
This paper is included in the Proceedings of the
22nd USENIX Conference on File and Storage Technologies.

February 27–29, 2024 • Santa Clara, CA, USA
978-1-939133-38-0

Open access to the Proceedings
of the 22nd USENIX Conference on

File and Storage Technologies
is sponsored by

Seraph: Towards Scalable and Efficient
Fully-external Graph Computation

via On-demand Processing
Tsun-Yu Yang, Yizou Chen, Yuhong Liang, and Ming-Chang Yang,

The Chinese University of Hong Kong
https://www.usenix.org/conference/fast24/presentation/yang-tsun-yu

Seraph: Towards Scalable and Efficient Fully-external Graph Computation
via On-demand Processing

Tsun-Yu Yang, Yizou Chen, Yuhong Liang, and Ming-Chang Yang
The Chinese University of Hong Kong

Abstract
Fully-external graph computation systems exhibit optimal
scalability by computing the ever-growing, large-scale graph
with constant amount of memory on a single machine. In par-
ticular, they keep the entire massive graph data in storage and
iteratively load parts of them into memory for computation.
Nevertheless, despite the merit of optimal scalability, their
unreasonably-low efficiency often makes them uncompetitive,
and even unpractical, to the other types of graph computation
systems. The key rationale is that most existing fully-external
graph computation systems over-emphasize retrieving graph
data from storage through sequential access. Although this
principle achieves high storage bandwidth, it often causes
reading excessive and irrelevant data, which can severely de-
grade their overall efficiency.

Therefore, this work presents Seraph, a fully-external graph
computation system that achieves optimal Scalability while
toward satisfactory Efficiency improvement. Particularly, in-
spired by the modern storage offering comparable sequential
and random access speeds, Seraph adopts the principle of
on-demand processing to access the necessary graph data for
saving I/O while enjoying the decent speed in random access.
On the basis of this principle, Seraph further devises three
practical designs to bring excellent performance leap to fully-
external graph computation: 1) the hybrid format to represent
the graph data for striking a good balance between I/O amount
and access locality, 2) the vertex passing to enable efficient
vertex updates on top of hybrid format, and 3) the selective
pre-computation to re-use the loaded data for I/O reduction.
Our evaluations reveal that Seraph notably outperforms other
state-of-the-art fully-external systems under all the evaluated
billion-scale graphs and representative graph algorithms by
up to two orders of magnitude.

1 Introduction
Graphs have been broadly used in many fields, such as
networking [10], social media [6, 19, 45], and bioinformat-
ics [16, 26], for their attractive structure to represent the en-
tities as vertices and relations between entities as edges. In

Figure 1: The performance-scalability spectrum among differ-
ent state-of-the-art graph computation systems. The presented
times are the average results of the evaluated graph systems
with different amounts of memory described in §4.3.

practice, a graph is represented by two data structures: vertex
data (denoted as V) holding the attributes of vertices, and
edge data (denoted as E) comprising the edge lists, each of
which enumerates the destination vertices connected with the
same source vertex. Typically, graph computation involves
reading the edge data for neighboring vertices and updating
the vertices’ attributes from/to their neighbors’ attributes.

Many single-machine graph computation systems have
been developed to automate and optimize the process of graph
computation, with the aim of high performance (i.e., low exe-
cution time). Recently, as graphs exponentially grow to have
billions of vertices and edges, scalability is also essential for
such systems. In this context, scalability refers to the capac-
ity of a system to compute ever-growing, large-scale graphs
within a single machine of common memory capacity. There-
fore, how to design a scalable graph computation system that
is also performant is the primary objective in this field.

In the following, we examine different kinds of single-
machine graph systems from the aspects of scalability and
performance. First, shared-memory graph systems (e.g.,
Ligra [36], Galois [32], Ligra+ [37]) require the entire graph
data to be in memory (i.e., O(V +E)) for computing graphs
with high performance. However, when targeting large-scale
graphs, this approach is high-cost and difficult to scale as it

USENIX Association 22nd USENIX Conference on File and Storage Technologies 373

necessitates the machine with huge memory capacity.
To alleviate the issue of memory requirement, external-

based graph computation systems, which can be further di-
vided into semi-external and fully-external systems, are pro-
posed to exploit the storage drives for graph computation at
the cost of performance sacrifice. Semi-external graph com-
putation systems (e.g., FlashGraph [47], Graphene [25]) are
proposed to trade performance for alleviating the memory
overhead by keeping the edge data in the massive-and-cheap
storage while maintaining the vertex data in the small-and-
expensive memory (i.e., O(V)). However, these systems only
have limited scalability as their memory requirements still
increase proportionally with graph sizes. Specifically, they
cannot handle large-scale graphs with vertex data that exceeds
the machine’s memory capacity. Further, as graphs continue
to grow to have billions of vertices, even keeping the vertex
data in memory is not cost-effective [11, 17].

On the other hand, fully-external graph computation sys-
tems (e.g., GridGraph [50], CLIP [1], Lumos [42], V-Part [11])
further trade performance to offer the merit of optimal scala-
bility; they can compute the large-scale graphs with a small
amount of memory, which is independent from the graph data
sizes. To accomplish this, they divide the large-scale graph
into multiple subgraphs and keep them in storage; during run-
time, each subgraph is iteratively handled so that the memory
requirement can be effectively confined to computing only
one subgraph. In other words, given c to be the available mem-
ory capacity of a machine, a fully-external graph computation
system can use c to compute any size of large-scale graph
by controlling the number of created subgraphs (i.e., O(c)).
Thus, besides the edge I/O, fully-external systems require
some additional I/Os to read/write the small-sized vertex data
to establish each subgraph in memory by turns.

Fig. 1 summarizes the trade-off between scalability (i.e.,
memory consumption) and performance (i.e., execution time)
among different kinds of state-of-the-art graph computation
systems. Specifically, shared-memory-based Ligra+ demands
a massive O(V +E) memory for the highest performance.
Semi-external-based Graphene requires O(V) memory; com-
pared to Ligra+, it needs 7.2x less memory yet exhibits 2x
performance degradation. Fully-external-based CLIP demon-
strates optimal scalability to compute the graph with any
amount of memory that is smaller than or equal to O(V);
thus, it is able to use significantly less memory than the other
types of systems. The minimum memory in Fig. 1 (i.e. O(c))
that CLIP uses is 17x less than Graphene and 127x less than
Ligra+. However, we also observe a vast performance degra-
dation: CLIP is significantly slower than Graphene regardless
of the memory consumption; even given O(V) memory, CLIP
is around 5x slower than Graphene. In conclusion, although
fully-external schemes offer the merit of optimal scalabil-
ity, their severely-degraded performances often make them
uncompetitive with other graph computation systems.

To fill this void, this work presents Seraph, a fully-external

graph computation system that substantially boosts efficiency
while offering optimal scalability.

To build such a system, we first recognize that most exist-
ing fully-external systems over-emphasize retrieving graph
data from storage via sequential access. While this princi-
ple achieves high storage bandwidth, it also causes reading
excessive-and-irrelevant data, particularly as many graph al-
gorithms often exhibit sparse access patterns [15, 24, 29, 30].
Moreover, given that modern storage (e.g., solid-state drive
(SSD)) offers comparable speeds for sequential and random
access [38, 40], we seek the different principle of on-demand
processing to access the necessary data with fine-grained I/O
to save transferred data while exploiting the decent speed in
random access. To investigate whether on-demand processing
is promising for fully-external framework, we realize a base-
line system to support on-demand processing and compare it
against the state-of-the-art fully-external systems. Our evalua-
tions, based on four types of storage devices, demonstrate the
strong motivation that developing fully-external system with
on-demand processing is a promising direction (see §2.3).

In light of this observation, we build Seraph upon on-
demand processing. Moreover, we propose three practical
designs specially tailored for the framework of on-demand
processing to achieve further performance improvement. First,
we observe that the traditional method for representing edge
data has its pros and cons: it creates a good locality for access-
ing vertices yet increases the overhead of locating and reading
edges. To this end, we present a new format, called hybrid
format, to store the graph data by striking a good balance be-
tween locality for vertices and overhead for edges (see §3.2).
Second, based on the hybrid format, we further propose ver-
tex passing to enable efficient vertex updates by delaying
and aggregating the vertex updates to the same subgraph via
in-memory buffers (see §3.3). Third, although on-demand
processing reads the necessary data, a common I/O block is
typically way larger than an edge list. This mismatch inspires
us with the opportunity of I/O re-using and the proposing
of selective pre-computation to asynchronously compute the
current and future vertices on the fly (see §3.4).

