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Abstract
We present the design and implementation of a capacity-
variant storage system (CVSS) for flash-based solid-state
drives (SSDs). CVSS aims to maintain high performance
throughout the lifetime of an SSD by allowing storage ca-
pacity to gracefully reduce over time, thus preventing fail-
slow symptoms. The CVSS comprises three key components:
(1) CV-SSD, an SSD that minimizes write amplification and
gracefully reduces its exported capacity with age; (2) CV-FS,
a log-structured file system for elastic logical partition; and
(3) CV-manager, a user-level program that orchestrates sys-
tem components based on the state of the storage system. We
demonstrate the effectiveness of CVSS with synthetic and real
workloads, and show its significant improvements in latency,
throughput, and lifetime compared to a fixed-capacity storage
system. Specifically, under real workloads, CVSS reduces the
latency, improves the throughput, and extends the lifetime by
8–53%, 49–316%, and 268–327%, respectively.

1 Introduction

Fail-slow symptoms where components continue to function
but experience degraded performance [16, 52] have recently
gained significant attention for flash memory-based solid-state
drives (SSDs) [40, 41, 66]. In SSDs, such degradation is of-
ten caused by the SSD-internal logic’s attempts to correct
errors [3, 16, 44, 50]. Recent studies have demonstrated that
fail-slow drives can cause latency spikes of up to 3.65× [40],
and since flash memory’s reliability continues to deteriorate
over time [25,40,66], we expect the impact of fail-slow symp-
toms on overall system performance to increase.

Figure 1 demonstrates a steady performance degradation
for a real enterprise-grade SSD. We age the SSD through
random writes by writing about 100 terabytes of data each day,
and during morning hours when no other jobs are running, we
measure the throughput of the read-only I/O, both sequential
and random reads. As shown in Figure 1, the performance of
the SSD degrades as the SSD wears out, at a rate of 4.2% and

Figure 1: SSD performance degradation due to wear-out. The
dashed line represents the linear regression of the daily data points.
The throughput decreases by 37% for random reads and 38% for
sequential reads after 9 petabytes of data writes.

4.3% of the initial performance for each petabyte written, for
random reads and sequential reads, respectively. It is unlikely
that the throughput drop is due to garbage collection as (1)
this was measured daily over months, and (2) only reads are
issued during measurement. By the end, writing a total of 9
petabytes of data to the SSD decreased the throughput by 37%
for random reads and 38% for sequential reads.

To address this problem, we start with two key observations.
First, flash memory, when it eventually fails, does so in a fail-
partial manner. More specifically, an SSD’s failure unit is
an individual flash memory block [3, 44, 50], and the SSD-
internal wear leveling algorithms are artifacts to emulate a
hard disk drive-like fail-stop behavior [25, 31]. Second, an
SSD has no other choice but to trade performance as flash
memory’s reliability deteriorates, because a storage device’s
capacity remains fixed and unchanged from its newly installed
state until its retirement. SSD’s internal data re-reads [4,5,42,
53] or preventive re-writes [6, 18] are such choices that lead
to fail-slow symptoms [30, 31].

Based on the two key observations, we propose a capacity-
variant storage system (CVSS) that maintains high perfor-
mance even as SSD reliability deteriorates. In CVSS, the
logical capacity of an SSD is not fixed; instead, it gracefully
reduces the number of exported blocks below the original
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capacity by mapping out error-prone blocks that would ex-
hibit fail-slow behavior and hiding them from the host. This
approach is enabled by the SSD’s ability to update data out-of-
place. Surprisingly, we find that maintaining a fixed-capacity
interface comes at a heavy cost, and reducing capacity coun-
terintuitively extends the lifetime of the device. Our experi-
ments show that, compared to traditional storage systems, the
capacity-variant approach of CVSS outperforms by 49–316%
and outlasts by 268–327% under real-world workloads.

We enable capacity variance by designing kernel-level,
device-level, and user-level components. The first component
is a file system (CV-FS) that dynamically tunes the logical
partition size based on the aged state of the storage device. CV-
FS is designed to reduce capacity in an online, fine-grained
manner and carefully manage user data to avoid data loss. The
device-level component, CV-SSD, maintains its performance
and reliability by mapping out aged and poor-performing
blocks. Without needing to maintain fixed capacity, CV-SSD
simplifies flash management firmware, avoids fail-slow symp-
toms, and extends its lifetime. Lastly, the user-level compo-
nent, CV-manager, provides necessary interfaces to the host
for capacity variance. Users can set performance and relia-
bility requirements for the device through commands, and
the CV-manager then adaptively orchestrates CV-FS and the
underlying CV-SSD.

The contributions of this paper are as follows.

• We present the design of a capacity-variant storage system
that relaxes the fixed-capacity abstraction of the storage
device. Our design consists of user-level, kernel-level, and
device-level components that collectively allow the system
to maintain performance and extend its lifetime. (§ 3)

• We develop a framework that allows for a full-stack study
on fail-slow symptoms in SSDs over a long time, from start
to failure. This framework provides a comprehensive model
of SSD internals and aging behavior over the entire lifetime
of SSDs1. (§ 4)

• We evaluate and quantitatively demonstrate the benefits of
capacity variance using a set of synthetic and real-world I/O
workloads throughout the SSD’s entire lifetime. Capacity
variance avoids the fail-slow symptoms and can signifi-
cantly extend the SSD’s lifetime. (§ 5)

2 Background and Motivation

We first show the increasing trend of flash memory errors
in SSDs and describe how flash cells wear out. We then ex-
plain how the current storage system abstraction exacerbates
reliability-related performance degradation, and summarize
prior work for addressing these fail-slow symptoms.

Flash memory errors and wear-out. The rapid increase

1Our framework and extensions are available at https://github.com/
ZiyangJiao/FAST24_CVSS_FEMU

Figure 2: Flash memory error
rates have increased significantly
over the past years.

in NAND flash memory density has come at the cost of re-
duced reliability and exacerbated fail-slow symptoms. Fig-
ure 2 shows the reported flash raw bit error rates (RBERs) in
recent publications [3, 4, 14, 30, 42, 55, 57, 65], and this trend
indicates that flash memory errors are already a common case.

One of the significant flash memory error mechanisms is
wear-out, where flash cells are gradually damaged with re-
peated programs and erases [44, 50]. Because wear-outs are
irreversible, once a flash block reaches its endurance limit
or returns an operation failure, it is marked as bad by the
SSD-internal flash translation layer (FTL) and taken out of
circulation. To replace these unusable blocks, SSDs are of-
ten over-provisioned with more physical capacity than the
logically exported capacity.

SSD’s wear-outs are caused not only by write I/Os, but also
by SSD-internal management such as garbage collection, reli-
ability management, and wear leveling (WL). Although much
of the literature has emphasized the role of garbage collection
in the SSD’s internal writes, studies have revealed that SSD’s
reliability management and WL also significantly impact the
lifetime [25,27,30,43]. WL, in particular, is revealed to be far
from perfect, wearing out some of the blocks 6× faster [43]
and often leads to counterintuitive acceleration of wear-outs,
increasing the write amplification factor as high as 11.49 [25].

Fixed capacity abstraction. Unfortunately, the current stor-
age system abstraction of fixed capacity requires SSDs to
implement wear leveling (WL), even if it is imperfect and
harmful [25, 43]. Specifically, with the fixed capacity abstrac-
tion, the device is not allowed to have part of its capacity
fail (i.e., wear out) prematurely, and therefore the SSD has
to perform wear leveling to ensure that most, if not all, of its
capacity is wearing out at roughly the same rate. If the SSD
cannot maintain its original exported capacity when too many
blocks become bad, then the entire storage device becomes
unusable [50]. This is despite the fact that the SSD internally
has a level of indirection and abstracts the physical capacity.

