
DLion: Decentralized Distributed Deep Learning in Micro-Clouds

Rankyung Hong
University of Minnesota

Abhishek Chandra
University of Minnesota

Abstract
Deep learning is a popular technique for building models

from large quantities of input data for applications in many
domains. With the proliferation of edge devices such as sen-
sor and mobile devices, large volumes of data are generated
at rapid pace all over the world. Migrating large amounts of
data into centralized data center(s) over WAN environments
is often infeasible due to cost, performance or privacy rea-
sons. Moreover, there is an increasing need for incremental
or online deep learning over newly generated data in real-
time. These trends require rethinking of the traditional train-
ing approach to deep learning. To handle the computation
on distributed input data, micro-clouds—small-scale clouds
deployed near edge devices in many different locations—
provide an attractive alternative for data locality reasons. How-
ever, existing distributed deep learning systems do not support
training in micro-clouds, due to the unique characteristics and
challenges in this environment.

In this paper, we examine the key challenges of deep learn-
ing in micro-clouds: computation and network resource het-
erogeneity at inter- and intra micro-cloud levels and their scale.
We present DLion, a decentralized distributed deep learning
system for such environments. It employs techniques specif-
ically designed to address the above challenges to reduce
training time, enhance model accuracy, and provide system
scalability. We have implemented a prototype of DLion in
TensorFlow and our preliminary experiments show promising
results towards achieving accurate and efficient distributed
deep learning in micro-clouds.

1 Introduction
Micro-clouds [4, 11–13, 42, 44, 47] are an emerging type
of infrastructure to support the exponentially growing large
amounts of data generated by edge devices such as surveil-
lance cameras [21, 34], mobile phones [33, 35, 58], or various
sensors [32,42,53]. Individual micro-clouds consist of a small
or medium number of servers. Instead of storing and main-
taining the huge amounts of data in a few monolithic public

Figure 1: Distributed deep learning (DL) in micro-clouds at multiple
locations.

clouds, users and organizations can use micro-clouds across
multiple locations, deployed close to edge devices for provid-
ing faster services with minimum latency.

Deep learning (DL) is a popular technique to build models
from large quantities of input data for applications in many do-
mains [3,7,14,26,48,56]. Traditionally, DL models are trained
on large quantities of data assembled in cluster or data center
environments. With recent advances in deep learning tech-
niques, continuously generated data could be used for online-
learning or incremental-learning [5,27,36,37,39,41,55]. Thus,
instead of being a one-time training solution for a fixed set
of training data, DL models could keep evolving using data
continuously generated from a large number of edge devices
across the globe. However, migrating such large amounts
of data into centralized cloud(s) over WAN environments
for training is likely to be prohibitive due to cost, perfor-
mance or privacy reasons. For instance, such data is hard to
move because of WAN bandwidth constraints, or because
it could contain a lot of personal information such as pic-
tures or videos generated by user devices or recorded using
surveillance cameras as shown in Figure 1. The need for geo-
distributed data analysis has also been shown for many other
analytics tasks [17, 20, 25, 38, 49, 50].

An attractive alternative is to carry out distributed deep
learning across the micro-clouds, since they often provide
(limited) computation and storage capabilities. Recently, there
has been growing interest in using the edge for DL infer-
ence [2, 22, 30, 52], where models trained in the cloud are
deployed at the edge for faster inference. In this paper, we ar-
gue for the use of micro-cloud environments for DL training

to efficiently build DL models in-situ and to support online
and incremental learning.

There are three major challenges of distributed deep learn-
ing in micro-clouds.
1. Compute resource heterogeneity. Different micro-clouds
can have different number of servers equipped with differ-
ent performance hardware. In addition, servers in the micro-
clouds can be shared by other applications, so the available
compute capacity may dynamically change.
2. Network resource heterogeneity. Servers in a micro-
cloud communicate with each other over LAN, whereas
servers in different micro-clouds are connected via WAN.
Network capacities in LANs may vary due to network re-
source contention with other applications, while bandwidths
in WANs are much more scare and fluctuating than in LANs.
3. Scale. A micro-cloud covers much smaller area than a pub-
lic cloud, but the number of micro-clouds is much bigger than
the number of data centers in a multi-DC public cloud. The
micro-clouds are also likely to be much more geographically
distributed, leading to heavy communication over WANs.

