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Abstract
Highly available and high-performance message logging sys-
tem is critical building block for various use cases that require
global ordering, especially for deterministic distributed trans-
actions. To achieve availability, we maintain multiple replicas
that have the same payloads in exactly the same order. This
introduces various challenging issues such as consistency be-
tween replicas after failure, while minimizing performance
degradation. Replicated state machine-based consensus pro-
tocols are the most suitable candidates to fulfill those require-
ments, but double-write problem and different logging gran-
ularity make it hard to keep the system efficient. This paper
suggests a novel way to build a replicated log store on top of
Raft consensus protocol, aiming at providing the same level
of consistency as well as fault-tolerance without sacrificing
the throughput of the system.

1 Introduction
Nowadays logging system that guarantees strict ordering of
incoming payloads plays an important role in distributed
systems, for crash recovery or determining the order of dis-
tributed transactions [7, 8, 12, 17, 20]. There are multiple pro-
ducers putting payloads to the logging system at the same
time, and multiple consumers subscribing to the system to
retrieve the payloads. Since a number of clients are working
on it in parallel, it is required to be efficient. In addition to
that, usually this kind of logging system is a single point of
failure of its subscribers, thus it has to be highly available
against the failure of multiple nodes.

To achieve high availability, incoming payloads should be
replicated to multiple nodes (i.e., replicas). All replicas should
have exactly the same payloads in exactly the same order, so
that subscribers can be distributed over different replicas for
reducing the burden of the master replica. Once the master
replica fails, one of the other replicas should be able to take
it over quickly and then continue to serve operations. Even
after failure and recovery, the original order of logs should be
preserved.

Well-known consensus schemes such as Paxos [13] and
Raft [15] might be a good solution to address such issues.
Today’s implementations are using state machine-based repli-
cation [19], where state machine is usually defined as a file or
a back-end database that we want to make identical among
all replicas. They maintain a sort of write-ahead log (WAL)
which keeps a sequence of state changes, usually database
mutation commands. Once a log entry (i.e., a state change) is
agreed by a majority of replicas, it is committed to the state
machine which results in the execution of the given database
command.

However, applying state machine-based replication to log-
ging system brings various inefficiencies that have significant
impact on performance:

Double-write problem The state machine of logging sys-
tem will be defined as another append-only log. Every
payload will be written in WAL first, and then written
again in the state machine after commit. It will end up
with cutting the disk bandwidth in half.

Different granularity Clients want to commit a set of pay-
loads at once atomically. Moreover, server also should
be able to do group commit of multiple payloads to
maximize network or storage throughput. Unfortunately,
the basic unit of replication, consensus, and commit is
a single log entry of WAL. This granularity gap either
degrades the performance or makes the system compli-
cated, as there are more things to do beyond the consen-
sus protocol.

This paper proposes a new scheme that addresses aforemen-
tioned issues on top of Raft consensus protocol. We define
two log stores: Raft log store for WAL of Raft and data log
store as a state machine, and then introduce a log sharing
scheme between them to avoid double-write problem, thus
user payloads are written to disk only once. However, having
only one copy of data may spoil the consistency of the system
upon node failures. We also show that our log sharing scheme
will not break the original consensus protocol by help of the



Figure 1: Raft protocol overview.

characteristics of our state machine definition, which is also

append-only data structure unlike normal databases.

In addition to the log sharing scheme, Raft log store and

data log store will have different granularity; a single Raft log

entry will be associated to a set of data log entries, to replicate

and commit multiple payloads at once. That process will be

pipelined over multiple replicas, to maximize the throughput

of the system. Our experimental results show that proposed

log sharing scheme is working well along with group commit

and pipelining, regardless of the number of replicas, the size

of atomic batch, or the size of each payload.

2 Raft Consensus Protocol
Raft [15] has been suggested for enhancing understandability

over Paxos [13], while keeping equivalent consistency level

without sacrificing efficiency. Recent distributed systems such

as Apache Kudu [2,14] and Yugabyte [4] are using it for their

consensus protocol over multiple replicas.

