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Abstract
Advanced vision analytics plays a key role in a plethora of
real-world applications. Unfortunately, many of these applica-
tions fail to leverage the abundant compute resource in cloud
services, because they require high computing resources and
high-quality video input, but the (wireless) network connec-
tions between visual sensors (cameras) and the cloud/edge
servers do not always provide sufficient and stable bandwidth
to stream high-fidelity video data in real time.

This paper presents CloudSeg, an edge-to-cloud framework
for advanced vision analytics that co-designs the cloud-side
inference with real-time video streaming, to achieve both
low latency and high inference accuracy. The core idea is
to send the video stream in low resolution, but recover the
high-resolution frames from the low-resolution stream via a
super-resolution procedure tailored for the actual analytics
tasks. In essence, CloudSeg trades additional cloud-side com-
putation (super-resolution) for significantly reduced network
bandwidth. Our initial evaluation shows that compared to pre-
vious work, CloudSeg can reduce bandwidth consumption by
∼6.8× with negligible drop in accuracy.

1 Introduction

Recent years have seen an explosive growth of real-world
vision-based applications, primarily driven by advances in
traditionally challenging vision tasks, e.g. multiple object
detection [21, 24], semantic segmentation [14, 29], instance
segmentation [8, 25] and panoptic segmentation [12, 13]. To
obtain adequate inference accuracy, these tasks often require
both high computation power and high-resolution images (or
video streams). This, however, poses a fundamental challenge
to real-time vision-based applications. On the one hand, many
video analytics tasks have been optimized for cloud environ-
ments (e.g. [10, 28]). This seems to suggest one should send
data via the bandwidth-limited connection to the cloud in the
hope that the sophisticated cloud-side model can still extract
enough information from the limited data. This hope, unfor-
tunately, turns out to be illusory for advanced vision analytics

tasks; while reducing video resolution (or frame rate) does
save bandwidth, it will nevertheless inflict non-trivial drop
in inference accuracy [4, 27]. On the other hand, some real-
time advanced vision applications, e.g. autonomous driving,
put expensive hardware accelerators [15] on edge devices
to perform local inference. However, this approach does not
make much economic sense when future applications require
large-scale deployment, e.g. fleets of delivery vehicles [23].

In this paper, we present CloudSeg, an edge-to-cloud video
analytics framework that optimizes for both high accuracy
and low latency. CloudSeg lowers the quality in which the
video is sent to the cloud, but it then runs a super-resolution
(SR) procedure at the cloud server to reconstruct high-quality
videos before executing the actual video analytics (video
segmentation, object detection, etc.). This approach is in the
same spirit of prior applications of SR where high-quality
images are needed when only low-quality images are avail-
able [7]. What’s new is that we found it can potentially strike
a desirable balance between accuracy and latency in the edge-
to-cloud analytics setting. Essentially, running SR uses much
less cloud resource and cause less delay than the actual in-
ference, and it could restore the video quality so that video
analytics task could achieve the same accuracy as if the video
is streamed in high quality.

That said, we found that current SR models do not always
perform as well as expected. This is because traditional SR
models seek to retain pixel-level details (i.e., minimizing vi-
sual quality loss), which does not always retain the informa-
tion needed by vision analytics. A notable example of such
mismatch is the recovery of small details such as distant pedes-
trians. Traditional SR models, trained to uniformly recover
all pixels to meet a given target quality, may fail to recover
enough details for small object than for big objects, thus mak-
ing small objects hard to identify or segment. However, these
small objects are crucial (just as other large objects) to the
accuracy of vision tasks and the practicality of applications
e.g. autonomous driving.

To address the limitations of SR, we train our SR model
in such a way that it reduces both quality loss as well as the
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Figure 1: CloudSeg framework overview

accuracy loss of the analytics task. Given an existing SR
model, which is essentially a deep neural network (DNN),
we use an additional training process to fine-tune the weights
of the SR model to minimize the accuracy loss of the super-
resolved frames on the cloud-side analytics model, as showed
in Figure 2. To this end, the fine-tuning process uses the
difference of inference accuracy between the original frames
and the super-resolved frames as the loss function (§3.1).