Existing distributed deep learning systems, however, do not
fully address these challenges. General purpose distributed
DL systems like TensorFlow [1], MXNet [6] or CNTK [43]
do not consider the heterogeneity or scale, resulting in much
longer training time due to network bottleneck issue as cluster
size increases. Recent research [19, 31, 54] has addressed the
network bottleneck issue by reducing the amounts of data
transmitted over the network. As a result, models can be
trained faster, potentially at the cost of loss of model accuracy
as cluster size increases. Other recent research [18, 23, 24]
tackles scalability issue by communicating with a small num-
ber of peers, but it does not consider network or compute
resource heterogeneity. Thus, none of the existing systems
comprehensively considers all the challenges of micro-cloud
environments: compute and network heterogeneity and scale.

In this paper, we present DLion, a decentralized distributed
deep learning system that is designed for deep learning in
large-scale heterogeneous environments such as micro-clouds.
The goals of the system are to reduce training time, improve
model accuracy, and handle system scalability. It employs
techniques specifically designed to address the above chal-
lenges, including compute capacity-aware batching, network-
aware data exchange, and selective data propagation (§ 3). We
have implemented a prototype of DLion on top of TensorFlow
and present our preliminary results in § 4.

2 Background and Related Work
Deep Learning. We consider supervised learning using mini-
batch stochastic gradient descent (SGD) [40] to minimize the
loss value of the function f over the training dataset x (eq. 1).

Learning: min
x∈Rn

f (x;w) =
1
m

m

∑
i=1

fi(x;wt) (1)

A deep learning model consists of a set of parameters called
weights, and operators. The meaning of training a DL model
is to find the best values for the weights, which lead to the
smallest loss value.

Gradient Calculation: gt =
1
m

m

∑
i=1
5w fi(x;wt) (2)

Weight Update: wt+1 = wt −ηgt (3)

The weights are tuned by iterations of gradient gt calcu-
lation (eq. 2) and weight wt update (eq. 3) over minibatches.
A minibatch is composed of m training data samples from
the training data x and batch size indicates the size of a mini-
batch. An iteration indicates a cycle of gradient calculation
and weight update over a minibatch. An epoch indicates a set
of iterations trained over one pass of the whole training data.
Batch size and learning rate η are tunable model parameters.

Distributed Deep Learning. Weight update follows eq. 4 in
distributed deep learning systems.

wt+1 = wt −η
1
k

k

∑
j=1

1
m

m

∑
i=1
5w fi(x;wt) (4)

k workers calculate their own gradients locally based on a
minibatch size of m in parallel. Weights are updated based on
the average of the k gradients, where the total batch size of
the model is m∗ k.

Distributed Deep Learning Systems. Distributed deep
learning systems allow users to train their DL models using
a cluster of multiple machines where training data are dis-
tributed. General purpose DL systems [8] like TensorFlow [1],
MXNet [6] or CNTK [43] utilize central components called
parameter servers (PS) for weight updates in a centralized
manner. However, in such a centralized architecture, PSs can
be communication bottleneck. Decentralized distributed DL
systems [18, 23, 24, 31] such as Ako [54] synchronize models
without PSs. Workers exchange their local gradients with each
other, and update their local weights based on the collected
gradients. The workload imposed on PSs can be offloaded
to all the workers. Hybrid distributed DL systems such as
Gaia [19] employ the decentralized architecture to exchange
gradients between PSs over WANs while learning in a cen-
tralized manner in LANs. While some of the existing systems
such as Gaia and Ako have addressed network bottleneck
issue by exchanging small amount of gradients or sending full
gradients to a subset of peers, none of them comprehensively
consider all the challenges in a micro-cloud environment.

3 DLion
We propose DLion, a decentralized distributed deep learning
system for learning in micro-clouds. Figure 2 shows the sys-
tem architecture of DLion. The philosophy of decentralized
architecture fits well to the heterogeneous environments of
micro-clouds. In DLion, there are no centralized components
such as parameter servers. Workers within a micro-cloud are

Figure 2: Decentralized Dlion system architecture. Workers in a
micro-cloud communicate in LANs, whereas workers in different
micro-clouds use limited heterogeneous network bandwidth like
WANs. Individual micro-clouds have different number of servers
and computation capacity.

connected over LANs, and those in different micro-clouds
communicate over WANs. There are three major goals in
DLion, which are reducing training time, improving model
accuracy, and providing system scalability for deep learning
in micro-clouds. In the rest of the section, we describe the
techniques to deal with compute heterogeneity (§ 3.1), net-
work heterogeneity (§ 3.2) and scalability (§ 3.3) encountered
in micro-clouds environments. Details of the experimental
setup for our exploratory and preliminary experiments are
specified in section 4.