However, the file system provides a file abstraction to the
user-level applications, and this abstraction hides the notion
of capacity. While utility programs such as df and du re-
port the storage capacity utilization, file operations such as
open(), close(), read(), and write() do not expose ca-
pacity directly. Instead, the file system manages the storage
capacity using persistent data structures such as superblock
and allocation maps to track the utilization of the SSD.

The fixed capacity abstraction used between the file system
and storage devices necessitates the implementation of WL
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(a) TrSS (b) CVSS

Figure 3: Comparison between the traditional fixed-capacity storage
system (TrSS) and capacity-variant storage system (CVSS). For
TrSS (Figure 3a), the performance and reliability degrade as the
device ages to maintain a fixed capacity; for CVSS (Figure 3b), the
performance and reliability are maintained by trading capacity.

on physical flash memory blocks. However, WL leads to an
overall increase in wear on the SSD, resulting in a significantly
higher error rate as all the blocks age. This, in turn, manifests
into fail-slow symptoms in SSDs.

Fail-slow symptoms. Fail-slow symptoms are caused by the
SSD’s effort to correct errors [4, 5, 42, 53] and prevent the
accumulation of errors [6, 18]. Because SSDs are commonly
used as the performance tier in storage systems where the
identification and removal of ill-performing drives are critical,
fail-slow symptoms in SSDs have gained significant attention
recently. Prior research in this area can be categorized into
three types. The first group focuses on developing machine
learning (ML) models to quickly identify SSDs experienc-
ing fail-slow symptoms [7, 22, 61, 66, 67]. Various models,
including neural networks [22], autoencoders [7], LSTM [67],
feature ranking [61], and random forest [66], have been ex-
plored with varying accuracy and efficacy. The second group
aims to isolate and remove ailing drives using mechanisms
deployed in large-scale systems, identified through ML [40]
or system monitoring [21,52]. The third group proposes mod-
ifications to the interface to reject slow I/O and send hedging
requests to a different node [20] or drive [38].

Unfortunately, ML-based learning of SSD failures requires
an immense number of data points, is often expensive to train,
and is only available in large-scale systems [40, 66]. Further-
more, as SSDs evolve and new error mechanisms emerge (e.g.,
lateral charge spreading [36] and vertical and horizontal vari-
ability [56]), older ML models become obsolete, making it
difficult to reap the benefits of fail-slow prediction. Most criti-
cally, these prior approaches only treat the symptoms and fail
to consider the underlying cause: the flash error mechanism.

3 Design for Capacity Variance

The high-level design principle behind the capacity-variant
system is illustrated in Figure 3. This system relaxes the
fixed-capacity abstraction of the storage device and enables a
better tradeoff between capacity, performance, and reliability.
The traditional fixed-capacity interface, which was designed

Figure 4: An overview of the capacity-variant system: (1) CV-FS
exports an elastic logical space based on CV-SSD’s aged state; (2)
CV-SSD retires error-prone blocks to maintain device performance
and reliability; and (3) CV-manager provides user-level interfaces
and orchestrates CV-SSD and CV-FS. The highlighted components
are discussed in detail.

for HDDs, assumes a fail-stop behavior where all storage
components either work or fail at the same time. However,
this assumption is not accurate for SSDs since flash memory
blocks are the basic unit of failure, and it is the responsibility
of the FTL to map out failed, bad, and aged blocks [31, 50].

By allowing a flexible capacity-variant interface, an SSD
can gracefully reduce its exported capacity, and the storage
system as a whole would reap the following three benefits.

• Performant SSD even when aged. An SSD can avoid
fail-slow symptoms by gracefully reducing its number of
exported blocks. Error management techniques such as data
re-reads [4, 5, 42, 53] and data re-writes [6, 18] would be
performed less frequently as blocks with high error rates
can be mapped out earlier. This, in turn, reduces the tail
latency and lowers the write amplification, making it easier
to achieve consistent storage performance.

• Extended lifetime for SSD-based storage. An SSD’s life-
time is typically defined with a conditional warranty restric-
tion under DWPD (drive writes per day), TBW (terabytes
written), or GB/day (gigabytes written per day) [58]. With
the fixed capacity abstraction, the SSD reaches the end of its
lifetime when the physical capacity becomes less than the
original logical capacity. Instead, with capacity variance,
the lifetime of an SSD would be extended significantly, as it
would be defined by the amount of data stored in the SSD,
not by the initial logical capacity.

• Streamlined SSD design. By adopting the approach of
allowing the logical capacity to drop below the initial value,
SSD vendors can design smaller and more efficient error
correction hardware and their SSD-internal firmware: There
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(a) Non-contiguous address space (b) Data relocation (c) Address remapping

Figure 5: Design options for capacity variance. In Figure 5a, the FS internally maps out a range of free LBA from the user, causing address
space fragmentation. In Figure 5b, the data block is physically relocated to lower LBA. This approach maintains the contiguity of the entire
address space but exerts additional write pressure on the SSD. Lastly, in Figure 5c, the data block can be logically remapped to lower LBA.
This approach incurs negligible system overhead by introducing a special SSD command to associate data with a new LBA.

is no need to overprovision the SSD’s error handling logic
or to ensure that all blocks wear out evenly.

Figure 4 illustrates the main components of a capacity-
variant system. Enabling the capacity variance feature is
achieved by designing the following three components: (1)
CV-FS, a log-structured file system for supporting elastic
logical partition; (2) CV-SSD, a capacity-variant SSD that
maintains device performance and reliability by effectively
mapping out aged blocks; and (3) CV-manager, a capacity
management scheme that provides the interface for adaptively
managing the capacity-variant system.

3.1 Capacity-Variant FS

The higher-level storage interfaces, such as the POSIX file
system interface, allow multiple applications to access storage
using common file semantics. However, to support capacity
variance, the file system needs to be modified. In this section,
we discuss the feasibility of an elastic logical capacity based
on existing storage abstractions and then investigate different
approaches for supporting capacity variance, Lastly, we de-
scribe our new interface for capacity-variant storage systems
based on the selected approach.

3.1.1 Feasibility of Elastic Capacity

Current file systems assume that the capacity of the storage
device does not change and tightly couple the size of the
logical partition to the size of the associated storage device.
To overcome this limitation, the CV-FS file system declares
the entire address space for use at first and then dynamically
adjusts the declared space as the storage device ages in an
online manner. This is achieved by defining a variable logical
partition that is independent of the physical storage capacity.

Thankfully, this transition is feasible for three reasons. First,
the TRIM [47] command, which is widely supported by in-
terface standards such as NVMe, enables the file system to
explicitly declare the data that is no longer in use. This allows

the SSD to discard the data safely, making it possible to re-
duce the exported capacity gracefully. Second, modern file
systems can safely compact their content so that the data in use
are contiguous in the logical address space. Log-structured
file systems [54] support this more readily, but file system
defragmentation [59] techniques can be used to achieve the
same effect in in-place update file systems. Lastly, the file ab-
straction to the applications hides the remaining space left on
storage. A file is simply a sequence of bytes, and file system
metadata such as utilization and remaining space is readily
available to the system administrator.