Raft adopts a strong leader policy; there is only one leader

at a time. Only the leader accepts incoming write requests,

and then replicates it to other non-leader replicas, called fol-
lowers. Each incoming write request corresponds to a single

log entry, which is stored in a separate log section. Each log

entry has a unique index number (hereafter Raft log number)

in a monotonically increasing order.

Figure 1 illustrates the overview of the protocol. Once the

leader gets a write request, it appends a log entry to its log

section, and then replicates the request to all other followers.

When a follower receives the log entry, it also appends the

log to its log section, and then returns a response back to

the leader. Raft is using quorum write policy, thus the leader

will commit the log entry and apply it to the state machine

once it gets responses from a majority of replicas including

itself. After commit, the leader replicates the committed log

number to followers, and followers finally commit the log cor-

responding to the given log number and then apply it to their

state machines. Note that a log replication request contains

the committed log number of previous log replication, so that

they are always pipelined and there is no specific protocol for

two-phase commit.

The leader periodically sends heartbeats to all followers,

and each follower has a randomized timer whose lower bound

is bigger than the heartbeat interval. Whenever a follower

receives heartbeat, it resets its timer with new random expiry.

If the timer is expired due to no heartbeat for a while, the

follower regards the situation as the death of the leader, and

Figure 2: Conflict resolution based on term. (a) Leader S1

fails to replicate log 4 and then crashes. (b) S3 is elected as a

new leader with term 2, and replicates new logs 4, 5, and 6.

(c) Previous leader S1 is recovered from the fault but log 4

has a conflict. (d) Since log 4 in S3 has bigger term, log 4 in

S1 is overwritten by the new value.

then requests a vote on the election of the next leader to all the

other replicas. Once a majority of replicas vote for the replica

who initiated the election, the replica becomes a leader and

starts to serve write requests.

To resolve conflict that can happen during the absence

of leader or network disconnection, Raft maintains a special

counter called term, which is increased whenever a new leader

election is initiated. All followers should have the same term

value as that of the current leader. Each replication request or

heartbeat contains the term value of the current leader, and

also each log entry keeps the term value of the time when it

was generated. If the current leader receives a message with

higher term from other replica, that means a new leader has

been elected by a majority of replicas so that it immediately

gives up the leader role and becomes follower.

Conflict usually happens when the leader succeeds to ap-

pend a new log entry to its log section, but fails to replicate

it to followers due to various reasons such as server crash or

network isolation, and then new leader is elected and serves

new logs. If the previous leader is recovered from the fault

and then re-joins as a follower, the previous leader and the

current leader will see different log entry whose log number

is the same, as shown in Figure 2. In such case, the previous

leader will find the last log entry whose term is the same as

that of corresponding log entry in the current leader. And

then it starts to overwrite log entries starting from that point

using the current leader’s log entries. In other words, the pre-

vious leader discards its local log entries that failed to reach a

consensus.

3 Log Store Design
3.1 Requirements and Problem Statement
To guarantee strict ordering, the requirements for log store

are as follows:

1. Each payload should have a unique log sequence number

(LSN), which is a non-zero positive integer.

2. All replicas should have the same data in the same LSN

order.

3. LSN should be continuous; no empty number in the

middle is allowed.



4. Clients may send a set of payloads in batch. They should
be committed atomically, and partial commit is not al-
lowed.

5. Clients get the response of a payload only after it is
committed—i.e., x replicas have the payload, where x >
bN

2 c and N is the number of replicas.

By adopting Raft, we can easily satisfy those requirements.
Once a write request comes in, we first put it into the log
section of Raft and then replicate. After we get acknowledges
from a majority of replicas, the request is committed and
applied to the state machine of Raft, which is the actual log
store that we want to implement. Since Raft guarantees the
same order of commit, state machines in all replicas will get
the data in the same order so that we can just append them to
log store sequentially.

This is a typical journaling approach for traditional file
systems or databases. However, it will be problematic if the
back-end store is the same append-only log. We will end up
having duplicate logs: Raft log and state machine, which will
double the space usage, and also will halve the write through-
put. Since all disk write operations are expected to be fully
sequential in log store, the relative amount of degradation by
double-writing will be significant, compared to other normal
database systems.

