
The Design and Implementation
of a Capacity-Variant Storage System

Ziyang Jiao1, Xiangqun Zhang1, Hojin Shin2, Jongmoo Choi2, Bryan S. Kim1

1Syracuse University, 2Dankook University

2024 USENIX Conference on File and Storage Technologies

Aging on modern SSDs

• Use an enterprise-grade NVMe drive
• Age through random writes (~100 TB/day)
• Measure read-only I/O

2

↓ 4.2%/PB written
↓ 4.3%/PB written

Aging on modern SSDs

• Use an enterprise-grade NVMe drive
• Age through random writes (~100 TB/day)
• Measure read-only I/O

3

The current storage abstraction

• Logical capacity is fixed:
• Assume physical capacity does not change
• Expect a fail-stop behavior
• Built around traditional HDDs

• Not accurate for SSDs:
• Physical capacity naturally reduces
• Bad blocks accumulate
• Flash memory blocks fail partially

4
• Juwon Kim et al, “IPLFS: Log-Structured File System without Garbage Collection”, ATC 2022

Logical
Partition

Physical
Storage

Tax from the fixed-capacity abstraction

• Haryadi S. Gunawi et al, “Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems”, FAST 2018

The fixed logical capacity
+

The decreased physical capacity
=

5

Tax from the fixed-capacity abstraction

• Haryadi S. Gunawi et al, “Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems”, FAST 2018

The fixed logical capacity
+

The decreased physical capacity
=

6

Tax from the fixed-capacity abstraction

• Haryadi S. Gunawi et al, “Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems”, FAST 2018

The fixed logical capacity
+

The decreased physical capacity
=

• Maintain an illusion of a fixed-capacity deviceWear leveling & OP are required

• Manifest the fail-slow symptomComplicated error-handling
(ECC, data re-read, redundancy...)

• When exported capacity can’t be maintainedLifetime ends early

7

The trends in SSD reliability

8

• Yajuan Du et al, “Towards LDPC Read Performance of 3D Flash Memories with Layer-induced Error Characteristics”, TODAES 2023
• Seungwoo Son et al, “Differentiated Protection and Hot/Cold-aware Data Placement Policies through K-means Clustering Analysis for 3D-NAND SSDs”, Electronics 2022
• Kong-Kiat Yong et al, “Error Diluting: Exploiting 3-D NAND Flash Process Variation for Efficient Read on LDPC-based SSDs”, TCAD 2020
• B. Kim et al, “Design Tradeoffs for SSD Reliability”, FAST 2019
• Yixin Luo et al, “HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-recovery and Temperature Awareness”, HPCA 2018
• Xin Shi et al, “Program Error Rate-based Wear Leveling for NAND Flash Memory”, DATE 2018
• Yu cai et al, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis, and Modeling”, Proceedings of the IEEE 2017
• Yu cai et al, “Error Characterization, Mitigation, and Recovery in Flash-memory-based Solid-state Drives”, DATE 2013

Outline

• Background & motivation

• Design principles

• Capacity-variant storage system

• Evaluation

• Summary

9

Design principles

• The fixed-capacity storage system
• Trade performance & reliability for

capacity

• The capacity-variant storage system
• Trade capacity for performance &

reliability

• Haryadi S. Gunawi et al, “Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems”, FAST 2018
• B. Kim et al, “Design Tradeoffs for SSD Reliability”, FAST 2019

10

CVSS overview

11

CVSS overview

12

✓ Tune logical capacity dynamically
✓ Manage user data to avoid loss

CVSS overview

13

✓ Exclude aged blocks earlier
✓ Mitigate fail-slow symptoms

CVSS overview

14

✓ Provide host interfaces
✓ Orchestrate CV-FS and CV-SSD

Outline

• Background & motivation

• Design principles

• Capacity-variant storage system

• Evaluation

• Summary

15

Capacity-variant FS

• Log-structured file system (e.g., f2fs)
• Perform well on modern flash storage devices
• Elastic address space

16

• Requirements for logical capacity adjustment
1. Avoid data loss and maintain consistency

Capacity-variant FS

17

• Requirements for logical capacity adjustment
1. Avoid data loss and maintain consistency
2. Online, fine-grained adjustment

Capacity-variant FS

18

• Requirements for logical capacity adjustment
1. Avoid data loss and maintain consistency
2. Online, fine-grained adjustment
3. Overall low overhead

Capacity-variant FS

19

What are some potential approaches and
tradeoffs?

