

MiDAS:

Minimizing Write Amplification in Log-Structured Systems through Adaptive Group Number and Size Configuration

<u>Seonggyun Oh</u>, ^{}Jeeyun Kim, Soyoung Han, Jaeho Kim[‡], Sungjin Lee, Sam H. Noh[†]

DGIST [†]Virginia Tech [‡]Gyeongsang National University

★ These authors equally contributed to this work

22nd USENIX Conference on File and Storage Technologies

Log-Structured Systems

- Widely used in various applications
 - key-value stores, file systems, and storage firmware
- Suitable for emerging storage media that only supports append-only writes

LSM-Tree based KV stores

File systems (F2FS, BtrFS) Storage firmware (Flash-based SSDs, ZNS SSDs)

Problem: GC Overhead in Log-structured Systems

- For GC, systems first select victim segment and rewrite valid blocks into free space
 - Incurs additional writes by copying valid blocks: GC writes
- Write amplification factor (WAF): The factor that shows additional writes by GC
 - $WAF = \frac{User writes + GC writes}{User writes}$

User writes

 $\mathbf{\cap}$

Approach for Reducing WAF: Data Placement

- Goal of data placement is
 - to group together data blocks with similar invalidation time

If blocks with similar invalidation times are grouped together

No valid data! (WAF = 1)

Group data blocks with similar invalidation time

Approach for Reducing WAF: Data Placement (cont')

- Data blocks are placed in groups according to their hotness
 - blocks with short invalidation time: Assigned into hot groups

Approach for Reducing WAF: Data Placement (cont')

- Data blocks are placed in groups according to their hotness
 - Blocks with short invalidation time: Assigned into hot groups

Then, what is optimal data placement?

Index

- Log-Structured System and Its Problem
- Motivation
 - What is Optimal Solution?
 - Why Not Optimal?
- MiDAS Design
- Evaluation
- Conclusion

 $\mathbf{\cap}$

Optimal Data Placement

- Three conditions for optimal data placement
 - Predict invalidation time of all blocks exactly

- Three conditions for optimal data placement
 - Predict invalidation time of all blocks exactly
 - Set number of groups based on number of colors

- Three conditions for optimal data placement
 - Predict invalidation time of all blocks exactly
 - Set number of groups based on number of colors

 \cap

- Three conditions for optimal data placement
 - Predict invalidation time of all blocks exactly
 - Set number of groups based on number of colors

- Three conditions for optimal data placement
 - Predict invalidation time of all blocks exactly
 - Set number of groups based on number of colors

- Three conditions for optimal data placement
 - Predict invalidation time of all blocks exactly
 - Set number of groups based on number of colors
 - Set appropriate group size

 $\mathbf{\cap}$

- Three conditions for optimal data placement
 - Predict invalidation time of all blocks exactly
 - Set number of groups based on number of colors
 - Set appropriate group size

- Three conditions for optimal data placement
 - Predict invalidation time of all blocks exactly
 - Set number of groups based on number of colors
 - Set appropriate group size

Index

- Log-Structured System and Its Problem
- Motivation
 - What is Optimal Solution?
 - Why Not Optimal?
- MiDAS Design
- Evaluation
- Conclusion

techniques?

 $\mathbf{\cap}$

Oracle Algorithm (ORA)

- Implementing Optimal algorithm is NP-Complete
- We implement Oracle algorithm (ORA) to imitate Optimal algorithm
 - Perform trace analysis to find when data blocks are invalidated (updated)
 - Utilize K-mean clustering to decide the number of groups
 - Experientially find appropriate group sizes

ORA vs SOTA Techniques

- Large gap between ORA and existing SOTA techniques
 - SOTA: MIDA [APSYS'21], SepBIT [FAST'22]

- SepBIT [Separating Data via Block Invalidation Time Inference for Write Amplification Reduction in Log-Structured Storage (FAST'22)]

- MiDA [Lightweight Data Lifetime Classification Using Migration Counts to Improve Performance and Lifetime of Flash-Based SSDs (APSys'21)]
- AutoStream [AutoStream: Automatic stream management for multi-streamed SSDs (SYSTOR'17)]
- CAT [Cleaning Policies in Mobile Computers Using Flash Memory (Journal of Systems and Software 1999)]

ORA vs SOTA Techniques

- Large gap between ORA and existing SOTA techniques
 - SOTA: MiDA [APSYS'21], SepBIT [FAST'22]

Why the gap between ORA and SOTA?

