read operations. Sec-
ond, since the Bloom filters may produce false positives, if
they indicate that an address exists, we further resort to the
normal read process of the corresponding MB-tree or the disk
run to ensure the search correctness. We will elaborate on
their usage during the read operation in Section 6. Moreover,
the Bloom filters should be incorporated alongside the root
hashes of each run when computing the states’ root digest.
This is needed to verify the result integrity during provenance
queries.

4.1 Index File Construction
An index file consists of the models that can be used to locate
the positions of the states’ compound keys in the value file. In-
spired by PGM-index [20], we start by defining an ε-bounded
piecewise linear model (or model for short) as follows.

Definition 1 (ε-Bounded Piecewise Linear Model). The
model is a tuple of M = ⟨sl, ic,kmin, pmax⟩, where sl and ic
are the slope and intercept of the linear model, kmin is the
first key in the model, and pmax is the last position of the data
covered by the model.

Given a model, one can predict a compound key K ’s posi-
tion preal in a file, if K ≥ kmin. The predicted position ppred
is calculated as ppred = min(K · sl+ ic, pmax), which satisfies
|ppred− preal | ≤ ε. Since files are often organized into pages,
we set ε as half the number of models that can fit into a single
disk page to generate the models in a disk-friendly manner.
As will be shown, this reduces the IO cost by ensuring that
at most two pages need to be accessed per model during read
operations.

Algorithm 2: Learn Models from a Stream

1 Function BuildModel(S ,ε)
Input: Input stream S , error bound ε

Output: A stream of models {M }
2 kmin← /0, pmax← /0, glast ← /0;
3 Init an empty convex hull H ;
4 foreach ⟨K , preal⟩ ← S do
5 if kmin = /0 then kmin←K ;
6 Add ⟨BigNum(K ), preal⟩ to H ;
7 Compute the minimum parallelogram G that covers H ;
8 if G .height ≤ 2ε then
9 pmax← preal ,glast ← G ;

10 else
11 Compute slope sl and intercept ic from glast ;
12 M ← ⟨sl, ic,kmin, pmax⟩;
13 yield M ;
14 kmin←K ;
15 Init a new convex hull H with ⟨BigNum(K ), preal⟩;
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Figure 5: An Example of Model Learning

To compute models from a stream of compound keys and
their corresponding positions, we treat each compound key
and its position as a point’s coordinates. Upon the arrival of a
new compound key, we convert it into a big integer using the
binary representation of the address and the block height as
mentioned in Section 3.2. Next, we find the smallest convex
shape containing all the existing input points, which is known
as a convex hull. Note that this convex hull can be computed
incrementally in a streaming fashion [40]. Then, we find the
minimal parallelogram that covers the convex hull, with one
side aligned to the vertical axis (i.e., the position axis). If the
parallelogram’s height stays under 2ε, all existing inputs can
fit into a single model. In this case, we try to include the next
compound key in the stream for model construction. However,
if the current parallelogram fails to meet the height criteria, the
slope and intercept of the central line in the parallelogram will
be used to build a model that covers all existing compound
keys except the current one. After this, a new model will be
built, starting from the current compound key. We summarize
the algorithm in Algorithm 2.

Example. Figure 5 shows an example of model learning
from a stream. Assume states s1 to s3 form a convex hull, with
its minimal parallelogram satisfying the height criterion (i.e.,
below 2ε). After state s4 is added, the parallelogram’s height
remains within 2ε (see Figure 5(a)), indicating that states
s1 to s4 can be fit into one model. However, after the next
state s5 is added, the parallelogram’s height exceeds 2ε (see
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Algorithm 3: Index File Construction

1 Function ConstructIndexFile(S ,ε)
Input: Input stream S of compound key-position pairs
Output: Index file FI

2 Create an empty index file FI ;
3 Invoke BuildModel(S ,ε) and write to FI ;
4 n← # of pages in FI ;
5 while n > 1 do
6 S ←{⟨M .kmin, pos⟩ | foreach ⟨M , pos⟩ ∈ FI [−n :]};
7 Invoke BuildModel(S ,ε) and append to FI ;
8 n← # of pages in FI −n;
9 return FI ;

Figure 5(b)). Thus, the slope and intercept of the previous
parallelogram’s central line (highlighted in red) are used to
build a model for s1 to s4, with s5 reserved for the next model.

Algorithm 3 shows the overall procedure of index file gen-
eration. During flush or sort-merge operations in Algorithm 1,
ordered compound keys and state values are generated and
written streamingly into the value file. Meanwhile, another
stream consisting of compound keys and their positions is cre-
ated and used to generate models with Algorithm 2 (Line 3).
Once the models are yielded by Algorithm 2, they are immedi-
ately written to the index file, constituting the bottom layer of
the run’s learned index. Then, we recursively build the upper
layers of the index until the top layer can fit into a single disk
page (Lines 4 to 8). Specifically, for each layer, we scan lower-
layer models (denoted as FI [−n :]) to create a compound key
stream using kmin in each model and their index file positions
(Line 6). Similar to the bottom layer, we use Algorithm 2
on the stream to create models and instantly write them to
the index file (Line 7). This results in the sequential storage
of models across layers in a bottom-up manner. The index
file remains valid from its construction until the next level
merge operation thanks to the LSM-tree-based maintenance
approach, which avoids costly model retraining.

4.2 Merkle File Construction
A Merkle file stores an m-ary complete MHT that authen-
ticates the compound key-value pairs in the corresponding
value file. The related index file’s learned models are excluded
from authentication, as they solely enhance query efficiency
and do not affect blockchain data integrity. For the m-ary com-
plete MHT, the bottom layer consists of hash values of every
compound key-value pair in the value file. The hash values in
an upper layer are recursively computed from every m hash
values in the lower layer, except that the last one might be
computed from less than m hash values in the lower layer.

Definition 2 (Hash Value). A hash value in the bottom layer of
the MHT is computed as hi = h(Ki∥valuei), where Ki,valuei
are the corresponding compound key and value, ∥ is the con-
catenation operator, and h(·) is a cryptographic hash function
such as SHA-256. A hash value in an upper layer of the MHT

Algorithm 4: Merkle File Construction

1 Function ConstructMerkleFile(S ,n,m)
Input: Input stream S of compound key-value pairs,

stream size n, fanout m
Output: Merkle file FH

2 Nnodes← [n,⌈ n
m ⌉,⌈

n
m2 ⌉, · · · ,1], d← |Nnodes|;

3 layer_offset[0]← 0;
4 layer_offset[i]← ∑

i−1
0 Nnodes[i−1], ∀i ∈ [1,d−1];

5 Create a merkle file FH with size ∑
d−1
i=0 Nnodes[i];

6 Create a cache C with d number of buffers;
7 foreach ⟨K ,value⟩ ← S do
8 h′← h(K ∥value), append h′ to C [0];
9 foreach i in 0 to d−2 do

10 if |C [i]|= m then
11 h′← h(C [i]), append h′ to C [i+1];
12 Flush C [i] to FH at offset layer_offset[i];
13 layer_offset[i]← layer_offset[i]+m;
14 else break;
15 foreach i in 0 to d−1 do
16 if C [i] is not empty then
17 h′← h(C [i]), append h′ to C [i+1];
18 Flush C [i] to FH at offset layer_offset[i];
19 return FH ;

is computed as hi = h(h1
i ∥h2

i ∥· · ·∥hm∗
i ), where m∗ ≤ m and

h j
i is the corresponding j-th hash in the lower layer.

Similar to Algorithm 3, we streamingly generate the Merkle
file. However, instead of layer-wise construction, we concur-
rently build all MHT layers to reduce IO costs, as shown in
Algorithm 4. Note that the size of the input stream of com-
pound key-value pairs n is known in advance since the size
of a value file is determined by the level of its correspond-
ing run. Thus, the MHT has ⌈logm n⌉+1 layers, containing
n,⌈ n

m⌉,⌈
n

m2 ⌉, · · · ,1 hash values (Line 2). Layer offsets can
also be computed (Lines 3 to 4). For concurrent construction,
⌈logm n⌉+1 buffers are maintained, one per layer. Upon the
arrival of a new compound key-value pair, its hash value is
computed and added to the bottom layer’s buffer (Line 8).
When a buffer fills with m hash values, an upper layer’s hash
value is created and added to its buffer (Line 11). Next, the
buffered hash values in the current layer are flushed to the
Merkle file, followed by incrementing the offset (Lines 12
to 13). This process recurs in upper layers until a layer with
less than m buffered hash values is encountered. Once the
input stream is fully processed, any remaining non-empty
buffers will hold fewer than m hash values. If so, we’ll initi-
ate this process by taking a buffer from the lowest layer and
iteratively generating hash values. Each hash value is added
to the upper layer before flushing the buffer to the Merkle file
(Lines 15 to 18).

Example. Figure 6 shows an example of a 2-ary MHT with
states s1 to s4. According to the MHT’s structure, Nnodes =
[4,2,1] and layer_offset = [0,4,6]. Assume that s1,s2 are al-
ready added. In this case, FH has h1,h2 and cache C[1] con-
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tains h12, where h1,h2 are the hash values of s1,s2 and h12 is
derived from h1,h2 (Figure 6(a)). Meanwhile, layer_offset[0]
has been updated to 2. After s3,s4 are added, their hashes
h3,h4 will be inserted to cache C[0], resulting in C[0] having
2 hash values. Thus, h34 derived from h3,h4 will be added
into cache C[1] and h3,h4 are then flushed to FH at offset 2
(step 1⃝). Since C[1] also has 2 hash values so the derived h14
is added to cache C[2] and h12,h34 are flushed to FH at offset
layer_offset[1] = 4 (step 2⃝). Finally, h14 in C[2] is flushed to
FH at offset layer_offset[2] = 6 (step 3⃝).

4.3 Discussions

As discussed earlier, COLE adopts the LSM-tree-based main-
tenance approach to optimize data writes and disk operations
under the column-based design. However, it also comes with
some tradeoffs. The presence of multiple levels can impact
read performance, as retrieving a state requires traversing mul-
tiple levels until a satisfactory result is found. Additionally,
the merge operation complicates the process of state rewind,
as data cannot be deleted in-place. Therefore, COLE does
not support blockchain forking and is designed to work with
blockchains that do not fork [5, 22, 53].

We next discuss the ACID properties in COLE. COLE
achieves atomicity by maintaining root_hash_list in an atomic
manner. During the level merge process, root_hash_list is
updated atomically only after constructing all three files in
the new level, followed by removing the old level files. This
ensures data consistency as the old level files remain in-
tact and are referenced by root_hash_list even during a node
crash. Concurrency control is not required due to the write-
serializability guarantee of the consensus protocol. Data in-
tegrity is ensured using Merkle-based structures for each level.
For durability, COLE uses transaction logs as the Write Ahead
Log since they are agreed upon by the consensus protocol.
In case of a crash, COLE recovers by replaying transactions
since the last checkpoint. A checkpoint is created when the in-
memory MB-tree is flushed to the first disk level and cleared.
At this time point, all the data in the system is safely stored
on the disk. After a crash, COLE reverts to the last check-
point, discards all the files in the unfinished merge levels,

and starts fresh with an empty in-memory MB-tree. It then
replays all unprocessed transactions and restarts the aborted
level merges.

5 Write with Asynchronous Merge

Algorithm 1 may trigger recursive merge operations during
some writes (e.g., steps 1⃝ and 2⃝ in Figure 4). As a result, it
can introduce long-tail latency and cause all future operations
to stall. This issue is known as write stall, which leads to
periodic drops in application throughput to near-zero levels
and dramatic fluctuations in system performance. A com-
mon solution is to make the merge operations asynchronous
by moving them to separate threads. However, the existing
asynchronous merge solution is not suitable for blockchain
applications. Since different nodes in the blockchain network
could have drastically different computation capabilities, the
storage structure will become out-of-sync among nodes when
applying asynchronous merges. This will result in different
Hstate’s and break the requirement of the blockchain protocol.

To address these challenges, we design a novel asyn-
chronous merge algorithm for COLE, which ensures the syn-
chronization of the storage across blockchain nodes. The
algorithm introduces two checkpoints, start and commit,
within the asynchronous merge process for each on-disk
level. By synchronizing the checkpoints, we ensure consistent
blockchain storage and thus Hstate agreed by the network. To
further minimize the possibility of long-tail latency due to
delays at the commit checkpoint, we propose to make the
interval between the start checkpoint and the commit check-
point proportional to the size of the run. This ensures that the
majority of the nodes in the network can complete the merge
operation before reaching the commit checkpoint.

To realize our idea, we propose to have each level of COLE
contain two groups of runs as shown in Figure 7. Each group’s
design is identical to the one discussed in Section 4. Specifi-
cally, the in-memory level now contains two groups of MB-
tree, each with a capacity of B states. Similarly, each on-disk
level contains two groups of up to T sorted runs. Level i can
hold a maximum of 2 ·B ·T i states. The two groups in each
level have two mutually exclusive roles, namely writing and
merging. The writing group accepts newly created runs from
the upper level. On the other hand, the merging group gen-
erates a new run from its own data and adds to the writing
group of the next level in an asynchronous fashion.

Algorithm 5 shows the write operation in COLE with asyn-
chronous merge. First, new state values are inserted into the
current writing group of in-memory level L0 (Lines 2 to 4).
The levels in COLE are then traversed from smaller to larger.
When a level is full, we commit the previous merge operation
in the current level and start a new merge operation in a new
thread. To accommodate slow nodes in the network, we check
if the previous merging thread of the current level exists and is
still in progress, and wait for it to finish if necessary (Line 9).
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Algorithm 5: Write Algorithm with Asynchronous Merge

1 Function Put(addr,value)
Input: State address addr, value value

2 blk← current block height; K ← ⟨addr,blk⟩;
3 w0← Get L0’s writing group;
4 Insert ⟨K ,value⟩ into the MB-tree of w0;
5 i← 0;
6 while wi becomes full do
7 mi← Get Li’s merging group;
8 if mi.merge_thread exists then
9 Wait for mi.merge_thread to finish;

10 Add the root hash of the generated run from
mi.merge_thread to root_hash_list;

11 Remove the root hashes of the runs in mi from
root_hash_list;

12 Remove all the runs in mi;
13 Switch mi and wi;
14 mi.merge_thread← start thread do
15 if i = 0 then
16 Flush the leaf nodes in mi to Li+1’s writing group a

sorted run;
17 Generate files FV ,FI ,FH for the new run;
18 else
19 Sort-merge all the runs in mi to Li+1’s writing

group a new run;
20 Generate files FV ,FI ,FH for the new run;
21 i← i+1;
22 Update Hstate when finalizing the current block;

The previous merge operation is committed by adding the root
hash of the newly generated run to root_hash_list (Line 10),
while obsolete run hashes are removed from root_hash_list
(Line 11) and the obsolete runs in the merging group are
also removed (Line 12). The above procedure ensures the
commit checkpoint occurs simultaneously across nodes in
the network, which is essential to synchronize the blockchain
states and the corresponding root digest. Following this, the
roles between the two groups in the current level are switched
(Line 13). This means that future write operations will be di-
rected to the vacated space of the new writing group, whereas
the merge operation will be performed on the new merging
group, which is now full. The latter starts a new merge thread,
whose procedure is similar to that of Algorithm 1 (Lines 14
to 20). Lastly, when finalizing the current block, Hstate is

updated using stored root hashes in root_hash_list (Line 22).
Example. Figure 8 shows an example of the asynchronous

merge from level Li to Li+1, where T = 3. The uncommit-
ted files are denoted by dashed boxes. Figure 8(a) shows
COLE’s structure before Li’s commit checkpoint, when Li’s
writing group wi becomes full. In case mi’s merging thread
(denoted by the purple arrow) is not yet finished, we wait for
it to finish. Then, during Li’s commit checkpoint, wi+1.R1’s
root hash is added to root_hash_list and all runs in mi (i.e.,
mi.R0,mi.R1,mi.R2) are removed (Figure 8(b)). Next, mi and
wi’s roles are switched. Finally, a new thread will be started
(denoted by the blue arrow) to merge all runs in mi to Li+1’s
writing group as the third run wi+1.R2 (Figure 8(c)).

Soundness Analysis. Next, we show our proposed asyn-
chronous merge operation is sound. Specifically, the following
two requirements are satisfied.

• The blockchain states’ root digest Hstate is always synchro-
nized among nodes in the blockchain network regardless
of how long the underlying merge operation takes.

• The interval between the start checkpoint and the commit
checkpoint for each level is proportional to the size of the
runs to be merged.

The first requirement ensures blockchain states are solely
determined by the current committed states and are indepen-
dent of individual node performance variations. The second
requirement minimizes the likelihood of nodes waiting for
merge operations of longer runs. We now prove that our algo-
rithm complies with the requirements.

Proof Sketch. It is trivial to show that the first requirement is
satisfied as the update of root_hash_list (hence Hstate) occurs
outside the asynchronous merge thread, making the update
of Hstate fully synchronous and deterministic. For the second
requirement, the interval between the start checkpoint and
the commit checkpoint in any level equals the time taken to
fill up the writing group in the same level. Since the latter
contains those runs to be merged in this level, the interval is
proportional to the size of the runs.

6 Read Operations of COLE

In this section, we discuss the read operations of COLE, in-
cluding the get query and the provenance query with its veri-
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Algorithm 6: Get Query

1 Function Get(addr)
Input: State address addr
Output: State latest value value

2 Kq← ⟨addr,max_int⟩;
3 foreach g in {L0’s writing group, L0’s merging group} do
4 ⟨K′,state′⟩ ← SearchMBTree(g,Kq);
5 if K ′.addr = addr then return state′;
6 foreach level i in {1,2, . . .} do
7 RS←{Ri, j | Ri, j∈Li’s writing group∧ committed};
8 RS←RS+{Ri, j | Ri, j∈Li’s merging group};
9 foreach Ri, j in RS do

10 ⟨⟨K′,state′⟩, pos′⟩ ← SearchRun(Ri, j,Kq);
11 if K ′.addr = addr then return state′;
12 return nil;

fication function. We assume that COLE is implemented with
the asynchronous merge.

6.1 Get Query
Algorithm 6 shows the get query process. As mentioned in
Section 3.2, getting a state’s latest value requires a special
compound key Kq = ⟨addrq,max_int⟩. Owing to the tem-
poral order of COLE’s levels, we perform the search from
smaller levels to larger levels, until a satisfied state value is
found. This involves searching both the writing and merging
groups’ MB-trees in the in-memory level L0 as both of them
are committed (Lines 3 to 5). Then, in each on-disk level, a
search is performed in the committed writing group’s runs,
followed by the merging group’s runs (Lines 6 to 11). Note
that the runs in the same group will be searched in the order
of their freshness. For the example in Figure 7, we search
the MB-trees in w0 and m0, followed by the runs in the order
of w1.R1, w1.R0, m1.R2, m1.R1, m1.R0, w2.R0, · · · , while the
uncommitted w1.R2,w2.R1 are skipped. The search halts once
the satisfied state is found.

To search an on-disk run, we use Algorithm 7. First, if the
queried address addrq is not in the run’s bloom filter B , the
run is skipped (Line 2). Otherwise, models in the index file
FI are used to find Kq. The search starts from the top layer of
models, stored on the last page of FI . The model covering Kq
is found by binary searching kmin of each model in this page
(Line 4). Then, a recursive query on models in subsequent
layers is conducted from top to bottom (Lines 5 to 7). Upon
reaching the bottom layer, the corresponding model is used
to locate the state value in the value file FV (Line 8).

Function QueryModel(·) in Algorithm 7 shows the pro-
cedure of using a learned model M to locate the queried
compound key Kq. If the model covers Kq, it predicts the
position pospred of the queried data (Line 12). With the error
bound of the model 2ε equaling the page size, the predicted
page id is computed as pospred/2ε (Line 13). The correspond-
ing page P is fetched and the first and last models are checked
whether they cover Kq. If not, the adjacent page is fetched as

Algorithm 7: Search a Run

1 Function SearchRun(FI ,FV ,B,Kq)
Input: Index file FI , value file FV , bloom filter B ,

compound key Kq = ⟨addrq,blkq⟩
Output: Queried state s and its position pos

2 if addrq /∈ B then return;
3 Kq← BigNum(Kq);
4 P ← FI’s last page; M ← BinarySearch(P ,Kq);
5 ⟨M , pos⟩ ← QueryModel(M ,FI ,Kq);
6 while pos is not pointing to the bottom models do
7 ⟨M , pos⟩ ← QueryModel(M ,FI ,Kq);
8 return QueryModel(M ,FV ,Kq);
9 Function QueryModel(M ,F ,Kq)

Input: Model M , query file F , compound key Kq
Output: Queried data and its position in F

10 ⟨sl, ic,kmin, pmax⟩ ←M ;
11 if Kq < kmin then return;
12 pospred ←min(Kq · sl + ic, pmax);
13 pagepred ← pospred/2ε;
14 P ← F ’s page at pagepred ;
15 if Kq < P [0].k then
16 P ← F ’s page at pagepred −1;
17 else if Kq > P [−1].k then
18 P ← F ’s page at pagepred +1;
19 return BinarySearch(P ,Kq);

P (Lines 15 to 18). This process involves at most two pages
for prediction, hence minimizing IO. Finally, a binary search
in P locates the queried data (Line 19).

6.2 Provenance Query

A provenance query resembles a get query but with no-
table distinctions. Unlike a get query, a provenance query
involves a range search based on the queried block height
range. This entails computing two boundary compound keys,
Kl = ⟨addr,blkl−1⟩ and Ku = ⟨addr,blku +1⟩, with offsets
adjusted by one to prevent the omission of valid results. More-
over, a provenance query provides Merkle proofs to authenti-
cate the results.

Specifically, during the search of MB-trees in L0, in ad-
dition to retrieving satisfactory results, Merkle paths are in-
cluded in the proof using a similar approach mentioned in
Section 2. For the runs of the on-disk levels, we search in the
same order as those described in Algorithm 6. Kl is used as
the search key when applying the learned models to find the
first query result in each run. Then, the value file is scanned
sequentially until a state beyond Ku is reached.1 Afterwards,
a Merkle proof is computed upon the first and last results’
positions posl , posu of each run. Since the states in the value
file and their hash values in the Merkle file share the same
position, the Merkle paths of the hash values at posl and posu
are used as the Merkle proof. To compute the Merkle path,

1For simplicity, we assume that addr is in the bloom filter B . If not, B is
also added as the proof to prove that addr is not in the run.
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Cost MPT COLE COLE w/ async-merge
Storage size O(n ·dMPT ) O(n)

Write IO cost O(dMPT ) O(dCOLE)

Write tail latency O(1) O(n) O(1)
Write memory footprint O(1) O(T +m ·dCOLE) O(T ·dCOLE +m ·d2

COLE)

Get query IO cost O(dMPT ) O(T ·dCOLE ·Cmodel)

Prov-query IO cost O(dMPT ) O(T ·dCOLE ·Cmodel +m ·d2
COLE)

Prov-query proof size O(dMPT ) O(m ·d2
COLE)

Table 1: Complexity Comparison

we traverse the MHT in the Merkle file from bottom to top.
Note that given a hash value’s position pos at layer i, we
can directly compute its parent hash value’s position in the
Merkle file as ⌊(pos−∑

i−1
0 ⌈

n
mi ⌉)/m⌋+∑

i
0⌈ n

mi ⌉. Due to the
space limitation, the detailed procedure of the provenance
query is given in our technical report [63] .