20
• Image from Google searches

Elastic logical capacity

File system designs for capacity variance

(a) Non-contiguous address space
✓ Incur lowest upfront cost
✗ Fragment address space
✗ Increase LFSs cleaning overhead

21

File system designs for capacity variance

(a) Non-contiguous address space
✓ Incur lowest upfront cost
✗ Fragment address space
✗ Increase LFSs cleaning overhead

(b) Data relocation

✓ Maintain address space contiguity
✗ Exert additional write on the SSD
✗ Stall user requests

22

File system designs for capacity variance

(a) Non-contiguous address space
✓ Incur lowest upfront cost
✗ Fragment address space
✗ Increase LFSs cleaning overhead

(b) Data relocation

✓ Maintain address space contiguity
✗ Exert additional write on the SSD
✗ Stall user requests

(c) Address remapping
✓ Maintain address space contiguity
✓ Negligible system overhead
? Require a special SSD command

23

Interface changes for capacity variance

• Remap (dstLPN, srcLPN, dstLength,
srcLength)

• Associate data from srcLPN +
srcLength - 1 to dstLPN

• dstLength is optionally used to
ensure I/O alignment.

• You Zhou et al, “Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to Eliminate Duplicate Writes”, FAST 2021
24

Interface changes for capacity variance

• Remap (L3, L5, 1, 1):
1. Issued by CV-FS

• You Zhou et al, “Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to Eliminate Duplicate Writes”, FAST 2021
25

Interface changes for capacity variance

• Remap (L3, L5, 1, 1):
1. Issued by CV-FS

2. Access L2P mapping: L5 à P6

• You Zhou et al, “Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to Eliminate Duplicate Writes”, FAST 2021
26

Interface changes for capacity variance

• Remap (L3, L5, 1, 1):
1. Issued by CV-FS

2. Access L2P mapping: L5 à P6

3. Check OOB of P6: validation

• You Zhou et al, “Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to Eliminate Duplicate Writes”, FAST 2021
27

Interface changes for capacity variance

• Remap (L3, L5, 1, 1):
1. Issued by CV-FS

2. Access L2P mapping: L5 à P6

3. Check OOB of P6: validation

4. Update L2P mapping: L3 à P6

• You Zhou et al, “Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to Eliminate Duplicate Writes”, FAST 2021
28

Interface changes for capacity variance

• Remap (L3, L5, 1, 1):
1. Issued by CV-FS

2. Access L2P mapping: L5 à P6

3. Check OOB of P6: validation

4. Update L2P mapping: L3 à P6

5. Update P2L mapping: P6 à L3

• You Zhou et al, “Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to Eliminate Duplicate Writes”, FAST 2021
29

Capacity-variant SSD

• Goal:
• Maintain performance even when aged
• Allow user-defined performance
• Achieve a better capacity-performance-reliability (CPR) tradeoff

• Approaches:
• Block management
• Wear focusing
• Life cycle management

30

Block management

• Define blocks based on the aging states:

• Young blocks: RBER <= ECC strength à Performant

• Middle-aged blocks: ECC strength < RBER < Threshold à Meet expectation

• Retired blocks: RBER >= Threshold and Erase count > Endurance à Fall below expectation

31

Wear focusing

• Focus the wear on a small amount of blocks
• Keep most in-used blocks at peak performance

• Exclude underperforming and aged blocks

(1) Ideal wear leveling (2) Not performing wear leveling (3) Wear focusing

SSD SSD SSD

à à

32

Wear focusing

• Keep most in-used blocks at peak performance and exclude
underperforming and aged blocks.

• Avoid wear leveling overhead:
• Static/Dynamic: affect WAF
• Effective under limited scenarios

‒ “Wear leveling is not perfect”

• Stathis Maneas et al, “Operational Characteristics of SSDs in Enterprise Storage Systems: A Large-Scale Field Study”, FAST 2022
• Ziyang Jiao et al, “Wear Leveling in SSDs Considered Harmful”, HotStorage 2022

33

Wear focusing

• Keep most in-used blocks at peak performance and exclude
underperforming and aged blocks.