3.1.2 File System Designs for Capacity Variance

Shrinking the logical capacity of a file system can be a com-
plex procedure that may result in data loss if not done care-
fully [31]. Most importantly, any valid data within the to-
be-shrunk space must be relocated and the process must be
coordinated with underlying storage accordingly. Moreover,
to ensure users do not need to unmount and remount the
device, the logical capacity should be reduced in an online
manner, and the time it takes to reduce capacity should be
minimal with low overhead.

Figure 5 depicts three approaches to performing online
address space reduction: (1) through a non-contiguous address
space; (2) through data relocation; and (3) through address
remapping. We describe each approach and our rationale for
choosing the address remapping (Figure 5c).

• Non-contiguous address space (Figure 5a). The file sys-
tem internally decouples the space exported to users from
the LBA. When logical capacity should be reduced, the
file system identifies an available range of free space from
the end of the logical partition and then restricts the user
from using it, for example, by marking that as allocated.
With this approach, the adjustment of logical capacity can
be efficiently achieved with minimal upfront costs, as the
primary task involved is allocating the readily available
free space. However, this approach increases the file system
cleaning overhead and fragments the file system address
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(a) Time elapsed for shrinking
1 GiB logical capacity.

(b) Performance comparison
before and after shrinking 60
GiB logical capacity.

Figure 6: Performance results for three capacity variance ap-
proaches. The address remapping approach introduces lower over-
head (Figure 6a) and does not incur fragmentation after shrinking
the address space (Figure 6b).

space. Due to the negative effect of address fragmenta-
tion [12, 13, 19, 24], we avoid this approach despite the
lowest upfront cost.

• Data relocation (Figure 5b). Similar to segment cleaning or
defragmentation, the file system relocates valid data within
the to-be-shrunk space to a lower LBA region before reduc-
ing the capacity from the higher end of the logical partition.
This approach maintains the contiguity of the entire address
space. Nevertheless, it is essential to note that data reloca-
tion exerts additional write pressure on the SSD and the
overhead is proportional to the amount of valid data copied.
Moreover, user requests are potentially stalled during the
relocation process.

• Address remapping (Figure 5c). Data is relocated log-
ically at the file system level without data relocation at
the SSD level by taking advantage of the already existing
SSD-internal mapping table [49, 68]. While this approach
necessitates the introduction of a new SSD command to as-
sociate data with a new LBA, it effectively mitigates address
space fragmentation and incurs negligible system overhead,
as no physical data is actually written.

We implement the three approaches above on F2FS and
measure the elapsed time for reducing capacity by 1 GiB. The
reported results represent an average of 60 measurements.
On average, each measurement resulted in the relocation or
remapping of 0.5 GiB of data for the aged file system case
and 0.05 GiB of data for the young case. We further compare
the performance under the sequential read workload with two
I/O sizes (i.e., 16 KiB and 4096 KiB) before and after ca-
pacity is reduced. As depicted in Figure 6, the elapsed time
required to shrink 1 GiB of logical space on an aged file sys-
tem is 0.317 seconds when employing the address remapping
approach. In contrast, the data relocation approach takes ap-
proximately 4.5 seconds. Notably, while the non-contiguous
address space approach only takes 0.004 seconds, it exhibits
significant performance degradation after the capacity reduc-
tion, for example, 13% for 16 KiB read and 50% for 4096
KiB read, due to increased fragmentation. We next present

Figure 7: The REMAP command workflow for capacity variance:
data in the range between srcLPN and srcLPN + srcLength -1
are remapped to logical address starting from dstLPN. The third
argument, dstLength, is optionally used for the file system to ensure
I/O alignment.

the design details of the proposed remapping interface and
the capacity reduction process with that.

3.1.3 Interface Changes for Capacity Variance

To integrate the address remapping approach into CV-FS,
we revise the interface proposed by prior works [49, 68],
REMAP(dstLPN, srcLPN, dstLength, srcLength), and
tailor it for capacity-variant storage systems. Our modified
command enables file systems to safely shrink the logical ca-
pacity with minimal overhead by remapping valid data from
their old LPNs to new LPNs without the need for actual data
rewriting [49, 68]. We extend the current NVMe interface to
include remap as a vendor-unique command.

Figure 7 shows an example of the remap command used for
shrinking capacity. Assuming the file system address space
ranges from LBA0 – LBA47 at the beginning (i.e., LPN0 –
LPN5 with 512 bytes sector and 4 KiB page size) and LPN5 is
mapped to PPN6 within the device. At time t, CV-FS initiates
the capacity reduction and identifies that LBA40 – LBA47 (or
LPN5) contains valid data. It then issues the remap command
to move LPN5 data to LPN3 (i.e., remap(LPN3, LPN5, 1,
1). Upon receiving the remap command, the FTL first finds
the PPN associated with LPN5 (PPN6 in our case) and up-
dates the logical-to-physical (L2P) mapping of L3 to PPN6.
Finally, the old L2P mapping of L5 is invalidated, and the new
physical-to-logical (P2L) mapping of PPN6 is recorded in the
NVRAM of the SSD. Once the to-be-shrunk space is free, the
file system states are validated and a new logical capacity size
is updated.

In particular, the required size for NVRAM is small (for
example, 1 MiB for a 1 TiB drive as suggested by the prior
work [49]), as it is only used to maintain a log of the remap-
ping metadata. Assuming the SSD capacity and page size are
1TB and 4KB, respectively, a single remapping entry requires
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no more than 8B space. The 1 MiB NVRAM would be suf-
ficient to hold entries for 512 MiB remapped data during a
capacity reduction event. Between capacity reduction events,
the reclamation of a flash block/page will cause a passive re-
cycle on the associated remapping entries. However, in cases
where a larger buffer is needed, the log can perform an active
cleaning or write part of the mappings to flash because the
space allocated for internal metadata will be conserved with
a smaller device capacity [17]. Alternatively, the need for
NVRAM can be eliminated by switching to the data reloca-
tion method, but at the cost of a higher overhead for logical
capacity adjustment.

As a result, this new interface does not require taking the
file system and device offline to adjust address space since
data are managed logically. Moreover, it does not compli-
cate the existing file system consistency management scheme.
Similar to other events such as discard, the file system peri-
odically performs checkpoints to provide a consistent state.
The crash consistency is examined by manually crashing the
system after initiating the remapping command and Crash-
Monkey [46] with its pre-defined workloads [45].

3.2 Capacity-Variant SSD

In this section, we outline design decisions and their leading
benefits for building a capacity-variant SSD. We first discuss
the necessity to forgo wear leveling in CV-SSD, and then
describe its block management and life cycle management
for extending lifetime and maintaining performance. Lastly,
we introduce a degraded mode to handle the case where the
remaining physical capacity becomes low.

Note that blocks in this subsection refer to physical flash
memory blocks, different from the logical blocks managed
by the file system. Furthermore, the flash memory blocks are
grouped and managed as superblocks (again, different from
the file system’s superblock) to exploit the SSD’s parallelism.

3.2.1 Wear Focusing

The goal of a capacity-variant SSD is to keep as much flash
as possible at peak performance and mitigate the impact of
underperforming and aged blocks. A capacity-variant SSD
would maintain both performance and reliability by gracefully
reducing its exported capacity so aged blocks can be mapped
out earlier. Therefore, a capacity-variant SSD does not per-
form wear leveling (WL), as it degrades all of the blocks over
time. WL is an artifact designed to maintain an illusion of
a fixed-capacity device wherein its underlying storage com-
ponents (i.e., flash memory blocks) either all work or fail,
opposing our goal of allowing partial failure.

