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RDMA-based Storage System
• RDMA catalyzes in-memory storage systems
• File systems, key-value stores, transactional databases, …
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RDMA-attached Memory
• Server
• Expose virtual memory via RDMA MR (RDMA-attached Memory)
• RNIC accesses the virtual memory via DMA, bypassing the CPU
• Pin pages in the physical memory; build the RNIC page table

• Client
• Access the MR by one-sided RDMA READ/WRITE
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ODP MR
• On-demand Paging MR
• Hardware solution by Mellanox [ASPLOS’17]
• mmap an SSD and register as an ODP MR
• The client submits normal RDMA READ/WRITE
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ODP MR
• Not all pages are mapped
• Trigger an RNIC page fault when accessing an invalid virtual page
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ODP MR
• Synchronizing between CPU and RNIC page tables
• Three flows: faulting, invalidation, advising
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• Read 4KB performance
• 64GB virtual memory , 32GB physical memory
• mmap() Intel Optane P5800X SSD
• (a) 1 client thread
• (b) 64 client threads

ODP MR is not the silver bullet
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66.64x – 290.76x slowdown!
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ODP MR is not the silver bullet
• Two sources of overhead
• A normal read consumes 4μs
• Hardware: stall & resume QP, trigger interrupt, update RNIC page table
• Software: CPU page fault
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1. Onload exception handling from HW to SW.
2. Eliminate CPU page faults from the critical path.
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TeRM overview
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• CPU VM
• mmap; Serves local access (load/store) from the server-side application.

• TeRM MR
• Serves remote access (memory read/write) from the client-side application.

• tLib-S/tLib-C
• Server-side/client-side shared library; replaces libibverbs using LD_PRELOAD
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TeRM MR
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• Magic physical page
• Invalid virtual pages are mapped to this one.
• Filled with magic pattern.
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Read workflow
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• RDMA READ first
❶ submit an RDMA READ request
❷ receive the response
❸ check whether the data contains magic pattern
If no magic pattern is found, the read request completes. 
Otherwise, …
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Read workflow
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• RPC READ if necessary
① submit an RPC READ request
② tLib-S reads data
③ tLib-C receives data and completes the read

“principle 1: onload exception handling from HW to SW”
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Write workflow
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• RPC WRITE for all
① submit an RPC WRITE request
② tLib-S writes data
③ tLib-C receives notification and completes the write
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How can RPC access data efficiently?
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• Load/store the CPU VM?
• Still triggers CPU page faults!

• Convert memory load/store to file I/O
• Read/write the SSD
• “Principle 2: eliminate CPU page faults from the critical path”
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How can RPC access data efficiently?
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• Convert memory load/store to file I/O
• SSD LBA range: [slba, slba + length) 
• Virtual address range: [saddr, saddr + length)
• lba = addr – saddr + slba
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Tiering IO
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• Read/write data via two interfaces
• Check the page cache
• Buffer IO for cached data, using page cache
• Direct IO for uncached data, bypassing page cache
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Promoting Hotspots
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• Client-side
• Count accesses on each unit

• Server-side
• Aggregate counters from all clients
• Find most-accessed units as hotspots
• Promote via ibv_advise_mr()
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Evaluation
• Testbed
• RDMA Cluster: server machine * 1, client machine * 2
• SSD: Intel Optane P5800X 400GB
• RNIC: ConnectX-5 100Gbps
• Switch: IB 100Gbps

• Settings
• Virtual memory: 64GB, physical memory: 32GB
• 64 Client threads, 16 server threads
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Evaluation
• Comparing Targets
• PIN: ideal upper bound, all pages in the physical memory
• ODP: hardware solution, ODP MR
• RPC: software solution, all requests via RPC, access data via memcpy
• TeRM: our solution.
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Evaluation: Overall Performance
• Read
• vs. ODP: 30.46x – 549.63x
• vs. RPC: 9.05x – 45.19x
• vs. PIN: 37.79% – 96.71%
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Evaluation: Overall Performance
• Write
• vs. ODP: ~ 1000x (ODP write is very unstable and jitters sharply)
• vs. RPC: 7.73x – 12.60x
• vs. PIN: 6.55% – 96.32%
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Evaluation: Dynamic Workloads
• Change hotspots at the 60th second
• Performs stably: drops by only 6.82%
• Promoting fast: returns to the peak in 1 second
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Evaluation: RDMA-based storage system
• Octopus: A File System [OSDI’20]
• Workloads: read/write the file
• Results: up to 642.23x ODP, 7.68x RPC
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Evaluation: RDMA-based storage system
• XStore: A Key-Value System [ATC’17]
• Workloads: YCSB-C, read 8B keys and 128B values
• Results: Up to 102.97x ODP, 2.69x RPC
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Conclusion
• TeRM proposes an efficient approach to extending 

RDMA-attached memory with SSD.

• TeRM onloads exception handling from hardware to software and
eliminates RNIC & CPU page faults on the critical path.

• TeRM implements a userspace shared library to replace libibverbs and run
unmodified RDMA applications transparently.

• TeRM outperforms the hardware-only ODP MR by up to 642.23x, and the
software-only RPC approach by up to 7.68x.
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