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Graph and Graph Systems

* Graph are powerful data structures to describe the relationship.
— Store the entities as vertices and the connection between entities as edges.
— Widely used in different fields, such as networking, social media, and bioinformatics.

* Against this background, graph systems are proposed to optimize the
execution of graph algorithms.

* Based on how we are using the memory and storage, the graph systems
can be divided into three different types.
- Shared-memory
- Semi-external
- Fully-external



Architectures of Graph Systems
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Investigations of Graph Systems
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Investigations of Graph Systems
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Existing Fully-external Graph Systems
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Exeuction Time (sec)

Motivation

e Study GridGraph, CLIP, and GridGraph-ODP.
* Evaluating with four types of storage drives.

- HDD, SATA SSD, NVMe SSD, and ULL SSD

| GridGraph  FZ1 CLIP GridGraph-ODP
2000 78920
1500 41436.9
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O GridGrapheatc’is

A baseline system which
adopts streaming-based
processing.

O CLIP@ATC’17

An advanced version of
streaming-based processing

O GridGraph-ODP

A baseline system which
adopts on-demand
processing.




Outline

* Seraph
- Hybrid Format
— Vertex Passing
- Selective Pre-computation

 Evaluation

10



Overview of Seraph

\

Index Edge Data

Index Edge Data

KSE!‘ aph mmap’ed | Selective Pre-Compute
mmap’ed = vertex data N not in memory
index data = @u u v x Y T

W
> N & -
o | user-space |u = v, w vertex —“’;
£ X =
o \edge buffer| 272 ¥ update | Vertex Passing
= /
) ity Sttt el el 1
o :
|| g | v = vw ullulllfe = allu—=f
& " : Y x—b
v i :
PO Pl Pn |
Vertex Data !
I

Hybrid Format

(Row Format)

(Grid Format)

11



On-demand Processing on Traditional Formats

* There is a trade-off to consider when applying on-demand processing on the
traditional formats.

> Fragmented edge lists. > Randomly accessing
» Multiple index data. < > vertex attributes

Grid | Row
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Hybrid Format

* Hybrid format =» Take advantage of both Row & Grid.

source vertex

Thus, the execution on Row Format still leads to bad locality of access.

destination vertex
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Vertex Passing

* The main concept of Vertex Passing is to delay vertex writes as logs and then
create good locality of attribute access.

Direct Update if if the destination is e
the destination not in-memory, vertex :
is in-memory passing is enabled :
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Delay write to Storage
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: S —
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buffer. 14




Selective Pre-Computation

* Given thata common I/O block is typically larger than the edge list, we introduce
selective pre-computation to increase the utilization of loaded data.

Step 1: determine the list

of active vertices

Use cur_bitmap for
running Row and Grid Format

<
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Pre-computed vertices are
removed from next_bitmap

Step 2: compute all
active vertices
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Evaluation Setup

* Evaluated SOTA graph systems:
- Fully-external: GridGraph@aAtc’1s, V-Part@rastT 19, CLIP@ATC’17, and LUMOS@ATC’19
— Semi-external: Graphene@FAST’17
— Shared-memory: Ligra+@Dbcc’15

* Five graph algorithms are evaluated:

— Breath-first Search (BFS), Weakly Connected Component (WCC), KCore, All-Pair
Shortest Pair (APSP), and PageRank (PR).

JECIEUBEEEEEy Name | V| E | GraphSize

Twitter 42 M 1.4B 11.2GB
Gsh2015 988 M 33.88 B 271 GB
Eu2015 1.1B 91.8B 734 GB

RMAT 8.6B 112B 1.71B 17
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Fully-External Graph System Comparisons
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(b) Execution time on Gsh2015.

‘Seraph outperforms GridGraph, V-Part, and CLIP by 8.9x, 4.9x, and 4.0x on average
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Memory Scalablllty
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Conclusion

* This work develops Seraph, an efficient fully-external graph computation
system enable scaling graph processing for large-scale graphs on single
machines.

* Seraph is developed based on the principle of on-demand processing.
Three designs are proposed in Seraph for further performance
Improvement.

* Hybrid Format.
* Vertex Passing.
e Selective Pre-computation.

* The evaluation shows that Seraph is an efficient fully-external graph system.
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Thank you for your attention
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