Moreover, static WL [8, 9, 15] incurs additional write am-
plification due to data relocation within an SSD. Dynamic
WL [10, 11], on the other hand, typically combines with SSD
internal tasks such as garbage collection, reducing the overall

Figure 8: The wear distribution
for a 256 GiB SSD under 100
iterations of MS-DTRS work-
load [29]. Traditional GC and
block allocation policies cause a
sudden capacity loss as too many
blocks are equally aged.

cleaning efficiency as its victim selection considers both the
valid ratio and wear state. A recent large-scale field study on
millions of SSDs reveals that the WL techniques in modern
SSDs present limited effectiveness [43] and an analysis study
demonstrates that WL algorithms can even exhibit unintended
behaviors by misjudging the lifetime of data in a block [25].
Such counter-productive results are avoided by forgoing WL
and adopting capacity variance.

3.2.2 Block Management

A capacity-variant SSD exploits the characteristics of flash
memory blocks to extend its lifetime and meet different per-
formance and reliability requirements. Flash memory blocks
in SSDs wear out at different rates and are marked as bad
blocks by the bad block manager when they are no longer
usable [26, 50]. This means that the physical capacity of the
SSD naturally reduces over time, and for a fixed-capacity
SSD, the entire storage device is considered to have reached
the end of its life when the number of bad blocks exceeds
its reserved space. On the other hand, the capacity-variant
SSD’s lifetime is defined by the amount of data stored in the
SSD, rather than the initial logical capacity, making it a more
reliable and efficient option.

The fail-slow symptoms and performance degradation in
SSDs are caused by aged blocks with high error rates [4,5,42,
53]. Traditional SSDs consider blocks as either good or bad
and such coarse-grained management fails to meet different
performance and reliability requirements. On the other hand,
the capacity-variant SSD defines three states of blocks: young,
middle-aged, and retired, based on their operational character-
istics. Young blocks have a relatively low erase count and a
low RBER, while middle-aged blocks have higher errors and
require advanced techniques to recover data. Retired blocks
that are worn out or have a higher RBER than the configured
threshold (5% by default) are excluded from storing data.

This block management scheme allows the capacity-variant
SSD to map out underperforming and unreliable blocks ear-
lier, effectively trading capacity for performance and reliabil-
ity. In general, blocks start from a young state and transition
to middle-aged and retired states. However, a block can also
transition from a middle-aged state back to a young state since
transient errors (i.e., retention and disturbance) are reset once
the block is erased [30].
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Figure 9: CV-manager design diagram. CV-manager monitors CV-SSD’s aged state (Steps 1 and 2) and provides a recommended logical
capacity to CV-FS (Step 3). After capacity reduction (Steps 4–6), CV-manager notifies CV-SSD (Step 7). The CVdegraded mode will be triggered
if the reduction fails (Step 8).

3.2.3 Life Cycle Management

A capacity-variant SSD requires wear focusing to mitigate
the impact of aged flash memory blocks. However, simply
avoiding wear leveling is insufficient as there are two pro-
cesses affecting the life cycle of a flash memory block: block
allocation and garbage collection (GC). Traditional policies
such as youngest-block-first for allocation and cost-benefit
for GC work well on a traditional SSD, but are not suitable
for CV-SSDs, since they aim to achieve a uniform wear state
among blocks. Implementing these policies can cause a large
number of blocks with the same erase count to map out simul-
taneously, leading to excessive capacity loss, and the device
may suddenly fail. Figure 8 demonstrates this issue, where
over 60% of the blocks aggregate to a particular wear state.
Excessive capacity loss can increase the write amplification
factor (WAF), particularly when the device utilization rate is
high.

Allocation policy. In order to make wear accumulate in a
small subset of blocks and allow capacity to shrink gradually,
CV-SSD will prioritize middle-aged blocks to accommodate
host writes and young blocks for GC writes. Since retired
blocks are not used, there are four scenarios when considering
data characteristics.

I. Write-intensive data are written to a middle-aged block

II. Write-intensive data are written to a young block

III. Read-intensive data are written to a middle-aged block

IV. Read-intensive data are written to a young block

Type I and type IV are ideal cases as they help to converge the
wear among blocks without affecting the performance. Type
II will also not affect the performance when data are fetched
by the host because of the low RBER of young blocks. More-
over, with CV-SSD’s allocation policy, such write-intensive
data are inevitably re-written by the file system to the middle-
aged blocks and the type II blocks will be GC-ed due to their
low valid ratio. This type of scenario also happens under the
early stages of CV-SSD, in which most blocks are young.
Lastly, type III is the case where we need to pay more atten-
tion: read-intensive data should be stored in young blocks;
otherwise expensive error correction techniques are triggered
more often.

Garbage collection. We modify the garbage collection policy
to consider (in)valid ratio, aging status, and data characteris-
tics to handle type III cases. The block with the highest score
will be selected as the victim based on the following formula:

Victim score =Winvalidity · invalid ratio

+Waging ·aging ratio

+Wread · read ratio

invalid ratio =
# o f invalid pages

# o f valid pages+# o f invalid pages
,

aging ratio =
erase count
endurance

,

read ratio =
# o f host read designated to the current block

maximum host read among unretired blocks
.

(1)

Winvalidity, Waging, and Wread are weights to balance WAF, the
aggressiveness of wear focusing, and the sensitivity of prevent-
ing type III scenarios, respectively. With that, read-intensive
data stored in aged blocks are relocated by GC. Considering
the read ratio could potentially affect the garbage collection
efficiency. To avoid low GC efficiency, we set Winvalidity = 0.4,
Waging = 0.3, and Wread = 0.3, and their sensitivity analysis
is shown in § 5.4.3. Increasing Wread is unfavorable not only
because of adverse effects on WAF but also due to introduc-
ing unnecessary data movement. For example, a middle-aged
block containing many valid pages but experiencing only a
minimal number of reads is selected as the victim.

3.2.4 Degraded Mode

During normal conditions, CV-SSD intentionally unevens the
wear state among blocks. As error-prone blocks retire, the
physical capacity decreases gradually and performance is
maintained. However, the physical capacity could decrease
to a level where it will be insufficient to maintain current
user data. Moreover, it can also cause high garbage collec-
tion overhead. In this case, CVdegraded mode will be triggered
and CV-SSD will slow down the further capacity loss. It is
noteworthy that the triggering of degraded mode indicates a
low remaining capacity to trade for performance, and storage
administrators can gradually upgrade storage systems.

In particular, the CVdegraded mode is triggered under two
conditions: (1) when the effective over-provisioning
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(EOP), calculated as EOP = (physical capacity −
utilization)/utilization, falls below the factory-set over-
provisioning (OP), or (2) when the remaining physical
capacity is less than a user-defined watermark.

Once CVdegraded mode is set, GC only considers WAF and
aging to slow down further capacity loss. This mode allows
young blocks to be cleaned with a relatively higher valid
ratio than aged blocks. Specifically, young blocks with a
high invalid ratio are optimal candidates. Moreover, middle-
aged blocks are used to accommodate GC-ed data, and young
blocks are allocated for host writes. As a result, blocks are
used more evenly than in the initial stage and a particular
amount of physical capacity is maintained for the user. When
EOP becomes greater than OP if the host decides to move or
delete some data, CVdegraded will be reset by CV-manager.