We implement Seraph in C++ and compare it against sev-
eral state-of-the-art fully-external graph systems. Our evalua-
tions, based on billion-scale graphs and representative graph
algorithms, reveal that Seraph significantly outperforms the
existing systems by up to two orders of magnitude. Further,
with an increasing memory amount, Seraph also performs
well and exhibits an up to 1.6x improvement over a recent
semi-external graph system. Besides, we conduct investiga-
tion to justify each proposed design’s effectiveness.

2 Background and Motivation
2.1 Background of Fully-external Systems
For large-scale graph computation on a single machine of
limited memory capacity, fully-external graph computation
systems necessarily divide the graph into multiple subgraphs

374 22nd USENIX Conference on File and Storage Technologies USENIX Association

Figure 2: Typical system architecture of fully-external graph
computation systems.

and handle them one at a time. In practice, as illustrated
in Fig. 2, the vertices are generally divided into multiple
disjoint partitions, and when processing the edges between
two partitions (i.e., a subgraph), the memory requirement can
be thus effectively limited to two vertex partitions involved
(e.g., Pi and Pj) instead of the entire vertex data.

Based on the fundamental design described above, two
common techniques are further adopted by the existing fully-
external graph computation systems (such as [1,20,34,42,50])
for performance enhancement:
Grid Format for Edge Data. According to the results of
vertex partitioning, existing fully-external graph computation
systems typically store the edge data into grid format. In
particular, a grid determines a set of edges by specifying one
partition as source vertices and another (can be also the same
one) as destination vertices. As shown in Fig. 2, the grid G(i, j)
stores the set of edges whose source and destination vertices
belong to partitions Pi and Pj, respectively. In other words,
under the grid format, the edges of a source vertex can be split
into multiple segments and are stored within different grids
based on their destination vertices. As illustrated by Fig. 2,
the edge list of the vertex x are split into two segments, which
are (a, b, c) and (d, f), and are stored with grids G(i, j) and
G(i, j+1), respectively.

Therefore, compared with storing the whole edge list of a
vertex consecutively together (i.e., row format [28, 31]), pro-
cessing the edge lists in grid format enjoys good locality of
vertex access. This is because the required vertex attributes
can be limited to only two partitions of vertices, which can
entirely fit in the limited memory of fully-external graph com-
putation systems. For instance, GridGraph [50] proposes 2D
edge partitioning to split the edge data into smaller grids
where the edges in the same grid share similar locality in
accessing source and destination vertices.
Streaming-based Processing. On top of the grid format, ex-
isting fully-external graph systems generally apply streaming-
based processing: they compute a graph by streaming the

edge data from storage grid-by-grid. Given that all storage
drives typically deliver high bandwidth with sequential access,
streaming-based processing shows the generality of accom-
modating all types of storage.

As illustrated in Fig. 2, to compute a grid (e.g., G(i, j)), the
system first loads the two corresponding vertex partitions
(e.g., Pi and Pj) into vertex buffers in memory. Next, as graph
systems typically run in multi-threads for better performance,
every thread sequentially streams edges from different parts
of grid into its local edge buffer in memory. Following, the
system identifies the vertices that need to be computed (i.e.,
active vertices), and then produces updates to their neigh-
boring vertices based on the attributes of active vertices. For
instance, GridGraph [50] checks the activeness of every grid
by turns and sequentially streams the entire active grid from
storage, in the granularity of 24 MB, to perform vertex update.

2.2 Existing Fully-external Systems
Many fully-external graph computation systems have been
proposed for large-scale graph computation on a single ma-
chine. For example, GraphChi [20], which is the first fully-
external graph computation system, divides a graph into multi-
ple disjoint shards and sequentially load each shard into mem-
ory for computation. X-stream [34] proposes edge-centric pro-
cessing model to stream and compute every edge for achiev-
ing high speed of sequential access. Inspired by X-stream,
GridGraph [50] demonstrates a representative framework by
splitting a graph with a smaller granularity (called a grid)
to improve data locality; it achieves significant performance
enhancement over GraphChi and X-stream.

Later, many systems propose optimization based on the
framework of GridGraph. For instance, CLIP [1] introduces
state-of-the-art optimization for streaming-based processing
by asynchronously re-computing the loaded grid multiple
times to increase data utilization and accelerate the conver-
gence of graph algorithms. This feature makes CLIP special-
ized for asynchronous graph algorithms (e.g., vertex values
following monotonicity [43]). Similar to CLIP, Lumos [42]
also attempts to re-compute the loaded grid, but it aims to
optimize synchronous graph algorithms which require syn-
chronous semantics: a vertex can only observe the values
from the last iteration. Thus, Lumos performs future compu-
tation on a vertex only if it receives all the updates from its
neighbors. Due to this strict requirement, Lumos is more suit-
able for optimizing the algorithms which naturally demand
synchronous semantics. Therefore, although both CLIP and
Lumos improve over GridGraph with future computation, they
are specialized for different sets of algorithms, respectively.
On the other hand, Wonderland [46] applies the graph abstrac-
tion technique from visualization systems to streaming-based
processing. However, the abstraction-guided processing only
works for accelerating the convergence of path-based algo-
rithms such as shortest path.

V-Part [11], a recent fully-external system, proposes a novel

USENIX Association 22nd USENIX Conference on File and Storage Technologies 375

Figure 3: Data structure of GridGraph-ODP.

framework different from GridGraph. V-Part stores the des-
tination and source vertices into different structures. Each
destination contains only attributes, while each source is asso-
ciated with vertex ID, attribute, and offset pointing to its edge
list, forming the source vertex table. To process a partition,
V-Part first loads the destination vertices and then streams
the source vertex table of the same partition into memory.
Next, V-Part on-demand reads the active edge lists based on
the offsets and updates the destination vertices. Finally, V-
Part requires a stage, called mirror update, to synchronize the
values/attributes between source and destination to facilitate
vertex updates.

Nevertheless, V-Part fails to utilize on-demand processing
thoroughly. Although V-Part on-demand accesses the edge
data, it still streams the source vertex table from storage in
a partition-based granularity, severely impacting its perfor-
mance. Moreover, V-Part requires an extra overhead of mirror
update, making its performance often worse than the other
system adopting streaming-based processing (which will be
shown in §4.1). Thus, to study which processing principle
is more suitable for fully-external framework, we realize our
own baseline system with on-demand processing and compare
it against the state-of-the-art system with streaming-based pro-
cessing in the next section.

2.3 Motivation: Streaming-based Processing
versus On-demand Processing

Although streaming-based processing often loads excessive-
and-irrelevant data as it streams an entire grid even if there
are only a few active vertices/edges, it retains the advantage
of achieving high storage bandwidth. Thus, many prior work
have attempted to optimize streaming-based processing from
various perspectives based on fully-external framework [1,
42, 44]. However, since modern storage provides comparable
sequential and random access speeds, we attempt to look for
the other principle, on-demand processing, to save I/O while
exploiting the decent speed of random access. To study which
principle is more suitable for fully-external framework, this
section aims to compare the baseline of on-demand processing
against the optimized streaming-based processing.

To realize a baseline system with on-demand processing

Figure 4: Evaluation of BFS on Twitter graph [9] with differ-
ent storage devices.

under fully-external framework, we follow the traditional grid
format to store edge data but replace streaming-based pro-
cessing with the on-demand one. To this end, we revamp a
representative, fully-external system GridGraph [50] to sup-
port on-demand processing (called GridGraph-ODP). Please
note that we did not make CLIP support on-demand pro-
cessing because the CLIP’s re-computation only provides a
coarse-grained, grid-based control, which contradicts the core
concept of on-demand processing.

