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Abstract
Fueled by IoT botnets and DDoS-as-a-Service tools, dis-

tributed denial of service (DDoS) attacks have reached record
high volumes. Although there exist DDoS protection services,
they can be costly for small organizations as well as individ-
ual users. In this paper, we present a low-cost DDoS solu-
tion, DynaShield, which a user can deploy at common cloud
service providers. DynaShield employs three techniques to
reduce cost. First, it uses an on-demand model. A server dy-
namically updates its DNS record to redirect clients’ traffic
to DynaShield when it is under attack, avoiding paying for
cloud services during peacetime. Second, DynaShield com-
bines serverless functions and elastic servers provided by
cloud providers to auto-scale to large attacks without over-
provisioning. Third, DynaShield uses cryptocurrency puzzles
as proof of work. The coin mining profit can further offset
a protected server’s cloud service charges. Our preliminary
evaluation suggests that DynaShield can cost as little as a few
dollars per month to prevent an organization from common
DDoS attacks.

1 Introduction
Distributed Denial of Service (DDoS) attacks are a long

time security threat. Except for a few Internet giants, anyone
can become a DDoS victim. The emergence of DDoS-As-
a-Service and IoT botnets makes launching such attacks in-
creasingly easy and cheap. According to [2], botnet creators
nowadays sell DDoS-As-a-Service with guaranteed 290Gbps
volume at a cost as low as $20/month. In contrast, defending
against such attacks can be painfully expensive for many or-
ganizations and Internet users. In 2015, Rutgers university
suffered a sustained series of DDoS attacks. The university
was forced to spend more than $300K in consultation and
consequently increased its tuition and fees by 2.3% to cover
its cyber-security cost [16, 21].

Both industry and academia have come to rescue. Today,
there exist a variety of DDoS protection products and ser-
vices [1, 3, 6–8, 14, 17] as well as a plethora of academic

proposals to make the Internet DDoS resistant [22, 24, 25, 27,
30–36, 38–45]. However, the industry solutions often charge
a non-negilible fee and can be a financial burden for small
or non-profit organizations or individual Internet users. For
instance, the DDoS protection service provider Cloudflare [8]
charges a minimal flat fee of $200/month per business cus-
tomer, and an additional $5 per million good requests destined
to the customer. The academic solutions often require changes
to routers or the Internet architecture, and cannot be readily
deployed on Today’s Internet.

In this work, we explore how an organization or an in-
dividual user can protect themselves from DDoS attacks at
a low cost using today’s technologies. To this end, we out-
line a solution, DynaShield, which provides on-demand and
low-cost DDoS protection using cloud services. DynaShield
uses common cloud services to build a protective shield for a
DDoS victim. We are attracted to cloud services because 1)
the current pricing for cloud services is more favorable than
that of comparable DDoS protection services; and 2) most
cloud providers already have large-scale distributed networks
that are resilient to raw bandwidth flooding attacks, and they
scrub off network layer and transport layer attack traffic for
free [6, 7, 14].

DynaShield uses three techniques to reduce its cost of
using cloud services. First, it exploits the intermittent na-
ture of DDoS attacks, and only uses cloud services on de-
mand. A server redirects its traffic to DynaShield after it
encounters an attack using dynamic DNS updates, eliminat-
ing the cloud service charges during peacetime. Second, Dy-
naShield uses a combination of Function-as-a-Service (FaaS)
and Infrastructure-as-a-Service (IaaS) to auto-scale to large
attacks while keeping its cost low. Third, DynaShield uses
cryptocurrency as Proof-of-Work to limit how fast malicious
clients can send application-layer requests. The profit from
coin mining further offsets its cloud service cost.

To facilitate deployment, DynaShield uses an existing BGP
feature Flowspec [37] to prevent attack traffic from directly
reaching a protected server (§ 3.6). It does not require any
client side modification to protect web services. We currently



design DynaShield to only protect web services, but it is our
future work to extend it to protect other services (§ 6).