3.3 Capacity-Variant Manager
To improve usability, CV-manager is responsible for automat-
ically managing the capacity of the whole storage system. As
illustrated in Figure 9, CV-manager monitors the aged state of
the underlying storage device and provides a recommended
logical partition size to the kernel.

Specifically, when CV-SSD maps out blocks and its physi-
cal capacity is reduced, CV-manager will get notified (Steps 1
and 2). The CV-manager figures out a recommended logical
capacity by checking the current bad capacity within the de-
vice and issues capacity reduction requests to CV-FS through
a system call (Step 3). Upon request, CV-FS performs a sanity
test. If the file system checkpoint functionality is disabled or
the file system is not ready to shrink (i.e., frozen or read-only),
the reduction will not continue (Step 4). Otherwise, CV-FS
starts shrinking capacity as described in § 3.1.3 and returns
the execution result (Steps 5 and 6). Lastly, CV-manager noti-
fies CV-SSD whether logical capacity is reduced properly or
not. If the reduction fails, the CVdegraded is activated to slow
down further capacity loss (Steps 7 and 8).

For user-level capacity management, CV-manager provides
necessary interfaces for users to explicitly initiate capacity
reduction and set performance and reliability requirements for
the device. The CV-SSD would retire blocks based on the host
requirement. Similar to the read recovery level (RRL) com-
mand [47] in the NVMe specification that limits the number
of read retry operations for a read request, this configurable
attribute limits the maximum amount of recovery applied to a
request and thus balances the performance.

4 Implementation

The capacity-variant file system (CV-FS) is implemented
upon the Linux kernel v5.15. CV-FS uses F2FS [35] as the
baseline file system due to its virtue of being a log-structure
file system. We modify both CVSS and TrSS to employ a
more aggressive discard policy than the baseline F2FS (i.e.,

50ms interval if candidates exist and 10s max interval if no
candidates) for better SSD garbage collection efficiency [32]
(also shown in § 5.2.3).

To implement the remap command, we extend the block
I/O layer. A new I/O request operation REQ_OP_REMAP is
added to expose the remap command to the CV-FS. New
attributes including bio->bi_iter.bi_source_sector
and bio->bi_iter.bi_source_size are introduced in
bvec_iter, which corresponds to the second and last
parameter of the remap command. Functions related to
bio splitting/merging procedure (e.g., __blk_queue_split)
are modified to maintain added attributes (mainly in
/block/blk-merge.c). Additionally, new nvme_opcode
and related functions are added to support the remap com-
mand at the NVMe driver layer (mainly in /block/blk-mq.c
and /drivers/nvme/host/core.c).

The capacity-variant SSD is built on top of the FEMU [37].
SSD reliability enhancement techniques such as ECC and read
retry ensure data integrity. To implement the error model, we
use the additive power-law model proposed in prior works [30,
39, 44] that considers wear, retention loss, and disturbance to
quantify RBER, as shown in the following equation:

RBER(cycles, time,reads)

= ε+α · cyclesk (wear)

+β · cyclesm · timen (retention)

+ γ · cyclesp · readsq (disturbance)

(2)

The parameters used are particular to a real 2018 TLC flash
chip [30], and the device internally keeps track of cycles, time,
and reads for each block. During a read operation, read retry
is applied if the error exceeds the ECC strength. We consider
each read retry will lower the error rate by half [30, 53] and
the maximum amount of recovery is limited for a single read
retry so that blocks have more fine-grained error states.

We modify five major software components to support
capacity variance.

• We make changes to the Linux kernel v5.15 to provide an
ioctl-based user-space API supporting logical partition
reduction. Users can specify the shrinking size and issue
capacity reduction commands through this API.

• We modify the F2FS to handle address remapping triggered
by capacity variance and revise its discard scheme.

• We extend the f2fs-tool (f2fs format utility) to support
the CV-specific functionalities, such as initializing a vari-
able logical partition and updating the attributes that control
discard policies.

• We implement CV-SSD mode in FEMU, adding flash relia-
bility enhancement techniques, error models, wear leveling,
bad block management, and device lifetime features.

• We modify NVMe device driver and introduce new com-
mands to NVMe-Cli [48], to support capacity variance. The
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Table 1: System configurations. Wear leveling (PWL [9]) and
youngest block first allocation are used for traditional SSDs.

PC platform

Parameter Value Parameter Value
CPU name Intel Xeon 4208 Frequency 2.10GHz
Number of cores 32 Memory 1TiB
Kernel Ubuntu v5.15 ISA X86_64

FEMU

Parameter Value Parameter Value
Channels 8 Physical capacity 128 GiB
Luns per channel 8 Logical capacity 120 GiB
Planes per lun 1 Over-provisioning 7.37%
Blocks per plane 512 Garbage collection Greedy
Pages per block 1024 Program latency 500 µs
Page size 4 KiB Read latency 50 µs
Superblock size 256 MiB Erase latency 5 ms
Endurance 300 Wear leveling PWL [9]
ECC strength 50 bits Block allocation Youngest first

SMART [47] command is also extended to export more
device statistics for capacity management.

5 Evaluation of Capacity Variance

We first describe our experimental setup and methodology,
then present our evaluation results and demonstrate the effec-
tiveness of capacity variance.

5.1 Experimental Setup and Methodology
Table 1 outlines the system configurations for our evaluation.
For the traditional SSD, an adaptive WL, PWL [9], is used to
even the wear among blocks. The error correction code (ECC)
for both Tr-SSD and CV-SSD is configured to tolerate up to
50-bit errors per 4 KiB data, and errors beyond the correction
strength are subsequently handled by read retry. We use 17 dif-
ferent workloads in our evaluation: (1) 4 FIO [23] workloads
(Zipfian and random, each with two different utilization); (2) 3
Filebench [60] workloads; (3) 2 YCSB workloads [2] (YCSB-
A and YCSB-F); and (4) 8 key-value traces from Twitter [64].

We compare CVSS with three different techniques: (1)
TrSS, a traditional storage system with vanilla F2FS plus a
fixed-capacity SSD; (2) AutoStream [63]; (3) ttFlash [62].
The evaluation comparisons are selected based on their
broader applicability and implementation simplicity of the
multi-stream interface (represented by AutoStream [63]) and
the fast-fail mechanism (represented by ttFlash [62]). These
approaches align with more general and widely used methods
such as PCStream [33], LinnOS [22], and IODA [38]. Specif-
ically, AutoStream [63] uses the multi-stream interface [28]
and automatically assigns a stream ID to the data based on
the I/O access pattern. The SSD then places data accordingly
based on the assigned ID to reduce write amplification and
thus, improve performance. On the other hand, ttFlash [62]
reduces the tail latency of SSDs by utilizing a redundancy

scheme (similar to RAID) to reconstruct data when blocked by
GC. Since the original ttFlash is implemented on a simulator,
we implement its logic in FEMU for a fair comparison.

To perform a more realistic evaluation, it is necessary to
reach an aged FS and device state. Issuing workloads manu-
ally to the system is prohibitively expensive, as it takes years’
worth of time. Moreover, this method lacks standardization
and reproducibility, making the evaluation ineffective [1]. We
extensively use aging frameworks in our evaluation. Prior to
each experiment, we use impression [1] to generate a rep-
resentative aged file system layout. After file system aging,
the fast-forwardable SSD aging framework (FF-SSD) [26] is
used to reach different aged states for SSD. The aging acceler-
ation factor (AF) is strictly limited to 2 to maintain accuracy.
Workloads will run until the underlying SSD fails.