We further integrate CloudSeg with analytics models using
the popular pyramid structure [16, 24, 29] to reduce unnec-
essary downsampling overhead by reusing low-resolution
data (§3.2). Besides, we adaptively select useful frames for
instance-level tasks with a 2-level frame selector to further
reduce overhead while keeping good trackability. Finally,
to cope with the bandwidth fluctuation, inspired by prior
work [27], we adapt the video resolution and frame rate to the
available bandwidth (§3.3). Our preliminary results show that
CloudSeg on average can save ∼6.8× bandwidth compared
to a recently proposed baseline [27] while achieving same
inference accuracy.

2 Background

2.1 Requirements of advanced vision analytics
This work considers advanced vision analytics tasks that re-
quire low latency and high inference accuracy. For example,
for autonomous driving and multiple object detection applica-
tions, small and distant objects still matter so high-resolution
input is necessary; for autonomous driving and robotics ap-
plications, high-frame-rate input is essential to ensure track-
ability because scenes generally change fast and real-time
interaction requires low latency.

To achieve desirable accuracy, these advanced vision ana-
lytics needs to run highly complex models, increasingly in the
form of deep neural networks (DNNs), with expensive hard-
ware (GPUs) as well as on high-resolution inputs. For exam-
ple, state-of-the-art real-time object detection model SSD [17]
can run at 300×300 in speed of 59 FPS (frames per second),
while real-time accurate semantic segmentation model IC-
Net [29] runs at 27 FPS on a 2048×1024 resolution input,
both on Nvidia Titan X.

2.2 Video streaming for vision analytics

In many real-time video analytics applications, it is, however,
fundamentally challenging to colocate expensive compute
resources with high-fidelity video data considering scalability
and cost. With more edge devices deployed in geographically
distributed locations, how to collect their video streams to
cloud for analytics without using too much bandwidth has
attracted much attention.

The conventional wisdom has been that an edge device
should compress its video, via pixel-level (spatial) downsam-
pling and frame-level (temporal) downsampling, and ensure
that sufficient information is retained, so that the cloud server
can still run the vision analytics model on the downsampled
video and produce highly accurate inference as if the video is
not compressed. Specifically, AWStream [27] learns a Pareto-
optimal policy and adaptively selects a data rate degradation
strategy to meet the accuracy and bandwidth trade-off over
the wide-area network for video object detection. FilterFor-
ward [3] filters relevant video frames on the edge with small
neural networks to save bandwidth and it shares the same
spirit of prior filter-based frameworks [4, 11, 20].

As we will see in §4.2, while this approach [27] works to
some extent, it ultimately imposes a hard trade-off: at some
point, when the frame rate needs to be retained high for ad-
vanced applications, more aggressive video downsampling
always inflict a non-trivial drop in accuracy. As a result, it
cannot be directly applied to serve advanced vision analytics.

2.3 Super-resolution for vision analytics

Our solution is based on the recent advance in super-
resolution (SR) techniques. Ideally, a SR model can recon-
struct a high-resolution scene from a low-resolution scene,
by inferring details based only on information in the low-
resolution input. Recently, DNN-based SR models have sig-
nificantly improved the performance [2, 9]. Prior work has
shown that SR is a promising approach to improving video
streaming quality [26] and boosting vision analytics accu-
racy [7] when only low-resolution videos are available.

Our work differs from the prior work in two important
aspects. First, we show that by applying SR on the down-
sampled video, the resulting reconstructed high-resolution
video can usually produce almost the same accuracy as if
the video was not downsampled. Although such result is not
surprising, it suggests that SR could serve as an architectural
role of “glue” between the video encoding stack (for saving
bandwidth) and the video analytics (for maximizing accu-
racy). Second, through experiments, we also shed light on the
limitations of current SR models, which are tailored to retain
visual-based information, rather than maximizing analytics
accuracy. Instead, we present a new way of training SR mod-
els such that the resulting model maximizes both the post-SR
visual quality and the analytics accuracy.



3 Design

We present CloudSeg, a new edge-to-cloud framework for
real-time advanced video analytics. The workflow of Cloud-
Seg is illustrated in Figure 1. On the edge side, the sensor
(camera) adaptively downsamples a high-resolution video,
and streams it to the cloud server via network. On the cloud
side, the server then processes the video, runs (DNN-based)
inference, and finally returns the inference results to the edge
device. CloudSeg consists of three main components, which
we will explain next.

