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Motivation

• In-memory caches are key for high performance

• Important to model these caches to properly configure size
• Too small → Poor performance
• Too large → Wasted resources / High cost

• Modelling done online to dynamically adjust cache

Main memory

Model Cache
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Miss Ratio Curves (MRCs)

Only known tool to show trade-off between cache size and miss ratio
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MRCs are eviction policy-specific

Many policies exist

• LRU

• LFU

• FIFO

• 2Q

• S3-FIFO

• etc.

But which do we use?
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Many MRC generation algorithms exist

Mattson

StatStack
[ISPASS'10]

AET
[ATC'16]

Counter Stacks
[OSDI'14]

Olken

MiniSim
[ATC'17]

Bennett

Mimir
[SOCC'14]

RAR-CM
[ATC'20]
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All but MiniSim only work for LRU

Mattson

StatStack
[ISPASS'10]

AET
[ATC'16]

Counter Stacks
[OSDI'14]

Olken Bennett

Mimir
[SOCC'14]

RAR-CM
[ATC'20]

MiniSim
[ATC'17]
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Simulations and Miniature Simulations (MiniSim)

• Many individual simulations (e.g., 100)

• Final miss ratios are used to construct MRCs

• Separate series of sims per eviction policy

LRFU
2Q

FIFO

LFU

Access stream
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Limitations of MiniSim

• High memory usage

• A priori specification of cache sizes to simulate
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Kosmo - Key ideas

Maintained throughout

Reconstructed dynamically

Each has own copy

All share one copy

MiniSim

Kosmo

Object allocation in caches Simulated cache lifetime
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Kosmo - How do we reconstruct a cache’s stack?

For a cache of size S , for each object, Kosmo determines:

1. If it exists in the cache

2. Its position in the cache’s stack
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Kosmo – LRU as an example

How do we determine an object’s position in an LRU stack?

Object O
<last_access_time = 5>
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Kosmo – LRU as an example

Object O
<last_access_time = 5>

O

Stack size = Infinite
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Kosmo – LRU as an example

Object O
<last_access_time = 5>

Stack size = 4

?
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Kosmo – LRU as an example

Object O
<last_access_time = 5>

O

Stack size = 4

Evicted @ |1|
Evicted @ |2|
Evicted @ |3|

"Eviction map"
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Kosmo – Extending to LFU

Object O
<last_access_time = 5>
<frequency_count = 3>

Evicted @ |1| when FC = 3
Evicted @ |2| when FC = 2
Evicted @ |3| when FC = 2

LFU

Evicted @ |1|
Evicted @ |2|
Evicted @ |3|

LRU
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Kosmo – Reconstructing cache stacks

Using eviction maps, we can reconstruct a cache of any size.
No a priori specification of cache sizes needed!
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Kosmo – Keeping eviction maps up-to-date

On each access, evictions may occur in some caches

• Eviction maps must be remain up-to-date!
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Kosmo – Step 1

All caches in which “B” does not exist will have an eviction

Caches in which
"B" does not exist
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Kosmo – Step 2

Reconstruct only these caches
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Kosmo – Step 3

Determine which objects are evicted from these caches
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Kosmo – Step 3

Update these objects’ eviction maps
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Kosmo – Many eviction records!

Problem: Storing a record of each eviction for each object is costly
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Kosmo – Eviction record pruning

Eviction maps may contain redundant entries

Object O
<last_access_time = 5>

Evicted @ |1|
Evicted @ |2|
Evicted @ |3|
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Kosmo – Eviction record pruning

Reduce size of eviction maps by pruning redundant entries

Object O
<last_access_time = 5>

Evicted @ |1|
Evicted @ |2|
Evicted @ |3|
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Kosmo – Eviction record pruning
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Kosmo – Many reconstructed caches!

Problem: Many cache stacks are reconstructed on each access
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Kosmo – Reduced number of reconstructed caches

• Reduce number of reconstructed cache stacks to a configurable value

• Performance versus accuracy trade-off
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Kosmo – Many objects!

Problem: The number of objects can grow quite large
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Kosmo – SHARDS

• Use SHARDS sampling
• Reduced number of stored objects to a small constant
• Reduced overhead by a factor of over 1,000
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Kosmo – Results

How does Kosmo compare to MiniSim?
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Memory usage
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Conclusion

• Modelling non-LRU policies requires Kosmo or MiniSim

• The overhead of MRC generation is important
• Kosmo has a significantly lower memory footprint than MiniSim

• Kosmo removes need for a priori specification of parameters

Main memory

Model Cache
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