We design the experiments with the following questions:

• Can CVSS maintain performance while the underlying
storage device ages? (§ 5.2)

• Can CVSS extend the device lifetime under different
performance requirements? (§ 5.3)

• What are the tradeoffs in CVSS design? (§ 5.4)

5.2 Performance Improvement
In this section, we evaluate the effectiveness of CVSS in
maintaining performance and avoiding fail-slow symptoms
under synthetic and real workloads.

5.2.1 FIO

We first examine the performance benefit of capacity variance
under Zipfian workloads with two different workload sizes:
38GB (utilization of 30%) and 90GB (utilization of 70%).
For this experiment, FIO continuously issues 16KB read and
write requests to the device. We use the default setting of FIO
and the read/write ratio is 0.5/0.5.

Zipfian. Figure 10 shows the read throughput under different
aged states of TrSS and CVSS, in terms of terabytes written
(TBW). We measure the performance until it drops below
50% of the initial value where no aging-related operations are
performed. The green dotted line shows the amount of phys-
ical capacity that has been reduced within the CV-SSD and
the straight vertical line represents the trigger of CVdegraded .

We observe that TrSS and CVSS behave similarly at first
where both CV-SSD and Tr-SSD are relatively young. How-
ever, for TrSS, the read performance degrades gradually. As
Tr-SSD gets aged, the amount of error corrected during each
read operation increases and thus involves more expensive
read retry processes. On the other hand, CV-SSD effectively
trades the capacity for performance. The performance is main-
tained by excluding heavily aged blocks from use. Later,
CVdegraded is triggered to maintain a particular amount of
capacity for the workloads. During this stage, blocks are used
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(a) Zipfian (utilization 30%) (b) Zipfian (utilization 70%)

Figure 10: Read throughput under FIO Zipfian workloads. In CVSS,
the performance is maintained by trading capacity. The straight
vertical line represents the trigger of the CVdegraded mode. After
CVdegraded , the future capacity reduction is slowed down but the
performance is compromised.

(a) Random (utilization 30%) (b) Random (utilization 70%)

Figure 11: Read throughput under FIO random workloads. CVSS
delivers up to 0.6× (left) and 0.7× (right) higher performance com-
pared to TrSS, under the same amount of host writes.

more evenly and the wear accumulates within the device.
In this case, performance is traded for capacity in order to
avoid data loss. However, even in this mode, CVSS delivers
better performance compared to TrSS, thanks to the previ-
ous mapping out of most unreliable blocks. Overall, the read
throughput of CVSS outperforms TrSS by up to 0.72× with
the same amount of host writes.

Random. Figure 11 shows the measured read performance
under random I/O. The configuration is similar to the previous
case. As in-used blocks get aged, the read performance of
TrSS degrades gradually and the fail-slow symptoms manifest.
With the same amount of host writes, CVSS delivers a 0.6×
and a 0.7× higher throughput at most than TrSS under the
utilization of 30% and 70%, respectively.

Figure 13 compares the average write performance over
the measurement. For Tr-SSD, when WL is initiated, data
are relocated within the device, which decreases the through-
put by 0.6×. Without WL, CV-SSD provides a more stable
and better write performance than Tr-SSD. Overall, the write
throughput of CVSS outperforms TrSS by 0.12× on average.

5.2.2 Filebench

We now use Filebench [60] to evaluate the capacity-variant
system under file system metadata-heavy workloads. We use
three pre-defined workloads in the benchmark, which exhibit
differences in I/O patterns and fsync usage.

Figures 12a, 12b, and 12c show the CDF of operation la-

tency under fileserver, netsfs, and varmail workloads through-
out the devices’ life. In particular, CVSS–normal represents
the result before CVdegraded is activated and CVSS represents
the overall result. We use the default setting of Filebench,
which measures the performance by running workloads for
60 seconds. Random writes are used to age CV-SSD and Tr-
SSD. The measurement is performed after every 100GB of
random data written until the device fails. The utilization for
both TrSS and CVSS is 50%.

Compared to TrSS, CVSS reduces the average response
time by 32% before the degraded mode is triggered and by
24% over the entire lifetime under netsfs workload, as shown
in Figure 12b. The netsfs workload simulates the behavior of
a network file server. It performs a more comprehensive set of
operations such as application lunch, read-modify-write, file
appending, and metadata retrieving, and thus reflects the state
of the underlying devices more intuitively. Overall, CVSS
reduces the average latency by 8% in the fileserver case (Fig-
ure 12a), and 10% in the varmail case (Figure 12c).

CV-SSD maps out blocks once their RBER exceeds 5% by
default, while Tr-SSD only maps them out when their erase
counts exceed the endurance limit, leading to more expensive
error correction operations. The increased error correction
operations not only affect the latency of the ongoing host re-
quest but also create backlogs in IO traffic. Figure 12d shows
the percentage of host I/Os blocked by read retry operations
measured inside FEMU under the varmail workload. In TrSS,
more than 20% of I/O requests are delayed by SSD internal
read retry, while it is no more than 5% in CVSS.

5.2.3 Twitter Traces

The previous sections examine CVSS using block I/O work-
loads and file system metadata-heavy workloads. In this sec-
tion, we evaluate CVSS and compare it with AutoStream [63]
and ttFlash [62] at the overall application level. We use a set
of key-value traces from Twitter production [64]. The Twitter
workload contains 36.7 GB worth of key-value pairs in total.
We first load the key-values pairs and then start and keep
feeding the traces to RocksDB until the underlying SSD fails.

Figure 14 compares the average KIOPS over the entire de-
vice lifetime. Overall, capacity variance improves the through-
put by 0.49× – 3.16× compared to TrSS; on the other hand,
AutoStream and ttFlash present limited effectiveness in miti-
gating fail-slow symptoms. In particular, Trace38 highlights
the benefits of capacity variance, achieving a 3.16× better
throughput than the fixed-capacity storage. For RocksDB,
point lookups may end up consulting all files in level 0 and
at most one file from each of the other levels. Therefore, as
the Tr-SSD ages, a single Get() request can cause multiple
physical reads and each of them can trigger SSD read retry
several times, degrading the read performance drastically.

Moreover, we find that traditional systems with the origi-
nal discard policy show higher utilization inconsistency (i.e.,
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(a) Fileserver (b) Netsfs (c) Varmail (d) Host I/Os blocked by er-
ror handling under varmail

Figure 12: Performance results under Filebench workloads. CVSS reduces the average latency by 8% under fileserver workload (Figure 12a),
24% under netsfs workload (Figure 12b), and 10% under varmail workload (Figure 12c) compared to TrSS throughout the devices’ lifetime.
Before CVdegraded is triggered, CVSS–normal reduces the average latency by 32% under netsfs workload. Figure 12d shows the percentage of
host I/Os blocked by read retry operations under varmail workload. Other workloads show a similar pattern.

Figure 13: Average write
throughput under FIO workloads.
For TrSS, when wear leveling is
triggered, the write throughput
drops by 0.6×; on the other
hand, by forgoing WL, CV-SSD
provides a more stable and better
write performance.

1
n ∑

n
Observation=1 utilSSD − utilFS) between FS and SSD, as

shown in Figure 16. That is because of the high request rate
during the experiments and F2FS only dispatches discard com-
mand when the device I/O is idle, which not only decreases
SSD GC efficiency but also makes wear leveling more likely
to misjudge data aliveness, limiting its effectiveness in main-
taining capacity. During the experiments, the WAF of TrSS
can be as high as 6.79, while only 1.12 for CVSS.