3.1 Compute Capacity-aware Batching
We first describe how DLion makes use of heterogeneous
compute resources in micro-clouds to reduce training time
and adaptively increase model accuracy through consideration
of available compute resources.

The idea of compute capacity-aware batching is to have
different batch sizes assigned to workers based on their com-
putation capacities. For faster learning, DLion maximizes
data parallelism by assigning a batch size m j to worker j
proportional to its compute capacity C j, so its time to pro-
cess a minibatch, Tj =

m j
C j

, is close to an expected global unit
processing time Tunit , thus balancing the load proportionally
across workers. This approach could result in very large batch
sizes being assigned to fast workers. However, it has been
shown that accuracy in large-batch training can degrade dras-
tically beyond a certain batch size [28]. We observed this
phenomenon in our experiment shown in Figure 3 where
the accuracy drops between total batch size of 640 and 960.
To avoid this accuracy degradation, DLion makes sure the
total batch size across workers ∑

k
j=1 m j does not exceed a

certain threshold Tbs beyond which accuracy can drop. DLion
measures the computation power of each worker through pre-
profiling before training, and selects different batch sizes for
individual workers accordingly. The new weight update equa-
tion based on compute capacity-aware batching (eq. 5) adds
two additional constraints as follow:

wt+1 = wt −η
1
k

k

∑
j=1

1
m j

m j

∑
i=1
5w fi(x;wt) (5)

subject to |Tj−Tunit | ≤ ε and ∑
k
j=1 m j ≤ Tbs.

Figure 3: Existence of batch size threshold indicating accuracy
plunge between total batch size 640 and 960; 4-worker cluster train-
ing with different batch sizes for 10 epochs; The prediction of the
threshold can be done with an epoch training.

Table 1: Effect of adaptive learning rate and batch size

Adaptive LB techniques Accuracy Training
Time

Baseline (SmallLR + StaticBS) 0.6956 2343
LargeLR + StaticBS 0.6256 2404
WarmUpLR + StaticBS 0.7052 2401
WarmUpLR + SpeedUpBS 0.7090 2186
WarmUpLR + IncreaseBS 0.7212 5216
WarmUpLR + SpeedUpBS + DecayLR 0.7220 2183

Adaptive model parameter tuning. On top of compute
capacity-aware batching, DLion applies techniques related to
large-batch training for better model optimization such as:
warm-up learning rate [15,57] increasing learning rate from
η to η∗ k (# workers) early in the learning phase (WarmUpLR)
increasing batch size [10, 28] late in learning (SpeedUpBS)
or throughout learning (IncreaseBS)
decaying learning rate [46] late in learning (DecayLR).

DLion adaptively adjusts the DL model parameters, learn-
ing rate and batch size. There is no comprehensive and inte-
grated existing solution for applying these techniques. Our
system automatically applies them by determining when, how,
and what to apply the techniques with comprehensive consid-
eration of heterogeneous computation capacities of workers,
batch size threshold Tbs and learning progress. For example,
we make sure the total batch size is not greater than the thresh-
old Tbs while increasing IncreaseBS or speeding up batch
size SpeedUpBS. The threshold Tbs is approximately 10 per-
cents of training data size [46].

We performed exploratory experiments to see the effect
of the techniques. We trained a model stated in § 4 with dif-
ferent combinations of the techniques for 10 epochs. Table 1
shows that the best combination WarmUpLR + SpeedUpBS +
DecayLR results in faster training time and higher accuracy
compared to other baselines that either do not use these tech-
niques, or use them individually or pairwise combinations.

3.2 Network-aware Data Exchange
In this section, we describe how DLion deals with hetero-
geneous network bandwidth resources in micro-clouds to
improve model accuracy and achieve faster training times.

Figure 4: When-to-do weight exchange (WE) for model synchro-
nization; Weights are exchanged every 10 iterations during whole
training (Periodic), first 2 epochs (Early), and last 2 epochs (Late).
WE early in training achieves comparable result with periodic WE.
Partial gradient exchange (PartialGrads) reduces training time for
all cases. A model is trained until it reaches 60% accuracy.