On the user’s side, the verification algorithm works as fol-
lows: (1) use each MB-tree’s results and their corresponding
Merkle proof to reconstruct the MB-tree’s root hash; (2) use
each searched run’s results and their corresponding Merkle
proof to reconstruct the run’s root hash; (3) use the recon-
structed root hashes to reconstruct the states’ root digest and
compare it with the published one, Hstate, in the block header;
(4) check the boundary results of each searched run against
the compound key range [Kl ,Ku] to ensure no missing results.
If all these checks pass, the results are verified.

7 Complexity Analysis

In this section, we analyze the complexity in terms of storage,
memory footprint, and IO cost. To ease the analysis, we as-
sume n as the total historical values, T as the level size ratio,
B as the in-memory level’s capacity, and m as COLE’s MHT
fanout. Table 1 shows the comparison of MPT, COLE, and
COLE with the asynchronous merge.

We first analyze the storage size. Since MPT duplicates
the nodes of the update path for each insertion, its storage
has a size of O(n · dMPT ), where dMPT is the height of the
MPT. COLE completely removes the node duplication, thus
achieving an O(n) storage size.

Next, we analyze the write IO cost. MPT takes O(dMPT )
to write the nodes in the update path, while COLE takes
O(dCOLE) for the worst case when all levels are merged,
where dCOLE is the number of levels in COLE. Similar to
the traditional LSM-tree’s write cost [13], the level merge in
COLE takes an amortized O(1) IO cost to write the value
file, the index file, and the Merkle file. The number of levels
dCOLE is ⌈logT (

n
B ·

T−1
T )⌉, which is logarithmic to n. Note that

normally dCOLE < dMPT since dMPT depends on the data’s
key size, which can be large (e.g., when having a 256-bit key,
maximum dMPT is 64 under hexadecimal base while COLE
has only a few levels following the LSM-tree).

Regarding the write tail latency, MPT has a constant cost
since there is no write stall during data writes. On the other
hand, COLE may experience the write stall in the worst case,
which requires waiting for the merge of all levels and results

in the reading and writing of O(n) states. The asynchronous
merge algorithm removes the write stall by merging the levels
in background threads and reduces the tail latency to O(1).

As for the write memory footprint, MPT has a constant
cost since the update nodes are computed on the fly and can
be removed from the memory after being flushed to the disk.
For COLE, we consider the case of merging the largest level
as this is the worst case. The sort-merge takes O(T ) memory
and the model construction takes constant memory [40]. Con-
structing the Merkle file takes O(m · dCOLE) since there are
logarithmic layers of cache buffers and each buffer contains
m hash values. To sum up, COLE takes O(T +m · dCOLE)
memory during a write operation. For COLE with the asyn-
chronous merge, the worst case is that each level has a merg-
ing thread, thus requiring dCOLE times of memory compared
with the synchronous merge, i.e., O(T ·dCOLE +m ·d2

COLE).
We finally analyze the read operations’ costs, including

the get query IO cost, the provenance query IO cost, and the
proof size of the provenance query. MPT’s costs are all linear
to the MPT’s height, O(dMPT ). For COLE, T runs in each
level should be queried, where we assume that each run takes
Cmodel to locate the state. Therefore, the cost of the get query
is O(T ·dCOLE ·Cmodel). To generate the Merkle proof during
the provenance query, an additional O(m ·d2

COLE) is required
since there are multiple layers of MHT in all levels and O(m)
hash values are retrieved for each MHT’s layer. The proof
size is O(m ·d2

COLE) for a similar reason.

8 Evaluation

In this section, we first describe the experiment setup, includ-
ing comparing baselines, implementation, parameter settings,
workloads, and evaluation metrics. Then, we present the ex-
periment results.

8.1 Experiment Setup
8.1.1 Baselines

We compare COLE with the following baselines:
• MPT: It is used by Ethereum to index the blockchain

storage. The structure is made persistent as mentioned in
Section 1.

• LIPP: It applies LIPP [54], the state-of-the-art learned
index supporting in-place data writes, to the blockchain
storage without our column-based design. LIPP retains the
node persistence strategy to support provenance queries.

• Column-based Merkle Index (CMI): It uses the column-
based design with traditional Merkle indexes rather than
the learned index. It adopts a two-level structure. The
upper index is a non-persistent MPT whose key is the
state address and the value is the root hash of the lower
index. The lower index follows the column-based design,
using an MB-tree to store the state’s historical values in a
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Parameters Value

# of generated blocks 102,103,104,105

Size ratio T 2,4,6,8,10,12
COLE’s MHT fanout m 2,4,8,16,32,64

Table 2: System Parameters

contiguous fashion [29].

8.1.2 Implementation and Parameter Setting

We implement COLE and the baselines in Rust program-
ming language. The source code is available at https:
//github.com/hkbudb/cole. We use the Rust Ethereum
Virtual Machine (EVM) to execute transactions, simulat-
ing blockchain data updates and reads [2]. Transactions are
packed into blocks, each containing 100 transactions. Ten
smart contracts are initially deployed and repeatedly invoked
with transactions. Big number operations mentioned in Sec-
tion 3.2 are implemented using the rug library [3]. Baselines
utilize RocksDB [18] as the underlying storage, while COLE
uses simple files for data storage as enabled by our design.

We set ε = 23 based on the page size (4KB) and the com-
pound key-pair size (88 bytes). By default, the size ratio T
and the MHT fanout m of COLE are set to 4. Following the
default configuration of RocksDB, its memory budget is set
to 64MB. The in-memory capacity B is set to the number of
states that can fit within the same memory budget. Table 2
shows all the parameters where the default settings are high-
lighted in bold font. All experiments are run on a machine
equipped with an Intel i7-10710U CPU, 16GB RAM, and
Samsung SSD 256GB.

8.1.3 Workloads and Evaluation Metrics

The experiment evaluation includes two parts: the overall per-
formance of transaction executions and the performance of
provenance queries. For the first part, SmallBank and KVS-
tore from Blockbench [17] are used as macro benchmarks to
generate the transaction workload. SmallBank simulates the
account transfers while KVStore uses YCSB [9] for read/write
tests. YCSB involves a loading phase where base data is gen-
erated and stored, followed by a running phase for read/update
operations. A transaction that reads/updates data is denoted
as a read/write transaction. We set 105 transactions as the
base data and vary read/update ratios to simulate different
scenarios: (i) Read-Write with equal read/write transactions;
(ii) Read-Only with only read transactions; and (iii) Write-
Only with all write transactions. The overall performance is
evaluated in terms of the average transaction throughput, the
tail latency, and the storage size.

To evaluate provenance queries, we use KVStore to simu-
late the workload including frequent data updates. We initially
write 100 states as the base data and then continuously gen-
erate write transactions to update the base data’s states. For
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Figure 9: Performance vs. Block Height (SmallBank)
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Figure 10: Performance vs. Block Height (KVStore)

each query, we randomly select a key from the base data and
vary the block height range (e.g., 2,4, · · · ,128), which fol-
lows [44]’s setting. The evaluation metrics include (i) CPU
time of the query executed on the blockchain node and veri-
fied by the query user and (ii) proof size.

8.2 Experimental Results

8.2.1 Overall Performance

Figures 9 and 10 show the storage size and throughput of
COLE and all baselines under the SmallBank and KVStore
workloads, respectively. We denote COLE with the asyn-
chronous merge as COLE*.

We make several interesting observations. First, COLE
significantly reduces the storage size compared to MPT as
the blockchain grows. For example, at a block height of 105,
the storage size decreases by 94% and 93% for SmallBank
and KVStore, respectively. This is due to COLE’s elimina-
tion of the need to persist internal data structures via the
column-based design, and its use of storage-efficient learned
models for indexing. Moreover, COLE outperforms MPT in
throughput, achieving a 1.4×-5.4× improvement, thanks to
its learned index. COLE* performs slightly worse than COLE
due to the overhead of the asynchronous merge.

Second, using the learned index without the column-based
design (LIPP) even increases the blockchain storage. At a
block height of 102, the storage size of LIPP already exceeds
MPT’s by 5× (for SmallBank) and 31× (for KVStore). This
happens because the learned index often generates larger in-
dex nodes that must be persisted with each new block, leading
to increased storage and significant IO operations. Conse-
quently, LIPP’s throughput is significantly worse than MPT.
We are not able to report the results of LIPP for the block
height above 103 for SmallBank and 102 for KVStore as the
experiment could not be finished within 24 hours.
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Figure 11: Throughput vs. Workloads (KVStore)

Third, extending MPT with the column-based design (CMI)
does not significantly change the storage size. The addi-
tional storage of the lower-level MB-tree and the use of the
RocksDB backend largely negate the benefit of removing
node persistence. Additionally, refreshing Merkle hashes of
all nodes in the index update path, which entails both read
and write IOs, further impacts performance. Consequently,
the throughput of CMI is 7× and 22× worse than MPT for
SmallBank and KVStore, respectively, at a block height of
104. The experiments of CMI cannot scale beyond a block
height of 104.

Overall, with a unique combination of the learned index,
column-based design, and write-optimized strategies, COLE
and COLE* not only achieve the smallest storage requirement
but also gain the highest system throughput.

8.2.2 Impact of Workloads

We use KVStore to evaluate the impact of different workloads,
namely Read-Only (RO), Read-Write (RW), and Write-Only
(OW), in terms of the system throughput. As shown in Fig-
ure 11, the throughputs of all systems decrease with more
write operations in the workload. The performance of MPT
degrades by up to 93% while that of COLE and COLE* de-
grades by up to 87%. This shows that the LSM-tree-based
maintenance approach helps optimize the write operation.
We omit LIPP and CMI in Figure 11 since they cannot scale
beyond a block height of 103 and 104, respectively.

8.2.3 Tail Latency

To assess the effect of the asynchronous merge, Figure 12
shows the box plot of the latency of SmallBank and KVStore
workloads at block heights of 104 and 105. The tail latency is
depicted as the maximum outlier. As the blockchain grows,
COLE* decreases the tail latency by 1-2 orders of magnitude
for both workloads. This shows that the asynchronous merge
strategy will become more effective when the system scales
up for real-world applications. Owing to the asynchronous
merge overhead, COLE* incurs slightly higher median latency
than COLE, but it still outperforms MPT.

8.2.4 Impact of Size Ratio

Figure 13 shows the system throughput and latency box plot
under 105 block height using the SmallBank benchmark with
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Figure 13: Impact of Size Ratio

varying size ratio T . As the size ratio increases, the through-
put remains stable, while the tail latency shows a U shape.
We observe that T = 6 and T = 4 are the best settings for
COLE and COLE*, respectively, with the lowest tail latency.
Meanwhile, with an increasing size ratio, the median latency
of both COLE and COLE* increases.

8.2.5 Provenance Query Performance

We now evaluate the performance of provenance queries by
querying historical state values of a random address within
the latest q blocks. With the current block height fixed at 105,
we vary q from 2 to 128. LIPP and CMI are omitted here since
they cannot scale at 105 block height. Figure 14 shows that
MPT’s CPU time and proof size grow linearly with q while
those of COLE and COLE* grow only sublinearly. This is
because MPT requires to query each block inside the queried
range. In contrast, COLE and COLE*’s column-based design
often locates query results within contiguous storage of each
run, hence reducing the number of index traversals during the
query and shrinking the proof size by sharing ancestor nodes
in the Merkle path. COLE and COLE*’s proof sizes surpass
that of MPT when the query range is small due to limited
sharing capabilities within a small query range.

9 Related Work

In this section, we briefly review the related works on learned
indexes and blockchain storage management.

9.1 Learned Index
Learned index has been extensively studied in recent years.
The original learned index [26] only supports static data while
PGM-index [20], Fiting-tree [21], ALEX [15], LIPP [54], and
LIFOSS [61] support dynamic data using different strate-
gies. All these works are designed and optimized for in-
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Figure 14: Prov-Query Performance vs. Query Range

memory databases. Bourbon [10] uses the PGM-based models
to speed up the lookup in the WiscKey system, which is a
persistent key-value store. [27] investigates how existing dy-
namic learned indexes perform on-disk and shows the design
choices. Some other learned indexes are proposed for more
complex application scenarios like spatial data [23, 32, 47],
multi-dimensional data [16, 39], and variable-length string
data [51]. Moreover, [30, 34] consider designing learned in-
dexes for concurrent systems. [65] proposes a persistent
learned index that is specifically designed for the NVM-only
architecture with concurrency control. More recently, [31] de-
signs a scalable RDMA-oridented learned key-value store for
disaggregated memory systems. Nevertheless, existing works
cannot be directly applied to blockchain storage since they do
not take into account disk-optimized storage, data integrity,
and provenance queries simultaneously.

9.2 Blockchain Storage Management

Pioneering blockchain systems, such as Bitcoin [38] and
Ethereum [52], use MPT and store it using simple key-value
storage like RocksDB [18], which implements the LSM-tree
structure. While many works propose to optimize the generic
LSM-tree for high throughput and low latency [12–14,46,60],
and some propose orthogonal designs that could potentially
be incorporated into COLE, they are not specifically designed
to meet the unique integrity and provenance requirements
of blockchain systems. On the other hand, a large body
of research has been carried out to study alternative solu-
tions to reduce blockchain storage overhead. Several stud-
ies [11, 19, 24, 25, 62] consider using sharding techniques to
horizontally partition the blockchain storage and each par-
tition is maintained by a subset of nodes, thus reducing the
overall storage overhead. Distributed data storage [43, 59] or
moving on-chain states to off-chain nodes [6, 8, 48, 56, 58]
has also been proposed to reduce each blockchain node’s stor-
age overhead. Besides, ForkBase [50] proposes to optimize
blockchain storage by deduplicating multi-versioned data and
supporting efficient fork operations. [28] employs a vector
commitment protocol and multi-level authenticated trees to
reduce I/O costs for blockchain storage. To the best of our
knowledge, COLE is the first work that targets the index itself
to address the blockchain storage overhead.

Another related topic is to support efficient queries in
blockchain systems. LineageChain [44] focuses on prove-

nance queries in the blockchain. Verifiable boolean range
queries are studied in vChain and vChain+ [49, 55], where
accumulator-based authenticated data structures are designed.
GEM2-tree [64] explores query processing in the context
of on-chain/off-chain hybrid storage. FalconDB [42] com-
bines the blockchain and the collaborative database to support
SQL queries with a strong security guarantee. [57] studies
the authenticated spatial and keyword queries in blockchain
databases. iQuery [35] supports intelligent blockchain analyti-
cal queries and guarantees the trustworthiness of query results
by using multiple service providers. While all these works fo-
cus on proposing additional data structures to process specific
queries, COLE focuses on improving the performance of the
general blockchain storage system.

10 Conclusion

In this paper, we have designed COLE, a novel column-based
learned storage for blockchain systems. COLE follows the
column-based database design to contiguously store each
state’s historical values using an LSM-tree approach. Within
each run of the LSM-tree, a disk-optimized learned index has
been designed to facilitate efficient data retrieval and prove-
nance queries. Moreover, a streaming algorithm has been
proposed to construct Merkle files that are used to ensure
blockchain data integrity. In addition, a new checkpoint-based
asynchronous merge strategy has been proposed to tackle the
long-tail latency issue for data writes in COLE. Extensive
experiments show that, compared with the existing systems,
the proposed COLE system reduces the storage size by up
to 94% and improves the system throughput by 1.4×-5.4×.
Additionally, the proposed asynchronous merge decreases the
long-tail latency by 1-2 orders of magnitude while maintain-
ing a comparable storage size.

For future work, we plan to extend COLE to support
blockchain systems that undergo forking, where the states of
a forked block can be rewound. We will investigate efficient
strategies to remove the rewound states from storage. Fur-
thermore, since the column-based design stores blockchain
states contiguously, compression techniques can be applied
to take advantage of similarities between adjacent data. We
will study how to incorporate compression strategies into the
learned index.
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A Artifact Appendix

Abstract
This artifact includes the source code of the proposed system
COLE, along with the source code of other baseline systems
used for comparison. Additionally, the artifact provides the
procedure for generating the dataset under the YCSB bench-
mark, which is used for evaluating the performance.

Scope
The artifact is an academic proof-of-concept prototype and
has not undergone thorough code review. It should be noted
that the implementation is not suitable for production use.

Contents
The artifact consists of the following essential directories:

• cole-index: This directory contains the implementation of
COLE.

• cole-star: This directory corresponds to the implementa-
tion of the asynchronous version of COLE.

• patricia-trie: The MPT implementation can be found in
this directory.

• lipp: The implementation of LIPP with node persistence
is located in this directory.

• non-learn-cmi: This directory contains the implementa-
tion of CMI, as mentioned in Section 8.

• exp: The evaluation backend for all systems is included in
this directory.

Hosting
The artifact is hosted on a GitHub repository with the master
branch and the latest commit version.

Requirements
The artifact has been evaluated on Ubuntu 20.04 LTS. Please
keep in mind that the scripts provided in the README file
for installing dependencies may differ for other platforms.
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Abstract
Flash caches are used to reduce peak backend load for

throughput-constrained data center services, reducing the total
number of backend servers required. Bulk storage systems
are a large-scale example, backed by high-capacity but low-
throughput hard disks, and using flash caches to provide a
more cost-effective storage layer underlying everything from
blobstores to data warehouses.

However, flash caches must address the limited write en-
durance of flash by limiting the long-term average flash write
rate to avoid premature wearout. To do so, most flash caches
must use admission policies to filter cache insertions and
maximize the workload-reduction value of each flash write.

The Baleen flash cache uses coordinated ML admission
and prefetching to reduce peak backend load. After learning
painful lessons with our early ML policy attempts, we exploit
a new cache residency model (which we call episodes) to
guide model training. We focus on optimizing for an end-to-
end system metric (Disk-head Time) that measures backend
load more accurately than IO miss rate or byte miss rate.
Evaluation using Meta traces from seven storage clusters
shows that Baleen reduces Peak Disk-head Time (and hence
the number of backend hard disks required) by 12% over state-
of-the-art policies for a fixed flash write rate constraint. Baleen-
TCO, which chooses an optimal flash write rate, reduces our
estimated total cost of ownership (TCO) by 17%. Code and
traces are available via https://www.pdl.cmu.edu/CILES/.

1 Introduction
Large-scale storage continues to be predominantly done with
hard disks (HDDs), which provide much more cost-effective
storage than flash. However, HDDs have low throughput, and
each can generally only perform about 100 IOs per second
(IOPS). Modern storage systems rely heavily on flash caches
to absorb a substantial fraction of requests and thereby reduce
the number of disks needed to satisfy the IO workload.

Although a functional cache can be realized using traditional
approaches, which assume items can be admitted to the cache
arbitrarily, it is important to consider the differing natures of
HDDs and flash SSDs. In particular, the IOPS and bandwidth
of HDDs has not kept up with increases in their capacity,
making disk time a key goal of flash caching more than
average IO latency. Flash, on the other hand, provides orders
of magnitude higher IOPS, but it wears out as it is written. As
a result, expected SSD lifetime projections assume relatively
low average write rate limits, such as “three drive-writes per
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Figure 1: Baleen-TCO reduces (estimated) TCO by 17% and
peak load by 16% over the best baseline on 7 Meta traces by
choosing the optimal flash write rate. IO and byte miss rates
were reduced by 14% and 2% (Suppl A.1). For the default
flash write rate, Baleen reduces peak load by 12% over the
best baseline.

day”, meaning 3N TB of writes to a N TB SSD each day.
Manufacturers offer SSDs with even lower endurance (e.g., 1
drive write per day) with correspondingly lower prices. All of
this translates to a need for smart admission policies to decide
which items get written into cache [5, 14]. Popular policies
have included random admission and history-based policies
that reject items without sufficient recent usage.

Machine learning (ML) policies for flash cache admission
have been proposed as a solution for avoiding excessive flash
writes. However, caching does not easily map to well-trodden
problems in computer vision or natural language processing.
In particular, a policy’s decision is often affected by its past
decisions, and can have synergistic or antagonistic effects on
other parts of the system. While in theory this can be addressed
with end-to-end and reinforcement learning techniques, in
practice, such models require large amounts of human capital
and computing resources, and do not necessarily outperform
a typical well-tuned production system [6, 21, 25, 28, 29, 57].

Making ML policies introspectable is key to their adoption
by systems practitioners [55]. While accurate models are
desirable, success also hinges on the correct decisions being
posed to the models. How one uses ML is key: how to generate
training examples from traces, how to arrive at optimal deci-
sions for ML to learn from, which subproblems ML should
be applied to, and how to optimize end-to-end systems perfor-
mance without sacrificing introspectability, debuggability, and
efficiency. In Baleen, we decompose the flash caching problem
into admission, prefetching, and eviction (§3.3). This helped
us align policy decisions to well-understood and efficient ML
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techniques for supervised learning. We do, however, want to
co-design these different components to reap the full benefits.
One may depend on the other to be effective, as we found to
be true for ML prefetching and ML admission.

This paper explores ML policies for flash caches in bulk
storage systems. We introduce a new analytic approach for
access pattern analysis, based on a cache residency model we
call episodes (§3.4), which groups accesses that correspond to
an item’s cache residency if admitted. Our approach provides
a more complete view of end-to-end flash caching policy per-
formance, and enables us to efficiently model policy behavior
under multiple constraints. This is especially useful for flash
caches given that the resource burden of an admission is domi-
nated by its flash writes, which is the same whether the item is
admitted at the start or end of the episode. From our approach,
we develop OPT (3.5), an episode-based approximation of
optimal admission and train ML admission policies to imitate
OPT. We benchmark them against OPT and other baseline
admission policies on seven recent real-world storage cluster
traces collected over 3 years.

Baleen is our resulting ML-guided Flash cache policy. We
evaluate it by its savings in Peak Disk-head Time (§3.1), a
measure of peak backend load, and we find that a combination
of ML-guided admission and ML-guided prefetching provides
the largest improvement. In deploying ML, we learned that
determining the right optimization metric is not an easy task;
an earlier version of Baleen improved IO hit ratio but had worse
end-to-end performance (disk-head time). Optimizing for the
right metric in the ML policy improved both introspectability
and system performance. We also developed a variant Baleen-
TCO, which chooses the optimal flash write rate to optimize
our estimate of the total cost of ownership (TCO). This also
results in improvements to traditional metrics, reducing IO
miss rate by 14% and byte miss rate by 2% (Suppl A.1).

Contributions This paper makes 3 primary contributions:
(1) a new cache residency model (episodes) that enables a
useful comparison point (OPT) and improves ML training
effectiveness; (2) ML-guided cache policies that optimize for
Disk-head Time and TCO, not hit rate; (3) Baleen, which uses
episodes to train coordinated ML admission and prefetching
policies, saving 16% in peak load and 17% in (estimated)
TCO over our best baseline (Fig 1).

2 Background
2.1 Bulk storage systems in data centers
Tectonic is an example of a bulk storage system, which ag-
gregates persistent storage needs in data centers (e.g., from
blobstores and data warehouses). Flash caches are used to
reduce the load on the backing HDDs and meet throughput
requirements. Other systems have a similar design [16,35,42].