• Avoid wear leveling overhead:
• Static/Dynamic: affect WAF
• Effective under limited scenarios

‒ “Wear leveling is not perfect”

• Stathis Maneas et al, “Operational Characteristics of SSDs in Enterprise Storage Systems: A Large-Scale Field Study”, FAST 2022
• Ziyang Jiao et al, “Wear Leveling in SSDs Considered Harmful”, HotStorage 2022

34

Wear focusing

• Keep most in-used blocks at peak performance and exclude
underperforming and aged blocks.

• Avoid wear leveling overhead:
• Static/Dynamic: affect WAF
• Effective under limited scenarios

‒ “Wear leveling is not perfect”

• Stathis Maneas et al, “Operational Characteristics of SSDs in Enterprise Storage Systems: A Large-Scale Field Study”, FAST 2022
• Ziyang Jiao et al, “Wear Leveling in SSDs Considered Harmful”, HotStorage 2022

35

✗ ✗✗

• Four scenarios when considering data characteristics:
1. Read-intensive data + young blocks
2. Write-intensive data + young blocks
3. Read-intensive data + middle-aged blocks
4. Write-intensive data + middle-aged blocks

Life cycle management

1 2 3 4

36

• Four scenarios when considering data characteristics:
1. Read-intensive data + young blocks
2. Write-intensive data + young blocks à✗ leveling wear
3. Read-intensive data + middle-aged blocks à✗ error correction
4. Write-intensive data + middle-aged blocks

Life cycle management

1 2 3 4

✓ wear focusing✓ performance ✗ wear focusing ✗ performance 37

Life cycle management

• Write-intensive data + young blocks à✗ leveling wear
• Allocation policy:

• Young blocks for GC
• Middle-aged blocks for the host

38

Life cycle management
• Write-intensive data + young blocks à✗ leveling wear

• Allocation policy:
• Young blocks for GC
• Middle-aged blocks for the host

• Read-intensive data + middle-aged blocks à✗ error correction
• Garbage collection policy:

• 𝑉𝑖𝑐𝑡𝑖𝑚 𝑠𝑐𝑜𝑟𝑒 = 𝑊𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 · 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑟𝑎𝑡𝑖𝑜
+ 𝑊𝑎𝑔𝑖𝑛𝑔 · 𝑎𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜
+ 𝑊𝑟𝑒𝑎𝑑 · 𝑟𝑒𝑎𝑑 𝑟𝑎𝑡𝑖𝑜

𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑟𝑎𝑡𝑖𝑜 =
𝑜𝑓 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑝𝑎𝑔𝑒𝑠
𝑜𝑓 𝑡𝑜𝑎𝑙 𝑝𝑎𝑔𝑒𝑠

, 𝑎𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =
𝑒𝑟𝑎𝑠𝑒 𝑐𝑜𝑢𝑛𝑡
𝑒𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒

𝑟𝑒𝑎𝑑 𝑟𝑎𝑡𝑖𝑜 =
𝑜𝑓 ℎ𝑜𝑠𝑡 𝑟𝑒𝑎𝑑

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ℎ𝑜𝑠𝑡 𝑟𝑒𝑎𝑑 𝑎𝑚𝑜𝑛𝑔 𝑢𝑛𝑟𝑒𝑡𝑖𝑟𝑒𝑑 𝑏𝑙𝑜𝑐𝑘𝑠 39

Outline

• Background & motivation

• Design principles

• Capacity-variant storage system

• Evaluation

• Summary

40

Evaluation setup

• Host environment
• CPU: Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz * 32
• Memory: Samsung 64GB DDR4 RAM * 16
• SSD: Intel DC P4510 1.6TiB
• OS: Ubuntu 20.04.5 LTS (Focal Fossa)

• Target configurations
• TrSS: F2FS + traditional SSD
• AutoStream: place data based on access pattern
• ttFlash: reduce latency with data reconstruction
• CVSS: our solution

• Workloads
• FIO, Filebench, Twitter traces, and YCSB

• Juncheng Yang et al, “A Large Scale Analysis of Hundreds of In-memory Cache Clusters at Twitter”, OSDI 2020
• Jingpei Yang et al, “AutoStream: Automatic Stream Management for Multi-streamed SSDs”, SYSTOR 2017
• Shiqin Yan et al, “Tiny-tail flash: Near-perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs”, FAST 2017
• Fu-Hsin Chen et al, “PWL: A Progressive Wear Leveling to Minimize Data Migration Overheads for NAND Flash Devices”, DATE 2015

