
Seraph: Towards Scalable and Efficient
Fully-external Graph Computation via

On-demand Processing
Tsun-Yu Yang, Yizou Chen, Yuhong Liang, and Ming-Chang Yang

The Chinese University of Hong Kong

22nd USENIX Conference on File and Storage Technologies

Outline

• Introduction

• Background and Motivation

• Seraph
− Hybrid Format
− Vertex Passing
− Selective Pre-computation

• Evaluation

2

Graph and Graph Systems
• Graph are powerful data structures to describe the relationship.

− Store the entities as vertices and the connection between entities as edges.
− Widely used in different fields, such as networking, social media, and bioinformatics.

• Against this background, graph systems are proposed to optimize the
execution of graph algorithms.

• Based on how we are using the memory and storage, the graph systems
can be divided into three different types.
− Shared-memory
− Semi-external
− Fully-external

3

Architectures of Graph Systems

4 4
Shared-memory

(e.g., Ligra [PPoPP'13], Galois [SOSP’13])

Semi-external
(e.g., FlashGraph [FAST’15], Graphene [FAST’17])

Fully-external
(e.g., GraphChi [OSDI‘12], GridGraph [ATC'15])

CPUCPU CPUMemory

Storage Storage Storage

Memory Memory
𝑂(𝑉) + 𝑂(𝐸) 𝑂(𝑉)

𝑂(𝐸) 𝑂(𝑉) + 𝑂(𝐸)

𝑂(𝑐)

𝑂 𝑉 : size of Vertex Data
𝑂(𝐸) : size of Edge Data

Investigations of Graph Systems

5

Shared-Memory:
− Need O(V+E) memory,
− Best efficiency

Semi-External:
− Need O(V) memory,
− 2x slower than Ligra+

Fully-External:
− Any memory ≤ O(𝑉),
− 5x slower than Graphene

Investigations of Graph Systems

6

Shared-Memory:
− Need O(V+E) memory,
− Best efficiency

Semi-External:
− Need O(V) memory,
− 2x slower than Ligra+

Fully-External:
− Any memory ≤ O(𝑉),
− 5x slower than Graphene

Seraph!

Outline

• Introduction

• Background and Motivation

• Seraph
− Hybrid Format
− Vertex Passing
− Selective Pre-computation

• Evaluation

7

Existing Fully-external Graph Systems

8

Grid-based Format:
➢ Divide vertices into

disjoint partitions.
➢ Based on the partitions,

divide edges into
disjoint grids.

➢ 2 partitions + 1 grid =
subgraph

𝑥 → 𝑎 𝑏 𝑐

src. vtx ∈ 𝑃𝑖
dst. vtx ∈ 𝑃𝑗

…

src. vtx ∈ 𝑃𝑖
dst. vtx ∈ 𝑃𝑗+1

… 𝑦 → 𝑏 𝑐

𝑧 → 𝑎 𝑐

𝑥 → 𝑑 𝑓

𝑦 → 𝑑 𝑒 𝑓

𝑧 → 𝑒

𝑥
𝑦
𝑧

𝑎
𝑏
𝑐

𝑑
𝑒
𝑓

…

𝑃𝑖 𝑃𝑗 𝑃𝑗+1

Storage
Memory

Vertex Data

Edge Data

𝑥 → 𝑎
𝑥 → 𝑏

𝑥 → 𝑐
𝑦 → 𝑏

Local
Edge

Buffer

sequentially streaming

𝑦 → 𝑐
𝑧 → 𝑎

T
h
re
ad

0

T
h
re
ad

1

T
h
re
ad

2

…
𝑥
𝑦
𝑧

𝑎
𝑏
𝑐

Vertex Buffer

Loading

Check activeness of each
vertex (Suppose 𝑥 is active)

Vertex Write

Partition Grid

𝐺(𝑖,𝑗) 𝐺(𝑖,𝑗+1)

Streaming-based Processing:
➢ ☺ Sequentially streaming to

enjoy high I/O access speed.
➢  Often load excessive-

and-irrelevant data.

Motivation
• Study GridGraph, CLIP, and GridGraph-ODP.
• Evaluating with four types of storage drives.

− HDD, SATA SSD, NVMe SSD, and ULL SSD

9

GridGraph@ATC’15

CLIP@ATC’17

GridGraph-ODP

A baseline system which
adopts streaming-based
processing.

An advanced version of
streaming-based processing

A baseline system which
adopts on-demand
processing.

Outline

• Introduction

• Background and Motivation

• Seraph
− Hybrid Format
− Vertex Passing
− Selective Pre-computation

• Evaluation

10

Overview of Seraph

11

On-demand Processing on Traditional Formats
• There is a trade-off to consider when applying on-demand processing on the

traditional formats.

12

➢ Fragmented edge lists.
➢ Multiple index data.