DynaShield has a main limitation. It assumes the cloud
provider it builds on, the DNS service, the Internet backbone,
and the Internet service provider (ISP) a protected server uses
have sufficient network capacity to withstand raw bandwidth
flooding attacks. Therefore, it is not suitable for defending
against large-scale DDoS attacks that can take down a cloud
provider, a DNS service, or an ISP.

We evaluate DynaShield’s on-demand DNS redirection
latency, and compare its latency inflation and cost with those
of a commerical service: Cloudflare. The results show that
DynaShield’s DNS redirection latency is almost the same as
the TTL of a server’s DNS record. A server that sets a short
TTL on its DNS record (e.g., 30s) will experience a short DNS
redirection latency. DynaShield’s latency inflation is similar to
that of Cloudflare and is on average less than 22% of the direct
connection latency from a client to a server. For a web server
www.duke.edu we study, it reduces the DDoS protection cost
from a few hundred dollars per month charged by Cloudflare
to a few dollars. This result suggests that DynaShield can
be a low-cost DDoS solution. It is our future work to build
DynaShield and evaluate its effectiveness to combat various
DDoS attacks.

2 Overview
In this section, we describe DynaShield’s design assump-

tions, its design goals, and the adversary model.

2.1 Assumptions
Cloud Service Model We assume two main types of cloud
services: IaaS and FaaS. With IaaS, a user specifies a Virtual
Machine (VM) instance’s compute resource provision and
manages the start and stop of the first VM instance by himself.
A service built using IaaS scales at the granularity of a VM.
That is, a service deploys more unit machines when the load
on the current VM instances is high.

In contrast, FaaS, i.e. serverless functions like AWS
Lambda, enables a user to run an application without pro-
visioning or managing the needed computing resources by
himself. The user implements an application using one or
more functions. A service built using serverless functions
scales at the granularity of a function. That is, a cloud provider
increases the number of function instances when the load is
high.
Pricing Model Both IaaS and FaaS have a pay-for-use model.
A VM provided by IaaS is charged based on the VM’s com-
pute resource provision and the time it runs. Serverless func-
tions are charged based on how many times a function is
invoked as well as its resource consumption.
Well-Connected Infrastructure We assume the cloud
provider DynaShield builds on, a protected server’s DNS
provider, the Internet backbone, and the ISP a protected server
connects to have sufficient bandwidth to withstand most raw

bandwidth flooding DDoS attacks. We make this assumption
because commercial DDoS protection services such as Cloud-
flare and Akamai all rely on the Internet backbone, their own
networks, and DNS services having sufficient bandwidth to
withstand the raw bandwidth flooding attacks.

2.2 Adversary Model
Attack duration and frequency We assume DDoS attacks
are intermittent. According to the DDoS reports of the last
two years from Incapsula [15], Kaspersky Lab [11], and Aka-
mai [20], a DDoS attack usually has a short duration. Specifi-
cally, the report from Kaspersky Lab [11] shows that among
all DDoS attacks they investigated in the first two quarters
of 2018, 80.73% and 69.49% of them are shorter than four
hours respectively. Incapsula [15] shows that for the last three
months of 2017, a targeted DDoS victim suffered on aver-
age 2.9 attacks per month. These results are consistent with
the financial incentives of attackers, as launching persistent
attacks requires them to spend more money on purchasing
the attack infrastructure. Launching intermittent attacks can
cause service disruptions at a low cost, and also prevents the
exposure of the attack infrastructure.
Types of DDoS attacks We consider all layers of DDoS flood-
ing attacks, including both infrastructure and application layer
DDoS attacks. We allow all attackers to collude and synchro-
nize their floods. Attacks may also try to bypass DynaShield
and access a protected server directly to launch an attack.
However, we assume that there is no on-path attacker, as such
an attacker can simply discard all traffic it receives to launch
DDoS attacks.
Ability to Detect DDoS Attacks We assume a server can de-
tect the onset of a DDoS attack, thereby invoking DynaShield
to protect itself. It is outside the scope of this work to discuss
how to detect DDoS attacks. A server can use its load, traffic
pattern, or existing DDoS attack detection products [13] for
this purpose.