3.1 Analytics-aware super-resolution
To address the challenges of serving advanced vision analyt-
ics applications over the cloud as well as the limitations of
analytics-agnostic SR discussed in §2, CloudSeg trains the
SR model with a novel approach so that the resulting model
maximizes both the post-SR visual quality and the analytics
accuracy. We first train the SR model offline on the same
dataset which was used to train the actual vision model, then
fine-tune the SR model with an accuracy-oriented metric to
further improve the inference accuracy especially on critical
details. The resulting SR model is used to reconstruct high-
resolution (HR) images from the low-resolution (LR) input
images before feeding them to the actual inference model on
the cloud server.

We use a state-of-the-art super-resolution model CARN [2]
to illustrate our method (Figure 2), which involves two steps:

• Base SR training: We use a semantic segmentation
model ICNet [29] as the vision-task model. Originally,
CARN is trained to minimize the quality loss (struc-
tural similarity index, or SSIM) between the original HR
frame and the resulting super-resolved (SR) frame.

• Analytics-aware fine-tuning: Next, we further train the
SR model to improve the accuracy of specific vision
tasks. We calculate the difference of inference accuracy
between running the vision model on the original HR
image and running it on the SR image. This difference is
then used as the loss function which the new SR model
is trained to minimize.

To better tailor SR model for our purposes, CloudSeg also
uses different training parameters make the resulting SR
model more amenable to video analytics. CARN adopts a
patch-based CNN model, where a patch is any fixed-sized
(e.g., 64×64) region which will undergo different forms of
random deformations (cropping, flipping, rotation). To make
the SR training aware of the analytics task, we use a much
more fine-grained path than that used in ICNet (720×720).
In our applications, small patches are crucial to identifying
and retaining small details, such as distant pedestrians. How-
ever, CloudSeg applies the fine-grained patch only when fine-
tuning SR model weights, for practical reasons. First, a small
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Figure 2: Train SR model offline with the new criteria

patch is not well-suited for accurate ICNet segmentation in-
ference, so during the SR fine-tuning, we use the same patch
size as the original ICNet. Note CloudSeg does not exactly
rely on quality recovery since our ultimate goal is accurate
vision inference, so a larger patch size is well-suited for the
analytics-aware fine tuning.

We also found another simple yet effective change that
can boost the training of the base SR model. Many machine-
learning dataset, including the one we use (Cityscapes [5])
to train segmentation model, have many labeled images, but
contains even more massive unlabeled images, which are col-
lected but not manually labeled. These unlabeled images do
not add value to the training of any machine-learning model,
but they are as useful as labeled images when training the SR
model! Compared to the naive approach where both SR and
the vision analytics model are trained on the same labeled
dataset (a small subset of the whole image set), incorporating
the unlabeled images in the training of the base SR model can
significantly boost the effectiveness (quality recovery) of the
trained SR model.

3.2 Vision analytics pipeline refining

There are two prevalent machine learning model structures for
real-time inference, which are key frame feature propagation
on high-frame-rate input for instance-level tasks and pyra-
mid structure (or multi-scale structure) on high-resolution
input. Each of them essentially improves the model infer-
ence efficiency in temporal (frame rate) or spatial (resolu-
tion) aspect. CloudSeg refines the pipeline for models using
these two structures, such that (1) the computation overhead
of key frame selection can be further saved by integrating
it to the edge-side frame filter; or (2) by reusing the low-
resolution data, the redundant process of downsampling the
super-resolved frames in pyramid structure can be optimized.



Edge-side 2-level frame selection CloudSeg unifies the
frame selection processes required by both the video stream-
ing framework and the vision model. Originally, the video
streaming framework skips stale frames to save bandwidth
and retain trackability in instance-level tasks [8, 25], while in
fast-inference vision models [14, 22, 30], key frame feature
propagation reduces computation load by only running heavy
inference on key frames. CloudSeg conducts a 2-level frame
selection only once on the edge side, thus the computation
overhead on the server is saved and the frame selection on the
edge is more accurate by using the criteria of the vision task.

