
E X C L U S I V E E L E C T R O N I C E D I T I O N   	 N O V E M B E R 2 0 1 3

E d i t o r
Rik Farrow
rik@usenix.org

M a n a g i n g E d i t o r
Rikki Endsley
rikki@usenix.org

P r o d u c t i o n
Arnold Gatilao
Casey Henderson
Michele Nelson

U S E NI X Ass o c i at i o n
2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738
www.usenix.org

©2013 USENIX Association
USENIX is a registered trademark of the USENIX
Association. Many of the designations used by manu
facturers and sellers to distinguish their products are
claimed as trademarks. USENIX acknowledges all trade
marks herein. Where those designations appear in this
publication and USENIX is aware of a trademark claim,
the designations have been printed in caps or initial caps.

2	� Uncertain Infrastructures
Mark Burgess

5	� The Night Watch
James Mickens

9	� What Every Admin Should Know About Email
Joe Brockmeier

E X C L U S I V E E L E CTRONIC E DITION   	N o vem b e r 2 0 1 3

mailto:rik@usenix.org
mailto:rikki@usenix.org
www.usenix.org

 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 2

Uncertain Infrastructures
M a r k B u r g e s s

To our shame, one of the rarely voiced complaints one could level at the
IT service industry is that we don’t know how to make promises we
can keep. In fact, we have not designed technology to keep anything;

the main focus lies in building, tweaking, and fire-fighting, all within an
increasingly fast-moving and disposable culture.

Against the backdrop of this uncertainty, we’ve invested in our reliance on technology.
Smart devices enable and enhance our personal freedom in ways that are just too seduc-
tive to forego, and they interface with services that lie behind the scenes. In the new age
of IT-powered commerce, the continuity of that lifestyle has come centre-stage. We used
to talk about business continuity and disaster recovery, now we talk about continuous
delivery of products to market, as well as continuous availability of services. We are start-
ing to realize that the modern world is always on, and we will not accept anything less.

The builders and custodians of today’s infrastructure have designed technology to be
managed by direct commands or remote control, replacing manual error with amplified
manual error. Errors are reported by independent monitors and shot down by further
manual intervention: errors slain like dragons in a gaming experience. But this will not do
for mission critical infrastructure.

Systems Thinking: Clockwork Uncertainty
We can really only promise a tiny number of things about the vastly complex environ-
ments we build. This does not give cause for complete certainty, but it can help to set
expectations. We can promise certain aspects of behavior, albeit with margins for error,
but we should also be clear: We build systems and essentially hope for the best; nothing
we do can fully determines whether a system crosses a threshold into instability.

Over the years I’ve had the privilege to work with many smart people at installations of
varying scale and complexity, often through the lens of CFEngine, and I’ve seen the issues
first hand and been able to learn some lessons from them. There is growing recognition
that systems are composed of both humans and automated processes, and that systemic
complexity amplified by scale is the main cause of uncertainty. But few voices have
invested in a science to understand and describe such complexity.

There are big ideas here, far too large to fit into this brief comment; so, I decided that it
was time to write them into a book. In Search of Certainty: The Science of our Informa-
tion Infrastructure is my new book [1], a popular science account of what I learned over the
past 20 years.

Smart but Resilient
Infrastructure is getting smarter. Why? Because we want to get at stuff faster. The less
work we have to do, the more accessible marketplaces for “stuff” are, the happier we seem.
That means embedded computation.

Mark Burgess is the CTO and
Founder of CFEngine, formerly
professor of Network and
System Administration at
Oslo University College, and

the principal author of the Cfengine software.
His the author of numerous books and papers
on topics from physics, Network and System
Administration, to fiction. 
mark.burgess@cfengine.com

References
[1] Burgess, Mark. In Search of
Certainty: The Science of our
Information Infrastructure.
XtAxis Press, 2013. http://mark-
burgess.org/certainty.html

[2] Gordon, J.E. The New Science
of Strong Materials: Or Why We
Don’t Fall Through the Floor.
Princeton University Press, 2006.

https://www.usenix.org
mailto:mark.burgess@cfengine.com
http://markburgess.org/certainty.html
http://markburgess.org/certainty.html

 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 3

Uncertain Infrastructures

We’ve seen a lot of progressive thinking over the past few years
under the banner of software defined systems. There has
been talk about “anti-fragility,” with chaos monkeys prodding
systems to make them fail. Of course it is not the breaking of
systems that makes them stronger, but adaptive processes
behind the scenes that no one is really talking about. This is
where the science lies.