2.3 Design Goals
Effective DDoS protection We aim to make DynaShield ef-
fectively protect a server from infrastructure and application
layer DDoS attacks. When a DDoS attack occurs, a protected
server does not crash, and can serve legitimate clients’ re-
quests according to its service policy.
Low cost We aim to make the cost of DynaShield significantly
lower than that of purchasing services from companies like
Cloudflare and Akamai.
Deployable We aim to make DynaShield immediately de-
ployable on the Internet without modifying routers or clients.
Flexible We aim to enable a protected server to deploy flex-
ible policies to provide differentiated services to different
clients during attack times. For instance, a server may degrade
services to suspected malicious clients, or treat all indistin-
guishable clients fairly.
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Figure 1: The DynaShield architecture.

3 Design
In this section, we describe the design of DynaShield.

3.1 The DynaShield Architecture
Figure 1 shows the high-level DynaShield architecture. It

has five participating components: a protected server’s DNS
service, DynaShield’s serverless functions and VM instances
running on the cloud, existing cryptocurrency mining pools,
an ISP’s filtering routers, and a protected server.

When a server detects the onset of an DDoS attack, it redi-
rects its traffic to DynaShield by updating its DNS records
to point to DynaShield’s IP addresses, and informs its up-
stream ISPs using BGP Flowspec [37] to install router filters
that only allow traffic from DynaShield to reach itself. Dy-
naShield forwards the traffic to the server using a Generic
Routing Encapsulation (GRE) tunnel [29] (§ 3.6).

DynaShield is a capability-based DDoS defense architec-
ture [23]. Before a client can send to a server, it must obtain
permissions to send. A server returns permissions to send as
capability tokens and a client carries those tokens in its subse-
quent requests. Different from previous work [35, 38, 43–45],
DynaShield uses application-layer capabilities to avoid modi-
fying a client. DynaShield acts like an HTTP/HTTPs proxy,
terminating and forwarding a client’s HTTP/HTTPs requests
to a protected server. DynaShield treats the first HTTP request
from a client as the client’s initial request. If the server accepts
the client’s request, it will return a capability token using an
HTTP cookie protected by a secret key known only to itself
and DynaShield. A client’s subsequent requests will carry the
HTTP cookie. DynaShield discards unwanted traffic without
a valid cookie.

3.2 On-demand DDoS Protection
DynaShield mitigates DDoS attacks on demand. A pro-

tected server operates in two states: the peacetime state and

the under-threat state. The server enters the under-threat state
when it detects the onset of a DDoS attack. When a server en-
ters the under-threat state, DynaShield will be triggered either
automatically or manually by the system administrator. We
use DNS updates to redirect the server’s traffic to DynaShield.
DynaShield will also wake up its first VM instance at its cloud
provider.

3.3 Initial Requests
DynaShield uses serverless functions to handle the initial

request from a client. This design allows DynaShield to au-
tomatically scale to a large volume of attack traffic without
knowing the size of the attack ahead of time. Additionally,
the start time of a serverless function is much shorter than
that of an elastic server [5]. So this design can avoid service
disruption when a server transitions from the peacetime state
to the under-threat state.

The initial requests may come from malicious clients and
overwhelm a server. To address this problem, DynaShield
uses computational puzzles derived from cryptocurrency as
Proof-of-Work to limit the initial request rate while enforcing
computational fairness among all clients. DynaShield could
use traditional computational puzzles as in previous work [27,
38]. However, traditional puzzles cause similar amount of
work at the client side but offers no real value to the server.

Differently, DynaShield joins a mining pool as a miner. It
divides the cryptocurrency puzzles received from the mining
pool into many easier pieces. Since cryptocurrency puzzles
have real values, DynaShield can aggregate the puzzle solu-
tions from multiple clients to obtain mining profit. Without
specific mentioning, we also refer to these easier puzzle pieces
as puzzles in the rest of the paper.

In our initial design, DynaShield returns a puzzle in re-
sponse to a client’s initial request as a JavaScript applet, which
includes the puzzle solving code. A client can solve the puzzle
by running the code without installing any additional applica-
tion. When a client solves a puzzle, the applet will submit the
solution to DynaShield. DynaShield verifies the puzzle solu-
tion. If the solution is correct, it forwards the client’s initial
request to the server.