We define the frames which are necessary to stream as
useful frames, such that key frames can be seen as the most
useful frames. Intuitively, when the scene is changing rapidly,
useful and key frames are more concentrated than when the
scene is stable, so the criteria of frame selection is the pixel
deviation of the task outputs (e.g. segmentation maps) of the
current frame from that of the previous key frame.

Previous work [14] devises a small and fast neural network
which takes the differences between the low-level features of
the current frame and the previous key frame as input, and
predicts the deviation of segmentation maps to select key
frames. If the predicted deviation goes beyond a pre-defined
threshold, the current frame is set as a key frame, instead of
selecting key frames with fixed intervals or simple heuristics.
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Figure 3: Adaptive 2-level frame selection

CloudSeg learns CV wisdom. We adapts this filtering
method to our 2-level frame selector and deploy it on the
edge device. It works in parallel with super-resolution (§3.1).

As Figure 3 shows, two thresholds target different frames:
the higher one filters out key frames while the lower one filters
out useful frames, and other stale frames will not be streamed
to the server. Two thresholds are set by the adaptive controller
in §3.3 such that they can be updated according to network
conditions and application requirements.

Useful frames and tagged key frames will be streamed
to the server and are compatible with the key frame feature
propagation structure. For an instance-level model without
key frame scheme, the selector falls back to a single-level
useful frame filter to save bandwidth.

Low-resolution data reusing In parallel with super-
resolution, if the cloud-side vision model uses pyramid struc-

ture, CloudSeg will process received low-resolution data to a
set of suitable resolutions and feed them to the model, thus we
reduce the overheads of repeated super-resolving and down-
sampling. The pyramid structure [16] let the vision model
process high-resolution input together with several lower res-
olutions for fast inference while keeping accuracy [24, 29].
Here we take ICNet [29] as an example in our refined pipeline.

ICNet builds an inference path that employs information
in the low-resolution frames along with details from the high-
resolution frames to achieve both low latency and high ac-
curacy. For example, ICNet downsamples the 2048×1024
(HR) input by 2× (MR) and 4× (LR) respectively to feed
the pyramid network. We found that for pyramid structure, a
naive server-side workflow is to let the SR model upsample
the LR input by 4× to HR, then let ICNet downsample HR to
MR and LR to run inference with its multiple branches. This
naive pipeline introduces repeated computation and the data
quality loss.

CloudSeg refines this pipeline by reusing LR data. Cloud-
Seg can apply the most suitable super-resolution and down-
sampling policy, then directly feed LR and post-SR frames
to ICNet without the unnecessary downsampling process, as
illustrated in Figure 1.

3.3 Adaptive bitrate controlling
While SR well handles the latency/accuracy trade-off in gen-
eral (as shown in §4), it may fail in certain extreme cases
such as those caused by variance of of scenes, e.g., light and
weather changes or glitches (worst cases) of SR. The blue
line in Figure 4 shows the inference accuracy (mIoU) on a
30-second clip (experiment setting in §4). The minimal accu-
racy (≤ 0.6) is unacceptable for real-world applications, even
the average is not that bad. This problem can be addressed by
streaming a higher-resolution video to the backend model or
even bypassing SR, as the red dashed line shows.
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Figure 4: Variance of the inference performance with SR

To that end, we adopt an adaptive bitrate controller, similar
to prior work [27], to handle the variance of network condi-
tions, real-world scene changes, or performance drop of SR.
Basically, it gathers network information from the transport



layer, e.g., bandwidth and network latency, as well as applica-
tion performance from the application layer, e.g., inference
accuracy and computation time. Through offline/online profil-
ing and training, we can learn a model and find a suitable knob
policy including downsampling rate, frame rate and frame
thresholds with little overhead.

4 Preliminary results

We implement a prototype of CloudSeg and conduct exper-
iments on the Cityscapes [5] dataset. We use semantic seg-
mentation model ICNet [29] as our cloud-side vision model.
Preliminary results show that CloudSeg can achieve real-time
advanced vision analytics over the cloud with low bandwidth
consumption and negligible accuracy loss.