We can simply avoid double-write problem by having Raft
logs only, directly using a Raft log number as an LSN. How-
ever, this approach introduces a couple of challenging issues.
1) We cannot use group commit; both replication and commit
will be executed on a per-Raft log basis. Partial commit is
inevitable and eventually breaks the fourth requirement. 2)
Raft itself generates a special log for membership or configu-
ration change that needs to be globally consistent. Since that
special log also occupies a Raft log number, it ends up with an
empty LSN from the user payload’s perspective, which breaks
the third requirement. If we allow LSN gaps, log consumers
are not able to know in advance whether the missing LSN is
skipped by the system or lost in the middle, without having
extra communication. It makes the overall protocol expensive.

We need more clever approach to handle such issues.

3.2 Log Sharing and Tweaked State Machine
To address aforementioned problems together, we propose
a log sharing scheme. We define two local log stores: Raft
log store for Raft log section and data log store for the state
machine that is the actual log store to serve user payloads.
Once a write request which consists of one or more payloads
comes in, it is directly written to the state machine (i.e., data
log store) first, skipping Raft log store. At the time we append
payloads to the data log store, the data log store sequentially
assigns a unique LSN to each payload. After that, we append
a log entry to Raft log store, which contains a set of LSNs
that need to be committed atomically. Note that the LSNs in
a Raft log entry should be consecutive, and also adjacent Raft
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Figure 3: Log sharing and replication.

log entries should have consecutive LSNs. Figure 3(a) depicts
the overview of log sharing and its replication process.

For each replication task, it reads a Raft log entry to be
replicated, and fetches the LSNs belonging to the Raft log.
Then it re-constructs the original batch of payloads by reading
the data logs corresponding to the LSNs sequentially, and the
request is sent to followers. The state machines of followers
will do the same thing: appending payloads to data log store
first, assigning LSNs for each payload sequentially, and then
appending a Raft log entry which consists of a set of LSNs it
assigned, as illustrated in Figure 3(b).

Since the data log store in each replica is locally assigning
LSNs in advance before waiting for replication and Raft com-
mit, it may cause an inconsistency of LSNs between replicas
if failure happens after assigning LSNs but before getting con-
sensus. In such case, the original Raft can simply overwrite
existing Raft log entries as uncommitted logs are not applied
to the state machine yet. However, we cannot use the same
approach in here as payloads are already applied to the state
machine before commit.

As shown in Figure 4, once a conflict happens so that one
or more Raft logs have to be overwritten, we first find the
smallest LSN in the conflicting Raft logs: LSN 2 in Raft log 2.
Then do rollback of the data log store to the log whose LSN
is right ahead 2, before overwriting Raft logs with newer term.
Since the state machine is defined as a log-structured format,
rolling back can be easily implemented as a simple truncation,
unlike normal databases that require separate undo logging.
After rollback, we can append incoming payloads from the
new leader, and assign new LSNs that will be identical to
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Figure 4: Rollback of state machine in conjunction with Raft
conflict resolution. (a) Initially data log store has 6 logs. (b)
Raft log 2 conflicts with that in new leader, who has higher
term 2. Find the smallest LSN from the Raft log and truncate
all data logs whose LSN is equal to or greater than the iden-
tified LSN. (c) Append new payloads with new term. Now
assigned LSNs will be consistent with those in the new leader.

what the leader has.
Since payloads are already appended to the data log store

prior than Raft commit, the commit process of state machine
is straightforward. The state machine of each replica main-
tains a cursor that indicates the last committed LSN of its
data log store. All payloads whose LSN is greater than the
last committed LSN should not be visible to clients, even
though they already exist in the data log store. Once Raft gets
consensus from quorum, it executes a commit on the agreed
Raft log number. The state machine finds the last LSN in the
Raft log entry, and then moves its cursor to that LSN.

There are a few more corner cases that we need to consider.
If a node crashes after updating data log store but before
Raft log store, we should discard the stale data in data log
store on server restart, to avoid LSN inconsistency. Even
without crash, both data and Raft log stores should be updated
atomically; another replication request from a new leader
should not interfere in the middle, and be handled sequentially
after the previous one is done. Note that the safety of Raft log
store should be guaranteed by Raft itself, as that part remains
unchanged.