The thrust of my activism in system administration has been
that we have to start thinking more scientifically. Computer
science is weak in the broad traditions of science as a tool of
explanation. Its roots lie in deductive reasoning, which is only
a small part of a post hoc picture. Managing systems is not
just a case of test-based development, or of analyzing big data.
Test-based development is like trying to pin the tail on a mule,
unless you have some guiding principles and empirical founda-
tions on which to home in on your design.

Semantics and Dynamics = Dev and Ops
I argue that there are two aspects to systems. I shall call these
semantics and dynamics. Semantics are about purpose and
intent. Dynamics are about behavior and performance. In some
ways, these two aspects map on the dev (development) and
ops (operations) in the the current parlance. Developers think
mainly about purpose and intent, whereas operations engi-
neers have to deal with actual behavior. DevOps tries to teach
the message that you need to understand both of these aspects
together in a unified way if you want to understand IT services
beyond a trivial scale and complexity.

In fact, there is deep science here—and not just the signal
lambda calculus that has gained the unfair attention of a small
crowd of developers—the study of behavior is known to us as
physics and it spans a plethora of different methods and issues.
I don’t have time to talk about them here, but I’ve tried to
describe the key ideas in my book.

If Only Systems Were Deterministic...
If only systems would do as they’re told, developers would have
their way. Many people I meet still believe that systems are
deterministic. But this Newtonian dogma was shattered in the
20th century. The history of scientific thinking tells us: The
world is non-deterministic, get over it.

Computer science does itself a disservice by ignoring the
main lesson of 20th century science, namely that the world is
non-deterministic in fundamental ways. There is not even a
well-developed theory of bugs. The push-button, imperative,
API remote control approaches we use to instigate action today
do not bring certainty. They offer a comfortable industrializa-
tion of process, but ultimately, by trying to remote control, we
merely throw stuff over the wall and hope for the best. The only

way to approach system reliability is to embrace the notion of
indeterminism once and for all. It is about best effort.

Some things can help us here, such as building systems that
are weakly coupled. System dependencies lead to strong cou-
pling. If one thing fails, the system immediately transmits
the failure to the next component. A weakly coupled system
is fault tolerant.

Artificial Criticality
We escape from criticality by diversifying systems through
redundancy. We never control systems, we merely keep their
forces in balance. The knife edge of if-else programming is the
radiation or asbestos of the software world. We stuff the walls
full of this potentially dangerous automated reasoning, believ-
ing that it is there to protect us, when in fact it exposes us to an
instability by the myriad pinpricks of a jostling environment.

Trying to conclude true or false from a highly complex environ-
ment is found to be the main cause of software unreliability.
The reasoning for this is explained in the book.

Our thinking is still incredibly primitive, if we are expecting to
scale reliable systems. We have given little evidence that we’ve
understood the key issues of system automation in IT. Manu-
facturing and electronics have come a lot further. It’s not only
about how resilient the pieces are, but also about how they are
put together. In several of the examples I’ve shown, the pres-
ence of regular maintenance could have prevented the gradual
failure of the system.

The great pioneer of material science J.E. Gordon wrote [2]
that: “The history of attempts to prevent cracks from spread-
ing or evade their consequences is almost the history of
engineering.”

In the Comet airline disaster of 1954, microscopic cracks pre-
cipitated an avalanche failure that was so fast nothing could
have prevented it from happening. In physical terms we would
say that the rate of reaction dominated any process capable of
preventing it. When there is a mismatch of dynamical scales
like this, maintaining equilibrium is not possible. You are bal-
ancing on a knife edge. Semantics of design always give way to
the dynamics of underlying reality.