1. Inaccurate Estimation

• SOTA techniques estimate block invalidation time inaccurately

1. Inaccurate Estimation (cont')

• SOTA techniques estimate block invalidation time inaccurately

2. Lack Consideration of Group Number (cont')

• Fail to set appropriate number of groups

3. Lack Consideration of Group Size

• Fail to set appropriate group sizes

Motivation Summary: Why Not Optimal?

- **1**. Inaccurate prediction of block invalidation time
 - blocks may be assigned to wrong group

How to predict invalidation time accurately?

- 2. Lack consideration of group number
- 3. Lack consideration of group sizes

Lack consideration of group configuration

- Inappropriate group configuration incur unnecessary data copies

How to find best group configuration?

Accurate invalidation time prediction

Appropriate group number

X Appropriate group size

Index

- MCAM
- UID
- Evaluation
- Conclusion

Design Goal #1: Accurate Invalidation Time Prediction

- How to accurately estimate invalidation?
 Fortunately, we have hints from previous work
- Each method shows different strength

Design Goal #2: Finding Best Configuration

• How to find best number of groups and their sizes?

STOP What is "**best**"? \rightarrow Lowest WAF!

- How to estimate WAF for given workload and system?
 - Mathematical modeling of system and workload pattern analysis

Design Overview of MiDAS

2 Finding best configuration by WAF prediction module (MCAM and UID) for given group configuration

Design #1: Accurate Invalidation Time Prediction

- Hot/cold block separation using accurate block invalidation time estimation methods
 - Hot block separation: Use SepBIT method!
 - Separating hot blocks using latest update interval

 $\mathbf{\cap}$

Design #1: Hot-Cold Threshold

- Invalidation time threshold separates hot and cold blocks
 - Invalidation time $\leq Th$: HOT

 \geq *Th*: Cold

• Question: How to set <u>hot-cold threshold?</u>

Design #1: Accurate Invalidation Time Prediction

- Hot/cold block separation using accurate block invalidation time estimation methods
 - Hot block separation: Use SepBIT method!
 - Separating hot blocks using latest update interval
 - Cold block separation: Use MiDA method!
 - Separating cold blocks using migration count (age ∝ migration count)

Cold block separation using migration count (age)

- Two elements for WAF prediction to find best group configuration and hot-cold threshold
 - Mathematical system modeling -> Markov chain-based analytical model (MCAM)

- Two elements for WAF prediction to find best group configuration and hot-cold threshold
 - Mathematical system modeling -> Markov chain-based analytic model (MCAM)
 - Workload pattern analysis -> Update interval distribution (UID) for incoming blocks

- Finding best one by evaluating WAF for various combinations of hot-cold threshold and group configuration
 - Combination: hot-cold threshold and group configuration

Hot-cold threshold Group configuration

- Finding best one by evaluating WAF for various combinations of hot-cold threshold and group configuration
 - Combination: hot-cold threshold and group configuration

- Finding best one by evaluating WAF for various combinations of hot-cold threshold and group configuration
 - Combination: hot-cold threshold and group configuration

- Finding best one by evaluating WAF for various combinations of hot-cold threshold and group configuration
 - Combination: hot-cold threshold and group configuration

Check other combinations

- Finding best one by evaluating WAF for various combinations of hot-cold threshold and group configuration
 - Combination: hot-cold threshold and group configuration

Check other combinations

Index

- Log-Structured System and its problem
- Motivation
- MiDAS Design
 - Design Goal
 - Design Overview
 - Accurate invalidation time prediction
 - Finding best group configuration
 - MCAM: Markov-Chain based Analytical Model
 - UID: Update Interval Distribution
- Evaluation
- Conclusion

 $\mathbf{\cap}$

Markov Chain-based Analytical Model (MCAM)

- Two main components in MCAM
 - States: Data blocks in MiDAS have one of two states: Free or HOT~GN
 - Free: Block is invalidated and reclaimed for future write
 - Transition probabilities: Movement ratios between those states

WAF Prediction using MCAM

- Initial state
 - All blocks are *Free*
- Assumption
 - Blocks in HOT state are invalidated within HOT group
 - Transition probability from HOT to G1 is 0

- Step update
 - Blocks are moved according to transition probabilities

Free blocks are moved according to transition probabilities from *Free to HOT* and from *Free* to G1