Compare to GridGraph, we add index data into GridGraph-
ODP to record the offset of each segmented edge list, as shown
in Fig. 3. These data enable on-demand processing for edge
data because GridGraph-ODP can easily locate and read the
required edge lists into memory. For example, suppose v is ver-
tex and i is index, the edge list of vs is located between is and
is+1. Besides, since the vertex attributes are all sequentially
stored based on their vertex IDs1 in the file, it is easy to locate
and access an attribute via its ID. Therefore, GridGraph-ODP
can on-demand access both vertex and edge data.

We compare GridGraph-ODP against GridGraph [50] and
CLIP [1]. In particular, GridGraph represents the baseline of
streaming-based processing, and CLIP [1] stands for the state-
of-the-art optimization for streaming-based processing. We
use the famous breath-first search (BFS) [30] as a case study
because it incurs both dense and sparse access patterns during
computation [2]. We evaluate BFS on the three systems with
the traditional hard-disk drive (HDD) as well as three different
types of modern solid-state drives (SSD): SATA SSD [39],
NVMe SSD [40], and ULL SSD [38]. The experiments are
conducted in the same environment as that described in §4,
and the number of threads is set to four, which is the same
configuration as GridGraph [50].

Fig. 4 depicts the results. First, we can observe that HDD
negatively impacts GridGraph-ODP. Compared with Grid-
Graph, although GridGraph-ODP can save around 8.7x in
loading edge data, its performance degrades by -24.1%. This
result implies that the random I/O severely degrades the speed
of HDD, and streaming-based processing is an effective prin-
ciple to obtain high storage bandwidth. Moreover, CLIP im-
proves GridGraph and GridGraph-ODP by 53.7% and 65.2%.
The reason is that CLIP leverages streaming-based processing

1Each vertex is assigned with a distinct value to be its identity.

376 22nd USENIX Conference on File and Storage Technologies USENIX Association

and further accelerates the convergence of graph algorithms
by re-computing the loaded chunks multiple times. Thus,
CLIP vastly outperforms the other two systems on HDD.

The results on modern SSDs show a different trend. Al-
though both GridGraph and CLIP perform better on a faster
drive, GridGraph-ODP improves more outstandingly because
on-demand processing can save I/Os while enjoying the de-
cent speed in random access. Moreover, we can observe an
inspiring fact that, even if CLIP applies state-of-the-art op-
timization to streaming-based processing, GridGraph-ODP,
which represents the baseline of on-demand processing, works
remarkably better. Specifically, GridGraph-ODP outperforms
GridGraph and CLIP by 59.0% and 36.3% on average. As a
result, given that SSDs have prevailed nowadays, these exper-
iments strongly motivate us that advancing the development
of fully-external system tailored for on-demand processing is
a promising direction.

3 Seraph
3.1 Overview
Motivated by §2.3, we realize that on-demand processing
is a promising direction to build fully-external graph com-
putation system. This inspires this work to develop a new
fully-external graph computation system, Seraph, based on
the principle of on-demand processing. Moreover, Seraph in-
corporates three main designs that are specially tailored for
the framework of on-demand processing to pursue further
performance improvement.

Figure 5: Architecture of Seraph.

Fig. 5 depicts Seraph’s architecture, which combines the
frameworks of fully-external graph computation and on-
demand processing. To support fully-external framework, Ser-
aph follows several traditional fundamentals such as keep-
ing the entire graph data in storage and dividing the ver-
tices into disjoint partitions. To reduce memory consumption,
Seraph mmaps each vertex partition into memory and com-
pute one partition at a time to create locality. To support
on-demand processing framework, Seraph maintains index

data to record the location of each edge list, just like our
revamped GridGraph-ODP. Moreover, §3.2 presents a new
hybrid format to split the edge data into both row and grid
formats (e.g., for edge list of u, row format stores v and w,
and grid format keeps a and f). It reduces I/O during graph
computation by combining the advantages of both formats.

With these data structures, Seraph’s execution flow is
briefly illustrated as follows. It runs graph algorithms in iter-
ations, and in each iteration, it first handles row format and
then grid format. No matter which format is handled, Seraph
computes one partition at a time. Specifically, graph computa-
tion involves identifying the active vertices, reading their edge
lists, and updating the corresponding vertex attributes. How-
ever, when computing row format, the to-be-updated vertex
attribute could not be inside memory (details in §3.3.1). To
resolve this issue, §3.3 proposes vertex passing to delay the
vertex updating for creating locality. On the other hand, §3.4
presents selective pre-computation. It explores the feature of
asynchronous processing for further I/O reduction by re-using
loaded data to compute the active vertices of future iterations
in advance. Please note that the detailed execution flow in-
volving the proposed designs will be elaborated in §3.5.

3.2 Hybrid Format
3.2.1 Observation

The motivation of hybrid format comes from the inefficiency
of applying on-demand processing to the traditional grid for-
mat. Although it is common to utilize streaming-based pro-
cessing with grid format, using on-demand processing with
grid format is a double-edged sword. On one hand, grid for-
mat creates good locality of vertex access by confining the
access range to two partitions only. On the other hand, it
increases the overhead in reading edge lists and index data.

We first discuss how grid format negatively impacts the
performance in reading edge lists. Compared with the edge
list stored in row format, the grid format breaks an edge list
into multiple segments and stores them in different grids,
making on-demand processing issue a greater number of I/O
blocks to read all the edge lists of the same source vertex in
different grids. Under the example of Twitter graph2 [9], the
average number of 4KB pages to read the entire edge list (i.e.,
all neighbors) of a vertex is 3.88 in grid format, whereas row
format only requires 1.03 pages, demonstrating a signifiant
73.5% improvement.

Next, reading the index data in grid format is inefficient
due to the high ratio of redundant indexes. We call an index
redundant if it points to an empty edge list, as such an in-
dex provides no information about the graph. Specifically,
because the edge distribution of real-world graphs is typically
skewed [12,13], there is a high likelihood that a vertex has no
edge list in a grid, leading to a high ratio of redundant indexes.
In the same example of Twitter graph, over half (53.6%) of

2We assume the graph is divided into eight partitions.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 377

Figure 6: Example of hybrid format.

the indexes in grid format are redundant and provide no graph
information. Further, as each grid maintains its own index
data to enable on-demand processing, the total size of index
data in grid format is considerably larger than that in row
format. Thus, reading the index data in grid format becomes
a non-negligible overhead to the overall performance.

Although row format seems better than grid format based
on the above discussion, using row format in a fully-external
system causes the issue of accessing vertex attributes ran-
domly; the system may update arbitrary vertices in row format,
rather than just a partition of vertices as in grid format. This
leads to a serious issue that many vertex attributes that need to
be updated may be on storage (i.e., not in memory). To update
those attributes on storage, the system will extensively swap
the pages between memory and storage, severely degrading
the performance. Thus, §3.2.2 introduces hybrid format to
resolve the dilemma between row and grid format.

3.2.2 Hybrid Format Construction
This section presents a new format, called hybrid format,
to store the edge data while improving the performance of
graph computation. The goal of hybrid format is to exploit the
advantages of both row and grid formats. As shown in Fig. 6,
it first stores the graph into grid format. Following, several
grids are converted to row format to prevent the inefficiency
in reading edge and index data, while retaining the rest in grid
format to preserve good locality of vertex access.

To store the raw edge data into hybrid format, we first di-
vide the edges into multiple chunks where every edge in the
same chunk shares the same source and destination vertex
partition(s). If a chunk contains many edges, computing the
edges in the chunk will easily generate many vertex updates;
storing the chunk in grid format is beneficial because we can
create a good locality of vertex access during graph computa-
tion. On the contrary, for the chunks containing few edges, it
is preferable to store them in row format for two reasons: (i)
Because the edge lists in these chunks are small in general,
storing them in row format can append all of the small edge
lists together for reading them with the I/O block efficiently.
(ii) Since the chunks of few edges tend to contain many empty
edge lists, storing those chunks in row format prevents high
ratio of redundant index data.

Hybrid format uses 8 bytes to store each index that points

to the beginning location of each edge list; the edge list of
a vertex vs is recorded by sth index and (s+ 1)th index. As
shown in Fig. 6, row format contains V + 1 indexes. Grid
format requires V/P+ 1 indexes for each grid, so the total
number of indexes in grid format is (V/P+ 1)×G, where
P is the number of partitions and G is the number of grids
created (e.g., example in Fig. 6 is one grid in total).