There are two “answers” to this kind of failure: avoid stress
concentrations, bottlenecks, and other points of failure; and
use materials that catch the stress automatically by design,
like the storm drain, like embedded glass and carbon fibers and
alloys that spread load by deforming plastically. In IT terms,
you want load balancing and failover without failure as part of
the design, not as a late fire-fight.

https://www.usenix.org

 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 4

Uncertain Infrastructures

External Intervention vs Embedded Smart
Infrastructure
Why do we continue to make remote control systems that
make the worst use of both humans and machines? Because we
believe it’s the only way to do it. But take a look at this picture
of responding to a crisis.

◆◆ You wait for a crisis.
◆◆ You bring in a manual response (too late).
◆◆ You scale up the human operation by bringing power tools.

Now think about how simple drainage prevents most flooding
as an entirely automated embedded system. We are obsessed by
the manual intervention. It is a sign of technological immatu-
rity. It is even more apparent in the way we attempt to orches-
trate systems, using simplistic flow-chart thinking as a model
of a highly parallel and distributed environment.

There are three phases to the system lifecycle that we need to
rein in. We think very differently about each.

◆◆ Planning: Here we tend to think in terms of broad block
semantics (boxes with arrows between) or workflows.

◆◆ Operations: A highly dynamic and parallel phase, where
overt flow thinking is a hindrance / bottleneck.

◆◆ Evaluation: Here we look for artificial and misleading
hindsight narratives about successes and failures.

Rimsky Korsakov would have rolled his eyes at contemporary
descriptions of orchestration. Orchestration of total systems
lies in the planning of highly parallel operations. We might only
remember a specific storyline in hindsight—perhaps a good or
a bad experience. This is how we usually describe the complex
system, but it is not a true representation of it.

We have the opportunity to make introspective systems
that merge semantics and dynamics into a unified picture.

That will only happen when we remove the artificial distinc-
tion between development, configuration, operation, and
monitoring.

In Search of Certainty
What does it mean to be certain about something? How do we
make a reliable infrastructure for society?

Absolute certainty and determinism are myths. We can only
do our best. As small forces in an environment that permits us
islands of temporary calm, we must try to understand the big-
ger picture. There are three main issues: scale, complexity, and
lack of knowledge.

Twenty years after I began CFEngine and my own research
into these matters, it seemed time to tell the story of the think-
ing that went into it. My own interest has meandered around
many topics within the scope of IT operations, and I have tried
to describe how these pieces fit together in the book, but the
main core of it can be understood easily as a simple-minded
quest of a physicist to understand a system.

What I hope is that my book starts a discussion that shows
how to apply some of the traditions of science to a subject that
has ridden mainly on the coat-tails of engineering. How do we
make promises we can keep? By understanding the nature of
certainty itself.

If we take certainty seriously, we need to think carefully about
how software is designed. We can’t just throw software logic
over the wall for operations to catch. We need to build for
intrinsic stability from the outset through true automation.
And, even then, we’ll need to perform continuous maintenance,
just to be sure(ish).

https://www.usenix.org

 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 5

The Night Watch
J a m e s M i c k e n s

A s a highly trained academic researcher, I spend a lot of time trying
to advance the frontiers of human knowledge. However, as someone
who was born in the South, I secretly believe that true progress is