Accesses are made to byte ranges within blocks. Blocks are
mapped to a location on backing HDDs and subdivided into
many smaller units called segments that can be individually
cached. (Tectonic has 8 MB blocks and 128 kB segments.)
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Figure 2: Disk-head Time (DT) for one IO. When a HDD
performs an IO, the disk head seeks before it reads data. For tiny
IOs, throughput is limited by IOPS; for large IOs, by bandwidth. DT
encompasses both metrics and generalizes to variable-size IOs.

Upon an access, the cache is checked for all segments needed
to cover the request byte range. If any are missing, an IO is
made to the backing store to fetch them, at which point they
can be admitted into the cache.

Each cluster has 10,000s of storage nodes independently
serving requests. Each node has 378 TB in HDDs [35], 400
GB in flash cache, and 10 GB in DRAM cache (37,800:40:1).
This paper focuses on the scope of the individual node.
2.2 Bulk storage limited by disk-head time (DT)
At scale, hard disks (HDDs) remain the choice of backing store
as they are cheaper by 10X per TB over SSDs [32]. Newer
HDDs offer increased storage density, resulting in shrinking
throughput (IOPS and bandwidth) per GB as more GBs are
served by the same disk head.

Disk-head time (defined in §3.1) on backing HDDs is a
premium resource, especially with workloads that are more
random than sequential. The mechanical nature of HDDs
results in a high, size-independent access time penalty (e.g.,
10 ms) for positioning the read/write head before bytes are
transferred. With a high read rate (e.g., 5.5 ms/MB), a request
could take 10 to 70 ms (Fig 2).

In provisioning bulk storage, peak demand for disk-head
time matters most. If the system has insufficient IO capacity,
requests queue up, and slowdowns occur. If sustained, clients
retry requests and failures occur, affecting user experience.
Thus, bulk storage IO requirements are defined by peak load,
which in turn affects storage costs.
2.3 Flash caches absorb HDD load but have limited

write endurance
Flash caching plays an important role in absorbing backend
load, compensating for disk-head time limitations of the under-
lying HDDs. This setup enables resource-efficient storage for
workloads that exceed the throughput requirements of HDDs
but which are infeasible to store using flash alone. With the
trends towards higher density HDDs and fewer bytes per HDD
spindle, flash caches unlock more usable bytes per spindle.

While managing throughput is the primary goal of flash
caching, tail latency can improve as a result of reduced backend
contention [56]. Flash caches also add flexibility for matching
system throughput to ever-growing demand, as it is easier
to enlarge flash caches than swap out existing HDDs. When
AI training put pressure on storage bandwidth at Meta, the
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solution was to add a disaggregated flash caching tier [60].
Flash does not have access setup penalties, but does have

wearout that translates into long-term average-write-rate limits.
SSD manufacturers rate their drives’ endurance in terms of
drive-writes per day (DWPD) over their warranty period.
Caching is an especially challenging workload for flash, since
items will have widely varying lifetimes, resulting in a usage
pattern closer to random I/Os than large sequential writes.
Items admitted together may not be evicted at the same time,
worsening write amplification. Writing every miss into flash
would cause it to wear out prematurely. Admitting everything
requires up to 492 MBs−1 or 43 DWPD for our traces; for
an SSD rated at 3 DWPD over 5 years, this means a reduced
lifetime of just 4 months (i.e., 14 × as fast). One solution is
SSD capacity overprovisioning, but this can rapidly become a
dominant part of the total storage costs [5, 55].

Flash caches leverage admission policies (APs) to decide if
items should be inserted into the flash cache or discarded, and
have simple eviction policies (LRU, FIFO) to minimize write
amplification [5]. Like eviction policies, admission policies
weigh the benefit of hits from new items against lost hits from
evicted items. They must also weigh the write cost of admitting
the new item against other past or future items. Policies have
an admission threshold that can be varied to achieve the target
flash write rate. We provide some examples.
• CoinFlip (baseline) On a miss, segments for an access are

either all admitted, or not at all, with probability 𝑝. This
simple policy does not need tracking of past items seen.

• RejectX (baseline) rejects a segment the first 𝑋 times it
is seen. Past accesses are tracked using probabilistic data
structures similar to Bloom filters. We use 𝑋 = 1 and vary
the window size of past accesses to achieve the desired
write rate. Both Meta [5] and Google [55] used this prior to
switching to more complex policies.

• ML admission policies use offline features to make de-
cisions in addition to online features such as past access
counts. An ML model can be trained offline based on a trace
(as we do), or online using reinforcement learning.

2.4 Challenges in flash caching
Challenges in flash admission Flash admission policies are
difficult to design for many reasons. DRAM caches do not need
admission policies as they can defer decisions to the eviction
policy, which has the advantage of knowing the item’s usage
while in cache. Flash caches incur write costs at insertion
time, forcing admission policies to decide a priori to optimize
the limited write budget. A longer residency better amortizes
this upfront write cost. In contrast, the space-time cost of an
item is incurred at a steady rate over time in DRAM caches.

Challenges for ML admission We describe 4 challenges:
Correct optimization metric not obvious The right metric

is important not only because optimizing it gives better perfor-
mance, but because it makes the system more robust. Systems
practitioners know the importance of using end-to-end metrics

such as IO hit rate, rather than cache hit rate (problem: an IO
hit can require multiple cache hits) or ML model accuracy
(problem: asymmetrical misprediction cost and class imbal-
ance). Yet even optimizing for IO hit rate is still an (easy)
misstep, as a policy that increases the IO hit rate but consumes
much more bandwidth may result in overall higher DT, and
require more HDDs to serve that load.

Asymmetrical misprediction cost Mispredictions consist
of false positives (FPs) and false negatives (FNs). A FP incurs
a full write cost (reducing writes left for true positives), and
time in cache. FPs have a large performance impact since
given the limit on flash writes. With an FN, a hit is lost but the
policy may have further chances to admit the item. These lost
hits are insignificant for popular items, but have an outsized
impact on items with only a few potential hits. There is a long
but heavy tail of such items; our traces show many admitted
items with 5–8 hits (Fig 20 of Supp A.8). Policies trading off
too many FNs for FPs suffer a performance hit [55].

Class imbalance Since most items will not be admitted (94%
in our experiments), true negatives (accesses that should not
be admitted) far exceeds the number of true positives (accesses
that should be admitted). Indeed, we observe that while ML
admission policies may achieve a high ML accuracy, this does
not always translate into a high cache hit rate. We found typical
solutions (oversampling, undersampling, and sample weights)
ineffective at countering the extreme imbalance.

APs operate only on misses For an ML policy, it makes
sense to train only on accesses in a trace that result in misses,
rather than all accesses in the trace. However, this requires
an online simulation to determine which accesses are misses,
adding additional complexity to training.

Challenges for prefetching policies On a miss, a backend
IO must be made to retrieve all missed segments. This IO
can be extended and more segments admitted. Done correctly,
compulsory misses (when a segment is first observed) are
eliminated, reducing disk-head time. However, prefetching
mistakes are costly as they consume both writes and extra DT.

Limitations of existing systems Existing works are often:
• Not modular. Without a modular design, the system can

be oversimplified and miss out on key design considera-
tions [14], or else veer towards too much complexity and
be difficult to debug and reason about.

• Optimizing for intermediate metrics. Many systems op-
timize hit rate [8, 13,14, 22, 37,43], bandwidth [41,42] or
write rate without considering the larger system the cache
is part of. This makes them less performant and robust.

• Not focused on peak. Almost all systems report averages,
giving less accurate assessments of system performance,
as bad performance at peak can be covered up by good
(but ultimately unhelpful) off-peak performance. To our
knowledge, only one other system evaluates load at peak [42].

• Not co-designed. Many systems focus on a single aspect
like flash admission [5, 13,14] or eviction [3, 8, 22,26,37,
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41–43, 47, 61] without considering the effect of one part on
another, in the belief that their benefits will be fully retained
when applied with other techniques. To our knowledge,
only two other systems evaluate multiple subproblems ( [1]:
admission and eviction; [56]: admission and prefetching).

3 Exploring potential gains in flash caching
To improve admission, we must first know what “better” looks
like. We use Disk-head Time as an end-to-end throughput met-
ric to evaluate this. This section describes our decomposition
of the flash caching problem, and our attempt at approximating
an optimal admission policy (OPT) and a framework (episodes)
to evaluate the cost-benefit trade-offs of not just admission
policies, but orthogonal improvements such as prefetching.
3.1 Measure Disk-head Time, not hits or bandwidth
We quantify backing store load via disk-head time (DT), which
is a metric that balances IOPS and bandwidth.

Definition Disk-head Time (DT) is the cost of serving
requests to the backend. For a single IO that fetches 𝑛 bytes,
with 𝑡𝑠𝑒𝑒𝑘 the time for one disk seek and 𝑡𝑟𝑒𝑎𝑑 the time to read
one additional byte: 𝐷𝑇 𝑖 = 𝑡𝑠𝑒𝑒𝑘 +𝑛 · 𝑡𝑟𝑒𝑎𝑑

Definition Backend load (Utilization) of a time window is
the total DT needed to serve misses, normalized by provisioned
DT (1 disk-sec per disk per sec):𝑈𝑡𝑖𝑙𝐷𝑇 =

∑
𝑖 𝐷𝑇𝑖

𝐷𝑇𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑
, where∑︁

𝑖

𝐷𝑇 𝑖 = 𝐹𝑒𝑡𝑐ℎ𝑒𝑠𝐼𝑂𝑠 · 𝑡𝑠𝑒𝑒𝑘 + 𝐹𝑒𝑡𝑐ℎ𝑒𝑠𝐵𝑦𝑡𝑒𝑠 · 𝑡𝑟𝑒𝑎𝑑 (1)

DT accurately models throughput constraints of bulk
storage systems. DT models both the IOPS and bandwidth
limitations of the backing HDDs. (This concept can be ex-
tended to other systems with IO setup and transfer costs, such
as CDNs.) In our caching setup, we fetch the smallest range
covering all cache misses, and normalize DT by HDDs per
node to get backend load.

In Fig 3, we validate DT that can be calculated using
only two production counters, IO misses and bytes fetched,
against system-reported disk utilization on a Meta production
cluster in Feb 2023. The peaks line up within 1%, which was
surprisingly accurate given the simplicity of this formula (𝑡𝑠𝑒𝑒𝑘
and 𝑡𝑟𝑒𝑎𝑑 are constants) and the vagaries of production systems
(included in the system disk utilization measurements).

DT correctly balances IO misses and byte misses. In
practice, 𝐹𝑒𝑡𝑐ℎ𝑒𝑠𝐵𝑦𝑡𝑒𝑠 ≈ 𝑀𝑖𝑠𝑠𝑒𝑠𝐵𝑦𝑡𝑒𝑠 (there is a very small
difference due to non-consecutive misses). Hence,

∑
𝐷𝑇 can

be interpreted as a weighted sum of IO misses and byte misses,
and reducing DT consumed reduces the familiar caching
metrics of IO miss rate and byte miss rate.

Conversely, optimizing only the IO miss rate or byte miss
rate may result in mistakes made. For example, IO hit rate
cannot distinguish these two scenarios though one is better
than the other. Consider two blocks, both with 64 accesses.
For the first block, each of the 64 segments is requested, one
at a time. For the second block, every access requests all 64
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Figure 3: DT validated in production. Our DT formula (plug-
ging counters into Eq 1) matches measured disk utilization (blue)
closely. The peak of 58% occurs on Day 0.

segments. While both require the same cache space and save
the same IOs, caching the second block saves more DT.

Definition Peak DT is the P100 backend utilization
(𝑈𝑡𝑖𝑙𝐷𝑇 ), measured every 10 minutes. The peak refers to
the 10-min interval with the highest DT: 𝑃𝑒𝑎𝑘𝐷𝑇 =𝑈𝑡𝑖𝑙𝑃100

𝐷𝑇

Peak DT is proportional to the number of backend
servers required. System capacity, such as the number of
backend servers, is provisioned to handle peak load in systems
that need to meet real-time demand. Therefore, to reduce the
backend size required, Peak DT should be minimized. This
introduces the need for scheduling (i.e., when to spend the
flash write rate budget) to prioritize the admission of items that
contribute to the Peak DT. As explicitly optimizing admission
for the peak introduces significant complexity, we leave that
for future work. For this paper, we design our admission and
prefetching policies to minimize average DT (and show that
they are successful in reducing Peak DT), and optimize for
Peak DT in other aspects of the system.
3.2 TCO dominated by backend servers required
In the absence of actual cost numbers, we approximate TCO
(total cost of ownership) based on public information. [56]
defines TCO as the total cost of HDD reads and written
flash bytes, assuming a fixed flash cache size and that other
costs (CPU, RAM, power, network) are negligible. We design
a similar function, assuming that the cost of HDD reads is
proportional to the HDDs required (and Peak DT), and the cost
of written flash bytes is proportional to the SSDs purchased
in the long run: 𝑇𝐶𝑂 ∝𝐶𝑜𝑠𝑡𝐻𝐷𝐷 ·#𝐻𝐷𝐷𝑠 +𝐶𝑜𝑠𝑡𝑆𝑆𝐷 ·#𝑆𝑆𝐷𝑠

We calculate relative TCO savings using the Peak DT saved
with our baseline AP RejectX (𝑃𝑒𝑎𝑘𝐷𝑇0), and relative to the
default target flash write rate (𝐹𝑙𝑎𝑠ℎ𝑊𝑅0).

TCO1 ∝
PeakDT1
𝑃𝑒𝑎𝑘𝐷𝑇 0

·#𝐻𝐷𝐷𝑠0+
𝐶𝑜𝑠𝑡𝑆𝑆𝐷

𝐶𝑜𝑠𝑡𝐻𝐷𝐷
· FlashWR1
𝐹𝑙𝑎𝑠ℎ𝑊𝑅0

·#𝑆𝑆𝐷𝑠0 (2)

This gives us a TCO function based on a policy’s Peak DT
(𝑃𝑒𝑎𝑘𝐷𝑇1) and the flash write rate chosen (𝐹𝑙𝑎𝑠ℎ𝑊𝑅1). (See
App A.4 for a line-by-line derivation.) The skewed ratio of
HDD to SSD capacity (945:1 [35]) means that SSD cost is
a fraction of TCO (3% on our workloads). Hence, reducing
Peak DT (and HDDs needed) is key to reducing TCO.
3.3 Decomposing the caching problem
We define the caching problem as determining which times
we should fetch, admit, and evict each segment to minimize
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Figure 4: An episode is a group of accesses during a block’s
residency. Accesses (in blue) are grouped into two episodes as the
interarrival time (in red) exceeds the assumed eviction age.

Figure 5: Episodes span space (measured in segments) in
addition to time. An episode’s size is the smallest number of
segments required to be admitted to get all possible hits within an
episode. OPT-Range (§ 3.6) is (1,3) and (2,3) respectively.

the backend’s DT given a flash write rate limit.
We propose a heuristic decomposition of this problem into

three sub-problems: admission, prefetching, and eviction. This
makes it easier to reason about the optimal solutions to each
sub-problem and the training and behavior of ML solutions
for each part. Making ML solutions easier to train, understand,
and debug mitigates production engineers’ common criticism
of their blackbox nature [40].

Admission: Whether to admit something into cache in
anticipation of future hits that reduce DT. Here,we trade off the
disk-head time saved against the write rate used from caching
an item. We model this as a binary classifier, where misses are
admitted if the output probability exceeds the policy threshold.
We also considered regression models (e.g., predicting no. of
expected hits). Such models eliminate the threshold parameter,
but we found they perform worse end-to-end, perhaps because
their loss functions incentivize performance at all thresholds
(write rates) rather than just those at the boundary.

Prefetching: Whether to prefetch extra segments outside
the current access range (which was a miss). Here, we trade off
DT saved from hits on the first accesses against the additional
time spent in cache, and for incorrect prefetches, the DT wasted
and the opportunity cost of the wasted flash write rate. We
further decompose the prefetching problem into a) deciding
what segments to prefetch and b) when to prefetch (whether
the expected benefit exceeds the cost, taking into account the
possibility of mispredictions).

Eviction: Which segment in the cache to pick for eviction
upon an admission. Here, one can employ existing approaches
for non-flash caches, including ML-based policies. Here, we
employ a simple eviction policy (in our case, LRU) as is used
in production systems, leaving ML-based flash-aware eviction
policies for future work.
3.4 Episodes: an offline model for flash caching
We devised an offline model for flash caching for efficient
evaluation of flash caching improvements, and to facilitate the

training of ML-based policies. This model revolves around
episodes, which are defined as:

Definition An episode is a sequence of accesses that would
be hits (apart from the first access) if the corresponding item
was admitted. It is defined on a block (the rationale being that
a cache hit only occurs if all segments are present in cache).

An episode may span multiple segments, and as shown in
Fig 5, an episode’s size is the number of segments needed to
cache it. This leads naturally to a formulation for prefetching.
(An important distinction between episodes and block-level
LRU analysis is that different episodes for the same block
can have different sizes.) An episode’s timespan is the length
of time between the first access of any segment and the last
eviction of a segment.

We generate episodes to aid ML training by exploiting the
model of an LRU cache as evicting items at a constant logical
time (eviction age) after the last access [7, 10, 15, 30]. In an
LRU cache, the eviction age is the logical time between an
item’s last access & eviction. As shown in Fig 4, we group
accesses into episodes such that all inter-arrival times within
episodes are no larger than the assumed eviction age.

Episodes provide a direct mapping to the costs and benefits
associated with an admission, and which corresponds directly
to the decisions being made by admission policies. These
benefits and costs are associated with an item’s entire lifespan
in cache, and are not obvious from looking at a stream of
individual accesses. Moreover, with flash caching, it is optimal
to admit as early as possible in the episode, given that the
flash writes required are a fixed cost. By shifting the mental
model from interdependent accesses to independent episodes,
we can reason about decisions more easily.

Decisions on episodes can be made independently by as-
suming a constant eviction age. This also allows decisions to
be made in parallel. The added pressure on cache space via
an admission is accounted for via downward pressure on the
eviction age. We determine an appropriate eviction age using
simulations that measure the average eviction age. In reality,
the eviction age is not constant and varies with cache usage
over time. One approach deals with this by calculating policies
for a wide range of possible eviction ages [55]. However, we
find that in terms of end-to-end performance, Baleen is not
sensitive to the assumed eviction age (typically 2+ hours) as
long as it is not extremely low (e.g., seconds to minutes).

The episode model also allows for an efficient offline ana-
lytical analysis of policies via Little’s Law. Given the arrival
rate and assumed eviction age, we can estimate the cache
size required, and set the eviction age such that the analytical
cache size is equal to the cache size constraint. While this is
much more efficient than an online simulation and is useful
to explore a greater range of parameters than is possible with
online simulation, the numbers will differ from simulated ones
as the cache size constraint is not enforced all the time, only
as a long-term average.

Admission policies can be viewed as partitioning these
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episodes into those admitted and discarded. This can be done
via scoring episodes and ranking them by score, and we
elaborate on this in the next section.
3.5 OPT approximates optimal online AP
Using episodes, we can devise an admission policy (AP) for
online simulation that approximates the optimal AP using
offline information from the entire trace. First, each block’s
accesses are grouped into episodes using an assumed eviction
age. Second, all episodes are scored and sorted. Last, the
maximum no. of episodes are admitted such that the total flash
writes required do not exceed the write rate budget. During
online simulation, accesses will be admitted if they belong
to episodes marked as admitted during the offline process.
OPT scores each episode to maximize on the DT saved if
admitted and to minimize its size (flash writes required to
admit): 𝑆𝑐𝑜𝑟𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) = 𝐷𝑇𝑆𝑎𝑣𝑒𝑑 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒 )

𝑆𝑖𝑧𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒 )

3.6 Prefetching: what and when?
Episodes are also used to design our prefetchers and generate
OPT labels for prefetching. By default, on a miss, the smallest
IO that covers all missed segments is made, i.e., no prefetching
occurs. It is possible to extend this IO and preemptively admit
more segments. If done correctly, this reduces the total no of
IOs needed and thus reduces DT.

Prefetching the correct segments is important to achieve
a reduction in DT given a write bound. With imperfect ad-
mission policies, predicting a confidence value is necessary
to balance the risk of real prefetching costs against possible
benefits. Otherwise, prefetched segments compete with seg-
ments admitted from misses and drive up write rate while not
reducing DT, meaning an overall reduction in DT for the same
write bound. Note that the costs and benefits of prefetching
must be evaluated against the opportunity cost of using writes
for admission of missed blocks instead.

Deciding when to prefetch Fetching insufficient segments
results in minimal or no DT reduction. On the other hand,
fetching excess segments results in a high write rate. To
balance these trade-offs, we need to know our confidence in
our range prediction.

For instance, prefetching the entire block on every miss will
result in an overall IOPS reduction given write rate constraints.
A blunt method to increase precision is to prefetch on every
2nd miss or on every partial IOPS hit (when some but not
all segments in an access return a hit). This indicates that
part of the block was admitted to cache. For OPT prefetching,
we prefetch on OPT-Ep-Start, the start of the episode as
determined by the episode model.

Deciding what to prefetch: Whole-Block, OPT-Range
The straightforward choice is to prefetch the entire 8 MB block
(Whole-Block). However, the resultant write rate is too high,
making it infeasible unless combined with prefetching on
every partial IOPS hit. To evaluate how well we could perform
given offline information from the whole trace, we introduce

Training
Trace

Episodes model

used to train
Admission Policy

Prefetcher

Flash Cache 
(e.g., CacheLib) 

Bulk Storage

Deployment

Admission Policy

Prefetcher IOIO

Figure 6: Architecture. An admission policy in CacheLib decides
whether to admit items into flash. Prefetching (preloading of data
beyond current request) takes place in Tectonic.

OPT-Range, which uses the generated episodes to determine
an optimal range of segments to prefetch. OPT-Range is the
minimal range of segments that covers all accesses in an
episode. For the episodes in Fig 5, OPT-Range is (1,3) for Ep
1 and (2,3) for Ep 2. Whole-Block always fetches (1,64).

4 Baleen Implementation
We describe how Baleen provides episode-based solutions to
two problems: how to train an ML-based admission policy,
and using prefetching to improve beyond admission policies.
4.1 Training Baleen’s ML admission policy
Episodes generated from the trace are used to train an admis-
sion policy, as shown in Fig 6. The policy is a binary classifi-
cation model. We describe: 1) how we generate training data
and labels from episodes, 2) what features and architecture
we use for the ML admission model, 3) how we determine
appropriate values for training parameters (assumed eviction
age, admission policy threshold) through an iterative loop,
and 4) how we implement ML admission in CacheLib.

Features Baleen’s admission policy utilizes a total of 9
features, grouped into offline metadata and online usage counts.

Metadata features are provided by the bulk storage system
and supplied in the trace. These metadata features identify
the provenance of the request (namespace, user) and indicate
whether the block is tagged as temporary (e.g., as a result of
a JOIN) or permanent. Feature cardinality is less than 100
for namespaces and less than 200 for users. Both features are
associated with the system user (internal service) executing
the request rather than an end user. These features are often
the same for accesses to the same object and almost always
the same for accesses belonging to the same episode. These
features are provided per IO and thus the same for all segments.