5.3 Lifetime Extension

In this section, we investigate how CVSS extends device
lifetime given different performance requirements and thus
leads to a longer replacement interval for SSD-based storage
systems. We compare three different configurations: CVSS,
TrSS, and AutoStream [63] in this evaluation since ttFlash
introduces additional write (wear) overhead coming from
RAIN (Redundant Array of Independent NAND) even for a
small write [62]. The workloads used are similar to § 5.2.1.

Figure 15 shows the TBW before the device performance
drops below 0.8, 0.6, 0.4, and 0 of the initial state. In particu-
lar, 0 represents the case where no performance requirement
is applied so the workload runs until the underlying SSD is
unusable. In cases of lower device utilization (as shown in
Figures 15a and 15c), CVSS effectively extends the device
lifetime, even when high performance is required. In Fig-
ure 15a, the device fails after accommodating 10 TB host
writes for TrSS and 18 TB for AutoStream, considering the
performance requirement of 0.8. On the other hand, CVSS
accommodates 28 TB host writes with the same performance

Figure 14: Performance results under Twitter traces. Capacity vari-
ance outperforms AutoStream and ttFlash and improves the through-
put by 1.42× on average compared to TrSS.

requirement, outlasting TrSS by 180% and AutoStream by
55%. Similarly, in Figure 15c, CVSS outlasts TrSS by 270%
and AutoStream by 50%.

In the high device utilization cases (as shown in Figure 15b
and 15d), CVSS outlasts TrSS by 123% and AutoStream
by 55% on average with the highest performance require-
ment. In Figure 15b, before the device becomes unusable,
CVSS accommodates 10.4 TB more in host writes compared
to TrSS and 12 TB more compared to AutoStream. In our
experiments, we found AutoStream achieves a longer lifetime
than TrSS except for the no performance requirement case.
In AutoStream, data are placed based on their characteris-
tics, which in turn triggers more data relocation towards the
end for wear leveling. Overall, with the highest performance
requirement, CVSS ingests 168% host data more compared
to TrSS and 57% more compared to AutoSteam on average,
which in turn prolongs the replacement interval and reduces
the cost.

5.4 Sensitivity Analysis
We next investigate the tradeoffs in CVSS regarding the block
retirement threshold, the strength of ECC engine, and the
impact of different GC formula weights.

5.4.1 Block Retirement Threshold

The mapping-out behavior for aged blocks in CV-SSD is
controlled by a user-defined threshold. By default, blocks
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(a) Zipfian (30% utilization) (b) Zipfian (70% utilization) (c) Random (30% utilization) (d) Random (70% utilization)

Figure 15: Terabytes written (TBW) with different performance requirements. Compared to TrSS and AutoStream, CVSS significantly extends
the lifetime while meeting performance requirements.

Figure 16: The average
difference in FS and SSD
utilization under Twitter
traces. The original discard
policy shows higher utiliza-
tion inconsistency between
FS and SSD, making data
aliveness misjudged.

are mapped out and turn to a retired state once their RBER
exceeds 5%. In this section, we investigate how this threshold
affects the performance and device lifetime.

We utilize YCSB-A and YCSB-F with their data set con-
figured to have thirty million key-value pairs (10 fields, 100
bytes each, plus key). We compare three different configu-
rations: (1) TrSS, vanilla F2FS plus a fixed-capacity SSD;
(2) CVSS(4%), CVSS with a higher reliability requirement.
Superblocks will be mapped out if RBER is greater than 4%;
(3) CVSS(6%), CVSS with a lower reliability requirement.
Superblocks will be mapped out if RBER is greater than 6%.

Figure 17 shows the latencies at major percentile values
(p75 to p99) and the device lifetimes for each workload. As
shown in Figures 17a and 17b, CVSS(4%) reduces p99 la-
tency by 51% for the YCSB-A workload and by 53% for the
YCSB-F workload compared to TrSS, which are 44% and
40% for CVSS(6%). With a higher reliability requirement,
blocks are retired earlier in CVSS(4%), which in turn causes a
relatively shorter device lifetime than CVSS(6%). As depicted
in Figures 17c and 17d, CVSS(6%) and CVSS(4%) ingests
3.27× and 2.68× host I/O than TrSS on average, respectively.

5.4.2 ECC Strength

We now study the impact of ECC strength on SSD error
handling and demonstrate the usefulness of capacity variance
in simplifying SSD FTL design. As discussed earlier, CVSS
excludes aged blocks from use and thus incurs fewer error
correction operations. This further allows the CV-SSD to be
equipped with a less robust error-handling mechanism without
compromising reliability.

Figure 18 compares the average number of read retries trig-
gered per GiB read over the device’s lifetime for CVSS with

ECC strength set as up to 50 bits corrected per 4KiB and TrSS
with ECC strength set to 50 – 90 bits. The results are measured
under the FIO Zipfian read/write workload with device utiliza-
tion of 30%. We make two observations. First, with the same
ECC capability, TrSS(50) performs 1.93× more read retry
operations than CVSS(50). Second, TrSS requires a stronger
ECC engine to improve the efficiency of the error correction
process, which complicates the FTL design in SSDs. On the
other hand, with a weaker ECC engine, CVSS(50) achieves
similar performance to TrSS(90).

5.4.3 GC Formula

As described in § 3.2.3, the GC formula consists of three
parameters: Winvalidity, Waging, and Wread . We analyze how dif-
ferent weights used in GC formula affect the performance of
CVSS in this section. We compare the configured weights
with three different configurations: (1) GC prioritizes blocks
with more invalid pages, with Winvalidity = 0.6, Wread = 0.2,
and Waging = 0.2; (2) GC prioritizes blocks with more reads,
with Winvalidity = 0.2, Wread = 0.6, and Waging = 0.2; (3) GC pri-
oritizes blocks with more erases, with Winvalidity = 0.2, Wread
= 0.2, and Waging = 0.6. FIO is used to generate Zipfian read-
/write workloads to the device. Figure 19 illustrates the mea-
sured WAF and read retry. Overall, the configured weights
result in a lower WAF and fewer read retry operations.

In particular, compared to the configured case, the high
Winvalidity case achieves a lower WAF but involves 0.78× more
read retry operations. This is because read-intensive data are
stored in aged blocks. For the high Wread case, it triggers fewer
read retry operations but decreases the cleaning efficiency of
GC since the invalidity is not adequately considered during the
victim selection. In the high Waging case, GC always selects
the most aged blocks, leading to a significant increase in WAF
and faster device aging. In contrast, the configured weights
balance WAF and read retry within the device.

6 Discussion and Future Work

In this section, we discuss different use cases of capacity
variance and its intersection with ZNS and RAID systems.
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(a) Read latency (YCSB-A) (b) Read latency (YCSB-F) (c) Lifetime (YCSB-A) (d) Lifetime (YCSB-F)

Figure 17: Sensitivity analysis on the mapping-out threshold in CVSS. CVSS with a higher reliability requirement, CVSS(4%), achieves
better performance but with a relatively shorter lifetime compared to CVSS(6%) because blocks are retired earlier.

Figure 18: The average number
of read retries triggered per GiB
read over the device’s lifetime.
The x-axis represents different
ECC strengths in bits.