a fantasy, and that I need to prepare for the end times, and for the chickens
coming home to roost, and fast zombies, and slow zombies, and the polite
zombies who say “sir” and “ma’am” but then try to eat your brain to acquire
your skills. When the revolution comes, I need to be prepared; thus, in the
quiet moments, when I’m not producing incredible scientific breakthroughs,
I think about what I’ll do when the weather forecast inevitably becomes
RIVERS OF BLOOD ALL DAY EVERY DAY. The main thing that I ponder is
who will be in my gang, because the likelihood of post-apocalyptic survival
is directly related to the size and quality of your rag-tag group of associates.
There are some obvious people who I’ll need to recruit: a locksmith (to open
doors); a demolitions expert (for when the locksmith has run out of ideas);
and a person who can procure, train, and then throw snakes at my enemies
(because, in a world without hope, snake throwing is a reasonable way to
resolve disputes). All of these people will play a role in my ultimate success
as a dystopian warlord philosopher. However, the most important person in
my gang will be a systems programmer. A person who can debug a device
driver or a distributed system is a person who can be trusted in a Hobbesian
nightmare of breathtaking scope; a systems programmer has seen the terrors
of the world and understood the intrinsic horror of existence. The systems
programmer has written drivers for buggy devices whose firmware was
implemented by a drunken child or a sober goldfish. The systems program-
mer has traced a network problem across eight machines, three time zones,
and a brief diversion into Amish country, where the problem was transmitted
in the front left hoof of a mule named Deliverance. The systems program-
mer has read the kernel source, to better understand the deep ways of the
universe, and the systems programmer has seen the comment in the sched-
uler that says “DOES THIS WORK LOL,” and the systems programmer has
wept instead of LOLed, and the systems programmer has submitted a kernel
patch to restore balance to The Force and fix the priority inversion that was
causing MySQL to hang. A systems programmer will know what to do when
society breaks down, because the systems programmer already lives in a
world without law.

James Mickens is a researcher
in the Distributed Systems
group at Microsoft’s Redmond
lab. His current research
focuses on web applications,

with an emphasis on the design of JavaScript
frameworks that allow developers to
diagnose and fix bugs in widely deployed
web applications. James also works on fast,
scalable storage systems for datacenters.
James received his PhD in computer science
from the University of Michigan, and a
bachelor’s degree in computer science from
Georgia Tech. mickens@microsoft.com

https://www.usenix.org
mickens@microsoft.com

 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 6

The Night Watch

Listen: I’m not saying that other kinds of computer people
are useless. I believe (but cannot prove) that PHP developers
have souls. I think it’s great that database people keep trying
to improve select-from-where, even though the only queries
that cannot be expressed using select-from-where are inap-
propriate limericks from “The Canterbury Tales.” In some
way that I don’t yet understand, I’m glad that theorists are
investigating the equivalence between five-dimensional Tur-
ing machines and Edward Scissorhands. In most situations,
GUI designers should not be forced to fight each other with
tridents and nets as I yell “THERE ARE NO MODAL DIA-
LOGS IN SPARTA.” I am like the Statue of Liberty: I accept
everyone, even the wretched and the huddled and people who
enjoy Haskell. But when things get tough, I need mission-crit-
ical people; I need a person who can wear night-vision goggles
and descend from a helicopter on ropes and do classified
things to protect my freedom while country music plays in the
background. A systems person can do that. I can realistically
give a kernel hacker a nickname like “Diamondback” or “Zeus
Hammer.” In contrast, no one has ever said, “These semi-
transparent icons are really semi-transparent! IS THIS THE
WORK OF ZEUS HAMMER?”

I picked that last example at random. You must believe me
when I say that I have the utmost respect for HCI people.
However, when HCI people debug their code, it’s like an
art show or a meeting of the United Nations. There are tea
breaks and witticisms exchanged in French; wearing a non-
functional scarf is optional, but encouraged. When HCI code
doesn’t work, the problem can be resolved using grand theo-
ries that relate form and perception to your deeply personal
feelings about ovals. There will be rich debates about the
socioeconomic implications of Helvetica Light, and at some
point, you will have to decide whether serifs are daring state-
ments of modernity, or tools of hegemonic oppression that
implicitly support feudalism and illiteracy. Is pinching-and-
dragging less elegant than circling-and-lightly-caressing?
These urgent mysteries will not solve themselves. And yet,
after a long day of debugging HCI code, there is always hope,
and there is no true anger; even if you fear that your drop-
down list should be a radio button, the drop-down list will
suffice until tomorrow, when the sun will rise, glorious and
vibrant, and inspire you to combine scroll bars and left-click-
ing in poignant ways that you will commemorate in a sonnet
when you return from your local farmer’s market.