Online dynamic features (times the item is accessed in the
last 1,2, . . . 6 hours) change with every access. This can be
measured at the block or segment level. For Baleen, we record
both the number of IOs for each block and the cumulative
segment accesses for each block to use as features. For each
workload, a simple simulation is done on the training set (the
first day) to collect these dynamic features. We do not use
individual segment counts as features, as this would add 64
features without an appreciable increase in performance.

Modeling admission as binary classification We admit
misses if the classifier’s output probability exceeds the policy
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threshold. We also considered regression models (e.g., predict-
ing no. of expected hits). Such models eliminate the threshold
parameter, but we found they perform worse end-to-end [14],
perhaps because their loss functions incentivize performance
at all thresholds and not just those at the boundary.

Training data and label generation The goal is to differ-
entiate episodes at the decision boundary, which tend to have
few accesses. Learning to identify these episodes is hard but
important as they are significant in aggregate. To avoid a train-
ing bias towards popular but easy-to-differentiate episodes,
only the first 6 accesses from each episode are incorporated
into training data. Baleen learns to imitate OPT, and the binary
labels are determined by whether that episode, based on its
score, would have been admitted under OPT.

Converging on Eviction Age, Policy Threshold Parame-
ters We repeatedly run the offline episode model and online
simulation in a loop to converge on values for assumed eviction
age (EA) and admission policy threshold. Recall that episodes
are generated with an assumed EA. These episodes are used
to train models, which are used in an online simulation where
the average EA can be measured. We initialize assumed EA
to an arbitrary value of 2 hours and repeat episode genera-
tion, model training, and online simulation until the assumed
EA converges on the average EA from an online simulation.
Within each loop iteration, there is another nested loop to
find the correct admission policy threshold that results in the
simulation achieving the target flash write rate. This inner loop
aims to offset the small differences between offline analysis
and a higher-fidelity online simulation.

Online flash caching simulator The training loop men-
tioned in the prior paragraph requires an online simulator to
be run multiple times. We developed a Python simulator to
accurately estimate CacheLib performance without doing the
actual heavy lifting. This is an approach taken by other ML for
Systems projects [44]. This lightweight simulator is easier to
include in a ML training pipeline, and takes as input a Tectonic
trace and measures many end-to-end metrics (e.g., average
eviction age, Peak DT) that cannot be obtained from offline
episode analysis. Having the training setup be Python-centric
aids in faster prototyping, ease of use by data scientists, and
ease of integration with existing ML training pipelines.

Gradient boosting machines (GBM) We chose to use
GBMs as they are fast and have some inherent tolerance to
overfitting and imbalanced classes. Compared to deep neural
networks, they are far more efficient and are well-proven to
run within the latency requirements of a production caching
system [5]. Practitioners also find them easier to understand,
given that they are based on widely-understood decision trees.

Adding a ML admission policy to CacheLib The open-
sourced version of CacheLib supports flash admission policies,
but does not include a mechanism for storing and supplying
features to ML admission policies. We describe how this
may be done. For the static metadata features, they can be
embedded as part of the item payload. Since payloads are a

few MB on average, storing the features (less than 1 kB) in this
way does not impose any significant overhead. To provide the
dynamic features, counts of accesses are tracked in CacheLib
using a count-min-sketch data structure (similar to bloom
filters, but with counts). Each data-structure holds the count
for approximately one hour, with a queue of 6, such that we
have counts at hour-level granularity for the last 6 hours.
4.2 Training Baleen’s Prefetcher using episodes
Models are trained to solve two subproblems: what to prefetch,
and when to prefetch.

Learning what to prefetch: ML-Range We need a ML
model that predicts a range of segments for prefetching. We do
this by training the model to imitate OPT-Range, the smallest
range of segments needed for all accesses in an episode to be
hits (defined in §3.6). We use the same features as the ML
admission model, but add size-related features (access start
index, access end index, access size). We train two regression
models to predict the episode range start and end. Each episode
is represented once in the training data, with only episodes
that meet the score cutoff for the target write rate included.

Learning when to prefetch: ML-When Mispredictions by
the ML admission policy and in ML-Range can easily cause
prefetching to hurt instead of help. In reality, the expected
benefit will be lower than OPT prefetching and the cost can
only be higher. DT saved from prefetching ML-Range may
not be realized (which we call underfetch, see Eq 3a). Further,
prefetching mispredictions are costly in terms of DT consumed
to fetch unused segments (which we call overfetch, see Eq 3b)
and the opportunity cost of flash writes used to store them.

ML-When aims to address this by excluding episodes
that do not have a high probability of benefiting from
prefetching. In particular, it hedges against the broader effect
of prefetching on eviction age by requiring that the marginal
DT gained from ML prefetching (𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑀𝐿

𝑒𝑝𝑠 , Eq 3c) be
larger than 𝜖 (ML-When label, Eq 3e). 𝜖 is a proxy for the
unknown broader opportunity costs of flash writes and cache
space, and set to 5 ms (for comparison, an IO seek is 12 ms).

𝑈𝐹 : 𝑢𝑛𝑑𝑒𝑟 𝑓 𝑒𝑡𝑐ℎ = 𝑡𝑟𝑢𝑒 if ML-Range ⊂ OPT-Range (3a)
𝑂𝐹 : 𝑜𝑣𝑒𝑟 𝑓 𝑒𝑡𝑐ℎ = 𝐷𝑇𝑈𝑠𝑒𝑑 (extra segments) (3b)

𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑂𝑃𝑇
𝑒𝑝𝑠 = 𝐷𝑇

𝑁𝑜𝑃𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ
𝑒𝑝𝑠 −𝐷𝑇

𝑂𝑃𝑇−𝑅𝑎𝑛𝑔𝑒
𝑒𝑝𝑠 (3c)

𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑀𝐿
𝑒𝑝𝑠 =

{
0 if underfetch
𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑂𝑃𝑇

𝑒𝑝𝑠 −𝑂𝐹 otherwise
(3d)

ML-When(𝑒𝑝𝑠) = 𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡
𝑀𝐿−𝑅𝑎𝑛𝑔𝑒
𝑒𝑝𝑠 > 𝜖 (3e)

Prefetching is implemented in CacheLib applications
Every request to the bulk storage system references a block
in the backing store and a byte range within that 8 MB block.
Each request is translated by the application into (potentially
multiple) CacheLib segment-level requests. CacheLib is not
aware that segments may belong to the same block.

Thus, prefetching must be implemented by the application
issuing requests against CacheLib, which is the bulk storage
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system in our case (Fig 6). On each client request, Baleen’s
prefetcher will be triggered after the application has queried
CacheLib and found out whether segments are hits or misses.
Thus, the prefetcher has access to the client request metadata
and knows how many requested segments were present in
cache. On a miss, the application makes a request to the
backing store, giving the prefetcher a chance to fetch extra
segments and insert those into cache.
4.3 Optimizing for Peak DT and TCO
Baleen-TCO We designed a variant of Baleen, Baleen-TCO,
that optimizes our TCO function (Eq 4b) by simulating Baleen
over a range of flash write rates to get the respective Peak
DT. Baleen-TCO then chooses the optimal flash write rate to
minimize the TCO function.

Optimizing for Peak DT. Prefetching is key to Baleen’s
performance on most workloads, but on some workloads, ML-
When is not aggressive enough as it optimizes for the mean,
not Peak DT. To correct for this, we allow Baleen to choose
another prefetching option per workload (e..g, ML-Range on
Partial-Hit) if it is better at reducing Peak DT in training.

5 Evaluation
This section evaluates and explains Baleen’s effectiveness in
reducing backend peak load & TCO for 7 real workload traces.
5.1 Experimental setup
We evaluate Baleen using a testbed and a simulator. We
validate both with counters from production deployments.
Our key results use simulation runs, but we validate individual
points (e.g., Fig 11). We explain our setup, workloads, metrics,
and the flash write rate and cache size constraints used.

ML training setup We wrote a Python module that gen-
erates episodes and trains the ML models. This plugs into a
Python simulator for CacheLib we developed for training and
prototyping (§4). We validate this Python simulator against
testbed and production (§5.2). The episode module takes in
a trace and returns the ML models. We then run simulation
loops to converge on an assumed eviction age and admission
policy threshold. LightGBM [19] was used for training and
inference, with 500 rounds of boosting and 63 leaves.

Implementation in CacheLib We implemented support
for ML admission and prefetching policies.We emulate calls
to Tectonic so that every miss issues a real IO of the right
size against HDDs, and measure the wall-clock time as DT
consumed. Static features are stored in the CacheLib pay-
load, while history counts are tracked by CacheLib. We use
CacheLib’s region-based LRU with a region size of 142 kB.

Overhead Baleen’s overheads are low in the context of
caching for bulk storage systems. CPU overhead: Baleen adds
4 inferences per IO miss (admission, start & end of ML-Range,
ML-When). The system is limited by the latency of disk IOs
upon misses (10–70ms per IO) rather than ML inferences ( 30
microseconds per inference). Even when replaying a trace
at full speed, CacheLib only contributes a small fraction of

overall system CPU utilization (5% of the 16-core CPUs in
our testbed) because it is waiting for disk IO, and thus using
ML policies only translate to an additional 1% increase in
overall CPU usage. Metadata overhead: Baleen also stores
static metadata features in the payload (<1kB), but as payloads
are at least 128KB, this overhead is not significant (<1%).

Hardware The Tectonic production setup used to record
traces and counter values has a 400 GB flash cache, 10 GB
DRAM cache and 36 HDDs. Our academic testbed uses
enterprise-grade hardware, but with less HDDs per node and
thus a proportionally smaller cache size (see Suppl A.9).

Table 1: Key statistics of traces.
Dataset Req

Rate
(𝑠−1)

Access
size
(MB)

CMR1 OHW2 Admit-
All Writes
(MB/s)

Region1 244 3.41 18% 54% 316
Region2 106 2.85 39% 83% 121
Region3 139 2.42 19% 48% 45
Region4 406 2.87 14% 53% 280
Region5 364 2.62 18% 59% 480
Region6 404 2.74 14% 55% 478
Region7 426 2.23 17% 62% 492
1 CMR (Compulsory miss rate): ratio of blocks to accesses;
2 OHW (One-hit-wonder): % of blocks with no reuse.
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Figure 7: Block popularity and access interarrival. In a,
lower values of 𝛼 indicate it is harder to cache, and × denotes 400 GB.
In b, × denotes eviction ages for Baleen at 400 GB & 3 DWPD.

Workloads We report results for 7 production traces from
Meta. Each workload sampled production traffic from a Tec-
tonic [35] cluster, which can span an entire datacenter, includ-
ing traffic for hundreds of applications. Traces were recorded
in 3 different years. The popularity distribution of blocks
(Fig 7a) fit a Zipf(𝛼 = 0.8) distribution, where the 𝑖-th most
popular block has a relative frequency of 1/𝑖𝛼 . Fig 7b shows
the interarrival time distribution, with the converged eviction
age for Baleen marked with crosses. For all traces, less than
20% of interarrival times exceed the converged eviction age.
The majority of blocks are the maximum size (8 MB) with
averages of 5.1-6.8 MB across traces, but most accesses are
only a fraction of the block with the median access less than
2 MB. Full details are available in Supp A.8.

Each trace is sampled from an entire cluster (eachnumbering

354    22nd USENIX Conference on File and Storage Technologies USENIX Association



thousands of nodes). A fraction of traffic is sampled at every
node and the resulting samples aggregated to get a trace. The
sampling rate and number of nodes are recorded, and used
in further downsampling of the trace. For quicker simulation
runs, the trace is sampled on the block key space, with each
block weighted by number of accesses, with the cache size
scaled down proportionally. A train-test split is performed on
the time dimension, i.e., the first day of each workload is used
as training data, with the remaining days used for testing.

Metrics and Assumptions The savings from using Baleen
are dominated by the degree by which it reduces the no. of
HDDs required to handle peak load. Therefore, our evaluation
focuses on Peak DT (see § 3.1). To aid comparison across
traces, we normalize each policy’s Peak DT by the Peak DT
required with no cache. We also show estimated TCO savings
over RejectX (using Eq 4b).

Testbed results (used to validate our simulator at a fixed flash
write rate) used 1-5% samples (maximum sample rate is 5%,
limited by the ratio of HDDs (2:36)). Simulator results used
0.1-5%-traces. The sample percentage is higher for smaller
workloads. We scale to a 400 GB-equivalent flash cache and
our target flash write rate.

Baleen accounts for differences in hardware (HDDs, SSDs)
via the target flash write rate and constants in the TCO & disk-
head time formulas. For flash, the pertinent characteristics are
those affecting endurance (and thus write rate). Fig 10 show
Baleen performing at different flash write rates and cache
sizes. Baleen-TCO also allows for a different flash-to-HDD
cost ratio to be substituted in. For HDDs, our simulations
assume a constant average seek time and bandwidth in the
DT formula (Eq 1). These parameters vary minimally across
disks, as illustrated in Fig 3 (simple formula closely matches
actual disk utilization in production). Baleen includes a small
benchmark to measure these constants for a given disk.

Baselines We compared Baleen to 4 baselines: RejectX,
CoinFlip, and two state-of-the-art ML baselines, Flashield [14]
and CacheLib [5]). We focus on RejectX as it is publicly
available and has been chosen over state-of-the-art ML models
in industry. The CacheLib ML policy addresses Flashield’s
limitations (see §5.2) and uses non-episode-related features.

5.2 Baleen reduces Peak DT over baselines
Fig 1b shows Baleen reduces Peak DT over RejectX by an
average of 12% across all traces for a fixed target flash write
rate. Fig 9 shows this ranges from 5% to 29% across the
traces. Region1, Region3 and Region4 derive most of their
gains from prefetching.

Flashield is not shown in the graphs as it failed on half the
trace samples due to insufficient training data (more details
in Suppl A.5). If we consider only workloads Flashield could
train a model on, Baleen outperformed Flashield by 18%.

Validation of simulator and testbed Fig 11a shows us
validating Baleen on our simulator against Baleen on our
testbed. Further, we took the additional step of showing that

our testbed is consistent with production counters, and show
it matches closely (Fig 11b).

Training on episodes (instead of accesses) is essential
to ML prefetching Episodes make it easier to reason about
flash caching and was key to designing both OPT and ML
prefetching. We also found that in the absence of episodes,
others in the literature devised ad-hoc sampling heuristics
that would achieve the same goal of avoiding ML training
bias towards popular objects [41]. In addition, we quantify
the benefit of episodes by comparing Baleen to an earlier ML
admission policy that did not use episodes. Adding prefetching
to the non-episode-based ML admission would cause it to
perform worse than without prefetching.

Benefits consistent at higher write rates and larger cache
sizes Fig 10 shows that Baleen allows for a reduction in cache
size by 55% while keeping the same Peak DT as RejectX,
or alternatively a reduction in Peak DT equivalent to a 4X
increase in cache size. As expected, increasing write rate or
cache size has diminishing returns in reducing Peak DT. Also,
the different admission policies (without prefetching) start to
converge, indicating that admission by itself is insufficient to
drive further reductions in Peak DT. Graphs for all 7 traces
are available in Supp A.11.
5.3 Baleen-TCO chooses optimal flash write rate
Fig 8 shows Baleen-TCO reducing TCO by 17% over
CacheLib-ML and 18% over RejectX. Workloads have dif-
ferent optimal flash write rates; Baleen-TCO picks the best
flash write rate for each, as illustrated in Fig 12. If a constant
flash write rate target is used, Baleen is able to reduce TCO
by 14% over RejectX. (Thus, Baleen-TCO saves an additional
4% over Baleen with a fixed write rate). Flash writes account
for 2% to 5% of TCO (3% on average).
5.4 Prefetch selectively, in tandem with admission
We show both ML-Range and ML-When are effective in
reducing Peak DT over static baselines, and contribute to
Baleen’s robustness across the multiple traces. We also show
that prefetching must be paired with a good admission policy;
if not, the same prefetching policy can hurt rather than help.

ML-Range outperforms no prefetching and fixed range
prefetching. Using ML to decide what to prefetch (ML-Range)
saves 16% of Peak DT over no prefetching, and 4% over a
simple baseline (All on Partial Hit) (Fig 13). Baleen admission
is used in all cases, with only the prefetching policy varied.
We note this comes with a small increase in Median DT.

ML-When helps Baleen discriminate between beneficial
and bad prefetching. ML-When expresses Baleen’s confi-
dence in the quality of its ML-Range prediction. A general
challenge with prefetching is that one is predicting without a
direct signal (such as a miss in the case of admission). If used
indiscriminately, prefetching can hurt rather than help. This
is best illustrated by how prefetching ML-Range on Every
Miss is worse than no prefetching in Fig 14. Prefetching only
on ML-When or on Partial-Hit consistently does better than
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Figure 11: Validation of simulator and testbed.

both no prefetching and prefetching on every miss across
all traces.ML-When performs better on 2 traces (Region2,
Region7) and Partial Hit on the remaining 5.

Poor admission decisions lead to poor prefetching ML
prefetching reduces Peak DT most when paired with a good
admission policy like Baleen. With RejectX, prefetching is less
helpful or even hurts (in Region7). Thus, the Baleen admission
policy is important to the performance of prefetching despite
not always reducing Peak DT by itself. Adding prefetching to
CoinFlip yielded results similar to RejectX.
5.5 Optimizing the right metric: Peak DT
Optimizing for IO hit ratio can be misleading as doing so
is optimal for reducing seeks, not total disk-head time. Poli-
cies that do so may reduce IOs at the expense of increased
bandwidth, which can be a net loss in bandwidth constrained
systems. For example, for the prefetching option "ML-Range
on Every Miss" from Fig 14. relative to no prefetching, the
mean DT used ratio increases from 67% to 73% despite the
IO hit ratio increasing from 46% to 47%.

DT during peak periods Most of the reduction in Peak
DT comes from eliminating seeks rather than read time,
often through prefetching. Certain traffic patterns affect some
policies more, which is why the DT peaks for different policies
can differ. In particular,Baleen’s peaks occur when prefetching
is not beneficial. We show further analysis in Supp A.3.
5.6 Other ML-guided cache results/experiences
Baleen is the end result of substantial exploration and experi-
mentation with ML for caching, including negative outcomes
from which we drew lessons and see unrealized potential. This

section shares and quantifies these lessons.
GBM better than deep models (Transformer & MLP)

We compared GBM to more complex ML architectures (a
Transformer-based architecture we designed and MLP). We
found that GBM performs best (0.2% better than Cache Trans-
former), despite only having features for the current access. A
challenge we faced when training these deep models were the
highly imbalanced classes. Details are in Supp C.

Explicitly optimizing Peak DT Fig 15 shows DT varying
over time, with a peak-to-mean ratio of 2. A policy wanting
to optimize Peak DT should be aware of the current load level
and able to adapt to it. We performed a simple extension where
we only admitted to the cache during periods of high load.
We found that while this saved flash writes, it did not reduce
Peak DT. This suggests that more fundamental changes (e.g.,
scoring episodes by their usefulness in reducing Peak DT)
will be required to optimize explicitly for peak load.

Baleen benefits from size-awareness. An earlierML model
required explicit size-awareness for a 5%-savings in mean DT.
Baleen learns it implicitly if size-related features are supplied.

Gap between Baleen and OPT Fig 13 shows a remaining
gap of 16%, indicating significant room for improvement.
Episode-based analysis shows 9% of DT is lost to late admis-
sions (i.e., where episodes are admitted after the first access).
We observed Baleen learning to reject almost all items on the
first access (a behavior similar to RejectX). Many training
examples shared identical features (on the first miss) but had
different labels. Baleen thus predicted the most probable label
for each feature set (i.e., Bayes Optimal classifier behavior).
Since dynamic, history-based features cannot differentiate
unseen items, we hypothesize that better metadata features are
required to distinguish the few true positives.

Segment-aware admission & prefetching Baleen operates
at the block level and can only choose to admit or reject the
entire access range, rather than individual segments (unlike
RejectX). Episode-based analysis showed a potential reduction
of DT by 11%. However, we were unable to realize this.

Prefetch on PUT This would yield an additional hit on the
first-ever access to the item. However, this is difficult as many
written blocks are not touched again for the duration of our
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traces, meaning that a classifier must be extremely accurate
or else incur costly false positives. This could work for other
workloads with higher incidences of read-after-writes.

Early eviction If items could be evicted immediately after
their last access in an episode, instead of waiting to leave the
cache, this would eliminate dead time and result in a greater
effective cache size. Episode-based analysis showed mean DT
could potentially be reduced by 11%. However, our current
ML models are not accurate enough to realize this.

6 Lessons from deploying ML in production
We summarize a few lessons gleaned from 3 years of deploying
ML in production caches at Meta.

Optimizing the wrong metric is an easy misstep. Our
initial prototypes for prefetching and admission increased IO
hit rate, but was actually worse for DT. To overcome this,
we redesigned our ML admission policy and introduced a
prefetching confidence prediction (ML-When). Picking the
right end-to-end metric is important.

ML model performance does not always translate to pro-
duction system performance. The same algorithm performs
differently when moved from offline to online settings, and
again when moved from development to production environ-
ments. Evaluation in production is slow (many days needed
to collect data in real time) and laborious (restarts, aborts,
debugging). This makes it challenging to tune thresholds and
evaluate improvements to ML policies. The plethora of direc-
tions makes it hard to decide on the best path forward without
extensive exploratory research. This motivated our episodes
model that allows for the principled design of ML policies

that can directly optimize systems metrics like DT under write
rate constraints, and quickly evaluate the end-to-end impact
of hypothetical improvements without the effort to implement
them in production or debugging unrelated production noise.

Rethink use of DRAM in flash caching. The typical use
of DRAM is as a small cache before [5, 14] (or after [55])
flash, with admission decisions made on DRAM evictions. We
moved the admission policy from post-DRAM to pre-DRAM,
with minimal impact on end-to-end metrics. The initial motiva-
tion was saving DRAM bandwidth, as this became a bottleneck
with Admit-All rates near 500 MB/s (Table 1). The impact
was small – while a DRAM cache may appear to absorb hits,
it is simply stealing them from the flash cache. Since DRAM
eviction ages (a few seconds) are so much shorter than flash
(2+ hrs), almost every item worth caching needs to be in flash.
Further, the write costs of an item are proportional to its size,
and any potential avoidance of flash writes is limited by how
small the DRAM cache is (2.5% of flash cache). Flexible
placement of the admission policy enables optimizations such
as prefetching, which must be done prior to inserting into the
topmost cache. In summary, we need to find better uses for
DRAM than simply adding it before a flash cache.

ML-based caching should aim for encapsulation of ML,
caching, and storage. Designing bespoke ML for caching
solutions requires coordination between ML experts (formodel
training), caching experts (for integration), and the storage
backend owner (for deployment and monitoring). This involves
one more area of expertise than most other ML for systems
problems. There is no clear path to single ownership of the
problem, making it difficult to sustain over time. It is hard for
a service owner to prioritize spending engineering resources
to aid the design phase of unproven ML solutions. Baleen
provides an analytic framework thatML experts couldoptimize
DT on without requiring caching expertise. Designing ML
models around episodes makes it easier for caching experts
to reason about. Having the DT formula correspond closely
to measured DT (Fig 3) in production assures caching and
storage experts that a reduction in calculated DT will translate
to a drop in disk utilization. Further, with setups that are
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tightly-coupled by hand and not automatically, performance
regressions may occur as systems and workloads change.
Models often performed the best when they were first deployed
and slowly regressed over time even with retraining using the
same set of features. In contrast,Baleen was designed primarily
using traces from 2019 but also demonstrates improvements
on traces from 2021 and 2023.

