22nd USENIX Conference on File and Storage Technologies

Seraph: Towards Scalable and Efficient
Fully-external Graph Computation via
On-demand Processing

Tsun-Yu Yang, Yizou Chen, Yuhong Liang, and Ming-Chang Yang

The Chinese University of Hong Kong

Outline

* Introduction
* Background and Motivation

* Seraph
- Hybrid Format
— Vertex Passing
- Selective Pre-computation

 Evaluation

Graph and Graph Systems

* Graph are powerful data structures to describe the relationship.
— Store the entities as vertices and the connection between entities as edges.
— Widely used in different fields, such as networking, social media, and bioinformatics.

* Against this background, graph systems are proposed to optimize the
execution of graph algorithms.

* Based on how we are using the memory and storage, the graph systems
can be divided into three different types.
- Shared-memory
- Semi-external
- Fully-external

Architectures of Graph Systems

Memory

[0(V) + O(E)]

— - ——— —
"_— -

-
-
— o —— — - - - —

~ -
— -

Shared-memory
(e.g., Ligra [PPoPP'13], Galois [SOSP’13])

O(V) : size of Vertex Data
O(E) : size of Edge Data

Memory Memory

_ov | L0 |
Storage Storage
E 0(E) j E 0(V) + O(E) j
Semi-external Fully-external

(e.g., FlashGraph [FAST’15], Graphene [FAST'17]) (e.g., GraphChi [OSDI'12], GridGraph"[ATC‘l‘ﬂ])

Investigations of Graph Systems

@

£ 2500

*; Fully-External: —&— Shared-Memory (Ligra+)

% 1500 - ~ Any memory < 0(V), —v— Semi-External (Graphene)

o - 5x slower than Graphene i Zu”y'ix':emal (CLIP)

= erap

z ~00= / Semi-External:

o 300 - Need O(V) memory, Shared-Memory:

S 200- - 2x slower than Ligra+ — Need O(V+E) memory,

z v ~ S

£ 00 ~_ Best efficiency L//
O

5 o

a. O(c) O(V) O(V+E)

Scalability w.r.t. memory consumption

Investigations of Graph Systems

w
£ 2500

U Fully-External: —&— Shared-Memory (Ligra+)

v 1500 - - Any memory < 0(V), —v— Semi-External (Graphene)

2 - 5x slower than Graphene ~= Fully-External (CLIP)

L —7r— Seraph

z 200= Semi-External:

g 300 / - Need O(V) memory, Shared-Memory:

ﬁ 200 - 2x slower than Ligra+ — Need O(V+E) memory,

§ 100 - & AN — Best efficiency O[/
‘utJ . Sleraph! | |

o O(c) O(V) O(V+E)

Scalability w.r.t. memory consumption

Outline

* Background and Motivation

* Seraph
- Hybrid Format
— Vertex Passing
- Selective Pre-computation

 Evaluation

Existing Fully-external Graph Systems

Vertex Write |

Cf . i} . Edge . ecgqu}é@ higfh I/Cl) a;cess sp(?ed.
X a CE Sl oal Slhxocl = P Buffer . Often load excessive-
y b O o o and-irrelevant data.
w =Slx—=>b| Sly>blElzoa
Z cl|S B T =~ = 7
: @ sequentially streaming
Load/ng_I - l & Memory
e N \Storage Grid-based Format:
X alld, x—>a b cl|lx—>d f » Divide vertices into
y blle] | |- ~ly—>b ¢ y-d e f disjoint partitions.
Z cl|f o Ssac |[-5e » Based on the partitions,
P; P; divide edges into
\ Pl +1J G(i,j) G(l]+1) disioint gd
Vertex Data Src. vtx € P; Src. vtx € P; ISJOINE SIS :
N i dst.vix€P; dst.vix € Py j » 2 partitions + 1 grid =
Partition Grid subgraph

Check activeness of each

vertex (Suppose x is active)

] Local

Edge Data

Streaming-based Processing:
» © Sequentially streaming to

8

Exeuction Time (sec)

Motivation

e Study GridGraph, CLIP, and GridGraph-ODP.
* Evaluating with four types of storage drives.

- HDD, SATA SSD, NVMe SSD, and ULL SSD

| GridGraph FZ1 CLIP GridGraph-ODP
2000 78920
1500 41436.9
1000 - 1
658.2
5007 [/] l
N7 l | |
. 7 110.4 l
27 7 o131 1509 380 574 (357 39.9 55 5
o Ll 1 / /] 7
HDD SATA SSD NVMe SSD ULL SSD

O GridGrapheatc’is

A baseline system which
adopts streaming-based
processing.

