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Aging on modern SSDs

• Use an enterprise-grade NVMe drive
• Age through random writes (~100 TB/day)
• Measure read-only I/O

2



↓ 4.2%/PB written
↓ 4.3%/PB written

Aging on modern SSDs

• Use an enterprise-grade NVMe drive
• Age through random writes (~100 TB/day)
• Measure read-only I/O

3



The current storage abstraction

• Logical capacity is fixed:
• Assume physical capacity does not change 
• Expect a fail-stop behavior
• Built around traditional HDDs

• Not accurate for SSDs:
• Physical capacity naturally reduces
• Bad blocks accumulate
• Flash memory blocks fail partially

4
• Juwon Kim et al, “IPLFS: Log-Structured File System without Garbage Collection”, ATC 2022
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Tax from the fixed-capacity abstraction

• Haryadi S. Gunawi et al, “Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems”, FAST 2018

The fixed logical capacity
+

The decreased physical capacity
=
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Tax from the fixed-capacity abstraction

• Haryadi S. Gunawi et al, “Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems”, FAST 2018

The fixed logical capacity
+

The decreased physical capacity
=

• Maintain an illusion of a fixed-capacity deviceWear leveling & OP are required 

• Manifest the fail-slow symptomComplicated error-handling 
(ECC, data re-read, redundancy...)

• When exported capacity can’t be maintainedLifetime ends early
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The trends in SSD reliability
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• Yajuan Du et al, “Towards LDPC Read Performance of 3D Flash Memories with Layer-induced Error Characteristics”, TODAES 2023
• Seungwoo Son et al, “Differentiated Protection and Hot/Cold-aware Data Placement Policies through K-means Clustering Analysis for 3D-NAND SSDs”, Electronics 2022
• Kong-Kiat Yong et al, “Error Diluting: Exploiting 3-D NAND Flash Process Variation for Efficient Read on LDPC-based SSDs”, TCAD 2020
• B. Kim et al, “Design Tradeoffs for SSD Reliability”, FAST 2019
• Yixin Luo et al, “HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-recovery and Temperature Awareness”, HPCA 2018
• Xin Shi et al, “Program Error Rate-based Wear Leveling for NAND Flash Memory”, DATE 2018
• Yu cai et al, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis, and Modeling”, Proceedings of the IEEE 2017
• Yu cai et al, “Error Characterization, Mitigation, and Recovery in Flash-memory-based Solid-state Drives”, DATE 2013
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Design principles

• The fixed-capacity storage system
• Trade performance & reliability for 

capacity

• The capacity-variant storage system
• Trade capacity for performance & 

reliability 

• Haryadi S. Gunawi et al, “Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems”, FAST 2018
• B. Kim et al, “Design Tradeoffs for SSD Reliability”, FAST 2019 
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CVSS overview
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CVSS overview
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✓ Tune logical capacity dynamically 
✓ Manage user data to avoid loss



CVSS overview
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✓ Exclude aged blocks earlier
✓ Mitigate fail-slow symptoms



CVSS overview

14

✓ Provide host interfaces 
✓ Orchestrate CV-FS and CV-SSD



Outline

• Background & motivation

• Design principles

• Capacity-variant storage system

• Evaluation

• Summary

15



Capacity-variant FS

• Log-structured file system (e.g., f2fs)
• Perform well on modern flash storage devices
• Elastic address space
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• Requirements for logical capacity adjustment
1. Avoid data loss and maintain consistency

Capacity-variant FS
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• Requirements for logical capacity adjustment
1. Avoid data loss and maintain consistency
2. Online, fine-grained adjustment

Capacity-variant FS
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• Requirements for logical capacity adjustment
1. Avoid data loss and maintain consistency
2. Online, fine-grained adjustment
3.   Overall low overhead 

Capacity-variant FS
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What are some potential approaches and 
tradeoffs?

20
• Image from Google searches

Elastic logical capacity



File system designs for capacity variance

(a) Non-contiguous address space
✓ Incur lowest upfront cost
✗ Fragment address space
✗ Increase LFSs cleaning overhead
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File system designs for capacity variance

(a) Non-contiguous address space
✓ Incur lowest upfront cost
✗ Fragment address space
✗ Increase LFSs cleaning overhead

(b) Data relocation

✓ Maintain address space contiguity
✗ Exert additional write on the SSD
✗ Stall user requests

(c) Address remapping
✓ Maintain address space contiguity
✓ Negligible system overhead 
? Require a special SSD command
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Interface changes for capacity variance

• Remap (dstLPN, srcLPN, dstLength, 
srcLength)

• Associate data from srcLPN + 
srcLength - 1 to dstLPN

• dstLength is optionally used to 
ensure I/O alignment.