7 Additional related work
Production flash caching systems CacheSack [55,56] opti-
mizes admission policies for the flashcache in front ofGoogle’s
bulk storage system, Colossus. This design shares Baleen’s
objectives of co-optimizing backend disk reads and flash write
endurance. CacheSack partitions traffic into categories us-
ing metadata and user annotations, assigning probabilities
to each of 4 simple admission policies for each category by
solving a fractional knapsack problem. This offline approach
has slower reaction times than Baleen, and only solves the ad-
mission problem. Meta’s Tectonic bulk storage system uses a
CacheLib-managed flash cache, with an ML admission policy
that does not use episodes and does not perform prefetching.
Section 5.6 shows that this approach is significantly less effec-
tive than Baleen. Kangaroo [31] improves CacheLib’s small
object cache, and is orthogonal to Baleen, which improves
performance for large objects. Amazon’s AQUA [2] also fills
a similar role for Redshift (data warehouse), acting as an off-
cluster flash caching layer with S3 as the backing store. Bulk
storage systems backed by HDDs and fronted by cache servers
can also be found at Alibaba Cloud [23] and Tencent [58].

Non-ML flash admission policies CacheLib [5] is Meta’s
general-purpose caching library and includes random and Re-
jectX admission policies for flash caches. Section 2 discusses
RejectX. Section 5 extensively compares Baleen to random
(CoinFlip) and RejectX. LARC [18] is equivalent to RejectX
and was the default admission policy used at Google prior to
CacheSack. TinyLFU [13] proposed a frequency-based admis-
sion policy that leverages probabilistic data structures for com-
pact history representation. Baleen adds ML, size-awareness,
disk performance goals, and prefetching over TinyLFU.

ML-based flash caching policies Flashield [14] addresses
the lack of information on flash admission candidates by
putting them in a DRAM buffer first. The item’s usage history
is used to generate features for a support vector machine
classifier. However, we found this approach infeasible as
DRAM lifetimes are too short in practice (see Supp A.5).
More targeted applications of ML aim to exclude one-hit-
wonders [48] or items that have no reads [59]. Reinforcement
learning has also been used to train a feedforward neural
network for admission policies on CDNs, given a broad set of
features [20]. Baleen adds more flexible admission policies,
size-awareness, disk performance goals, and prefetching over
these works. Early work on flash caching focused on flash-
friendly eviction policies [36]. Recent work instead uses
simpler eviction policies such as CLOCK or FIFO, and leaves

the heavy lifting to the admission policy [55]. Smart policies
for data placement seek to reduce write amplification [9], and
can be used in tandem with Baleen.

Prefetching policies CacheSack [56] incorporated static
prefetching policies as choices for their optimization function.
[62] implemented heuristic-based prefetching for photo stores,
but found significant room for improvement relative to their
offline optimal. Others have posed caching as a scheduling
problem in the context of streaming video and incorporated
aspects of prefetching [27, 38, 46]. In databases, Leaper trains
a ML prefetcher to exploit reuse at the key range level [54].

Models for caching and offline optimal Bélády’s MIN
algorithm is the optimal eviction policy [4]. [41] introduces
Relaxed Bélády for eviction which prunes the decision space
like OPT does; however OPT makes stronger assumptions
valid for flash admission and decides at a higher granularity
(see Suppl A.7). Raven [17] is a probabilistic approximation
of MIN. [11] sought to extend Bélády to admission with a
container-optimized MIN that optimizes hit rate while mini-
mizing flash erasures, but did not provide an online algorithm.
Our proposed OPT policy is the only online policy that ap-
proximates the optimal flash admission policy, and which can
easily optimize an arbitary metric like DT, not just hit rate.

ML for eviction Some policies seek to learn from Bélády,
such as LRB which learns a relaxed Bélády [41], and RL-
Bélády [51]. A key challenge to using RL is the long delays
for rewards. [6] Others seek to go beyond Bélády, such as
LRU-BaSE [49]. MAT [52] reduces ML inference overhead
by using a heuristic to filter out likely candidates. HALP [42]
augments a heuristic with ML for the YouTube CDN. Deep
learning has also been applied to learn forward reuse distance
with LSTMs [24] and reinforcement learning [50]. [39] uses
a support vector machine with features they derived from
training an LSTM. [12] proposes that a classical caching
policy be run in parallel with ML policies, allowing the
implementation to switch to the better-performing policy
dynamically. ML-based eviction is orthogonal to Baleen’s
contribution and cannot control flash write rates.

8 Conclusion
Baleen uses ML to guide both prefetching and cache admission,
reducing peak disk time by 16% and TCO by 17% on real
workload traces, compared to state-of-the-art non-ML policies.
Although applying ML to caching policies is an expected
advancement, Baleen’s design arose from false-step lessons
and a cache residency (episodes) formulation that improves
training effectiveness, provides a target (OPT), and exposes
the value of ML-guided prefetching. As such, Baleen is an
important step forward in flash caching for disk storage.
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9 Artifact Appendix
Abstract
Our artifact is targeted at those seeking to reproduce the results
found in the Baleen paper. It contains a Python simulator, an
implementation of our cache residency model (episodes), and
scripts for downloading traces. You may view our artifact and
its README at https://github.com/wonglkd/Baleen-
FAST24.
Scope
Our artifact allows users to easily 1) test our Python cache
simulator with small-scale experiments, and 2) plot paper
figures using supplied intermediate results.

We list the specific key claims and corresponding figures:
1. Baleen reduces estimated total cost of owner-

ship (TCO), peak backend load (Fig 1) and miss
rates (Fig A.1) (fig-01a,08,13-202309-tco.ipynb,
fig-01bc,17-202309.ipynb)

2. Baleen does so across a range of traces
(Fig 8, Fig 9) (fig-01a,08,13-202309-tco.ipynb,
fig-09-202309.ipynb)

3. Baleen performs well across a range of
cache sizes and flash write rates (Fig 10,
24, 25) (fig-10a,24-wr-20230414.ipynb,
fig-10b,25-csize-20230424.ipynb)

4. Baleen benefits from smart prefetching that predicts
the right range (Fig 13) and when to prefetch (Fig 14)
(fig-13,14-prefetching-20230424.ipynb)

We also include additional notebooks that:
1. show how Baleen-TCO picks the optimal write rate

(Fig 12), (fig-01a,08,13-202309-tco.ipynb)
2. show breakdown of benefit at peak (Fig 18) and

(fig-18-peak-hrs-20230424.ipynb)
3. describe statistical properties of the workloads (Fig 7).

(fig-07,19,20-tracestats-20230504.ipynb)
Caveats
When reproducing the results, we expect trends to be the same
but small differences in the actual results due to two reasons: 1)
Meta’s exact constants for the disk-head time function will not
be released, meaning that results will not be exactly the same;
instead, in the released code, we use constants (seek time
and bandwidth) measured on the hard disks in our university
testbed; 2) the testbed code modified a proprietary internal
version of CacheLib and that will not be released at this time.
However, we expect the simulator to closely match the testbed
(and have presented supporting evidence to that effect).

While all the necessary code and data is supplied to re-
produce our results, setting up the simulator with a cluster
scheduling system would be recommended if re-running all ex-
periments (624 machine-days were utilized; each simulation of
a ML policy takes at least 30 minutes,multiplied by 7 traces and
10 samples each). Helper code is included to facilitate runs on a
cluster, but this will need to be adapted for your own cluster (see

BCacheSim/episodic_analysis/local_cluster.py).
Contents
Our artifact includes the full traces used in the paper, a Python
module (BCacheSim) that contains the flash cache simulator,
an implementation of the episodes model, and code to train
the policies. Further detail on the directory structure can be
found in the README.

We also provide a walkthrough video that shows the authors
reproducing the results on the Chameleon Cloud platform:
http://tiny.cc/BaleenArtifactYT

Hosting
The artifact is hosted in a GitHub repository, in the main branch:
https://github.com/wonglkd/Baleen-FAST24. For ease
of reproduction, the artifact is also hosted on the Chameleon
Cloud platform, a free academic cloud supported by
NSF: https://www.chameleoncloud.org/experiment/
share/aa6fb454-6452-4fc8-994a-b028bfc3c82d Users
can choose to either use the artifact on their own machines or
Chameleon.
Requirements
If using Chameleon Cloud, no local dependencies are required
apart from the ability to SSH and a web browser. If using your
own computer, the primary software dependency is Python
3.10 with specific packages listed in a requirements.txt in
the repository. If you wish to run experiments in parallel on a
cluster, a job scheduling system like Brooce (which we used)
is recommended.

Baleen was developed on the Carnegie Mellon University
Parallel Data Lab’s Emulab testbed using Meta traces.
Time to reproduce
About 3 hours is required on Chameleon Cloud to run a set
of basic experiments, and plot figures using the intermediate
results supplied. To re-run all experiments from scratch would
take 624 machine-days (based on the logged time it took to
simulate the runs used). As a guideline, each simulation of a
ML policy takes at least 30 minutes, multiplied by 7 traces
and 10 samples each.
Troubleshooting and suppoort
A list of common issues and remedies is included in the
README. GitHub issues are the preferred means of commu-
nication. You may also contact the corresponding author via
email.
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A Supplemental Material

A.1 Comparison to IO miss rate and bandwidth miss rate
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Figure 16: We provide IO miss rate and byte miss rate, two commonly used caching metrics, for comparison.

A.2 Median DT
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Figure 17: Median DT
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A.3 Breakdown of DT during peak periods
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Figure 18: Breakdowns of DT at Peaks. Each graph shows the peak 10-min window for that setup. Baleen’s DT reduction is
mostly due to reduced seeks.

In Fig 18a, we break down DT at the peak hours and show most of the Peak DT reduction is from eliminating seeks rather than
data transfer. This is in line with how prefetching saves DT.

Fig 18 shows policies’ performance at the respective peak windows for Baleen and RejectX. The peak window can differ from
policy to policy, as one policy may be good at dealing with a traffic pattern that causes peaks for other policies, but be foiled by a
pattern that is handled well by others. This makes optimizing the peak a whack-the-mole game. Baleen’s worst time intervals are
those in which prefetching is not beneficial. This suggests that a policy wanting to optimize Peak DT would be aware of the
current load level and able to adapt to it.
A.4 TCO function: step-by-step

TCO1 ∝
PeakDT1
𝑃𝑒𝑎𝑘𝐷𝑇 0

·#𝐻𝐷𝐷𝑠0 +
𝐶𝑜𝑠𝑡𝑆𝑆𝐷

𝐶𝑜𝑠𝑡𝐻𝐷𝐷

· FlashWR1
𝐹𝑙𝑎𝑠ℎ𝑊𝑅0

·#𝑆𝑆𝐷𝑠0 (4a)

𝑇𝐶𝑂1 ∝ 𝑃𝑒𝑎𝑘𝐷𝑇 1 ·𝑅1 + 𝐹𝑙𝑎𝑠ℎ𝑊𝑅1 ·𝑅2 (4b)

𝑅1 =
1

𝑃𝑒𝑎𝑘𝐷𝑇 0
(4c)

𝑅2 =
1

𝐹𝑙𝑎𝑠ℎ𝑊𝑅0
· #𝑆𝑆𝐷𝑠0
#𝐻𝐷𝐷𝑠0

· 𝐶𝑜𝑠𝑡𝑆𝑆𝐷
𝐶𝑜𝑠𝑡𝐻𝐷𝐷

(4d)

=
1

𝐹𝑙𝑎𝑠ℎ𝑊𝑅0
· 1
36

· 170
281

(4e)

We calculate relative TCO savings using the Peak DT saved with our baseline admission policy RejectX (𝑃𝑒𝑎𝑘𝐷𝑇0), and
relative to the default target flash write rate (𝐹𝑙𝑎𝑠ℎ𝑊𝑅0). From [35], we know that each node has 1x 1-TB SSD and 36x 10-TB
HDDs ( #𝐻𝐷𝐷𝑠0

#𝑆𝑆𝐷𝑠0
= 36).
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From [35], we know that each node has 1x 1-TB SSD and 36x 10-TB HDDs ( #𝐻𝐷𝐷𝑠0
#𝑆𝑆𝐷𝑠0

= 36). We substitute the 2023 price of a
10TB HDD ($281) and a 1 TB SSD ($170) on Newegg [33,34] ( 𝐶𝑜𝑠𝑡𝑆𝑆𝐷

𝐶𝑜𝑠𝑡𝐻𝐷𝐷
= 170

281 ), i.e., the HDD is 6x cheaper per TB than the SSD.
(For comparison, a 2020 industry report showed a 10x difference [32].)

A.5 Comparison to Flashield
We compared Baleen to Flashield, a state-of-the-art ML baseline. We adapted the implementation of Flashield used in the
S3-FIFO paper in SOSP 2023 [53]. Flashield was worse than our RejectX baseline.

In practice, we found that a disadvantage of this approach is that DRAM lifetimes are too short to yield useful features.
(Flashield assumes a 1:7 DRAM:Flash ratio, whereas Tectonic has a 1:40 ratio.)

Flashield failed on half the trace samples due to insufficient training data, because it relies on items’ hits in DRAM for its
features and labels. With DRAM lifetimes of seconds-to-minutes, most items never receive DRAM hits. Considering only
workloads favorable to Flashield (that it could train a model on), Baleen outperformed Flashield by 18%.

A.6 Comparison to CacheLib ML
CacheLib ML is a ML model that Meta used in production for 3 years, which was first described by Berg et al [5]. Baleen uses
the same ML architecture (GBT) and serving (inference) setup, but a different training setup (episodes and optimizing DT instead
of hit rate). Based on this, we assert that Baleen’s architecture is feasible for production with acceptable inference overhead.
Meta’s implementation is proprietary but general lessons learnt from it were described in §6.

A.7 Comparison to LRB’s Relaxed Belady
LRB [41] introduces Relaxed Bélády for eviction, which only considers objects for eviction beyond a time it calls the Belady
boundary. Like our OPT’s use of the assumed eviction age, it prunes the decision space making it more efficient; our OPT is able
to make stronger assumptions (due to the flash admission context), and train ML at a higher granularity of disjoint episodes,
whereas LRB still operates at the finer granularity of accesses and is choosing which object is more likely to be good (has higher
Good Decision Ratio) whereas OPT can determine which object is better to admit).

A.8 Workloads
The Region1 and Region2 traces were recorded from different clusters over the same 7 days in Oct 2019, while the Region3 trace
was recorded from another cluster over 3 days in Sep 2019. Region4 was recorded over 7 days in Oct 2021, and the remaining
traces (Region5, Region6, Region7) were collected in Mar 2023.

1. Regions 1-3 (2019): each a data warehouse
2. Region4 (2021): data warehouse
3. Region5 (2023): 10 ”tenants”, largest being data warehouse and blob store
4. Region6 (2023): 10 ”tenants”, largest being data warehouse and blob store
5. Regions 4-6 are from different geographical regions.
Each tenant supports 100s of applications. Data warehouse is storage for data analytics (e.g., Presto, Spark, AI training), with

larger reads than blob storage. Blobs are immutable and opaque, and include media (photos, videos) and internal application data
(e.g., core dumps). See the Tectonic [35] paper for further details.

Table 2: Full statistics of traces.
Dataset Year Request

Rate
(𝑠−1)

Avg
Block
Size
(MB)

Access
size
(MB)

Comp-
ulsory
miss
rate1

One-hit-
wonder
rate2

PUT-
Only
Blocks

#PUT /
#Acc

Admit-All
Write Rate

Region1 2019 244 5.70 3.41 18% 54% 46% 13% 316 MB/s
Region2 2019 106 5.07 2.85 39% 83% 81% 14% 121 MB/s
Region3 2019 139 6.71 2.42 19% 48% 46% 16% 45 MB/s
Region4 2021 406 5.87 2.87 14% 53% 40% 10% 280 MB/s
Region5 2023 364 6.84 2.62 18% 59% 33% 9% 480 MB/s
Region6 2023 404 6.77 2.74 14% 55% 38% 10% 478 MB/s
Region7 2023 426 5.71 2.23 17% 62% 38% 12% 492 MB/s
1 Compulsory miss rate refers to the ratio of blocks to accesses;
2 One-hit-wonder rate is the fraction of blocks with no reuse.
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Figure 19: Distributions of block popularity, access interarrival times, block sizes, and access sizes for three traces. In a,
lower values of 𝛼 indicate it is harder to cache.
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Figure 20: Distribution of hits per episode. This reflects the possible hits accrued from admitting an item.

A.9 Testbed hardware

As we did not have direct access to production hardware, we ran simulations (using our Python simulator) and testbed evaluations
(using our modified version of CacheLib) on our academic testbed. This research testbed was a 24-node cluster, where each node
has a 16-core Intel Xeon E5-2698 CPU, 64 GB of DRAM, Intel P3600 400 GB NVMe SSD, Seagate ST4000NM 4 TB HDDs,
and runs Ubuntu 18.04. The SSDs and HDDs used are enterprise-grade. The size of the cluster does not affect the veracity of
the testbed as each individual experiment run only involves one node; multiple nodes are used to speed up the completion of
the experiments, as the total number of runs required is the total number of policy configurations multiplied by 7 traces and 10
samples from each trace.

A.10 Validating simulator and testbed

Fig 21 shows that testbed and simulator are faithful to production counters. We compare production counters for one day (collected
on a per-minute basis and aggregated to 10-min intervals) to simulator and testbed results for a trace collected on the same day.
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Figure 21: Sim-Testbed-Production comparison, RejectX, 1 day
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Figure 22: Testbed-Production comparison, Baleen, 1 week
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Figure 23: Testbed backend load over time, on the Region1 trace. Peak-to-mean ratio is 2. Granularity is 10 mins.

A.11 Write Rates and Cache Sizes for all traces
In Fig 10 we showed an average across all traces and selected traces; here we show data for all 7 traces.
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Figure 25: Benefits consistent as cache size increases.

B CacheLib deployment
B.1 CacheLib settings
CacheLib employs a region-based LRU, with different regions for different sizes. Since segments are uniformly 128 KB, we set
region size to 142 KB to contain one segment each plus overhead.

We added functionality to CacheBench (CacheLib’s benchmark suite) to replay Tectonic traces.

C Cache Transformer
GBMs are relatively simple and thus we also implemented more complex ML models for learning cache access patterns.
Specifically, we add two deep models used to learn sequences in natural language processing:

Baseline: MLP feedforward A basic multilayer perceptron (MLP) feedforward model that takes the same features as our
GBM model, i.e., only features from the current access, with a single hidden layer of size 80.
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Cache Transformer architecture A Transformer [45] encoder that uses features from the prior ℎ (ℎ = 16) accesses in addition
to the current access. Instead of sequences of words, it uses sequences of accesses. Further details are in Supp C.1.

We found that GBM performs best (0.2% better than Cache Transformer), despite only having features for the current access.
This was contrary to our hypothesis that more historical information and access to the pattern of accesses would help model
performance. Although we cannot dismiss the possibility that the Cache Transformer model is held back by our training process,
a challenge we struggled with was the highly imbalanced classes. GBMs are known to be robust and work out of the box on many
datasets. We observe that GBM produces the highest F1-score, i.e., it balances recall and precision the best. The MLP has the
highest precision at the expense of recall. Baleen hence uses GBM given that it performs best and is the most efficient of the
options explored.

C.1 Architecture

Figure 26: Cache Transformer architecture.

As shown in Fig 26, the Cache Transformer architecture consists of a series of Transformer encoders stacked together, with a
linear classifier at the end. Before being passed to the first encoder, the windows are normalized and a sinusoidal positional
encoding is applied. The encoders serve the purpose of learning and evaluating the self-attention between different accesses in
the window. After the windows are passed through all the encoders, a final linear layer maps the last encoder’s output to the
model’s prediction, which is represented as a probability distribution.

In summary: first, the model passes the sequence through a sinusoidal positional encoding to inject relative position information.
Then, the encoded sequence is passed through 6 encoders with 4 attention heads each, followed by a linear layer that maps to a
similar binary probability distribution to the MLP feedforward model.

C.2 Training setup

Neural network models such as the Transformer used PyTorch for training and prediction. When training the Transformer neural
network models, positive training examples are upsampled to balance out the classes and reduce the tendency to overfit. The
MLP used for comparison had one 80-size hidden layer. Neural network training was done using RaySGD on a cluster with 8
Nvidia GeForce Titan X GPUs.
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C.3 Evaluation
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Figure 27: Different architectures for ML admission. GBM is the best non-OPT policy. A 10%-trace was used. Mean DT is
reported here, relative to no cache.

Table 3: Performance of different models, online and offline. ℎ denotes the number of past accesses used as input into the
model. Write rate and IO hit rate are from online simulations.

Model (ℎ, history) Loss Offline
accuracy

Online
accuracy

Write Rate IO hit rate Precision Recall F1

MLP feedforward (ℎ = 1) 0.41 90.2% 88.5% 28.1 MB/s 48.1% (-8.6%) 85.6% 35.5% 0.502
Transformer (ℎ = 16) 0.18 92.6% 89.5% 42.9 MB/s 49.3% (-6.5%) 66.7% 50.7% 0.576
GBM (ℎ = 1) - 93.8% 91.1% 37.9 MB/s 49.4% (-6.3%) 76.8% 51.9% 0.619
OPT - 100% 100% 30.4 MB/s 52.7% 100% 100% 1
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Seraph: Towards Scalable and Efficient Fully-external Graph Computation
via On-demand Processing

Tsun-Yu Yang, Yizou Chen, Yuhong Liang, and Ming-Chang Yang
The Chinese University of Hong Kong

Abstract
Fully-external graph computation systems exhibit optimal
scalability by computing the ever-growing, large-scale graph
with constant amount of memory on a single machine. In par-
ticular, they keep the entire massive graph data in storage and
iteratively load parts of them into memory for computation.
Nevertheless, despite the merit of optimal scalability, their
unreasonably-low efficiency often makes them uncompetitive,
and even unpractical, to the other types of graph computation
systems. The key rationale is that most existing fully-external
graph computation systems over-emphasize retrieving graph
data from storage through sequential access. Although this
principle achieves high storage bandwidth, it often causes
reading excessive and irrelevant data, which can severely de-
grade their overall efficiency.

Therefore, this work presents Seraph, a fully-external graph
computation system that achieves optimal Scalability while
toward satisfactory Efficiency improvement. Particularly, in-
spired by the modern storage offering comparable sequential
and random access speeds, Seraph adopts the principle of
on-demand processing to access the necessary graph data for
saving I/O while enjoying the decent speed in random access.
On the basis of this principle, Seraph further devises three
practical designs to bring excellent performance leap to fully-
external graph computation: 1) the hybrid format to represent
the graph data for striking a good balance between I/O amount
and access locality, 2) the vertex passing to enable efficient
vertex updates on top of hybrid format, and 3) the selective
pre-computation to re-use the loaded data for I/O reduction.
Our evaluations reveal that Seraph notably outperforms other
state-of-the-art fully-external systems under all the evaluated
billion-scale graphs and representative graph algorithms by
up to two orders of magnitude.