4.1 Analytics-aware super-resolution
We compare the similarity criteria (PSNR, SSIM) and the
inference accuracy criteria (mIoU) of a semantic segmentation
task using the SR model with and without analytics-aware
fine-tuning. HR is the 2048×1024 frame. We get the LR
frame by resizing HR to 512×256 with bilinear, which is the
default resize algorithm of TensorFlow [1], and the video size
is deducted by 13.3×. Then we upsample LR to the original
resolution with three methods: bilinear, content-aware SR and
analytics-aware SR (SR-FT). The standard inference model
ICNet is trained on the Cityscapes [5] training set and mIoU
is tested on the validation set. The mIoU of HR matches
the performance claimed in the ICNet repository1. PSNR
and SSIM are both calculated over the RGB channels, so the
exact values are different from the original paper, which are
calculated over the luminance channel. Our fine-tuned SR
model achieves a better inference accuracy compared with the
vanilla SR. It improves the reconstruction of small details e.g.
sharper edges of people in the distance which are important
for the target advanced vision applications.

Metrics Bilinear SR SR-FT HR

PSNR 31.00 35.21 35.44 —
SSIM 0.936 0.970 0.968 —

mIoU 0.582 0.633 0.649 0.675

Table 1: Performance of different upsampling methods

4.2 Bandwidth consumption
Cityscapes [5] dataset videos are 2048×1024 and 17 FPS,
consisting of 8-bit RGB frames. Following the state-of-the-art
streaming analytics framework AWStream [27], videos are

1https://github.com/hszhao/ICNet

encoded in H.264. In this setting, the original 2048×1024
video consumes 10 Mbps bandwidth. With the SR method
introduced in CloudSeg, a video can be adaptively downsam-
pled by different factors. Here we downsample the video by
4× to 512×256. It consumes 750 kbps bandwidth, which is
13.3× smaller compared to original high-resolution video.

We further compare the bandwidth consumption of Cloud-
Seg with AWStream. Note that for a pixel-level semantic
segmentation task here, we stream all the frames, and frames
are only degraded on resolution. To achieve the same accuracy
as CloudSeg, AWStream can only downsample the video to
1440×720. It consumes 5.1 Mbps bandwidth which is 6.8×
larger than ours, as shown in Figure 5.
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4.3 Inference latency

Besides network latency which is greatly reduced by our SR
model, another major latency comes from the SR and vision
model inference on the cloud server. We test the average
inference time of super-resolving Cityscapes frames from
512×256 to 2048×1024 and semantic segmentation (ICNet)
on a single Nvidia V100 GPU. The results are showed in
Table 2. The pipeline of SR and semantic segmentation works
at 23.5 FPS. Considering that the framework overhead (e.g.
image loading, client-side processing) takes a rather small
fraction, CloudSeg can run in real time.

Model Time (ms) Frame (FPS)

Super-Resolution 6.2 161.3
Semantic Segmentation 36.3 27.5

Total 42.5 23.5

Table 2: Inference time per frame

https://github.com/hszhao/ICNet


Discussion

Can we do better under extremely low bandwidth? Our
framework can greatly reduce the bandwidth consumption,
but the bandwidth of wireless WAN could be extremely low
that even our SR method can not recover sufficient inference
accuracy. Again we turn to deep learning. Similar to SR, we
consider utilize the computing resource of the cloud server
to save bandwidth, with neural frame interpolation [18, 19].
We will investigate its impact on the tracking accuracy of
instance-level tasks.

Handling uncertainty when applying ML for system
Applying learning-based techniques may increase the uncer-
tainty of the real-world system, especially in applications e.g.
autonomous driving [6]. We propose a method to handle the
uncertainty to ensure the performance of the framework, and
this is still an important topic for further research.

Video QoE for vision analytics tasks Traditional QoE of
video streaming is designed for user watching experience.
From our preliminary results, vision analytics tasks may value
different metrics than human audience. With a special QoE
for vision tasks, the cloud analytics framework may save more
bandwidth and achieve better performance.

Online improvement of the framework We can improve
the performance of DNN-based models online on the server
with the raw data as reference. The raw data also serves online
profiling. If the client streams raw data, it is collected to train
the SR model and the vision analytics model. The logic is
decided by the adaptive controller considering the available
bandwidth and inference performance.
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