This is not the world of the systems hacker. When you debug a
distributed system or an OS kernel, you do it Texas-style. You
gather some mean, stoic people, people who have seen things
die, and you get some primitive tools, like a compass and a
rucksack and a stick that’s pointed on one end, and you walk
into the wilderness and you look for trouble, possibly while

using chewing tobacco. As a systems hacker, you must be pre-
pared to do savage things, unspeakable things, to kill runaway
threads with your bare hands, to write directly to network
ports using telnet and an old copy of an RFC that you found in
the Vatican. When you debug systems code, there are no high-
level debates about font choices and the best kind of turquoise,
because this is the Old Testament, an angry and monochro-
matic world, and it doesn’t matter whether your Arial is Bold
or Condensed when people are covered in boils and pestilence
and Egyptian pharaoh oppression. HCI people discover bugs
by receiving a concerned email from their therapist. Systems
people discover bugs by waking up and discovering that their
first-born children are missing and “ETIMEDOUT ” has been
written in blood on the wall.

What is despair? I have known it—hear my song. Despair is
when you’re debugging a kernel driver and you look at a mem-
ory dump and you see that a pointer has a value of 7. THERE IS
NO HARDWARE ARCHITECTURE THAT IS ALIGNED ON
7. Furthermore, 7 IS TOO SMALL AND ONLY EVIL CODE
WOULD TRY TO ACCESS SMALL NUMBER MEMORY.
Misaligned, small-number memory accesses have stolen
decades from my life. The only things worse than misaligned,
small-number memory accesses are accesses with aligned buf-
fer pointers, but impossibly large buffer lengths. Nothing ruins
a Friday at 5 P.M. faster than taking one last pass through the
log file and discovering a word-aligned buffer address, but a
buffer length of NUMBER OF ELECTRONS IN THE UNI-
VERSE. This is a sorrow that lingers, because a 2893 byte read
is the only thing that both Republicans and Democrats agree is
wrong. It’s like, maybe Medicare is a good idea, maybe not, but
there’s no way to justify reading everything that ever existed a
jillion times into a mega-jillion sized array. This constant war
on happiness is what non-systems people do not understand
about the systems world. I mean, when a machine learning
algorithm mistakenly identifies a cat as an elephant, this is
actually hilarious. You can print a picture of a cat wearing an
elephant costume and add an ironic caption that will entertain
people who have middling intellects, and you can hand out cop-
ies of the photo at work and rejoice in the fact that everything
is still fundamentally okay. There is nothing funny to print
when you have a misaligned memory access, because your
machine is dead and there are no printers in the spirit world.
An impossibly large buffer error is even worse, because these
errors often linger in the background, quietly overwriting your
state with evil; if a misaligned memory access is like a criminal
burning down your house in a fail-stop manner, an impossibly
large buffer error is like a criminal who breaks into your house,
sprinkles sand atop random bedsheets and toothbrushes, and
then waits for you to slowly discover that your world has been
tainted by madness. Indeed, the common discovery mode for
an impossibly large buffer error is that your program seems to

https://www.usenix.org

 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 7

The Night Watch

be working fine, and then it tries to display a string that should
say “Hello world,” but instead it prints “#a[5]:3!” or another
syntactically correct Perl script, and you’re like WHAT THE
HOW THE, and then you realize that your prodigal memory
accesses have been stomping around the heap like the Incred-
ible Hulk when asked to write an essay entitled “Smashing
Considered Harmful.”

You might ask, “Why would someone write code in a grotesque
language that exposes raw memory addresses? Why not use
a modern language with garbage collection and functional
programming and free massages after lunch?” Here’s the
answer: Pointers are real. They’re what the hardware under-
stands. Somebody has to deal with them. You can’t just place
a LISP book on top of an x86 chip and hope that the hardware
learns about lambda calculus by osmosis. Denying the exis-
tence of pointers is like living in ancient Greece and denying
the existence of Krackens and then being confused about why
none of your ships ever make it to Morocco, or Ur-Morocco,
or whatever Morocco was called back then. Pointers are like
Krackens—real, living things that must be dealt with so that
polite society can exist. Make no mistake, I don’t want to write
systems software in a language like C++. Similar to the Necro-
nomicon, a C++ source code file is a wicked, obscure document
that’s filled with cryptic incantations and forbidden knowl-
edge. When it’s 3 A.M., and you’ve been debugging for 12 hours,
and you encounter a virtual static friend protected volatile
templated function pointer, you want to go into hibernation and
awake as a werewolf and then find the people who wrote the
C++ standard and bring ruin to the things that they love. The
C++ STL, with its dyslexia-inducing syntax blizzard of colons
and angle brackets, guarantees that if you try to declare any
reasonable data structure, your first seven attempts will result
in compiler errors of Wagnerian fierceness:

Syntax error: unmatched thing in thing from std::nonstd::__

map<_Cyrillic, _$$$dollars>const basic_string< epic_

mystery,mongoose_traits < char>, __default_alloc_<casual_

Fridays = maybe>>

One time I tried to create a list<map<int>>, and my syntax
errors caused the dead to walk among the living. Such things
are clearly unfortunate. Thus, I fully support high-level lan-
guages in which pointers are hidden and types are strong and
the declaration of data structures does not require you to solve
a syntactical puzzle generated by a malevolent extraterrestrial
species. That being said, if you find yourself drinking a martini
and writing programs in garbage-collected, object-oriented
Esperanto, be aware that the only reason that the Esperanto
runtime works is because there are systems people who have
exchanged any hope of losing their virginity for the exciting
opportunity to think about hex numbers and their relationships

with the operating system, the hardware, and ancient blood
rituals that Bjarne Stroustrup performed at Stonehenge.

Perhaps the worst thing about being a systems person is that
other, non-systems people think that they understand the daily
tragedies that compose your life. For example, a few weeks ago,
I was debugging a new network file system that my research
group created. The bug was inside a kernel-mode component,
so my machines were crashing in spectacular and vindic-
tive ways. After a few days of manually rebooting servers, I
had transformed into a shambling, broken man, kind of like a
computer scientist version of Saddam Hussein when he was
pulled from his bunker, all scraggly beard and dead eyes and
florid, nonsensical ramblings about semi-imagined enemies.
As I paced the hallways, muttering Nixonian rants about my
code, one of my colleagues from the HCI group asked me what
my problem was. I described the bug, which involved concur-
rent threads and corrupted state and asynchronous message
delivery across multiple machines, and my coworker said,
“Yeah, that sounds bad. Have you checked the log files for
errors?” I said, “Indeed, I would do that if I hadn’t broken every
component that a logging system needs to log data. I have a
network file system, and I have broken the network, and I have
broken the file system, and my machines crash when I make
eye contact with them. I HAVE NO TOOLS BECAUSE I’VE
DESTROYED MY TOOLS WITH MY TOOLS. My only logging
option is to hire monks to transcribe the subjective experience
of watching my machines die as I weep tears of blood.” My co-
worker, in an earnest attempt to sympathize, recounted one of
his personal debugging stories, a story that essentially involved
an addition operation that had been mistakenly replaced with
a multiplication operation. I listened to this story, and I said,
“Look, I get it. Multiplication is not addition. This has been
known for years. However, multiplication and addition are at
least related. Multiplication is like addition, but with more
addition. Multiplication is a grown-up pterodactyl, and addi-
tion is a baby pterodactyl. Thus, in your debugging story, your
code is wayward, but it basically has the right idea. In contrast,
there is no family-friendly GRE analogy that relates what my
code should do, and what it is actually doing. I had the mod-
est goal of translating a file read into a network operation, and
now my machines have tuberculosis and orifice containment
issues. Do you see the difference between our lives? When you
asked a girl to the prom, you discovered that her father was a
cop. When I asked a girl to the prom, I DISCOVERED THAT
HER FATHER WAS STALIN.”