To construct a graph into hybrid format, Seraph first se-
quentially reads the raw edge data3, while deciding each edge
chunk to be stored in grid or row format (details are dis-
cussed in §3.3.2). Next, based on the decision, it reads and
re-distributes the raw edge data into grid or row format while
creating the index data. Thus, the I/O complexity of construct-
ing hybrid format is O(5E +(V/P+ 1)×G+V), whereas
GridGraph takes O(4E) to create grid format as it reads the
raw edges and re-distributes them into different grids. Ta-
ble 1 shows the construction times of GridGraph and Seraph
(settings are described in §4). We can observe that the con-
struction times of Seraph are roughly 30% slower than those
of GridGraph. However, since graph construction is a one-
time procedure per graph and can be performed offline, these
costs are lightweight for both systems in terms of runtime
performance, as shown in §4.1.

Table 1: Construction times of Seraph and GridGraph.
Time(sec) Twitter Gsh2015 Eu2015 RMAT
GridGraph 15.6 382.9 979.9 2285.5

Seraph 20.6 475.5 1294.5 2906.2

However, although the chunks that strongly require good
locality of vertex access will be stored in grid format based
on the above construction method, computing the edge lists in
row format still results in several random accesses to vertex
attributes. Therefore, §3.3 proposes a simple yet effective
technique, called vertex passing, to tackle this issue. Please
note that the further details such as the criterion for storing
a chunk in the row or grid format will be discussed after
introducing the concept of vertex passing.

Figure 7: An example of execution on row format.

3.3 Vertex Passing
3.3.1 Design Concept
Vertex passing is proposed to resolve the issue of accessing
vertex attributes randomly, as mentioned in §3.2. That is, it is

3Raw edge data and GridGraph present an edge with (src, dst). Hybrid
format presents an edge with dst with the help of index data.

378 22nd USENIX Conference on File and Storage Technologies USENIX Association

used when the to-be-updated vertex attributes are on storage.
To enable vertex passing, each vertex partition is associated
with an in-memory passing buffer. Suppose a vertex u is
updated by its source vertex yet u is on storage, vertex passing
will delay the update and transfer the information of the source
vertex (i.e., active vertex) to the passing buffer of u’s partition.
Afterwards, once u is loaded into memory, vertex passing will
merge the update in the passing buffer back to the attribute.
Because a vertex partition shall be held in memory when
Seraph currently computes it, every vertex can be held in
memory by turns for update merging.

Fig. 7 shows an example about how vertex passing works.
Suppose Seraph is computing P0 (so the vertex attributes of
P0 shall be in memory), w is an active vertex, u and v are
the neighbors of w. At this moment, the system can directly
update vertex u but not vertex v since u is in memory and
v is on storage; compelling the direct update to on-storage
vertices will severely degrade the system’s performance, as it
involves extensive page swapping between memory and stor-
age. Hence, vertex passing addresses this problem by delaying
the on-storage update and transferring the update informa-
tion of w to the passing buffer of Pi. Later, when Seraph is
computing Pi, the vertex v can be loaded into memory and
thus updated by the information stored in the Pi’s passing
buffer. In general, Seraph transfers the information of neigh-
bor vertex ID and update value to the passing buffer, but the
transferred information is configurable by the user based on
the requirement of graph algorithms.

To mitigate the impact on memory usage in Seraph, each
passing buffer is set to be negligibly small (e.g., 1 MB) com-
pared to the vertex data size. Thus, each passing buffer is
associated with a logging file to keep the vertex updates once
the total size exceeds the in-memory passing buffer size. Ser-
aph issues sequential I/O to write the information from the
passing buffer to the corresponding file once the buffer is
full. Similarly, sequential read is used for merging the infor-
mation in the file back to vertex attributes. Please note that
we use logging files to manage vertex updates instead of KV
store because manipulating vertex updates is relatively simple;
each update is only valid for one iteration, and they are bulky
deleted after being used. Thus, we choose the straightforward
implementation of logging files.

Although vertex passing requires I/O to transfer the updates,
the overhead is generally small for three reasons. First, since
vertex passing only transfers the update information of active
vertices, it is effective for many graph algorithms activating
a few vertices in most of the iterations. Second, as discussed
in §3.2.2, a chunk stored in row format contains few edges;
thus, even if all vertices are active and produce updates to
their neighbors, the maximum overhead is bounded by the
few edges inside each chunk. Third, because all transferred
information is consecutively kept together in passing buffers
and files, accessing them is efficient by using sequential I/O.
Thus, vertex passing can efficiently tackle the issue of random

vertex update caused by computation on row format.
The core concept of vertex passing (VP) is to delay oper-

ations as logs, which is a useful technique to create locality
for different scenarios [21, 22]. For example, [22] exploits
VP to optimize PageRank under shared-memory premise. It
buffers all logs in DRAM efficiently and aims to improve
VP’s efficiency with more designs (e.g., lock-free layout). In
contrast, our VP is naturally slower since the logs are recorded
on storage via I/O. Thus, over-using our VP in fully-external
environment will waste much I/O and eventually hurt Ser-
aph’s performance. In this regard, hybrid format and VP are
proposed as a combination which complements each other
with the aim of minimizing storage I/O.

3.3.2 Details in Hybrid Format Construction with Con-
sideration of Vertex Passing

Seraph decides whether a chunk should be stored in row
or grid formats by comparing their respective overheads.
In particular, since this work targets fully-external environ-
ments (storage I/O is typically slower than CPU computation),
each chunk is decided between two formats by considering
their upper-bounded "I/O overheads" (more specifically, "I/O
amounts"). That is, for a chunk C in grid format, the upper-
bounded I/O amount includes reading all grid-related data
(e.g., the chunk’s vertex attributes, index data, and edge lists).
For C in row format, the upper-bounded I/O amount is to log
the updates generated by all edges in C. Therefore, the time
complexity of gathering the above-mentioned information is
linear to chunk size, while making decision is in constant time
by simply comparing the two I/O-amounts.

On the other hand, a fully-external graph system typically
reserves enough memory for holding two vertex partitions,
one for the source partition and the other for the destination
partition. In other words, when Seraph is computing a par-
tition P in row format, it loads P into memory as source
partition; there is an empty space for another partition to be
destination partition. Thus, for every row of chunks (i.e., the
chunks share the same source vertex partition), we can store
one chunk in row format regardless of its number of edges
because we can hold the chunk’s destination partition in mem-
ory to absorb the vertex updates during graph computation.
In fact, due to the natural locality of real-world graphs [49],
many edges reside on the diagonal chunks (share the same
source and destination partition). Thus, Seraph stores the di-
agonal chunks in row format by default.

Because different graph algorithms incur various access
patterns, it is hard to tailor hybrid format for a specific access
pattern. Thus, we construct hybrid format by heuristically
assuming that all vertices are active for the following two
reasons: 1) because the major bottleneck in graph computa-
tion is the dense access pattern under on-demand processing;
optimizing dense access pattern is more beneficial than the
sparse pattern in general, and 2) since the real-world graphs
are typically skewed [12, 13], many chunks will be stored in

USENIX Association 22nd USENIX Conference on File and Storage Technologies 379

row format to enjoy the benefits even under the assumption of
all active vertices. For example, we divides Twitter graph [9]
into 64 chunks, and only 14 chunks are stored in grid format.
For Eu2015 graph [7], all chunks are stored in row format as
the vast majority of edges reside on the diagonal chunks.

Figure 8: Example of pre-computation.

3.4 Selective Pre-Computation
Asynchronously computing the data of future iteration in ad-
vance is a well-known technique [1, 42]. As streaming-based
processing often loads excessive-but-irrelevant data, exist-
ing work [1] exploits this concept to increase the utilization
of the loaded grid by re-computing it many times. On the
other hand, although Seraph leverages on-demand process-
ing, there is still a granularity mismatch between a common
I/O block size (e.g., 4096 bytes) and the typical size of an
edge list (e.g., 132 bytes on average in Twitter). This mis-
match provides the opportunity that the current and future
active vertices4 could reside on the same I/O block. Thus,
selective pre-computation is introduced into Seraph to oppor-
tunistically re-use the loaded data for current active vertices
to pre-compute the future ones asynchronously, reducing the
total number of issued I/O.

