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File Systems meet Heterogeneous Memory
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Cache is important
• Large latency gap
• Large bandwidth gap
• Different semantics
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DAX is the truth
• Performance closes to DRAM
• Memory semantics
• Software cost is significant

PM is not perfect
• Latency fluctuates
• Limited bandwidth
• Limited concurrency

FLAC / FlacFS
(our work)

Cache is still valuable
• Performance of future PM 

(e.g., CXL PM) is diverse
• The potential has not yet 

been fully exploited 
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Cache? or Direct Access (DAX)?
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• Cache-based FS: EXT4

• DAX-based FS: EXT4-DAX, NOVA

• Experiment Setup: 10GB data; 2MB I/O; 1 thread



Cache? or Direct Access (DAX)?

Observation 1: 
Existing DAX and cache solutions are suboptimal,
but DRAM cache still has great value

There is no winner between Cache and DAX 
• Performance gap between PM and DRAM cannot 

be ignored

• Data locality is important for performance 
optimization

• DAX is an overkill in many real-world scenarios
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Cache? or Direct Access (DAX)?

Observation 1: 
Existing DAX and cache solutions are suboptimal,
but DRAM cache still has great value

Observation 2: 
Data transfer overhead between the file system
and application buffer is significant • Takes up more than 23% of the total overhead 

in cache-based file systems

• Takes up more than 96% of the total overhead 
in DAX-based file systems

Feb. 27 @ FAST’24



Cache? or Direct Access (DAX)?

Observation 1: 
Existing DAX and cache solutions are suboptimal,
but DRAM cache still has great value

Observation 2: 
Data transfer overhead between the file system
and application buffer is significant

Observation 3: 
“Cache Tax” is heavy, and it mainly includes the
overhead of data synchronization and migration

• Data synchronization (background dirty flushing) 
lead to 37% performance declines

• Data migration (cache miss handling) lead to 
65% performance declines
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Motivation
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Principle 2:
Reducing the impact of “cache tax” 
by hiding the data synchronization 
/migration overhead

Principle 1:
Optimizing data transfer between 
application and cache by zero-
copy and reducing two-level index 
overhead 
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Integrating Cache with Virtual Memory Management



FLAC Design
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Tech 1: Zero-Copy Caching

• Heterogeneous Page Table
• Unified and contiguous virtual memory 

address space
• Dynamically mapped to DRAM or PM as 

the page is cached or evicted

• PTEs of FLAC space are replicated in 
PM for fault recovery

• Page Attaching
• Map physical pages from the source 

address to destination address
• Set pages to read-only to ensure security

FLAC Design
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Optimizing APP-Cache Data Transfer
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Tech 2: Parallel-Optimized 
Cache Management

• 2-Phase Flushing
• Collection phase (lock)
• Persistence phase (lock-free)

• Async Cache Miss Handling
• Directly attach missed pages
• Async load missed pages

FLAC Design
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FLAC Design
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FLAC Design

Challenge#1 Page Unaligned à Sliding Window Buffer

Page

SW
 

Bu
ff

er File

Copy the data 
from file 

Example: File write by sliding
window buffer

Page

Valid Data 
Window

Challenge#2 COW Page Fault à bfault & detach
• Call bfault/detach before reusing the R/W buffer
• Batch fault (bfault) — For: Need to process data in the buffer

• Batching the data copies and TLB flushes
• Detach — For: Just reuse the space of the buffer

• Mapping to empty pages in batch

Requested 
Data

• Use SWbuf to proxy buffer management in application
• Map all pages containing required data
• Use sliding window to denote valid data



Case Study: FlacFS
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FlacFSMetadata Area
(Userspace)

Data Area
(Kernel)

FLAC

DRAM 
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PM Data (Page) Area 
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PM 
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Memory

inode: <……, FileSize,  StartAddr, ……>

Adjustable 
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Meta File Data
(consecutive addr)Metadata & Data Management

• Inodes hash Table (DRAM+PM)
• File’s data is on consecutive address

(insighted by ctFS)

Architecture
• Metadata area is on shared memory
• Data area is on FLAC space

Consistency
• FS-FLAC collaboration logging

• Put FS-level & FLAC-level metadata 
into the same log entry

• Data flushing is log-structured

Shared 
Memory



Benchmark Performance
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Summary
• More than one order of magnitude 

over other FSes in write/read 
operations

• Better scalability

• Comparable to the best DAX FS and 
better than EXT4 in fsync

Experiment Setup: 2MB I/O; 64GB data

NO
VA

Split
FS

ct
FS

EXT4-
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EXT4 FlacFS

Mode sync POSIX

Cons. Meta Meta+Data

Cache 
Flush

N/A 100
ms

10
ms



Design Analysis
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Impact of I/O Size

• 64 concurrent threads

• 64 files

• I/O sizes range from 4KB to 16MB

Summary
• FlacFS is more friendly to I/O >= 64KB

• I/O >= 64KB is common in production



Design Analysis
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Impact of DRAM Cache Size
• Append 16GB data to files
• The smaller the threshold, the

greater the number of eviction

Impact of Page Alignment (swbuf)
• Overwrite 1GB data in the file
• Use sliding window buffer

Impact of COW Page Fault
• Rewrite the buffer in different

proportions by memset after
each file access

Summary
Page eviction is efficient in FLAC

No 
eviction

Almost 
no impact

Summary
Unalignment has little impact on
I/O >= 64KB

Summary
bfault/detach significantly reduce
the COW page fault overhead

78.3%



Real-World Application
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Experiment Setup
• grep: read-intensive
• tar: read- & write-intensive
• bigsort: read- & write- & compute-intensive 

(134 million integers)
• All optimizations (bfault/detach) are used

where appropriate

Summary
• Up to 6.7X improvement vs. DAX-based FS
• Up to 9.4X improvement vs. Cache-based FS

• bfault/detach is efficient in real-world scenarios



Conclusion

• Analysis of the cache/DAX solution on heterogeneous memory
• Cache has great value if designed properly
• Data transfer overhead is high
• “Cache Tax” is heavy 

• FLAC, a flat cache framework for heterogeneous memory
• Zero-copy caching
• Parallel-optimized cache management

• FlacFS, a file system based on FLAC
• Orders of magnitude performance improvement in micro benchmark
• Several times performance improvement in real-world applications
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Thanks :)
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