FEMU configurations (Tr/CV-SSD)

Channels 8 Physical capacity 128 GiB

Luns per channel 8 Logical capacity 120 GiB

Planes per lun 1 Program latency 500 µs

Blocks per plane 512 Read latency 50 µs

Pages per block 1024 Erase latency 5 ms

Page size 4 KiB Wear leveling PWL

Endurance 300 ECC strength 50 bits

41

Evaluation overview

1. Can CVSS maintain performance while the underlying device ages?

2. How does CVSS perform compared to other techniques under real
workloads?

3. Can CVSS extend the device lifetime given different performance
requirements?

42

Synthetic workloads (FIO)

• Device utilization: 30%

• FIO read/write ratio: 0.5/0.5

• Measure until the performance drops below 50%

0.00

0.25

0.50

0.75

1.00

0

20

40

60

80

100

TBW (TB)

N
or

m
al

iz
ed

 r
ea

d

C
ap

ac
ity

 r
ed

uc
ed

(G
B)

10 20 300

0.00

0.25

0.50

0.75

1.00

0

20

40

60

80

100

TBW (TB)

N
or

m
al

iz
ed

 r
ea

d

C
ap

ac
ity

 r
ed

uc
ed

(G
B)

10 20 300

Zipfian workloads Random workloads

𝐶𝑉=>?@A=>=𝐶𝑉=>?@A=>=𝐶𝑉BC@DAE 𝐶𝑉BC@DAE

43

Synthetic workloads (FIO)

• Device utilization: 30%

• FIO read/write ratio: 0.5/0.5

• Measure until the performance drops below 50%

0.00

0.25

0.50

0.75

1.00

0

20

40

60

80

100

TBW (TB)

N
or

m
al

iz
ed

 r
ea

d

C
ap

ac
ity

 r
ed

uc
ed

(G
B)

10 20 300

0.00

0.25

0.50

0.75

1.00

0

20

40

60

80

100

TBW (TB)

N
or

m
al

iz
ed

 r
ea

d

C
ap

ac
ity

 r
ed

uc
ed

(G
B)

10 20 300

Zipfian workloads Random workloads

𝐶𝑉=>?@A=>=𝐶𝑉=>?@A=>=𝐶𝑉BC@DAE 𝐶𝑉BC@DAE

0.72× 0.6×

44

Trade capacity
for performance

Synthetic workloads (FIO)

• Device utilization: 30%

• FIO read/write ratio: 0.5/0.5

• Measure until the performance drops below 50%

0.00

0.25

0.50

0.75

1.00

0

20

40

60

80

100

TBW (TB)

N
or

m
al

iz
ed

 r
ea

d

C
ap

ac
ity

 r
ed

uc
ed

(G
B)

10 20 300

0.00

0.25

0.50

0.75

1.00

0

20

40

60

80

100

TBW (TB)

N
or

m
al

iz
ed

 r
ea

d

C
ap

ac
ity

 r
ed

uc
ed

(G
B)

10 20 300

Zipfian workloads Random workloads

𝐶𝑉=>?@A=>=𝐶𝑉=>?@A=>=𝐶𝑉BC@DAE 𝐶𝑉BC@DAE

0.72× 0.6×

45

Trade capacity
for performance

Average write throughput

1.3×

Twitter traces

• Key-value traces from Twitter production
• 36.7 GB key-value pairs + RocksDB

• Up to 65 GB during running due to RocksDB’s space amplification

• Juncheng Yang et al, “A Large Scale Analysis of Hundreds of In-memory Cache Clusters at Twitter”, OSDI 2020
46

Twitter traces

• Key-value traces from Twitter production
• 36.7 GB key-value pairs + RocksDB

• Up to 65 GB during running due to RocksDB’s space amplification

Trace03 Trace04 Trace06 Trace15 Trace31 Trace33 Trace38 Trace50 Average
0

Workloads

K
IO
PS

TrSS
AutoStream
ttFlash
CVSS

100

200

300

400

0.
24
0.
31

0.
11

0.
14

• Juncheng Yang et al, “A Large Scale Analysis of Hundreds of In-memory Cache Clusters at Twitter”, OSDI 2020
47