➢ Randomly accessing
vertex attributes

Edge Data
(dst. vertex ∈ 𝑃0 or 𝑃1)

𝑣1 𝑣2 𝑣4

𝑣0 𝑣3 𝑣5

𝑣1 𝑣2 𝑣4𝑣0 𝑣5

𝑣0 𝑣1 𝑣4

𝑣2

𝑣3 𝑣5

𝑣1 𝑣2 𝑣4 𝑣5

0

3

6

11

16

17
21

Index Data

𝑣0
𝑣1
𝑣2

𝑣3
𝑣4
𝑣5

𝑃0

𝑃1

ve
rt

ex
 a

tt
rib

ut
es

Edge Data
(dst. vertex ∈ 𝑃0)

Edge Data
(dst. vertex ∈ 𝑃1)

𝑣1 𝑣2

𝑣0

𝑣1 𝑣2𝑣0

𝑣0 𝑣1

𝑣2

𝑣1 𝑣2

𝑣4

𝑣3

𝑣5

𝑣5

𝑣4

𝑣3 𝑣4 𝑣5

𝑣4 𝑣5

0

1

3

5

8

8
10

0

2

3

6

8

9
11

Index DataIndex Data

Grid
Format

Row
Format

Hybrid Format
• Hybrid format ➔ Take advantage of both Row & Grid.

13

Thus, the execution on Row Format still leads to bad locality of access.

Vertex Passing
• The main concept of Vertex Passing is to delay vertex writes as logs and then

create good locality of attribute access.

14

Direct Update if
the destination
is in-memory

if the destination is
not in-memory, vertex

passing is enabled

Delay write to
the attribute

&
Log the write to

buffer.

w

u
v

Selective Pre-Computation

15

• Given that a common I/O block is typically larger than the edge list, we introduce
selective pre-computation to increase the utilization of loaded data.

cur_bitmap

next_bitmap

1 0 1 000

0 000 11
0
1

0

Use cur_bitmap for
running Row and Grid Format

Pre-computed vertices are
removed from next_bitmap

Page 𝑝 Page 𝑝+1

1 1 1 000

𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

To-be-computed
Active Vertices

Index Data

Edge
Data

Step 1: determine the list
of active vertices

Step 2: compute all
active vertices

Outline

• Introduction

• Background and Motivation

• Seraph
− Hybrid Format
− Vertex Passing
− Selective Pre-computation

• Evaluation

16

Evaluation Setup
• Evaluated SOTA graph systems:

− Fully-external: GridGraph@ATC’15, V-Part@FAST’19, CLIP@ATC’17, and Lumos@ATC’19

− Semi-external: Graphene@FAST’17

− Shared-memory: Ligra+@DCC’15

• Five graph algorithms are evaluated:
− Breath-first Search (BFS), Weakly Connected Component (WCC), KCore, All-Pair

Shortest Pair (APSP), and PageRank (PR).

• Graph datasets:

17

Name V E Graph Size
Twitter 42 M 1.4 B 11.2 GB

Gsh2015 988 M 33.88 B 271 GB

Eu2015 1.1 B 91.8 B 734 GB

RMAT 8.6 B 112 B 1.7 TB

Fully-External Graph System Comparisons

18

Seraph outperforms GridGraph, V-Part, and CLIP by 8.9x, 4.9x, and 4.0x on average

Memory Scalability

19

Under semi-external framework,
1. Seraph(semi) improves Graphene by 24.1% on average.
2. Compared with Ligra+, Seraph(semi) is 1.83x slower yet saves 7.2x memory

Under fully-external framework,
Seraph shows great cost-effectiveness than other fully-external
system; it uses much less memory yet achieves better performance.

Conclusion
• This work develops Seraph, an efficient fully-external graph computation

system enable scaling graph processing for large-scale graphs on single
machines.

• Seraph is developed based on the principle of on-demand processing.
Three designs are proposed in Seraph for further performance
improvement.
• Hybrid Format.
• Vertex Passing.
• Selective Pre-computation.

• The evaluation shows that Seraph is an efficient fully-external graph system.

20

Thank you for your attention
Q&A

	Title
	投影片 1: Seraph: Towards Scalable and Efficient Fully-external Graph Computation via On-demand Processing

	Investigations of Graph Systems
	投影片 2: Outline
	投影片 3: Graph and Graph Systems
	投影片 4: Architectures of Graph Systems
	投影片 5: Investigations of Graph Systems
	投影片 6: Investigations of Graph Systems

	Background & Motivation
	投影片 7: Outline
	投影片 8: Existing Fully-external Graph Systems
	投影片 9: Motivation

	Seraph Designs
	投影片 10: Outline
	投影片 11: Overview of Seraph
	投影片 12: On-demand Processing on Traditional Formats
	投影片 13: Hybrid Format
	投影片 14: Vertex Passing
	投影片 15: Selective Pre-Computation

	Evaluation
	投影片 16: Outline
	投影片 17: Evaluation Setup
	投影片 18: Fully-External Graph System Comparisons
	投影片 19: Memory Scalability

	Conclusion
	投影片 20: Conclusion
	投影片 21: Thank you for your attention Q&A