O CLIP@ATC’17

An advanced version of
streaming-based processing

O GridGraph-ODP

A baseline system which
adopts on-demand
processing.

Outline

* Seraph
- Hybrid Format
— Vertex Passing
- Selective Pre-computation

 Evaluation

10

Overview of Seraph

\

Index Edge Data

Index Edge Data

KSE!‘ aph mmap’ed | Selective Pre-Compute
mmap’ed = vertex data N not in memory
index data = @u u v x Y T

W
> N & -
o | user-space |u = v, w vertex —“’;
£ X =
o \edge buffer| 272 ¥ update | Vertex Passing
= /
) ity Sttt el el 1
o :
|| g | v = vw ullulllfe = allu—=f
& " : Y x—b
v i :
PO Pl Pn |
Vertex Data !
I

Hybrid Format

(Row Format)

(Grid Format)

11

On-demand Processing on Traditional Formats

* There is a trade-off to consider when applying on-demand processing on the
traditional formats.

> Fragmented edge lists. > Randomly accessing
» Multiple index data. < > vertex attributes

Grid | Row

Edge Data
Edge Data Edge Data
Format | Format

(dst. vertex € Py) (dst. vertex € P;) 0 a (dst. vertex € Py or P;)
2 |Po offvi v o[ve Of|7r V2 Ve
- L — - By mmalso o= =
BPO V1 2 || vo T vs vs ?- (Vo V3 Vs
e e | D | v
CﬂU V2 _% Vo V1 Uy _:E Vs Vg _?_ Vo V1 V2 Y4 Us
> |V3 6] Vo V1 Ol V3 Vs vsg i1 | Vo U1 V3 Uy Us |
£ P W IS | 16| | v
0 1|Vq S|l vy 8 B |

Vs _9—- V1 vy S || Vs 143 :]_7 Vi V2 Vs Us
11 10 21

Index Data Index Data Index Data .’

Hybrid Format

* Hybrid format =» Take advantage of both Row & Grid.

source vertex

Thus, the execution on Row Format still leads to bad locality of access.

destination vertex

Vo V1 V3 |V3 vy Vs
Vo | €g | €y €y €
I I
I B S
V1 €1 . €1 .61, 6
E——la=m=b===2
| |
%) : :82 €y €5
| | |
v3 63: : 63: :63_
i i e i S
Va 1 6a €4
) [BT
Vs o 1 €sg
l | | |
Raw Edge Data

6
8
9

Row Format

- = — = — = —

Index (Row)

-

0 |eg €9 €p
31e1 e e
6 162 €2

8
Index (Grid)

~
Hybrid Format

13

Vertex Passing

* The main concept of Vertex Passing is to delay vertex writes as logs and then
create good locality of attribute access.

Direct Update if if the destination is e
the destination not in-memory, vertex :
is in-memory passing is enabled :
N < '
l
Partition O Partition i Partition i+1 :

® - [S

= =

““““

O -
Delay write to Storage
the attribute Passing Buffer Passing Buffer

& (Partition i) (Partition i+1)

: S —
Log the write to Sequential write once buffer is full
buffer. 14

Selective Pre-Computation

* Given thata common I/O block is typically larger than the edge list, we introduce
selective pre-computation to increase the utilization of loaded data.

Step 1: determine the list

of active vertices

Use cur_bitmap for
running Row and Grid Format

<
cur_bitmap
1/8]0]1]|/0]|0
11 t
L JO T 10
Oy 0 XA 0|0
next_bitmap

>

Pre-computed vertices are
removed from next_bitmap

Step 2: compute all
active vertices

1

1

Po| P1

)

P3

/

To-be-computed
Active Vertices

Index Data

|

Edge

Data

Page p

Page p+1

Outline

 Evaluation

16

Evaluation Setup

* Evaluated SOTA graph systems:
- Fully-external: GridGraph@aAtc’1s, V-Part@rastT 19, CLIP@ATC’17, and LUMOS@ATC’19
— Semi-external: Graphene@FAST’17
— Shared-memory: Ligra+@Dbcc’15

* Five graph algorithms are evaluated:

— Breath-first Search (BFS), Weakly Connected Component (WCC), KCore, All-Pair
Shortest Pair (APSP), and PageRank (PR).

JECIEUBEEEEEy Name | V| E | GraphSize

Twitter 42 M 1.4B 11.2GB
Gsh2015 988 M 33.88 B 271 GB
Eu2015 1.1B 91.8B 734 GB

RMAT 8.6B 112B 1.71B 17

I/0 Amount (GB)

e
~

Exeuction Time (sec)

L o s
[=)] o] o N
1 1 1

e
=Y
1

e
o

Fully-External Graph System Comparisons

1el Twitter
~
- N [N N
\ \
N N
B B - IN
N N
a N
N
/
N ﬁ b @ | @ \I
BFS WCC KCore APSP PR

(a) Execution time on Twitter.