However, under the framework of on-demand processing,
recognizing whether the loaded data contain the information
of future active vertices requires high implementation cost by
traversing three different data structures (i.e., vertex attributes,
indexes, and edges). To prevent this cost, we use vertex IDs
for estimation due to the following three reasons. First, since
all data structures are stored sequentially based on vertex ID,
there is a high likelihood that two vertices reside on the same
I/O blocks if their ID gap is small. Second, the implemen-
tation cost of tracking vertex IDs is low. Third, even for the
worst case that we might spend a few extra I/O to load future
active vertex, pre-computation merely beforehand performs
computation that was supposed to happen in the next iteration,
making it only require little cost yet offer the opportunity to
re-use I/O. Based on our investigation, it is challenging to set
an optimal value of ID gap for all scenarios because different
algorithms/graphs have different features. Thus, we set the ID
gap to be 32 by default as it is a reasonable value (by consid-
ering 4KB page and the average edge list size) and generally

4Current active vertices means the active vertices of current iteration.
Future active vertices means the active vertices of next iteration.

Figure 9: Execution flow in Seraph.

performs well for all graphs. In other words, Seraph will se-
lectively pre-compute those future active vertices which are
within the same gap based on the current active vertices to
opportunistically re-use I/O.

Fig. 8 shows the mechanism of selective pre-computation.
In particular, there are two bitmaps originally maintained in
Seraph that record the activeness of each vertex: cur_bitmap
and next_bitmap respectively indicate the active vertices
of current and next iteration. In normal computation (i.e.,
without pre-computation), Seraph identifies and computes
the active vertices based on the set-bits in cur_bitmap. In
pre-computation, Seraph first determines the pre-computed
vertices based on the method described above and move the
set-bits from next_bitmap to cur_bitmap. In other words,
all active vertices (including the current and future ones) are
marked in cur_bitmap, and the pre-computed ones are re-
moved from next_bitmap so that we will not compute them
again in the next iteration. Finally, Seraph can simply perform
graph computation based on cur_bitmap.

As Seraph stores graphs in hybrid format, it is essential to
maintain consistency of the pre-computed vertices between
row and grid formats to ensure the correctness of algorithms.
Even when computing grid format, it is possible for a vertex
to be pre-computed in one grid but not in another, as each
grid is computed independently. To ensure consistency, Ser-
aph first computes row format while modifying cur_bitmap.
Next, Seraph uses the modified cur_bitmap to compute all
grids to maintain consistency. However, pre-computation can
only work when the graph algorithm generates future active
vertices on the fly during graph computation. If this is not
feasible for the algorithm, Seraph offers an option to disable
pre-computation and run the algorithm normally.

3.5 Execution Flow
Based on the the available amount of memory specified by
user, Seraph divides a graph into the number of partitions

380 22nd USENIX Conference on File and Storage Technologies USENIX Association

that can hold two partitions of vertex data (i.e., source and
destination partitions), one partition of index data, and other
small data structures (e.g., edge buffer and active bitmap) in
memory. With the information of partitions, Seraph constructs
a graph into hybrid format based on the method described
in §3.3.2. Next, Seraph performs graph computation based
on the execution flow shown in Fig. 9. As mentioned in §3.4,
Seraph computes row format first, and then computes the grid
format, for each iteration. When computing a partition p, Ser-
aph first merges all the delayed updates back to p to keep all
attributes with the latest values. Next, each thread in Seraph
will parallelly identify and record the set of active vertices in
partition p; if pre-computation is enabled, future active ver-
tices of the same partition will also be handled as mentioned
in §3.4. Seraph converts the indexes of active vertices into
page-aligned offsets. Later, Seraph exploits the kernel-level
Linux Asynchronous IO (AIO) to group multiple required
pages into one I/O request, and issue the request with direct
I/O to read the edge data into local edge buffer. Finally, Seraph
performs graph computation, and vertex passing described
in §3.3 will be enabled when computing row format. Please
note that, since Seraph uses memory mapping mechanism to
reference the vertex and index data backed in files, Seraph ac-
cesses the needed vertices and indexes like accessing normal
arrays, and does not declare extra user-space memory buffer
for holding the vertex and index data.

Seraph computes row format by simply processing all parti-
tions by turns, and grid format is computed by column-based
execution order. In other words, when computing grid format,
Seraph selects a destination partition py and then iteratively
computes the source partition px if there is a grid between
px and py. As py is fixed, all generated vertex updates can
directly be absorbed in memory based on this column-based
execution order. The computation in grid format ends when
all the grids are computed by Seraph.

4 Evaluation
We implement Seraph in C++ and compare it against differ-
ent state-of-the-art graph computation systems: fully-external
(GridGraph [50], V-Part [11], CLIP [1], Lumos [42]), semi-
external (Graphene [25]), and shared-memory (Ligra+ [37])
systems. As V-Part and CLIP are not open source, we imple-
ment their systems ourselves based on their papers.

We use breath-first search (BFS) [30], weakly connected
component (WCC) [15], K-core (Kcore) [29, 35], all-pair
shortest-path (APSP) [24, 41], and pagerank (PR) [14, 33]
for evaluation. BFS is a typical algorithm for graph traver-
sal by exploring the neighbors until all connected vertices
are visited. WCC discovers the number of connected com-
ponents of a graph; we implement WCC by the method of
label propagation [48]. Kcore iteratively removes the vertices
of degree less than k, and finally returns a subgraph where
each vertex has the degree of at least k. APSP calculates the
shortest paths from all vertices. Due to the high complexity

of computing all the shortest paths, this evaluation leverages
an approximate approach by randomly sampling 32 source
vertices, and performs multi-source traversal from the sam-
pled vertices [24, 41]. Finally, PR calculates the popularity of
a vertex based on its neighbors’ rank values. We run PR for
four iterations and activate all vertices in each iteration. Please
note that, except for PR constantly activating all vertices, the
other evaluated algorithms activate a (dense or sparse) set of
vertices in each iteration and represent various access patterns.

Table 2 lists the graphs used for evaluation in this work. The
first three are billion-scale, real-world graphs from SNAP [23]
and webgraph [3, 4]. In particular, Twitter [9] is social graph,
while Gsh2015 [8] and Eu2015 [7] are web crawler graphs.
Since the open-sourced graph datasets are all quite small,
we use [18] to generate a large-scale graph (called RMAT)
for testing the scalability. RMAT contains 8.6 billions of
vertices and 112 billions of edges. Notably, because 4 bytes
(unsigned int) is not enough to represent all the vertex IDs
of RMAT graph, we use 8 bytes (long) to store the vertex ID
for this graph in all systems instead.

Table 2: Evaluated graph datasets.
Graph Name Num Vertices Num Edges Graph Size5

Twitter 42 M 1.4 B 11.2 GB
Gsh2015 988 M 33.88 B 271 GB
Eu2015 1.1 B 91.8 B 734 GB
RMAT 8.6 B 112 B 1.7 TB

Table 3: Fully-external memory usages for §4.1 and §4.2.
Graph Name Twitter Gsh2015 Eu2015 RMAT

Memory Usage 130 MB 2.4 GB 2.7 GB 18 GB

To investigate fully-external graph systems, §4.1 and §4.2
conduct detailed comparisons and study the proposed design
choices by offering each system with fixed amounts of mem-
ory that are adjusted based on the graph sizes. Specifically,
we aim to compute the largest evaluated graph, RMAT, with
a reasonable resource available for most people nowadays.
Thus, each system is provided with 18 GB to compute RMAT,
while the memory amounts for computing other evaluated
graphs are also based on a similar ratio of each graph size.
The exact memory usage for each evaluated graph are reported
in Table 3. §4.3 further enhances the evaluation by examining
each fully-external system with different memory amounts.
Moreover, we also evaluate semi-external and shared-memory
systems in §4.3 to have a comprehensive study about different
types of single-machine graph systems.

To compare all types of graph systems on the same plat-
form, all experiments are conducted on the same server: HPE
ProLiant DL560 Gen10 server with Intel Xeon Platinum 8160
CPU and 32 x 32GB Dual Rank DDR4-2666 memory (1TB
in total) on Debian GNU/Linux 9, and two 1TB Samsung
NVMe SSD drives [40] with 6.0 GB/s sequential read band-
width in total. We use cgroup to limit the available memory

5The size is measured by storing the graph in the format that each edge is
represented by (source vertex ID, destination vertex ID).