1 Introduction
Graphs have been broadly used in many fields, such as
networking [10], social media [6, 19, 45], and bioinformat-
ics [16, 26], for their attractive structure to represent the en-
tities as vertices and relations between entities as edges. In

Figure 1: The performance-scalability spectrum among differ-
ent state-of-the-art graph computation systems. The presented
times are the average results of the evaluated graph systems
with different amounts of memory described in §4.3.

practice, a graph is represented by two data structures: vertex
data (denoted as V ) holding the attributes of vertices, and
edge data (denoted as E) comprising the edge lists, each of
which enumerates the destination vertices connected with the
same source vertex. Typically, graph computation involves
reading the edge data for neighboring vertices and updating
the vertices’ attributes from/to their neighbors’ attributes.

Many single-machine graph computation systems have
been developed to automate and optimize the process of graph
computation, with the aim of high performance (i.e., low exe-
cution time). Recently, as graphs exponentially grow to have
billions of vertices and edges, scalability is also essential for
such systems. In this context, scalability refers to the capac-
ity of a system to compute ever-growing, large-scale graphs
within a single machine of common memory capacity. There-
fore, how to design a scalable graph computation system that
is also performant is the primary objective in this field.

In the following, we examine different kinds of single-
machine graph systems from the aspects of scalability and
performance. First, shared-memory graph systems (e.g.,
Ligra [36], Galois [32], Ligra+ [37]) require the entire graph
data to be in memory (i.e., O(V +E)) for computing graphs
with high performance. However, when targeting large-scale
graphs, this approach is high-cost and difficult to scale as it
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necessitates the machine with huge memory capacity.
To alleviate the issue of memory requirement, external-

based graph computation systems, which can be further di-
vided into semi-external and fully-external systems, are pro-
posed to exploit the storage drives for graph computation at
the cost of performance sacrifice. Semi-external graph com-
putation systems (e.g., FlashGraph [47], Graphene [25]) are
proposed to trade performance for alleviating the memory
overhead by keeping the edge data in the massive-and-cheap
storage while maintaining the vertex data in the small-and-
expensive memory (i.e., O(V )). However, these systems only
have limited scalability as their memory requirements still
increase proportionally with graph sizes. Specifically, they
cannot handle large-scale graphs with vertex data that exceeds
the machine’s memory capacity. Further, as graphs continue
to grow to have billions of vertices, even keeping the vertex
data in memory is not cost-effective [11, 17].

On the other hand, fully-external graph computation sys-
tems (e.g., GridGraph [50], CLIP [1], Lumos [42], V-Part [11])
further trade performance to offer the merit of optimal scala-
bility; they can compute the large-scale graphs with a small
amount of memory, which is independent from the graph data
sizes. To accomplish this, they divide the large-scale graph
into multiple subgraphs and keep them in storage; during run-
time, each subgraph is iteratively handled so that the memory
requirement can be effectively confined to computing only
one subgraph. In other words, given c to be the available mem-
ory capacity of a machine, a fully-external graph computation
system can use c to compute any size of large-scale graph
by controlling the number of created subgraphs (i.e., O(c)).
Thus, besides the edge I/O, fully-external systems require
some additional I/Os to read/write the small-sized vertex data
to establish each subgraph in memory by turns.

Fig. 1 summarizes the trade-off between scalability (i.e.,
memory consumption) and performance (i.e., execution time)
among different kinds of state-of-the-art graph computation
systems. Specifically, shared-memory-based Ligra+ demands
a massive O(V +E) memory for the highest performance.
Semi-external-based Graphene requires O(V ) memory; com-
pared to Ligra+, it needs 7.2x less memory yet exhibits 2x
performance degradation. Fully-external-based CLIP demon-
strates optimal scalability to compute the graph with any
amount of memory that is smaller than or equal to O(V );
thus, it is able to use significantly less memory than the other
types of systems. The minimum memory in Fig. 1 (i.e. O(c))
that CLIP uses is 17x less than Graphene and 127x less than
Ligra+. However, we also observe a vast performance degra-
dation: CLIP is significantly slower than Graphene regardless
of the memory consumption; even given O(V ) memory, CLIP
is around 5x slower than Graphene. In conclusion, although
fully-external schemes offer the merit of optimal scalabil-
ity, their severely-degraded performances often make them
uncompetitive with other graph computation systems.

To fill this void, this work presents Seraph, a fully-external

graph computation system that substantially boosts efficiency
while offering optimal scalability.

To build such a system, we first recognize that most exist-
ing fully-external systems over-emphasize retrieving graph
data from storage via sequential access. While this princi-
ple achieves high storage bandwidth, it also causes reading
excessive-and-irrelevant data, particularly as many graph al-
gorithms often exhibit sparse access patterns [15, 24, 29, 30].
Moreover, given that modern storage (e.g., solid-state drive
(SSD)) offers comparable speeds for sequential and random
access [38, 40], we seek the different principle of on-demand
processing to access the necessary data with fine-grained I/O
to save transferred data while exploiting the decent speed in
random access. To investigate whether on-demand processing
is promising for fully-external framework, we realize a base-
line system to support on-demand processing and compare it
against the state-of-the-art fully-external systems. Our evalua-
tions, based on four types of storage devices, demonstrate the
strong motivation that developing fully-external system with
on-demand processing is a promising direction (see §2.3).

In light of this observation, we build Seraph upon on-
demand processing. Moreover, we propose three practical
designs specially tailored for the framework of on-demand
processing to achieve further performance improvement. First,
we observe that the traditional method for representing edge
data has its pros and cons: it creates a good locality for access-
ing vertices yet increases the overhead of locating and reading
edges. To this end, we present a new format, called hybrid
format, to store the graph data by striking a good balance be-
tween locality for vertices and overhead for edges (see §3.2).
Second, based on the hybrid format, we further propose ver-
tex passing to enable efficient vertex updates by delaying
and aggregating the vertex updates to the same subgraph via
in-memory buffers (see §3.3). Third, although on-demand
processing reads the necessary data, a common I/O block is
typically way larger than an edge list. This mismatch inspires
us with the opportunity of I/O re-using and the proposing
of selective pre-computation to asynchronously compute the
current and future vertices on the fly (see §3.4).

We implement Seraph in C++ and compare it against sev-
eral state-of-the-art fully-external graph systems. Our evalua-
tions, based on billion-scale graphs and representative graph
algorithms, reveal that Seraph significantly outperforms the
existing systems by up to two orders of magnitude. Further,
with an increasing memory amount, Seraph also performs
well and exhibits an up to 1.6x improvement over a recent
semi-external graph system. Besides, we conduct investiga-
tion to justify each proposed design’s effectiveness.

2 Background and Motivation
2.1 Background of Fully-external Systems
For large-scale graph computation on a single machine of
limited memory capacity, fully-external graph computation
systems necessarily divide the graph into multiple subgraphs
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Figure 2: Typical system architecture of fully-external graph
computation systems.

and handle them one at a time. In practice, as illustrated
in Fig. 2, the vertices are generally divided into multiple
disjoint partitions, and when processing the edges between
two partitions (i.e., a subgraph), the memory requirement can
be thus effectively limited to two vertex partitions involved
(e.g., Pi and Pj) instead of the entire vertex data.

Based on the fundamental design described above, two
common techniques are further adopted by the existing fully-
external graph computation systems (such as [1,20,34,42,50])
for performance enhancement:
Grid Format for Edge Data. According to the results of
vertex partitioning, existing fully-external graph computation
systems typically store the edge data into grid format. In
particular, a grid determines a set of edges by specifying one
partition as source vertices and another (can be also the same
one) as destination vertices. As shown in Fig. 2, the grid G(i, j)
stores the set of edges whose source and destination vertices
belong to partitions Pi and Pj, respectively. In other words,
under the grid format, the edges of a source vertex can be split
into multiple segments and are stored within different grids
based on their destination vertices. As illustrated by Fig. 2,
the edge list of the vertex x are split into two segments, which
are (a, b, c) and (d, f ), and are stored with grids G(i, j) and
G(i, j+1), respectively.

Therefore, compared with storing the whole edge list of a
vertex consecutively together (i.e., row format [28, 31]), pro-
cessing the edge lists in grid format enjoys good locality of
vertex access. This is because the required vertex attributes
can be limited to only two partitions of vertices, which can
entirely fit in the limited memory of fully-external graph com-
putation systems. For instance, GridGraph [50] proposes 2D
edge partitioning to split the edge data into smaller grids
where the edges in the same grid share similar locality in
accessing source and destination vertices.
Streaming-based Processing. On top of the grid format, ex-
isting fully-external graph systems generally apply streaming-
based processing: they compute a graph by streaming the

edge data from storage grid-by-grid. Given that all storage
drives typically deliver high bandwidth with sequential access,
streaming-based processing shows the generality of accom-
modating all types of storage.

As illustrated in Fig. 2, to compute a grid (e.g., G(i, j)), the
system first loads the two corresponding vertex partitions
(e.g., Pi and Pj) into vertex buffers in memory. Next, as graph
systems typically run in multi-threads for better performance,
every thread sequentially streams edges from different parts
of grid into its local edge buffer in memory. Following, the
system identifies the vertices that need to be computed (i.e.,
active vertices), and then produces updates to their neigh-
boring vertices based on the attributes of active vertices. For
instance, GridGraph [50] checks the activeness of every grid
by turns and sequentially streams the entire active grid from
storage, in the granularity of 24 MB, to perform vertex update.

2.2 Existing Fully-external Systems
Many fully-external graph computation systems have been
proposed for large-scale graph computation on a single ma-
chine. For example, GraphChi [20], which is the first fully-
external graph computation system, divides a graph into multi-
ple disjoint shards and sequentially load each shard into mem-
ory for computation. X-stream [34] proposes edge-centric pro-
cessing model to stream and compute every edge for achiev-
ing high speed of sequential access. Inspired by X-stream,
GridGraph [50] demonstrates a representative framework by
splitting a graph with a smaller granularity (called a grid)
to improve data locality; it achieves significant performance
enhancement over GraphChi and X-stream.

Later, many systems propose optimization based on the
framework of GridGraph. For instance, CLIP [1] introduces
state-of-the-art optimization for streaming-based processing
by asynchronously re-computing the loaded grid multiple
times to increase data utilization and accelerate the conver-
gence of graph algorithms. This feature makes CLIP special-
ized for asynchronous graph algorithms (e.g., vertex values
following monotonicity [43]). Similar to CLIP, Lumos [42]
also attempts to re-compute the loaded grid, but it aims to
optimize synchronous graph algorithms which require syn-
chronous semantics: a vertex can only observe the values
from the last iteration. Thus, Lumos performs future compu-
tation on a vertex only if it receives all the updates from its
neighbors. Due to this strict requirement, Lumos is more suit-
able for optimizing the algorithms which naturally demand
synchronous semantics. Therefore, although both CLIP and
Lumos improve over GridGraph with future computation, they
are specialized for different sets of algorithms, respectively.
On the other hand, Wonderland [46] applies the graph abstrac-
tion technique from visualization systems to streaming-based
processing. However, the abstraction-guided processing only
works for accelerating the convergence of path-based algo-
rithms such as shortest path.

V-Part [11], a recent fully-external system, proposes a novel
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Figure 3: Data structure of GridGraph-ODP.

framework different from GridGraph. V-Part stores the des-
tination and source vertices into different structures. Each
destination contains only attributes, while each source is asso-
ciated with vertex ID, attribute, and offset pointing to its edge
list, forming the source vertex table. To process a partition,
V-Part first loads the destination vertices and then streams
the source vertex table of the same partition into memory.
Next, V-Part on-demand reads the active edge lists based on
the offsets and updates the destination vertices. Finally, V-
Part requires a stage, called mirror update, to synchronize the
values/attributes between source and destination to facilitate
vertex updates.

Nevertheless, V-Part fails to utilize on-demand processing
thoroughly. Although V-Part on-demand accesses the edge
data, it still streams the source vertex table from storage in
a partition-based granularity, severely impacting its perfor-
mance. Moreover, V-Part requires an extra overhead of mirror
update, making its performance often worse than the other
system adopting streaming-based processing (which will be
shown in §4.1). Thus, to study which processing principle
is more suitable for fully-external framework, we realize our
own baseline system with on-demand processing and compare
it against the state-of-the-art system with streaming-based pro-
cessing in the next section.

2.3 Motivation: Streaming-based Processing
versus On-demand Processing

Although streaming-based processing often loads excessive-
and-irrelevant data as it streams an entire grid even if there
are only a few active vertices/edges, it retains the advantage
of achieving high storage bandwidth. Thus, many prior work
have attempted to optimize streaming-based processing from
various perspectives based on fully-external framework [1,
42, 44]. However, since modern storage provides comparable
sequential and random access speeds, we attempt to look for
the other principle, on-demand processing, to save I/O while
exploiting the decent speed of random access. To study which
principle is more suitable for fully-external framework, this
section aims to compare the baseline of on-demand processing
against the optimized streaming-based processing.

To realize a baseline system with on-demand processing

Figure 4: Evaluation of BFS on Twitter graph [9] with differ-
ent storage devices.

under fully-external framework, we follow the traditional grid
format to store edge data but replace streaming-based pro-
cessing with the on-demand one. To this end, we revamp a
representative, fully-external system GridGraph [50] to sup-
port on-demand processing (called GridGraph-ODP). Please
note that we did not make CLIP support on-demand pro-
cessing because the CLIP’s re-computation only provides a
coarse-grained, grid-based control, which contradicts the core
concept of on-demand processing.

Compare to GridGraph, we add index data into GridGraph-
ODP to record the offset of each segmented edge list, as shown
in Fig. 3. These data enable on-demand processing for edge
data because GridGraph-ODP can easily locate and read the
required edge lists into memory. For example, suppose v is ver-
tex and i is index, the edge list of vs is located between is and
is+1. Besides, since the vertex attributes are all sequentially
stored based on their vertex IDs1 in the file, it is easy to locate
and access an attribute via its ID. Therefore, GridGraph-ODP
can on-demand access both vertex and edge data.

We compare GridGraph-ODP against GridGraph [50] and
CLIP [1]. In particular, GridGraph represents the baseline of
streaming-based processing, and CLIP [1] stands for the state-
of-the-art optimization for streaming-based processing. We
use the famous breath-first search (BFS) [30] as a case study
because it incurs both dense and sparse access patterns during
computation [2]. We evaluate BFS on the three systems with
the traditional hard-disk drive (HDD) as well as three different
types of modern solid-state drives (SSD): SATA SSD [39],
NVMe SSD [40], and ULL SSD [38]. The experiments are
conducted in the same environment as that described in §4,
and the number of threads is set to four, which is the same
configuration as GridGraph [50].

Fig. 4 depicts the results. First, we can observe that HDD
negatively impacts GridGraph-ODP. Compared with Grid-
Graph, although GridGraph-ODP can save around 8.7x in
loading edge data, its performance degrades by -24.1%. This
result implies that the random I/O severely degrades the speed
of HDD, and streaming-based processing is an effective prin-
ciple to obtain high storage bandwidth. Moreover, CLIP im-
proves GridGraph and GridGraph-ODP by 53.7% and 65.2%.
The reason is that CLIP leverages streaming-based processing

1Each vertex is assigned with a distinct value to be its identity.
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and further accelerates the convergence of graph algorithms
by re-computing the loaded chunks multiple times. Thus,
CLIP vastly outperforms the other two systems on HDD.

The results on modern SSDs show a different trend. Al-
though both GridGraph and CLIP perform better on a faster
drive, GridGraph-ODP improves more outstandingly because
on-demand processing can save I/Os while enjoying the de-
cent speed in random access. Moreover, we can observe an
inspiring fact that, even if CLIP applies state-of-the-art op-
timization to streaming-based processing, GridGraph-ODP,
which represents the baseline of on-demand processing, works
remarkably better. Specifically, GridGraph-ODP outperforms
GridGraph and CLIP by 59.0% and 36.3% on average. As a
result, given that SSDs have prevailed nowadays, these exper-
iments strongly motivate us that advancing the development
of fully-external system tailored for on-demand processing is
a promising direction.

3 Seraph
3.1 Overview
Motivated by §2.3, we realize that on-demand processing
is a promising direction to build fully-external graph com-
putation system. This inspires this work to develop a new
fully-external graph computation system, Seraph, based on
the principle of on-demand processing. Moreover, Seraph in-
corporates three main designs that are specially tailored for
the framework of on-demand processing to pursue further
performance improvement.

Figure 5: Architecture of Seraph.

Fig. 5 depicts Seraph’s architecture, which combines the
frameworks of fully-external graph computation and on-
demand processing. To support fully-external framework, Ser-
aph follows several traditional fundamentals such as keep-
ing the entire graph data in storage and dividing the ver-
tices into disjoint partitions. To reduce memory consumption,
Seraph mmaps each vertex partition into memory and com-
pute one partition at a time to create locality. To support
on-demand processing framework, Seraph maintains index

data to record the location of each edge list, just like our
revamped GridGraph-ODP. Moreover, §3.2 presents a new
hybrid format to split the edge data into both row and grid
formats (e.g., for edge list of u, row format stores v and w,
and grid format keeps a and f ). It reduces I/O during graph
computation by combining the advantages of both formats.

With these data structures, Seraph’s execution flow is
briefly illustrated as follows. It runs graph algorithms in iter-
ations, and in each iteration, it first handles row format and
then grid format. No matter which format is handled, Seraph
computes one partition at a time. Specifically, graph computa-
tion involves identifying the active vertices, reading their edge
lists, and updating the corresponding vertex attributes. How-
ever, when computing row format, the to-be-updated vertex
attribute could not be inside memory (details in §3.3.1). To
resolve this issue, §3.3 proposes vertex passing to delay the
vertex updating for creating locality. On the other hand, §3.4
presents selective pre-computation. It explores the feature of
asynchronous processing for further I/O reduction by re-using
loaded data to compute the active vertices of future iterations
in advance. Please note that the detailed execution flow in-
volving the proposed designs will be elaborated in §3.5.

3.2 Hybrid Format
3.2.1 Observation

The motivation of hybrid format comes from the inefficiency
of applying on-demand processing to the traditional grid for-
mat. Although it is common to utilize streaming-based pro-
cessing with grid format, using on-demand processing with
grid format is a double-edged sword. On one hand, grid for-
mat creates good locality of vertex access by confining the
access range to two partitions only. On the other hand, it
increases the overhead in reading edge lists and index data.

We first discuss how grid format negatively impacts the
performance in reading edge lists. Compared with the edge
list stored in row format, the grid format breaks an edge list
into multiple segments and stores them in different grids,
making on-demand processing issue a greater number of I/O
blocks to read all the edge lists of the same source vertex in
different grids. Under the example of Twitter graph2 [9], the
average number of 4KB pages to read the entire edge list (i.e.,
all neighbors) of a vertex is 3.88 in grid format, whereas row
format only requires 1.03 pages, demonstrating a signifiant
73.5% improvement.

Next, reading the index data in grid format is inefficient
due to the high ratio of redundant indexes. We call an index
redundant if it points to an empty edge list, as such an in-
dex provides no information about the graph. Specifically,
because the edge distribution of real-world graphs is typically
skewed [12,13], there is a high likelihood that a vertex has no
edge list in a grid, leading to a high ratio of redundant indexes.
In the same example of Twitter graph, over half (53.6%) of

2We assume the graph is divided into eight partitions.
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Figure 6: Example of hybrid format.

the indexes in grid format are redundant and provide no graph
information. Further, as each grid maintains its own index
data to enable on-demand processing, the total size of index
data in grid format is considerably larger than that in row
format. Thus, reading the index data in grid format becomes
a non-negligible overhead to the overall performance.

Although row format seems better than grid format based
on the above discussion, using row format in a fully-external
system causes the issue of accessing vertex attributes ran-
domly; the system may update arbitrary vertices in row format,
rather than just a partition of vertices as in grid format. This
leads to a serious issue that many vertex attributes that need to
be updated may be on storage (i.e., not in memory). To update
those attributes on storage, the system will extensively swap
the pages between memory and storage, severely degrading
the performance. Thus, §3.2.2 introduces hybrid format to
resolve the dilemma between row and grid format.

3.2.2 Hybrid Format Construction
This section presents a new format, called hybrid format,
to store the edge data while improving the performance of
graph computation. The goal of hybrid format is to exploit the
advantages of both row and grid formats. As shown in Fig. 6,
it first stores the graph into grid format. Following, several
grids are converted to row format to prevent the inefficiency
in reading edge and index data, while retaining the rest in grid
format to preserve good locality of vertex access.

To store the raw edge data into hybrid format, we first di-
vide the edges into multiple chunks where every edge in the
same chunk shares the same source and destination vertex
partition(s). If a chunk contains many edges, computing the
edges in the chunk will easily generate many vertex updates;
storing the chunk in grid format is beneficial because we can
create a good locality of vertex access during graph computa-
tion. On the contrary, for the chunks containing few edges, it
is preferable to store them in row format for two reasons: (i)
Because the edge lists in these chunks are small in general,
storing them in row format can append all of the small edge
lists together for reading them with the I/O block efficiently.
(ii) Since the chunks of few edges tend to contain many empty
edge lists, storing those chunks in row format prevents high
ratio of redundant index data.

Hybrid format uses 8 bytes to store each index that points

to the beginning location of each edge list; the edge list of
a vertex vs is recorded by sth index and (s+ 1)th index. As
shown in Fig. 6, row format contains V + 1 indexes. Grid
format requires V/P+ 1 indexes for each grid, so the total
number of indexes in grid format is (V/P+ 1)×G, where
P is the number of partitions and G is the number of grids
created (e.g., example in Fig. 6 is one grid in total).

To construct a graph into hybrid format, Seraph first se-
quentially reads the raw edge data3, while deciding each edge
chunk to be stored in grid or row format (details are dis-
cussed in §3.3.2). Next, based on the decision, it reads and
re-distributes the raw edge data into grid or row format while
creating the index data. Thus, the I/O complexity of construct-
ing hybrid format is O(5E +(V/P+ 1)×G+V ), whereas
GridGraph takes O(4E) to create grid format as it reads the
raw edges and re-distributes them into different grids. Ta-
ble 1 shows the construction times of GridGraph and Seraph
(settings are described in §4). We can observe that the con-
struction times of Seraph are roughly 30% slower than those
of GridGraph. However, since graph construction is a one-
time procedure per graph and can be performed offline, these
costs are lightweight for both systems in terms of runtime
performance, as shown in §4.1.

Table 1: Construction times of Seraph and GridGraph.
Time(sec) Twitter Gsh2015 Eu2015 RMAT
GridGraph 15.6 382.9 979.9 2285.5

Seraph 20.6 475.5 1294.5 2906.2

However, although the chunks that strongly require good
locality of vertex access will be stored in grid format based
on the above construction method, computing the edge lists in
row format still results in several random accesses to vertex
attributes. Therefore, §3.3 proposes a simple yet effective
technique, called vertex passing, to tackle this issue. Please
note that the further details such as the criterion for storing
a chunk in the row or grid format will be discussed after
introducing the concept of vertex passing.

