
Kosmo: Efficient Online Miss Ratio Curve Generation
for Eviction Policy Evaluation

Kia Shakiba, Sari Sultan, and Michael Stumm

University of Toronto

1 / 32



Motivation

• In-memory caches are key for high performance

• Important to model these caches to properly configure size
• Too small → Poor performance
• Too large → Wasted resources / High cost

• Modelling done online to dynamically adjust cache

Main memory

Model Cache

2 / 32



Miss Ratio Curves (MRCs)

Only known tool to show trade-off between cache size and miss ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70

M
is

s 
ra

tio

Size (GiB)

Cliff

Plateau

3 / 32



MRCs are eviction policy-specific

Many policies exist

• LRU

• LFU

• FIFO

• 2Q

• S3-FIFO

• etc.

But which do we use?

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70
M

is
s 

ra
tio

Size (GiB)

LRU
LFU
2Q

S3-FIFO

4 / 32



Many MRC generation algorithms exist

Mattson

StatStack
[ISPASS'10]

AET
[ATC'16]

Counter Stacks
[OSDI'14]

Olken

MiniSim
[ATC'17]

Bennett

Mimir
[SOCC'14]

RAR-CM
[ATC'20]

5 / 32



All but MiniSim only work for LRU

Mattson

StatStack
[ISPASS'10]

AET
[ATC'16]

Counter Stacks
[OSDI'14]

Olken Bennett

Mimir
[SOCC'14]

RAR-CM
[ATC'20]

MiniSim
[ATC'17]

6 / 32



Simulations and Miniature Simulations (MiniSim)

• Many individual simulations (e.g., 100)

• Final miss ratios are used to construct MRCs

• Separate series of sims per eviction policy

LRFU
2Q

FIFO

LFU

Access stream

7 / 32



Limitations of MiniSim

• High memory usage

• A priori specification of cache sizes to simulate

1 MiB

10 MiB

100 MiB

1 GiB

10 GiB

M
em

or
y

LFU FIFO 2Q LRFU LRFU
2Q

FIFO

LFU

Access stream

Object O

8 / 32



Kosmo - Key ideas

Maintained throughout

Reconstructed dynamically

Each has own copy

All share one copy

MiniSim

Kosmo

Object allocation in caches Simulated cache lifetime

9 / 32



Kosmo - How do we reconstruct a cache’s stack?

For a cache of size S , for each object, Kosmo determines:

1. If it exists in the cache

2. Its position in the cache’s stack

10 / 32



Kosmo – LRU as an example

How do we determine an object’s position in an LRU stack?

Object O
<last_access_time = 5>

11 / 32



Kosmo – LRU as an example

Object O
<last_access_time = 5>

O

Stack size = Infinite

12 / 32



Kosmo – LRU as an example

Object O
<last_access_time = 5>

Stack size = 4

?

13 / 32



Kosmo – LRU as an example

Object O
<last_access_time = 5>

O

Stack size = 4

Evicted @ |1|
Evicted @ |2|
Evicted @ |3|

"Eviction map"

14 / 32



Kosmo – Extending to LFU

Object O
<last_access_time = 5>
<frequency_count = 3>

Evicted @ |1| when FC = 3
Evicted @ |2| when FC = 2
Evicted @ |3| when FC = 2

LFU

Evicted @ |1|
Evicted @ |2|
Evicted @ |3|

LRU

15 / 32



Kosmo – Reconstructing cache stacks

Using eviction maps, we can reconstruct a cache of any size.
No a priori specification of cache sizes needed!

Objects

Eviction maps

C D

C

D

C

B

B

D

A

C

Reconstructed stacks

B

D

A

C

|1| |2| |3| |4|

16 / 32



Kosmo – Keeping eviction maps up-to-date

On each access, evictions may occur in some caches

• Eviction maps must be remain up-to-date!

17 / 32



Kosmo – Step 1

All caches in which “B” does not exist will have an eviction

Caches in which
"B" does not exist

B

D

A

C

Objects

Eviction maps

B Access

18 / 32



Kosmo – Step 2

Reconstruct only these caches

B Access
B

D

A

C

Objects

Eviction maps

C

C

D

Reconstruct

Caches in which
"B" does not exist

19 / 32



Kosmo – Step 3

Determine which objects are evicted from these caches

B Access
B

D

A

C

Objects

Eviction maps

C

C

D

Evict

B B

Caches in which
"B" does not exist

20 / 32



Kosmo – Step 3

Update these objects’ eviction maps

B

D

A

C

Objects

Eviction maps

Evicted @ |1|
Evicted @ |2|

21 / 32



Kosmo – Many eviction records!

Problem: Storing a record of each eviction for each object is costly

22 / 32



Kosmo – Eviction record pruning

Eviction maps may contain redundant entries

Object O
<last_access_time = 5>

Evicted @ |1|
Evicted @ |2|
Evicted @ |3|

23 / 32



Kosmo – Eviction record pruning

Reduce size of eviction maps by pruning redundant entries

Object O
<last_access_time = 5>

Evicted @ |1|
Evicted @ |2|
Evicted @ |3|

24 / 32



Kosmo – Eviction record pruning

 0  1×106  2×106  3×106  4×106  5×106  6×106

Access count

Pruning
No pruning

6 6 6 6 6

Av
er

ag
e 

# 
ev

ic
tio

n 
re

co
rd

s

1

0

10

100

1000

387x
reduction

25 / 32



Kosmo – Many reconstructed caches!

Problem: Many cache stacks are reconstructed on each access

26 / 32



Kosmo – Reduced number of reconstructed caches

• Reduce number of reconstructed cache stacks to a configurable value

• Performance versus accuracy trade-off

0

5

10

15

20

25

30

35

40

45

1 5 10 20 100  

M
AE

 (%
)

Number of reconstructed caches

27 / 32



Kosmo – Many objects!

Problem: The number of objects can grow quite large

28 / 32



Kosmo – SHARDS

• Use SHARDS sampling
• Reduced number of stored objects to a small constant
• Reduced overhead by a factor of over 1,000

29 / 32



Kosmo – Results

How does Kosmo compare to MiniSim?

30 / 32



Memory usage

M
iniSim

Kosm
o

M
iniSim

 

Kosm
o 

M
iniSim

  

Kosm
o  

M
iniSim

   

Kosm
o   

1 MiB

10 MiB

100 MiB

1 GiB

10 GiB
M

em
or

y
LFU FIFO 2Q LRFU

31 / 32



Conclusion

• Modelling non-LRU policies requires Kosmo or MiniSim

• The overhead of MRC generation is important
• Kosmo has a significantly lower memory footprint than MiniSim

• Kosmo removes need for a priori specification of parameters

Main memory

Model Cache

32 / 32