3.3 Pipelining and Group Commit
To maximize the throughput, leader can keep accepting new
payloads from clients and appending them to its data log store,
while previous replication requests are still in flight. Follow-
ing replication request contains the logs kept in the meantime
and replicates them at once as a group commit. However, such
a pipelined replication should be very careful about LSN or-
der inversion; it can happen when previous replication request
is lost in the middle while following replication request is
successfully delivered to replicas.

To avoid such an issue, we only allow 2-stage pipeline for
each follower as illustrated in Figure 5. The basic assumption
is based on the third requirement mentioned in Section 3.1;
if a log whose LSN k is successfully replicated, it implies
all previous logs whose LSN x where x < k already have
been replicated. Thus, each replication request should contain
all consecutive logs starting from the log right next to last

1 …
1, S2 2-4, S2

Got response from S2

x Append a log x

x-y, Sn Send logs x-y to Sn

2 3 4 5 6 7 8 9 10
5-8, S2

(a) Happy path

Packet loss (timeout)

1 …
1-8, S2

2 3 4 5 6 7 8 9 10

Ack from replica
Fault

1, S2

(b) On failure

Figure 5: 2-stage pipeline for follower S2.

1, S2
1, S3
1-2, S4

1-3, S5

2-5, S2

3-7, S4
2-6, S3

4-8, S5

2-12, S2

…

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7-10, S3
8-11, S4

9-12, S5

1 2Committed logs 3 4-6

Figure 6: Combined N-stage pipeline.

successful log, without skipping anything in between.
Figure 5(a) presents an example of 2-stage pipeline for

follower S2. Suppose that we append only one payload for
each Raft log entry for simplicity. Once a new payload comes
in, it is appended to the data log store with LSN 1, and the
corresponding Raft log entry is also appended to the Raft log
store. Then the log 1 is sent to S2. Before getting response
from S2, the leader receives more payloads from clients and
appends corresponding logs. At the time the response from
S2 arrives to the leader, we have 3 more logs: from 2 to 4.
We set the last successfully replicated LSN of S2 to 1, and
accordingly the next replicate request will contain logs from
2 to 4.

However, if any failures such as packet loss happen as
shown in Figure 5(b), the leader should be able to catch it
quickly and then re-send the replication request. But at this
time, since the last successfully replicated LSN has not been
changed, the request should contain all new logs accumulated
in the meantime including the previously failed log: from 1
to 8. In this manner, we can guarantee that any logs cannot
be replicated prior than previously failed logs, so that logs in
all replicas should be always sequential.

Now we can combine pipelines for all followers and then
organize N-stage pipeline, where N denotes the number of
replicas including the leader. Figure 6 depicts an example
when there are 4 followers: S2 to S5. If there are enough
number of replicas, we can fully utilize either disk or network
bandwidth. Note that a log x is committed only after the last
successfully replicated LSNs of a majority of replicas become
equal to or greater than x. Clients will get the response of the
log if and only if it is committed by the leader.

4 Evaluation
We implement log store as a service for eBay’s home-grown
distributed database systems, based on our own Raft imple-
mentation. The communication between client and server is
done by gRPC [3] streaming, where client keeps sending re-
quests asynchronously without waiting for the responses of
previous requests. Each request contains one or more payloads
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in batch that need to be committed atomically. We deploy log
store service in eBay datacenter’s VMs equipped with gigabit
ethernet and local SSDs. The maximum throughput of a sin-
gle network stream varies with VM deployment details such
as the latency between racks and physical machines, which is
totally random. The average throughput between nodes that
we use for evaluation is measured as 85–90 MB/s. We use
three replicas including the leader, unless otherwise noted.
Client is located in a separate node so that incoming traffic
also consumes network bandwidth from the leader’s point of
view. All replicas including client are in the same datacenter.