USENIX Association 22nd USENIX Conference on File and Storage Technologies 381

(a) Execution time on Twitter. (b) Execution time on Gsh2015. (c) Execution time on Eu2015. (d) Execution time on RMAT.

(e) I/O amount on Twitter. (f) I/O amount on Gsh2015. (g) I/O amount on Eu2015. (h) I/O amount on RMAT.

Figure 10: Overall comparison among Seraph and other fully-external systems.

and taskset to confine the used cores. The number of threads
for all systems is set to 16 because it is reasonable for com-
modity PCs nowadays.

4.1 Fully-external Systems Comparison
This section compares Seraph against four state-of-the-art
fully-external graph systems, which are GridGraph [50], V-
Part [11], CLIP [1], and Lumos [42]. Fig. 10 illustrates the
execution times (seconds) and I/O amounts (GBs) of running
the chosen algorithms on different graphs.

We first discuss BFS, WCC, Kcore, and APSP; they are
asynchronous graph algorithms, which offers room for opti-
mization via exploiting the algorithmic feature, as discussed in
Section 2.2. Overall speaking, GridGraph performs the worst
among all systems since it naïvely adopts streaming-based
processing (SBP). V-Part issues on-demand I/O to read the
edge data, so it averagely improves GridGraph by 37.3% in
execution time and 45.1% in I/O amount. However, V-Part’s
performance is impacted by 1) loading the source vertex table
in a partition-based granularity and 2) requiring the overhead
of mirror update to handle vertex updates. Thus, compared to
CLIP which is an advanced version of GridGraph for asyn-
chronous algorithms, V-Part is slightly slower than CLIP by
5.7% in execution time on average. Last but not least, Seraph
performs the best among all systems. Compared to V-Part,
Seraph on-demand accesses both edge and vertex data. Com-
pared to CLIP, Seraph not just relies on the effectiveness of
on-demand processing but it also leverages pre-computation
to optimize asynchronous algorithms. In summary, since Ser-
aph can effectively reduce I/O, it achieves decent performance
correspondingly. For execution time (resp., I/O amount), Ser-
aph outperforms GridGraph, V-Part, and CLIP, by 8.9x, 4.9x,
and 4.0x (resp., 8.5x, 5.0x, and 4.5x).

Moreover, we can observe that Seraph is especially efficient
in computing Gsh2015 graph. Taking BFS as an example;

Seraph improves CLIP by 5.0x on Gsh2015 and 3.1x on Twit-
ter. The reason is that running BFS on Gsh2015 takes lots of
iterations to traverse the entire graph, and only a few vertices
are activated in most iterations. This feature damages the sys-
tems adopting SBP as they typically read plenty of data in
each iteration. By contrast, since Seraph on-demand accesses
the necessary data, the main overhead is the number of issued
I/Os, not the number of iterations. Thus, Seraph works better
on Gsh2015 than other systems. A similar observation can
be found on Kcore which takes lots of iterations to complete
but only activates a few vertices in most iterations, providing
Seraph more advantages in saving I/O than other systems.

Following, we discuss synchronous algorithm (i.e., PR).
Compared to asynchronous ones, PR has to obey the strict
synchronous semantics, as discussed in Section 2.2. Moreover,
because PR is computation-intensive and constantly activates
all vertices, on-demand processing does not show advantages,
and all systems perform similarly. Nevertheless, Seraph is still
slightly better in I/O as the graph in hybrid format is more
lightweight than the graph structures in other systems. On the
other hand, Lumos, to save I/O for synchronous algorithm
via future computation, is specialized by imposing several
constraints during graph computation. However, due to the
feature of computation-intensiveness, loading less I/O only
brings minor benefit. Please note that we replace the bar of
CLIP with Lumos for PR in Fig. 10. Compared to GridGraph,
V-Part, and Lumos, Seraph saves the I/O amount by 22.7%,
8.5%, and 7.1%, and improves the time by 11.1%, 10.4%, and
0.6%. Besides, although Lumos optimizes PR via I/O reduc-
tion based on GridGraph, the improvement is minor because
(1) PR is computation-intensive in our testing, and (2) several
designs in Lumos fail to run in fully-external environment.
Thus, Lumos improves GridGraph by 39.8% on Twitter, but
barely any improvement on the other evaluated graphs.

382 22nd USENIX Conference on File and Storage Technologies USENIX Association

(a) Execution time on Twitter. (b) Execution time on Gsh2015. (c) Execution time on Eu2015. (d) Execution time on RMAT.

Figure 11: Performance studies of different major designs in Seraph.

4.2 Design Choices
This section demonstrates the performance impact of major
designs in Seraph. Specifically, §4.2.1 reveals that hybrid
format with vertex passing performs the best than the other
two formats. Next, based on the hybrid format with vertex
passing, §4.2.2 further studies the performance of selective
pre-computation. The configuration of the system and envi-
ronment in this section is the same as that in §4.1.

4.2.1 Hybrid Format and Vertex Passing
Before showing the results, we discuss the necessity of com-
bining hybrid/row format with vertex passing. Since vertex
passing creates the imperative locality for vertex access, com-
puting hybrid/row format without vertex passing will cause
the serious problem of memory thrashing. Based on our in-
vestigation, it severely degrades the execution time by at least
two orders of magnitude, making the system intolerably slow.

Thus, in the following experiments, we compare the perfor-
mance of grid format (denoted as Grid), row format with ver-
tex passing (denoted as Row+VP), and hybrid format with ver-
tex passing (denoted as Hybrid+VP), respectively. To clearly
observe the effects of different formats, we disable selective
pre-computation, which will be discussed in §4.2.2. Please
note that, the hybrid format stores all edges of Gsh2015 and
Eu2015 into row format. Thus, the results of Row+VP and
Hybrid+VP are identical for Gsh2015 and Eu2015.

As revealed in Fig. 11, Hybrid+VP generally performs the
best. Particularly, Hybrid+VP outperforms Grid by 37.4%
on average, while Hybrid+VP averagely improves Row+VP
(for Twitter and RMAT graphs) by 18.1%. Such improve-
ment is because hybrid format strikes a good balance between
utilizing row and gird formats. Compared to Row+VP, Hy-
brid+VP alleviates the overhead of vertex passing by storing
several dense edge blocks in grid format. Compared to the tra-
ditional Grid, Hybrid+VP improves the efficiency of reading
indexes and edge data. Moreover, the comparison between
Hybrid+VP and Grid further implies that naïvely applying
on-demand processing into the traditional fully-external de-
signs will lead to limited improvements; proposing techniques
suitable for on-demand processing (e.g., hybrid format and
vertex passing) is essential for bringing improvement. Finally,
Row+VP is not necessarily better than Grid because, for cer-
tain graphs and algorithms, over-using VP will degrade the
overall performance instead by wasting too much I/O in trans-
ferring vertex updates.

4.2.2 Selective Pre-computation
This section examines selective pre-computation based on the
proposed hybrid format with vertex passing. The combina-
tion of designs is referred to as Hybrid+VP+PreC, and the
results are presented in Fig. 11. Please note that, because the
selective pre-computation is not feasible for PR, the result
of Hybrid+VP+PreC is identical to Hybrid+VP in PR. We
mainly discuss of the other four algorithms in the following.
As a whole, selective pre-computation averagely improves
Hybrid+VP by 16.1% in execution time. This improvement
is achieved by re-using I/O opportunistically. Take the largest
RMAT graph as example, pre-computation helps to improve
execution time (resp., I/O amounts) by 25.6%, 29.1%, 14.5%,
and 8.2% (resp., 25.8%, 25.1%, 15.2%, and 12.1%) in terms
of BFS, WCC, KCore, and APSP. The results exhibit a sim-
ilar trend between two metrics. Moreover, different graphs
may lead to different amounts of improvement. Given that
Twitter and RMAT have shorter diameter than Gsh2015 and
Eu2015, the algorithms running on Twitter and RMAT typi-
cally incur denser access pattern than Gsh2015 and Eu2015.
Thus, pre-computation has better improvement on Twitter and
RMAT (21.5%) than Gsh2015 and Eu2015 (10.7%) because
it can re-use more I/O under dense access pattern. A similar
trends happens on KCore which usually has sparse access
patterns. This makes pre-computation have a smaller impact
on improving KCore (3.7%) compared to other algorithms
(20.2%). However, pre-computation remains a reasonable
design choice as it provides harmless benefit.

