
TeRM: Extending RDMA-Attached 
Memory with SSD

Zhe Yang1, Qing Wang1, Xiaojian Liao1, Keji Huang2, Jiwu Shu1

1Tsinghua University
2Huawei Technologies Co., Ltd



RDMA-based Storage System
• RDMA catalyzes in-memory storage systems
• File systems, key-value stores, transactional databases, …

2

Assise [OSDI’20]

Octopus [ATC’17]

Orion [FAST’19]

Pilaf [ATC’13]

Cell [ATC’16]

XStore [OSDI’20]

Sherman [SIGMOD’22]

DrTM+H [OSDI’18]

FaRM [NSDI’14]

Rowan [OSDI’23]

FORD [FAST’22]RACE [ATC’21]
FUSEE [FAST’23]

ROLEX [FAST’23]

TH-DPMS [TOS’20]

FileMR [NSDI’20]

Aurogon [FAST’22]



RDMA-attached Memory
• Server
• Expose virtual memory via RDMA MR (RDMA-attached Memory)
• RNIC accesses the virtual memory via DMA, bypassing the CPU
• Pin pages in the physical memory; build the RNIC page table

• Client
• Access the MR by one-sided RDMA READ/WRITE

3

Server
RNIC

Physical
Memory

SSD

PIN MR RDMA App
CPUClient

RNIC
RDMA App
CPU

QP

QP

VM
ibverbs

ibverbs
u RDMA R/W

v response
How to extend RDMA-attached

memory with SSD?

?



ODP MR
• On-demand Paging MR
• Hardware solution by Mellanox [ASPLOS’17]
• mmap an SSD and register as an ODP MR
• The client submits normal RDMA READ/WRITE

4

Server
RNIC

Physical
Memory

SSD

ODP MR RDMA App
CPUClient

RNIC
RDMA App
CPU

QP

QP

VM
ibverbs

ibverbs
u RDMA R/W

v response



ODP MR
• Not all pages are mapped
• Trigger an RNIC page fault when accessing an invalid virtual page

5

v0 v1 v2 v3 v4 v5 v6

CPU 
Page Table

RNIC 
Page Table

Physical 
Memory p0 p1 p2 p3

invalid virtual page
valid virtual page

v0 v1 v2 v3 v4 v5 v6

virt-to-phys mapping

physical page



ODP MR
• Synchronizing between CPU and RNIC page tables
• Three flows: faulting, invalidation, advising

6

1a 1c 1d

1bCPU Page Table

OS Kernel

RNIC Driver

RNIC Page Table

2a

2b

2c

3a

3b

1) Faulting 2) Invalidation 3) Advising



• Read 4KB performance
• 64GB virtual memory , 32GB physical memory
• mmap() Intel Optane P5800X SSD
• (a) 1 client thread
• (b) 64 client threads

ODP MR is not the silver bullet

7
66.64x – 290.76x slowdown!

!



ODP MR is not the silver bullet
• Two sources of overhead
• A normal read consumes 4μs
• Hardware: stall & resume QP, trigger interrupt, update RNIC page table
• Software: CPU page fault

8

Stall QP & 
Trigger Interrupt CPU Page Fault

Update RNIC
Page Table Resume QP

127.37µs 242.34µs 74.17µs 128.86µs

570.74µs

(1a) HW (1b) SW (1c) HW (1d) HW

1. Onload exception handling from HW to SW.
2. Eliminate CPU page faults from the critical path.

!



TeRM overview

9

• CPU VM
• mmap; Serves local access (load/store) from the server-side application.

• TeRM MR
• Serves remote access (memory read/write) from the client-side application.

• tLib-S/tLib-C
• Server-side/client-side shared library; replaces libibverbs using LD_PRELOAD

Server
RNIC

Physical
Memory

SSD

TeRM MR RDMA App
CPUClient

RNIC
RDMA App
CPU

QP

QP

VM
tLib-C w

tLib-S 2

u RDMA READ

v response

1RPC READ/WRITE
Tiering IO

3 response



TeRM MR

10

• Magic physical page
• Invalid virtual pages are mapped to this one.
• Filled with magic pattern.

v0 v1 v2 v3 v4 v5 v6

CPU 
Page Table

RNIC 
Page Table

Physical 
Memory p0 p1 p2 p3 M

invalid virtual page
valid virtual page

M magic physical page

v0 v1 v2 v3 v4 v5 v6

virt-to-phys mapping

normal physical page

read
(address=10KB, length=8KB)

RDMA READ on invalid virtual pages returns with 
magic pattern.

!