DynaShield can adjust the difficulty of a puzzle to adjust
the request rate it forwards to the protected server. It is our
future work to study how to adjust the puzzle difficulties to
match an expected incoming request rate set by a server.

When a server receives an initial request forwarded by
DynaShield, it will decide whether to accept the client’s con-
nection. If it does, it will return a cryptographically-derived
capability token to the client. Malicious clients cannot forge
capability tokens. A client’s subsequent requests will carry
the capability tokens as proof of authorization to send.

3.4 Authorized Requests
DynaShield uses VM instances provided by its cloud

provider to forward authorized requests. It returns a Javascript



applet to a client after it verifies the client’s puzzle solution.
This applet redirects the client’s subsequent requests to its
VM instances. DynaShield’s VM instances verify the capa-
bility tokens carried in a client’s requests, and forward the
requests with valid capability tokens to the server.

DynaShield can use serverless functions to verify autho-
rized requests, but using VMs avoids per request charges.
Since a server can control the authorized request rate by con-
trolling how capability tokens are returned to clients, it can
provision the VM instances to match the expected authorized
request rate, thereby avoiding overprovisioning the VM in-
stances and paying unnecessary cloud charges.

3.5 Blacklisting Non-Compliant Clients
A malicious client may request a puzzle without solving it

or send an invalid capability token to DynaShield. Any request
that reaches DynaShield consumes cloud resources, incurring
cost to a server. To avoid this undesirable cost, DynaShield
keeps a record of clients who repeatedly fail to solve a puzzle
or send an invalid capability token in a blacklist, and requests
the cloud provider to filter their traffic at the network layer
for a period of time.

3.6 Preventing Bypassing Attacks
Attackers can bypass DynaShield by directly sending traffic

to a server’s IP address. One possible solution is to assign a
protected server a different IP address and keep it as a secret
when it is in the under-threat state. However, this design has
the drawback that a server must renumber between the under-
threat and the peacetime state.

As deployability is a main goal, we use a different mech-
anism to address the bypassing vulnerability. When Dy-
naShield is launched, it establishes a GRE tunnel to the pro-
tected server, but uses a spoofed secret source IP address
secretIPDynaShield as the tunnel’s source IP address.

A protected server will request its upstream ISP to install
a filter that only allows traffic from this GRE tunnel, and
discards all traffic sent to its IP address. DynaShield will
forward all traffic to the protected server via this GRE tunnel.
Note that the return traffic from the server to DynaShield need
not go through the tunnel: a server can send the return traffic
to DynaShield’s public IP addresses directly.

With this design, an attacker cannot bypass DynaShield to
flood the server unless it correctly guesses the tunnel’s source
IP address. The probability is only around 2−32. DynaShield
can dynamically change the tunnel’s source IP address over
time and update router filters to defend against persistent
attacks that scan the entire IPv4 address space.

4 Analysis
In this section, we present a preliminary analysis of Dy-

naShield’s performance and cost.
Cost Analysis To estimate the cost of DynaShield, we esti-
mate the cost of cloud services it builds on, and the profit it

can gain from client solving cryptocurrency puzzles. We use
AWS as our cost basis. We compute the cost of serverless
functions in two cases: malicious bots solve the cryptocur-
rency puzzles vs. they do not solve the puzzles. When they
do solve the puzzles, the cost of serverless functions can be
computed as:

AWS_Lambda = µLambda × (b+g×d)× f ×2 (1)
where µLambda is the per million invocation cost of a Lambda
function; b denotes how many millions of bots an attack uses;
g denotes the legitimate users incoming request rate in the unit
of million requests per second; d denotes the average attack
duration; and f represents the average number of attacks a
protected server experiences monthly. Each client’s initial
request will invoke a serverless function twice: one for puzzle
fetching and the other for submitting the puzzle solution,
hereby the ×2 factor. We also assume the capability tokens a
server returns are valid for the entire attack period.

When malicious bots do not solve the puzzles, they will be
blacklisted after a threshold of c tries (by default c = 3). We
estimate the cost for serverless functions in this case as:
AWS_Lambda= µLambda×b×c× f +µLambda×g×d×2× f

(2)
We estimate the cost of renting VMs as follows:

AWS_EC2 = µV M ×d × f (3)
where µV M is the cost of renting a VM. We use the price of
AWS EC2 VMs listed at [4] for our estimate.

