Seraph: Towards Scalable and Efficient Fully-external Graph Computation via On-demand Processing

Tsun-Yu Yang, Yizou Chen, Yuhong Liang, and Ming-Chang Yang The Chinese University of Hong Kong

Outline

- Introduction
- Background and Motivation
- Seraph
 - Hybrid Format
 - Vertex Passing
 - Selective Pre-computation
- Evaluation

Graph and Graph Systems

- Graph are powerful data structures to describe the relationship.
 - Store the entities as *vertices* and the connection between entities as *edges*.
 - Widely used in different fields, such as networking, social media, and bioinformatics.
- Against this background, *graph systems* are proposed to optimize the execution of graph algorithms.
- Based on how we are using the memory and storage, the graph systems can be divided into three different types.
 - Shared-memory
 - Semi-external
 - Fully-external

Architectures of Graph Systems

(e.g., FlashGraph [FAST'15], Graphene [FAST'17]) (e.g., GraphChi [OSDI'12], GridGraph⁴[ATC'1**4**])

Investigations of Graph Systems

Investigations of Graph Systems

Outline

Introduction

- Background and Motivation
- Seraph
 - Hybrid Format
 - Vertex Passing
 - Selective Pre-computation
- Evaluation

Existing Fully-external Graph Systems

Motivation

- Study GridGraph, CLIP, and GridGraph-ODP.
- Evaluating with four types of storage drives.
 - HDD, SATA SSD, NVMe SSD, and ULL SSD

GridGraph@ATC'15

A baseline system which adopts streaming-based processing.

GridGraph CLIP GridGraph-ODP CLIP@ATC'17 2000 1894.0 (sec) An advanced version of 1436.9 1500 streaming-based processing Time 1000 658.2 500 GridGraph-ODP Exeuction 300 200 A baseline system which 110.4 adopts on-demand 100 67.3 50.9 38.9 27.7 55.7 39.9 processing. 0 SATA SSD HDD NVMe SSD ULL SSD

Outline

Introduction

- Background and Motivation
- Seraph
 - Hybrid Format
 - Vertex Passing
 - Selective Pre-computation
- Evaluation

Overview of Seraph

On-demand Processing on Traditional Formats

vertex attributes

• There is a trade-off to consider when applying on-demand processing on the traditional formats.

Hybrid Format

• Hybrid format → Take advantage of both Row & Grid.

Thus, the execution on **Row Format** still leads to bad locality of access.

Vertex Passing

• The main concept of Vertex Passing is to delay vertex writes as logs and then create good locality of attribute access.

Selective Pre-Computation

• Given that a common I/O block is typically larger than the edge list, we introduce selective pre-computation to increase the utilization of loaded data.

Outline

Introduction

- Background and Motivation
- Seraph
 - Hybrid Format
 - Vertex Passing
 - Selective Pre-computation
- Evaluation

Evaluation Setup

- Evaluated SOTA graph systems:
 - Fully-external: GridGraph@atc'15, V-Part@Fast'19, CLIP@atc'17, and Lumos@atc'19
 - Semi-external: Graphene@FAST'17
 - Shared-memory: Ligra+@DCC'15
- Five graph algorithms are evaluated:
 - Breath-first Search (BFS), Weakly Connected Component (WCC), KCore, All-Pair Shortest Pair (APSP), and PageRank (PR).

ets:	Name	V	E	Graph Size
	Twitter	42 M	1.4 B	11.2 GB
	Gsh2015	988 M	33.88 B	271 GB
	Eu2015	1.1 B	91.8 B	734 GB
	RMAT	8.6 B	112 B	1.7 TB

• Graph datasets:

Fully-External Graph System Comparisons

Memory Scalability

(d) Execution time on APSP.

Conclusion

- This work develops Seraph, an efficient fully-external graph computation system enable scaling graph processing for large-scale graphs on single machines.
- Seraph is developed based on the principle of on-demand processing. Three designs are proposed in Seraph for further performance improvement.
 - Hybrid Format.
 - Vertex Passing.
 - Selective Pre-computation.
- The evaluation shows that Seraph is an efficient fully-external graph system.

Thank you for your attention Q&A