Twitter traces

• Key-value traces from Twitter production
• 36.7 GB key-value pairs + RocksDB

• Up to 65 GB during running due to RocksDB’s space amplification

Trace03 Trace04 Trace06 Trace15 Trace31 Trace33 Trace38 Trace50 Average
0

Workloads

K
IO
PS

TrSS
AutoStream
ttFlash
CVSS

100

200

300

400

0.
24
0.
31

0.
11

0.
14

• Juncheng Yang et al, “A Large Scale Analysis of Hundreds of In-memory Cache Clusters at Twitter”, OSDI 2020

3.16×

A single Get() can cause multiple physical reads:
all files in level 0 and one file from each of the other levels.

1.42×

48

Lifetime extension

• TBW before the device performance drops below 0.8, 0.6, 0.4, and 0 of the initial state

• ttFlash introduces additional write overhead coming from RAIN

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

(a) Zipfian (30% utilization) (b) Zipfian (70% utilization) (c) Random (30% utilization) (d) Random (70% utilization)

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

CVSS: accommodate more host writes
with different requirements

49

Lifetime extension

• TBW before the device performance drops below 0.8, 0.6, 0.4, and 0 of the initial state

• ttFlash introduces additional write overhead coming from RAIN

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

(a) Zipfian (30% utilization) (b) Zipfian (70% utilization) (c) Random (30% utilization) (d) Random (70% utilization)

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

CVSS: accommodate more host writes
with different requirements TrSS: most time device experiences

low-performance

50

Lifetime extension

• TBW before the device performance drops below 0.8, 0.6, 0.4, and 0 of the initial state

• ttFlash introduces additional write overhead coming from RAIN

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

(a) Zipfian (30% utilization) (b) Zipfian (70% utilization) (c) Random (30% utilization) (d) Random (70% utilization)

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

CVSS: accommodate more host writes
with different requirements TrSS: most time device experiences

low-performance
AutoStream: higher WL
overhead towards the end

51

Lifetime extension

• TBW before the device performance drops below 0.8, 0.6, 0.4, and 0 of the initial state

• ttFlash introduces additional write overhead coming from RAIN

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

(a) Zipfian (30% utilization) (b) Zipfian (70% utilization) (c) Random (30% utilization) (d) Random (70% utilization)

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

0.8 0.6 0.4 0.0
0

10

20

30

40

Performance requirements

H
os

t
w

ri
te

s
(T

B
W

) CVSS
TrSS
AutoStream

CVSS: accommodate more host writes
with different requirements TrSS: most time device experiences

low-performance
AutoStream: higher WL
overhead towards the end

52
More results are included in the paper!

Summary

• The current storage system abstraction of fixed capacity worsens aging-related
performance degradation for modern SSDs.

• The capacity-variant storage systems
• Relax the fixed-capacity abstraction of the underlying storage device
• Components

• CV-FS, CV-SSD, and CV-manager
• Benefits

• Performant SSD even when aged
• Extended lifetime for SSD-based storage
• Streamlined SSD design

53

• The current storage system abstraction of fixed capacity worsens aging-related
performance degradation for modern SSDs.

• The capacity-variant storage systems
• Relax the fixed-capacity abstraction of the underlying storage device
• Components

• CV-FS, CV-SSD, and CV-manager
• Benefits

• Performant SSD even when aged
• Extended lifetime for SSD-based storage
• Streamlined SSD design

Summary

54

System User data Available
Space

Bad Block
Area Firmware

• Image from Google searches

Summary

• The current storage system abstraction of fixed capacity worsens aging-related
performance degradation for modern SSDs.

• The capacity-variant storage systems
• Relax the fixed-capacity abstraction of the underlying storage device
• Components

• CV-FS, CV-SSD, and CV-manager
• Benefits

• Performant SSD even when aged
• Extended lifetime for SSD-based storage
• Streamlined SSD design

• Future work
• CV-RAID and new features

55

System User data Available
Space

Bad Block
Area Firmware

• Image from Google searches

Thank you
Any questions?

Contact: zjiao04@syr.edu
Source Code: https://github.com/ZiyangJiao/FAST24_CVSS_FEMU

56

https://github.com/ZiyangJiao/FAST24_CVSS_FEMU