• You Zhou et al, “Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to Eliminate Duplicate Writes”, FAST 2021 
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Interface changes for capacity variance

• Remap (L3, L5, 1, 1):
1. Issued by CV-FS

• You Zhou et al, “Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to Eliminate Duplicate Writes”, FAST 2021 
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Interface changes for capacity variance

• Remap (L3, L5, 1, 1):
1. Issued by CV-FS

2. Access L2P mapping: L5 à P6

3. Check OOB of P6: validation

4. Update L2P mapping: L3 à P6
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Interface changes for capacity variance

• Remap (L3, L5, 1, 1):
1. Issued by CV-FS

2. Access L2P mapping: L5 à P6

3. Check OOB of P6: validation

4. Update L2P mapping: L3 à P6

5. Update P2L mapping: P6 à L3

• You Zhou et al, “Remap-SSD: Safely and Efficiently Exploiting SSD Address Remapping to Eliminate Duplicate Writes”, FAST 2021 
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Capacity-variant SSD

• Goal: 
• Maintain performance even when aged
• Allow user-defined performance
• Achieve a better capacity-performance-reliability (CPR) tradeoff

• Approaches:
• Block management
• Wear focusing
• Life cycle management

30



Block management

• Define blocks based on the aging states:

• Young blocks: RBER <= ECC strength à Performant 

• Middle-aged blocks: ECC strength < RBER < Threshold à Meet expectation

• Retired blocks: RBER >= Threshold and Erase count > Endurance à Fall below expectation
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Wear focusing

• Focus the wear on a small amount of blocks
• Keep most in-used blocks at peak performance

• Exclude underperforming and aged blocks

(1) Ideal wear leveling (2) Not performing wear leveling (3) Wear focusing

SSD SSD SSD

à à
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Wear focusing

• Keep most in-used blocks at peak performance and exclude 
underperforming and aged blocks. 

• Avoid wear leveling overhead:
• Static/Dynamic: affect WAF
• Effective under limited scenarios

‒ “Wear leveling is not perfect”

• Stathis Maneas et al, “Operational Characteristics of SSDs in Enterprise Storage Systems: A Large-Scale Field Study”, FAST 2022
• Ziyang Jiao et al, “Wear Leveling in SSDs Considered Harmful”, HotStorage 2022
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Wear focusing

• Keep most in-used blocks at peak performance and exclude 
underperforming and aged blocks. 

• Avoid wear leveling overhead:
• Static/Dynamic: affect WAF
• Effective under limited scenarios

‒ “Wear leveling is not perfect”

• Stathis Maneas et al, “Operational Characteristics of SSDs in Enterprise Storage Systems: A Large-Scale Field Study”, FAST 2022
• Ziyang Jiao et al, “Wear Leveling in SSDs Considered Harmful”, HotStorage 2022
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• Four scenarios when considering data characteristics:
1. Read-intensive data + young blocks
2. Write-intensive data + young blocks
3. Read-intensive data + middle-aged blocks 
4. Write-intensive data + middle-aged blocks

Life cycle management

1 2 3 4
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• Four scenarios when considering data characteristics:
1. Read-intensive data + young blocks
2. Write-intensive data + young blocks à✗ leveling wear
3. Read-intensive data + middle-aged blocks à✗ error correction
4. Write-intensive data + middle-aged blocks

Life cycle management

1 2 3 4

✓ wear focusing✓ performance ✗ wear focusing ✗ performance 37



Life cycle management

• Write-intensive data + young blocks à✗ leveling wear
• Allocation policy: 

• Young blocks for GC
• Middle-aged blocks for the host
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Life cycle management
• Write-intensive data + young blocks à✗ leveling wear

• Allocation policy: 
• Young blocks for GC
• Middle-aged blocks for the host

• Read-intensive data + middle-aged blocks à✗ error correction
• Garbage collection policy:

• 𝑉𝑖𝑐𝑡𝑖𝑚 𝑠𝑐𝑜𝑟𝑒 = 𝑊𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 · 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑟𝑎𝑡𝑖𝑜
+ 𝑊𝑎𝑔𝑖𝑛𝑔 · 𝑎𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜
+ 𝑊𝑟𝑒𝑎𝑑 · 𝑟𝑒𝑎𝑑 𝑟𝑎𝑡𝑖𝑜

𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑟𝑎𝑡𝑖𝑜 =
# 𝑜𝑓 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑝𝑎𝑔𝑒𝑠
# 𝑜𝑓 𝑡𝑜𝑎𝑙 𝑝𝑎𝑔𝑒𝑠