The distributed DL model synchronization happens by ex-
changing data between workers during the training phase
from-time-to-time. There are two types of data, gradients
and weights, that workers can exchange for model synchro-
nization. Existing decentralized systems like Ako and Gaia
exchange only gradients, which can result in longer train-
ing time and accuracy drop as cluster size increases. Recent
work [51] has proposed a periodic weight exchange algorithm
to compensate for drop in accuracy.

DLion employs this direct model synchronization across
workers though weight exchange (WE) in addition to gra-
dient exchange (GE). The key idea of network-aware data
exchange is to adjust data size by controlling the quality of
data and considering the available network bandwidth of in-
dividual workers in real-time. We explore several decisions
to understand factors contributing to the data dissemination,
as follows. When-to-do: when to exchange data, e.g., more
frequently early or late in training, or periodically; what-to-
do: whether to exchange whole or partial data; whom-to-do:
whether to exchange data with all workers or a subset of work-
ers; and how-to-do: whether to exchange data synchronously
or asynchronously.

DLion uses a system parameter to control the contribution
to the model update when adjusting data size, especially for
gradient exchange (GE). DLion increases the contribution
threshold to reduce the size of partial gradients, but still to
convey the important information by partial gradients. When
workers need to send gradients over WANs, the threshold is
set higher, compared to sending them over LANs.

Figure 4 and Figure 5 show exploratory results for the four
decisions regarding weight and gradient exchanges. Figure 4
shows that frequent WE early in learning has a comparable
performance with periodic WE with high frequency. Also,
partial GE helps to reduce the training time, compared to
full GE. DLion uses these insights to allocate more resources
for model synchronization at the beginning of training phase,
and concentrate more on gradient exchange later in the train-
ing phase. In addition, Figure 5 shows the results regarding
what-to-do, whom-to-do, and how-to-do. Model synchroniza-
tion by WE (MS) benefits every case except for partial WE
(PartialMS). In addition, exchanging weights only to the

Figure 5: What-to-do, whom-to-do, and how-to-do model synchro-
nization. Partial weight exchange does not help to improve accuracy.
Rather, full weight exchange is much more effective in model op-
timization. A model is trained with partial gradient exchange and
periodic WE for 30 minutes.

worst worker having the highest loss value (One) and asyn-
chronous WE (Asynch) leads to higher accuracy as it was
able to more iteration for a given training time because of
small amount data exchange.

3.3 Selective Data Propagation
We next discuss how DLion can handle system scalability
when learning over large number of micro-clouds over WANs.
We explicitly consider the compute and network heterogeneity
in our scalability approach as well.

In DLion, at each iteration, a subset of micro-clouds
(senders) send their gradients to a subset of micro-clouds (re-
ceivers), instead of an all-to-all communication, where each
micro-cloud would broadcast gradients to all micro-clouds.
We use a probabilistic model to select senders and receivers
based on their compute capacities. Since micro-clouds with
higher capacities are more likely to generate more informative
gradients over larger minibatches, they have a higher probabil-
ity of being selected as senders. Similarly, micro-clouds with
lower capacities are more likely to generate less informative
gradients over smaller minibatches, so they are likely selected
as receivers.

After the sender and receiver selection, we employ our
network-aware data exchange techniques (§ 3.2) to reduce
the data size. Moreover, the workload of the gradients deliv-
ery from a sender micro-cloud to a receiver micro-cloud is
offloaded to all the workers in each location, to avoid over-
loading only a single worker at each location. Finally, we are
also considering gossipping algorithms to more efficiently
disseminate the data through the network.

4 Evaluation
Implementation. We are implementing a prototype of DLion
on TensorFlow. Each worker trains DL models by using Ten-
sorFlow. Messages are delivered via Redis, an in-memory
data store, as a message broker for workers in DLion. Redis
provides persistence that is necessary for dynamic cluster con-
figurations such as fault tolerance, worker join or leave in the
future. Currently, TensorFlow provides a static cluster config-
uration where it is hard to deal with the cluster dynamics.

(a) Training time comparison.
(60% accuracy)

(b) Effect of compute capacity-
aware batching. (70% accuracy)

Figure 6: Benefit of handling compute heterogeneity.