4.3 Evaluation with Different Amounts of
Memory

This section evaluates with different memory amounts. Be-
sides fully-external systems, we also include the state-of-the-
art semi-external system (i.e., Graphene [25]) and shared-
memory system (i.e., Ligra+ [37]). Particularly, Ligra+ lever-
ages compression schemes to reduce runtime memory foot-
print. However, the compression program implemented in
Ligra+ requires multiple in-memory edge-scale arrays, which
significantly limits the graph scale that Ligra+ can handle. In
fact, among all the evaluated graph datasets, the largest graph
that Ligra+ can handle with our 1TB memory server is the
Gsh2015 graph [8]. Hence, this section presents the results
based on Gsh2015 graph.

For Gsh2015 graph, 16 GB is enough to hold the entire ver-
tex and index data in memory (i.e., semi-external mode). Thus,

USENIX Association 22nd USENIX Conference on File and Storage Technologies 383

(a) Execution time on BFS. (b) Execution time on WCC.

(c) Execution time on Kcore. (d) Execution time on APSP. (e) Execution time on PR.

Figure 12: Evaluation with different amounts of memory, which is adjusted based on the scale of Gsh2015 graph [8].

for fully-external systems, we vary the provided amounts of
memory from 900 MB, 2.4 GB, 4.8 GB, to 16 GB. On the
other hand, because Graphene has to run in semi-external
mode and Ligra+ must hold the entire compressed graph in
memory, we offer them 16 GB and 115 GB of memory to
meet their requirements, respectively. It is worth nothing that
the memory requirements of both Graphene and Ligra+ pro-
portionally increase with larger graph scales. Taking RMAT
as an example, Graphene and Ligra+ respectively require
132 GB and 1.7 TB (reported based on raw graph size), while
Seraph can compute it with only 18 GB as shown in §4.1.

Fig. 12 shows that, for fully-external systems, their perfor-
mances improve along with the increasing memory, and Ser-
aph outperforms the other systems regardless of the provided
amounts of memory. Moreover, Seraph shows a greater cost-
effectiveness than other systems. Compared to fully-external
ones, Seraph can use much less memory while achieving
better performance. Compared to Graphene, Seraph(4.2GB)
almost catches up the performance of Graphene(16GB), with
only a minor 10.6% degradation on average. In semi-external
mode, Seraph(16GB) averagely improves Graphene(16GB)
by 1.31x due to the help of pre-computation. Finally, Ligra+
spends 7.2x more memory than Seraph to achieve an aver-
age 1.83x speedup, yet for certain algorithms like WCC, the
speedup is only 1.27x. Ligra+ performs the best on PR (im-
proves Seraph by 2.87x). This is because Ligra+ expensively
keeps two versions of edge data (out-edges and in-edges) in
memory and switches the access between them to resolve
the computation-intensive issue of PR. Conversely, Seraph
shows greater scalability by computing much larger graphs
(e.g., Eu2015 and RMAT) that Ligra+ cannot handle.

5 Related Work
Besides fully-external graph systems, distributed graph sys-
tems [5,13,27,49] also show high scalability in graph compu-

tation by splitting a graph across multiple machines. For exam-
ple, Pregel [27] is the first distributed system proposing vertex-
centric programming model. Based on vertex-centric model,
PowerGraph [13] proposes to optimize the graph computation
on natural graphs. Gemini [49] adopts many optimizations to
greatly improve the efficiency. Although distributed systems
also demonstrate the capability of large-scale graph compu-
tation, these approaches are high-cost as user need to build
the environment of many machines for large-scale graphs.
In contrast, Seraph, as a fully-external system, exhibits op-
timal scalability by decoupling the capability of large-scale
graph computation from the single machine’s memory capac-
ity. Thus, Seraph is low-cost for computing any large-scale
graph with a constant memory amount.

6 Conclusion
This work develops a new fully-external graph computation
system, Seraph, based on the principle of on-demand process-
ing to save I/O. To purse a higher performance improvement,
three practical designs are proposed based on the framework
of on-demand processing. Specifically, hybrid format is intro-
duced to store the graph while optimizing graph computation,
vertex passing is presented for handling vertex updates effi-
ciently, and selective pre-computation explores the possibility
of re-using I/O. Seraph, as a fully-external system, exhibits
optimal scalability and offers decent performance. It signif-
icantly outperforms the other state-of-the-art fully-external
systems on all evaluated graphs, based on our experiments.

Acknowledgments
We sincerely thank our shepherd, Ashvin Goel, and all the
anonymous reviewers for their valuable comments and sugges-
tions. This work is supported in part by The Research Grants
Council of Hong Kong SAR (Project No. CUHK14208521).

384 22nd USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai
Qian, Kang Chen, and Weimin Zheng. Squeezing out
all the value of loaded data: An out-of-core graph pro-
cessing system with reduced disk i/o. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages
125–137, Santa Clara, CA, July 2017. USENIX Associ-
ation.

[2] Scott Beamer, Krste Asanovic, and David Patterson.
Direction-optimizing breadth-first search. In SC ’12:
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–10, 2012.

[3] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebas-
tiano Vigna. Layered label propagation: A multireso-
lution coordinate-free ordering for compressing social
networks. In Sadagopan Srinivasan, Krithi Ramam-
ritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and
Ravi Kumar, editors, Proceedings of the 20th interna-
tional conference on World Wide Web, pages 587–596.
ACM Press, 2011.

[4] Paolo Boldi and Sebastiano Vigna. The WebGraph
framework I: Compression techniques. In Proc. of the
Thirteenth International World Wide Web Conference
(WWW 2004), pages 595–601, Manhattan, USA, 2004.
ACM Press.

[5] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen.
Powerlyra: Differentiated graph computation and parti-
tioning on skewed graphs. In Proceedings of the Tenth
European Conference on Computer Systems, EuroSys
’15, New York, NY, USA, 2015. Association for Com-
puting Machinery.

[6] Wei Chen and Shang-Hua Teng. Interplay between so-
cial influence and network centrality: A comparative
study on shapley centrality and single-node-influence
centrality. In Proceedings of the 26th International Con-
ference on World Wide Web, WWW ’17, page 967–976,
Republic and Canton of Geneva, CHE, 2017. Interna-
tional World Wide Web Conferences Steering Commit-
tee.

[7] Eu2015 dataset from WebGraph. https://law.di.
unimi.it/webdata/eu-2015/ , 2015.

[8] Gsh2015 dataset from WebGraph. http://law.di.
unimi.it/webdata/gsh-2015/ , 2015.

[9] Twitter dataset from WebGraph. http://law.di.
unimi.it/webdata/twitter-2010/ , 2010.

[10] Devdatt Dubhashi, Alessandro Mei, Alessandro Pan-
conesi, Jaikumar Radhakrishnan, and Aravind Srini-
vasan. Fast distributed algorithms for (weakly) con-
nected dominating sets and linear-size skeletons. Jour-
nal of Computer and System Sciences, 71, 03 2003.

[11] Nima Elyasi, Changho Choi, and Anand Sivasubrama-
niam. Large-scale graph processing on emerging storage
devices. In Proceedings of the 17th USENIX Confer-
ence on File and Storage Technologies, FAST’19, page
309–316, USA, 2019. USENIX Association.

[12] Michalis Faloutsos, Petros Faloutsos, and Christos
Faloutsos. On power-law relationships of the inter-
net topology. SIGCOMM Comput. Commun. Rev.,
29(4):251–262, aug 1999.

[13] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny
Bickson, and Carlos Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In 10th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12), pages 17–30, Hollywood,
CA, October 2012. USENIX Association.

[14] Taher H. Haveliwala. Topic-sensitive pagerank. In
Proceedings of the 11th International Conference on
World Wide Web, WWW ’02, page 517–526, New York,
NY, USA, 2002. Association for Computing Machinery.

[15] John Hopcroft and Robert Tarjan. Algorithm 447: Effi-
cient algorithms for graph manipulation. Communica-
tions of the ACM, 16(6):372–378, 1973.