- Step update
 - Blocks are moved according to transition probabilities
 - Step update is repeated until number of blocks in state converges
 - Values (number of blocks) are guaranteed to be converged *

* [Markov chains: Gibbs fields, Monte Carlo simulation, and queues (Springer Science & Business Media, 2001)]

- Step update
 - Blocks are moved according to transition probabilities
 - Step update is repeated until number of blocks in state converges
 - Values (number of blocks) are guaranteed to be converged *

* [Markov chains: Gibbs fields, Monte Carlo simulation, and queues (Springer Science & Business Media, 2001)]

- WAF prediction
 - Utilizing number of blocks for *HOT~*GN in final step
- Recall definition of WAF

• WAF = $\frac{User writes + GC writes}{User writes} = \frac{(B+C) + (D+\dots+N)}{B+C}$

Remaining Issue: Obtaining

transition probabilities using UID!

Update Interval Distribution (UID)

- UID is update interval distribution for incoming blocks into system
 - UID can be created by workload monitoring
- UID provides probabilistic statistics on what update interval blocks will have

Predicting Transition Probabilities using UID

- For given group configuration and hot-cold threshold,
- Estimation of transition probabilities from Free to HOT and from Free to G1
 - Ratio of blocks with update interval shorter than hot-cold threshold is equal to transition probability from Free to HOT

Predicting Transition Probabilities using UID (cont')

- For given group configuration and hot-cold threshold,
- Estimation of transition probability from G1 to G2
 - Ratio of blocks with update interval longer than guaranteed invalidation time of Gi is equal to transition probability from G1 to G2

48

Other Issues in MiDAS

- Finding best configuration
 - Evaluating all possible configurations is time-consuming
 - MiDAS adopts time-efficient algorithm to find configuration that provides sufficiently low WAF
- Updating group configuration *for changed workloads*
 - MiDAS may not work well when workload I/O patterns change rapidly
 - MiDAS performs periodic workload monitoring to deal with workload pattern change and irregular I/O patterns

Check our paper for details!

Index

- Log-Structured System and its problem
- Motivation
- MiDAS Design
- Evaluation
 - Experimental Setup
 - Experimental Results
- Conclusion

0

Experimental Setup

- Implemented on FPGA-based SSD prototype
 - 128GB capacity with 4KiB blocks and 64MiB segments
- Benchmark
 - Varmail of Filebench
 - YCSB-A and –F on MySQL
 - TPC-C on MySQL
 - Alibaba Cloud trace and Exchange of Microsoft Enterprise trace
- SOTA GC techniques
 - CAT, AutoStream, MiDA and SepBIT

- Does MiDAS effectively reduce WAF compared to other SOTA techniques?
- How does MiDAS reduce WAF?
- Does MiDAS work well with low-overhead?

Ο

WAF Analysis

- 25% reduced WAF compared to other SOTA techniques
 - 16.5% reduced WAF compared to SepBIT
- No WAF reduction in Alibaba workload

a workload For throughput, MiDAS is better

- Not enough time to collect workload information due to short trace file
- Irregular I/O pattern in Alibaba workload

 $\mathbf{\cap}$

Impact of Each Design of MiDAS

- Baseline: MiDA data placement based on migration count (age)
 - +HotSep: Hot block separation using update interval for accurate prediction
 - +GrpConf: Applying best hot-cold threshold and group configuration
- 12% and 31% reduced WAF for +HotSep and +GrpConf compared to baseline

Throughput and Overhead Analysis

- 2.55x, 1.24x, and 1.15x higher throughput than PageFTL, MiDA, and SepBIT
 - Low GC overhead
 - Low computation overhead
 - 9% higher throughput than SepBIT in Alibaba workload
- Low CPU overhead to run MiDAS compared to SepBIT

Conclusion

- Limitation of existing techniques:
 - Inaccurate invalidation time prediction
 - Lack of consideration for number of groups and their sizes
- Solution: MiDAS mitigates GC overhead for log-structured systems by overcoming limitations of existing techniques
 - Employments of analytical models: UID and MCAM, to find best hot-cold threshold and group configuration
- Results
 - 25% reduced WAF
 - 54% improved throughput
 - Low overhead

 $\mathbf{\cap}$

Thank you

Seonggyun Oh (sungkyun123@dgist.ac.kr)

 $\mathbf{\cap}$