Experimental setup. We compared DLion with Gaia and
Ako implemented in our prototype, and emulated micro-cloud
environments using 4 local servers by using the linux tc
and stress commands to throttle network bandwidth, and
impose load on servers, respectively. Network links are set to
1Gbps for LANs, and 100 Mbps for WANs. High-performance
servers have 24 cpus and low-performance servers have 8 cpus
per server. All servers have 60GB available memory and run
on Ubuntu 16.04 installed with TensorFlow 1.4.1. A worker
runs in a server. Dataset CIFAR10 [29] and a test model
(2conv+2fc, model size is 17MB) are used for the purpose
of preliminary experiments. The test model with CIFAR10
is converged after 10-epoch training, and takes around 30
minutes in LAN, so we use those two as training termination
conditions. We use training time and accuracy as metrics to
measure system performance and model optimization.

4.1 Heterogeneous Computation Resources
We evaluate the usefulness of the compute capacity-aware
batching feature and compare DLion with existing distributed
deep learning systems, Gaia and Ako, in compute resource
heterogeneous environments. We set up a cluster where there
are three low-performance workers and one high-performance
worker, and network resources are homogeneous. Figure 6
shows the training time until reaching a target accuracy for the
various systems. We use two different accuracy targets (60%
accuracy for Figure 6a and 70% for Figure 6b) as Gaia and
Ako were unable to reach 70% accuracy in our experiments.
For Gaia, workers exchange significant partial gradients, and
for Ako, workers exchange partitioned partial gradients at
each iteration. Figure 6a shows the comparison results where
DLion is able to reach the target accuracy 73% and 74% faster
than Gaia and Ako, respectively. This is because both existing
systems are unable to take advantage of compute heterogene-
ity and do not have any features to improve model accuracy
like direct model synchronization through weight exchange
and adaptive parameter tuning. As shown in Figure 6b, we
see that compute capacity-aware batching technique helps
to reduce the training time by 34% by fully utilizing the
heterogeneous compute resource of the cluster. The high-
performance worker was able to train a larger minibatch than
the low-performance workers at each iteration. Thus, using
compute capacity-aware batching can learn more information
faster than without using it.

Figure 7: Model accuracy comparison to show the advantage of
handling heterogeneous network bandwidth resources.

4.2 Heterogeneous Network Resources
We compare DLion using all four techniques with Gaia and
Ako in network bandwidth heterogeneous environments. We
set up two micro-clouds with three workers in a micro-cloud
and a worker in another micro-cloud. All 4 workers have
homogeneous compute resources. For Gaia, workers in a
micro-cloud train in a centralized manner by exchanging full
gradients with a PS. PSs in each micro-clouds exchange sig-
nificant partial gradients according to its algorithm. For Ako,
all workers exchange partitioned gradients determined based
on the smallest bandwidth between micro-cloud. The test
model is trained for 30 minutes for each of the three systems.

Figure 7 shows that DLion can achieve the highest accuracy
during the same amount of training time, 42% and 25% higher
than Gaia and Ako, respectively. Gaia does not take into
account the available network bandwidths when determining
the size of gradients. It waits until the significant gradients
are delivered over WANs, resulting in more time to finish
an iteration. On the other hand, Ako considers the smallest
network bandwidth in calculating the size of partial gradients.
As a result, it performs more iterations for a given amount of
time than Gaia leading to higher accuracy. However, there is
inefficiency in network resource utilization of three workers
in LAN. If we selected the largest bandwidth for Ako, the
accuracy would be lower due to network bottleneck issue in a
WAN link between two micro-clouds.

5 Conclusion
There has been increasing need of data analytics based on
deep learning in micro-clouds. However existing distributed
deep learning systems do not handle the characteristics of
micro-clouds environments such as compute capacity and
network bandwidth heterogeneity as well as system scalability.
In this paper, we have presented DLion, a decentralized deep
learning system for fast learning and high accuracy in such
environments. We have conducted preliminary experiments
to show the effect of DLion techniques handling the compute
and network heterogeneity in micro-clouds. Also, we have
discussed design considerations for scalability solution. Our
preliminary results are promising, and show the benefit of
explicitly addressing the challenges exposed by micro-cloud
environments.

Acknowledgment. This work is supported in part by NSF
grant III-1422802, CNS-1619254 and CNS-1717834.