We estimate the profit from coin mining by assuming each
client has at least a hashrate of 239H/s, which is half of the
hash rate of a commodity PC with an Intel i7-4790 CPU. Such
a PC only costs $338 nowadays. We choose Monero Coin [18]
as the cryptocurrency because it is ASIC-resistant. We obtain
the profit of coin mining from an online cryptocurrency profit
calculator [10]. The current price of Monero at the time of
writing is $49.39. We assume the puzzle difficulty requires 5
seconds of each client’s computation time.

As a comparison, we also estimate the cost of using Cloud-
flare for DDoS protection. We do not include the base fee for
Cloudflare’s estimate, because it differs by the type of clients.
We compute Cloudflare’s cost as

µCloud f lare ×GCloud f lare (4)
according to the price plan of Cloudflare [19], where
µCloud f lare is the cost per million good requests destined to a
protected server and GCloud f lare is the total number of good
requests in millions. This calculation underestimates Cloud-
flare’s cost.

We obtain the website traffic statistics from Alexa [12],
and the attack traffic statistics from Incapsula [15] to estimate
how much it may cost a server to use DynaShield and Cloud-
flare. We use www.duke.edu as an example. From Alexa’s
statistics, the number of Duke server’s pageviews in Decem-
ber 2018 is 37,836,806. We use this number as the number
of good requests for Cloudflare’s cost estimate. The num-



Cost (-)/Profit (+) per month
AWS EC2: t2.2xlarge -$0.897

AWS Lambda (bots solve puzzles) -$1.624
AWS Lambda (bots do not solve) -$2.436

Cloudflare -$199.5
Monero(bots solve puzzles) +$13.8
Monero(bots do not solve) +$0.238

Table 1: This table shows DynaShield’s cloud service charges,
cryptocurrency profit, and the cost of using Cloudflare for
DDoS protection for a sample server.
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Figure 2: This figure shows the latency distribution when a
client observes a DNS record update after the update is made
for varying TTL values of the DNS record.

ber of hourly visits the Duke server had in that month is
10779/hr(2.99/sec), which we use as the legitimate clients’
incoming request rate g. From Incapsula’s statistics, the av-
erage number of DDoS attacks a target server experiences
per month is 2.9 and the average duration is 50 minutes. We
assume attack traffic comes from as many as 1 million bots.
Thus, we set b to 1 million.

The cost of each invocation of Lambda is $0.28, where the
flat cost is $0.2, and $.08 is the cost assuming a 5MB-Second
usage. We obtain the memory usage number using a prototype
implementation of the puzzle distribution and verification
function. We choose a t2.2xlarge VM instance with 16
vCPUs and 32GB memory. Its cost is $0.3712 per hour. We
choose this VM instance because it has sufficient compute
resources to verify and forward all authorized requests based
on the Duke server’s traffic statistics.

With these assumptions, Table 1 shows the monthly cryp-
tocurrency mining gain, the monthly cloud charges for Dy-
naShield, and the monthly cost if the server uses Cloudflare.

The results show DynaShield costs as low as $0.897 +
$2.436− $0.238 = $3.095, even if we assume bots do not
solve puzzles. This is only 1.6% of Cloudflare’s cost, even if
we discount the flat monthly fee of Cloudflare.
DNS Update Latency We evaluate how long it takes for a
dynamic DNS service to replace the IP address of a protected
server with those of DynaShield. In our experiment, we deploy
AWS Route53 as the DNS service and set the DNS record

TTL to different values. We then update the DNS record,
and query the DNS name from 20 PlanetLab [26] nodes. We
measure the time it takes for all vantage points to see the
update after we make the update.