In conclusion, I’m not saying that everyone should be a
systems hacker. GUIs are useful. Spell-checkers are useful.
I’m glad that people are working on new kinds of bouncing
icons because they believe that humanity has solved cancer
and homelessness and now lives in a consequence-free world

https://www.usenix.org

 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 8

The Night Watch

of immersive sprites. That’s exciting, and I wish that I could
join those people in the 27th century. But I live here, and I live
now, and in my neighborhood, people are dying in the streets.
It’s like, French is a great idea, but nobody is going to invent
French if they’re constantly being attacked by bears. Do you
see? SYSTEMS HACKERS SOLVE THE BEAR MENACE.
Only through the constant vigilance of my people do you get

the freedom to think about croissants and subtle puns involv-
ing the true father of Louis XIV. So, if you see me wandering
the halls, trying to explain synchronization bugs to confused
monks, rest assured that every day, in every way, it gets a little
better. For you, not me. I’ll always be furious at the number 7,
but such is the hero’s journey.

USENIX is the fi rst computing association to o� er free and open
access to all of our conferences proceedings and videos. We
stand by our mission to foster excellence and innovation while
supporting research with a practical bias. Your membership fees
play a major role in making this endeavor successful.

www.usenix.org/membership

Please help us support open access.
Renew your USENIX membership

and ask your colleagues to join or renew today!

Do you know about the
USENIX Open Access Policy?

https://www.usenix.org

 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 9

What Every Admin Should Know About Email
J o e B r o c k m e i e r

I’m regularly taken aback by how far computers and computing have
come since I started futzing with computers in 1995. The tools available
today are astounding compared to what I was using in 1995.

One of the minor exceptions, of course, is email. Yes, email clients have improved in the
past 18 years, but not by a lot. The basics are pretty much the same.

Sadly, not only has the software failed to evolve significantly, people’s use of email has
largely not improved since 1995, either. Actually, its use has degraded significantly
in the interim. By that, I mean that what was widely regarded as “good netiquette” in
1995 is largely disregarded by folks sending email in a corporate setting. That’s a pity,
because what was good practice in 1995 is still best practice today, though perhaps for
different reasons.

For instance, sending large attachments via email used to be considered a no-no to
because many folks would be connecting via dial-up. Really, really slow dial-up. Today?
We may all have super-speedy Internet at home, but when we’re on the road? Not neces-
sarily. Spotty mobile coverage, lousy hotel Wi-Fi, and ridiculous data roaming charges for
international travelers are all good reasons for users to consider the size of their messages
before sending.

Because we all spend, literally, hours every day corresponding with people via email, how
others send email is not just a matter of preference; it’s actually a difference of “you’re
making my life easier” or “you’re making my life harder.”

Work vs. Personal Mail
Note that this list is related to email exchanged in a work setting (including open source
developer mailing lists where work is being done) and not personal email. What’s appropri-
ate for casual, one-on-one conversations is different from what’s appropriate for produc-
tive conversations.

For instance, if someone top-posts a response to “Can we meet for the movie at 7 P.M.?,”
it’s really no biggie. Top-posting that requires a recipient to scroll backwards through a
six-message conversation trying to figure out what the hell the conversation was about is
just rude.

We all know top-posting is evil, but there’s more to good email etiquette than not
top-posting:

◆◆ Don’t shotgun emails. Just because a person has more than one email account, it
doesn’t mean you should send a piece of mail to all of them. Pick one. Otherwise you’re
just creating a mess the other person has to clean up twice.

◆◆ Avoid CC’ing people in emails to a list. Some lists and/or mail clients are config-
ured so that hitting Reply will send a note to the original sender rather than the list.
Others are configured to send mail just to the list. In as much as possible, if you’re

Joe Brockmeier works on the
Open Source and Standards
team for Red Hat, and is a
PMC member for the Apache
CloudStack project. Joe has

a long history of involvement with Linux
and open source, and has also worked for
Novell as the openSUSE community manager.
Brockmeier is a recovering technology
journalist, and has written for ReadWriteWeb,
Linux.com, LWN, Linux Magazine,
NetworkWorld, ZDNet, and many others.

https://www.usenix.org
Linux.com

 | NOVEMBER 2013 | WWW.usenix.org	 PAGE 10

What Every Admin Should Know About Email

having a conversation on a list, don’t also CC individual us-
ers to whom you may be replying directly. They don’t need
two copies of the message.

◆◆ Use meaningful subject lines. When you compose an
email, try to make sure the subject is useful to the recipients
and descriptive of the message you’re sending. If it’s a short
message, you can even put the entire thing in the subject and
put “[EOM]” afterwards.