Figure 7: An example of execution on row format.

3.3 Vertex Passing
3.3.1 Design Concept
Vertex passing is proposed to resolve the issue of accessing
vertex attributes randomly, as mentioned in §3.2. That is, it is

3Raw edge data and GridGraph present an edge with (src, dst). Hybrid
format presents an edge with dst with the help of index data.
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used when the to-be-updated vertex attributes are on storage.
To enable vertex passing, each vertex partition is associated
with an in-memory passing buffer. Suppose a vertex u is
updated by its source vertex yet u is on storage, vertex passing
will delay the update and transfer the information of the source
vertex (i.e., active vertex) to the passing buffer of u’s partition.
Afterwards, once u is loaded into memory, vertex passing will
merge the update in the passing buffer back to the attribute.
Because a vertex partition shall be held in memory when
Seraph currently computes it, every vertex can be held in
memory by turns for update merging.

Fig. 7 shows an example about how vertex passing works.
Suppose Seraph is computing P0 (so the vertex attributes of
P0 shall be in memory), w is an active vertex, u and v are
the neighbors of w. At this moment, the system can directly
update vertex u but not vertex v since u is in memory and
v is on storage; compelling the direct update to on-storage
vertices will severely degrade the system’s performance, as it
involves extensive page swapping between memory and stor-
age. Hence, vertex passing addresses this problem by delaying
the on-storage update and transferring the update informa-
tion of w to the passing buffer of Pi. Later, when Seraph is
computing Pi, the vertex v can be loaded into memory and
thus updated by the information stored in the Pi’s passing
buffer. In general, Seraph transfers the information of neigh-
bor vertex ID and update value to the passing buffer, but the
transferred information is configurable by the user based on
the requirement of graph algorithms.

To mitigate the impact on memory usage in Seraph, each
passing buffer is set to be negligibly small (e.g., 1 MB) com-
pared to the vertex data size. Thus, each passing buffer is
associated with a logging file to keep the vertex updates once
the total size exceeds the in-memory passing buffer size. Ser-
aph issues sequential I/O to write the information from the
passing buffer to the corresponding file once the buffer is
full. Similarly, sequential read is used for merging the infor-
mation in the file back to vertex attributes. Please note that
we use logging files to manage vertex updates instead of KV
store because manipulating vertex updates is relatively simple;
each update is only valid for one iteration, and they are bulky
deleted after being used. Thus, we choose the straightforward
implementation of logging files.

Although vertex passing requires I/O to transfer the updates,
the overhead is generally small for three reasons. First, since
vertex passing only transfers the update information of active
vertices, it is effective for many graph algorithms activating
a few vertices in most of the iterations. Second, as discussed
in §3.2.2, a chunk stored in row format contains few edges;
thus, even if all vertices are active and produce updates to
their neighbors, the maximum overhead is bounded by the
few edges inside each chunk. Third, because all transferred
information is consecutively kept together in passing buffers
and files, accessing them is efficient by using sequential I/O.
Thus, vertex passing can efficiently tackle the issue of random

vertex update caused by computation on row format.
The core concept of vertex passing (VP) is to delay oper-

ations as logs, which is a useful technique to create locality
for different scenarios [21, 22]. For example, [22] exploits
VP to optimize PageRank under shared-memory premise. It
buffers all logs in DRAM efficiently and aims to improve
VP’s efficiency with more designs (e.g., lock-free layout). In
contrast, our VP is naturally slower since the logs are recorded
on storage via I/O. Thus, over-using our VP in fully-external
environment will waste much I/O and eventually hurt Ser-
aph’s performance. In this regard, hybrid format and VP are
proposed as a combination which complements each other
with the aim of minimizing storage I/O.

3.3.2 Details in Hybrid Format Construction with Con-
sideration of Vertex Passing

Seraph decides whether a chunk should be stored in row
or grid formats by comparing their respective overheads.
In particular, since this work targets fully-external environ-
ments (storage I/O is typically slower than CPU computation),
each chunk is decided between two formats by considering
their upper-bounded "I/O overheads" (more specifically, "I/O
amounts"). That is, for a chunk C in grid format, the upper-
bounded I/O amount includes reading all grid-related data
(e.g., the chunk’s vertex attributes, index data, and edge lists).
For C in row format, the upper-bounded I/O amount is to log
the updates generated by all edges in C. Therefore, the time
complexity of gathering the above-mentioned information is
linear to chunk size, while making decision is in constant time
by simply comparing the two I/O-amounts.

On the other hand, a fully-external graph system typically
reserves enough memory for holding two vertex partitions,
one for the source partition and the other for the destination
partition. In other words, when Seraph is computing a par-
tition P in row format, it loads P into memory as source
partition; there is an empty space for another partition to be
destination partition. Thus, for every row of chunks (i.e., the
chunks share the same source vertex partition), we can store
one chunk in row format regardless of its number of edges
because we can hold the chunk’s destination partition in mem-
ory to absorb the vertex updates during graph computation.
In fact, due to the natural locality of real-world graphs [49],
many edges reside on the diagonal chunks (share the same
source and destination partition). Thus, Seraph stores the di-
agonal chunks in row format by default.

Because different graph algorithms incur various access
patterns, it is hard to tailor hybrid format for a specific access
pattern. Thus, we construct hybrid format by heuristically
assuming that all vertices are active for the following two
reasons: 1) because the major bottleneck in graph computa-
tion is the dense access pattern under on-demand processing;
optimizing dense access pattern is more beneficial than the
sparse pattern in general, and 2) since the real-world graphs
are typically skewed [12, 13], many chunks will be stored in
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row format to enjoy the benefits even under the assumption of
all active vertices. For example, we divides Twitter graph [9]
into 64 chunks, and only 14 chunks are stored in grid format.
For Eu2015 graph [7], all chunks are stored in row format as
the vast majority of edges reside on the diagonal chunks.

Figure 8: Example of pre-computation.

3.4 Selective Pre-Computation
Asynchronously computing the data of future iteration in ad-
vance is a well-known technique [1, 42]. As streaming-based
processing often loads excessive-but-irrelevant data, exist-
ing work [1] exploits this concept to increase the utilization
of the loaded grid by re-computing it many times. On the
other hand, although Seraph leverages on-demand process-
ing, there is still a granularity mismatch between a common
I/O block size (e.g., 4096 bytes) and the typical size of an
edge list (e.g., 132 bytes on average in Twitter). This mis-
match provides the opportunity that the current and future
active vertices4 could reside on the same I/O block. Thus,
selective pre-computation is introduced into Seraph to oppor-
tunistically re-use the loaded data for current active vertices
to pre-compute the future ones asynchronously, reducing the
total number of issued I/O.

However, under the framework of on-demand processing,
recognizing whether the loaded data contain the information
of future active vertices requires high implementation cost by
traversing three different data structures (i.e., vertex attributes,
indexes, and edges). To prevent this cost, we use vertex IDs
for estimation due to the following three reasons. First, since
all data structures are stored sequentially based on vertex ID,
there is a high likelihood that two vertices reside on the same
I/O blocks if their ID gap is small. Second, the implemen-
tation cost of tracking vertex IDs is low. Third, even for the
worst case that we might spend a few extra I/O to load future
active vertex, pre-computation merely beforehand performs
computation that was supposed to happen in the next iteration,
making it only require little cost yet offer the opportunity to
re-use I/O. Based on our investigation, it is challenging to set
an optimal value of ID gap for all scenarios because different
algorithms/graphs have different features. Thus, we set the ID
gap to be 32 by default as it is a reasonable value (by consid-
ering 4KB page and the average edge list size) and generally

4Current active vertices means the active vertices of current iteration.
Future active vertices means the active vertices of next iteration.

Figure 9: Execution flow in Seraph.

performs well for all graphs. In other words, Seraph will se-
lectively pre-compute those future active vertices which are
within the same gap based on the current active vertices to
opportunistically re-use I/O.

Fig. 8 shows the mechanism of selective pre-computation.
In particular, there are two bitmaps originally maintained in
Seraph that record the activeness of each vertex: cur_bitmap
and next_bitmap respectively indicate the active vertices
of current and next iteration. In normal computation (i.e.,
without pre-computation), Seraph identifies and computes
the active vertices based on the set-bits in cur_bitmap. In
pre-computation, Seraph first determines the pre-computed
vertices based on the method described above and move the
set-bits from next_bitmap to cur_bitmap. In other words,
all active vertices (including the current and future ones) are
marked in cur_bitmap, and the pre-computed ones are re-
moved from next_bitmap so that we will not compute them
again in the next iteration. Finally, Seraph can simply perform
graph computation based on cur_bitmap.

As Seraph stores graphs in hybrid format, it is essential to
maintain consistency of the pre-computed vertices between
row and grid formats to ensure the correctness of algorithms.
Even when computing grid format, it is possible for a vertex
to be pre-computed in one grid but not in another, as each
grid is computed independently. To ensure consistency, Ser-
aph first computes row format while modifying cur_bitmap.
Next, Seraph uses the modified cur_bitmap to compute all
grids to maintain consistency. However, pre-computation can
only work when the graph algorithm generates future active
vertices on the fly during graph computation. If this is not
feasible for the algorithm, Seraph offers an option to disable
pre-computation and run the algorithm normally.

3.5 Execution Flow
Based on the the available amount of memory specified by
user, Seraph divides a graph into the number of partitions
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that can hold two partitions of vertex data (i.e., source and
destination partitions), one partition of index data, and other
small data structures (e.g., edge buffer and active bitmap) in
memory. With the information of partitions, Seraph constructs
a graph into hybrid format based on the method described
in §3.3.2. Next, Seraph performs graph computation based
on the execution flow shown in Fig. 9. As mentioned in §3.4,
Seraph computes row format first, and then computes the grid
format, for each iteration. When computing a partition p, Ser-
aph first merges all the delayed updates back to p to keep all
attributes with the latest values. Next, each thread in Seraph
will parallelly identify and record the set of active vertices in
partition p; if pre-computation is enabled, future active ver-
tices of the same partition will also be handled as mentioned
in §3.4. Seraph converts the indexes of active vertices into
page-aligned offsets. Later, Seraph exploits the kernel-level
Linux Asynchronous IO (AIO) to group multiple required
pages into one I/O request, and issue the request with direct
I/O to read the edge data into local edge buffer. Finally, Seraph
performs graph computation, and vertex passing described
in §3.3 will be enabled when computing row format. Please
note that, since Seraph uses memory mapping mechanism to
reference the vertex and index data backed in files, Seraph ac-
cesses the needed vertices and indexes like accessing normal
arrays, and does not declare extra user-space memory buffer
for holding the vertex and index data.

Seraph computes row format by simply processing all parti-
tions by turns, and grid format is computed by column-based
execution order. In other words, when computing grid format,
Seraph selects a destination partition py and then iteratively
computes the source partition px if there is a grid between
px and py. As py is fixed, all generated vertex updates can
directly be absorbed in memory based on this column-based
execution order. The computation in grid format ends when
all the grids are computed by Seraph.

4 Evaluation
We implement Seraph in C++ and compare it against differ-
ent state-of-the-art graph computation systems: fully-external
(GridGraph [50], V-Part [11], CLIP [1], Lumos [42]), semi-
external (Graphene [25]), and shared-memory (Ligra+ [37])
systems. As V-Part and CLIP are not open source, we imple-
ment their systems ourselves based on their papers.

We use breath-first search (BFS) [30], weakly connected
component (WCC) [15], K-core (Kcore) [29, 35], all-pair
shortest-path (APSP) [24, 41], and pagerank (PR) [14, 33]
for evaluation. BFS is a typical algorithm for graph traver-
sal by exploring the neighbors until all connected vertices
are visited. WCC discovers the number of connected com-
ponents of a graph; we implement WCC by the method of
label propagation [48]. Kcore iteratively removes the vertices
of degree less than k, and finally returns a subgraph where
each vertex has the degree of at least k. APSP calculates the
shortest paths from all vertices. Due to the high complexity

of computing all the shortest paths, this evaluation leverages
an approximate approach by randomly sampling 32 source
vertices, and performs multi-source traversal from the sam-
pled vertices [24, 41]. Finally, PR calculates the popularity of
a vertex based on its neighbors’ rank values. We run PR for
four iterations and activate all vertices in each iteration. Please
note that, except for PR constantly activating all vertices, the
other evaluated algorithms activate a (dense or sparse) set of
vertices in each iteration and represent various access patterns.

Table 2 lists the graphs used for evaluation in this work. The
first three are billion-scale, real-world graphs from SNAP [23]
and webgraph [3, 4]. In particular, Twitter [9] is social graph,
while Gsh2015 [8] and Eu2015 [7] are web crawler graphs.
Since the open-sourced graph datasets are all quite small,
we use [18] to generate a large-scale graph (called RMAT)
for testing the scalability. RMAT contains 8.6 billions of
vertices and 112 billions of edges. Notably, because 4 bytes
(unsigned int) is not enough to represent all the vertex IDs
of RMAT graph, we use 8 bytes (long) to store the vertex ID
for this graph in all systems instead.

Table 2: Evaluated graph datasets.
Graph Name Num Vertices Num Edges Graph Size5

Twitter 42 M 1.4 B 11.2 GB
Gsh2015 988 M 33.88 B 271 GB
Eu2015 1.1 B 91.8 B 734 GB
RMAT 8.6 B 112 B 1.7 TB

Table 3: Fully-external memory usages for §4.1 and §4.2.
Graph Name Twitter Gsh2015 Eu2015 RMAT

Memory Usage 130 MB 2.4 GB 2.7 GB 18 GB

To investigate fully-external graph systems, §4.1 and §4.2
conduct detailed comparisons and study the proposed design
choices by offering each system with fixed amounts of mem-
ory that are adjusted based on the graph sizes. Specifically,
we aim to compute the largest evaluated graph, RMAT, with
a reasonable resource available for most people nowadays.
Thus, each system is provided with 18 GB to compute RMAT,
while the memory amounts for computing other evaluated
graphs are also based on a similar ratio of each graph size.
The exact memory usage for each evaluated graph are reported
in Table 3. §4.3 further enhances the evaluation by examining
each fully-external system with different memory amounts.
Moreover, we also evaluate semi-external and shared-memory
systems in §4.3 to have a comprehensive study about different
types of single-machine graph systems.

To compare all types of graph systems on the same plat-
form, all experiments are conducted on the same server: HPE
ProLiant DL560 Gen10 server with Intel Xeon Platinum 8160
CPU and 32 x 32GB Dual Rank DDR4-2666 memory (1TB
in total) on Debian GNU/Linux 9, and two 1TB Samsung
NVMe SSD drives [40] with 6.0 GB/s sequential read band-
width in total. We use cgroup to limit the available memory

5The size is measured by storing the graph in the format that each edge is
represented by (source vertex ID, destination vertex ID).
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(a) Execution time on Twitter. (b) Execution time on Gsh2015. (c) Execution time on Eu2015. (d) Execution time on RMAT.

(e) I/O amount on Twitter. (f) I/O amount on Gsh2015. (g) I/O amount on Eu2015. (h) I/O amount on RMAT.

Figure 10: Overall comparison among Seraph and other fully-external systems.

and taskset to confine the used cores. The number of threads
for all systems is set to 16 because it is reasonable for com-
modity PCs nowadays.

4.1 Fully-external Systems Comparison
This section compares Seraph against four state-of-the-art
fully-external graph systems, which are GridGraph [50], V-
Part [11], CLIP [1], and Lumos [42]. Fig. 10 illustrates the
execution times (seconds) and I/O amounts (GBs) of running
the chosen algorithms on different graphs.

We first discuss BFS, WCC, Kcore, and APSP; they are
asynchronous graph algorithms, which offers room for opti-
mization via exploiting the algorithmic feature, as discussed in
Section 2.2. Overall speaking, GridGraph performs the worst
among all systems since it naïvely adopts streaming-based
processing (SBP). V-Part issues on-demand I/O to read the
edge data, so it averagely improves GridGraph by 37.3% in
execution time and 45.1% in I/O amount. However, V-Part’s
performance is impacted by 1) loading the source vertex table
in a partition-based granularity and 2) requiring the overhead
of mirror update to handle vertex updates. Thus, compared to
CLIP which is an advanced version of GridGraph for asyn-
chronous algorithms, V-Part is slightly slower than CLIP by
5.7% in execution time on average. Last but not least, Seraph
performs the best among all systems. Compared to V-Part,
Seraph on-demand accesses both edge and vertex data. Com-
pared to CLIP, Seraph not just relies on the effectiveness of
on-demand processing but it also leverages pre-computation
to optimize asynchronous algorithms. In summary, since Ser-
aph can effectively reduce I/O, it achieves decent performance
correspondingly. For execution time (resp., I/O amount), Ser-
aph outperforms GridGraph, V-Part, and CLIP, by 8.9x, 4.9x,
and 4.0x (resp., 8.5x, 5.0x, and 4.5x).

Moreover, we can observe that Seraph is especially efficient
in computing Gsh2015 graph. Taking BFS as an example;

Seraph improves CLIP by 5.0x on Gsh2015 and 3.1x on Twit-
ter. The reason is that running BFS on Gsh2015 takes lots of
iterations to traverse the entire graph, and only a few vertices
are activated in most iterations. This feature damages the sys-
tems adopting SBP as they typically read plenty of data in
each iteration. By contrast, since Seraph on-demand accesses
the necessary data, the main overhead is the number of issued
I/Os, not the number of iterations. Thus, Seraph works better
on Gsh2015 than other systems. A similar observation can
be found on Kcore which takes lots of iterations to complete
but only activates a few vertices in most iterations, providing
Seraph more advantages in saving I/O than other systems.

Following, we discuss synchronous algorithm (i.e., PR).
Compared to asynchronous ones, PR has to obey the strict
synchronous semantics, as discussed in Section 2.2. Moreover,
because PR is computation-intensive and constantly activates
all vertices, on-demand processing does not show advantages,
and all systems perform similarly. Nevertheless, Seraph is still
slightly better in I/O as the graph in hybrid format is more
lightweight than the graph structures in other systems. On the
other hand, Lumos, to save I/O for synchronous algorithm
via future computation, is specialized by imposing several
constraints during graph computation. However, due to the
feature of computation-intensiveness, loading less I/O only
brings minor benefit. Please note that we replace the bar of
CLIP with Lumos for PR in Fig. 10. Compared to GridGraph,
V-Part, and Lumos, Seraph saves the I/O amount by 22.7%,
8.5%, and 7.1%, and improves the time by 11.1%, 10.4%, and
0.6%. Besides, although Lumos optimizes PR via I/O reduc-
tion based on GridGraph, the improvement is minor because
(1) PR is computation-intensive in our testing, and (2) several
designs in Lumos fail to run in fully-external environment.
Thus, Lumos improves GridGraph by 39.8% on Twitter, but
barely any improvement on the other evaluated graphs.

382    22nd USENIX Conference on File and Storage Technologies USENIX Association



(a) Execution time on Twitter. (b) Execution time on Gsh2015. (c) Execution time on Eu2015. (d) Execution time on RMAT.

Figure 11: Performance studies of different major designs in Seraph.

4.2 Design Choices
This section demonstrates the performance impact of major
designs in Seraph. Specifically, §4.2.1 reveals that hybrid
format with vertex passing performs the best than the other
two formats. Next, based on the hybrid format with vertex
passing, §4.2.2 further studies the performance of selective
pre-computation. The configuration of the system and envi-
ronment in this section is the same as that in §4.1.

4.2.1 Hybrid Format and Vertex Passing
Before showing the results, we discuss the necessity of com-
bining hybrid/row format with vertex passing. Since vertex
passing creates the imperative locality for vertex access, com-
puting hybrid/row format without vertex passing will cause
the serious problem of memory thrashing. Based on our in-
vestigation, it severely degrades the execution time by at least
two orders of magnitude, making the system intolerably slow.

Thus, in the following experiments, we compare the perfor-
mance of grid format (denoted as Grid), row format with ver-
tex passing (denoted as Row+VP), and hybrid format with ver-
tex passing (denoted as Hybrid+VP), respectively. To clearly
observe the effects of different formats, we disable selective
pre-computation, which will be discussed in §4.2.2. Please
note that, the hybrid format stores all edges of Gsh2015 and
Eu2015 into row format. Thus, the results of Row+VP and
Hybrid+VP are identical for Gsh2015 and Eu2015.

As revealed in Fig. 11, Hybrid+VP generally performs the
best. Particularly, Hybrid+VP outperforms Grid by 37.4%
on average, while Hybrid+VP averagely improves Row+VP
(for Twitter and RMAT graphs) by 18.1%. Such improve-
ment is because hybrid format strikes a good balance between
utilizing row and gird formats. Compared to Row+VP, Hy-
brid+VP alleviates the overhead of vertex passing by storing
several dense edge blocks in grid format. Compared to the tra-
ditional Grid, Hybrid+VP improves the efficiency of reading
indexes and edge data. Moreover, the comparison between
Hybrid+VP and Grid further implies that naïvely applying
on-demand processing into the traditional fully-external de-
signs will lead to limited improvements; proposing techniques
suitable for on-demand processing (e.g., hybrid format and
vertex passing) is essential for bringing improvement. Finally,
Row+VP is not necessarily better than Grid because, for cer-
tain graphs and algorithms, over-using VP will degrade the
overall performance instead by wasting too much I/O in trans-
ferring vertex updates.

4.2.2 Selective Pre-computation
This section examines selective pre-computation based on the
proposed hybrid format with vertex passing. The combina-
tion of designs is referred to as Hybrid+VP+PreC, and the
results are presented in Fig. 11. Please note that, because the
selective pre-computation is not feasible for PR, the result
of Hybrid+VP+PreC is identical to Hybrid+VP in PR. We
mainly discuss of the other four algorithms in the following.
As a whole, selective pre-computation averagely improves
Hybrid+VP by 16.1% in execution time. This improvement
is achieved by re-using I/O opportunistically. Take the largest
RMAT graph as example, pre-computation helps to improve
execution time (resp., I/O amounts) by 25.6%, 29.1%, 14.5%,
and 8.2% (resp., 25.8%, 25.1%, 15.2%, and 12.1%) in terms
of BFS, WCC, KCore, and APSP. The results exhibit a sim-
ilar trend between two metrics. Moreover, different graphs
may lead to different amounts of improvement. Given that
Twitter and RMAT have shorter diameter than Gsh2015 and
Eu2015, the algorithms running on Twitter and RMAT typi-
cally incur denser access pattern than Gsh2015 and Eu2015.
Thus, pre-computation has better improvement on Twitter and
RMAT (21.5%) than Gsh2015 and Eu2015 (10.7%) because
it can re-use more I/O under dense access pattern. A similar
trends happens on KCore which usually has sparse access
patterns. This makes pre-computation have a smaller impact
on improving KCore (3.7%) compared to other algorithms
(20.2%). However, pre-computation remains a reasonable
design choice as it provides harmless benefit.