Figure 2 shows the results. When the DNS server uses a
TTL less than 10 seconds, about 97% of the time all vantage
points see the DNS update within 30 seconds. When the TTL
is 30 seconds, about 98% of the time all vantage points see the
update within 35 seconds. This result suggests that a server
can direct the traffic to DynaShield quickly after it updates its
DNS record.
Traffic Redirection Latency We evaluate the latency in-
flation caused by directing a client’s traffic to DynaShield.
We assume DynaShield may run on any of the three main
cloud providers: AWS, Google Cloud Platform, and Microsoft
Azure. Different cloud providers have sites at different geo-
graphical locations. We also assume DynaShield may run on
different sites of each cloud provider. We choose 20 Planet-
lab nodes, a home computer, a Duke campus computer, and
a node hosted by cPanel [9] as client and server nodes. For
each pair of client and server nodes, we compare the latency
when a client is redirected to DynaShield with the latency of
a direct connection between a server and a client. We also
measure the latency when a client’s traffic uses Cloudflare to
reach a server. In each experiment, we measure the latency
for a client to fetch an empty file from a server. We use an
empty file to discount the network transmission latency. We
repeat each experiment 1000 times.

Direct DynaShield Cloudflare
100% 122% 118%

Table 2: The average latency inflation compared to a direct con-
nection’s latency between a server and a client.

Table 2 shows the latency inflation averaged among all
client/server pairs and all seven different sites from three
different providers. As can be seen, DynaShield’s latency
inflation is similar to that of Cloudflare and is 22% more than
the direct connection latency on average.

5 Conclusion
This paper describes DynaShield, a low-cost DDoS so-

lution for small organizations and individual Internet users.
DynaShield is an application-layer capability-based architec-
ture. It uses FaaS to process clients’ initial requests, and uses
IaaS to validate and forward clients’ subsequent requests to a
protected server. A server invokes DynaShield only when it is
under attack, thereby avoiding cloud service charges during
peacetime. DynaShield also uses cryptocurrency puzzles as
Proof-of-Work to rate limit clients’ initial requests. The profit
from cryptocurrency mining can further reduce a server’s
cloud service cost. Our preliminary evaluation suggests that
DynaShield can cost as little as a few dollars per month to
prevent an organization from DDoS attacks.



6 Discussion
In this section, we discuss DynaShield’s limitations as well

as future work.
DynaShield uses cryptocurrency as proof-of-work to rate-

limit clients’ initial requests. Legitimate clients are also re-
quired to solve cryptocurrency puzzles, which may or may
not be compliant with a server’s policy. In addition, mobile
clients may have limited computation resources. There also
exist clients which do not enable JavaScript. To address these
limitations, we can design DynaShield to allow a server to
choose from a range of mechanisms such as proof-of-wait
used in [28, 35] to rate limit clients’ initial requests.

It is our future work to conduct a comprehensive evaluation
on how DynaShield performs under various types of DDoS
attacks. Presently, we focus on how we can reduce the cost
of DynaShield. We have yet to study how DynaShield can
adjust puzzle difficulties to match a server’s bandwidth and
processing capacity, and how to implement various admission
policies set by a server.

The current DynaShield design only protects web services.
It has the drawback that DynaShield must share a server’s
SSL/TLS private key to forward an HTTPs request to the
server, similar to what a content distribution network does
today. It is possible to extend DynaShield to protect other
services by designing it to be a network layer or transport layer
proxy, intercepting clients’ traffic at the network or transport
layer. It is our future work to investigate this approach.

It is also our future work to investigate when a server should
stop using DynaShield. This problem is complicated because
it depends on an attacker’s attack strategy. If the attacker’s at-
tack strategy does not evolve, then a server can stop using Dy-
naShield when there is no attack traffic reaching DynaShield.
However, once a server deploys DynaShield, an attacker can
evolve its attack strategy correspondingly. A strategic attacker
can stop attacking a server right after it triggers DynaShield
and start to attack the server again once it stops using Dy-
naShield. However, launching such an on-off attack requires
an attacker to have control over the attack infrastructure when-
ever the server stops using DynaShield. This will increase
the attacker’s cost for launching an effective attack. Under
this attack strategy, a server may need to invoke and stop Dy-
naShield multiple times to force the attacker to either expose
its infrastructure or exhaust its attack fund. We plan to investi-
gate the best strategy for the server to defend against this type
of on-off attack in the future.
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