First of all, we measure the amount of disk writes and space
occupied by logs, compared to the naive approach which does
not use log sharing scheme. Figure 7(a) shows the results of
log sharing normalized to those of naive approach, varying
the size of each payload. Both disk write and space usage
become almost half by using log sharing scheme.

Next we evaluate the write throughput of log store accord-
ing to the batch size that clients want to commit atomically.
We generate 10,000 payloads/s traffic with the various sizes
of payloads, and then measure the throughput of the amount
of payloads committed by log store. Figure 7(b) depicts the
results. By help of group commit, the throughput remains
constant regardless of the batch size; when a batch is small,
a replication request packs more batches so that it does not
affect the overall performance.

After that, we explore the maximum write throughput that
log store is able to handle. The same as the previous evalu-
ation, we measure the throughput, but at this time we vary
the incoming traffic from 1,000 to 128,000 payloads/s. The
throughput increases proportionally according to the incom-
ing traffic, but it is saturated at some point, as illustrated in
Figure 7(c). The saturation point gets higher as payload size
increases, and log store can achieve 67 MB/s with 4 KB pay-
loads. It will be close to the maximum network throughput
with enlarged payloads, since bigger payload may help in-
creasing network utilization as well as reducing the overhead
of Raft protocol due to fewer number of logs.

And then we assess the write throughput with the different
number of replicas, to see if N-stage pipeline is working as
expected. The incoming traffic is fixed to 32,000 payloads/s.

Figure 7(d) presents the results. The dotted line plots the write
throughput of log store from the client’s perspective, while
the solid line means the total throughput that the leader node
is processing. If the incoming traffic is T , and the number of
replicas including the leader is N, the leader node should han-
dle N ·T traffic: T from client and (N−1) ·T for replication.
With 1 KB payloads, the throughput of log store is constant
regardless of the number of replicas, as the total throughput
is linearly increasing by help of pipelining. With bigger pay-
loads, the total throughput is still increasing but not exactly
proportional to the number of replicas, as the leader node and
its Raft logic are burdened with processing payloads.

5 Related Work
Apache Kafka [1] is a popular message streaming platform,
which also can be used for building a replicated logging sys-
tem [21]. However, Kafka cluster replication does not allow
group commit for a single topic, which results in significant
performance degradation when there are many producers gen-
erating traffic in parallel.

Balakrishnan et al. have suggested CORFU [7], which im-
plements a log store whose data is shared among network-
attached SSDs. A global sequencer node assigns the next log
index so that clients can directly access the destination SSDs
where the log will be written or read. However, the sequencer
may introduce a hole in the middle after failure of it, and they
do not provide solid logic for conflict resolution.

Other Paxos-based approaches such as S-Paxos [9],
SMARTER [10], and Spinnaker [16] attempt to achieve sim-
ilar goals: group commit and eliminating the extra copy of
data on each node.

6 Conclusion
This paper suggests an efficient way to build a logging system
based on Raft protocol. Raft provides an intuitive way to
replicate data and to resolve conflict upon node failure, but
introduces double-write and commit granularity problems if
we are going to build a log store on top of it. We propose a
log sharing scheme that addresses aforementioned issues. In
addition to that, we show a practical way to implement group
commit as well as pipelining for log replication.



Discussion Topics

Distributed log store In this paper, we only propose a sin-
gle log store cluster. If we need much higher throughput to
support large-scale distributed systems, a considerable option
is to make the log store distributed for scaling out. However,
it brings a new challenging issue: how can we partition logs
while keeping their order globally consistent? We will con-
tinue to study this topic.

Extending log sharing scheme We can easily achieve log
sharing on top of consensus protocol, since the state machine
of log store is based on a log-structured format so that easy
to execute rollback. It will be good to extend this scheme for
general purpose databases to reduce the write amplification
of the system. However, the rollback operation will be much
more complicated than that of log store. We can simply think
two options for now: 1) maintaining separate undo logs, but
it will cancel the benefit of log sharing. Or, 2) using log-
structured key-value stores [5, 6] or file systems [11, 18] for
back-end database, but those approaches have a couple of
disadvantages such as compaction overhead or degraded range
query performance. We will explore this subject more.
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