[16] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai.
Lethality and centrality in protein networks. Nature,
411(6833):41–42, May 2001.

[17] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao
Xu, and Arvind. Grafboost: Using accelerated flash stor-
age for external graph analytics. In Proceedings of the
45th Annual International Symposium on Computer Ar-
chitecture, ISCA ’18, page 411–424. IEEE Press, 2018.

[18] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan.
Scalable simd-efficient graph processing on gpus. In
Proceedings of the 24th International Conference on
Parallel Architectures and Compilation Techniques,
PACT ’15, pages 39–50, 2015.

[19] Jooho Kim and Makarand Hastak. Social network anal-
ysis: Characteristics of online social networks after a
disaster. International Journal of Information Manage-
ment, 38(1):86–96, 2018.

[20] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
Graphchi: Large-scale graph computation on just a PC.
In 10th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 12), pages 31–46, Hol-
lywood, CA, October 2012. USENIX Association.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 385

https://law.di.unimi.it/webdata/eu-2015/
https://law.di.unimi.it/webdata/eu-2015/
http://law.di.unimi.it/webdata/gsh-2015/
http://law.di.unimi.it/webdata/gsh-2015/
http://law.di.unimi.it/webdata/twitter-2010/
http://law.di.unimi.it/webdata/twitter-2010/

[21] Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Vik-
tor Prasanna. Gpop: A scalable cache- and memory-
efficient framework for graph processing over parts.
ACM Trans. Parallel Comput., 7(1), mar 2020.

[22] Kartik Lakhotia, Rajgopal Kannan, and Viktor Prasanna.
Accelerating PageRank using Partition-Centric process-
ing. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 427–440, Boston, MA, July
2018. USENIX Association.

[23] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

[24] Hang Liu, H. Huang, and Yang Hu. ibfs: Concurrent
breadth-first search on gpus. pages 403–416, 06 2016.

[25] Hang Liu and H. Howie Huang. Graphene: Fine-grained
IO management for graph computing. In 15th USENIX
Conference on File and Storage Technologies (FAST
17), pages 285–300, Santa Clara, CA, February 2017.
USENIX Association.

[26] Vladimir V. Makarov, Maxim O. Zhuravlev, Anas-
tasija E. Runnova, Pavel Protasov, Vladimir A. Mak-
simenko, Nikita S. Frolov, Alexander N. Pisarchik, and
Alexander E. Hramov. Betweenness centrality in multi-
plex brain network during mental task evaluation. Phys.
Rev. E, 98:062413, Dec 2018.

[27] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’10, page 135–146, New York, NY, USA, 2010.
Association for Computing Machinery.

[28] Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-
Wei Tseng, and Murali Annavaram. Graphssd: Graph
semantics aware ssd. In Proceedings of the 46th Interna-
tional Symposium on Computer Architecture, ISCA ’19,
page 116–128, New York, NY, USA, 2019. Association
for Computing Machinery.

[29] Alberto Montresor, Francesco De Pellegrini, and
Daniele Miorandi. Distributed k-core decomposition.
IEEE Transactions on Parallel and Distributed Systems,
24(2):288–300, 2013.

[30] Edward F. Moore. The shortest path through a maze.
In Proceedings of the International Symposium on the
Switching Theory, 1959, pages 285–292.

[31] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim,
and Ching-Yung Lin. Graphbig: understanding graph
computing in the context of industrial solutions. In SC

’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, pages 1–12, 2015.

[32] Donald Nguyen, Andrew Lenharth, and Keshav Pingali.
A lightweight infrastructure for graph analytics. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Op-
erating Systems Principles, SOSP ’13, page 456–471,
New York, NY, USA, 2013. Association for Computing
Machinery.

[33] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The pagerank citation ranking: Bringing
order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999. Previous number = SIDL-
WP-1999-0120.

[34] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-stream: Edge-centric graph processing using stream-
ing partitions. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
SOSP ’13, page 472–488, New York, NY, USA, 2013.
Association for Computing Machinery.

[35] Ahmet Erdem Saríyüce, Buğra Gedik, Gabriela Jacques-
Silva, Kun-Lung Wu, and Ümit V. Çatalyürek. Stream-
ing algorithms for k-core decomposition. Proc. VLDB
Endow., 6(6):433–444, apr 2013.

[36] Julian Shun and Guy E. Blelloch. Ligra: A lightweight
graph processing framework for shared memory. SIG-
PLAN Not., 48(8):135–146, feb 2013.

[37] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch.
Smaller and faster: Parallel processing of compressed
graphs with ligra+. In 2015 Data Compression Confer-
ence, pages 403–412, 2015.

[38] Intel Optane 905P SSD. https://www.
intel.com/content/www/us/en/products/
details/memory-storage/consumer-ssds/
optane-ssd-9-series.html.

[39] Samsung 860 EVO SSD. https://www.samsung.
com/semiconductor/minisite/ssd/product/
consumer/860evo/.

[40] Samsung 970 PRO SSD. https://www.samsung.
com/semiconductor/minisite/ssd/product/
consumer/970pro/.

[41] Manuel Then, Moritz Kaufmann, Fernando Chirigati,
Tuan-Anh Hoang-Vu, Kien Pham, Alfons Kemper,
Thomas Neumann, and Huy T. Vo. The more the mer-
rier: Efficient multi-source graph traversal. Proc. VLDB
Endow., 8(4):449–460, dec 2014.

386 22nd USENIX Conference on File and Storage Technologies USENIX Association

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/consumer-ssds/optane-ssd-9-series.html
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/860evo/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/860evo/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/860evo/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/

[42] Keval Vora. LUMOS: Dependency-driven disk-based
graph processing. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 429–442, Renton,
WA, July 2019. USENIX Association.

[43] Keval Vora, Rajiv Gupta, and Guoqing Xu. Kickstarter:
Fast and accurate computations on streaming graphs via
trimmed approximations. In Proceedings of the twenty-
second international conference on architectural sup-
port for programming languages and operating systems,
pages 237–251, 2017.

[44] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load the
edges you need: A generic i/o optimization for disk-
based graph processing. In 2016 USENIX Annual Tech-
nical Conference (USENIX ATC 16), pages 507–522,
Denver, CO, June 2016. USENIX Association.

[45] Junlong Zhang and Yu Luo. Degree centrality, between-
ness centrality, and closeness centrality in social net-
work. In Proceedings of the 2017 2nd International
Conference on Modelling, Simulation and Applied Math-
ematics (MSAM2017), pages 300–303. Atlantis Press,
2017/03.

[46] Mingxing Zhang, Yongwei Wu, Youwei Zhuo, Xuehai
Qian, Chengying Huan, and Kang Chen. Wonderland:
A novel abstraction-based out-of-core graph processing
system. SIGPLAN Not., 53(2):608–621, mar 2018.

[47] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vo-
gelstein, Carey E. Priebe, and Alexander S. Szalay.
Flashgraph: Processing billion-node graphs on an ar-
ray of commodity ssds. In 13th USENIX Conference on
File and Storage Technologies (FAST 15), pages 45–58,
Santa Clara, CA, February 2015. USENIX Association.

[48] Xiaojin Zhu and Zoubin Ghahramani. Learning from
labeled and unlabeled data with label propagation. Tech-
nical report, 2002.

[49] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xi-
aosong Ma. Gemini: A Computation-Centric distributed
graph processing system. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 301–316, Savannah, GA, November
2016. USENIX Association.

[50] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
graph: Large-scale graph processing on a single machine
using 2-level hierarchical partitioning. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages
375–386, Santa Clara, CA, July 2015. USENIX Associ-
ation.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 387

	Introduction
	Background and Motivation
	Background of Fully-external Systems
	Existing Fully-external Systems
	Motivation: Streaming-based Processing versus On-demand Processing

	Seraph
	Overview
	Hybrid Format
	Observation
	Hybrid Format Construction

	Vertex Passing
	Design Concept
	Details in Hybrid Format Construction with Consideration of Vertex Passing

	Selective Pre-Computation
	Execution Flow

	Evaluation
	Fully-external Systems Comparison
	Design Choices
	Hybrid Format and Vertex Passing
	Selective Pre-computation

	Evaluation with Different Amounts of Memory

	Related Work
	Conclusion