Read workflow

11

• RDMA READ first
❶ submit an RDMA READ request
❷ receive the response
❸ check whether the data contains magic pattern
If no magic pattern is found, the read request completes. 
Otherwise, …

Server
RNIC

Physical
Memory

SSD

TeRM MR RDMA App
CPUClient

RNIC
RDMA App
CPU

QP

QP

VM
tLib-C w

tLib-S 2

u RDMA READ

v response

1RPC READ/WRITE
Tiering IO

3 response



Read workflow

12

• RPC READ if necessary
① submit an RPC READ request
② tLib-S reads data
③ tLib-C receives data and completes the read

“principle 1: onload exception handling from HW to SW”
Server

RNIC

Physical
Memory

SSD

TeRM MR RDMA App
CPUClient

RNIC
RDMA App
CPU

QP

QP

VM
tLib-C w

tLib-S 2

u RDMA READ

v response

1RPC READ/WRITE
Tiering IO

3 response



Write workflow

13

• RPC WRITE for all
① submit an RPC WRITE request
② tLib-S writes data
③ tLib-C receives notification and completes the write

Server
RNIC

Physical
Memory

SSD

TeRM MR RDMA App
CPUClient

RNIC
RDMA App
CPU

QP

QP

VM
tLib-C w

tLib-S 2

u RDMA READ

v response

1RPC READ/WRITE
Tiering IO

3 response



How can RPC access data efficiently?

14

• Load/store the CPU VM?
• Still triggers CPU page faults!

• Convert memory load/store to file I/O
• Read/write the SSD
• “Principle 2: eliminate CPU page faults from the critical path”

Server
RNIC

Physical
Memory

SSD

TeRM MR RDMA App
CPUClient

RNIC
RDMA App
CPU

QP

QP

VM
tLib-C w

tLib-S 2

u RDMA READ

v response

1RPC READ/WRITE
Tiering IO

3 response



How can RPC access data efficiently?

15

• Convert memory load/store to file I/O
• SSD LBA range: [slba, slba + length) 
• Virtual address range: [saddr, saddr + length)
• lba = addr – saddr + slba

SSD

Physical Memory

Virtual Memory

TeRM MR

direct IO

Bounce Buffer

tiering IO

RPC READ/WRITEOne-Sided Access 

cached?Y
N

mmap

buffer IO



Tiering IO

16

• Read/write data via two interfaces
• Check the page cache
• Buffer IO for cached data, using page cache
• Direct IO for uncached data, bypassing page cache

SSD

Physical Memory

Virtual Memory

TeRM MR

direct IO

Bounce Buffer

tiering IO

RPC READ/WRITEOne-Sided Access 

cached?Y
N

mmap

buffer IO



Promoting Hotspots

17

• Client-side
• Count accesses on each unit

• Server-side
• Aggregate counters from all clients
• Find most-accessed units as hotspots
• Promote via ibv_advise_mr()

1a 1c 1d

1bCPU Page Table

OS Kernel

RNIC Driver

RNIC Page Table

2a

2b

2c

3a

3b

1) Faulting 2) Invalidation 3) Advising

1a 1c 1d

1bCPU Page Table

OS Kernel

RNIC Driver

RNIC Page Table

2a

2b

2c

3a

3b

1) Faulting 2) Invalidation 3) Advising



Evaluation
• Testbed
• RDMA Cluster: server machine * 1, client machine * 2
• SSD: Intel Optane P5800X 400GB
• RNIC: ConnectX-5 100Gbps
• Switch: IB 100Gbps

• Settings
• Virtual memory: 64GB, physical memory: 32GB
• 64 Client threads, 16 server threads

18



Evaluation
• Comparing Targets
• PIN: ideal upper bound, all pages in the physical memory
• ODP: hardware solution, ODP MR
• RPC: software solution, all requests via RPC, access data via memcpy
• TeRM: our solution.

19



Evaluation: Overall Performance
• Read
• vs. ODP: 30.46x – 549.63x
• vs. RPC: 9.05x – 45.19x
• vs. PIN: 37.79% – 96.71%

20



Evaluation: Overall Performance
• Write
• vs. ODP: ~ 1000x (ODP write is very unstable and jitters sharply)
• vs. RPC: 7.73x – 12.60x
• vs. PIN: 6.55% – 96.32%

21



Evaluation: Dynamic Workloads
• Change hotspots at the 60th second
• Performs stably: drops by only 6.82%
• Promoting fast: returns to the peak in 1 second

22



Evaluation: RDMA-based storage system
• Octopus: A File System [OSDI’20]
• Workloads: read/write the file
• Results: up to 642.23x ODP, 7.68x RPC

23



Evaluation: RDMA-based storage system
• XStore: A Key-Value System [ATC’17]
• Workloads: YCSB-C, read 8B keys and 128B values
• Results: Up to 102.97x ODP, 2.69x RPC

24



Conclusion
• TeRM proposes an efficient approach to extending 

RDMA-attached memory with SSD.

• TeRM onloads exception handling from hardware to software and
eliminates RNIC & CPU page faults on the critical path.

• TeRM implements a userspace shared library to replace libibverbs and run
unmodified RDMA applications transparently.

• TeRM outperforms the hardware-only ODP MR by up to 642.23x, and the
software-only RPC approach by up to 7.68x.

25



TeRM: Extending RDMA-Attached 
Memory with SSD

Zhe Yang, Qing Wang, Xiaojian Liao, Keji Huang, Jiwu Shu

Thanks! Q&A

yangz18@mails.tsinghua.edu.cn

https://github.com/thustorage/TeRM

https://github.com/thustorage/TeRM