Use cases of capacity variance. CVSS aims to significantly
outperform fixed-capacity systems in the best case, and per-
form at a similar level in the worst case. The degraded mode
serves the role of addressing the worst case by reserving a
particular amount of capacity for the host. CVSS would be
most useful for cases where IO performance is bottlenecked
but has spare capacity. For instance, Haystack is the storage
system specialized for new blobs (Binary Large Objects) and
bottlenecks on IOPS but has spare capacity [51].

Moreover, for SSD vendors, capacity variance can simplify
SSD design, as it allows for the tradeoff of performance and
reliability with capacity. For data centers, introducing capacity
variance can automatically exclude unreliable blocks and en-
able easy monitoring of device capacity, resulting in longer de-
vice replacement interval and mitigating SSD failure-related
issues in data center environments. Lastly, for desktop users,
capacity variance extends the lifetime of SSDs significantly
and thus reduces the overall cost of storage.

ZNS-SSD. Capacity variance can be harmonious with ZNS.
Specifically, due to a wear-out, a device may (1) choose to
take a zone offline, or (2) report a new, smaller size for a zone
after a reset. Both of these result in a shrinking capacity SSD.
However, there is no software that can handle capacity reduc-
tion for ZNS-SSDs currently. The offline command simply
makes a zone inaccessible and data relocation has to be done
by users. Moreover, file systems are typically unaware of this
change except for ZoneFS [34]. The capacity-variant SSD
interface is a more streamlined solution where the software
and the hardware cooperate to automate the process.

Capacity variance with RAID. The current CVSS does not
support RAID systems. Existing RAID architectures require
symmetrical capacity across devices and its overall capac-
ity depends on the underlying minimal-capacity device. For

Figure 19: The WAF
and read retries trig-
gered under different
weights used for GC
formula.

parity RAID, the invalid data can not always be trimmed be-
cause it may be required to ensure the parity correctness. We
will investigate the capacity-variant RAID system as our next
direction, in which we consider modifying the disk layout
and data placement scheme to support dynamically changing
asymmetrical capacity with multiple heterogeneous CV-SSDs.

7 Conclusion

The basic principle behind a capacity-variant storage system
is simple: relax the fixed-capacity abstraction of the underly-
ing storage device. We implement this idea and describe the
key designs and implementation details of a capacity-variant
storage system. Our evaluation result demonstrates how ca-
pacity variance leads to performance advantages and shows
its effectiveness and usefulness in avoiding SSD fail-slow
symptoms and extending device lifetime. We expect new op-
timizations and features will be continuously added to the
capacity-variant storage system.
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A Artifact Appendix

Abstract
As introduced in the paper, the current storage system abstrac-
tion of fixed capacity exacerbates aging-related performance
degradation for modern SSDs, and enabling capacity vari-
ance allows for more effective tradeoffs between capacity,
performance, and reliability. This artifact includes the code
and describes the steps for measuring and comparing the per-
formance of the proposed capacity-variant storage system
against the traditional storage system to support our major
claims. The experiments are performed on a machine with 32
CPUs and 1 TiB of memory running Ubuntu 20.04 LTS.

Scope
The provided code and scripts facilitate the testing of the
following experiments:

• The performance degradation caused by aging observed
on a real SSD (Figure 1).

• The functionality of CVSS, including CV-FS, CV-SSD,
and CV-manager.

• The FIO experiments (Figure 10, Figure 11, and Fig-
ure 13).

• The Filebench experiments (Figure 12).
• The Twitter traces experiments (Figure 14).
• The lifetime experiments (Figure 15).

Contents
A.0.1 Fail-slow Experiments (Section 1)

Scripts are provided to age the SSD and measure its read-only
I/O performance. To initiate the experiment:

$ ./fio_aging.sh

Note that the content of the tested SSD will be wiped out
by the above script. The estimated time for this experiment
depends on the endurance of the tested device and it may take
several months to fully age the device.

A.0.2 Installation of CVSS

This section describes the steps to set up CVSS and perform
basic tests. The REMAP interface is implemented on Linux
kernel v5.15. To compile the kernel:

$ make -j$(nproc) bindeb-pkg

The CV-FS is configured as a kernel module. To compile
and install the CV-FS:
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$ ./run.sh

The CV-SSD is based on FEMU. To compile the code and
start the virtual machine, please run the following commands
after cloning the repository:

$ cd FAST24_CVSS_FEMU
$ mkdir build-femu
$ cd build-femu
$ cp ../femu-scripts/femu-copy-

scripts.sh ./
$ ./femu-copy-scripts.sh ./
$ ./run-blackbox.sh

This will start the virtual machine with the emulated
CV-SSD. You can set the path to your VM image via
IMGDIR=/path/to/image in the run-blackbox.sh file.

A.0.3 Basic Test

To test the functionality of CVSS:
$ inscvfs
$ diskcvfs
$ df -h /dev/nvme0n1

The logical capacity of CVSS can be adjusted online by
issuing the following command:

$ sudo cvfs.f2fs /dev/nvme0n1 -t 118

The parameter for the -t flag (e.g., 118) is the newly config-
ured logical capacity in GiB that we have set for the system.

A.0.4 Evaluation Workflow

FIO experiments (Section 5.2.1). To evaluate the perfor-
mance of CVSS under FIO-related workloads, please run:

$ ./test_fio_zipfian_util30.sh
$ ./test_fio_zipfian_util70.sh
$ ./test_fio_random_util30.sh
$ ./test_fio_random_util70.sh

Each experiment may take 4 days to finish. The virtual
machine will be turned off when the experiment finishes, and
the performance results will be stored in .log files in the
working directory.

Filebench experiments (Section 5.2.2). To perform the
filebench-related experiments, please run:

$ ./fs_test.sh

This script will age the system and issue Fileserver, Netsfs,
and Varmail workloads under different aged states of the un-
derlying device. The latency results are logged in .log files
in the working directory.

Twitter traces experiments (Section 5.2.3). To set up
RocksDB and issue Twitter traces to the system, please run:

$ cd ./rocksdb/examples
$ gcc twitter_load.c -o twitter_load
$ gcc twitter_run.c -o twitter_run

$ ./twitter.sh

Each test may take one week to complete. The IOPS and
trace profiles are stored in the .log files.

Lifetime experiments (Section 5.3). To test the amount of
host writes under different performance requirements and
workloads, please run:

$ ./test_lifetime_zipfian_util30.sh
$ ./test_lifetime_zipfian_util70.sh
$ ./test_lifetime_random_util30.sh
$ ./test_lifetime_random_util70.sh

Each experiment is expected to take approximately 5 days
to complete. The experiments will continue running until the
underlying SSD fails. Performance results are documented
in the .log files within the working directory. Additionally,
device statistics, such as the write amplification factor, can be
found in the wa.log file located in the host directory of the
virtual machine.

Hosting
The artifact is available on github repositories:

• Kernel: https://github.com/ZiyangJiao/
FAST24_CVSS_Kernel.

• CV-FS: https://github.com/ZiyangJiao/
FAST24_CVSS_CVFS.

• CV-SSD: https://github.com/ZiyangJiao/
FAST24_CVSS_FEMU.

Requirements
Please make sure you have at least 160 GiB of memory and
150 GiB of free space on your disk if testing on your machine.
Our evaluation is based on the following system specifications:

Component Specification
Processor Intel(R) Xeon(R) Silver 4208 CPU, 32-Core
Architecture x86_64
Memory DDR4 2666 MHz, 1 TiB (64 GiB x16)
SSD Intel DC P4510 1.6TiB
OS Ubuntu 20.04 LTS (Focal Fossa)
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