4.3 Evaluation with Different Amounts of
Memory

This section evaluates with different memory amounts. Be-
sides fully-external systems, we also include the state-of-the-
art semi-external system (i.e., Graphene [25]) and shared-
memory system (i.e., Ligra+ [37]). Particularly, Ligra+ lever-
ages compression schemes to reduce runtime memory foot-
print. However, the compression program implemented in
Ligra+ requires multiple in-memory edge-scale arrays, which
significantly limits the graph scale that Ligra+ can handle. In
fact, among all the evaluated graph datasets, the largest graph
that Ligra+ can handle with our 1TB memory server is the
Gsh2015 graph [8]. Hence, this section presents the results
based on Gsh2015 graph.

For Gsh2015 graph, 16 GB is enough to hold the entire ver-
tex and index data in memory (i.e., semi-external mode). Thus,
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(a) Execution time on BFS. (b) Execution time on WCC.

(c) Execution time on Kcore. (d) Execution time on APSP. (e) Execution time on PR.

Figure 12: Evaluation with different amounts of memory, which is adjusted based on the scale of Gsh2015 graph [8].

for fully-external systems, we vary the provided amounts of
memory from 900 MB, 2.4 GB, 4.8 GB, to 16 GB. On the
other hand, because Graphene has to run in semi-external
mode and Ligra+ must hold the entire compressed graph in
memory, we offer them 16 GB and 115 GB of memory to
meet their requirements, respectively. It is worth nothing that
the memory requirements of both Graphene and Ligra+ pro-
portionally increase with larger graph scales. Taking RMAT
as an example, Graphene and Ligra+ respectively require
132 GB and 1.7 TB (reported based on raw graph size), while
Seraph can compute it with only 18 GB as shown in §4.1.

Fig. 12 shows that, for fully-external systems, their perfor-
mances improve along with the increasing memory, and Ser-
aph outperforms the other systems regardless of the provided
amounts of memory. Moreover, Seraph shows a greater cost-
effectiveness than other systems. Compared to fully-external
ones, Seraph can use much less memory while achieving
better performance. Compared to Graphene, Seraph(4.2GB)
almost catches up the performance of Graphene(16GB), with
only a minor 10.6% degradation on average. In semi-external
mode, Seraph(16GB) averagely improves Graphene(16GB)
by 1.31x due to the help of pre-computation. Finally, Ligra+
spends 7.2x more memory than Seraph to achieve an aver-
age 1.83x speedup, yet for certain algorithms like WCC, the
speedup is only 1.27x. Ligra+ performs the best on PR (im-
proves Seraph by 2.87x). This is because Ligra+ expensively
keeps two versions of edge data (out-edges and in-edges) in
memory and switches the access between them to resolve
the computation-intensive issue of PR. Conversely, Seraph
shows greater scalability by computing much larger graphs
(e.g., Eu2015 and RMAT) that Ligra+ cannot handle.

5 Related Work
Besides fully-external graph systems, distributed graph sys-
tems [5,13,27,49] also show high scalability in graph compu-

tation by splitting a graph across multiple machines. For exam-
ple, Pregel [27] is the first distributed system proposing vertex-
centric programming model. Based on vertex-centric model,
PowerGraph [13] proposes to optimize the graph computation
on natural graphs. Gemini [49] adopts many optimizations to
greatly improve the efficiency. Although distributed systems
also demonstrate the capability of large-scale graph compu-
tation, these approaches are high-cost as user need to build
the environment of many machines for large-scale graphs.
In contrast, Seraph, as a fully-external system, exhibits op-
timal scalability by decoupling the capability of large-scale
graph computation from the single machine’s memory capac-
ity. Thus, Seraph is low-cost for computing any large-scale
graph with a constant memory amount.

6 Conclusion
This work develops a new fully-external graph computation
system, Seraph, based on the principle of on-demand process-
ing to save I/O. To purse a higher performance improvement,
three practical designs are proposed based on the framework
of on-demand processing. Specifically, hybrid format is intro-
duced to store the graph while optimizing graph computation,
vertex passing is presented for handling vertex updates effi-
ciently, and selective pre-computation explores the possibility
of re-using I/O. Seraph, as a fully-external system, exhibits
optimal scalability and offers decent performance. It signif-
icantly outperforms the other state-of-the-art fully-external
systems on all evaluated graphs, based on our experiments.
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Silva, Kun-Lung Wu, and Ümit V. Çatalyürek. Stream-
ing algorithms for k-core decomposition. Proc. VLDB
Endow., 6(6):433–444, apr 2013.

[36] Julian Shun and Guy E. Blelloch. Ligra: A lightweight
graph processing framework for shared memory. SIG-
PLAN Not., 48(8):135–146, feb 2013.

[37] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch.
Smaller and faster: Parallel processing of compressed
graphs with ligra+. In 2015 Data Compression Confer-
ence, pages 403–412, 2015.

[38] Intel Optane 905P SSD. https://www.
intel.com/content/www/us/en/products/
details/memory-storage/consumer-ssds/
optane-ssd-9-series.html.

[39] Samsung 860 EVO SSD. https://www.samsung.
com/semiconductor/minisite/ssd/product/
consumer/860evo/.

[40] Samsung 970 PRO SSD. https://www.samsung.
com/semiconductor/minisite/ssd/product/
consumer/970pro/.

[41] Manuel Then, Moritz Kaufmann, Fernando Chirigati,
Tuan-Anh Hoang-Vu, Kien Pham, Alfons Kemper,
Thomas Neumann, and Huy T. Vo. The more the mer-
rier: Efficient multi-source graph traversal. Proc. VLDB
Endow., 8(4):449–460, dec 2014.

386    22nd USENIX Conference on File and Storage Technologies USENIX Association

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/860evo/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/860evo/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/860evo/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/


[42] Keval Vora. LUMOS: Dependency-driven disk-based
graph processing. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 429–442, Renton,
WA, July 2019. USENIX Association.

[43] Keval Vora, Rajiv Gupta, and Guoqing Xu. Kickstarter:
Fast and accurate computations on streaming graphs via
trimmed approximations. In Proceedings of the twenty-
second international conference on architectural sup-
port for programming languages and operating systems,
pages 237–251, 2017.

[44] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load the
edges you need: A generic i/o optimization for disk-
based graph processing. In 2016 USENIX Annual Tech-
nical Conference (USENIX ATC 16), pages 507–522,
Denver, CO, June 2016. USENIX Association.

[45] Junlong Zhang and Yu Luo. Degree centrality, between-
ness centrality, and closeness centrality in social net-
work. In Proceedings of the 2017 2nd International
Conference on Modelling, Simulation and Applied Math-
ematics (MSAM2017), pages 300–303. Atlantis Press,
2017/03.

[46] Mingxing Zhang, Yongwei Wu, Youwei Zhuo, Xuehai
Qian, Chengying Huan, and Kang Chen. Wonderland:
A novel abstraction-based out-of-core graph processing
system. SIGPLAN Not., 53(2):608–621, mar 2018.

[47] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vo-
gelstein, Carey E. Priebe, and Alexander S. Szalay.
Flashgraph: Processing billion-node graphs on an ar-
ray of commodity ssds. In 13th USENIX Conference on
File and Storage Technologies (FAST 15), pages 45–58,
Santa Clara, CA, February 2015. USENIX Association.

[48] Xiaojin Zhu and Zoubin Ghahramani. Learning from
labeled and unlabeled data with label propagation. Tech-
nical report, 2002.

[49] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xi-
aosong Ma. Gemini: A Computation-Centric distributed
graph processing system. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 301–316, Savannah, GA, November
2016. USENIX Association.

[50] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
graph: Large-scale graph processing on a single machine
using 2-level hierarchical partitioning. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages
375–386, Santa Clara, CA, July 2015. USENIX Associ-
ation.

USENIX Association 22nd USENIX Conference on File and Storage Technologies    387




	fast24-11-qian
	Introduction
	Background and motivation
	Buffered I/O vs. direct I/O
	Impact of page caching and data copies on buffered I/O
	I/O locking and contention in Lustre

	Design and implementation
	Combining buffered I/O and direct I/O
	Unaligned direct I/O
	Efficient RAID I/O via delayed allocation

	Evaluation
	Microbenchmarks
	mpiFileUtils/dcp workload
	VPIC-IO workload
	Nek5000 turbulent pipe flow workload

	Related work
	Conclusion and future work
	Artifact Appendix

	fast24-34-yang
	Introduction
	Background
	RDMA
	ODP MR

	Motivation
	RDMA-Attached Memory
	ODP MR Is Not the Silver Bullet

	Design
	Overview
	Architecture
	Workflow
	Challenges

	Identifying Invalid Virtual Pages
	Accessing Data via Tiering IO
	Determining and Promoting Hotspots

	Implementation
	Evaluation
	Experimental Setup
	Overall Performance
	Read
	Write

	Contribution of Each Technique
	Dynamic Workloads
	Sensitivity Analysis
	Skewness
	Write Ratio
	Client Threads
	Server Threads
	DRAM Ratio
	SSD

	RDMA-based Storage Systems
	Octopus: A File System
	XStore: A Key-Value System


	Related Work
	Conclusion
	Artifact Appendix

	fast24-90-zhang
	Introduction
	Background and Motivation
	Background and Related Work
	Limitations of State-of-the-art Systems
	Analysis

	Goals and Overview
	Design Goals
	OmniCache Overview

	Design
	Cache Architecture
	Collaborative Caching for I/O 
	Scalable OmniIndex
	I/O Operations with OmniCache
	Concurrent Caching and Reducing Eviction Stalls

	Collaborative Processing with Caching
	Extending OmniIndex for Compute Cache: 

	Resource-driven Dynamic Offloading
	Exploring CXL Extensibility with OmniCXL

	Implementation Details
	Evaluation
	Experimental Setup
	I/O Performance
	Data Processing with OmniCache
	OmniDynamic Model Effectiveness
	CXL.mem enabled OmniCache
	Real-World Applications

	Conclusion
	Appendices
	Discussion
	Additional Performance Evaluation
	Sensitivity to Slower NVMe Storage
	Impact of OmniCache for LevelDB's db_bench


	Artifact Appendix

	fast24-68-dai
	Introduction
	Motivation and Framework
	The Application-Kernel Cache Structure
	Challenge: Memory Partitioning
	Cache Coordination with Symbiosis

	The Cache Partitioning Problem
	Influential Factors
	Analysis
	Uniform Workload
	Non-Uniform Workload

	Discussion

	Design and Implementation of Symbiosis
	Design
	Auditing by Tracker: Metric and States
	Simulating with GhostSim: Lifetime of a Round

	GhostSim Optimization Techniques
	Initialization: Reset Policy
	Incremental reuse of a single Ghost Cache
	Sampling with Misalignment and Read-ahead
	Guard against Unmodeled Cases and Fall Back
	Limitation and Discussion

	Multiple Implementations

	Evaluation
	Static Workloads
	LevelDB Performance
	Workload with Writes in LevelDB
	WiredTiger Performance
	RocksDB Performance

	Dynamic Workloads
	Example: LevelDB Behavior over Time
	Performance Gain and Dynamic Adaptation
	Gradual Change
	Effect of Optimization Techniques

	Real World Workloads

	Related Work
	Conclusion
	Acknowledgement
	Artifact Appendix

	fast24-82-liu
	Introduction
	Background and Motivation
	Heterogeneous Memory
	Direct Access (DAX) vs. Cache
	Motivation

	FLAC Design
	Overview
	Zero-Copy Caching
	Heterogeneous Page Table
	Transfer Data with Page Attaching

	Parallel-Optimized Cache Management
	Parallel-Optimized Synchronization/Migration
	Page State/Version Transition
	Cache Policy
	FS-FLAC Collaboration Logging


	Case Study: FlacFS
	Metadata Management
	Data Management
	Security and Consistency
	Advantages of FlacFS/FLAC

	Discussion
	Evaluation
	Benchmark Performance
	Micro Benchmark
	Macro Benchmark

	Design Analysis
	Impact of DRAM Cache Size
	Impact of I/O Size
	Impact of Page Alignment
	Impact of COW Page Fault
	Performance Breakdown
	Impact of File Size

	Real-World Applications
	Command Line Application
	Big Data Processing


	Conclusion

	fast24-138-shakiba
	Introduction
	Background
	Eviction policies
	Inclusion property
	MRC generation

	Kosmo
	Kosmo data structures
	The Kosmo algorithm
	Optimizations
	Kosmo for LFU
	Other eviction policies
	Variable object sizes
	TTLs
	Simultaneous MRC generation

	Evaluation
	MiniSim implementation
	Environment
	Metrics
	Results
	Inclusion property violations

	Related work
	Concluding remarks
	Artifact Appendix

	fast24-56-cho
	Introduction
	Background and Motivation
	FUSE (Filesystem in Userspace)
	Overheads in FUSE
	Motivation

	Design
	Overall Architecture of RFUSE
	Scalable Kernel-Userspace Communication
	Worker Thread Management
	Hybrid Polling
	Load Balancing of Asynchronous Requests
	Transmission of Ring Channel Information
	Memory Usage of Ring Channels
	Compatibility with FUSE

	Evaluation
	Experimental Setup
	Latency Breakdown
	Micro-benchmark
	FIO Performance
	I/O Scalability
	Metadata Operation Scalability

	Macro-benchmarks
	Factor Analysis
	CPU Utilization

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Scope
	Contents
	Hosting
	Requirements
	Hardware Requirements
	Software Requirements

	Set-up
	Experiments


	fast24-86-liu
	Introduction
	Background and Motivation
	Design
	Input Driver
	State Exploration and Tracking
	Differential State Checker
	Logging and Bug Replay
	Distributed State Exploration
	Implementation Details
	Limitations of Metis

	RefFS: The Reference File System
	RefFS Snapshot APIs

	Evaluation
	Test Input Coverage
	Metis Performance and Scalability
	RefFS Performance and Reliability
	Bug Finding

	Related Work
	Conclusion
	Artifact Appendix

	fast24-93-joshi
	Introduction
	Motivation and Background
	NVMe innovations vs Kernel abstractions
	I/O advances with io_uring

	Design considerations
	Limitations of existing NVMe passthrough
	Design goals

	I/O Passthru in Kernel: Architecture and Implementation
	Availability: NVMe generic char interface
	Infusing the efficiency & scalability
	io_uring command
	Asynchronous processing
	Fixed-buffer
	Completion polling

	Accessibility: from root-only to general
	Block layer: To bypass or not

	Upstream
	Kernel I/O Passthru Support
	Userspace I/O Passthru Support
	xNVMe integration
	SPDK integration
	Tooling


	Enabling NVMe interfaces with I/O Passthru
	Flexible Data Placement
	Computational Storage
	End-to-End Data Protection

	Experiments
	Efficiency Characterization
	Data-placement in Cachelib
	Comparison against SPDK

	Discussion
	I/O Passthru versus File systems
	Multi-tenancy and SQ/CQ limits

	Related Work
	Conclusion
	Artifact Appendix

	fast24-52-jiao
	Introduction
	Background and Motivation
	Design for Capacity Variance
	Capacity-Variant FS
	Feasibility of Elastic Capacity
	File System Designs for Capacity Variance
	Interface Changes for Capacity Variance

	Capacity-Variant SSD
	Wear Focusing
	Block Management
	Life Cycle Management
	Degraded Mode

	Capacity-Variant Manager

	Implementation
	Evaluation of Capacity Variance
	Experimental Setup and Methodology
	Performance Improvement
	FIO
	Filebench
	Twitter Traces

	Lifetime Extension
	Sensitivity Analysis
	Block Retirement Threshold
	ECC Strength
	GC Formula


	Discussion and Future Work
	Conclusion
	Artifact Appendix
	Fail-slow Experiments (Section 1)
	Installation of CVSS
	Basic Test
	Evaluation Workflow



	fast24-70-curtis-maury
	fast24-73-jun
	Introduction
	Background and Motivation
	Old Wisdom on File Fragmentation
	File Fragmentation in SSD-Era
	Internals of Modern Flash SSDs

	Analysis of File Fragmentation
	Impact Caused by Request Splitting
	Page Misalignment from Fragmentation

	Our Approach
	Evaluation
	Validation of Our Approach
	Effectiveness for Application Workloads

	Conclusion

	fast24-17-zhu
	Introduction
	Background and Motivation
	Key-Value Store Live Migration
	Existing Approaches and Limitations

	NetMigrate Overview
	NetMigrate Design
	Migration Workflow
	Migration State Tracking
	Data Consistency During Query Handling
	Dynamic Migration Policies

	Implementation
	Evaluation
	Methodology
	Overall Performance
	Tuning Bloom Filter Sizes and Group Sizes
	Extra Overhead for Migration
	More Scenarios and Workloads

	Discussion and Related Work
	Conclusions
	blackNetMigrate Network Protocol
	Artifact Appendix

	fast24-110-xu
	Introduction
	Background and Motivation
	WO-KV Stores Background
	Consistent Replicated KV Stores Background
	Why Are Existing Protocols Insufficient?
	Off-the-Shelf Protocols are Ill-Suited for WO-KV
	Shortcomings of Existing Improvements


	Ionia Ideas and Protocol Overview
	Key Insights and Ideas
	Ionia Protocol Overview

	Ionia Design and Implementation
	Writes
	Reads
	Meta Queries and Client-side Consistency Check
	Cheap Meta Queries with Compact History

	Failures and View Changes
	Correctness Proof Sketch
	Model Checking
	Implementation

	Evaluation
	Write-Only Workload
	Read-Only Workload
	Mixed Write-Read Workload
	Scaling Reads with Replicas
	Low-Latency Reads
	Impact of History Size
	YCSB Benchmark
	Ionia vs. Unreplicated: Read and Mixed
	blackPerformance under Failures

	blackDiscussion
	Related Work
	Conclusion

	fast24-112-levi
	Introduction
	Background and Related Work
	Challenges
	IDEA
	Overview
	White-space aligned chunking
	Term-to-chunk mapping
	Chunk-to-file mapping
	Keyword/term lookup
	Ranking results

	Implementation
	Experimental Setup
	Evaluation
	Discussion and Open Challenges
	Conclusions

	fast24-124-oh
	Introduction
	Background and Related Work
	Victim Selection Policies
	Data Placement Policies
	Review of Prior Techniques

	Motivation: Current GC Techniques
	Experimental Setup
	Analysis based on ORA
	Analysis of SOTA Techniques
	Lessons Learned: A Summary

	Design of MiDAS
	Overview of MiDAS
	Hot Block Separation
	Prediction of WAF using MCAM
	Estimating Transition Probabilities
	Configuring Groups with MCAM and UID

	Implementation and Experimental Setup
	Implementation and Resource Overhead
	Experimental Setup

	Experimental Results
	Comparison of GC Efficiency
	Impact of Each Component of MiDAS
	Miscellaneous Results
	Experiments on SSD Prototype

	Discussion
	Conclusion
	Artifact Appendix

	fast24-59-zhang
	Introduction
	Architecture Evolution: A Shift of Focus
	EBS1: An Initial Foray
	EBS2: Speedup with Space Efficiency
	EBS3: Foreground EC/Compression
	Evaluation

	Elasticity: A Tale of Four Metrics
	Latency
	Throughput and IOPS
	Capacity

	Availability: The Dark Side of Scaling
	Control Plane: Federated 
	Data Plane: Logical Failure Domain
	Lessons Learned

	To Whom the EBS Offloads
	Offloading BlockClient
	Offloading BlockServer
	Field Experience & Lessons

	What If?
	Related Work & Conclusion

	fast24-94-ren
	Introduction
	Background
	Distributed KV Stores
	Log-Structured Merge Trees (LSM-Trees)
	Erasure Coding

	Design Considerations
	ELECT Design
	LSM-tree-based Redundancy Transitioning
	LSM-tree Management
	Parity Node Selection
	Cross-SSTable Encoding
	Secondary Replica Removal

	Hotness Awareness
	Balancing Storage-Performance Trade-Off

	Implementation
	Evaluation
	Methodology
	Overall Analysis
	System-level Analysis
	Parameter Sensitivity Analysis
	Discussion

	Related Work
	Conclusions
	Artifact Appendix

	fast24-152-li
	Introduction
	Background and Motivation
	Background
	Dilemma Caused by Shuffle
	Existing Approaches
	Limitations
	Main Idea and Challenges

	MinFlow Design
	Overview
	Topology Optimizer
	Function Scheduler
	Configuration Modeler

	Evaluation
	Experiment Setup
	Microbenchmark Results
	Overall Performance Analysis
	Breakdown and Overhead
	Impact of Different Configurations

	Related Work
	Conclusion
	APPENDIX
	Topology Space Size
	CBGs in Multi-level Networks
	Applicability of Mesh-based Networks

	Artifact Appendix

	fast24-43-zhang
	Introduction
	Blockchain Storage Basics
	COLE Overview
	Design Goals
	Design Overview

	Write Operation of COLE
	Index File Construction
	Merkle File Construction
	Discussions

	Write with Asynchronous Merge
	Read Operations of COLE
	Get Query
	Provenance Query

	Complexity Analysis
	Evaluation
	Experiment Setup
	Baselines
	Implementation and Parameter Setting
	Workloads and Evaluation Metrics

	Experimental Results
	Overall Performance
	Impact of Workloads
	Tail Latency
	Impact of Size Ratio
	Provenance Query Performance


	Related Work
	Learned Index
	Blockchain Storage Management

	Conclusion
	Artifact Appendix

	fast24-51-wong
	Introduction
	Background
	Bulk storage systems in data centers
	Bulk storage limited by disk-head time (DT)
	Flash caches absorb HDD load but have limited write endurance
	Challenges in flash caching

	Exploring potential gains in flash caching
	Measure Disk-head Time, not hits or bandwidth
	TCO dominated by backend servers required
	Decomposing the caching problem
	Episodes: an offline model for flash caching
	OPT approximates optimal online AP
	Prefetching: what and when?

	Baleen Implementation
	Training Baleen's ML admission policy
	Training Baleen's Prefetcher using episodes
	Optimizing for Peak DT and TCO

	Evaluation
	Experimental setup
	Baleen reduces Peak DT over baselines
	Baleen-TCO chooses optimal flash write rate
	Prefetch selectively, in tandem with admission
	Optimizing the right metric: Peak DT
	Other ML-guided cache results/experiences

	Lessons from deploying ML in production
	Additional related work
	Conclusion
	Artifact Appendix
	Supplemental Material
	Comparison to IO miss rate and bandwidth miss rate
	Median DT
	Breakdown of DT during peak periods
	TCO function: step-by-step
	Comparison to Flashield
	Comparison to CacheLib ML
	Comparison to LRB's Relaxed Belady
	Workloads
	Testbed hardware
	Validating simulator and testbed
	Write Rates and Cache Sizes for all traces

	CacheLib deployment
	CacheLib settings

	Cache Transformer
	Architecture
	Training setup
	Evaluation


	fast24-133-yang
	Introduction
	Background and Motivation
	Background of Fully-external Systems
	Existing Fully-external Systems
	Motivation: Streaming-based Processing versus On-demand Processing

	Seraph
	Overview
	Hybrid Format
	Observation
	Hybrid Format Construction

	Vertex Passing
	Design Concept
	Details in Hybrid Format Construction with Consideration of Vertex Passing

	Selective Pre-Computation
	Execution Flow

	Evaluation
	Fully-external Systems Comparison
	Design Choices
	Hybrid Format and Vertex Passing
	Selective Pre-computation

	Evaluation with Different Amounts of Memory

	Related Work
	Conclusion

	Blank Page
	Blank Page
	Blank Page