6 Discussions and Future Work
In this paper, we presented promising preliminary results of
DLion based on compute capacity-aware batching, adaptive
model parameter tuning, network-aware data exchange fea-
tures. We are actively developing details of our DLion, and
plan to open-source the system. While this motivates the
research on deep learning in large-scale heterogeneous envi-
ronments such as micro-clouds, there are several discussion
points and open issues:
Large-scale system evaluation. Scale is one of the major
challenges in micro-clouds. We plan to incorporate our pro-
posed scalability solutions (§ 3.3) into DLion. The experi-
ments in this paper have been performed in a small-scale
local cluster with a small size of deep learning model and
dataset. We plan to conduct more extensive and thorough
experiments in large-scale environments where there are
many micro-clouds to evaluate the scalability of DLion. We
will also use multiple large-scale deep learning models such
as VGG16 [45] and ResNet50 [16] and datasets like Ima-
geNet [9]. We expect DLion to outperform existing systems
with larger models and datasets consuming larger computa-
tion and network resources because DLion carefully factors
heterogeneous resources, the sizes of models and training data
in training them.
Training data migration. It is possible that data distribution
across the micro-clouds may be skewed and may not match
their compute capabilities. For instance, it may happen that
micro-clouds with small computation resources have larger
volumes of training data compared to other micro-clouds
with large computation resources. This may require migrating
training data across micro-clouds for better load balancing.
We will investigate the tradeoff of input data migration vs.
load balancing in future work. For instance, one approach
could be to balance the size of training data for individual
micro-clouds depending on their relative computation capaci-
ties by migrating small portions of training data to the closest
large-capacity micro-clouds.
Dynamic environments. We would like to cover dynamic
environments where compute and network resources are dy-
namically changing over time to show the adaptability of
DLion. Our system and model parameters need to be adjusted
based on the changing cluster resources. We plan to exploit
how the system dynamically adjusts the parameters based on
environmental changes. In addition, we will put more efforts
in the assessment of the prediction accuracy based on profiling
and the effectiveness of runtime parameter adjustment.
Fault tolerance and cluster dynamics Workers may join,
leave, or fail during training, or micro-clouds may get discon-
nected. To support such scenarios, we plan to explore a fault
tolerance and cluster dynamics features in our system. We
have already separated the message passing module from the
training core module based on TensorFlow to implement the
feature. We will continue to study on this to support worker
failure recovery and cluster dynamics in DLion.

Edge devices We assume workers as machines always pow-
ered on. If various edges devices like mobile devices con-
nected to micro-clouds are equipped with powerful compu-
tation components, we can consider the trade-off between
available power (energy) of the devices and system perfor-
mance in terms of training time and test accuracy.

References

[1] M. Abadi et al. Tensorflow: a system for large-scale
machine learning. In OSDI, volume 16, pages 265–283,
2016.

[2] Muhammad Ali, Ashiq Anjum, M Usman Yaseen,
A Reza Zamani, Daniel Balouek-Thomert, Omer Rana,
and Manish Parashar. Edge enhanced deep learning
system for large-scale video stream analytics. In 2018
IEEE 2nd International Conference on Fog and Edge
Computing (ICFEC), pages 1–10. IEEE, 2018.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473,
2014.

[4] Kashif Bilal, Osman Khalid, Aiman Erbad, and Samee U
Khan. Potentials, trends, and prospects in edge technolo-
gies: Fog, cloudlet, mobile edge, and micro data centers.
Computer Networks, 130:94–120, 2018.

[5] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás
Guil, Cordelia Schmid, and Karteek Alahari. End-to-end
incremental learning. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 233–
248, 2018.

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. arXiv preprint arXiv:1512.01274, 2015.

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. Empirical evaluation of gated re-
current neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

[8] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, et al. Large scale dis-
tributed deep networks. In Advances in neural informa-
tion processing systems, pages 1223–1231, 2012.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. 2009.

[10] Aditya Devarakonda, Maxim Naumov, and Michael Gar-
land. Adabatch: Adaptive batch sizes for training deep
neural networks. arXiv preprint arXiv:1712.02029,
2017.

[11] Yehia Elkhatib, Barry Porter, Heverson B Ribeiro, Mo-
hamed Faten Zhani, Junaid Qadir, and Etienne Rivière.
On using micro-clouds to deliver the fog. IEEE Internet
Computing, 21(2):8–15, 2017.

[12] Keke Gai, Meikang Qiu, Hui Zhao, Lixin Tao, and Zil-
iang Zong. Dynamic energy-aware cloudlet-based mo-
bile cloud computing model for green computing. Jour-
nal of Network and Computer Applications, 59:46–54,
2016.