- N
/ E
Ve VR W

BFS WCC KCore APSP

(e) I/O amount on Twitter.

PR

Exeuction Time (sec)

(=]

GridGraph ESY V-Part [Z] CLIP

103 Gsh2015

IS
1

w
1

L\
|

w0

BFS WCC I(Core APSP PR

(b) Execution time on Gsh2015.

‘Seraph outperforms GridGraph, V-Part, and CLIP by 8.9x, 4.9x, and 4.0x on average

[\8]
o

I/0 Amount (GB)
o

e
[=)

=
w
I

=
o
!

.

BFS WCC KCore APSP PR

(f) I/O amount on Gsh2015.

Lumos [Z=A Seraph

Eu2015

le3

30

20 A

Exeuction Time (sec)

NI I

Exeuction Time (sec)
o - [\ 9] w e wn ()] ~J

le3

RMAT

BFS WCC KCore APSP

PR

(¢) Execution time on Eu2015.

200

le

150 1
00 -

0~

I/0 Amount (GB
5 08

(%3]
1

4

o

L NE Y L g

BFS WCC KCore APSP

(g) I/O amount on Eu2015.

PR

I/0 Amount (GB)

MEME@

WCC KCore APSP PR

(d) Execution time on RMAT.

1.5 A

1.0 A

0.5 1

0.0

224
2Ll

Ll

2
AVAVAAS,

BFS WCC KCore APSP PR

(h) I/O amount on RMAT.

18

Memory Scalablllty

BFS le3 WCC
GridGraph(900MB) Lumos(900MB)
GridGraph(2.4GB) Lumos(2.4GB) %))
GridGraph(4.2GB) Lumos(4.2GB) 0 47 Q 4
GridGraph(16GB) Lumos(16GB) by o N
=3 V-Part(900MB) L1 Seraph(900MB) = 31 £ 31
[Z1 V-Part(2.4GB) 71 Seraph(2.4GB) = = N
E=1 V-Part(« E
veat Under fully-external framework,
=1 CLIP(90 %
=2 cure« Seraph shows great cost-effectiveness than other fully-external VT
=4 CLIP(4.: .
curis System; it uses much less memory yet achieves better performance. -4 &=
(a) Execution time on BFS. (b) Execution time on WCC.
1e3 Kcore 1e3 APSP 1e? PR L
3.5 Under semi-external framework,
> 1. Seraph(semi) improves Graphene by 24.1% on average.

2. Compared with Ligra+, Seraph(semi) is 1.83x slower yet saves 7.2x memory

1.5 o~

2
1.0 = 1
0.5 - y . 1
0.0 : R e 0 0

(c) Execution time on Kcore. (d) Execution time on APSP. (e) Execution time on PR.

Exeuction Time (sec)
[\
(]

Exeuctio
Exeuctior

L

Conclusion

* This work develops Seraph, an efficient fully-external graph computation
system enable scaling graph processing for large-scale graphs on single
machines.

* Seraph is developed based on the principle of on-demand processing.
Three designs are proposed in Seraph for further performance
Improvement.

* Hybrid Format.
* Vertex Passing.
e Selective Pre-computation.

* The evaluation shows that Seraph is an efficient fully-external graph system.

20

Thank you for your attention
Q&A

	Title
	投影片 1: Seraph: Towards Scalable and Efficient Fully-external Graph Computation via On-demand Processing

	Investigations of Graph Systems
	投影片 2: Outline
	投影片 3: Graph and Graph Systems
	投影片 4: Architectures of Graph Systems
	投影片 5: Investigations of Graph Systems
	投影片 6: Investigations of Graph Systems

	Background & Motivation
	投影片 7: Outline
	投影片 8: Existing Fully-external Graph Systems
	投影片 9: Motivation

	Seraph Designs
	投影片 10: Outline
	投影片 11: Overview of Seraph
	投影片 12: On-demand Processing on Traditional Formats
	投影片 13: Hybrid Format
	投影片 14: Vertex Passing
	投影片 15: Selective Pre-Computation

	Evaluation
	投影片 16: Outline
	投影片 17: Evaluation Setup
	投影片 18: Fully-External Graph System Comparisons
	投影片 19: Memory Scalability

	Conclusion
	投影片 20: Conclusion
	投影片 21: Thank you for your attention Q&A