◆◆ If the topic of a thread changes, change the subject.
This goes back to long email threads on the corporate side,
or long discussions on the -dev lists for projects. You start
on Topic A, but mid-way through the discussion, someone
decides to bring up Topic B, which is totally unrelated or only
quasi-related to the topic at hand. This means that people
skimming email have no clue that the thread with the subject
about the first topic has changed to something relevant to
them. Or, equally annoying, a topic they were interested in fol-
lowing has now devolved into something else entirely. (This
can also be known as attempting to hijack a discussion.)

◆◆ Don’t just reply to an unrelated message to send
an email. This one drives me bonkers because I’ll try to
arrange my inbox by conversation, and an email about one
thing will be buried in a long-dead conversation about some-
thing totally unrelated.

◆◆ Trim your mails. If you’re replying to one sentence in a
3,000-word email, cut out everything but the sentence you’re
replying to and reply to that.

◆◆ Don’t use HTMLized email. Yeah, I’m a crusty old Linux
guy and still use the Mutt client to read a lot of my email. For
far too many reasons to go into in this article, I despise HT-
MLized email. (Again, work. Personal use? Whatever makes
you happy. But it doesn’t belong in a professional setting.)

◆◆ Have a signature. Have an email signature, preferably one
that gives a clue who you are, and perhaps other methods of
reaching you. Keep it short, though. Under no circumstances
should you include a bunch of logos or images in your signa-
ture. (See above about “don’t use HTMLized email.”)

◆◆ Drop the legal boilerplate. A footer on your email tell-
ing someone how to handle your message when they haven’t
agreed to your terms is not likely to be enforceable. It’s doubly
annoying when the footer is longer than the message itself.

◆◆ Avoid surprise CCs. Generally, adding someone to a
discussion without announcing it is rude; however, there are
exceptions, for example, when the original sender specifical-
ly requests that other relevant parties be added if necessary.

◆◆ Avoid improper use of CC. If you need to send a blanket
announcement or forward to a bunch of people, use BCC in-
stead of CC. I don’t want 20 follow-up replies that are totally
irrelevant to me just because people blindly click “Reply All.”

◆◆ Use Reply All sparingly. The corollary to the above rule
is to think before hitting Reply All. Do all the people in the
discussion need to see your reply? Maybe, but think twice.

◆◆ Do not reply to digests. Frankly, I am against allowing
digests for mailing lists, but they’re probably here to stay. If
you want to lurk, fine, have fun. If you wish to reply? Do not
reply to a digest, especially without changing the subject to
be appropriate or trimming the message so that everyone
else has to slog through a day or week’s worth of email to
read your reply to one message in the bunch.

◆◆ Follow instructions for using mailing lists. People who
reply to a mailing list with “unsubscribe” instead of follow-
ing the instructions clearly printed in the footer of about
98% of mailing list messages should be deprived of computer
access for at least a week.

I could go on. And on. Using business email boils down to being
considerate of others in your communications. I understand,
for instance, that top-posting is perfectly reasonable for a
two-word reply sent from a phone. It is not, however, a reason-
able approach when replying to a lengthy email with a likewise
lengthy reply addressing multiple parts of the email.

Now if you’ll excuse me, I have a bunch of email to process.

xkcd

xkcd.com

https://www.usenix.org
xkcd.com

Why Join USENIX?
We support members’ professional and technical
development through many ongoing activities, including:

 Open access to research presented at our events

 Workshops on hot topics

 Conferences presenting the latest in research and practice

 LISA: The USENIX Special Interest Group for Sysadmins

 ;login:, the magazine of USENIX

 Student outreach

Your membership dollars go towards programs including:
 Open access policy: All conference papers and videos are immediately free to everyone upon

 publication

 Student program, including grants for conference attendance

 Good Works program

Helping our many communities share, develop, and adopt ground-breaking ideas in advanced technology

Join us at www.usenix.org

	Uncertain Infrastructures
	The Night Watch
	What Every Admin Should Know About Email