[13] Nelson Mimura Gonzalez, Walter Akio Goya, Rosan-
gela de Fatima Pereira, Karen Langona, Erico Au-
gusto Silva, Tereza Cristina Melo de Brito Carvalho,
Charles Christian Miers, Jan-Erik Mångs, and Azimeh
Sefidcon. Fog computing: Data analytics and cloud
distributed processing on the network edges. In 2016
35th International Conference of the Chilean Computer
Science Society (SCCC), pages 1–9. IEEE, 2016.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversar-
ial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[15] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[17] Benjamin Heintz, Abhishek Chandra, and Ramesh K
Sitaraman. Optimizing grouped aggregation in geo-
distributed streaming analytics. In Proceedings of the
24th International Symposium on High-Performance
Parallel and Distributed Computing, pages 133–144.
ACM, 2015.

[18] Li-Yung Ho, Jan-Jan Wu, and Pangfeng Liu. Adaptive
communication for distributed deep learning on com-
modity gpu cluster. In 2018 18th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Comput-
ing (CCGRID), pages 283–290. IEEE, 2018.

[19] K. Hsieh et al. Gaia: Geo-distributed machine learning
approaching lan speeds. In NSDI, pages 629–647, 2017.

[20] Anand Padmanabha Iyer, Aurojit Panda, Mosharaf
Chowdhury, Aditya Akella, Scott Shenker, and Ion Sto-
ica. Monarch: gaining command on geo-distributed
graph analytics. In 10th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 18), 2018.

[21] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang,
Yuanchao Shu, and Joseph Gonzalez. Scaling video
analytics systems to large camera deployments. In Pro-
ceedings of the 20th International Workshop on Mo-
bile Computing Systems and Applications, pages 9–14.
ACM, 2019.

[22] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and
Soo-Mook Moon. Ionn: Incremental offloading of neu-
ral network computations from mobile devices to edge
servers. In Proceedings of the ACM Symposium on
Cloud Computing, pages 401–411. ACM, 2018.

[23] Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and
Soumik Sarkar. Collaborative deep learning in fixed
topology networks. In Advances in Neural Information
Processing Systems, pages 5904–5914, 2017.

[24] Peter H Jin, Qiaochu Yuan, Forrest Iandola, and Kurt
Keutzer. How to scale distributed deep learning? arXiv
preprint arXiv:1611.04581, 2016.

[25] Albert Jonathan, Abhishek Chandra, and Jon Weissman.
Multi-query optimization in wide-area streaming analyt-
ics. In Proceedings of the ACM Symposium on Cloud
Computing, pages 412–425. ACM, 2018.

[26] Andrej Karpathy, George Toderici, Sanketh Shetty,
Thomas Leung, Rahul Sukthankar, and Li Fei-Fei.
Large-scale video classification with convolutional neu-
ral networks. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 1725–
1732, 2014.

[27] Ronald Kemker and Christopher Kanan. Fearnet: Brain-
inspired model for incremental learning. arXiv preprint
arXiv:1711.10563, 2017.

[28] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Gener-
alization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

[29] A. Krizhevsky and G. Hinton. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

[30] He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in
edge: deep learning for the internet of things with edge
computing. IEEE Network, 32(1):96–101, 2018.

[31] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh,
Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for de-
centralized parallel stochastic gradient descent. In Ad-
vances in Neural Information Processing Systems, pages
5330–5340, 2017.

[32] Seng W Loke. Supporting ubiquitous sensor-cloudlets
and context-cloudlets: Programming compositions of
context-aware systems for mobile users. Future Gener-
ation Computer Systems, 28(4):619–632, 2012.

[33] A Tawalbeh Lo’ai, Rashid Mehmood, Elhadj Benkhlifa,
and Houbing Song. Mobile cloud computing model
and big data analysis for healthcare applications. IEEE
Access, 4:6171–6180, 2016.

[34] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula.
Optasia: A relational platform for efficient large-scale
video analytics. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, pages 57–70. ACM,
2016.

[35] Xiao Ma, Chuang Lin, Xudong Xiang, and Congjie
Chen. Game-theoretic analysis of computation offload-
ing for cloudlet-based mobile cloud computing. In Pro-
ceedings of the 18th ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mo-
bile Systems, pages 271–278. ACM, 2015.

[36] Anusha Nagabandi, Chelsea Finn, and Sergey Levine.
Deep online learning via meta-learning: Contin-
ual adaptation for model-based rl. arXiv preprint
arXiv:1812.07671, 2018.