, 𝑎𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =
𝑒𝑟𝑎𝑠𝑒 𝑐𝑜𝑢𝑛𝑡
𝑒𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒

𝑟𝑒𝑎𝑑 𝑟𝑎𝑡𝑖𝑜 =
# 𝑜𝑓 ℎ𝑜𝑠𝑡 𝑟𝑒𝑎𝑑

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ℎ𝑜𝑠𝑡 𝑟𝑒𝑎𝑑 𝑎𝑚𝑜𝑛𝑔 𝑢𝑛𝑟𝑒𝑡𝑖𝑟𝑒𝑑 𝑏𝑙𝑜𝑐𝑘𝑠 39
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Evaluation setup

• Host environment
• CPU: Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz * 32 
• Memory: Samsung 64GB DDR4 RAM * 16
• SSD: Intel DC P4510 1.6TiB
• OS: Ubuntu 20.04.5 LTS (Focal Fossa)

• Target configurations
• TrSS: F2FS + traditional SSD
• AutoStream: place data based on access pattern
• ttFlash: reduce latency with data reconstruction
• CVSS: our solution

• Workloads
• FIO, Filebench, Twitter traces, and YCSB

• Juncheng Yang et al, “A Large Scale Analysis of Hundreds of In-memory Cache Clusters at Twitter”, OSDI 2020
• Jingpei Yang et al, “AutoStream: Automatic Stream Management for Multi-streamed SSDs”, SYSTOR 2017
• Shiqin Yan et al, “Tiny-tail flash: Near-perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs”, FAST 2017
• Fu-Hsin Chen et al, “PWL: A Progressive Wear Leveling to Minimize Data Migration Overheads for NAND Flash Devices”, DATE 2015

FEMU configurations (Tr/CV-SSD)

Channels 8 Physical capacity 128 GiB

Luns per channel 8 Logical capacity 120 GiB

Planes per lun 1 Program latency 500 µs

Blocks per plane 512 Read latency 50 µs

Pages per block 1024 Erase latency 5 ms

Page size 4 KiB Wear leveling PWL

Endurance 300 ECC strength 50 bits

41



Evaluation overview

1. Can CVSS maintain performance while the underlying device ages?

2. How does CVSS perform compared to other techniques under real 
workloads?

3. Can CVSS extend the device lifetime given different performance 
requirements?

42



Synthetic workloads (FIO)

• Device utilization: 30%

• FIO read/write ratio: 0.5/0.5

• Measure until the performance drops below 50%
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Average write throughput

1.3×



Twitter traces

• Key-value traces from Twitter production
• 36.7 GB key-value pairs + RocksDB 

• Up to 65 GB during running due to RocksDB’s space amplification

• Juncheng Yang et al, “A Large Scale Analysis of Hundreds of In-memory Cache Clusters at Twitter”, OSDI 2020
46



Twitter traces

• Key-value traces from Twitter production
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Twitter traces

• Key-value traces from Twitter production
• 36.7 GB key-value pairs + RocksDB

• Up to 65 GB during running due to RocksDB’s space amplification
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3.16×

A single Get() can cause multiple physical reads:
all files in level 0 and one file from each of the other levels.

1.42×
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Lifetime extension

• TBW before the device performance drops below 0.8, 0.6, 0.4, and 0 of the initial state

• ttFlash introduces additional write overhead coming from RAIN
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Lifetime extension
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More results are included in the paper! 



Summary

• The current storage system abstraction of fixed capacity worsens aging-related 
performance degradation for modern SSDs.

• The capacity-variant storage systems
• Relax the fixed-capacity abstraction of the underlying storage device
• Components

• CV-FS, CV-SSD, and CV-manager
• Benefits

• Performant SSD even when aged
• Extended lifetime for SSD-based storage
• Streamlined SSD design
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Summary

• The current storage system abstraction of fixed capacity worsens aging-related 
performance degradation for modern SSDs.

• The capacity-variant storage systems
• Relax the fixed-capacity abstraction of the underlying storage device
• Components

• CV-FS, CV-SSD, and CV-manager
• Benefits

• Performant SSD even when aged
• Extended lifetime for SSD-based storage
• Streamlined SSD design

• Future work
• CV-RAID and new features
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Thank you
Any questions?

Contact: zjiao04@syr.edu
Source Code: https://github.com/ZiyangJiao/FAST24_CVSS_FEMU
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https://github.com/ZiyangJiao/FAST24_CVSS_FEMU