[37] Mahardhika Pratama, Andri Ashfahani, Yew Soon Ong,
Savitha Ramasamy, and Edwin Lughofer. Autonomous
deep learning: Incremental learning of denoising au-
toencoder for evolving data streams. arXiv preprint
arXiv:1809.09081, 2018.

[38] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,
Srikanth Kandula, Aditya Akella, Paramvir Bahl, and
Ion Stoica. Low latency geo-distributed data analytics.
ACM SIGCOMM Computer Communication Review,
45(4):421–434, 2015.

[39] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2001–2010, 2017.

[40] Herbert Robbins and Sutton Monro. A stochastic ap-
proximation method. The annals of mathematical statis-
tics, pages 400–407, 1951.

[41] Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi.
Online deep learning: Learning deep neural networks
on the fly. arXiv preprint arXiv:1711.03705, 2017.

[42] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha,
Wenlu Hu, Wolfgang Richter, and Padmanabhan Pil-
lai. Cloudlets: at the leading edge of mobile-cloud con-
vergence. In 6th International Conference on Mobile
Computing, Applications and Services, pages 1–9. IEEE,
2014.

[43] Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-
source deep-learning toolkit. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 2135–2135. ACM,
2016.

[44] Usman Shaukat, Ejaz Ahmed, Zahid Anwar, and Feng
Xia. Cloudlet deployment in local wireless networks:
Motivation, architectures, applications, and open chal-
lenges. Journal of Network and Computer Applications,
62:18–40, 2016.

[45] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In ICLR, 2016.

[46] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying,
and Quoc V Le. Don’t decay the learning rate, increase
the batch size. arXiv preprint arXiv:1711.00489, 2017.

[47] Tolga Soyata, Rajani Muraleedharan, Colin Funai, Min-
seok Kwon, and Wendi Heinzelman. Cloud-vision: Real-
time face recognition using a mobile-cloudlet-cloud ac-
celeration architecture. In 2012 IEEE symposium on
computers and communications (ISCC), pages 000059–
000066. IEEE, 2012.

[48] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1–9, 2015.

[49] Raajay Viswanathan, Ganesh Ananthanarayanan, and
Aditya Akella. Clarinet: Wan-aware optimization for
analytics queries. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI16),
pages 435–450, 2016.

[50] Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey,
Thomas Jungblut, Konstantinos Karanasos, Jitendra Pad-
hye, and George Varghese. Wanalytics: Geo-distributed
analytics for a data intensive world. In Proceedings of
the 2015 ACM SIGMOD international conference on
management of data, pages 1087–1092. ACM, 2015.

[51] Jianyu Wang and Gauri Joshi. Adaptive communication
strategies to achieve the best error-runtime trade-off
in local-update sgd. arXiv preprint arXiv:1810.08313,
2018.

[52] Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa George,
Mihir Bala, Padmanabhan Pillai, Shao-Wen Yang, and
Mahadev Satyanarayanan. Bandwidth-efficient live
video analytics for drones via edge computing. In
2018 IEEE/ACM Symposium on Edge Computing (SEC),
pages 159–173. IEEE, 2018.

[53] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis,
Kin K Leung, Christian Makaya, Ting He, and Kevin
Chan. When edge meets learning: Adaptive control for
resource-constrained distributed machine learning. In
IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 63–71. IEEE, 2018.

[54] P. Watcharapichat et al. Ako: Decentralised deep learn-
ing with partial gradient exchange. In Proceedings of the
Seventh ACM Symposium on Cloud Computing, pages
84–97. ACM, 2016.

[55] Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, Yuxin
Peng, and Zheng Zhang. Error-driven incremental learn-
ing in deep convolutional neural network for large-scale
image classification. In Proceedings of the 22nd ACM
international conference on Multimedia, pages 177–186.
ACM, 2014.

[56] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and
Yoshua Bengio. Show, attend and tell: Neural image
caption generation with visual attention. In Interna-
tional conference on machine learning, pages 2048–
2057, 2015.

[57] Matthew D Zeiler. Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012.

[58] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. Deep
learning in mobile and wireless networking: A survey.

arXiv preprint arXiv:1803.04311, 2018.

	Introduction
	Background and Related Work
	DLion
	Compute Capacity-aware Batching
	Network-aware Data Exchange
	Selective Data Propagation

	Evaluation
	Heterogeneous Computation Resources
	Heterogeneous Network Resources

	Conclusion
	Discussions and Future Work

